ca7c25d9f6d5347322cf80f7ac54d5c47df9c7ab
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         tty->magic = 0xDEADDEAD;
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock(tty);
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock(tty);
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         /* FIXME: Review locking here. The tty_lock never covered any race
860            between a new association and proc_clear_tty but possible we need
861            to protect against this anyway */
862         struct task_struct *tsk = current;
863         disassociate_ctty(0);
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /**
944  *      tty_read        -       read method for tty device files
945  *      @file: pointer to tty file
946  *      @buf: user buffer
947  *      @count: size of user buffer
948  *      @ppos: unused
949  *
950  *      Perform the read system call function on this terminal device. Checks
951  *      for hung up devices before calling the line discipline method.
952  *
953  *      Locking:
954  *              Locks the line discipline internally while needed. Multiple
955  *      read calls may be outstanding in parallel.
956  */
957
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959                         loff_t *ppos)
960 {
961         int i;
962         struct inode *inode = file->f_path.dentry->d_inode;
963         struct tty_struct *tty = file_tty(file);
964         struct tty_ldisc *ld;
965
966         if (tty_paranoia_check(tty, inode, "tty_read"))
967                 return -EIO;
968         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969                 return -EIO;
970
971         /* We want to wait for the line discipline to sort out in this
972            situation */
973         ld = tty_ldisc_ref_wait(tty);
974         if (ld->ops->read)
975                 i = (ld->ops->read)(tty, file, buf, count);
976         else
977                 i = -EIO;
978         tty_ldisc_deref(ld);
979         if (i > 0)
980                 inode->i_atime = current_fs_time(inode->i_sb);
981         return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985         __releases(&tty->atomic_write_lock)
986 {
987         mutex_unlock(&tty->atomic_write_lock);
988         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992         __acquires(&tty->atomic_write_lock)
993 {
994         if (!mutex_trylock(&tty->atomic_write_lock)) {
995                 if (ndelay)
996                         return -EAGAIN;
997                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998                         return -ERESTARTSYS;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009         struct tty_struct *tty,
1010         struct file *file,
1011         const char __user *buf,
1012         size_t count)
1013 {
1014         ssize_t ret, written = 0;
1015         unsigned int chunk;
1016
1017         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /*
1022          * We chunk up writes into a temporary buffer. This
1023          * simplifies low-level drivers immensely, since they
1024          * don't have locking issues and user mode accesses.
1025          *
1026          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027          * big chunk-size..
1028          *
1029          * The default chunk-size is 2kB, because the NTTY
1030          * layer has problems with bigger chunks. It will
1031          * claim to be able to handle more characters than
1032          * it actually does.
1033          *
1034          * FIXME: This can probably go away now except that 64K chunks
1035          * are too likely to fail unless switched to vmalloc...
1036          */
1037         chunk = 2048;
1038         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039                 chunk = 65536;
1040         if (count < chunk)
1041                 chunk = count;
1042
1043         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044         if (tty->write_cnt < chunk) {
1045                 unsigned char *buf_chunk;
1046
1047                 if (chunk < 1024)
1048                         chunk = 1024;
1049
1050                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051                 if (!buf_chunk) {
1052                         ret = -ENOMEM;
1053                         goto out;
1054                 }
1055                 kfree(tty->write_buf);
1056                 tty->write_cnt = chunk;
1057                 tty->write_buf = buf_chunk;
1058         }
1059
1060         /* Do the write .. */
1061         for (;;) {
1062                 size_t size = count;
1063                 if (size > chunk)
1064                         size = chunk;
1065                 ret = -EFAULT;
1066                 if (copy_from_user(tty->write_buf, buf, size))
1067                         break;
1068                 ret = write(tty, file, tty->write_buf, size);
1069                 if (ret <= 0)
1070                         break;
1071                 written += ret;
1072                 buf += ret;
1073                 count -= ret;
1074                 if (!count)
1075                         break;
1076                 ret = -ERESTARTSYS;
1077                 if (signal_pending(current))
1078                         break;
1079                 cond_resched();
1080         }
1081         if (written) {
1082                 struct inode *inode = file->f_path.dentry->d_inode;
1083                 inode->i_mtime = current_fs_time(inode->i_sb);
1084                 ret = written;
1085         }
1086 out:
1087         tty_write_unlock(tty);
1088         return ret;
1089 }
1090
1091 /**
1092  * tty_write_message - write a message to a certain tty, not just the console.
1093  * @tty: the destination tty_struct
1094  * @msg: the message to write
1095  *
1096  * This is used for messages that need to be redirected to a specific tty.
1097  * We don't put it into the syslog queue right now maybe in the future if
1098  * really needed.
1099  *
1100  * We must still hold the BTM and test the CLOSING flag for the moment.
1101  */
1102
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105         if (tty) {
1106                 mutex_lock(&tty->atomic_write_lock);
1107                 tty_lock(tty);
1108                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109                         tty_unlock(tty);
1110                         tty->ops->write(tty, msg, strlen(msg));
1111                 } else
1112                         tty_unlock(tty);
1113                 tty_write_unlock(tty);
1114         }
1115         return;
1116 }
1117
1118
1119 /**
1120  *      tty_write               -       write method for tty device file
1121  *      @file: tty file pointer
1122  *      @buf: user data to write
1123  *      @count: bytes to write
1124  *      @ppos: unused
1125  *
1126  *      Write data to a tty device via the line discipline.
1127  *
1128  *      Locking:
1129  *              Locks the line discipline as required
1130  *              Writes to the tty driver are serialized by the atomic_write_lock
1131  *      and are then processed in chunks to the device. The line discipline
1132  *      write method will not be invoked in parallel for each device.
1133  */
1134
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136                                                 size_t count, loff_t *ppos)
1137 {
1138         struct inode *inode = file->f_path.dentry->d_inode;
1139         struct tty_struct *tty = file_tty(file);
1140         struct tty_ldisc *ld;
1141         ssize_t ret;
1142
1143         if (tty_paranoia_check(tty, inode, "tty_write"))
1144                 return -EIO;
1145         if (!tty || !tty->ops->write ||
1146                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1147                         return -EIO;
1148         /* Short term debug to catch buggy drivers */
1149         if (tty->ops->write_room == NULL)
1150                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151                         tty->driver->name);
1152         ld = tty_ldisc_ref_wait(tty);
1153         if (!ld->ops->write)
1154                 ret = -EIO;
1155         else
1156                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157         tty_ldisc_deref(ld);
1158         return ret;
1159 }
1160
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162                                                 size_t count, loff_t *ppos)
1163 {
1164         struct file *p = NULL;
1165
1166         spin_lock(&redirect_lock);
1167         if (redirect) {
1168                 get_file(redirect);
1169                 p = redirect;
1170         }
1171         spin_unlock(&redirect_lock);
1172
1173         if (p) {
1174                 ssize_t res;
1175                 res = vfs_write(p, buf, count, &p->f_pos);
1176                 fput(p);
1177                 return res;
1178         }
1179         return tty_write(file, buf, count, ppos);
1180 }
1181
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184 /**
1185  *      pty_line_name   -       generate name for a pty
1186  *      @driver: the tty driver in use
1187  *      @index: the minor number
1188  *      @p: output buffer of at least 6 bytes
1189  *
1190  *      Generate a name from a driver reference and write it to the output
1191  *      buffer.
1192  *
1193  *      Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197         int i = index + driver->name_base;
1198         /* ->name is initialized to "ttyp", but "tty" is expected */
1199         sprintf(p, "%s%c%x",
1200                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201                 ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203
1204 /**
1205  *      tty_line_name   -       generate name for a tty
1206  *      @driver: the tty driver in use
1207  *      @index: the minor number
1208  *      @p: output buffer of at least 7 bytes
1209  *
1210  *      Generate a name from a driver reference and write it to the output
1211  *      buffer.
1212  *
1213  *      Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219
1220 /**
1221  *      tty_driver_lookup_tty() - find an existing tty, if any
1222  *      @driver: the driver for the tty
1223  *      @idx:    the minor number
1224  *
1225  *      Return the tty, if found or ERR_PTR() otherwise.
1226  *
1227  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1228  *      be held until the 'fast-open' is also done. Will change once we
1229  *      have refcounting in the driver and per driver locking
1230  */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232                 struct inode *inode, int idx)
1233 {
1234         if (driver->ops->lookup)
1235                 return driver->ops->lookup(driver, inode, idx);
1236
1237         return driver->ttys[idx];
1238 }
1239
1240 /**
1241  *      tty_init_termios        -  helper for termios setup
1242  *      @tty: the tty to set up
1243  *
1244  *      Initialise the termios structures for this tty. Thus runs under
1245  *      the tty_mutex currently so we can be relaxed about ordering.
1246  */
1247
1248 int tty_init_termios(struct tty_struct *tty)
1249 {
1250         struct ktermios *tp;
1251         int idx = tty->index;
1252
1253         tp = tty->driver->termios[idx];
1254         if (tp == NULL) {
1255                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1256                 if (tp == NULL)
1257                         return -ENOMEM;
1258                 memcpy(tp, &tty->driver->init_termios,
1259                                                 sizeof(struct ktermios));
1260                 tty->driver->termios[idx] = tp;
1261         }
1262         tty->termios = tp;
1263         tty->termios_locked = tp + 1;
1264
1265         /* Compatibility until drivers always set this */
1266         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1267         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1268         return 0;
1269 }
1270 EXPORT_SYMBOL_GPL(tty_init_termios);
1271
1272 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1273 {
1274         int ret = tty_init_termios(tty);
1275         if (ret)
1276                 return ret;
1277
1278         tty_driver_kref_get(driver);
1279         tty->count++;
1280         driver->ttys[tty->index] = tty;
1281         return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(tty_standard_install);
1284
1285 /**
1286  *      tty_driver_install_tty() - install a tty entry in the driver
1287  *      @driver: the driver for the tty
1288  *      @tty: the tty
1289  *
1290  *      Install a tty object into the driver tables. The tty->index field
1291  *      will be set by the time this is called. This method is responsible
1292  *      for ensuring any need additional structures are allocated and
1293  *      configured.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static int tty_driver_install_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         return driver->ops->install ? driver->ops->install(driver, tty) :
1301                 tty_standard_install(driver, tty);
1302 }
1303
1304 /**
1305  *      tty_driver_remove_tty() - remove a tty from the driver tables
1306  *      @driver: the driver for the tty
1307  *      @idx:    the minor number
1308  *
1309  *      Remvoe a tty object from the driver tables. The tty->index field
1310  *      will be set by the time this is called.
1311  *
1312  *      Locking: tty_mutex for now
1313  */
1314 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1315 {
1316         if (driver->ops->remove)
1317                 driver->ops->remove(driver, tty);
1318         else
1319                 driver->ttys[tty->index] = NULL;
1320 }
1321
1322 /*
1323  *      tty_reopen()    - fast re-open of an open tty
1324  *      @tty    - the tty to open
1325  *
1326  *      Return 0 on success, -errno on error.
1327  *
1328  *      Locking: tty_mutex must be held from the time the tty was found
1329  *               till this open completes.
1330  */
1331 static int tty_reopen(struct tty_struct *tty)
1332 {
1333         struct tty_driver *driver = tty->driver;
1334
1335         if (test_bit(TTY_CLOSING, &tty->flags) ||
1336                         test_bit(TTY_HUPPING, &tty->flags) ||
1337                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338                 return -EIO;
1339
1340         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1341             driver->subtype == PTY_TYPE_MASTER) {
1342                 /*
1343                  * special case for PTY masters: only one open permitted,
1344                  * and the slave side open count is incremented as well.
1345                  */
1346                 if (tty->count)
1347                         return -EIO;
1348
1349                 tty->link->count++;
1350         }
1351         tty->count++;
1352
1353         mutex_lock(&tty->ldisc_mutex);
1354         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1355         mutex_unlock(&tty->ldisc_mutex);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  *      tty_init_dev            -       initialise a tty device
1362  *      @driver: tty driver we are opening a device on
1363  *      @idx: device index
1364  *      @ret_tty: returned tty structure
1365  *
1366  *      Prepare a tty device. This may not be a "new" clean device but
1367  *      could also be an active device. The pty drivers require special
1368  *      handling because of this.
1369  *
1370  *      Locking:
1371  *              The function is called under the tty_mutex, which
1372  *      protects us from the tty struct or driver itself going away.
1373  *
1374  *      On exit the tty device has the line discipline attached and
1375  *      a reference count of 1. If a pair was created for pty/tty use
1376  *      and the other was a pty master then it too has a reference count of 1.
1377  *
1378  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1379  * failed open.  The new code protects the open with a mutex, so it's
1380  * really quite straightforward.  The mutex locking can probably be
1381  * relaxed for the (most common) case of reopening a tty.
1382  */
1383
1384 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1385 {
1386         struct tty_struct *tty;
1387         int retval;
1388
1389         /*
1390          * First time open is complex, especially for PTY devices.
1391          * This code guarantees that either everything succeeds and the
1392          * TTY is ready for operation, or else the table slots are vacated
1393          * and the allocated memory released.  (Except that the termios
1394          * and locked termios may be retained.)
1395          */
1396
1397         if (!try_module_get(driver->owner))
1398                 return ERR_PTR(-ENODEV);
1399
1400         tty = alloc_tty_struct();
1401         if (!tty) {
1402                 retval = -ENOMEM;
1403                 goto err_module_put;
1404         }
1405         initialize_tty_struct(tty, driver, idx);
1406
1407         tty_lock(tty);
1408         retval = tty_driver_install_tty(driver, tty);
1409         if (retval < 0)
1410                 goto err_deinit_tty;
1411
1412         if (!tty->port)
1413                 tty->port = driver->ports[idx];
1414
1415         /*
1416          * Structures all installed ... call the ldisc open routines.
1417          * If we fail here just call release_tty to clean up.  No need
1418          * to decrement the use counts, as release_tty doesn't care.
1419          */
1420         retval = tty_ldisc_setup(tty, tty->link);
1421         if (retval)
1422                 goto err_release_tty;
1423         /* Return the tty locked so that it cannot vanish under the caller */
1424         return tty;
1425
1426 err_deinit_tty:
1427         tty_unlock(tty);
1428         deinitialize_tty_struct(tty);
1429         free_tty_struct(tty);
1430 err_module_put:
1431         module_put(driver->owner);
1432         return ERR_PTR(retval);
1433
1434         /* call the tty release_tty routine to clean out this slot */
1435 err_release_tty:
1436         tty_unlock(tty);
1437         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1438                                  "clearing slot %d\n", idx);
1439         release_tty(tty, idx);
1440         return ERR_PTR(retval);
1441 }
1442
1443 void tty_free_termios(struct tty_struct *tty)
1444 {
1445         struct ktermios *tp;
1446         int idx = tty->index;
1447         /* Kill this flag and push into drivers for locking etc */
1448         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1449                 /* FIXME: Locking on ->termios array */
1450                 tp = tty->termios;
1451                 tty->driver->termios[idx] = NULL;
1452                 kfree(tp);
1453         }
1454 }
1455 EXPORT_SYMBOL(tty_free_termios);
1456
1457 void tty_shutdown(struct tty_struct *tty)
1458 {
1459         tty_driver_remove_tty(tty->driver, tty);
1460         tty_free_termios(tty);
1461 }
1462 EXPORT_SYMBOL(tty_shutdown);
1463
1464 /**
1465  *      release_one_tty         -       release tty structure memory
1466  *      @kref: kref of tty we are obliterating
1467  *
1468  *      Releases memory associated with a tty structure, and clears out the
1469  *      driver table slots. This function is called when a device is no longer
1470  *      in use. It also gets called when setup of a device fails.
1471  *
1472  *      Locking:
1473  *              tty_mutex - sometimes only
1474  *              takes the file list lock internally when working on the list
1475  *      of ttys that the driver keeps.
1476  *
1477  *      This method gets called from a work queue so that the driver private
1478  *      cleanup ops can sleep (needed for USB at least)
1479  */
1480 static void release_one_tty(struct work_struct *work)
1481 {
1482         struct tty_struct *tty =
1483                 container_of(work, struct tty_struct, hangup_work);
1484         struct tty_driver *driver = tty->driver;
1485
1486         if (tty->ops->cleanup)
1487                 tty->ops->cleanup(tty);
1488
1489         tty->magic = 0;
1490         tty_driver_kref_put(driver);
1491         module_put(driver->owner);
1492
1493         spin_lock(&tty_files_lock);
1494         list_del_init(&tty->tty_files);
1495         spin_unlock(&tty_files_lock);
1496
1497         put_pid(tty->pgrp);
1498         put_pid(tty->session);
1499         free_tty_struct(tty);
1500 }
1501
1502 static void queue_release_one_tty(struct kref *kref)
1503 {
1504         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1505
1506         if (tty->ops->shutdown)
1507                 tty->ops->shutdown(tty);
1508         else
1509                 tty_shutdown(tty);
1510
1511         /* The hangup queue is now free so we can reuse it rather than
1512            waste a chunk of memory for each port */
1513         INIT_WORK(&tty->hangup_work, release_one_tty);
1514         schedule_work(&tty->hangup_work);
1515 }
1516
1517 /**
1518  *      tty_kref_put            -       release a tty kref
1519  *      @tty: tty device
1520  *
1521  *      Release a reference to a tty device and if need be let the kref
1522  *      layer destruct the object for us
1523  */
1524
1525 void tty_kref_put(struct tty_struct *tty)
1526 {
1527         if (tty)
1528                 kref_put(&tty->kref, queue_release_one_tty);
1529 }
1530 EXPORT_SYMBOL(tty_kref_put);
1531
1532 /**
1533  *      release_tty             -       release tty structure memory
1534  *
1535  *      Release both @tty and a possible linked partner (think pty pair),
1536  *      and decrement the refcount of the backing module.
1537  *
1538  *      Locking:
1539  *              tty_mutex - sometimes only
1540  *              takes the file list lock internally when working on the list
1541  *      of ttys that the driver keeps.
1542  *              FIXME: should we require tty_mutex is held here ??
1543  *
1544  */
1545 static void release_tty(struct tty_struct *tty, int idx)
1546 {
1547         /* This should always be true but check for the moment */
1548         WARN_ON(tty->index != idx);
1549
1550         if (tty->link)
1551                 tty_kref_put(tty->link);
1552         tty_kref_put(tty);
1553 }
1554
1555 /**
1556  *      tty_release_checks - check a tty before real release
1557  *      @tty: tty to check
1558  *      @o_tty: link of @tty (if any)
1559  *      @idx: index of the tty
1560  *
1561  *      Performs some paranoid checking before true release of the @tty.
1562  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1563  */
1564 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1565                 int idx)
1566 {
1567 #ifdef TTY_PARANOIA_CHECK
1568         if (idx < 0 || idx >= tty->driver->num) {
1569                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1570                                 __func__, tty->name);
1571                 return -1;
1572         }
1573
1574         /* not much to check for devpts */
1575         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1576                 return 0;
1577
1578         if (tty != tty->driver->ttys[idx]) {
1579                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1580                                 __func__, idx, tty->name);
1581                 return -1;
1582         }
1583         if (tty->termios != tty->driver->termios[idx]) {
1584                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1585                                 __func__, idx, tty->name);
1586                 return -1;
1587         }
1588         if (tty->driver->other) {
1589                 if (o_tty != tty->driver->other->ttys[idx]) {
1590                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1591                                         __func__, idx, tty->name);
1592                         return -1;
1593                 }
1594                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1595                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1596                                         __func__, idx, tty->name);
1597                         return -1;
1598                 }
1599                 if (o_tty->link != tty) {
1600                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1601                         return -1;
1602                 }
1603         }
1604 #endif
1605         return 0;
1606 }
1607
1608 /**
1609  *      tty_release             -       vfs callback for close
1610  *      @inode: inode of tty
1611  *      @filp: file pointer for handle to tty
1612  *
1613  *      Called the last time each file handle is closed that references
1614  *      this tty. There may however be several such references.
1615  *
1616  *      Locking:
1617  *              Takes bkl. See tty_release_dev
1618  *
1619  * Even releasing the tty structures is a tricky business.. We have
1620  * to be very careful that the structures are all released at the
1621  * same time, as interrupts might otherwise get the wrong pointers.
1622  *
1623  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1624  * lead to double frees or releasing memory still in use.
1625  */
1626
1627 int tty_release(struct inode *inode, struct file *filp)
1628 {
1629         struct tty_struct *tty = file_tty(filp);
1630         struct tty_struct *o_tty;
1631         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1632         int     devpts;
1633         int     idx;
1634         char    buf[64];
1635
1636         if (tty_paranoia_check(tty, inode, __func__))
1637                 return 0;
1638
1639         tty_lock(tty);
1640         check_tty_count(tty, __func__);
1641
1642         __tty_fasync(-1, filp, 0);
1643
1644         idx = tty->index;
1645         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1646                       tty->driver->subtype == PTY_TYPE_MASTER);
1647         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1648         /* Review: parallel close */
1649         o_tty = tty->link;
1650
1651         if (tty_release_checks(tty, o_tty, idx)) {
1652                 tty_unlock(tty);
1653                 return 0;
1654         }
1655
1656 #ifdef TTY_DEBUG_HANGUP
1657         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1658                         tty_name(tty, buf), tty->count);
1659 #endif
1660
1661         if (tty->ops->close)
1662                 tty->ops->close(tty, filp);
1663
1664         tty_unlock(tty);
1665         /*
1666          * Sanity check: if tty->count is going to zero, there shouldn't be
1667          * any waiters on tty->read_wait or tty->write_wait.  We test the
1668          * wait queues and kick everyone out _before_ actually starting to
1669          * close.  This ensures that we won't block while releasing the tty
1670          * structure.
1671          *
1672          * The test for the o_tty closing is necessary, since the master and
1673          * slave sides may close in any order.  If the slave side closes out
1674          * first, its count will be one, since the master side holds an open.
1675          * Thus this test wouldn't be triggered at the time the slave closes,
1676          * so we do it now.
1677          *
1678          * Note that it's possible for the tty to be opened again while we're
1679          * flushing out waiters.  By recalculating the closing flags before
1680          * each iteration we avoid any problems.
1681          */
1682         while (1) {
1683                 /* Guard against races with tty->count changes elsewhere and
1684                    opens on /dev/tty */
1685
1686                 mutex_lock(&tty_mutex);
1687                 tty_lock_pair(tty, o_tty);
1688                 tty_closing = tty->count <= 1;
1689                 o_tty_closing = o_tty &&
1690                         (o_tty->count <= (pty_master ? 1 : 0));
1691                 do_sleep = 0;
1692
1693                 if (tty_closing) {
1694                         if (waitqueue_active(&tty->read_wait)) {
1695                                 wake_up_poll(&tty->read_wait, POLLIN);
1696                                 do_sleep++;
1697                         }
1698                         if (waitqueue_active(&tty->write_wait)) {
1699                                 wake_up_poll(&tty->write_wait, POLLOUT);
1700                                 do_sleep++;
1701                         }
1702                 }
1703                 if (o_tty_closing) {
1704                         if (waitqueue_active(&o_tty->read_wait)) {
1705                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1706                                 do_sleep++;
1707                         }
1708                         if (waitqueue_active(&o_tty->write_wait)) {
1709                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1710                                 do_sleep++;
1711                         }
1712                 }
1713                 if (!do_sleep)
1714                         break;
1715
1716                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1717                                 __func__, tty_name(tty, buf));
1718                 tty_unlock_pair(tty, o_tty);
1719                 mutex_unlock(&tty_mutex);
1720                 schedule();
1721         }
1722
1723         /*
1724          * The closing flags are now consistent with the open counts on
1725          * both sides, and we've completed the last operation that could
1726          * block, so it's safe to proceed with closing.
1727          */
1728         if (pty_master) {
1729                 if (--o_tty->count < 0) {
1730                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1731                                 __func__, o_tty->count, tty_name(o_tty, buf));
1732                         o_tty->count = 0;
1733                 }
1734         }
1735         if (--tty->count < 0) {
1736                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1737                                 __func__, tty->count, tty_name(tty, buf));
1738                 tty->count = 0;
1739         }
1740
1741         /*
1742          * We've decremented tty->count, so we need to remove this file
1743          * descriptor off the tty->tty_files list; this serves two
1744          * purposes:
1745          *  - check_tty_count sees the correct number of file descriptors
1746          *    associated with this tty.
1747          *  - do_tty_hangup no longer sees this file descriptor as
1748          *    something that needs to be handled for hangups.
1749          */
1750         tty_del_file(filp);
1751
1752         /*
1753          * Perform some housekeeping before deciding whether to return.
1754          *
1755          * Set the TTY_CLOSING flag if this was the last open.  In the
1756          * case of a pty we may have to wait around for the other side
1757          * to close, and TTY_CLOSING makes sure we can't be reopened.
1758          */
1759         if (tty_closing)
1760                 set_bit(TTY_CLOSING, &tty->flags);
1761         if (o_tty_closing)
1762                 set_bit(TTY_CLOSING, &o_tty->flags);
1763
1764         /*
1765          * If _either_ side is closing, make sure there aren't any
1766          * processes that still think tty or o_tty is their controlling
1767          * tty.
1768          */
1769         if (tty_closing || o_tty_closing) {
1770                 read_lock(&tasklist_lock);
1771                 session_clear_tty(tty->session);
1772                 if (o_tty)
1773                         session_clear_tty(o_tty->session);
1774                 read_unlock(&tasklist_lock);
1775         }
1776
1777         mutex_unlock(&tty_mutex);
1778
1779         /* check whether both sides are closing ... */
1780         if (!tty_closing || (o_tty && !o_tty_closing)) {
1781                 tty_unlock_pair(tty, o_tty);
1782                 return 0;
1783         }
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1787 #endif
1788         /*
1789          * Ask the line discipline code to release its structures
1790          */
1791         tty_ldisc_release(tty, o_tty);
1792         /*
1793          * The release_tty function takes care of the details of clearing
1794          * the slots and preserving the termios structure. The tty_unlock_pair
1795          * should be safe as we keep a kref while the tty is locked (so the
1796          * unlock never unlocks a freed tty).
1797          */
1798         release_tty(tty, idx);
1799         tty_unlock_pair(tty, o_tty);
1800
1801         /* Make this pty number available for reallocation */
1802         if (devpts)
1803                 devpts_kill_index(inode, idx);
1804         return 0;
1805 }
1806
1807 /**
1808  *      tty_open_current_tty - get tty of current task for open
1809  *      @device: device number
1810  *      @filp: file pointer to tty
1811  *      @return: tty of the current task iff @device is /dev/tty
1812  *
1813  *      We cannot return driver and index like for the other nodes because
1814  *      devpts will not work then. It expects inodes to be from devpts FS.
1815  *
1816  *      We need to move to returning a refcounted object from all the lookup
1817  *      paths including this one.
1818  */
1819 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1820 {
1821         struct tty_struct *tty;
1822
1823         if (device != MKDEV(TTYAUX_MAJOR, 0))
1824                 return NULL;
1825
1826         tty = get_current_tty();
1827         if (!tty)
1828                 return ERR_PTR(-ENXIO);
1829
1830         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831         /* noctty = 1; */
1832         tty_kref_put(tty);
1833         /* FIXME: we put a reference and return a TTY! */
1834         /* This is only safe because the caller holds tty_mutex */
1835         return tty;
1836 }
1837
1838 /**
1839  *      tty_lookup_driver - lookup a tty driver for a given device file
1840  *      @device: device number
1841  *      @filp: file pointer to tty
1842  *      @noctty: set if the device should not become a controlling tty
1843  *      @index: index for the device in the @return driver
1844  *      @return: driver for this inode (with increased refcount)
1845  *
1846  *      If @return is not erroneous, the caller is responsible to decrement the
1847  *      refcount by tty_driver_kref_put.
1848  *
1849  *      Locking: tty_mutex protects get_tty_driver
1850  */
1851 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1852                 int *noctty, int *index)
1853 {
1854         struct tty_driver *driver;
1855
1856         switch (device) {
1857 #ifdef CONFIG_VT
1858         case MKDEV(TTY_MAJOR, 0): {
1859                 extern struct tty_driver *console_driver;
1860                 driver = tty_driver_kref_get(console_driver);
1861                 *index = fg_console;
1862                 *noctty = 1;
1863                 break;
1864         }
1865 #endif
1866         case MKDEV(TTYAUX_MAJOR, 1): {
1867                 struct tty_driver *console_driver = console_device(index);
1868                 if (console_driver) {
1869                         driver = tty_driver_kref_get(console_driver);
1870                         if (driver) {
1871                                 /* Don't let /dev/console block */
1872                                 filp->f_flags |= O_NONBLOCK;
1873                                 *noctty = 1;
1874                                 break;
1875                         }
1876                 }
1877                 return ERR_PTR(-ENODEV);
1878         }
1879         default:
1880                 driver = get_tty_driver(device, index);
1881                 if (!driver)
1882                         return ERR_PTR(-ENODEV);
1883                 break;
1884         }
1885         return driver;
1886 }
1887
1888 /**
1889  *      tty_open                -       open a tty device
1890  *      @inode: inode of device file
1891  *      @filp: file pointer to tty
1892  *
1893  *      tty_open and tty_release keep up the tty count that contains the
1894  *      number of opens done on a tty. We cannot use the inode-count, as
1895  *      different inodes might point to the same tty.
1896  *
1897  *      Open-counting is needed for pty masters, as well as for keeping
1898  *      track of serial lines: DTR is dropped when the last close happens.
1899  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1900  *
1901  *      The termios state of a pty is reset on first open so that
1902  *      settings don't persist across reuse.
1903  *
1904  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1905  *               tty->count should protect the rest.
1906  *               ->siglock protects ->signal/->sighand
1907  *
1908  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1909  *      tty_mutex
1910  */
1911
1912 static int tty_open(struct inode *inode, struct file *filp)
1913 {
1914         struct tty_struct *tty;
1915         int noctty, retval;
1916         struct tty_driver *driver = NULL;
1917         int index;
1918         dev_t device = inode->i_rdev;
1919         unsigned saved_flags = filp->f_flags;
1920
1921         nonseekable_open(inode, filp);
1922
1923 retry_open:
1924         retval = tty_alloc_file(filp);
1925         if (retval)
1926                 return -ENOMEM;
1927
1928         noctty = filp->f_flags & O_NOCTTY;
1929         index  = -1;
1930         retval = 0;
1931
1932         mutex_lock(&tty_mutex);
1933         /* This is protected by the tty_mutex */
1934         tty = tty_open_current_tty(device, filp);
1935         if (IS_ERR(tty)) {
1936                 retval = PTR_ERR(tty);
1937                 goto err_unlock;
1938         } else if (!tty) {
1939                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1940                 if (IS_ERR(driver)) {
1941                         retval = PTR_ERR(driver);
1942                         goto err_unlock;
1943                 }
1944
1945                 /* check whether we're reopening an existing tty */
1946                 tty = tty_driver_lookup_tty(driver, inode, index);
1947                 if (IS_ERR(tty)) {
1948                         retval = PTR_ERR(tty);
1949                         goto err_unlock;
1950                 }
1951         }
1952
1953         if (tty) {
1954                 tty_lock(tty);
1955                 retval = tty_reopen(tty);
1956                 if (retval < 0) {
1957                         tty_unlock(tty);
1958                         tty = ERR_PTR(retval);
1959                 }
1960         } else  /* Returns with the tty_lock held for now */
1961                 tty = tty_init_dev(driver, index);
1962
1963         mutex_unlock(&tty_mutex);
1964         if (driver)
1965                 tty_driver_kref_put(driver);
1966         if (IS_ERR(tty)) {
1967                 retval = PTR_ERR(tty);
1968                 goto err_file;
1969         }
1970
1971         tty_add_file(tty, filp);
1972
1973         check_tty_count(tty, __func__);
1974         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1975             tty->driver->subtype == PTY_TYPE_MASTER)
1976                 noctty = 1;
1977 #ifdef TTY_DEBUG_HANGUP
1978         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1979 #endif
1980         if (tty->ops->open)
1981                 retval = tty->ops->open(tty, filp);
1982         else
1983                 retval = -ENODEV;
1984         filp->f_flags = saved_flags;
1985
1986         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1987                                                 !capable(CAP_SYS_ADMIN))
1988                 retval = -EBUSY;
1989
1990         if (retval) {
1991 #ifdef TTY_DEBUG_HANGUP
1992                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1993                                 retval, tty->name);
1994 #endif
1995                 tty_unlock(tty); /* need to call tty_release without BTM */
1996                 tty_release(inode, filp);
1997                 if (retval != -ERESTARTSYS)
1998                         return retval;
1999
2000                 if (signal_pending(current))
2001                         return retval;
2002
2003                 schedule();
2004                 /*
2005                  * Need to reset f_op in case a hangup happened.
2006                  */
2007                 if (filp->f_op == &hung_up_tty_fops)
2008                         filp->f_op = &tty_fops;
2009                 goto retry_open;
2010         }
2011         tty_unlock(tty);
2012
2013
2014         mutex_lock(&tty_mutex);
2015         tty_lock(tty);
2016         spin_lock_irq(&current->sighand->siglock);
2017         if (!noctty &&
2018             current->signal->leader &&
2019             !current->signal->tty &&
2020             tty->session == NULL)
2021                 __proc_set_tty(current, tty);
2022         spin_unlock_irq(&current->sighand->siglock);
2023         tty_unlock(tty);
2024         mutex_unlock(&tty_mutex);
2025         return 0;
2026 err_unlock:
2027         mutex_unlock(&tty_mutex);
2028         /* after locks to avoid deadlock */
2029         if (!IS_ERR_OR_NULL(driver))
2030                 tty_driver_kref_put(driver);
2031 err_file:
2032         tty_free_file(filp);
2033         return retval;
2034 }
2035
2036
2037
2038 /**
2039  *      tty_poll        -       check tty status
2040  *      @filp: file being polled
2041  *      @wait: poll wait structures to update
2042  *
2043  *      Call the line discipline polling method to obtain the poll
2044  *      status of the device.
2045  *
2046  *      Locking: locks called line discipline but ldisc poll method
2047  *      may be re-entered freely by other callers.
2048  */
2049
2050 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2051 {
2052         struct tty_struct *tty = file_tty(filp);
2053         struct tty_ldisc *ld;
2054         int ret = 0;
2055
2056         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2057                 return 0;
2058
2059         ld = tty_ldisc_ref_wait(tty);
2060         if (ld->ops->poll)
2061                 ret = (ld->ops->poll)(tty, filp, wait);
2062         tty_ldisc_deref(ld);
2063         return ret;
2064 }
2065
2066 static int __tty_fasync(int fd, struct file *filp, int on)
2067 {
2068         struct tty_struct *tty = file_tty(filp);
2069         unsigned long flags;
2070         int retval = 0;
2071
2072         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2073                 goto out;
2074
2075         retval = fasync_helper(fd, filp, on, &tty->fasync);
2076         if (retval <= 0)
2077                 goto out;
2078
2079         if (on) {
2080                 enum pid_type type;
2081                 struct pid *pid;
2082                 if (!waitqueue_active(&tty->read_wait))
2083                         tty->minimum_to_wake = 1;
2084                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2085                 if (tty->pgrp) {
2086                         pid = tty->pgrp;
2087                         type = PIDTYPE_PGID;
2088                 } else {
2089                         pid = task_pid(current);
2090                         type = PIDTYPE_PID;
2091                 }
2092                 get_pid(pid);
2093                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2094                 retval = __f_setown(filp, pid, type, 0);
2095                 put_pid(pid);
2096                 if (retval)
2097                         goto out;
2098         } else {
2099                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2100                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2101         }
2102         retval = 0;
2103 out:
2104         return retval;
2105 }
2106
2107 static int tty_fasync(int fd, struct file *filp, int on)
2108 {
2109         struct tty_struct *tty = file_tty(filp);
2110         int retval;
2111
2112         tty_lock(tty);
2113         retval = __tty_fasync(fd, filp, on);
2114         tty_unlock(tty);
2115
2116         return retval;
2117 }
2118
2119 /**
2120  *      tiocsti                 -       fake input character
2121  *      @tty: tty to fake input into
2122  *      @p: pointer to character
2123  *
2124  *      Fake input to a tty device. Does the necessary locking and
2125  *      input management.
2126  *
2127  *      FIXME: does not honour flow control ??
2128  *
2129  *      Locking:
2130  *              Called functions take tty_ldisc_lock
2131  *              current->signal->tty check is safe without locks
2132  *
2133  *      FIXME: may race normal receive processing
2134  */
2135
2136 static int tiocsti(struct tty_struct *tty, char __user *p)
2137 {
2138         char ch, mbz = 0;
2139         struct tty_ldisc *ld;
2140
2141         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2142                 return -EPERM;
2143         if (get_user(ch, p))
2144                 return -EFAULT;
2145         tty_audit_tiocsti(tty, ch);
2146         ld = tty_ldisc_ref_wait(tty);
2147         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2148         tty_ldisc_deref(ld);
2149         return 0;
2150 }
2151
2152 /**
2153  *      tiocgwinsz              -       implement window query ioctl
2154  *      @tty; tty
2155  *      @arg: user buffer for result
2156  *
2157  *      Copies the kernel idea of the window size into the user buffer.
2158  *
2159  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2160  *              is consistent.
2161  */
2162
2163 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2164 {
2165         int err;
2166
2167         mutex_lock(&tty->termios_mutex);
2168         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2169         mutex_unlock(&tty->termios_mutex);
2170
2171         return err ? -EFAULT: 0;
2172 }
2173
2174 /**
2175  *      tty_do_resize           -       resize event
2176  *      @tty: tty being resized
2177  *      @rows: rows (character)
2178  *      @cols: cols (character)
2179  *
2180  *      Update the termios variables and send the necessary signals to
2181  *      peform a terminal resize correctly
2182  */
2183
2184 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2185 {
2186         struct pid *pgrp;
2187         unsigned long flags;
2188
2189         /* Lock the tty */
2190         mutex_lock(&tty->termios_mutex);
2191         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2192                 goto done;
2193         /* Get the PID values and reference them so we can
2194            avoid holding the tty ctrl lock while sending signals */
2195         spin_lock_irqsave(&tty->ctrl_lock, flags);
2196         pgrp = get_pid(tty->pgrp);
2197         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2198
2199         if (pgrp)
2200                 kill_pgrp(pgrp, SIGWINCH, 1);
2201         put_pid(pgrp);
2202
2203         tty->winsize = *ws;
2204 done:
2205         mutex_unlock(&tty->termios_mutex);
2206         return 0;
2207 }
2208
2209 /**
2210  *      tiocswinsz              -       implement window size set ioctl
2211  *      @tty; tty side of tty
2212  *      @arg: user buffer for result
2213  *
2214  *      Copies the user idea of the window size to the kernel. Traditionally
2215  *      this is just advisory information but for the Linux console it
2216  *      actually has driver level meaning and triggers a VC resize.
2217  *
2218  *      Locking:
2219  *              Driver dependent. The default do_resize method takes the
2220  *      tty termios mutex and ctrl_lock. The console takes its own lock
2221  *      then calls into the default method.
2222  */
2223
2224 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2225 {
2226         struct winsize tmp_ws;
2227         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2228                 return -EFAULT;
2229
2230         if (tty->ops->resize)
2231                 return tty->ops->resize(tty, &tmp_ws);
2232         else
2233                 return tty_do_resize(tty, &tmp_ws);
2234 }
2235
2236 /**
2237  *      tioccons        -       allow admin to move logical console
2238  *      @file: the file to become console
2239  *
2240  *      Allow the administrator to move the redirected console device
2241  *
2242  *      Locking: uses redirect_lock to guard the redirect information
2243  */
2244
2245 static int tioccons(struct file *file)
2246 {
2247         if (!capable(CAP_SYS_ADMIN))
2248                 return -EPERM;
2249         if (file->f_op->write == redirected_tty_write) {
2250                 struct file *f;
2251                 spin_lock(&redirect_lock);
2252                 f = redirect;
2253                 redirect = NULL;
2254                 spin_unlock(&redirect_lock);
2255                 if (f)
2256                         fput(f);
2257                 return 0;
2258         }
2259         spin_lock(&redirect_lock);
2260         if (redirect) {
2261                 spin_unlock(&redirect_lock);
2262                 return -EBUSY;
2263         }
2264         get_file(file);
2265         redirect = file;
2266         spin_unlock(&redirect_lock);
2267         return 0;
2268 }
2269
2270 /**
2271  *      fionbio         -       non blocking ioctl
2272  *      @file: file to set blocking value
2273  *      @p: user parameter
2274  *
2275  *      Historical tty interfaces had a blocking control ioctl before
2276  *      the generic functionality existed. This piece of history is preserved
2277  *      in the expected tty API of posix OS's.
2278  *
2279  *      Locking: none, the open file handle ensures it won't go away.
2280  */
2281
2282 static int fionbio(struct file *file, int __user *p)
2283 {
2284         int nonblock;
2285
2286         if (get_user(nonblock, p))
2287                 return -EFAULT;
2288
2289         spin_lock(&file->f_lock);
2290         if (nonblock)
2291                 file->f_flags |= O_NONBLOCK;
2292         else
2293                 file->f_flags &= ~O_NONBLOCK;
2294         spin_unlock(&file->f_lock);
2295         return 0;
2296 }
2297
2298 /**
2299  *      tiocsctty       -       set controlling tty
2300  *      @tty: tty structure
2301  *      @arg: user argument
2302  *
2303  *      This ioctl is used to manage job control. It permits a session
2304  *      leader to set this tty as the controlling tty for the session.
2305  *
2306  *      Locking:
2307  *              Takes tty_mutex() to protect tty instance
2308  *              Takes tasklist_lock internally to walk sessions
2309  *              Takes ->siglock() when updating signal->tty
2310  */
2311
2312 static int tiocsctty(struct tty_struct *tty, int arg)
2313 {
2314         int ret = 0;
2315         if (current->signal->leader && (task_session(current) == tty->session))
2316                 return ret;
2317
2318         mutex_lock(&tty_mutex);
2319         /*
2320          * The process must be a session leader and
2321          * not have a controlling tty already.
2322          */
2323         if (!current->signal->leader || current->signal->tty) {
2324                 ret = -EPERM;
2325                 goto unlock;
2326         }
2327
2328         if (tty->session) {
2329                 /*
2330                  * This tty is already the controlling
2331                  * tty for another session group!
2332                  */
2333                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2334                         /*
2335                          * Steal it away
2336                          */
2337                         read_lock(&tasklist_lock);
2338                         session_clear_tty(tty->session);
2339                         read_unlock(&tasklist_lock);
2340                 } else {
2341                         ret = -EPERM;
2342                         goto unlock;
2343                 }
2344         }
2345         proc_set_tty(current, tty);
2346 unlock:
2347         mutex_unlock(&tty_mutex);
2348         return ret;
2349 }
2350
2351 /**
2352  *      tty_get_pgrp    -       return a ref counted pgrp pid
2353  *      @tty: tty to read
2354  *
2355  *      Returns a refcounted instance of the pid struct for the process
2356  *      group controlling the tty.
2357  */
2358
2359 struct pid *tty_get_pgrp(struct tty_struct *tty)
2360 {
2361         unsigned long flags;
2362         struct pid *pgrp;
2363
2364         spin_lock_irqsave(&tty->ctrl_lock, flags);
2365         pgrp = get_pid(tty->pgrp);
2366         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2367
2368         return pgrp;
2369 }
2370 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2371
2372 /**
2373  *      tiocgpgrp               -       get process group
2374  *      @tty: tty passed by user
2375  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2376  *      @p: returned pid
2377  *
2378  *      Obtain the process group of the tty. If there is no process group
2379  *      return an error.
2380  *
2381  *      Locking: none. Reference to current->signal->tty is safe.
2382  */
2383
2384 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2385 {
2386         struct pid *pid;
2387         int ret;
2388         /*
2389          * (tty == real_tty) is a cheap way of
2390          * testing if the tty is NOT a master pty.
2391          */
2392         if (tty == real_tty && current->signal->tty != real_tty)
2393                 return -ENOTTY;
2394         pid = tty_get_pgrp(real_tty);
2395         ret =  put_user(pid_vnr(pid), p);
2396         put_pid(pid);
2397         return ret;
2398 }
2399
2400 /**
2401  *      tiocspgrp               -       attempt to set process group
2402  *      @tty: tty passed by user
2403  *      @real_tty: tty side device matching tty passed by user
2404  *      @p: pid pointer
2405  *
2406  *      Set the process group of the tty to the session passed. Only
2407  *      permitted where the tty session is our session.
2408  *
2409  *      Locking: RCU, ctrl lock
2410  */
2411
2412 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2413 {
2414         struct pid *pgrp;
2415         pid_t pgrp_nr;
2416         int retval = tty_check_change(real_tty);
2417         unsigned long flags;
2418
2419         if (retval == -EIO)
2420                 return -ENOTTY;
2421         if (retval)
2422                 return retval;
2423         if (!current->signal->tty ||
2424             (current->signal->tty != real_tty) ||
2425             (real_tty->session != task_session(current)))
2426                 return -ENOTTY;
2427         if (get_user(pgrp_nr, p))
2428                 return -EFAULT;
2429         if (pgrp_nr < 0)
2430                 return -EINVAL;
2431         rcu_read_lock();
2432         pgrp = find_vpid(pgrp_nr);
2433         retval = -ESRCH;
2434         if (!pgrp)
2435                 goto out_unlock;
2436         retval = -EPERM;
2437         if (session_of_pgrp(pgrp) != task_session(current))
2438                 goto out_unlock;
2439         retval = 0;
2440         spin_lock_irqsave(&tty->ctrl_lock, flags);
2441         put_pid(real_tty->pgrp);
2442         real_tty->pgrp = get_pid(pgrp);
2443         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2444 out_unlock:
2445         rcu_read_unlock();
2446         return retval;
2447 }
2448
2449 /**
2450  *      tiocgsid                -       get session id
2451  *      @tty: tty passed by user
2452  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2453  *      @p: pointer to returned session id
2454  *
2455  *      Obtain the session id of the tty. If there is no session
2456  *      return an error.
2457  *
2458  *      Locking: none. Reference to current->signal->tty is safe.
2459  */
2460
2461 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2462 {
2463         /*
2464          * (tty == real_tty) is a cheap way of
2465          * testing if the tty is NOT a master pty.
2466         */
2467         if (tty == real_tty && current->signal->tty != real_tty)
2468                 return -ENOTTY;
2469         if (!real_tty->session)
2470                 return -ENOTTY;
2471         return put_user(pid_vnr(real_tty->session), p);
2472 }
2473
2474 /**
2475  *      tiocsetd        -       set line discipline
2476  *      @tty: tty device
2477  *      @p: pointer to user data
2478  *
2479  *      Set the line discipline according to user request.
2480  *
2481  *      Locking: see tty_set_ldisc, this function is just a helper
2482  */
2483
2484 static int tiocsetd(struct tty_struct *tty, int __user *p)
2485 {
2486         int ldisc;
2487         int ret;
2488
2489         if (get_user(ldisc, p))
2490                 return -EFAULT;
2491
2492         ret = tty_set_ldisc(tty, ldisc);
2493
2494         return ret;
2495 }
2496
2497 /**
2498  *      send_break      -       performed time break
2499  *      @tty: device to break on
2500  *      @duration: timeout in mS
2501  *
2502  *      Perform a timed break on hardware that lacks its own driver level
2503  *      timed break functionality.
2504  *
2505  *      Locking:
2506  *              atomic_write_lock serializes
2507  *
2508  */
2509
2510 static int send_break(struct tty_struct *tty, unsigned int duration)
2511 {
2512         int retval;
2513
2514         if (tty->ops->break_ctl == NULL)
2515                 return 0;
2516
2517         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2518                 retval = tty->ops->break_ctl(tty, duration);
2519         else {
2520                 /* Do the work ourselves */
2521                 if (tty_write_lock(tty, 0) < 0)
2522                         return -EINTR;
2523                 retval = tty->ops->break_ctl(tty, -1);
2524                 if (retval)
2525                         goto out;
2526                 if (!signal_pending(current))
2527                         msleep_interruptible(duration);
2528                 retval = tty->ops->break_ctl(tty, 0);
2529 out:
2530                 tty_write_unlock(tty);
2531                 if (signal_pending(current))
2532                         retval = -EINTR;
2533         }
2534         return retval;
2535 }
2536
2537 /**
2538  *      tty_tiocmget            -       get modem status
2539  *      @tty: tty device
2540  *      @file: user file pointer
2541  *      @p: pointer to result
2542  *
2543  *      Obtain the modem status bits from the tty driver if the feature
2544  *      is supported. Return -EINVAL if it is not available.
2545  *
2546  *      Locking: none (up to the driver)
2547  */
2548
2549 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2550 {
2551         int retval = -EINVAL;
2552
2553         if (tty->ops->tiocmget) {
2554                 retval = tty->ops->tiocmget(tty);
2555
2556                 if (retval >= 0)
2557                         retval = put_user(retval, p);
2558         }
2559         return retval;
2560 }
2561
2562 /**
2563  *      tty_tiocmset            -       set modem status
2564  *      @tty: tty device
2565  *      @cmd: command - clear bits, set bits or set all
2566  *      @p: pointer to desired bits
2567  *
2568  *      Set the modem status bits from the tty driver if the feature
2569  *      is supported. Return -EINVAL if it is not available.
2570  *
2571  *      Locking: none (up to the driver)
2572  */
2573
2574 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2575              unsigned __user *p)
2576 {
2577         int retval;
2578         unsigned int set, clear, val;
2579
2580         if (tty->ops->tiocmset == NULL)
2581                 return -EINVAL;
2582
2583         retval = get_user(val, p);
2584         if (retval)
2585                 return retval;
2586         set = clear = 0;
2587         switch (cmd) {
2588         case TIOCMBIS:
2589                 set = val;
2590                 break;
2591         case TIOCMBIC:
2592                 clear = val;
2593                 break;
2594         case TIOCMSET:
2595                 set = val;
2596                 clear = ~val;
2597                 break;
2598         }
2599         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2600         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2601         return tty->ops->tiocmset(tty, set, clear);
2602 }
2603
2604 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2605 {
2606         int retval = -EINVAL;
2607         struct serial_icounter_struct icount;
2608         memset(&icount, 0, sizeof(icount));
2609         if (tty->ops->get_icount)
2610                 retval = tty->ops->get_icount(tty, &icount);
2611         if (retval != 0)
2612                 return retval;
2613         if (copy_to_user(arg, &icount, sizeof(icount)))
2614                 return -EFAULT;
2615         return 0;
2616 }
2617
2618 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2619 {
2620         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2621             tty->driver->subtype == PTY_TYPE_MASTER)
2622                 tty = tty->link;
2623         return tty;
2624 }
2625 EXPORT_SYMBOL(tty_pair_get_tty);
2626
2627 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2628 {
2629         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2630             tty->driver->subtype == PTY_TYPE_MASTER)
2631             return tty;
2632         return tty->link;
2633 }
2634 EXPORT_SYMBOL(tty_pair_get_pty);
2635
2636 /*
2637  * Split this up, as gcc can choke on it otherwise..
2638  */
2639 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2640 {
2641         struct tty_struct *tty = file_tty(file);
2642         struct tty_struct *real_tty;
2643         void __user *p = (void __user *)arg;
2644         int retval;
2645         struct tty_ldisc *ld;
2646         struct inode *inode = file->f_dentry->d_inode;
2647
2648         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2649                 return -EINVAL;
2650
2651         real_tty = tty_pair_get_tty(tty);
2652
2653         /*
2654          * Factor out some common prep work
2655          */
2656         switch (cmd) {
2657         case TIOCSETD:
2658         case TIOCSBRK:
2659         case TIOCCBRK:
2660         case TCSBRK:
2661         case TCSBRKP:
2662                 retval = tty_check_change(tty);
2663                 if (retval)
2664                         return retval;
2665                 if (cmd != TIOCCBRK) {
2666                         tty_wait_until_sent(tty, 0);
2667                         if (signal_pending(current))
2668                                 return -EINTR;
2669                 }
2670                 break;
2671         }
2672
2673         /*
2674          *      Now do the stuff.
2675          */
2676         switch (cmd) {
2677         case TIOCSTI:
2678                 return tiocsti(tty, p);
2679         case TIOCGWINSZ:
2680                 return tiocgwinsz(real_tty, p);
2681         case TIOCSWINSZ:
2682                 return tiocswinsz(real_tty, p);
2683         case TIOCCONS:
2684                 return real_tty != tty ? -EINVAL : tioccons(file);
2685         case FIONBIO:
2686                 return fionbio(file, p);
2687         case TIOCEXCL:
2688                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2689                 return 0;
2690         case TIOCNXCL:
2691                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2692                 return 0;
2693         case TIOCNOTTY:
2694                 if (current->signal->tty != tty)
2695                         return -ENOTTY;
2696                 no_tty();
2697                 return 0;
2698         case TIOCSCTTY:
2699                 return tiocsctty(tty, arg);
2700         case TIOCGPGRP:
2701                 return tiocgpgrp(tty, real_tty, p);
2702         case TIOCSPGRP:
2703                 return tiocspgrp(tty, real_tty, p);
2704         case TIOCGSID:
2705                 return tiocgsid(tty, real_tty, p);
2706         case TIOCGETD:
2707                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2708         case TIOCSETD:
2709                 return tiocsetd(tty, p);
2710         case TIOCVHANGUP:
2711                 if (!capable(CAP_SYS_ADMIN))
2712                         return -EPERM;
2713                 tty_vhangup(tty);
2714                 return 0;
2715         case TIOCGDEV:
2716         {
2717                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2718                 return put_user(ret, (unsigned int __user *)p);
2719         }
2720         /*
2721          * Break handling
2722          */
2723         case TIOCSBRK:  /* Turn break on, unconditionally */
2724                 if (tty->ops->break_ctl)
2725                         return tty->ops->break_ctl(tty, -1);
2726                 return 0;
2727         case TIOCCBRK:  /* Turn break off, unconditionally */
2728                 if (tty->ops->break_ctl)
2729                         return tty->ops->break_ctl(tty, 0);
2730                 return 0;
2731         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2732                 /* non-zero arg means wait for all output data
2733                  * to be sent (performed above) but don't send break.
2734                  * This is used by the tcdrain() termios function.
2735                  */
2736                 if (!arg)
2737                         return send_break(tty, 250);
2738                 return 0;
2739         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2740                 return send_break(tty, arg ? arg*100 : 250);
2741
2742         case TIOCMGET:
2743                 return tty_tiocmget(tty, p);
2744         case TIOCMSET:
2745         case TIOCMBIC:
2746         case TIOCMBIS:
2747                 return tty_tiocmset(tty, cmd, p);
2748         case TIOCGICOUNT:
2749                 retval = tty_tiocgicount(tty, p);
2750                 /* For the moment allow fall through to the old method */
2751                 if (retval != -EINVAL)
2752                         return retval;
2753                 break;
2754         case TCFLSH:
2755                 switch (arg) {
2756                 case TCIFLUSH:
2757                 case TCIOFLUSH:
2758                 /* flush tty buffer and allow ldisc to process ioctl */
2759                         tty_buffer_flush(tty);
2760                         break;
2761                 }
2762                 break;
2763         }
2764         if (tty->ops->ioctl) {
2765                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2766                 if (retval != -ENOIOCTLCMD)
2767                         return retval;
2768         }
2769         ld = tty_ldisc_ref_wait(tty);
2770         retval = -EINVAL;
2771         if (ld->ops->ioctl) {
2772                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2773                 if (retval == -ENOIOCTLCMD)
2774                         retval = -EINVAL;
2775         }
2776         tty_ldisc_deref(ld);
2777         return retval;
2778 }
2779
2780 #ifdef CONFIG_COMPAT
2781 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2782                                 unsigned long arg)
2783 {
2784         struct inode *inode = file->f_dentry->d_inode;
2785         struct tty_struct *tty = file_tty(file);
2786         struct tty_ldisc *ld;
2787         int retval = -ENOIOCTLCMD;
2788
2789         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2790                 return -EINVAL;
2791
2792         if (tty->ops->compat_ioctl) {
2793                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2794                 if (retval != -ENOIOCTLCMD)
2795                         return retval;
2796         }
2797
2798         ld = tty_ldisc_ref_wait(tty);
2799         if (ld->ops->compat_ioctl)
2800                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2801         else
2802                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2803         tty_ldisc_deref(ld);
2804
2805         return retval;
2806 }
2807 #endif
2808
2809 /*
2810  * This implements the "Secure Attention Key" ---  the idea is to
2811  * prevent trojan horses by killing all processes associated with this
2812  * tty when the user hits the "Secure Attention Key".  Required for
2813  * super-paranoid applications --- see the Orange Book for more details.
2814  *
2815  * This code could be nicer; ideally it should send a HUP, wait a few
2816  * seconds, then send a INT, and then a KILL signal.  But you then
2817  * have to coordinate with the init process, since all processes associated
2818  * with the current tty must be dead before the new getty is allowed
2819  * to spawn.
2820  *
2821  * Now, if it would be correct ;-/ The current code has a nasty hole -
2822  * it doesn't catch files in flight. We may send the descriptor to ourselves
2823  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2824  *
2825  * Nasty bug: do_SAK is being called in interrupt context.  This can
2826  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2827  */
2828 void __do_SAK(struct tty_struct *tty)
2829 {
2830 #ifdef TTY_SOFT_SAK
2831         tty_hangup(tty);
2832 #else
2833         struct task_struct *g, *p;
2834         struct pid *session;
2835         int             i;
2836         struct file     *filp;
2837         struct fdtable *fdt;
2838
2839         if (!tty)
2840                 return;
2841         session = tty->session;
2842
2843         tty_ldisc_flush(tty);
2844
2845         tty_driver_flush_buffer(tty);
2846
2847         read_lock(&tasklist_lock);
2848         /* Kill the entire session */
2849         do_each_pid_task(session, PIDTYPE_SID, p) {
2850                 printk(KERN_NOTICE "SAK: killed process %d"
2851                         " (%s): task_session(p)==tty->session\n",
2852                         task_pid_nr(p), p->comm);
2853                 send_sig(SIGKILL, p, 1);
2854         } while_each_pid_task(session, PIDTYPE_SID, p);
2855         /* Now kill any processes that happen to have the
2856          * tty open.
2857          */
2858         do_each_thread(g, p) {
2859                 if (p->signal->tty == tty) {
2860                         printk(KERN_NOTICE "SAK: killed process %d"
2861                             " (%s): task_session(p)==tty->session\n",
2862                             task_pid_nr(p), p->comm);
2863                         send_sig(SIGKILL, p, 1);
2864                         continue;
2865                 }
2866                 task_lock(p);
2867                 if (p->files) {
2868                         /*
2869                          * We don't take a ref to the file, so we must
2870                          * hold ->file_lock instead.
2871                          */
2872                         spin_lock(&p->files->file_lock);
2873                         fdt = files_fdtable(p->files);
2874                         for (i = 0; i < fdt->max_fds; i++) {
2875                                 filp = fcheck_files(p->files, i);
2876                                 if (!filp)
2877                                         continue;
2878                                 if (filp->f_op->read == tty_read &&
2879                                     file_tty(filp) == tty) {
2880                                         printk(KERN_NOTICE "SAK: killed process %d"
2881                                             " (%s): fd#%d opened to the tty\n",
2882                                             task_pid_nr(p), p->comm, i);
2883                                         force_sig(SIGKILL, p);
2884                                         break;
2885                                 }
2886                         }
2887                         spin_unlock(&p->files->file_lock);
2888                 }
2889                 task_unlock(p);
2890         } while_each_thread(g, p);
2891         read_unlock(&tasklist_lock);
2892 #endif
2893 }
2894
2895 static void do_SAK_work(struct work_struct *work)
2896 {
2897         struct tty_struct *tty =
2898                 container_of(work, struct tty_struct, SAK_work);
2899         __do_SAK(tty);
2900 }
2901
2902 /*
2903  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2904  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2905  * the values which we write to it will be identical to the values which it
2906  * already has. --akpm
2907  */
2908 void do_SAK(struct tty_struct *tty)
2909 {
2910         if (!tty)
2911                 return;
2912         schedule_work(&tty->SAK_work);
2913 }
2914
2915 EXPORT_SYMBOL(do_SAK);
2916
2917 static int dev_match_devt(struct device *dev, void *data)
2918 {
2919         dev_t *devt = data;
2920         return dev->devt == *devt;
2921 }
2922
2923 /* Must put_device() after it's unused! */
2924 static struct device *tty_get_device(struct tty_struct *tty)
2925 {
2926         dev_t devt = tty_devnum(tty);
2927         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2928 }
2929
2930
2931 /**
2932  *      initialize_tty_struct
2933  *      @tty: tty to initialize
2934  *
2935  *      This subroutine initializes a tty structure that has been newly
2936  *      allocated.
2937  *
2938  *      Locking: none - tty in question must not be exposed at this point
2939  */
2940
2941 void initialize_tty_struct(struct tty_struct *tty,
2942                 struct tty_driver *driver, int idx)
2943 {
2944         memset(tty, 0, sizeof(struct tty_struct));
2945         kref_init(&tty->kref);
2946         tty->magic = TTY_MAGIC;
2947         tty_ldisc_init(tty);
2948         tty->session = NULL;
2949         tty->pgrp = NULL;
2950         tty->overrun_time = jiffies;
2951         tty_buffer_init(tty);
2952         mutex_init(&tty->legacy_mutex);
2953         mutex_init(&tty->termios_mutex);
2954         mutex_init(&tty->ldisc_mutex);
2955         init_waitqueue_head(&tty->write_wait);
2956         init_waitqueue_head(&tty->read_wait);
2957         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2958         mutex_init(&tty->atomic_read_lock);
2959         mutex_init(&tty->atomic_write_lock);
2960         mutex_init(&tty->output_lock);
2961         mutex_init(&tty->echo_lock);
2962         spin_lock_init(&tty->read_lock);
2963         spin_lock_init(&tty->ctrl_lock);
2964         INIT_LIST_HEAD(&tty->tty_files);
2965         INIT_WORK(&tty->SAK_work, do_SAK_work);
2966
2967         tty->driver = driver;
2968         tty->ops = driver->ops;
2969         tty->index = idx;
2970         tty_line_name(driver, idx, tty->name);
2971         tty->dev = tty_get_device(tty);
2972 }
2973
2974 /**
2975  *      deinitialize_tty_struct
2976  *      @tty: tty to deinitialize
2977  *
2978  *      This subroutine deinitializes a tty structure that has been newly
2979  *      allocated but tty_release cannot be called on that yet.
2980  *
2981  *      Locking: none - tty in question must not be exposed at this point
2982  */
2983 void deinitialize_tty_struct(struct tty_struct *tty)
2984 {
2985         tty_ldisc_deinit(tty);
2986 }
2987
2988 /**
2989  *      tty_put_char    -       write one character to a tty
2990  *      @tty: tty
2991  *      @ch: character
2992  *
2993  *      Write one byte to the tty using the provided put_char method
2994  *      if present. Returns the number of characters successfully output.
2995  *
2996  *      Note: the specific put_char operation in the driver layer may go
2997  *      away soon. Don't call it directly, use this method
2998  */
2999
3000 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3001 {
3002         if (tty->ops->put_char)
3003                 return tty->ops->put_char(tty, ch);
3004         return tty->ops->write(tty, &ch, 1);
3005 }
3006 EXPORT_SYMBOL_GPL(tty_put_char);
3007
3008 struct class *tty_class;
3009
3010 /**
3011  *      tty_register_device - register a tty device
3012  *      @driver: the tty driver that describes the tty device
3013  *      @index: the index in the tty driver for this tty device
3014  *      @device: a struct device that is associated with this tty device.
3015  *              This field is optional, if there is no known struct device
3016  *              for this tty device it can be set to NULL safely.
3017  *
3018  *      Returns a pointer to the struct device for this tty device
3019  *      (or ERR_PTR(-EFOO) on error).
3020  *
3021  *      This call is required to be made to register an individual tty device
3022  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3023  *      that bit is not set, this function should not be called by a tty
3024  *      driver.
3025  *
3026  *      Locking: ??
3027  */
3028
3029 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3030                                    struct device *device)
3031 {
3032         char name[64];
3033         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3034
3035         if (index >= driver->num) {
3036                 printk(KERN_ERR "Attempt to register invalid tty line number "
3037                        " (%d).\n", index);
3038                 return ERR_PTR(-EINVAL);
3039         }
3040
3041         if (driver->type == TTY_DRIVER_TYPE_PTY)
3042                 pty_line_name(driver, index, name);
3043         else
3044                 tty_line_name(driver, index, name);
3045
3046         return device_create(tty_class, device, dev, NULL, name);
3047 }
3048 EXPORT_SYMBOL(tty_register_device);
3049
3050 /**
3051  *      tty_unregister_device - unregister a tty device
3052  *      @driver: the tty driver that describes the tty device
3053  *      @index: the index in the tty driver for this tty device
3054  *
3055  *      If a tty device is registered with a call to tty_register_device() then
3056  *      this function must be called when the tty device is gone.
3057  *
3058  *      Locking: ??
3059  */
3060
3061 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3062 {
3063         device_destroy(tty_class,
3064                 MKDEV(driver->major, driver->minor_start) + index);
3065 }
3066 EXPORT_SYMBOL(tty_unregister_device);
3067
3068 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3069 {
3070         struct tty_driver *driver;
3071
3072         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3073         if (driver) {
3074                 kref_init(&driver->kref);
3075                 driver->magic = TTY_DRIVER_MAGIC;
3076                 driver->num = lines;
3077                 driver->owner = owner;
3078                 /* later we'll move allocation of tables here */
3079         }
3080         return driver;
3081 }
3082 EXPORT_SYMBOL(__alloc_tty_driver);
3083
3084 static void destruct_tty_driver(struct kref *kref)
3085 {
3086         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3087         int i;
3088         struct ktermios *tp;
3089         void *p;
3090
3091         if (driver->flags & TTY_DRIVER_INSTALLED) {
3092                 /*
3093                  * Free the termios and termios_locked structures because
3094                  * we don't want to get memory leaks when modular tty
3095                  * drivers are removed from the kernel.
3096                  */
3097                 for (i = 0; i < driver->num; i++) {
3098                         tp = driver->termios[i];
3099                         if (tp) {
3100                                 driver->termios[i] = NULL;
3101                                 kfree(tp);
3102                         }
3103                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3104                                 tty_unregister_device(driver, i);
3105                 }
3106                 p = driver->ttys;
3107                 proc_tty_unregister_driver(driver);
3108                 driver->ttys = NULL;
3109                 driver->termios = NULL;
3110                 kfree(p);
3111                 cdev_del(&driver->cdev);
3112         }
3113         kfree(driver->ports);
3114         kfree(driver);
3115 }
3116
3117 void tty_driver_kref_put(struct tty_driver *driver)
3118 {
3119         kref_put(&driver->kref, destruct_tty_driver);
3120 }
3121 EXPORT_SYMBOL(tty_driver_kref_put);
3122
3123 void tty_set_operations(struct tty_driver *driver,
3124                         const struct tty_operations *op)
3125 {
3126         driver->ops = op;
3127 };
3128 EXPORT_SYMBOL(tty_set_operations);
3129
3130 void put_tty_driver(struct tty_driver *d)
3131 {
3132         tty_driver_kref_put(d);
3133 }
3134 EXPORT_SYMBOL(put_tty_driver);
3135
3136 /*
3137  * Called by a tty driver to register itself.
3138  */
3139 int tty_register_driver(struct tty_driver *driver)
3140 {
3141         int error;
3142         int i;
3143         dev_t dev;
3144         void **p = NULL;
3145         struct device *d;
3146
3147         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3148                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3149                 if (!p)
3150                         return -ENOMEM;
3151         }
3152         /*
3153          * There is too many lines in PTY and we won't need the array there
3154          * since it has an ->install hook where it assigns ports properly.
3155          */
3156         if (driver->type != TTY_DRIVER_TYPE_PTY) {
3157                 driver->ports = kcalloc(driver->num, sizeof(struct tty_port *),
3158                                 GFP_KERNEL);
3159                 if (!driver->ports) {
3160                         error = -ENOMEM;
3161                         goto err_free_p;
3162                 }
3163         }
3164
3165         if (!driver->major) {
3166                 error = alloc_chrdev_region(&dev, driver->minor_start,
3167                                                 driver->num, driver->name);
3168                 if (!error) {
3169                         driver->major = MAJOR(dev);
3170                         driver->minor_start = MINOR(dev);
3171                 }
3172         } else {
3173                 dev = MKDEV(driver->major, driver->minor_start);
3174                 error = register_chrdev_region(dev, driver->num, driver->name);
3175         }
3176         if (error < 0)
3177                 goto err_free_p;
3178
3179         if (p) {
3180                 driver->ttys = (struct tty_struct **)p;
3181                 driver->termios = (struct ktermios **)(p + driver->num);
3182         } else {
3183                 driver->ttys = NULL;
3184                 driver->termios = NULL;
3185         }
3186
3187         cdev_init(&driver->cdev, &tty_fops);
3188         driver->cdev.owner = driver->owner;
3189         error = cdev_add(&driver->cdev, dev, driver->num);
3190         if (error)
3191                 goto err_unreg_char;
3192
3193         mutex_lock(&tty_mutex);
3194         list_add(&driver->tty_drivers, &tty_drivers);
3195         mutex_unlock(&tty_mutex);
3196
3197         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3198                 for (i = 0; i < driver->num; i++) {
3199                         d = tty_register_device(driver, i, NULL);
3200                         if (IS_ERR(d)) {
3201                                 error = PTR_ERR(d);
3202                                 goto err;
3203                         }
3204                 }
3205         }
3206         proc_tty_register_driver(driver);
3207         driver->flags |= TTY_DRIVER_INSTALLED;
3208         return 0;
3209
3210 err:
3211         for (i--; i >= 0; i--)
3212                 tty_unregister_device(driver, i);
3213
3214         mutex_lock(&tty_mutex);
3215         list_del(&driver->tty_drivers);
3216         mutex_unlock(&tty_mutex);
3217
3218 err_unreg_char:
3219         unregister_chrdev_region(dev, driver->num);
3220         driver->ttys = NULL;
3221         driver->termios = NULL;
3222 err_free_p: /* destruct_tty_driver will free driver->ports */
3223         kfree(p);
3224         return error;
3225 }
3226 EXPORT_SYMBOL(tty_register_driver);
3227
3228 /*
3229  * Called by a tty driver to unregister itself.
3230  */
3231 int tty_unregister_driver(struct tty_driver *driver)
3232 {
3233 #if 0
3234         /* FIXME */
3235         if (driver->refcount)
3236                 return -EBUSY;
3237 #endif
3238         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3239                                 driver->num);
3240         mutex_lock(&tty_mutex);
3241         list_del(&driver->tty_drivers);
3242         mutex_unlock(&tty_mutex);
3243         return 0;
3244 }
3245
3246 EXPORT_SYMBOL(tty_unregister_driver);
3247
3248 dev_t tty_devnum(struct tty_struct *tty)
3249 {
3250         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3251 }
3252 EXPORT_SYMBOL(tty_devnum);
3253
3254 void proc_clear_tty(struct task_struct *p)
3255 {
3256         unsigned long flags;
3257         struct tty_struct *tty;
3258         spin_lock_irqsave(&p->sighand->siglock, flags);
3259         tty = p->signal->tty;
3260         p->signal->tty = NULL;
3261         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3262         tty_kref_put(tty);
3263 }
3264
3265 /* Called under the sighand lock */
3266
3267 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3268 {
3269         if (tty) {
3270                 unsigned long flags;
3271                 /* We should not have a session or pgrp to put here but.... */
3272                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3273                 put_pid(tty->session);
3274                 put_pid(tty->pgrp);
3275                 tty->pgrp = get_pid(task_pgrp(tsk));
3276                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3277                 tty->session = get_pid(task_session(tsk));
3278                 if (tsk->signal->tty) {
3279                         printk(KERN_DEBUG "tty not NULL!!\n");
3280                         tty_kref_put(tsk->signal->tty);
3281                 }
3282         }
3283         put_pid(tsk->signal->tty_old_pgrp);
3284         tsk->signal->tty = tty_kref_get(tty);
3285         tsk->signal->tty_old_pgrp = NULL;
3286 }
3287
3288 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3289 {
3290         spin_lock_irq(&tsk->sighand->siglock);
3291         __proc_set_tty(tsk, tty);
3292         spin_unlock_irq(&tsk->sighand->siglock);
3293 }
3294
3295 struct tty_struct *get_current_tty(void)
3296 {
3297         struct tty_struct *tty;
3298         unsigned long flags;
3299
3300         spin_lock_irqsave(&current->sighand->siglock, flags);
3301         tty = tty_kref_get(current->signal->tty);
3302         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3303         return tty;
3304 }
3305 EXPORT_SYMBOL_GPL(get_current_tty);
3306
3307 void tty_default_fops(struct file_operations *fops)
3308 {
3309         *fops = tty_fops;
3310 }
3311
3312 /*
3313  * Initialize the console device. This is called *early*, so
3314  * we can't necessarily depend on lots of kernel help here.
3315  * Just do some early initializations, and do the complex setup
3316  * later.
3317  */
3318 void __init console_init(void)
3319 {
3320         initcall_t *call;
3321
3322         /* Setup the default TTY line discipline. */
3323         tty_ldisc_begin();
3324
3325         /*
3326          * set up the console device so that later boot sequences can
3327          * inform about problems etc..
3328          */
3329         call = __con_initcall_start;
3330         while (call < __con_initcall_end) {
3331                 (*call)();
3332                 call++;
3333         }
3334 }
3335
3336 static char *tty_devnode(struct device *dev, umode_t *mode)
3337 {
3338         if (!mode)
3339                 return NULL;
3340         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3341             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3342                 *mode = 0666;
3343         return NULL;
3344 }
3345
3346 static int __init tty_class_init(void)
3347 {
3348         tty_class = class_create(THIS_MODULE, "tty");
3349         if (IS_ERR(tty_class))
3350                 return PTR_ERR(tty_class);
3351         tty_class->devnode = tty_devnode;
3352         return 0;
3353 }
3354
3355 postcore_initcall(tty_class_init);
3356
3357 /* 3/2004 jmc: why do these devices exist? */
3358 static struct cdev tty_cdev, console_cdev;
3359
3360 static ssize_t show_cons_active(struct device *dev,
3361                                 struct device_attribute *attr, char *buf)
3362 {
3363         struct console *cs[16];
3364         int i = 0;
3365         struct console *c;
3366         ssize_t count = 0;
3367
3368         console_lock();
3369         for_each_console(c) {
3370                 if (!c->device)
3371                         continue;
3372                 if (!c->write)
3373                         continue;
3374                 if ((c->flags & CON_ENABLED) == 0)
3375                         continue;
3376                 cs[i++] = c;
3377                 if (i >= ARRAY_SIZE(cs))
3378                         break;
3379         }
3380         while (i--)
3381                 count += sprintf(buf + count, "%s%d%c",
3382                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3383         console_unlock();
3384
3385         return count;
3386 }
3387 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3388
3389 static struct device *consdev;
3390
3391 void console_sysfs_notify(void)
3392 {
3393         if (consdev)
3394                 sysfs_notify(&consdev->kobj, NULL, "active");
3395 }
3396
3397 /*
3398  * Ok, now we can initialize the rest of the tty devices and can count
3399  * on memory allocations, interrupts etc..
3400  */
3401 int __init tty_init(void)
3402 {
3403         cdev_init(&tty_cdev, &tty_fops);
3404         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3405             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3406                 panic("Couldn't register /dev/tty driver\n");
3407         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3408
3409         cdev_init(&console_cdev, &console_fops);
3410         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3411             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3412                 panic("Couldn't register /dev/console driver\n");
3413         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3414                               "console");
3415         if (IS_ERR(consdev))
3416                 consdev = NULL;
3417         else
3418                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3419
3420 #ifdef CONFIG_VT
3421         vty_init(&console_fops);
3422 #endif
3423         return 0;
3424 }
3425