tty: Fix race in tty release
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (tty->dev)
185                 put_device(tty->dev);
186         kfree(tty->write_buf);
187         tty_buffer_free_all(tty);
188         kfree(tty);
189 }
190
191 static inline struct tty_struct *file_tty(struct file *file)
192 {
193         return ((struct tty_file_private *)file->private_data)->tty;
194 }
195
196 int tty_alloc_file(struct file *file)
197 {
198         struct tty_file_private *priv;
199
200         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201         if (!priv)
202                 return -ENOMEM;
203
204         file->private_data = priv;
205
206         return 0;
207 }
208
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
211 {
212         struct tty_file_private *priv = file->private_data;
213
214         priv->tty = tty;
215         priv->file = file;
216
217         spin_lock(&tty_files_lock);
218         list_add(&priv->list, &tty->tty_files);
219         spin_unlock(&tty_files_lock);
220 }
221
222 /**
223  * tty_free_file - free file->private_data
224  *
225  * This shall be used only for fail path handling when tty_add_file was not
226  * called yet.
227  */
228 void tty_free_file(struct file *file)
229 {
230         struct tty_file_private *priv = file->private_data;
231
232         file->private_data = NULL;
233         kfree(priv);
234 }
235
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
238 {
239         struct tty_file_private *priv = file->private_data;
240
241         spin_lock(&tty_files_lock);
242         list_del(&priv->list);
243         spin_unlock(&tty_files_lock);
244         tty_free_file(file);
245 }
246
247
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250 /**
251  *      tty_name        -       return tty naming
252  *      @tty: tty structure
253  *      @buf: buffer for output
254  *
255  *      Convert a tty structure into a name. The name reflects the kernel
256  *      naming policy and if udev is in use may not reflect user space
257  *
258  *      Locking: none
259  */
260
261 char *tty_name(struct tty_struct *tty, char *buf)
262 {
263         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
264                 strcpy(buf, "NULL tty");
265         else
266                 strcpy(buf, tty->name);
267         return buf;
268 }
269
270 EXPORT_SYMBOL(tty_name);
271
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273                               const char *routine)
274 {
275 #ifdef TTY_PARANOIA_CHECK
276         if (!tty) {
277                 printk(KERN_WARNING
278                         "null TTY for (%d:%d) in %s\n",
279                         imajor(inode), iminor(inode), routine);
280                 return 1;
281         }
282         if (tty->magic != TTY_MAGIC) {
283                 printk(KERN_WARNING
284                         "bad magic number for tty struct (%d:%d) in %s\n",
285                         imajor(inode), iminor(inode), routine);
286                 return 1;
287         }
288 #endif
289         return 0;
290 }
291
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
293 {
294 #ifdef CHECK_TTY_COUNT
295         struct list_head *p;
296         int count = 0;
297
298         spin_lock(&tty_files_lock);
299         list_for_each(p, &tty->tty_files) {
300                 count++;
301         }
302         spin_unlock(&tty_files_lock);
303         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304             tty->driver->subtype == PTY_TYPE_SLAVE &&
305             tty->link && tty->link->count)
306                 count++;
307         if (tty->count != count) {
308                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309                                     "!= #fd's(%d) in %s\n",
310                        tty->name, tty->count, count, routine);
311                 return count;
312         }
313 #endif
314         return 0;
315 }
316
317 /**
318  *      get_tty_driver          -       find device of a tty
319  *      @dev_t: device identifier
320  *      @index: returns the index of the tty
321  *
322  *      This routine returns a tty driver structure, given a device number
323  *      and also passes back the index number.
324  *
325  *      Locking: caller must hold tty_mutex
326  */
327
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
329 {
330         struct tty_driver *p;
331
332         list_for_each_entry(p, &tty_drivers, tty_drivers) {
333                 dev_t base = MKDEV(p->major, p->minor_start);
334                 if (device < base || device >= base + p->num)
335                         continue;
336                 *index = device - base;
337                 return tty_driver_kref_get(p);
338         }
339         return NULL;
340 }
341
342 #ifdef CONFIG_CONSOLE_POLL
343
344 /**
345  *      tty_find_polling_driver -       find device of a polled tty
346  *      @name: name string to match
347  *      @line: pointer to resulting tty line nr
348  *
349  *      This routine returns a tty driver structure, given a name
350  *      and the condition that the tty driver is capable of polled
351  *      operation.
352  */
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
354 {
355         struct tty_driver *p, *res = NULL;
356         int tty_line = 0;
357         int len;
358         char *str, *stp;
359
360         for (str = name; *str; str++)
361                 if ((*str >= '0' && *str <= '9') || *str == ',')
362                         break;
363         if (!*str)
364                 return NULL;
365
366         len = str - name;
367         tty_line = simple_strtoul(str, &str, 10);
368
369         mutex_lock(&tty_mutex);
370         /* Search through the tty devices to look for a match */
371         list_for_each_entry(p, &tty_drivers, tty_drivers) {
372                 if (strncmp(name, p->name, len) != 0)
373                         continue;
374                 stp = str;
375                 if (*stp == ',')
376                         stp++;
377                 if (*stp == '\0')
378                         stp = NULL;
379
380                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382                         res = tty_driver_kref_get(p);
383                         *line = tty_line;
384                         break;
385                 }
386         }
387         mutex_unlock(&tty_mutex);
388
389         return res;
390 }
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392 #endif
393
394 /**
395  *      tty_check_change        -       check for POSIX terminal changes
396  *      @tty: tty to check
397  *
398  *      If we try to write to, or set the state of, a terminal and we're
399  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
400  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
401  *
402  *      Locking: ctrl_lock
403  */
404
405 int tty_check_change(struct tty_struct *tty)
406 {
407         unsigned long flags;
408         int ret = 0;
409
410         if (current->signal->tty != tty)
411                 return 0;
412
413         spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415         if (!tty->pgrp) {
416                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417                 goto out_unlock;
418         }
419         if (task_pgrp(current) == tty->pgrp)
420                 goto out_unlock;
421         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422         if (is_ignored(SIGTTOU))
423                 goto out;
424         if (is_current_pgrp_orphaned()) {
425                 ret = -EIO;
426                 goto out;
427         }
428         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429         set_thread_flag(TIF_SIGPENDING);
430         ret = -ERESTARTSYS;
431 out:
432         return ret;
433 out_unlock:
434         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435         return ret;
436 }
437
438 EXPORT_SYMBOL(tty_check_change);
439
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441                                 size_t count, loff_t *ppos)
442 {
443         return 0;
444 }
445
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447                                  size_t count, loff_t *ppos)
448 {
449         return -EIO;
450 }
451
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454 {
455         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456 }
457
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459                 unsigned long arg)
460 {
461         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462 }
463
464 static long hung_up_tty_compat_ioctl(struct file *file,
465                                      unsigned int cmd, unsigned long arg)
466 {
467         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468 }
469
470 static const struct file_operations tty_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations console_fops = {
483         .llseek         = no_llseek,
484         .read           = tty_read,
485         .write          = redirected_tty_write,
486         .poll           = tty_poll,
487         .unlocked_ioctl = tty_ioctl,
488         .compat_ioctl   = tty_compat_ioctl,
489         .open           = tty_open,
490         .release        = tty_release,
491         .fasync         = tty_fasync,
492 };
493
494 static const struct file_operations hung_up_tty_fops = {
495         .llseek         = no_llseek,
496         .read           = hung_up_tty_read,
497         .write          = hung_up_tty_write,
498         .poll           = hung_up_tty_poll,
499         .unlocked_ioctl = hung_up_tty_ioctl,
500         .compat_ioctl   = hung_up_tty_compat_ioctl,
501         .release        = tty_release,
502 };
503
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
506
507 /**
508  *      tty_wakeup      -       request more data
509  *      @tty: terminal
510  *
511  *      Internal and external helper for wakeups of tty. This function
512  *      informs the line discipline if present that the driver is ready
513  *      to receive more output data.
514  */
515
516 void tty_wakeup(struct tty_struct *tty)
517 {
518         struct tty_ldisc *ld;
519
520         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521                 ld = tty_ldisc_ref(tty);
522                 if (ld) {
523                         if (ld->ops->write_wakeup)
524                                 ld->ops->write_wakeup(tty);
525                         tty_ldisc_deref(ld);
526                 }
527         }
528         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529 }
530
531 EXPORT_SYMBOL_GPL(tty_wakeup);
532
533 /**
534  *      __tty_hangup            -       actual handler for hangup events
535  *      @work: tty device
536  *
537  *      This can be called by the "eventd" kernel thread.  That is process
538  *      synchronous but doesn't hold any locks, so we need to make sure we
539  *      have the appropriate locks for what we're doing.
540  *
541  *      The hangup event clears any pending redirections onto the hung up
542  *      device. It ensures future writes will error and it does the needed
543  *      line discipline hangup and signal delivery. The tty object itself
544  *      remains intact.
545  *
546  *      Locking:
547  *              BTM
548  *                redirect lock for undoing redirection
549  *                file list lock for manipulating list of ttys
550  *                tty_ldisc_lock from called functions
551  *                termios_mutex resetting termios data
552  *                tasklist_lock to walk task list for hangup event
553  *                  ->siglock to protect ->signal/->sighand
554  */
555 void __tty_hangup(struct tty_struct *tty)
556 {
557         struct file *cons_filp = NULL;
558         struct file *filp, *f = NULL;
559         struct task_struct *p;
560         struct tty_file_private *priv;
561         int    closecount = 0, n;
562         unsigned long flags;
563         int refs = 0;
564
565         if (!tty)
566                 return;
567
568
569         spin_lock(&redirect_lock);
570         if (redirect && file_tty(redirect) == tty) {
571                 f = redirect;
572                 redirect = NULL;
573         }
574         spin_unlock(&redirect_lock);
575
576         tty_lock();
577
578         /* some functions below drop BTM, so we need this bit */
579         set_bit(TTY_HUPPING, &tty->flags);
580
581         /* inuse_filps is protected by the single tty lock,
582            this really needs to change if we want to flush the
583            workqueue with the lock held */
584         check_tty_count(tty, "tty_hangup");
585
586         spin_lock(&tty_files_lock);
587         /* This breaks for file handles being sent over AF_UNIX sockets ? */
588         list_for_each_entry(priv, &tty->tty_files, list) {
589                 filp = priv->file;
590                 if (filp->f_op->write == redirected_tty_write)
591                         cons_filp = filp;
592                 if (filp->f_op->write != tty_write)
593                         continue;
594                 closecount++;
595                 __tty_fasync(-1, filp, 0);      /* can't block */
596                 filp->f_op = &hung_up_tty_fops;
597         }
598         spin_unlock(&tty_files_lock);
599
600         /*
601          * it drops BTM and thus races with reopen
602          * we protect the race by TTY_HUPPING
603          */
604         tty_ldisc_hangup(tty);
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock_irqsave(&tty->ctrl_lock, flags);
624                         if (tty->pgrp)
625                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627                         spin_unlock_irq(&p->sighand->siglock);
628                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629         }
630         read_unlock(&tasklist_lock);
631
632         spin_lock_irqsave(&tty->ctrl_lock, flags);
633         clear_bit(TTY_THROTTLED, &tty->flags);
634         clear_bit(TTY_PUSH, &tty->flags);
635         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636         put_pid(tty->session);
637         put_pid(tty->pgrp);
638         tty->session = NULL;
639         tty->pgrp = NULL;
640         tty->ctrl_status = 0;
641         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643         /* Account for the p->signal references we killed */
644         while (refs--)
645                 tty_kref_put(tty);
646
647         /*
648          * If one of the devices matches a console pointer, we
649          * cannot just call hangup() because that will cause
650          * tty->count and state->count to go out of sync.
651          * So we just call close() the right number of times.
652          */
653         if (cons_filp) {
654                 if (tty->ops->close)
655                         for (n = 0; n < closecount; n++)
656                                 tty->ops->close(tty, cons_filp);
657         } else if (tty->ops->hangup)
658                 (tty->ops->hangup)(tty);
659         /*
660          * We don't want to have driver/ldisc interactions beyond
661          * the ones we did here. The driver layer expects no
662          * calls after ->hangup() from the ldisc side. However we
663          * can't yet guarantee all that.
664          */
665         set_bit(TTY_HUPPED, &tty->flags);
666         clear_bit(TTY_HUPPING, &tty->flags);
667         tty_ldisc_enable(tty);
668
669         tty_unlock();
670
671         if (f)
672                 fput(f);
673 }
674
675 static void do_tty_hangup(struct work_struct *work)
676 {
677         struct tty_struct *tty =
678                 container_of(work, struct tty_struct, hangup_work);
679
680         __tty_hangup(tty);
681 }
682
683 /**
684  *      tty_hangup              -       trigger a hangup event
685  *      @tty: tty to hangup
686  *
687  *      A carrier loss (virtual or otherwise) has occurred on this like
688  *      schedule a hangup sequence to run after this event.
689  */
690
691 void tty_hangup(struct tty_struct *tty)
692 {
693 #ifdef TTY_DEBUG_HANGUP
694         char    buf[64];
695         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696 #endif
697         schedule_work(&tty->hangup_work);
698 }
699
700 EXPORT_SYMBOL(tty_hangup);
701
702 /**
703  *      tty_vhangup             -       process vhangup
704  *      @tty: tty to hangup
705  *
706  *      The user has asked via system call for the terminal to be hung up.
707  *      We do this synchronously so that when the syscall returns the process
708  *      is complete. That guarantee is necessary for security reasons.
709  */
710
711 void tty_vhangup(struct tty_struct *tty)
712 {
713 #ifdef TTY_DEBUG_HANGUP
714         char    buf[64];
715
716         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717 #endif
718         __tty_hangup(tty);
719 }
720
721 EXPORT_SYMBOL(tty_vhangup);
722
723
724 /**
725  *      tty_vhangup_self        -       process vhangup for own ctty
726  *
727  *      Perform a vhangup on the current controlling tty
728  */
729
730 void tty_vhangup_self(void)
731 {
732         struct tty_struct *tty;
733
734         tty = get_current_tty();
735         if (tty) {
736                 tty_vhangup(tty);
737                 tty_kref_put(tty);
738         }
739 }
740
741 /**
742  *      tty_hung_up_p           -       was tty hung up
743  *      @filp: file pointer of tty
744  *
745  *      Return true if the tty has been subject to a vhangup or a carrier
746  *      loss
747  */
748
749 int tty_hung_up_p(struct file *filp)
750 {
751         return (filp->f_op == &hung_up_tty_fops);
752 }
753
754 EXPORT_SYMBOL(tty_hung_up_p);
755
756 static void session_clear_tty(struct pid *session)
757 {
758         struct task_struct *p;
759         do_each_pid_task(session, PIDTYPE_SID, p) {
760                 proc_clear_tty(p);
761         } while_each_pid_task(session, PIDTYPE_SID, p);
762 }
763
764 /**
765  *      disassociate_ctty       -       disconnect controlling tty
766  *      @on_exit: true if exiting so need to "hang up" the session
767  *
768  *      This function is typically called only by the session leader, when
769  *      it wants to disassociate itself from its controlling tty.
770  *
771  *      It performs the following functions:
772  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
773  *      (2)  Clears the tty from being controlling the session
774  *      (3)  Clears the controlling tty for all processes in the
775  *              session group.
776  *
777  *      The argument on_exit is set to 1 if called when a process is
778  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
779  *
780  *      Locking:
781  *              BTM is taken for hysterical raisins, and held when
782  *                called from no_tty().
783  *                tty_mutex is taken to protect tty
784  *                ->siglock is taken to protect ->signal/->sighand
785  *                tasklist_lock is taken to walk process list for sessions
786  *                  ->siglock is taken to protect ->signal/->sighand
787  */
788
789 void disassociate_ctty(int on_exit)
790 {
791         struct tty_struct *tty;
792
793         if (!current->signal->leader)
794                 return;
795
796         tty = get_current_tty();
797         if (tty) {
798                 struct pid *tty_pgrp = get_pid(tty->pgrp);
799                 if (on_exit) {
800                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801                                 tty_vhangup(tty);
802                 }
803                 tty_kref_put(tty);
804                 if (tty_pgrp) {
805                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806                         if (!on_exit)
807                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808                         put_pid(tty_pgrp);
809                 }
810         } else if (on_exit) {
811                 struct pid *old_pgrp;
812                 spin_lock_irq(&current->sighand->siglock);
813                 old_pgrp = current->signal->tty_old_pgrp;
814                 current->signal->tty_old_pgrp = NULL;
815                 spin_unlock_irq(&current->sighand->siglock);
816                 if (old_pgrp) {
817                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
818                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
819                         put_pid(old_pgrp);
820                 }
821                 return;
822         }
823
824         spin_lock_irq(&current->sighand->siglock);
825         put_pid(current->signal->tty_old_pgrp);
826         current->signal->tty_old_pgrp = NULL;
827         spin_unlock_irq(&current->sighand->siglock);
828
829         tty = get_current_tty();
830         if (tty) {
831                 unsigned long flags;
832                 spin_lock_irqsave(&tty->ctrl_lock, flags);
833                 put_pid(tty->session);
834                 put_pid(tty->pgrp);
835                 tty->session = NULL;
836                 tty->pgrp = NULL;
837                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838                 tty_kref_put(tty);
839         } else {
840 #ifdef TTY_DEBUG_HANGUP
841                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842                        " = NULL", tty);
843 #endif
844         }
845
846         /* Now clear signal->tty under the lock */
847         read_lock(&tasklist_lock);
848         session_clear_tty(task_session(current));
849         read_unlock(&tasklist_lock);
850 }
851
852 /**
853  *
854  *      no_tty  - Ensure the current process does not have a controlling tty
855  */
856 void no_tty(void)
857 {
858         /* FIXME: Review locking here. The tty_lock never covered any race
859            between a new association and proc_clear_tty but possible we need
860            to protect against this anyway */
861         struct task_struct *tsk = current;
862         disassociate_ctty(0);
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         if (driver->ops->lookup)
1234                 return driver->ops->lookup(driver, inode, idx);
1235
1236         return driver->ttys[idx];
1237 }
1238
1239 /**
1240  *      tty_init_termios        -  helper for termios setup
1241  *      @tty: the tty to set up
1242  *
1243  *      Initialise the termios structures for this tty. Thus runs under
1244  *      the tty_mutex currently so we can be relaxed about ordering.
1245  */
1246
1247 int tty_init_termios(struct tty_struct *tty)
1248 {
1249         struct ktermios *tp;
1250         int idx = tty->index;
1251
1252         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1253                 tty->termios = tty->driver->init_termios;
1254         else {
1255                 /* Check for lazy saved data */
1256                 tp = tty->driver->termios[idx];
1257                 if (tp != NULL)
1258                         tty->termios = *tp;
1259                 else
1260                         tty->termios = tty->driver->init_termios;
1261         }
1262         /* Compatibility until drivers always set this */
1263         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1264         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1265         return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(tty_init_termios);
1268
1269 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1270 {
1271         int ret = tty_init_termios(tty);
1272         if (ret)
1273                 return ret;
1274
1275         tty_driver_kref_get(driver);
1276         tty->count++;
1277         driver->ttys[tty->index] = tty;
1278         return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(tty_standard_install);
1281
1282 /**
1283  *      tty_driver_install_tty() - install a tty entry in the driver
1284  *      @driver: the driver for the tty
1285  *      @tty: the tty
1286  *
1287  *      Install a tty object into the driver tables. The tty->index field
1288  *      will be set by the time this is called. This method is responsible
1289  *      for ensuring any need additional structures are allocated and
1290  *      configured.
1291  *
1292  *      Locking: tty_mutex for now
1293  */
1294 static int tty_driver_install_tty(struct tty_driver *driver,
1295                                                 struct tty_struct *tty)
1296 {
1297         return driver->ops->install ? driver->ops->install(driver, tty) :
1298                 tty_standard_install(driver, tty);
1299 }
1300
1301 /**
1302  *      tty_driver_remove_tty() - remove a tty from the driver tables
1303  *      @driver: the driver for the tty
1304  *      @idx:    the minor number
1305  *
1306  *      Remvoe a tty object from the driver tables. The tty->index field
1307  *      will be set by the time this is called.
1308  *
1309  *      Locking: tty_mutex for now
1310  */
1311 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1312 {
1313         if (driver->ops->remove)
1314                 driver->ops->remove(driver, tty);
1315         else
1316                 driver->ttys[tty->index] = NULL;
1317 }
1318
1319 /*
1320  *      tty_reopen()    - fast re-open of an open tty
1321  *      @tty    - the tty to open
1322  *
1323  *      Return 0 on success, -errno on error.
1324  *
1325  *      Locking: tty_mutex must be held from the time the tty was found
1326  *               till this open completes.
1327  */
1328 static int tty_reopen(struct tty_struct *tty)
1329 {
1330         struct tty_driver *driver = tty->driver;
1331
1332         if (test_bit(TTY_CLOSING, &tty->flags) ||
1333                         test_bit(TTY_HUPPING, &tty->flags) ||
1334                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1335                 return -EIO;
1336
1337         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1338             driver->subtype == PTY_TYPE_MASTER) {
1339                 /*
1340                  * special case for PTY masters: only one open permitted,
1341                  * and the slave side open count is incremented as well.
1342                  */
1343                 if (tty->count)
1344                         return -EIO;
1345
1346                 tty->link->count++;
1347         }
1348         tty->count++;
1349
1350         mutex_lock(&tty->ldisc_mutex);
1351         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1352         mutex_unlock(&tty->ldisc_mutex);
1353
1354         return 0;
1355 }
1356
1357 /**
1358  *      tty_init_dev            -       initialise a tty device
1359  *      @driver: tty driver we are opening a device on
1360  *      @idx: device index
1361  *      @ret_tty: returned tty structure
1362  *
1363  *      Prepare a tty device. This may not be a "new" clean device but
1364  *      could also be an active device. The pty drivers require special
1365  *      handling because of this.
1366  *
1367  *      Locking:
1368  *              The function is called under the tty_mutex, which
1369  *      protects us from the tty struct or driver itself going away.
1370  *
1371  *      On exit the tty device has the line discipline attached and
1372  *      a reference count of 1. If a pair was created for pty/tty use
1373  *      and the other was a pty master then it too has a reference count of 1.
1374  *
1375  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1376  * failed open.  The new code protects the open with a mutex, so it's
1377  * really quite straightforward.  The mutex locking can probably be
1378  * relaxed for the (most common) case of reopening a tty.
1379  */
1380
1381 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1382 {
1383         struct tty_struct *tty;
1384         int retval;
1385
1386         /*
1387          * First time open is complex, especially for PTY devices.
1388          * This code guarantees that either everything succeeds and the
1389          * TTY is ready for operation, or else the table slots are vacated
1390          * and the allocated memory released.  (Except that the termios
1391          * and locked termios may be retained.)
1392          */
1393
1394         if (!try_module_get(driver->owner))
1395                 return ERR_PTR(-ENODEV);
1396
1397         tty = alloc_tty_struct();
1398         if (!tty) {
1399                 retval = -ENOMEM;
1400                 goto err_module_put;
1401         }
1402         initialize_tty_struct(tty, driver, idx);
1403
1404         retval = tty_driver_install_tty(driver, tty);
1405         if (retval < 0)
1406                 goto err_deinit_tty;
1407
1408         if (!tty->port)
1409                 tty->port = driver->ports[idx];
1410
1411         /*
1412          * Structures all installed ... call the ldisc open routines.
1413          * If we fail here just call release_tty to clean up.  No need
1414          * to decrement the use counts, as release_tty doesn't care.
1415          */
1416         retval = tty_ldisc_setup(tty, tty->link);
1417         if (retval)
1418                 goto err_release_tty;
1419         return tty;
1420
1421 err_deinit_tty:
1422         deinitialize_tty_struct(tty);
1423         free_tty_struct(tty);
1424 err_module_put:
1425         module_put(driver->owner);
1426         return ERR_PTR(retval);
1427
1428         /* call the tty release_tty routine to clean out this slot */
1429 err_release_tty:
1430         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1431                                  "clearing slot %d\n", idx);
1432         release_tty(tty, idx);
1433         return ERR_PTR(retval);
1434 }
1435
1436 void tty_free_termios(struct tty_struct *tty)
1437 {
1438         struct ktermios *tp;
1439         int idx = tty->index;
1440
1441         /* If the port is going to reset then it has no termios to save */
1442         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1443                 return;
1444
1445         /* Stash the termios data */
1446         tp = tty->driver->termios[idx];
1447         if (tp == NULL) {
1448                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1449                 if (tp == NULL) {
1450                         pr_warn("tty: no memory to save termios state.\n");
1451                         return;
1452                 }
1453         }
1454         *tp = tty->termios;
1455 }
1456 EXPORT_SYMBOL(tty_free_termios);
1457
1458
1459 /**
1460  *      release_one_tty         -       release tty structure memory
1461  *      @kref: kref of tty we are obliterating
1462  *
1463  *      Releases memory associated with a tty structure, and clears out the
1464  *      driver table slots. This function is called when a device is no longer
1465  *      in use. It also gets called when setup of a device fails.
1466  *
1467  *      Locking:
1468  *              takes the file list lock internally when working on the list
1469  *      of ttys that the driver keeps.
1470  *
1471  *      This method gets called from a work queue so that the driver private
1472  *      cleanup ops can sleep (needed for USB at least)
1473  */
1474 static void release_one_tty(struct work_struct *work)
1475 {
1476         struct tty_struct *tty =
1477                 container_of(work, struct tty_struct, hangup_work);
1478         struct tty_driver *driver = tty->driver;
1479
1480         if (tty->ops->cleanup)
1481                 tty->ops->cleanup(tty);
1482
1483         tty->magic = 0;
1484         tty_driver_kref_put(driver);
1485         module_put(driver->owner);
1486
1487         spin_lock(&tty_files_lock);
1488         list_del_init(&tty->tty_files);
1489         spin_unlock(&tty_files_lock);
1490
1491         put_pid(tty->pgrp);
1492         put_pid(tty->session);
1493         free_tty_struct(tty);
1494 }
1495
1496 static void queue_release_one_tty(struct kref *kref)
1497 {
1498         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1499
1500         /* The hangup queue is now free so we can reuse it rather than
1501            waste a chunk of memory for each port */
1502         INIT_WORK(&tty->hangup_work, release_one_tty);
1503         schedule_work(&tty->hangup_work);
1504 }
1505
1506 /**
1507  *      tty_kref_put            -       release a tty kref
1508  *      @tty: tty device
1509  *
1510  *      Release a reference to a tty device and if need be let the kref
1511  *      layer destruct the object for us
1512  */
1513
1514 void tty_kref_put(struct tty_struct *tty)
1515 {
1516         if (tty)
1517                 kref_put(&tty->kref, queue_release_one_tty);
1518 }
1519 EXPORT_SYMBOL(tty_kref_put);
1520
1521 /**
1522  *      release_tty             -       release tty structure memory
1523  *
1524  *      Release both @tty and a possible linked partner (think pty pair),
1525  *      and decrement the refcount of the backing module.
1526  *
1527  *      Locking:
1528  *              tty_mutex
1529  *              takes the file list lock internally when working on the list
1530  *      of ttys that the driver keeps.
1531  *
1532  */
1533 static void release_tty(struct tty_struct *tty, int idx)
1534 {
1535         /* This should always be true but check for the moment */
1536         WARN_ON(tty->index != idx);
1537         WARN_ON(!mutex_is_locked(&tty_mutex));
1538         if (tty->ops->shutdown)
1539                 tty->ops->shutdown(tty);
1540         tty_free_termios(tty);
1541         tty_driver_remove_tty(tty->driver, tty);
1542
1543         if (tty->link)
1544                 tty_kref_put(tty->link);
1545         tty_kref_put(tty);
1546 }
1547
1548 /**
1549  *      tty_release_checks - check a tty before real release
1550  *      @tty: tty to check
1551  *      @o_tty: link of @tty (if any)
1552  *      @idx: index of the tty
1553  *
1554  *      Performs some paranoid checking before true release of the @tty.
1555  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1556  */
1557 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1558                 int idx)
1559 {
1560 #ifdef TTY_PARANOIA_CHECK
1561         if (idx < 0 || idx >= tty->driver->num) {
1562                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1563                                 __func__, tty->name);
1564                 return -1;
1565         }
1566
1567         /* not much to check for devpts */
1568         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1569                 return 0;
1570
1571         if (tty != tty->driver->ttys[idx]) {
1572                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1573                                 __func__, idx, tty->name);
1574                 return -1;
1575         }
1576         if (tty->driver->other) {
1577                 if (o_tty != tty->driver->other->ttys[idx]) {
1578                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1579                                         __func__, idx, tty->name);
1580                         return -1;
1581                 }
1582                 if (o_tty->link != tty) {
1583                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1584                         return -1;
1585                 }
1586         }
1587 #endif
1588         return 0;
1589 }
1590
1591 /**
1592  *      tty_release             -       vfs callback for close
1593  *      @inode: inode of tty
1594  *      @filp: file pointer for handle to tty
1595  *
1596  *      Called the last time each file handle is closed that references
1597  *      this tty. There may however be several such references.
1598  *
1599  *      Locking:
1600  *              Takes bkl. See tty_release_dev
1601  *
1602  * Even releasing the tty structures is a tricky business.. We have
1603  * to be very careful that the structures are all released at the
1604  * same time, as interrupts might otherwise get the wrong pointers.
1605  *
1606  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1607  * lead to double frees or releasing memory still in use.
1608  */
1609
1610 int tty_release(struct inode *inode, struct file *filp)
1611 {
1612         struct tty_struct *tty = file_tty(filp);
1613         struct tty_struct *o_tty;
1614         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1615         int     devpts;
1616         int     idx;
1617         char    buf[64];
1618
1619         if (tty_paranoia_check(tty, inode, __func__))
1620                 return 0;
1621
1622         tty_lock();
1623         check_tty_count(tty, __func__);
1624
1625         __tty_fasync(-1, filp, 0);
1626
1627         idx = tty->index;
1628         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1629                       tty->driver->subtype == PTY_TYPE_MASTER);
1630         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1631         o_tty = tty->link;
1632
1633         if (tty_release_checks(tty, o_tty, idx)) {
1634                 tty_unlock();
1635                 return 0;
1636         }
1637
1638 #ifdef TTY_DEBUG_HANGUP
1639         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1640                         tty_name(tty, buf), tty->count);
1641 #endif
1642
1643         if (tty->ops->close)
1644                 tty->ops->close(tty, filp);
1645
1646         tty_unlock();
1647         /*
1648          * Sanity check: if tty->count is going to zero, there shouldn't be
1649          * any waiters on tty->read_wait or tty->write_wait.  We test the
1650          * wait queues and kick everyone out _before_ actually starting to
1651          * close.  This ensures that we won't block while releasing the tty
1652          * structure.
1653          *
1654          * The test for the o_tty closing is necessary, since the master and
1655          * slave sides may close in any order.  If the slave side closes out
1656          * first, its count will be one, since the master side holds an open.
1657          * Thus this test wouldn't be triggered at the time the slave closes,
1658          * so we do it now.
1659          *
1660          * Note that it's possible for the tty to be opened again while we're
1661          * flushing out waiters.  By recalculating the closing flags before
1662          * each iteration we avoid any problems.
1663          */
1664         while (1) {
1665                 /* Guard against races with tty->count changes elsewhere and
1666                    opens on /dev/tty */
1667
1668                 mutex_lock(&tty_mutex);
1669                 tty_lock();
1670                 tty_closing = tty->count <= 1;
1671                 o_tty_closing = o_tty &&
1672                         (o_tty->count <= (pty_master ? 1 : 0));
1673                 do_sleep = 0;
1674
1675                 if (tty_closing) {
1676                         if (waitqueue_active(&tty->read_wait)) {
1677                                 wake_up_poll(&tty->read_wait, POLLIN);
1678                                 do_sleep++;
1679                         }
1680                         if (waitqueue_active(&tty->write_wait)) {
1681                                 wake_up_poll(&tty->write_wait, POLLOUT);
1682                                 do_sleep++;
1683                         }
1684                 }
1685                 if (o_tty_closing) {
1686                         if (waitqueue_active(&o_tty->read_wait)) {
1687                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1688                                 do_sleep++;
1689                         }
1690                         if (waitqueue_active(&o_tty->write_wait)) {
1691                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1692                                 do_sleep++;
1693                         }
1694                 }
1695                 if (!do_sleep)
1696                         break;
1697
1698                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1699                                 __func__, tty_name(tty, buf));
1700                 tty_unlock();
1701                 mutex_unlock(&tty_mutex);
1702                 schedule();
1703         }
1704
1705         /*
1706          * The closing flags are now consistent with the open counts on
1707          * both sides, and we've completed the last operation that could
1708          * block, so it's safe to proceed with closing.
1709          *
1710          * We must *not* drop the tty_mutex until we ensure that a further
1711          * entry into tty_open can not pick up this tty.
1712          */
1713         if (pty_master) {
1714                 if (--o_tty->count < 0) {
1715                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1716                                 __func__, o_tty->count, tty_name(o_tty, buf));
1717                         o_tty->count = 0;
1718                 }
1719         }
1720         if (--tty->count < 0) {
1721                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1722                                 __func__, tty->count, tty_name(tty, buf));
1723                 tty->count = 0;
1724         }
1725
1726         /*
1727          * We've decremented tty->count, so we need to remove this file
1728          * descriptor off the tty->tty_files list; this serves two
1729          * purposes:
1730          *  - check_tty_count sees the correct number of file descriptors
1731          *    associated with this tty.
1732          *  - do_tty_hangup no longer sees this file descriptor as
1733          *    something that needs to be handled for hangups.
1734          */
1735         tty_del_file(filp);
1736
1737         /*
1738          * Perform some housekeeping before deciding whether to return.
1739          *
1740          * Set the TTY_CLOSING flag if this was the last open.  In the
1741          * case of a pty we may have to wait around for the other side
1742          * to close, and TTY_CLOSING makes sure we can't be reopened.
1743          */
1744         if (tty_closing)
1745                 set_bit(TTY_CLOSING, &tty->flags);
1746         if (o_tty_closing)
1747                 set_bit(TTY_CLOSING, &o_tty->flags);
1748
1749         /*
1750          * If _either_ side is closing, make sure there aren't any
1751          * processes that still think tty or o_tty is their controlling
1752          * tty.
1753          */
1754         if (tty_closing || o_tty_closing) {
1755                 read_lock(&tasklist_lock);
1756                 session_clear_tty(tty->session);
1757                 if (o_tty)
1758                         session_clear_tty(o_tty->session);
1759                 read_unlock(&tasklist_lock);
1760         }
1761
1762         mutex_unlock(&tty_mutex);
1763         tty_unlock();
1764         /* At this point the TTY_CLOSING flag should ensure a dead tty
1765            cannot be re-opened by a racing opener */
1766
1767         /* check whether both sides are closing ... */
1768         if (!tty_closing || (o_tty && !o_tty_closing))
1769                 return 0;
1770
1771 #ifdef TTY_DEBUG_HANGUP
1772         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1773 #endif
1774         /*
1775          * Ask the line discipline code to release its structures
1776          */
1777         tty_ldisc_release(tty, o_tty);
1778         /*
1779          * The release_tty function takes care of the details of clearing
1780          * the slots and preserving the termios structure.
1781          */
1782         mutex_lock(&tty_mutex);
1783         release_tty(tty, idx);
1784         mutex_unlock(&tty_mutex);
1785
1786         /* Make this pty number available for reallocation */
1787         if (devpts)
1788                 devpts_kill_index(inode, idx);
1789
1790         return 0;
1791 }
1792
1793 /**
1794  *      tty_open_current_tty - get tty of current task for open
1795  *      @device: device number
1796  *      @filp: file pointer to tty
1797  *      @return: tty of the current task iff @device is /dev/tty
1798  *
1799  *      We cannot return driver and index like for the other nodes because
1800  *      devpts will not work then. It expects inodes to be from devpts FS.
1801  *
1802  *      We need to move to returning a refcounted object from all the lookup
1803  *      paths including this one.
1804  */
1805 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1806 {
1807         struct tty_struct *tty;
1808
1809         if (device != MKDEV(TTYAUX_MAJOR, 0))
1810                 return NULL;
1811
1812         tty = get_current_tty();
1813         if (!tty)
1814                 return ERR_PTR(-ENXIO);
1815
1816         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1817         /* noctty = 1; */
1818         tty_kref_put(tty);
1819         /* FIXME: we put a reference and return a TTY! */
1820         /* This is only safe because the caller holds tty_mutex */
1821         return tty;
1822 }
1823
1824 /**
1825  *      tty_lookup_driver - lookup a tty driver for a given device file
1826  *      @device: device number
1827  *      @filp: file pointer to tty
1828  *      @noctty: set if the device should not become a controlling tty
1829  *      @index: index for the device in the @return driver
1830  *      @return: driver for this inode (with increased refcount)
1831  *
1832  *      If @return is not erroneous, the caller is responsible to decrement the
1833  *      refcount by tty_driver_kref_put.
1834  *
1835  *      Locking: tty_mutex protects get_tty_driver
1836  */
1837 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838                 int *noctty, int *index)
1839 {
1840         struct tty_driver *driver;
1841
1842         switch (device) {
1843 #ifdef CONFIG_VT
1844         case MKDEV(TTY_MAJOR, 0): {
1845                 extern struct tty_driver *console_driver;
1846                 driver = tty_driver_kref_get(console_driver);
1847                 *index = fg_console;
1848                 *noctty = 1;
1849                 break;
1850         }
1851 #endif
1852         case MKDEV(TTYAUX_MAJOR, 1): {
1853                 struct tty_driver *console_driver = console_device(index);
1854                 if (console_driver) {
1855                         driver = tty_driver_kref_get(console_driver);
1856                         if (driver) {
1857                                 /* Don't let /dev/console block */
1858                                 filp->f_flags |= O_NONBLOCK;
1859                                 *noctty = 1;
1860                                 break;
1861                         }
1862                 }
1863                 return ERR_PTR(-ENODEV);
1864         }
1865         default:
1866                 driver = get_tty_driver(device, index);
1867                 if (!driver)
1868                         return ERR_PTR(-ENODEV);
1869                 break;
1870         }
1871         return driver;
1872 }
1873
1874 /**
1875  *      tty_open                -       open a tty device
1876  *      @inode: inode of device file
1877  *      @filp: file pointer to tty
1878  *
1879  *      tty_open and tty_release keep up the tty count that contains the
1880  *      number of opens done on a tty. We cannot use the inode-count, as
1881  *      different inodes might point to the same tty.
1882  *
1883  *      Open-counting is needed for pty masters, as well as for keeping
1884  *      track of serial lines: DTR is dropped when the last close happens.
1885  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1886  *
1887  *      The termios state of a pty is reset on first open so that
1888  *      settings don't persist across reuse.
1889  *
1890  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1891  *               tty->count should protect the rest.
1892  *               ->siglock protects ->signal/->sighand
1893  */
1894
1895 static int tty_open(struct inode *inode, struct file *filp)
1896 {
1897         struct tty_struct *tty;
1898         int noctty, retval;
1899         struct tty_driver *driver = NULL;
1900         int index;
1901         dev_t device = inode->i_rdev;
1902         unsigned saved_flags = filp->f_flags;
1903
1904         nonseekable_open(inode, filp);
1905
1906 retry_open:
1907         retval = tty_alloc_file(filp);
1908         if (retval)
1909                 return -ENOMEM;
1910
1911         noctty = filp->f_flags & O_NOCTTY;
1912         index  = -1;
1913         retval = 0;
1914
1915         mutex_lock(&tty_mutex);
1916         tty_lock();
1917
1918         tty = tty_open_current_tty(device, filp);
1919         if (IS_ERR(tty)) {
1920                 retval = PTR_ERR(tty);
1921                 goto err_unlock;
1922         } else if (!tty) {
1923                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1924                 if (IS_ERR(driver)) {
1925                         retval = PTR_ERR(driver);
1926                         goto err_unlock;
1927                 }
1928
1929                 /* check whether we're reopening an existing tty */
1930                 tty = tty_driver_lookup_tty(driver, inode, index);
1931                 if (IS_ERR(tty)) {
1932                         retval = PTR_ERR(tty);
1933                         goto err_unlock;
1934                 }
1935         }
1936
1937         if (tty) {
1938                 retval = tty_reopen(tty);
1939                 if (retval)
1940                         tty = ERR_PTR(retval);
1941         } else
1942                 tty = tty_init_dev(driver, index);
1943
1944         mutex_unlock(&tty_mutex);
1945         if (driver)
1946                 tty_driver_kref_put(driver);
1947         if (IS_ERR(tty)) {
1948                 tty_unlock();
1949                 retval = PTR_ERR(tty);
1950                 goto err_file;
1951         }
1952
1953         tty_add_file(tty, filp);
1954
1955         check_tty_count(tty, __func__);
1956         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1957             tty->driver->subtype == PTY_TYPE_MASTER)
1958                 noctty = 1;
1959 #ifdef TTY_DEBUG_HANGUP
1960         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1961 #endif
1962         if (tty->ops->open)
1963                 retval = tty->ops->open(tty, filp);
1964         else
1965                 retval = -ENODEV;
1966         filp->f_flags = saved_flags;
1967
1968         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1969                                                 !capable(CAP_SYS_ADMIN))
1970                 retval = -EBUSY;
1971
1972         if (retval) {
1973 #ifdef TTY_DEBUG_HANGUP
1974                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1975                                 retval, tty->name);
1976 #endif
1977                 tty_unlock(); /* need to call tty_release without BTM */
1978                 tty_release(inode, filp);
1979                 if (retval != -ERESTARTSYS)
1980                         return retval;
1981
1982                 if (signal_pending(current))
1983                         return retval;
1984
1985                 schedule();
1986                 /*
1987                  * Need to reset f_op in case a hangup happened.
1988                  */
1989                 tty_lock();
1990                 if (filp->f_op == &hung_up_tty_fops)
1991                         filp->f_op = &tty_fops;
1992                 tty_unlock();
1993                 goto retry_open;
1994         }
1995         tty_unlock();
1996
1997
1998         mutex_lock(&tty_mutex);
1999         tty_lock();
2000         spin_lock_irq(&current->sighand->siglock);
2001         if (!noctty &&
2002             current->signal->leader &&
2003             !current->signal->tty &&
2004             tty->session == NULL)
2005                 __proc_set_tty(current, tty);
2006         spin_unlock_irq(&current->sighand->siglock);
2007         tty_unlock();
2008         mutex_unlock(&tty_mutex);
2009         return 0;
2010 err_unlock:
2011         tty_unlock();
2012         mutex_unlock(&tty_mutex);
2013         /* after locks to avoid deadlock */
2014         if (!IS_ERR_OR_NULL(driver))
2015                 tty_driver_kref_put(driver);
2016 err_file:
2017         tty_free_file(filp);
2018         return retval;
2019 }
2020
2021
2022
2023 /**
2024  *      tty_poll        -       check tty status
2025  *      @filp: file being polled
2026  *      @wait: poll wait structures to update
2027  *
2028  *      Call the line discipline polling method to obtain the poll
2029  *      status of the device.
2030  *
2031  *      Locking: locks called line discipline but ldisc poll method
2032  *      may be re-entered freely by other callers.
2033  */
2034
2035 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2036 {
2037         struct tty_struct *tty = file_tty(filp);
2038         struct tty_ldisc *ld;
2039         int ret = 0;
2040
2041         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2042                 return 0;
2043
2044         ld = tty_ldisc_ref_wait(tty);
2045         if (ld->ops->poll)
2046                 ret = (ld->ops->poll)(tty, filp, wait);
2047         tty_ldisc_deref(ld);
2048         return ret;
2049 }
2050
2051 static int __tty_fasync(int fd, struct file *filp, int on)
2052 {
2053         struct tty_struct *tty = file_tty(filp);
2054         unsigned long flags;
2055         int retval = 0;
2056
2057         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2058                 goto out;
2059
2060         retval = fasync_helper(fd, filp, on, &tty->fasync);
2061         if (retval <= 0)
2062                 goto out;
2063
2064         if (on) {
2065                 enum pid_type type;
2066                 struct pid *pid;
2067                 if (!waitqueue_active(&tty->read_wait))
2068                         tty->minimum_to_wake = 1;
2069                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070                 if (tty->pgrp) {
2071                         pid = tty->pgrp;
2072                         type = PIDTYPE_PGID;
2073                 } else {
2074                         pid = task_pid(current);
2075                         type = PIDTYPE_PID;
2076                 }
2077                 get_pid(pid);
2078                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2079                 retval = __f_setown(filp, pid, type, 0);
2080                 put_pid(pid);
2081                 if (retval)
2082                         goto out;
2083         } else {
2084                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2085                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2086         }
2087         retval = 0;
2088 out:
2089         return retval;
2090 }
2091
2092 static int tty_fasync(int fd, struct file *filp, int on)
2093 {
2094         int retval;
2095         tty_lock();
2096         retval = __tty_fasync(fd, filp, on);
2097         tty_unlock();
2098         return retval;
2099 }
2100
2101 /**
2102  *      tiocsti                 -       fake input character
2103  *      @tty: tty to fake input into
2104  *      @p: pointer to character
2105  *
2106  *      Fake input to a tty device. Does the necessary locking and
2107  *      input management.
2108  *
2109  *      FIXME: does not honour flow control ??
2110  *
2111  *      Locking:
2112  *              Called functions take tty_ldisc_lock
2113  *              current->signal->tty check is safe without locks
2114  *
2115  *      FIXME: may race normal receive processing
2116  */
2117
2118 static int tiocsti(struct tty_struct *tty, char __user *p)
2119 {
2120         char ch, mbz = 0;
2121         struct tty_ldisc *ld;
2122
2123         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2124                 return -EPERM;
2125         if (get_user(ch, p))
2126                 return -EFAULT;
2127         tty_audit_tiocsti(tty, ch);
2128         ld = tty_ldisc_ref_wait(tty);
2129         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2130         tty_ldisc_deref(ld);
2131         return 0;
2132 }
2133
2134 /**
2135  *      tiocgwinsz              -       implement window query ioctl
2136  *      @tty; tty
2137  *      @arg: user buffer for result
2138  *
2139  *      Copies the kernel idea of the window size into the user buffer.
2140  *
2141  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2142  *              is consistent.
2143  */
2144
2145 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2146 {
2147         int err;
2148
2149         mutex_lock(&tty->termios_mutex);
2150         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2151         mutex_unlock(&tty->termios_mutex);
2152
2153         return err ? -EFAULT: 0;
2154 }
2155
2156 /**
2157  *      tty_do_resize           -       resize event
2158  *      @tty: tty being resized
2159  *      @rows: rows (character)
2160  *      @cols: cols (character)
2161  *
2162  *      Update the termios variables and send the necessary signals to
2163  *      peform a terminal resize correctly
2164  */
2165
2166 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2167 {
2168         struct pid *pgrp;
2169         unsigned long flags;
2170
2171         /* Lock the tty */
2172         mutex_lock(&tty->termios_mutex);
2173         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2174                 goto done;
2175         /* Get the PID values and reference them so we can
2176            avoid holding the tty ctrl lock while sending signals */
2177         spin_lock_irqsave(&tty->ctrl_lock, flags);
2178         pgrp = get_pid(tty->pgrp);
2179         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2180
2181         if (pgrp)
2182                 kill_pgrp(pgrp, SIGWINCH, 1);
2183         put_pid(pgrp);
2184
2185         tty->winsize = *ws;
2186 done:
2187         mutex_unlock(&tty->termios_mutex);
2188         return 0;
2189 }
2190
2191 /**
2192  *      tiocswinsz              -       implement window size set ioctl
2193  *      @tty; tty side of tty
2194  *      @arg: user buffer for result
2195  *
2196  *      Copies the user idea of the window size to the kernel. Traditionally
2197  *      this is just advisory information but for the Linux console it
2198  *      actually has driver level meaning and triggers a VC resize.
2199  *
2200  *      Locking:
2201  *              Driver dependent. The default do_resize method takes the
2202  *      tty termios mutex and ctrl_lock. The console takes its own lock
2203  *      then calls into the default method.
2204  */
2205
2206 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2207 {
2208         struct winsize tmp_ws;
2209         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2210                 return -EFAULT;
2211
2212         if (tty->ops->resize)
2213                 return tty->ops->resize(tty, &tmp_ws);
2214         else
2215                 return tty_do_resize(tty, &tmp_ws);
2216 }
2217
2218 /**
2219  *      tioccons        -       allow admin to move logical console
2220  *      @file: the file to become console
2221  *
2222  *      Allow the administrator to move the redirected console device
2223  *
2224  *      Locking: uses redirect_lock to guard the redirect information
2225  */
2226
2227 static int tioccons(struct file *file)
2228 {
2229         if (!capable(CAP_SYS_ADMIN))
2230                 return -EPERM;
2231         if (file->f_op->write == redirected_tty_write) {
2232                 struct file *f;
2233                 spin_lock(&redirect_lock);
2234                 f = redirect;
2235                 redirect = NULL;
2236                 spin_unlock(&redirect_lock);
2237                 if (f)
2238                         fput(f);
2239                 return 0;
2240         }
2241         spin_lock(&redirect_lock);
2242         if (redirect) {
2243                 spin_unlock(&redirect_lock);
2244                 return -EBUSY;
2245         }
2246         get_file(file);
2247         redirect = file;
2248         spin_unlock(&redirect_lock);
2249         return 0;
2250 }
2251
2252 /**
2253  *      fionbio         -       non blocking ioctl
2254  *      @file: file to set blocking value
2255  *      @p: user parameter
2256  *
2257  *      Historical tty interfaces had a blocking control ioctl before
2258  *      the generic functionality existed. This piece of history is preserved
2259  *      in the expected tty API of posix OS's.
2260  *
2261  *      Locking: none, the open file handle ensures it won't go away.
2262  */
2263
2264 static int fionbio(struct file *file, int __user *p)
2265 {
2266         int nonblock;
2267
2268         if (get_user(nonblock, p))
2269                 return -EFAULT;
2270
2271         spin_lock(&file->f_lock);
2272         if (nonblock)
2273                 file->f_flags |= O_NONBLOCK;
2274         else
2275                 file->f_flags &= ~O_NONBLOCK;
2276         spin_unlock(&file->f_lock);
2277         return 0;
2278 }
2279
2280 /**
2281  *      tiocsctty       -       set controlling tty
2282  *      @tty: tty structure
2283  *      @arg: user argument
2284  *
2285  *      This ioctl is used to manage job control. It permits a session
2286  *      leader to set this tty as the controlling tty for the session.
2287  *
2288  *      Locking:
2289  *              Takes tty_mutex() to protect tty instance
2290  *              Takes tasklist_lock internally to walk sessions
2291  *              Takes ->siglock() when updating signal->tty
2292  */
2293
2294 static int tiocsctty(struct tty_struct *tty, int arg)
2295 {
2296         int ret = 0;
2297         if (current->signal->leader && (task_session(current) == tty->session))
2298                 return ret;
2299
2300         mutex_lock(&tty_mutex);
2301         /*
2302          * The process must be a session leader and
2303          * not have a controlling tty already.
2304          */
2305         if (!current->signal->leader || current->signal->tty) {
2306                 ret = -EPERM;
2307                 goto unlock;
2308         }
2309
2310         if (tty->session) {
2311                 /*
2312                  * This tty is already the controlling
2313                  * tty for another session group!
2314                  */
2315                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2316                         /*
2317                          * Steal it away
2318                          */
2319                         read_lock(&tasklist_lock);
2320                         session_clear_tty(tty->session);
2321                         read_unlock(&tasklist_lock);
2322                 } else {
2323                         ret = -EPERM;
2324                         goto unlock;
2325                 }
2326         }
2327         proc_set_tty(current, tty);
2328 unlock:
2329         mutex_unlock(&tty_mutex);
2330         return ret;
2331 }
2332
2333 /**
2334  *      tty_get_pgrp    -       return a ref counted pgrp pid
2335  *      @tty: tty to read
2336  *
2337  *      Returns a refcounted instance of the pid struct for the process
2338  *      group controlling the tty.
2339  */
2340
2341 struct pid *tty_get_pgrp(struct tty_struct *tty)
2342 {
2343         unsigned long flags;
2344         struct pid *pgrp;
2345
2346         spin_lock_irqsave(&tty->ctrl_lock, flags);
2347         pgrp = get_pid(tty->pgrp);
2348         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2349
2350         return pgrp;
2351 }
2352 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2353
2354 /**
2355  *      tiocgpgrp               -       get process group
2356  *      @tty: tty passed by user
2357  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2358  *      @p: returned pid
2359  *
2360  *      Obtain the process group of the tty. If there is no process group
2361  *      return an error.
2362  *
2363  *      Locking: none. Reference to current->signal->tty is safe.
2364  */
2365
2366 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2367 {
2368         struct pid *pid;
2369         int ret;
2370         /*
2371          * (tty == real_tty) is a cheap way of
2372          * testing if the tty is NOT a master pty.
2373          */
2374         if (tty == real_tty && current->signal->tty != real_tty)
2375                 return -ENOTTY;
2376         pid = tty_get_pgrp(real_tty);
2377         ret =  put_user(pid_vnr(pid), p);
2378         put_pid(pid);
2379         return ret;
2380 }
2381
2382 /**
2383  *      tiocspgrp               -       attempt to set process group
2384  *      @tty: tty passed by user
2385  *      @real_tty: tty side device matching tty passed by user
2386  *      @p: pid pointer
2387  *
2388  *      Set the process group of the tty to the session passed. Only
2389  *      permitted where the tty session is our session.
2390  *
2391  *      Locking: RCU, ctrl lock
2392  */
2393
2394 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2395 {
2396         struct pid *pgrp;
2397         pid_t pgrp_nr;
2398         int retval = tty_check_change(real_tty);
2399         unsigned long flags;
2400
2401         if (retval == -EIO)
2402                 return -ENOTTY;
2403         if (retval)
2404                 return retval;
2405         if (!current->signal->tty ||
2406             (current->signal->tty != real_tty) ||
2407             (real_tty->session != task_session(current)))
2408                 return -ENOTTY;
2409         if (get_user(pgrp_nr, p))
2410                 return -EFAULT;
2411         if (pgrp_nr < 0)
2412                 return -EINVAL;
2413         rcu_read_lock();
2414         pgrp = find_vpid(pgrp_nr);
2415         retval = -ESRCH;
2416         if (!pgrp)
2417                 goto out_unlock;
2418         retval = -EPERM;
2419         if (session_of_pgrp(pgrp) != task_session(current))
2420                 goto out_unlock;
2421         retval = 0;
2422         spin_lock_irqsave(&tty->ctrl_lock, flags);
2423         put_pid(real_tty->pgrp);
2424         real_tty->pgrp = get_pid(pgrp);
2425         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2426 out_unlock:
2427         rcu_read_unlock();
2428         return retval;
2429 }
2430
2431 /**
2432  *      tiocgsid                -       get session id
2433  *      @tty: tty passed by user
2434  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2435  *      @p: pointer to returned session id
2436  *
2437  *      Obtain the session id of the tty. If there is no session
2438  *      return an error.
2439  *
2440  *      Locking: none. Reference to current->signal->tty is safe.
2441  */
2442
2443 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2444 {
2445         /*
2446          * (tty == real_tty) is a cheap way of
2447          * testing if the tty is NOT a master pty.
2448         */
2449         if (tty == real_tty && current->signal->tty != real_tty)
2450                 return -ENOTTY;
2451         if (!real_tty->session)
2452                 return -ENOTTY;
2453         return put_user(pid_vnr(real_tty->session), p);
2454 }
2455
2456 /**
2457  *      tiocsetd        -       set line discipline
2458  *      @tty: tty device
2459  *      @p: pointer to user data
2460  *
2461  *      Set the line discipline according to user request.
2462  *
2463  *      Locking: see tty_set_ldisc, this function is just a helper
2464  */
2465
2466 static int tiocsetd(struct tty_struct *tty, int __user *p)
2467 {
2468         int ldisc;
2469         int ret;
2470
2471         if (get_user(ldisc, p))
2472                 return -EFAULT;
2473
2474         ret = tty_set_ldisc(tty, ldisc);
2475
2476         return ret;
2477 }
2478
2479 /**
2480  *      send_break      -       performed time break
2481  *      @tty: device to break on
2482  *      @duration: timeout in mS
2483  *
2484  *      Perform a timed break on hardware that lacks its own driver level
2485  *      timed break functionality.
2486  *
2487  *      Locking:
2488  *              atomic_write_lock serializes
2489  *
2490  */
2491
2492 static int send_break(struct tty_struct *tty, unsigned int duration)
2493 {
2494         int retval;
2495
2496         if (tty->ops->break_ctl == NULL)
2497                 return 0;
2498
2499         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2500                 retval = tty->ops->break_ctl(tty, duration);
2501         else {
2502                 /* Do the work ourselves */
2503                 if (tty_write_lock(tty, 0) < 0)
2504                         return -EINTR;
2505                 retval = tty->ops->break_ctl(tty, -1);
2506                 if (retval)
2507                         goto out;
2508                 if (!signal_pending(current))
2509                         msleep_interruptible(duration);
2510                 retval = tty->ops->break_ctl(tty, 0);
2511 out:
2512                 tty_write_unlock(tty);
2513                 if (signal_pending(current))
2514                         retval = -EINTR;
2515         }
2516         return retval;
2517 }
2518
2519 /**
2520  *      tty_tiocmget            -       get modem status
2521  *      @tty: tty device
2522  *      @file: user file pointer
2523  *      @p: pointer to result
2524  *
2525  *      Obtain the modem status bits from the tty driver if the feature
2526  *      is supported. Return -EINVAL if it is not available.
2527  *
2528  *      Locking: none (up to the driver)
2529  */
2530
2531 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2532 {
2533         int retval = -EINVAL;
2534
2535         if (tty->ops->tiocmget) {
2536                 retval = tty->ops->tiocmget(tty);
2537
2538                 if (retval >= 0)
2539                         retval = put_user(retval, p);
2540         }
2541         return retval;
2542 }
2543
2544 /**
2545  *      tty_tiocmset            -       set modem status
2546  *      @tty: tty device
2547  *      @cmd: command - clear bits, set bits or set all
2548  *      @p: pointer to desired bits
2549  *
2550  *      Set the modem status bits from the tty driver if the feature
2551  *      is supported. Return -EINVAL if it is not available.
2552  *
2553  *      Locking: none (up to the driver)
2554  */
2555
2556 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2557              unsigned __user *p)
2558 {
2559         int retval;
2560         unsigned int set, clear, val;
2561
2562         if (tty->ops->tiocmset == NULL)
2563                 return -EINVAL;
2564
2565         retval = get_user(val, p);
2566         if (retval)
2567                 return retval;
2568         set = clear = 0;
2569         switch (cmd) {
2570         case TIOCMBIS:
2571                 set = val;
2572                 break;
2573         case TIOCMBIC:
2574                 clear = val;
2575                 break;
2576         case TIOCMSET:
2577                 set = val;
2578                 clear = ~val;
2579                 break;
2580         }
2581         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2582         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2583         return tty->ops->tiocmset(tty, set, clear);
2584 }
2585
2586 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2587 {
2588         int retval = -EINVAL;
2589         struct serial_icounter_struct icount;
2590         memset(&icount, 0, sizeof(icount));
2591         if (tty->ops->get_icount)
2592                 retval = tty->ops->get_icount(tty, &icount);
2593         if (retval != 0)
2594                 return retval;
2595         if (copy_to_user(arg, &icount, sizeof(icount)))
2596                 return -EFAULT;
2597         return 0;
2598 }
2599
2600 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2601 {
2602         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2603             tty->driver->subtype == PTY_TYPE_MASTER)
2604                 tty = tty->link;
2605         return tty;
2606 }
2607 EXPORT_SYMBOL(tty_pair_get_tty);
2608
2609 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2610 {
2611         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2612             tty->driver->subtype == PTY_TYPE_MASTER)
2613             return tty;
2614         return tty->link;
2615 }
2616 EXPORT_SYMBOL(tty_pair_get_pty);
2617
2618 /*
2619  * Split this up, as gcc can choke on it otherwise..
2620  */
2621 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2622 {
2623         struct tty_struct *tty = file_tty(file);
2624         struct tty_struct *real_tty;
2625         void __user *p = (void __user *)arg;
2626         int retval;
2627         struct tty_ldisc *ld;
2628         struct inode *inode = file->f_dentry->d_inode;
2629
2630         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2631                 return -EINVAL;
2632
2633         real_tty = tty_pair_get_tty(tty);
2634
2635         /*
2636          * Factor out some common prep work
2637          */
2638         switch (cmd) {
2639         case TIOCSETD:
2640         case TIOCSBRK:
2641         case TIOCCBRK:
2642         case TCSBRK:
2643         case TCSBRKP:
2644                 retval = tty_check_change(tty);
2645                 if (retval)
2646                         return retval;
2647                 if (cmd != TIOCCBRK) {
2648                         tty_wait_until_sent(tty, 0);
2649                         if (signal_pending(current))
2650                                 return -EINTR;
2651                 }
2652                 break;
2653         }
2654
2655         /*
2656          *      Now do the stuff.
2657          */
2658         switch (cmd) {
2659         case TIOCSTI:
2660                 return tiocsti(tty, p);
2661         case TIOCGWINSZ:
2662                 return tiocgwinsz(real_tty, p);
2663         case TIOCSWINSZ:
2664                 return tiocswinsz(real_tty, p);
2665         case TIOCCONS:
2666                 return real_tty != tty ? -EINVAL : tioccons(file);
2667         case FIONBIO:
2668                 return fionbio(file, p);
2669         case TIOCEXCL:
2670                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2671                 return 0;
2672         case TIOCNXCL:
2673                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2674                 return 0;
2675         case TIOCNOTTY:
2676                 if (current->signal->tty != tty)
2677                         return -ENOTTY;
2678                 no_tty();
2679                 return 0;
2680         case TIOCSCTTY:
2681                 return tiocsctty(tty, arg);
2682         case TIOCGPGRP:
2683                 return tiocgpgrp(tty, real_tty, p);
2684         case TIOCSPGRP:
2685                 return tiocspgrp(tty, real_tty, p);
2686         case TIOCGSID:
2687                 return tiocgsid(tty, real_tty, p);
2688         case TIOCGETD:
2689                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2690         case TIOCSETD:
2691                 return tiocsetd(tty, p);
2692         case TIOCVHANGUP:
2693                 if (!capable(CAP_SYS_ADMIN))
2694                         return -EPERM;
2695                 tty_vhangup(tty);
2696                 return 0;
2697         case TIOCGDEV:
2698         {
2699                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2700                 return put_user(ret, (unsigned int __user *)p);
2701         }
2702         /*
2703          * Break handling
2704          */
2705         case TIOCSBRK:  /* Turn break on, unconditionally */
2706                 if (tty->ops->break_ctl)
2707                         return tty->ops->break_ctl(tty, -1);
2708                 return 0;
2709         case TIOCCBRK:  /* Turn break off, unconditionally */
2710                 if (tty->ops->break_ctl)
2711                         return tty->ops->break_ctl(tty, 0);
2712                 return 0;
2713         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2714                 /* non-zero arg means wait for all output data
2715                  * to be sent (performed above) but don't send break.
2716                  * This is used by the tcdrain() termios function.
2717                  */
2718                 if (!arg)
2719                         return send_break(tty, 250);
2720                 return 0;
2721         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2722                 return send_break(tty, arg ? arg*100 : 250);
2723
2724         case TIOCMGET:
2725                 return tty_tiocmget(tty, p);
2726         case TIOCMSET:
2727         case TIOCMBIC:
2728         case TIOCMBIS:
2729                 return tty_tiocmset(tty, cmd, p);
2730         case TIOCGICOUNT:
2731                 retval = tty_tiocgicount(tty, p);
2732                 /* For the moment allow fall through to the old method */
2733                 if (retval != -EINVAL)
2734                         return retval;
2735                 break;
2736         case TCFLSH:
2737                 switch (arg) {
2738                 case TCIFLUSH:
2739                 case TCIOFLUSH:
2740                 /* flush tty buffer and allow ldisc to process ioctl */
2741                         tty_buffer_flush(tty);
2742                         break;
2743                 }
2744                 break;
2745         }
2746         if (tty->ops->ioctl) {
2747                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2748                 if (retval != -ENOIOCTLCMD)
2749                         return retval;
2750         }
2751         ld = tty_ldisc_ref_wait(tty);
2752         retval = -EINVAL;
2753         if (ld->ops->ioctl) {
2754                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2755                 if (retval == -ENOIOCTLCMD)
2756                         retval = -EINVAL;
2757         }
2758         tty_ldisc_deref(ld);
2759         return retval;
2760 }
2761
2762 #ifdef CONFIG_COMPAT
2763 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2764                                 unsigned long arg)
2765 {
2766         struct inode *inode = file->f_dentry->d_inode;
2767         struct tty_struct *tty = file_tty(file);
2768         struct tty_ldisc *ld;
2769         int retval = -ENOIOCTLCMD;
2770
2771         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2772                 return -EINVAL;
2773
2774         if (tty->ops->compat_ioctl) {
2775                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2776                 if (retval != -ENOIOCTLCMD)
2777                         return retval;
2778         }
2779
2780         ld = tty_ldisc_ref_wait(tty);
2781         if (ld->ops->compat_ioctl)
2782                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2783         else
2784                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2785         tty_ldisc_deref(ld);
2786
2787         return retval;
2788 }
2789 #endif
2790
2791 /*
2792  * This implements the "Secure Attention Key" ---  the idea is to
2793  * prevent trojan horses by killing all processes associated with this
2794  * tty when the user hits the "Secure Attention Key".  Required for
2795  * super-paranoid applications --- see the Orange Book for more details.
2796  *
2797  * This code could be nicer; ideally it should send a HUP, wait a few
2798  * seconds, then send a INT, and then a KILL signal.  But you then
2799  * have to coordinate with the init process, since all processes associated
2800  * with the current tty must be dead before the new getty is allowed
2801  * to spawn.
2802  *
2803  * Now, if it would be correct ;-/ The current code has a nasty hole -
2804  * it doesn't catch files in flight. We may send the descriptor to ourselves
2805  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2806  *
2807  * Nasty bug: do_SAK is being called in interrupt context.  This can
2808  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2809  */
2810 void __do_SAK(struct tty_struct *tty)
2811 {
2812 #ifdef TTY_SOFT_SAK
2813         tty_hangup(tty);
2814 #else
2815         struct task_struct *g, *p;
2816         struct pid *session;
2817         int             i;
2818         struct file     *filp;
2819         struct fdtable *fdt;
2820
2821         if (!tty)
2822                 return;
2823         session = tty->session;
2824
2825         tty_ldisc_flush(tty);
2826
2827         tty_driver_flush_buffer(tty);
2828
2829         read_lock(&tasklist_lock);
2830         /* Kill the entire session */
2831         do_each_pid_task(session, PIDTYPE_SID, p) {
2832                 printk(KERN_NOTICE "SAK: killed process %d"
2833                         " (%s): task_session(p)==tty->session\n",
2834                         task_pid_nr(p), p->comm);
2835                 send_sig(SIGKILL, p, 1);
2836         } while_each_pid_task(session, PIDTYPE_SID, p);
2837         /* Now kill any processes that happen to have the
2838          * tty open.
2839          */
2840         do_each_thread(g, p) {
2841                 if (p->signal->tty == tty) {
2842                         printk(KERN_NOTICE "SAK: killed process %d"
2843                             " (%s): task_session(p)==tty->session\n",
2844                             task_pid_nr(p), p->comm);
2845                         send_sig(SIGKILL, p, 1);
2846                         continue;
2847                 }
2848                 task_lock(p);
2849                 if (p->files) {
2850                         /*
2851                          * We don't take a ref to the file, so we must
2852                          * hold ->file_lock instead.
2853                          */
2854                         spin_lock(&p->files->file_lock);
2855                         fdt = files_fdtable(p->files);
2856                         for (i = 0; i < fdt->max_fds; i++) {
2857                                 filp = fcheck_files(p->files, i);
2858                                 if (!filp)
2859                                         continue;
2860                                 if (filp->f_op->read == tty_read &&
2861                                     file_tty(filp) == tty) {
2862                                         printk(KERN_NOTICE "SAK: killed process %d"
2863                                             " (%s): fd#%d opened to the tty\n",
2864                                             task_pid_nr(p), p->comm, i);
2865                                         force_sig(SIGKILL, p);
2866                                         break;
2867                                 }
2868                         }
2869                         spin_unlock(&p->files->file_lock);
2870                 }
2871                 task_unlock(p);
2872         } while_each_thread(g, p);
2873         read_unlock(&tasklist_lock);
2874 #endif
2875 }
2876
2877 static void do_SAK_work(struct work_struct *work)
2878 {
2879         struct tty_struct *tty =
2880                 container_of(work, struct tty_struct, SAK_work);
2881         __do_SAK(tty);
2882 }
2883
2884 /*
2885  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2886  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2887  * the values which we write to it will be identical to the values which it
2888  * already has. --akpm
2889  */
2890 void do_SAK(struct tty_struct *tty)
2891 {
2892         if (!tty)
2893                 return;
2894         schedule_work(&tty->SAK_work);
2895 }
2896
2897 EXPORT_SYMBOL(do_SAK);
2898
2899 static int dev_match_devt(struct device *dev, void *data)
2900 {
2901         dev_t *devt = data;
2902         return dev->devt == *devt;
2903 }
2904
2905 /* Must put_device() after it's unused! */
2906 static struct device *tty_get_device(struct tty_struct *tty)
2907 {
2908         dev_t devt = tty_devnum(tty);
2909         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2910 }
2911
2912
2913 /**
2914  *      initialize_tty_struct
2915  *      @tty: tty to initialize
2916  *
2917  *      This subroutine initializes a tty structure that has been newly
2918  *      allocated.
2919  *
2920  *      Locking: none - tty in question must not be exposed at this point
2921  */
2922
2923 void initialize_tty_struct(struct tty_struct *tty,
2924                 struct tty_driver *driver, int idx)
2925 {
2926         memset(tty, 0, sizeof(struct tty_struct));
2927         kref_init(&tty->kref);
2928         tty->magic = TTY_MAGIC;
2929         tty_ldisc_init(tty);
2930         tty->session = NULL;
2931         tty->pgrp = NULL;
2932         tty->overrun_time = jiffies;
2933         tty_buffer_init(tty);
2934         mutex_init(&tty->termios_mutex);
2935         mutex_init(&tty->ldisc_mutex);
2936         init_waitqueue_head(&tty->write_wait);
2937         init_waitqueue_head(&tty->read_wait);
2938         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2939         mutex_init(&tty->atomic_read_lock);
2940         mutex_init(&tty->atomic_write_lock);
2941         mutex_init(&tty->output_lock);
2942         mutex_init(&tty->echo_lock);
2943         spin_lock_init(&tty->read_lock);
2944         spin_lock_init(&tty->ctrl_lock);
2945         INIT_LIST_HEAD(&tty->tty_files);
2946         INIT_WORK(&tty->SAK_work, do_SAK_work);
2947
2948         tty->driver = driver;
2949         tty->ops = driver->ops;
2950         tty->index = idx;
2951         tty_line_name(driver, idx, tty->name);
2952         tty->dev = tty_get_device(tty);
2953 }
2954
2955 /**
2956  *      deinitialize_tty_struct
2957  *      @tty: tty to deinitialize
2958  *
2959  *      This subroutine deinitializes a tty structure that has been newly
2960  *      allocated but tty_release cannot be called on that yet.
2961  *
2962  *      Locking: none - tty in question must not be exposed at this point
2963  */
2964 void deinitialize_tty_struct(struct tty_struct *tty)
2965 {
2966         tty_ldisc_deinit(tty);
2967 }
2968
2969 /**
2970  *      tty_put_char    -       write one character to a tty
2971  *      @tty: tty
2972  *      @ch: character
2973  *
2974  *      Write one byte to the tty using the provided put_char method
2975  *      if present. Returns the number of characters successfully output.
2976  *
2977  *      Note: the specific put_char operation in the driver layer may go
2978  *      away soon. Don't call it directly, use this method
2979  */
2980
2981 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2982 {
2983         if (tty->ops->put_char)
2984                 return tty->ops->put_char(tty, ch);
2985         return tty->ops->write(tty, &ch, 1);
2986 }
2987 EXPORT_SYMBOL_GPL(tty_put_char);
2988
2989 struct class *tty_class;
2990
2991 /**
2992  *      tty_register_device - register a tty device
2993  *      @driver: the tty driver that describes the tty device
2994  *      @index: the index in the tty driver for this tty device
2995  *      @device: a struct device that is associated with this tty device.
2996  *              This field is optional, if there is no known struct device
2997  *              for this tty device it can be set to NULL safely.
2998  *
2999  *      Returns a pointer to the struct device for this tty device
3000  *      (or ERR_PTR(-EFOO) on error).
3001  *
3002  *      This call is required to be made to register an individual tty device
3003  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3004  *      that bit is not set, this function should not be called by a tty
3005  *      driver.
3006  *
3007  *      Locking: ??
3008  */
3009
3010 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3011                                    struct device *device)
3012 {
3013         char name[64];
3014         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3015
3016         if (index >= driver->num) {
3017                 printk(KERN_ERR "Attempt to register invalid tty line number "
3018                        " (%d).\n", index);
3019                 return ERR_PTR(-EINVAL);
3020         }
3021
3022         if (driver->type == TTY_DRIVER_TYPE_PTY)
3023                 pty_line_name(driver, index, name);
3024         else
3025                 tty_line_name(driver, index, name);
3026
3027         return device_create(tty_class, device, dev, NULL, name);
3028 }
3029 EXPORT_SYMBOL(tty_register_device);
3030
3031 /**
3032  *      tty_unregister_device - unregister a tty device
3033  *      @driver: the tty driver that describes the tty device
3034  *      @index: the index in the tty driver for this tty device
3035  *
3036  *      If a tty device is registered with a call to tty_register_device() then
3037  *      this function must be called when the tty device is gone.
3038  *
3039  *      Locking: ??
3040  */
3041
3042 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3043 {
3044         device_destroy(tty_class,
3045                 MKDEV(driver->major, driver->minor_start) + index);
3046 }
3047 EXPORT_SYMBOL(tty_unregister_device);
3048
3049 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3050 {
3051         struct tty_driver *driver;
3052
3053         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3054         if (driver) {
3055                 kref_init(&driver->kref);
3056                 driver->magic = TTY_DRIVER_MAGIC;
3057                 driver->num = lines;
3058                 driver->owner = owner;
3059                 /* later we'll move allocation of tables here */
3060         }
3061         return driver;
3062 }
3063 EXPORT_SYMBOL(__alloc_tty_driver);
3064
3065 static void destruct_tty_driver(struct kref *kref)
3066 {
3067         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3068         int i;
3069         struct ktermios *tp;
3070         void *p;
3071
3072         if (driver->flags & TTY_DRIVER_INSTALLED) {
3073                 /*
3074                  * Free the termios and termios_locked structures because
3075                  * we don't want to get memory leaks when modular tty
3076                  * drivers are removed from the kernel.
3077                  */
3078                 for (i = 0; i < driver->num; i++) {
3079                         tp = driver->termios[i];
3080                         if (tp) {
3081                                 driver->termios[i] = NULL;
3082                                 kfree(tp);
3083                         }
3084                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3085                                 tty_unregister_device(driver, i);
3086                 }
3087                 p = driver->ttys;
3088                 proc_tty_unregister_driver(driver);
3089                 driver->ttys = NULL;
3090                 driver->termios = NULL;
3091                 kfree(p);
3092                 cdev_del(&driver->cdev);
3093         }
3094         kfree(driver->ports);
3095         kfree(driver);
3096 }
3097
3098 void tty_driver_kref_put(struct tty_driver *driver)
3099 {
3100         kref_put(&driver->kref, destruct_tty_driver);
3101 }
3102 EXPORT_SYMBOL(tty_driver_kref_put);
3103
3104 void tty_set_operations(struct tty_driver *driver,
3105                         const struct tty_operations *op)
3106 {
3107         driver->ops = op;
3108 };
3109 EXPORT_SYMBOL(tty_set_operations);
3110
3111 void put_tty_driver(struct tty_driver *d)
3112 {
3113         tty_driver_kref_put(d);
3114 }
3115 EXPORT_SYMBOL(put_tty_driver);
3116
3117 /*
3118  * Called by a tty driver to register itself.
3119  */
3120 int tty_register_driver(struct tty_driver *driver)
3121 {
3122         int error;
3123         int i;
3124         dev_t dev;
3125         void **p = NULL;
3126         struct device *d;
3127
3128         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3129                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3130                 if (!p)
3131                         return -ENOMEM;
3132         }
3133         /*
3134          * There is too many lines in PTY and we won't need the array there
3135          * since it has an ->install hook where it assigns ports properly.
3136          */
3137         if (driver->type != TTY_DRIVER_TYPE_PTY) {
3138                 driver->ports = kcalloc(driver->num, sizeof(struct tty_port *),
3139                                 GFP_KERNEL);
3140                 if (!driver->ports) {
3141                         error = -ENOMEM;
3142                         goto err_free_p;
3143                 }
3144         }
3145
3146         if (!driver->major) {
3147                 error = alloc_chrdev_region(&dev, driver->minor_start,
3148                                                 driver->num, driver->name);
3149                 if (!error) {
3150                         driver->major = MAJOR(dev);
3151                         driver->minor_start = MINOR(dev);
3152                 }
3153         } else {
3154                 dev = MKDEV(driver->major, driver->minor_start);
3155                 error = register_chrdev_region(dev, driver->num, driver->name);
3156         }
3157         if (error < 0)
3158                 goto err_free_p;
3159
3160         if (p) {
3161                 driver->ttys = (struct tty_struct **)p;
3162                 driver->termios = (struct ktermios **)(p + driver->num);
3163         } else {
3164                 driver->ttys = NULL;
3165                 driver->termios = NULL;
3166         }
3167
3168         cdev_init(&driver->cdev, &tty_fops);
3169         driver->cdev.owner = driver->owner;
3170         error = cdev_add(&driver->cdev, dev, driver->num);
3171         if (error)
3172                 goto err_unreg_char;
3173
3174         mutex_lock(&tty_mutex);
3175         list_add(&driver->tty_drivers, &tty_drivers);
3176         mutex_unlock(&tty_mutex);
3177
3178         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3179                 for (i = 0; i < driver->num; i++) {
3180                         d = tty_register_device(driver, i, NULL);
3181                         if (IS_ERR(d)) {
3182                                 error = PTR_ERR(d);
3183                                 goto err;
3184                         }
3185                 }
3186         }
3187         proc_tty_register_driver(driver);
3188         driver->flags |= TTY_DRIVER_INSTALLED;
3189         return 0;
3190
3191 err:
3192         for (i--; i >= 0; i--)
3193                 tty_unregister_device(driver, i);
3194
3195         mutex_lock(&tty_mutex);
3196         list_del(&driver->tty_drivers);
3197         mutex_unlock(&tty_mutex);
3198
3199 err_unreg_char:
3200         unregister_chrdev_region(dev, driver->num);
3201         driver->ttys = NULL;
3202         driver->termios = NULL;
3203 err_free_p: /* destruct_tty_driver will free driver->ports */
3204         kfree(p);
3205         return error;
3206 }
3207 EXPORT_SYMBOL(tty_register_driver);
3208
3209 /*
3210  * Called by a tty driver to unregister itself.
3211  */
3212 int tty_unregister_driver(struct tty_driver *driver)
3213 {
3214 #if 0
3215         /* FIXME */
3216         if (driver->refcount)
3217                 return -EBUSY;
3218 #endif
3219         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3220                                 driver->num);
3221         mutex_lock(&tty_mutex);
3222         list_del(&driver->tty_drivers);
3223         mutex_unlock(&tty_mutex);
3224         return 0;
3225 }
3226
3227 EXPORT_SYMBOL(tty_unregister_driver);
3228
3229 dev_t tty_devnum(struct tty_struct *tty)
3230 {
3231         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3232 }
3233 EXPORT_SYMBOL(tty_devnum);
3234
3235 void proc_clear_tty(struct task_struct *p)
3236 {
3237         unsigned long flags;
3238         struct tty_struct *tty;
3239         spin_lock_irqsave(&p->sighand->siglock, flags);
3240         tty = p->signal->tty;
3241         p->signal->tty = NULL;
3242         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3243         tty_kref_put(tty);
3244 }
3245
3246 /* Called under the sighand lock */
3247
3248 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3249 {
3250         if (tty) {
3251                 unsigned long flags;
3252                 /* We should not have a session or pgrp to put here but.... */
3253                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3254                 put_pid(tty->session);
3255                 put_pid(tty->pgrp);
3256                 tty->pgrp = get_pid(task_pgrp(tsk));
3257                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3258                 tty->session = get_pid(task_session(tsk));
3259                 if (tsk->signal->tty) {
3260                         printk(KERN_DEBUG "tty not NULL!!\n");
3261                         tty_kref_put(tsk->signal->tty);
3262                 }
3263         }
3264         put_pid(tsk->signal->tty_old_pgrp);
3265         tsk->signal->tty = tty_kref_get(tty);
3266         tsk->signal->tty_old_pgrp = NULL;
3267 }
3268
3269 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3270 {
3271         spin_lock_irq(&tsk->sighand->siglock);
3272         __proc_set_tty(tsk, tty);
3273         spin_unlock_irq(&tsk->sighand->siglock);
3274 }
3275
3276 struct tty_struct *get_current_tty(void)
3277 {
3278         struct tty_struct *tty;
3279         unsigned long flags;
3280
3281         spin_lock_irqsave(&current->sighand->siglock, flags);
3282         tty = tty_kref_get(current->signal->tty);
3283         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3284         return tty;
3285 }
3286 EXPORT_SYMBOL_GPL(get_current_tty);
3287
3288 void tty_default_fops(struct file_operations *fops)
3289 {
3290         *fops = tty_fops;
3291 }
3292
3293 /*
3294  * Initialize the console device. This is called *early*, so
3295  * we can't necessarily depend on lots of kernel help here.
3296  * Just do some early initializations, and do the complex setup
3297  * later.
3298  */
3299 void __init console_init(void)
3300 {
3301         initcall_t *call;
3302
3303         /* Setup the default TTY line discipline. */
3304         tty_ldisc_begin();
3305
3306         /*
3307          * set up the console device so that later boot sequences can
3308          * inform about problems etc..
3309          */
3310         call = __con_initcall_start;
3311         while (call < __con_initcall_end) {
3312                 (*call)();
3313                 call++;
3314         }
3315 }
3316
3317 static char *tty_devnode(struct device *dev, umode_t *mode)
3318 {
3319         if (!mode)
3320                 return NULL;
3321         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3322             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3323                 *mode = 0666;
3324         return NULL;
3325 }
3326
3327 static int __init tty_class_init(void)
3328 {
3329         tty_class = class_create(THIS_MODULE, "tty");
3330         if (IS_ERR(tty_class))
3331                 return PTR_ERR(tty_class);
3332         tty_class->devnode = tty_devnode;
3333         return 0;
3334 }
3335
3336 postcore_initcall(tty_class_init);
3337
3338 /* 3/2004 jmc: why do these devices exist? */
3339 static struct cdev tty_cdev, console_cdev;
3340
3341 static ssize_t show_cons_active(struct device *dev,
3342                                 struct device_attribute *attr, char *buf)
3343 {
3344         struct console *cs[16];
3345         int i = 0;
3346         struct console *c;
3347         ssize_t count = 0;
3348
3349         console_lock();
3350         for_each_console(c) {
3351                 if (!c->device)
3352                         continue;
3353                 if (!c->write)
3354                         continue;
3355                 if ((c->flags & CON_ENABLED) == 0)
3356                         continue;
3357                 cs[i++] = c;
3358                 if (i >= ARRAY_SIZE(cs))
3359                         break;
3360         }
3361         while (i--)
3362                 count += sprintf(buf + count, "%s%d%c",
3363                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3364         console_unlock();
3365
3366         return count;
3367 }
3368 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3369
3370 static struct device *consdev;
3371
3372 void console_sysfs_notify(void)
3373 {
3374         if (consdev)
3375                 sysfs_notify(&consdev->kobj, NULL, "active");
3376 }
3377
3378 /*
3379  * Ok, now we can initialize the rest of the tty devices and can count
3380  * on memory allocations, interrupts etc..
3381  */
3382 int __init tty_init(void)
3383 {
3384         cdev_init(&tty_cdev, &tty_fops);
3385         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3386             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3387                 panic("Couldn't register /dev/tty driver\n");
3388         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3389
3390         cdev_init(&console_cdev, &console_fops);
3391         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3392             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3393                 panic("Couldn't register /dev/console driver\n");
3394         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3395                               "console");
3396         if (IS_ERR(consdev))
3397                 consdev = NULL;
3398         else
3399                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3400
3401 #ifdef CONFIG_VT
3402         vty_init(&console_fops);
3403 #endif
3404         return 0;
3405 }
3406