tty: Complete ownership transfer of flip buffers
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854                                 put_pid(tty_pgrp);
855                         }
856                 }
857                 tty_kref_put(tty);
858
859         } else if (on_exit) {
860                 struct pid *old_pgrp;
861                 spin_lock_irq(&current->sighand->siglock);
862                 old_pgrp = current->signal->tty_old_pgrp;
863                 current->signal->tty_old_pgrp = NULL;
864                 spin_unlock_irq(&current->sighand->siglock);
865                 if (old_pgrp) {
866                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
867                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
868                         put_pid(old_pgrp);
869                 }
870                 return;
871         }
872
873         spin_lock_irq(&current->sighand->siglock);
874         put_pid(current->signal->tty_old_pgrp);
875         current->signal->tty_old_pgrp = NULL;
876         spin_unlock_irq(&current->sighand->siglock);
877
878         tty = get_current_tty();
879         if (tty) {
880                 unsigned long flags;
881                 spin_lock_irqsave(&tty->ctrl_lock, flags);
882                 put_pid(tty->session);
883                 put_pid(tty->pgrp);
884                 tty->session = NULL;
885                 tty->pgrp = NULL;
886                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887                 tty_kref_put(tty);
888         } else {
889 #ifdef TTY_DEBUG_HANGUP
890                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891                        " = NULL", tty);
892 #endif
893         }
894
895         /* Now clear signal->tty under the lock */
896         read_lock(&tasklist_lock);
897         session_clear_tty(task_session(current));
898         read_unlock(&tasklist_lock);
899 }
900
901 /**
902  *
903  *      no_tty  - Ensure the current process does not have a controlling tty
904  */
905 void no_tty(void)
906 {
907         /* FIXME: Review locking here. The tty_lock never covered any race
908            between a new association and proc_clear_tty but possible we need
909            to protect against this anyway */
910         struct task_struct *tsk = current;
911         disassociate_ctty(0);
912         proc_clear_tty(tsk);
913 }
914
915
916 /**
917  *      stop_tty        -       propagate flow control
918  *      @tty: tty to stop
919  *
920  *      Perform flow control to the driver. For PTY/TTY pairs we
921  *      must also propagate the TIOCKPKT status. May be called
922  *      on an already stopped device and will not re-call the driver
923  *      method.
924  *
925  *      This functionality is used by both the line disciplines for
926  *      halting incoming flow and by the driver. It may therefore be
927  *      called from any context, may be under the tty atomic_write_lock
928  *      but not always.
929  *
930  *      Locking:
931  *              Uses the tty control lock internally
932  */
933
934 void stop_tty(struct tty_struct *tty)
935 {
936         unsigned long flags;
937         spin_lock_irqsave(&tty->ctrl_lock, flags);
938         if (tty->stopped) {
939                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940                 return;
941         }
942         tty->stopped = 1;
943         if (tty->link && tty->link->packet) {
944                 tty->ctrl_status &= ~TIOCPKT_START;
945                 tty->ctrl_status |= TIOCPKT_STOP;
946                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947         }
948         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949         if (tty->ops->stop)
950                 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956  *      start_tty       -       propagate flow control
957  *      @tty: tty to start
958  *
959  *      Start a tty that has been stopped if at all possible. Perform
960  *      any necessary wakeups and propagate the TIOCPKT status. If this
961  *      is the tty was previous stopped and is being started then the
962  *      driver start method is invoked and the line discipline woken.
963  *
964  *      Locking:
965  *              ctrl_lock
966  */
967
968 void start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&tty->ctrl_lock, flags);
972         if (!tty->stopped || tty->flow_stopped) {
973                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974                 return;
975         }
976         tty->stopped = 0;
977         if (tty->link && tty->link->packet) {
978                 tty->ctrl_status &= ~TIOCPKT_STOP;
979                 tty->ctrl_status |= TIOCPKT_START;
980                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981         }
982         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983         if (tty->ops->start)
984                 (tty->ops->start)(tty);
985         /* If we have a running line discipline it may need kicking */
986         tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /**
992  *      tty_read        -       read method for tty device files
993  *      @file: pointer to tty file
994  *      @buf: user buffer
995  *      @count: size of user buffer
996  *      @ppos: unused
997  *
998  *      Perform the read system call function on this terminal device. Checks
999  *      for hung up devices before calling the line discipline method.
1000  *
1001  *      Locking:
1002  *              Locks the line discipline internally while needed. Multiple
1003  *      read calls may be outstanding in parallel.
1004  */
1005
1006 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1007                         loff_t *ppos)
1008 {
1009         int i;
1010         struct tty_struct *tty = file_tty(file);
1011         struct tty_ldisc *ld;
1012
1013         if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
1014                 return -EIO;
1015         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1016                 return -EIO;
1017
1018         /* We want to wait for the line discipline to sort out in this
1019            situation */
1020         ld = tty_ldisc_ref_wait(tty);
1021         if (ld->ops->read)
1022                 i = (ld->ops->read)(tty, file, buf, count);
1023         else
1024                 i = -EIO;
1025         tty_ldisc_deref(ld);
1026
1027         return i;
1028 }
1029
1030 void tty_write_unlock(struct tty_struct *tty)
1031         __releases(&tty->atomic_write_lock)
1032 {
1033         mutex_unlock(&tty->atomic_write_lock);
1034         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1035 }
1036
1037 int tty_write_lock(struct tty_struct *tty, int ndelay)
1038         __acquires(&tty->atomic_write_lock)
1039 {
1040         if (!mutex_trylock(&tty->atomic_write_lock)) {
1041                 if (ndelay)
1042                         return -EAGAIN;
1043                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1044                         return -ERESTARTSYS;
1045         }
1046         return 0;
1047 }
1048
1049 /*
1050  * Split writes up in sane blocksizes to avoid
1051  * denial-of-service type attacks
1052  */
1053 static inline ssize_t do_tty_write(
1054         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1055         struct tty_struct *tty,
1056         struct file *file,
1057         const char __user *buf,
1058         size_t count)
1059 {
1060         ssize_t ret, written = 0;
1061         unsigned int chunk;
1062
1063         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1064         if (ret < 0)
1065                 return ret;
1066
1067         /*
1068          * We chunk up writes into a temporary buffer. This
1069          * simplifies low-level drivers immensely, since they
1070          * don't have locking issues and user mode accesses.
1071          *
1072          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1073          * big chunk-size..
1074          *
1075          * The default chunk-size is 2kB, because the NTTY
1076          * layer has problems with bigger chunks. It will
1077          * claim to be able to handle more characters than
1078          * it actually does.
1079          *
1080          * FIXME: This can probably go away now except that 64K chunks
1081          * are too likely to fail unless switched to vmalloc...
1082          */
1083         chunk = 2048;
1084         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1085                 chunk = 65536;
1086         if (count < chunk)
1087                 chunk = count;
1088
1089         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1090         if (tty->write_cnt < chunk) {
1091                 unsigned char *buf_chunk;
1092
1093                 if (chunk < 1024)
1094                         chunk = 1024;
1095
1096                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1097                 if (!buf_chunk) {
1098                         ret = -ENOMEM;
1099                         goto out;
1100                 }
1101                 kfree(tty->write_buf);
1102                 tty->write_cnt = chunk;
1103                 tty->write_buf = buf_chunk;
1104         }
1105
1106         /* Do the write .. */
1107         for (;;) {
1108                 size_t size = count;
1109                 if (size > chunk)
1110                         size = chunk;
1111                 ret = -EFAULT;
1112                 if (copy_from_user(tty->write_buf, buf, size))
1113                         break;
1114                 ret = write(tty, file, tty->write_buf, size);
1115                 if (ret <= 0)
1116                         break;
1117                 written += ret;
1118                 buf += ret;
1119                 count -= ret;
1120                 if (!count)
1121                         break;
1122                 ret = -ERESTARTSYS;
1123                 if (signal_pending(current))
1124                         break;
1125                 cond_resched();
1126         }
1127         if (written)
1128                 ret = written;
1129 out:
1130         tty_write_unlock(tty);
1131         return ret;
1132 }
1133
1134 /**
1135  * tty_write_message - write a message to a certain tty, not just the console.
1136  * @tty: the destination tty_struct
1137  * @msg: the message to write
1138  *
1139  * This is used for messages that need to be redirected to a specific tty.
1140  * We don't put it into the syslog queue right now maybe in the future if
1141  * really needed.
1142  *
1143  * We must still hold the BTM and test the CLOSING flag for the moment.
1144  */
1145
1146 void tty_write_message(struct tty_struct *tty, char *msg)
1147 {
1148         if (tty) {
1149                 mutex_lock(&tty->atomic_write_lock);
1150                 tty_lock(tty);
1151                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1152                         tty_unlock(tty);
1153                         tty->ops->write(tty, msg, strlen(msg));
1154                 } else
1155                         tty_unlock(tty);
1156                 tty_write_unlock(tty);
1157         }
1158         return;
1159 }
1160
1161
1162 /**
1163  *      tty_write               -       write method for tty device file
1164  *      @file: tty file pointer
1165  *      @buf: user data to write
1166  *      @count: bytes to write
1167  *      @ppos: unused
1168  *
1169  *      Write data to a tty device via the line discipline.
1170  *
1171  *      Locking:
1172  *              Locks the line discipline as required
1173  *              Writes to the tty driver are serialized by the atomic_write_lock
1174  *      and are then processed in chunks to the device. The line discipline
1175  *      write method will not be invoked in parallel for each device.
1176  */
1177
1178 static ssize_t tty_write(struct file *file, const char __user *buf,
1179                                                 size_t count, loff_t *ppos)
1180 {
1181         struct tty_struct *tty = file_tty(file);
1182         struct tty_ldisc *ld;
1183         ssize_t ret;
1184
1185         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1186                 return -EIO;
1187         if (!tty || !tty->ops->write ||
1188                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1189                         return -EIO;
1190         /* Short term debug to catch buggy drivers */
1191         if (tty->ops->write_room == NULL)
1192                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1193                         tty->driver->name);
1194         ld = tty_ldisc_ref_wait(tty);
1195         if (!ld->ops->write)
1196                 ret = -EIO;
1197         else
1198                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1199         tty_ldisc_deref(ld);
1200         return ret;
1201 }
1202
1203 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1204                                                 size_t count, loff_t *ppos)
1205 {
1206         struct file *p = NULL;
1207
1208         spin_lock(&redirect_lock);
1209         if (redirect)
1210                 p = get_file(redirect);
1211         spin_unlock(&redirect_lock);
1212
1213         if (p) {
1214                 ssize_t res;
1215                 res = vfs_write(p, buf, count, &p->f_pos);
1216                 fput(p);
1217                 return res;
1218         }
1219         return tty_write(file, buf, count, ppos);
1220 }
1221
1222 static char ptychar[] = "pqrstuvwxyzabcde";
1223
1224 /**
1225  *      pty_line_name   -       generate name for a pty
1226  *      @driver: the tty driver in use
1227  *      @index: the minor number
1228  *      @p: output buffer of at least 6 bytes
1229  *
1230  *      Generate a name from a driver reference and write it to the output
1231  *      buffer.
1232  *
1233  *      Locking: None
1234  */
1235 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1236 {
1237         int i = index + driver->name_base;
1238         /* ->name is initialized to "ttyp", but "tty" is expected */
1239         sprintf(p, "%s%c%x",
1240                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1241                 ptychar[i >> 4 & 0xf], i & 0xf);
1242 }
1243
1244 /**
1245  *      tty_line_name   -       generate name for a tty
1246  *      @driver: the tty driver in use
1247  *      @index: the minor number
1248  *      @p: output buffer of at least 7 bytes
1249  *
1250  *      Generate a name from a driver reference and write it to the output
1251  *      buffer.
1252  *
1253  *      Locking: None
1254  */
1255 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1256 {
1257         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1258                 strcpy(p, driver->name);
1259         else
1260                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1261 }
1262
1263 /**
1264  *      tty_driver_lookup_tty() - find an existing tty, if any
1265  *      @driver: the driver for the tty
1266  *      @idx:    the minor number
1267  *
1268  *      Return the tty, if found or ERR_PTR() otherwise.
1269  *
1270  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1271  *      be held until the 'fast-open' is also done. Will change once we
1272  *      have refcounting in the driver and per driver locking
1273  */
1274 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1275                 struct inode *inode, int idx)
1276 {
1277         if (driver->ops->lookup)
1278                 return driver->ops->lookup(driver, inode, idx);
1279
1280         return driver->ttys[idx];
1281 }
1282
1283 /**
1284  *      tty_init_termios        -  helper for termios setup
1285  *      @tty: the tty to set up
1286  *
1287  *      Initialise the termios structures for this tty. Thus runs under
1288  *      the tty_mutex currently so we can be relaxed about ordering.
1289  */
1290
1291 int tty_init_termios(struct tty_struct *tty)
1292 {
1293         struct ktermios *tp;
1294         int idx = tty->index;
1295
1296         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1297                 tty->termios = tty->driver->init_termios;
1298         else {
1299                 /* Check for lazy saved data */
1300                 tp = tty->driver->termios[idx];
1301                 if (tp != NULL)
1302                         tty->termios = *tp;
1303                 else
1304                         tty->termios = tty->driver->init_termios;
1305         }
1306         /* Compatibility until drivers always set this */
1307         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1308         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1309         return 0;
1310 }
1311 EXPORT_SYMBOL_GPL(tty_init_termios);
1312
1313 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1314 {
1315         int ret = tty_init_termios(tty);
1316         if (ret)
1317                 return ret;
1318
1319         tty_driver_kref_get(driver);
1320         tty->count++;
1321         driver->ttys[tty->index] = tty;
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(tty_standard_install);
1325
1326 /**
1327  *      tty_driver_install_tty() - install a tty entry in the driver
1328  *      @driver: the driver for the tty
1329  *      @tty: the tty
1330  *
1331  *      Install a tty object into the driver tables. The tty->index field
1332  *      will be set by the time this is called. This method is responsible
1333  *      for ensuring any need additional structures are allocated and
1334  *      configured.
1335  *
1336  *      Locking: tty_mutex for now
1337  */
1338 static int tty_driver_install_tty(struct tty_driver *driver,
1339                                                 struct tty_struct *tty)
1340 {
1341         return driver->ops->install ? driver->ops->install(driver, tty) :
1342                 tty_standard_install(driver, tty);
1343 }
1344
1345 /**
1346  *      tty_driver_remove_tty() - remove a tty from the driver tables
1347  *      @driver: the driver for the tty
1348  *      @idx:    the minor number
1349  *
1350  *      Remvoe a tty object from the driver tables. The tty->index field
1351  *      will be set by the time this is called.
1352  *
1353  *      Locking: tty_mutex for now
1354  */
1355 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1356 {
1357         if (driver->ops->remove)
1358                 driver->ops->remove(driver, tty);
1359         else
1360                 driver->ttys[tty->index] = NULL;
1361 }
1362
1363 /*
1364  *      tty_reopen()    - fast re-open of an open tty
1365  *      @tty    - the tty to open
1366  *
1367  *      Return 0 on success, -errno on error.
1368  *
1369  *      Locking: tty_mutex must be held from the time the tty was found
1370  *               till this open completes.
1371  */
1372 static int tty_reopen(struct tty_struct *tty)
1373 {
1374         struct tty_driver *driver = tty->driver;
1375
1376         if (test_bit(TTY_CLOSING, &tty->flags) ||
1377                         test_bit(TTY_HUPPING, &tty->flags) ||
1378                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1379                 return -EIO;
1380
1381         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1382             driver->subtype == PTY_TYPE_MASTER) {
1383                 /*
1384                  * special case for PTY masters: only one open permitted,
1385                  * and the slave side open count is incremented as well.
1386                  */
1387                 if (tty->count)
1388                         return -EIO;
1389
1390                 tty->link->count++;
1391         }
1392         tty->count++;
1393
1394         mutex_lock(&tty->ldisc_mutex);
1395         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1396         mutex_unlock(&tty->ldisc_mutex);
1397
1398         return 0;
1399 }
1400
1401 /**
1402  *      tty_init_dev            -       initialise a tty device
1403  *      @driver: tty driver we are opening a device on
1404  *      @idx: device index
1405  *      @ret_tty: returned tty structure
1406  *
1407  *      Prepare a tty device. This may not be a "new" clean device but
1408  *      could also be an active device. The pty drivers require special
1409  *      handling because of this.
1410  *
1411  *      Locking:
1412  *              The function is called under the tty_mutex, which
1413  *      protects us from the tty struct or driver itself going away.
1414  *
1415  *      On exit the tty device has the line discipline attached and
1416  *      a reference count of 1. If a pair was created for pty/tty use
1417  *      and the other was a pty master then it too has a reference count of 1.
1418  *
1419  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1420  * failed open.  The new code protects the open with a mutex, so it's
1421  * really quite straightforward.  The mutex locking can probably be
1422  * relaxed for the (most common) case of reopening a tty.
1423  */
1424
1425 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1426 {
1427         struct tty_struct *tty;
1428         int retval;
1429
1430         /*
1431          * First time open is complex, especially for PTY devices.
1432          * This code guarantees that either everything succeeds and the
1433          * TTY is ready for operation, or else the table slots are vacated
1434          * and the allocated memory released.  (Except that the termios
1435          * and locked termios may be retained.)
1436          */
1437
1438         if (!try_module_get(driver->owner))
1439                 return ERR_PTR(-ENODEV);
1440
1441         tty = alloc_tty_struct();
1442         if (!tty) {
1443                 retval = -ENOMEM;
1444                 goto err_module_put;
1445         }
1446         initialize_tty_struct(tty, driver, idx);
1447
1448         tty_lock(tty);
1449         retval = tty_driver_install_tty(driver, tty);
1450         if (retval < 0)
1451                 goto err_deinit_tty;
1452
1453         if (!tty->port)
1454                 tty->port = driver->ports[idx];
1455
1456         WARN_RATELIMIT(!tty->port,
1457                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1458                         __func__, tty->driver->name);
1459
1460         tty->port->itty = tty;
1461
1462         /*
1463          * Structures all installed ... call the ldisc open routines.
1464          * If we fail here just call release_tty to clean up.  No need
1465          * to decrement the use counts, as release_tty doesn't care.
1466          */
1467         retval = tty_ldisc_setup(tty, tty->link);
1468         if (retval)
1469                 goto err_release_tty;
1470         /* Return the tty locked so that it cannot vanish under the caller */
1471         return tty;
1472
1473 err_deinit_tty:
1474         tty_unlock(tty);
1475         deinitialize_tty_struct(tty);
1476         free_tty_struct(tty);
1477 err_module_put:
1478         module_put(driver->owner);
1479         return ERR_PTR(retval);
1480
1481         /* call the tty release_tty routine to clean out this slot */
1482 err_release_tty:
1483         tty_unlock(tty);
1484         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1485                                  "clearing slot %d\n", idx);
1486         release_tty(tty, idx);
1487         return ERR_PTR(retval);
1488 }
1489
1490 void tty_free_termios(struct tty_struct *tty)
1491 {
1492         struct ktermios *tp;
1493         int idx = tty->index;
1494
1495         /* If the port is going to reset then it has no termios to save */
1496         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1497                 return;
1498
1499         /* Stash the termios data */
1500         tp = tty->driver->termios[idx];
1501         if (tp == NULL) {
1502                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1503                 if (tp == NULL) {
1504                         pr_warn("tty: no memory to save termios state.\n");
1505                         return;
1506                 }
1507                 tty->driver->termios[idx] = tp;
1508         }
1509         *tp = tty->termios;
1510 }
1511 EXPORT_SYMBOL(tty_free_termios);
1512
1513
1514 /**
1515  *      release_one_tty         -       release tty structure memory
1516  *      @kref: kref of tty we are obliterating
1517  *
1518  *      Releases memory associated with a tty structure, and clears out the
1519  *      driver table slots. This function is called when a device is no longer
1520  *      in use. It also gets called when setup of a device fails.
1521  *
1522  *      Locking:
1523  *              takes the file list lock internally when working on the list
1524  *      of ttys that the driver keeps.
1525  *
1526  *      This method gets called from a work queue so that the driver private
1527  *      cleanup ops can sleep (needed for USB at least)
1528  */
1529 static void release_one_tty(struct work_struct *work)
1530 {
1531         struct tty_struct *tty =
1532                 container_of(work, struct tty_struct, hangup_work);
1533         struct tty_driver *driver = tty->driver;
1534
1535         if (tty->ops->cleanup)
1536                 tty->ops->cleanup(tty);
1537
1538         tty->magic = 0;
1539         tty_driver_kref_put(driver);
1540         module_put(driver->owner);
1541
1542         spin_lock(&tty_files_lock);
1543         list_del_init(&tty->tty_files);
1544         spin_unlock(&tty_files_lock);
1545
1546         put_pid(tty->pgrp);
1547         put_pid(tty->session);
1548         free_tty_struct(tty);
1549 }
1550
1551 static void queue_release_one_tty(struct kref *kref)
1552 {
1553         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1554
1555         /* The hangup queue is now free so we can reuse it rather than
1556            waste a chunk of memory for each port */
1557         INIT_WORK(&tty->hangup_work, release_one_tty);
1558         schedule_work(&tty->hangup_work);
1559 }
1560
1561 /**
1562  *      tty_kref_put            -       release a tty kref
1563  *      @tty: tty device
1564  *
1565  *      Release a reference to a tty device and if need be let the kref
1566  *      layer destruct the object for us
1567  */
1568
1569 void tty_kref_put(struct tty_struct *tty)
1570 {
1571         if (tty)
1572                 kref_put(&tty->kref, queue_release_one_tty);
1573 }
1574 EXPORT_SYMBOL(tty_kref_put);
1575
1576 /**
1577  *      release_tty             -       release tty structure memory
1578  *
1579  *      Release both @tty and a possible linked partner (think pty pair),
1580  *      and decrement the refcount of the backing module.
1581  *
1582  *      Locking:
1583  *              tty_mutex
1584  *              takes the file list lock internally when working on the list
1585  *      of ttys that the driver keeps.
1586  *
1587  */
1588 static void release_tty(struct tty_struct *tty, int idx)
1589 {
1590         /* This should always be true but check for the moment */
1591         WARN_ON(tty->index != idx);
1592         WARN_ON(!mutex_is_locked(&tty_mutex));
1593         if (tty->ops->shutdown)
1594                 tty->ops->shutdown(tty);
1595         tty_free_termios(tty);
1596         tty_driver_remove_tty(tty->driver, tty);
1597         tty->port->itty = NULL;
1598         cancel_work_sync(&tty->port->buf.work);
1599
1600         if (tty->link)
1601                 tty_kref_put(tty->link);
1602         tty_kref_put(tty);
1603 }
1604
1605 /**
1606  *      tty_release_checks - check a tty before real release
1607  *      @tty: tty to check
1608  *      @o_tty: link of @tty (if any)
1609  *      @idx: index of the tty
1610  *
1611  *      Performs some paranoid checking before true release of the @tty.
1612  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1613  */
1614 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1615                 int idx)
1616 {
1617 #ifdef TTY_PARANOIA_CHECK
1618         if (idx < 0 || idx >= tty->driver->num) {
1619                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1620                                 __func__, tty->name);
1621                 return -1;
1622         }
1623
1624         /* not much to check for devpts */
1625         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1626                 return 0;
1627
1628         if (tty != tty->driver->ttys[idx]) {
1629                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1630                                 __func__, idx, tty->name);
1631                 return -1;
1632         }
1633         if (tty->driver->other) {
1634                 if (o_tty != tty->driver->other->ttys[idx]) {
1635                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1636                                         __func__, idx, tty->name);
1637                         return -1;
1638                 }
1639                 if (o_tty->link != tty) {
1640                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1641                         return -1;
1642                 }
1643         }
1644 #endif
1645         return 0;
1646 }
1647
1648 /**
1649  *      tty_release             -       vfs callback for close
1650  *      @inode: inode of tty
1651  *      @filp: file pointer for handle to tty
1652  *
1653  *      Called the last time each file handle is closed that references
1654  *      this tty. There may however be several such references.
1655  *
1656  *      Locking:
1657  *              Takes bkl. See tty_release_dev
1658  *
1659  * Even releasing the tty structures is a tricky business.. We have
1660  * to be very careful that the structures are all released at the
1661  * same time, as interrupts might otherwise get the wrong pointers.
1662  *
1663  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1664  * lead to double frees or releasing memory still in use.
1665  */
1666
1667 int tty_release(struct inode *inode, struct file *filp)
1668 {
1669         struct tty_struct *tty = file_tty(filp);
1670         struct tty_struct *o_tty;
1671         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1672         int     idx;
1673         char    buf[64];
1674
1675         if (tty_paranoia_check(tty, inode, __func__))
1676                 return 0;
1677
1678         tty_lock(tty);
1679         check_tty_count(tty, __func__);
1680
1681         __tty_fasync(-1, filp, 0);
1682
1683         idx = tty->index;
1684         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1685                       tty->driver->subtype == PTY_TYPE_MASTER);
1686         /* Review: parallel close */
1687         o_tty = tty->link;
1688
1689         if (tty_release_checks(tty, o_tty, idx)) {
1690                 tty_unlock(tty);
1691                 return 0;
1692         }
1693
1694 #ifdef TTY_DEBUG_HANGUP
1695         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1696                         tty_name(tty, buf), tty->count);
1697 #endif
1698
1699         if (tty->ops->close)
1700                 tty->ops->close(tty, filp);
1701
1702         tty_unlock(tty);
1703         /*
1704          * Sanity check: if tty->count is going to zero, there shouldn't be
1705          * any waiters on tty->read_wait or tty->write_wait.  We test the
1706          * wait queues and kick everyone out _before_ actually starting to
1707          * close.  This ensures that we won't block while releasing the tty
1708          * structure.
1709          *
1710          * The test for the o_tty closing is necessary, since the master and
1711          * slave sides may close in any order.  If the slave side closes out
1712          * first, its count will be one, since the master side holds an open.
1713          * Thus this test wouldn't be triggered at the time the slave closes,
1714          * so we do it now.
1715          *
1716          * Note that it's possible for the tty to be opened again while we're
1717          * flushing out waiters.  By recalculating the closing flags before
1718          * each iteration we avoid any problems.
1719          */
1720         while (1) {
1721                 /* Guard against races with tty->count changes elsewhere and
1722                    opens on /dev/tty */
1723
1724                 mutex_lock(&tty_mutex);
1725                 tty_lock_pair(tty, o_tty);
1726                 tty_closing = tty->count <= 1;
1727                 o_tty_closing = o_tty &&
1728                         (o_tty->count <= (pty_master ? 1 : 0));
1729                 do_sleep = 0;
1730
1731                 if (tty_closing) {
1732                         if (waitqueue_active(&tty->read_wait)) {
1733                                 wake_up_poll(&tty->read_wait, POLLIN);
1734                                 do_sleep++;
1735                         }
1736                         if (waitqueue_active(&tty->write_wait)) {
1737                                 wake_up_poll(&tty->write_wait, POLLOUT);
1738                                 do_sleep++;
1739                         }
1740                 }
1741                 if (o_tty_closing) {
1742                         if (waitqueue_active(&o_tty->read_wait)) {
1743                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1744                                 do_sleep++;
1745                         }
1746                         if (waitqueue_active(&o_tty->write_wait)) {
1747                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1748                                 do_sleep++;
1749                         }
1750                 }
1751                 if (!do_sleep)
1752                         break;
1753
1754                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1755                                 __func__, tty_name(tty, buf));
1756                 tty_unlock_pair(tty, o_tty);
1757                 mutex_unlock(&tty_mutex);
1758                 schedule();
1759         }
1760
1761         /*
1762          * The closing flags are now consistent with the open counts on
1763          * both sides, and we've completed the last operation that could
1764          * block, so it's safe to proceed with closing.
1765          *
1766          * We must *not* drop the tty_mutex until we ensure that a further
1767          * entry into tty_open can not pick up this tty.
1768          */
1769         if (pty_master) {
1770                 if (--o_tty->count < 0) {
1771                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1772                                 __func__, o_tty->count, tty_name(o_tty, buf));
1773                         o_tty->count = 0;
1774                 }
1775         }
1776         if (--tty->count < 0) {
1777                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1778                                 __func__, tty->count, tty_name(tty, buf));
1779                 tty->count = 0;
1780         }
1781
1782         /*
1783          * We've decremented tty->count, so we need to remove this file
1784          * descriptor off the tty->tty_files list; this serves two
1785          * purposes:
1786          *  - check_tty_count sees the correct number of file descriptors
1787          *    associated with this tty.
1788          *  - do_tty_hangup no longer sees this file descriptor as
1789          *    something that needs to be handled for hangups.
1790          */
1791         tty_del_file(filp);
1792
1793         /*
1794          * Perform some housekeeping before deciding whether to return.
1795          *
1796          * Set the TTY_CLOSING flag if this was the last open.  In the
1797          * case of a pty we may have to wait around for the other side
1798          * to close, and TTY_CLOSING makes sure we can't be reopened.
1799          */
1800         if (tty_closing)
1801                 set_bit(TTY_CLOSING, &tty->flags);
1802         if (o_tty_closing)
1803                 set_bit(TTY_CLOSING, &o_tty->flags);
1804
1805         /*
1806          * If _either_ side is closing, make sure there aren't any
1807          * processes that still think tty or o_tty is their controlling
1808          * tty.
1809          */
1810         if (tty_closing || o_tty_closing) {
1811                 read_lock(&tasklist_lock);
1812                 session_clear_tty(tty->session);
1813                 if (o_tty)
1814                         session_clear_tty(o_tty->session);
1815                 read_unlock(&tasklist_lock);
1816         }
1817
1818         mutex_unlock(&tty_mutex);
1819         tty_unlock_pair(tty, o_tty);
1820         /* At this point the TTY_CLOSING flag should ensure a dead tty
1821            cannot be re-opened by a racing opener */
1822
1823         /* check whether both sides are closing ... */
1824         if (!tty_closing || (o_tty && !o_tty_closing))
1825                 return 0;
1826
1827 #ifdef TTY_DEBUG_HANGUP
1828         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1829 #endif
1830         /*
1831          * Ask the line discipline code to release its structures
1832          */
1833         tty_ldisc_release(tty, o_tty);
1834         /*
1835          * The release_tty function takes care of the details of clearing
1836          * the slots and preserving the termios structure. The tty_unlock_pair
1837          * should be safe as we keep a kref while the tty is locked (so the
1838          * unlock never unlocks a freed tty).
1839          */
1840         mutex_lock(&tty_mutex);
1841         release_tty(tty, idx);
1842         mutex_unlock(&tty_mutex);
1843
1844         return 0;
1845 }
1846
1847 /**
1848  *      tty_open_current_tty - get tty of current task for open
1849  *      @device: device number
1850  *      @filp: file pointer to tty
1851  *      @return: tty of the current task iff @device is /dev/tty
1852  *
1853  *      We cannot return driver and index like for the other nodes because
1854  *      devpts will not work then. It expects inodes to be from devpts FS.
1855  *
1856  *      We need to move to returning a refcounted object from all the lookup
1857  *      paths including this one.
1858  */
1859 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1860 {
1861         struct tty_struct *tty;
1862
1863         if (device != MKDEV(TTYAUX_MAJOR, 0))
1864                 return NULL;
1865
1866         tty = get_current_tty();
1867         if (!tty)
1868                 return ERR_PTR(-ENXIO);
1869
1870         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1871         /* noctty = 1; */
1872         tty_kref_put(tty);
1873         /* FIXME: we put a reference and return a TTY! */
1874         /* This is only safe because the caller holds tty_mutex */
1875         return tty;
1876 }
1877
1878 /**
1879  *      tty_lookup_driver - lookup a tty driver for a given device file
1880  *      @device: device number
1881  *      @filp: file pointer to tty
1882  *      @noctty: set if the device should not become a controlling tty
1883  *      @index: index for the device in the @return driver
1884  *      @return: driver for this inode (with increased refcount)
1885  *
1886  *      If @return is not erroneous, the caller is responsible to decrement the
1887  *      refcount by tty_driver_kref_put.
1888  *
1889  *      Locking: tty_mutex protects get_tty_driver
1890  */
1891 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1892                 int *noctty, int *index)
1893 {
1894         struct tty_driver *driver;
1895
1896         switch (device) {
1897 #ifdef CONFIG_VT
1898         case MKDEV(TTY_MAJOR, 0): {
1899                 extern struct tty_driver *console_driver;
1900                 driver = tty_driver_kref_get(console_driver);
1901                 *index = fg_console;
1902                 *noctty = 1;
1903                 break;
1904         }
1905 #endif
1906         case MKDEV(TTYAUX_MAJOR, 1): {
1907                 struct tty_driver *console_driver = console_device(index);
1908                 if (console_driver) {
1909                         driver = tty_driver_kref_get(console_driver);
1910                         if (driver) {
1911                                 /* Don't let /dev/console block */
1912                                 filp->f_flags |= O_NONBLOCK;
1913                                 *noctty = 1;
1914                                 break;
1915                         }
1916                 }
1917                 return ERR_PTR(-ENODEV);
1918         }
1919         default:
1920                 driver = get_tty_driver(device, index);
1921                 if (!driver)
1922                         return ERR_PTR(-ENODEV);
1923                 break;
1924         }
1925         return driver;
1926 }
1927
1928 /**
1929  *      tty_open                -       open a tty device
1930  *      @inode: inode of device file
1931  *      @filp: file pointer to tty
1932  *
1933  *      tty_open and tty_release keep up the tty count that contains the
1934  *      number of opens done on a tty. We cannot use the inode-count, as
1935  *      different inodes might point to the same tty.
1936  *
1937  *      Open-counting is needed for pty masters, as well as for keeping
1938  *      track of serial lines: DTR is dropped when the last close happens.
1939  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1940  *
1941  *      The termios state of a pty is reset on first open so that
1942  *      settings don't persist across reuse.
1943  *
1944  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1945  *               tty->count should protect the rest.
1946  *               ->siglock protects ->signal/->sighand
1947  *
1948  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1949  *      tty_mutex
1950  */
1951
1952 static int tty_open(struct inode *inode, struct file *filp)
1953 {
1954         struct tty_struct *tty;
1955         int noctty, retval;
1956         struct tty_driver *driver = NULL;
1957         int index;
1958         dev_t device = inode->i_rdev;
1959         unsigned saved_flags = filp->f_flags;
1960
1961         nonseekable_open(inode, filp);
1962
1963 retry_open:
1964         retval = tty_alloc_file(filp);
1965         if (retval)
1966                 return -ENOMEM;
1967
1968         noctty = filp->f_flags & O_NOCTTY;
1969         index  = -1;
1970         retval = 0;
1971
1972         mutex_lock(&tty_mutex);
1973         /* This is protected by the tty_mutex */
1974         tty = tty_open_current_tty(device, filp);
1975         if (IS_ERR(tty)) {
1976                 retval = PTR_ERR(tty);
1977                 goto err_unlock;
1978         } else if (!tty) {
1979                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1980                 if (IS_ERR(driver)) {
1981                         retval = PTR_ERR(driver);
1982                         goto err_unlock;
1983                 }
1984
1985                 /* check whether we're reopening an existing tty */
1986                 tty = tty_driver_lookup_tty(driver, inode, index);
1987                 if (IS_ERR(tty)) {
1988                         retval = PTR_ERR(tty);
1989                         goto err_unlock;
1990                 }
1991         }
1992
1993         if (tty) {
1994                 tty_lock(tty);
1995                 retval = tty_reopen(tty);
1996                 if (retval < 0) {
1997                         tty_unlock(tty);
1998                         tty = ERR_PTR(retval);
1999                 }
2000         } else  /* Returns with the tty_lock held for now */
2001                 tty = tty_init_dev(driver, index);
2002
2003         mutex_unlock(&tty_mutex);
2004         if (driver)
2005                 tty_driver_kref_put(driver);
2006         if (IS_ERR(tty)) {
2007                 retval = PTR_ERR(tty);
2008                 goto err_file;
2009         }
2010
2011         tty_add_file(tty, filp);
2012
2013         check_tty_count(tty, __func__);
2014         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2015             tty->driver->subtype == PTY_TYPE_MASTER)
2016                 noctty = 1;
2017 #ifdef TTY_DEBUG_HANGUP
2018         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2019 #endif
2020         if (tty->ops->open)
2021                 retval = tty->ops->open(tty, filp);
2022         else
2023                 retval = -ENODEV;
2024         filp->f_flags = saved_flags;
2025
2026         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2027                                                 !capable(CAP_SYS_ADMIN))
2028                 retval = -EBUSY;
2029
2030         if (retval) {
2031 #ifdef TTY_DEBUG_HANGUP
2032                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2033                                 retval, tty->name);
2034 #endif
2035                 tty_unlock(tty); /* need to call tty_release without BTM */
2036                 tty_release(inode, filp);
2037                 if (retval != -ERESTARTSYS)
2038                         return retval;
2039
2040                 if (signal_pending(current))
2041                         return retval;
2042
2043                 schedule();
2044                 /*
2045                  * Need to reset f_op in case a hangup happened.
2046                  */
2047                 if (filp->f_op == &hung_up_tty_fops)
2048                         filp->f_op = &tty_fops;
2049                 goto retry_open;
2050         }
2051         tty_unlock(tty);
2052
2053
2054         mutex_lock(&tty_mutex);
2055         tty_lock(tty);
2056         spin_lock_irq(&current->sighand->siglock);
2057         if (!noctty &&
2058             current->signal->leader &&
2059             !current->signal->tty &&
2060             tty->session == NULL)
2061                 __proc_set_tty(current, tty);
2062         spin_unlock_irq(&current->sighand->siglock);
2063         tty_unlock(tty);
2064         mutex_unlock(&tty_mutex);
2065         return 0;
2066 err_unlock:
2067         mutex_unlock(&tty_mutex);
2068         /* after locks to avoid deadlock */
2069         if (!IS_ERR_OR_NULL(driver))
2070                 tty_driver_kref_put(driver);
2071 err_file:
2072         tty_free_file(filp);
2073         return retval;
2074 }
2075
2076
2077
2078 /**
2079  *      tty_poll        -       check tty status
2080  *      @filp: file being polled
2081  *      @wait: poll wait structures to update
2082  *
2083  *      Call the line discipline polling method to obtain the poll
2084  *      status of the device.
2085  *
2086  *      Locking: locks called line discipline but ldisc poll method
2087  *      may be re-entered freely by other callers.
2088  */
2089
2090 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2091 {
2092         struct tty_struct *tty = file_tty(filp);
2093         struct tty_ldisc *ld;
2094         int ret = 0;
2095
2096         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2097                 return 0;
2098
2099         ld = tty_ldisc_ref_wait(tty);
2100         if (ld->ops->poll)
2101                 ret = (ld->ops->poll)(tty, filp, wait);
2102         tty_ldisc_deref(ld);
2103         return ret;
2104 }
2105
2106 static int __tty_fasync(int fd, struct file *filp, int on)
2107 {
2108         struct tty_struct *tty = file_tty(filp);
2109         unsigned long flags;
2110         int retval = 0;
2111
2112         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2113                 goto out;
2114
2115         retval = fasync_helper(fd, filp, on, &tty->fasync);
2116         if (retval <= 0)
2117                 goto out;
2118
2119         if (on) {
2120                 enum pid_type type;
2121                 struct pid *pid;
2122                 if (!waitqueue_active(&tty->read_wait))
2123                         tty->minimum_to_wake = 1;
2124                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2125                 if (tty->pgrp) {
2126                         pid = tty->pgrp;
2127                         type = PIDTYPE_PGID;
2128                 } else {
2129                         pid = task_pid(current);
2130                         type = PIDTYPE_PID;
2131                 }
2132                 get_pid(pid);
2133                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2134                 retval = __f_setown(filp, pid, type, 0);
2135                 put_pid(pid);
2136                 if (retval)
2137                         goto out;
2138         } else {
2139                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2140                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2141         }
2142         retval = 0;
2143 out:
2144         return retval;
2145 }
2146
2147 static int tty_fasync(int fd, struct file *filp, int on)
2148 {
2149         struct tty_struct *tty = file_tty(filp);
2150         int retval;
2151
2152         tty_lock(tty);
2153         retval = __tty_fasync(fd, filp, on);
2154         tty_unlock(tty);
2155
2156         return retval;
2157 }
2158
2159 /**
2160  *      tiocsti                 -       fake input character
2161  *      @tty: tty to fake input into
2162  *      @p: pointer to character
2163  *
2164  *      Fake input to a tty device. Does the necessary locking and
2165  *      input management.
2166  *
2167  *      FIXME: does not honour flow control ??
2168  *
2169  *      Locking:
2170  *              Called functions take tty_ldisc_lock
2171  *              current->signal->tty check is safe without locks
2172  *
2173  *      FIXME: may race normal receive processing
2174  */
2175
2176 static int tiocsti(struct tty_struct *tty, char __user *p)
2177 {
2178         char ch, mbz = 0;
2179         struct tty_ldisc *ld;
2180
2181         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2182                 return -EPERM;
2183         if (get_user(ch, p))
2184                 return -EFAULT;
2185         tty_audit_tiocsti(tty, ch);
2186         ld = tty_ldisc_ref_wait(tty);
2187         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2188         tty_ldisc_deref(ld);
2189         return 0;
2190 }
2191
2192 /**
2193  *      tiocgwinsz              -       implement window query ioctl
2194  *      @tty; tty
2195  *      @arg: user buffer for result
2196  *
2197  *      Copies the kernel idea of the window size into the user buffer.
2198  *
2199  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2200  *              is consistent.
2201  */
2202
2203 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2204 {
2205         int err;
2206
2207         mutex_lock(&tty->termios_mutex);
2208         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2209         mutex_unlock(&tty->termios_mutex);
2210
2211         return err ? -EFAULT: 0;
2212 }
2213
2214 /**
2215  *      tty_do_resize           -       resize event
2216  *      @tty: tty being resized
2217  *      @rows: rows (character)
2218  *      @cols: cols (character)
2219  *
2220  *      Update the termios variables and send the necessary signals to
2221  *      peform a terminal resize correctly
2222  */
2223
2224 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2225 {
2226         struct pid *pgrp;
2227         unsigned long flags;
2228
2229         /* Lock the tty */
2230         mutex_lock(&tty->termios_mutex);
2231         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2232                 goto done;
2233         /* Get the PID values and reference them so we can
2234            avoid holding the tty ctrl lock while sending signals */
2235         spin_lock_irqsave(&tty->ctrl_lock, flags);
2236         pgrp = get_pid(tty->pgrp);
2237         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2238
2239         if (pgrp)
2240                 kill_pgrp(pgrp, SIGWINCH, 1);
2241         put_pid(pgrp);
2242
2243         tty->winsize = *ws;
2244 done:
2245         mutex_unlock(&tty->termios_mutex);
2246         return 0;
2247 }
2248 EXPORT_SYMBOL(tty_do_resize);
2249
2250 /**
2251  *      tiocswinsz              -       implement window size set ioctl
2252  *      @tty; tty side of tty
2253  *      @arg: user buffer for result
2254  *
2255  *      Copies the user idea of the window size to the kernel. Traditionally
2256  *      this is just advisory information but for the Linux console it
2257  *      actually has driver level meaning and triggers a VC resize.
2258  *
2259  *      Locking:
2260  *              Driver dependent. The default do_resize method takes the
2261  *      tty termios mutex and ctrl_lock. The console takes its own lock
2262  *      then calls into the default method.
2263  */
2264
2265 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2266 {
2267         struct winsize tmp_ws;
2268         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2269                 return -EFAULT;
2270
2271         if (tty->ops->resize)
2272                 return tty->ops->resize(tty, &tmp_ws);
2273         else
2274                 return tty_do_resize(tty, &tmp_ws);
2275 }
2276
2277 /**
2278  *      tioccons        -       allow admin to move logical console
2279  *      @file: the file to become console
2280  *
2281  *      Allow the administrator to move the redirected console device
2282  *
2283  *      Locking: uses redirect_lock to guard the redirect information
2284  */
2285
2286 static int tioccons(struct file *file)
2287 {
2288         if (!capable(CAP_SYS_ADMIN))
2289                 return -EPERM;
2290         if (file->f_op->write == redirected_tty_write) {
2291                 struct file *f;
2292                 spin_lock(&redirect_lock);
2293                 f = redirect;
2294                 redirect = NULL;
2295                 spin_unlock(&redirect_lock);
2296                 if (f)
2297                         fput(f);
2298                 return 0;
2299         }
2300         spin_lock(&redirect_lock);
2301         if (redirect) {
2302                 spin_unlock(&redirect_lock);
2303                 return -EBUSY;
2304         }
2305         redirect = get_file(file);
2306         spin_unlock(&redirect_lock);
2307         return 0;
2308 }
2309
2310 /**
2311  *      fionbio         -       non blocking ioctl
2312  *      @file: file to set blocking value
2313  *      @p: user parameter
2314  *
2315  *      Historical tty interfaces had a blocking control ioctl before
2316  *      the generic functionality existed. This piece of history is preserved
2317  *      in the expected tty API of posix OS's.
2318  *
2319  *      Locking: none, the open file handle ensures it won't go away.
2320  */
2321
2322 static int fionbio(struct file *file, int __user *p)
2323 {
2324         int nonblock;
2325
2326         if (get_user(nonblock, p))
2327                 return -EFAULT;
2328
2329         spin_lock(&file->f_lock);
2330         if (nonblock)
2331                 file->f_flags |= O_NONBLOCK;
2332         else
2333                 file->f_flags &= ~O_NONBLOCK;
2334         spin_unlock(&file->f_lock);
2335         return 0;
2336 }
2337
2338 /**
2339  *      tiocsctty       -       set controlling tty
2340  *      @tty: tty structure
2341  *      @arg: user argument
2342  *
2343  *      This ioctl is used to manage job control. It permits a session
2344  *      leader to set this tty as the controlling tty for the session.
2345  *
2346  *      Locking:
2347  *              Takes tty_mutex() to protect tty instance
2348  *              Takes tasklist_lock internally to walk sessions
2349  *              Takes ->siglock() when updating signal->tty
2350  */
2351
2352 static int tiocsctty(struct tty_struct *tty, int arg)
2353 {
2354         int ret = 0;
2355         if (current->signal->leader && (task_session(current) == tty->session))
2356                 return ret;
2357
2358         mutex_lock(&tty_mutex);
2359         /*
2360          * The process must be a session leader and
2361          * not have a controlling tty already.
2362          */
2363         if (!current->signal->leader || current->signal->tty) {
2364                 ret = -EPERM;
2365                 goto unlock;
2366         }
2367
2368         if (tty->session) {
2369                 /*
2370                  * This tty is already the controlling
2371                  * tty for another session group!
2372                  */
2373                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2374                         /*
2375                          * Steal it away
2376                          */
2377                         read_lock(&tasklist_lock);
2378                         session_clear_tty(tty->session);
2379                         read_unlock(&tasklist_lock);
2380                 } else {
2381                         ret = -EPERM;
2382                         goto unlock;
2383                 }
2384         }
2385         proc_set_tty(current, tty);
2386 unlock:
2387         mutex_unlock(&tty_mutex);
2388         return ret;
2389 }
2390
2391 /**
2392  *      tty_get_pgrp    -       return a ref counted pgrp pid
2393  *      @tty: tty to read
2394  *
2395  *      Returns a refcounted instance of the pid struct for the process
2396  *      group controlling the tty.
2397  */
2398
2399 struct pid *tty_get_pgrp(struct tty_struct *tty)
2400 {
2401         unsigned long flags;
2402         struct pid *pgrp;
2403
2404         spin_lock_irqsave(&tty->ctrl_lock, flags);
2405         pgrp = get_pid(tty->pgrp);
2406         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2407
2408         return pgrp;
2409 }
2410 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2411
2412 /**
2413  *      tiocgpgrp               -       get process group
2414  *      @tty: tty passed by user
2415  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2416  *      @p: returned pid
2417  *
2418  *      Obtain the process group of the tty. If there is no process group
2419  *      return an error.
2420  *
2421  *      Locking: none. Reference to current->signal->tty is safe.
2422  */
2423
2424 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2425 {
2426         struct pid *pid;
2427         int ret;
2428         /*
2429          * (tty == real_tty) is a cheap way of
2430          * testing if the tty is NOT a master pty.
2431          */
2432         if (tty == real_tty && current->signal->tty != real_tty)
2433                 return -ENOTTY;
2434         pid = tty_get_pgrp(real_tty);
2435         ret =  put_user(pid_vnr(pid), p);
2436         put_pid(pid);
2437         return ret;
2438 }
2439
2440 /**
2441  *      tiocspgrp               -       attempt to set process group
2442  *      @tty: tty passed by user
2443  *      @real_tty: tty side device matching tty passed by user
2444  *      @p: pid pointer
2445  *
2446  *      Set the process group of the tty to the session passed. Only
2447  *      permitted where the tty session is our session.
2448  *
2449  *      Locking: RCU, ctrl lock
2450  */
2451
2452 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2453 {
2454         struct pid *pgrp;
2455         pid_t pgrp_nr;
2456         int retval = tty_check_change(real_tty);
2457         unsigned long flags;
2458
2459         if (retval == -EIO)
2460                 return -ENOTTY;
2461         if (retval)
2462                 return retval;
2463         if (!current->signal->tty ||
2464             (current->signal->tty != real_tty) ||
2465             (real_tty->session != task_session(current)))
2466                 return -ENOTTY;
2467         if (get_user(pgrp_nr, p))
2468                 return -EFAULT;
2469         if (pgrp_nr < 0)
2470                 return -EINVAL;
2471         rcu_read_lock();
2472         pgrp = find_vpid(pgrp_nr);
2473         retval = -ESRCH;
2474         if (!pgrp)
2475                 goto out_unlock;
2476         retval = -EPERM;
2477         if (session_of_pgrp(pgrp) != task_session(current))
2478                 goto out_unlock;
2479         retval = 0;
2480         spin_lock_irqsave(&tty->ctrl_lock, flags);
2481         put_pid(real_tty->pgrp);
2482         real_tty->pgrp = get_pid(pgrp);
2483         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2484 out_unlock:
2485         rcu_read_unlock();
2486         return retval;
2487 }
2488
2489 /**
2490  *      tiocgsid                -       get session id
2491  *      @tty: tty passed by user
2492  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2493  *      @p: pointer to returned session id
2494  *
2495  *      Obtain the session id of the tty. If there is no session
2496  *      return an error.
2497  *
2498  *      Locking: none. Reference to current->signal->tty is safe.
2499  */
2500
2501 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2502 {
2503         /*
2504          * (tty == real_tty) is a cheap way of
2505          * testing if the tty is NOT a master pty.
2506         */
2507         if (tty == real_tty && current->signal->tty != real_tty)
2508                 return -ENOTTY;
2509         if (!real_tty->session)
2510                 return -ENOTTY;
2511         return put_user(pid_vnr(real_tty->session), p);
2512 }
2513
2514 /**
2515  *      tiocsetd        -       set line discipline
2516  *      @tty: tty device
2517  *      @p: pointer to user data
2518  *
2519  *      Set the line discipline according to user request.
2520  *
2521  *      Locking: see tty_set_ldisc, this function is just a helper
2522  */
2523
2524 static int tiocsetd(struct tty_struct *tty, int __user *p)
2525 {
2526         int ldisc;
2527         int ret;
2528
2529         if (get_user(ldisc, p))
2530                 return -EFAULT;
2531
2532         ret = tty_set_ldisc(tty, ldisc);
2533
2534         return ret;
2535 }
2536
2537 /**
2538  *      send_break      -       performed time break
2539  *      @tty: device to break on
2540  *      @duration: timeout in mS
2541  *
2542  *      Perform a timed break on hardware that lacks its own driver level
2543  *      timed break functionality.
2544  *
2545  *      Locking:
2546  *              atomic_write_lock serializes
2547  *
2548  */
2549
2550 static int send_break(struct tty_struct *tty, unsigned int duration)
2551 {
2552         int retval;
2553
2554         if (tty->ops->break_ctl == NULL)
2555                 return 0;
2556
2557         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2558                 retval = tty->ops->break_ctl(tty, duration);
2559         else {
2560                 /* Do the work ourselves */
2561                 if (tty_write_lock(tty, 0) < 0)
2562                         return -EINTR;
2563                 retval = tty->ops->break_ctl(tty, -1);
2564                 if (retval)
2565                         goto out;
2566                 if (!signal_pending(current))
2567                         msleep_interruptible(duration);
2568                 retval = tty->ops->break_ctl(tty, 0);
2569 out:
2570                 tty_write_unlock(tty);
2571                 if (signal_pending(current))
2572                         retval = -EINTR;
2573         }
2574         return retval;
2575 }
2576
2577 /**
2578  *      tty_tiocmget            -       get modem status
2579  *      @tty: tty device
2580  *      @file: user file pointer
2581  *      @p: pointer to result
2582  *
2583  *      Obtain the modem status bits from the tty driver if the feature
2584  *      is supported. Return -EINVAL if it is not available.
2585  *
2586  *      Locking: none (up to the driver)
2587  */
2588
2589 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2590 {
2591         int retval = -EINVAL;
2592
2593         if (tty->ops->tiocmget) {
2594                 retval = tty->ops->tiocmget(tty);
2595
2596                 if (retval >= 0)
2597                         retval = put_user(retval, p);
2598         }
2599         return retval;
2600 }
2601
2602 /**
2603  *      tty_tiocmset            -       set modem status
2604  *      @tty: tty device
2605  *      @cmd: command - clear bits, set bits or set all
2606  *      @p: pointer to desired bits
2607  *
2608  *      Set the modem status bits from the tty driver if the feature
2609  *      is supported. Return -EINVAL if it is not available.
2610  *
2611  *      Locking: none (up to the driver)
2612  */
2613
2614 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2615              unsigned __user *p)
2616 {
2617         int retval;
2618         unsigned int set, clear, val;
2619
2620         if (tty->ops->tiocmset == NULL)
2621                 return -EINVAL;
2622
2623         retval = get_user(val, p);
2624         if (retval)
2625                 return retval;
2626         set = clear = 0;
2627         switch (cmd) {
2628         case TIOCMBIS:
2629                 set = val;
2630                 break;
2631         case TIOCMBIC:
2632                 clear = val;
2633                 break;
2634         case TIOCMSET:
2635                 set = val;
2636                 clear = ~val;
2637                 break;
2638         }
2639         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2640         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2641         return tty->ops->tiocmset(tty, set, clear);
2642 }
2643
2644 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2645 {
2646         int retval = -EINVAL;
2647         struct serial_icounter_struct icount;
2648         memset(&icount, 0, sizeof(icount));
2649         if (tty->ops->get_icount)
2650                 retval = tty->ops->get_icount(tty, &icount);
2651         if (retval != 0)
2652                 return retval;
2653         if (copy_to_user(arg, &icount, sizeof(icount)))
2654                 return -EFAULT;
2655         return 0;
2656 }
2657
2658 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2659 {
2660         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2661             tty->driver->subtype == PTY_TYPE_MASTER)
2662                 tty = tty->link;
2663         return tty;
2664 }
2665 EXPORT_SYMBOL(tty_pair_get_tty);
2666
2667 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2668 {
2669         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2670             tty->driver->subtype == PTY_TYPE_MASTER)
2671             return tty;
2672         return tty->link;
2673 }
2674 EXPORT_SYMBOL(tty_pair_get_pty);
2675
2676 /*
2677  * Split this up, as gcc can choke on it otherwise..
2678  */
2679 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2680 {
2681         struct tty_struct *tty = file_tty(file);
2682         struct tty_struct *real_tty;
2683         void __user *p = (void __user *)arg;
2684         int retval;
2685         struct tty_ldisc *ld;
2686
2687         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2688                 return -EINVAL;
2689
2690         real_tty = tty_pair_get_tty(tty);
2691
2692         /*
2693          * Factor out some common prep work
2694          */
2695         switch (cmd) {
2696         case TIOCSETD:
2697         case TIOCSBRK:
2698         case TIOCCBRK:
2699         case TCSBRK:
2700         case TCSBRKP:
2701                 retval = tty_check_change(tty);
2702                 if (retval)
2703                         return retval;
2704                 if (cmd != TIOCCBRK) {
2705                         tty_wait_until_sent(tty, 0);
2706                         if (signal_pending(current))
2707                                 return -EINTR;
2708                 }
2709                 break;
2710         }
2711
2712         /*
2713          *      Now do the stuff.
2714          */
2715         switch (cmd) {
2716         case TIOCSTI:
2717                 return tiocsti(tty, p);
2718         case TIOCGWINSZ:
2719                 return tiocgwinsz(real_tty, p);
2720         case TIOCSWINSZ:
2721                 return tiocswinsz(real_tty, p);
2722         case TIOCCONS:
2723                 return real_tty != tty ? -EINVAL : tioccons(file);
2724         case FIONBIO:
2725                 return fionbio(file, p);
2726         case TIOCEXCL:
2727                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2728                 return 0;
2729         case TIOCNXCL:
2730                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2731                 return 0;
2732         case TIOCGEXCL:
2733         {
2734                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2735                 return put_user(excl, (int __user *)p);
2736         }
2737         case TIOCNOTTY:
2738                 if (current->signal->tty != tty)
2739                         return -ENOTTY;
2740                 no_tty();
2741                 return 0;
2742         case TIOCSCTTY:
2743                 return tiocsctty(tty, arg);
2744         case TIOCGPGRP:
2745                 return tiocgpgrp(tty, real_tty, p);
2746         case TIOCSPGRP:
2747                 return tiocspgrp(tty, real_tty, p);
2748         case TIOCGSID:
2749                 return tiocgsid(tty, real_tty, p);
2750         case TIOCGETD:
2751                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2752         case TIOCSETD:
2753                 return tiocsetd(tty, p);
2754         case TIOCVHANGUP:
2755                 if (!capable(CAP_SYS_ADMIN))
2756                         return -EPERM;
2757                 tty_vhangup(tty);
2758                 return 0;
2759         case TIOCGDEV:
2760         {
2761                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2762                 return put_user(ret, (unsigned int __user *)p);
2763         }
2764         /*
2765          * Break handling
2766          */
2767         case TIOCSBRK:  /* Turn break on, unconditionally */
2768                 if (tty->ops->break_ctl)
2769                         return tty->ops->break_ctl(tty, -1);
2770                 return 0;
2771         case TIOCCBRK:  /* Turn break off, unconditionally */
2772                 if (tty->ops->break_ctl)
2773                         return tty->ops->break_ctl(tty, 0);
2774                 return 0;
2775         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2776                 /* non-zero arg means wait for all output data
2777                  * to be sent (performed above) but don't send break.
2778                  * This is used by the tcdrain() termios function.
2779                  */
2780                 if (!arg)
2781                         return send_break(tty, 250);
2782                 return 0;
2783         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2784                 return send_break(tty, arg ? arg*100 : 250);
2785
2786         case TIOCMGET:
2787                 return tty_tiocmget(tty, p);
2788         case TIOCMSET:
2789         case TIOCMBIC:
2790         case TIOCMBIS:
2791                 return tty_tiocmset(tty, cmd, p);
2792         case TIOCGICOUNT:
2793                 retval = tty_tiocgicount(tty, p);
2794                 /* For the moment allow fall through to the old method */
2795                 if (retval != -EINVAL)
2796                         return retval;
2797                 break;
2798         case TCFLSH:
2799                 switch (arg) {
2800                 case TCIFLUSH:
2801                 case TCIOFLUSH:
2802                 /* flush tty buffer and allow ldisc to process ioctl */
2803                         tty_buffer_flush(tty);
2804                         break;
2805                 }
2806                 break;
2807         }
2808         if (tty->ops->ioctl) {
2809                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2810                 if (retval != -ENOIOCTLCMD)
2811                         return retval;
2812         }
2813         ld = tty_ldisc_ref_wait(tty);
2814         retval = -EINVAL;
2815         if (ld->ops->ioctl) {
2816                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2817                 if (retval == -ENOIOCTLCMD)
2818                         retval = -ENOTTY;
2819         }
2820         tty_ldisc_deref(ld);
2821         return retval;
2822 }
2823
2824 #ifdef CONFIG_COMPAT
2825 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2826                                 unsigned long arg)
2827 {
2828         struct tty_struct *tty = file_tty(file);
2829         struct tty_ldisc *ld;
2830         int retval = -ENOIOCTLCMD;
2831
2832         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2833                 return -EINVAL;
2834
2835         if (tty->ops->compat_ioctl) {
2836                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2837                 if (retval != -ENOIOCTLCMD)
2838                         return retval;
2839         }
2840
2841         ld = tty_ldisc_ref_wait(tty);
2842         if (ld->ops->compat_ioctl)
2843                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2844         else
2845                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2846         tty_ldisc_deref(ld);
2847
2848         return retval;
2849 }
2850 #endif
2851
2852 static int this_tty(const void *t, struct file *file, unsigned fd)
2853 {
2854         if (likely(file->f_op->read != tty_read))
2855                 return 0;
2856         return file_tty(file) != t ? 0 : fd + 1;
2857 }
2858         
2859 /*
2860  * This implements the "Secure Attention Key" ---  the idea is to
2861  * prevent trojan horses by killing all processes associated with this
2862  * tty when the user hits the "Secure Attention Key".  Required for
2863  * super-paranoid applications --- see the Orange Book for more details.
2864  *
2865  * This code could be nicer; ideally it should send a HUP, wait a few
2866  * seconds, then send a INT, and then a KILL signal.  But you then
2867  * have to coordinate with the init process, since all processes associated
2868  * with the current tty must be dead before the new getty is allowed
2869  * to spawn.
2870  *
2871  * Now, if it would be correct ;-/ The current code has a nasty hole -
2872  * it doesn't catch files in flight. We may send the descriptor to ourselves
2873  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2874  *
2875  * Nasty bug: do_SAK is being called in interrupt context.  This can
2876  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2877  */
2878 void __do_SAK(struct tty_struct *tty)
2879 {
2880 #ifdef TTY_SOFT_SAK
2881         tty_hangup(tty);
2882 #else
2883         struct task_struct *g, *p;
2884         struct pid *session;
2885         int             i;
2886
2887         if (!tty)
2888                 return;
2889         session = tty->session;
2890
2891         tty_ldisc_flush(tty);
2892
2893         tty_driver_flush_buffer(tty);
2894
2895         read_lock(&tasklist_lock);
2896         /* Kill the entire session */
2897         do_each_pid_task(session, PIDTYPE_SID, p) {
2898                 printk(KERN_NOTICE "SAK: killed process %d"
2899                         " (%s): task_session(p)==tty->session\n",
2900                         task_pid_nr(p), p->comm);
2901                 send_sig(SIGKILL, p, 1);
2902         } while_each_pid_task(session, PIDTYPE_SID, p);
2903         /* Now kill any processes that happen to have the
2904          * tty open.
2905          */
2906         do_each_thread(g, p) {
2907                 if (p->signal->tty == tty) {
2908                         printk(KERN_NOTICE "SAK: killed process %d"
2909                             " (%s): task_session(p)==tty->session\n",
2910                             task_pid_nr(p), p->comm);
2911                         send_sig(SIGKILL, p, 1);
2912                         continue;
2913                 }
2914                 task_lock(p);
2915                 i = iterate_fd(p->files, 0, this_tty, tty);
2916                 if (i != 0) {
2917                         printk(KERN_NOTICE "SAK: killed process %d"
2918                             " (%s): fd#%d opened to the tty\n",
2919                                     task_pid_nr(p), p->comm, i - 1);
2920                         force_sig(SIGKILL, p);
2921                 }
2922                 task_unlock(p);
2923         } while_each_thread(g, p);
2924         read_unlock(&tasklist_lock);
2925 #endif
2926 }
2927
2928 static void do_SAK_work(struct work_struct *work)
2929 {
2930         struct tty_struct *tty =
2931                 container_of(work, struct tty_struct, SAK_work);
2932         __do_SAK(tty);
2933 }
2934
2935 /*
2936  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2937  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2938  * the values which we write to it will be identical to the values which it
2939  * already has. --akpm
2940  */
2941 void do_SAK(struct tty_struct *tty)
2942 {
2943         if (!tty)
2944                 return;
2945         schedule_work(&tty->SAK_work);
2946 }
2947
2948 EXPORT_SYMBOL(do_SAK);
2949
2950 static int dev_match_devt(struct device *dev, const void *data)
2951 {
2952         const dev_t *devt = data;
2953         return dev->devt == *devt;
2954 }
2955
2956 /* Must put_device() after it's unused! */
2957 static struct device *tty_get_device(struct tty_struct *tty)
2958 {
2959         dev_t devt = tty_devnum(tty);
2960         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2961 }
2962
2963
2964 /**
2965  *      initialize_tty_struct
2966  *      @tty: tty to initialize
2967  *
2968  *      This subroutine initializes a tty structure that has been newly
2969  *      allocated.
2970  *
2971  *      Locking: none - tty in question must not be exposed at this point
2972  */
2973
2974 void initialize_tty_struct(struct tty_struct *tty,
2975                 struct tty_driver *driver, int idx)
2976 {
2977         memset(tty, 0, sizeof(struct tty_struct));
2978         kref_init(&tty->kref);
2979         tty->magic = TTY_MAGIC;
2980         tty_ldisc_init(tty);
2981         tty->session = NULL;
2982         tty->pgrp = NULL;
2983         mutex_init(&tty->legacy_mutex);
2984         mutex_init(&tty->termios_mutex);
2985         mutex_init(&tty->ldisc_mutex);
2986         init_waitqueue_head(&tty->write_wait);
2987         init_waitqueue_head(&tty->read_wait);
2988         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2989         mutex_init(&tty->atomic_write_lock);
2990         spin_lock_init(&tty->ctrl_lock);
2991         INIT_LIST_HEAD(&tty->tty_files);
2992         INIT_WORK(&tty->SAK_work, do_SAK_work);
2993
2994         tty->driver = driver;
2995         tty->ops = driver->ops;
2996         tty->index = idx;
2997         tty_line_name(driver, idx, tty->name);
2998         tty->dev = tty_get_device(tty);
2999 }
3000
3001 /**
3002  *      deinitialize_tty_struct
3003  *      @tty: tty to deinitialize
3004  *
3005  *      This subroutine deinitializes a tty structure that has been newly
3006  *      allocated but tty_release cannot be called on that yet.
3007  *
3008  *      Locking: none - tty in question must not be exposed at this point
3009  */
3010 void deinitialize_tty_struct(struct tty_struct *tty)
3011 {
3012         tty_ldisc_deinit(tty);
3013 }
3014
3015 /**
3016  *      tty_put_char    -       write one character to a tty
3017  *      @tty: tty
3018  *      @ch: character
3019  *
3020  *      Write one byte to the tty using the provided put_char method
3021  *      if present. Returns the number of characters successfully output.
3022  *
3023  *      Note: the specific put_char operation in the driver layer may go
3024  *      away soon. Don't call it directly, use this method
3025  */
3026
3027 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3028 {
3029         if (tty->ops->put_char)
3030                 return tty->ops->put_char(tty, ch);
3031         return tty->ops->write(tty, &ch, 1);
3032 }
3033 EXPORT_SYMBOL_GPL(tty_put_char);
3034
3035 struct class *tty_class;
3036
3037 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3038                 unsigned int index, unsigned int count)
3039 {
3040         /* init here, since reused cdevs cause crashes */
3041         cdev_init(&driver->cdevs[index], &tty_fops);
3042         driver->cdevs[index].owner = driver->owner;
3043         return cdev_add(&driver->cdevs[index], dev, count);
3044 }
3045
3046 /**
3047  *      tty_register_device - register a tty device
3048  *      @driver: the tty driver that describes the tty device
3049  *      @index: the index in the tty driver for this tty device
3050  *      @device: a struct device that is associated with this tty device.
3051  *              This field is optional, if there is no known struct device
3052  *              for this tty device it can be set to NULL safely.
3053  *
3054  *      Returns a pointer to the struct device for this tty device
3055  *      (or ERR_PTR(-EFOO) on error).
3056  *
3057  *      This call is required to be made to register an individual tty device
3058  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3059  *      that bit is not set, this function should not be called by a tty
3060  *      driver.
3061  *
3062  *      Locking: ??
3063  */
3064
3065 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3066                                    struct device *device)
3067 {
3068         return tty_register_device_attr(driver, index, device, NULL, NULL);
3069 }
3070 EXPORT_SYMBOL(tty_register_device);
3071
3072 static void tty_device_create_release(struct device *dev)
3073 {
3074         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3075         kfree(dev);
3076 }
3077
3078 /**
3079  *      tty_register_device_attr - register a tty device
3080  *      @driver: the tty driver that describes the tty device
3081  *      @index: the index in the tty driver for this tty device
3082  *      @device: a struct device that is associated with this tty device.
3083  *              This field is optional, if there is no known struct device
3084  *              for this tty device it can be set to NULL safely.
3085  *      @drvdata: Driver data to be set to device.
3086  *      @attr_grp: Attribute group to be set on device.
3087  *
3088  *      Returns a pointer to the struct device for this tty device
3089  *      (or ERR_PTR(-EFOO) on error).
3090  *
3091  *      This call is required to be made to register an individual tty device
3092  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3093  *      that bit is not set, this function should not be called by a tty
3094  *      driver.
3095  *
3096  *      Locking: ??
3097  */
3098 struct device *tty_register_device_attr(struct tty_driver *driver,
3099                                    unsigned index, struct device *device,
3100                                    void *drvdata,
3101                                    const struct attribute_group **attr_grp)
3102 {
3103         char name[64];
3104         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3105         struct device *dev = NULL;
3106         int retval = -ENODEV;
3107         bool cdev = false;
3108
3109         if (index >= driver->num) {
3110                 printk(KERN_ERR "Attempt to register invalid tty line number "
3111                        " (%d).\n", index);
3112                 return ERR_PTR(-EINVAL);
3113         }
3114
3115         if (driver->type == TTY_DRIVER_TYPE_PTY)
3116                 pty_line_name(driver, index, name);
3117         else
3118                 tty_line_name(driver, index, name);
3119
3120         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3121                 retval = tty_cdev_add(driver, devt, index, 1);
3122                 if (retval)
3123                         goto error;
3124                 cdev = true;
3125         }
3126
3127         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3128         if (!dev) {
3129                 retval = -ENOMEM;
3130                 goto error;
3131         }
3132
3133         dev->devt = devt;
3134         dev->class = tty_class;
3135         dev->parent = device;
3136         dev->release = tty_device_create_release;
3137         dev_set_name(dev, "%s", name);
3138         dev->groups = attr_grp;
3139         dev_set_drvdata(dev, drvdata);
3140
3141         retval = device_register(dev);
3142         if (retval)
3143                 goto error;
3144
3145         return dev;
3146
3147 error:
3148         put_device(dev);
3149         if (cdev)
3150                 cdev_del(&driver->cdevs[index]);
3151         return ERR_PTR(retval);
3152 }
3153 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3154
3155 /**
3156  *      tty_unregister_device - unregister a tty device
3157  *      @driver: the tty driver that describes the tty device
3158  *      @index: the index in the tty driver for this tty device
3159  *
3160  *      If a tty device is registered with a call to tty_register_device() then
3161  *      this function must be called when the tty device is gone.
3162  *
3163  *      Locking: ??
3164  */
3165
3166 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3167 {
3168         device_destroy(tty_class,
3169                 MKDEV(driver->major, driver->minor_start) + index);
3170         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3171                 cdev_del(&driver->cdevs[index]);
3172 }
3173 EXPORT_SYMBOL(tty_unregister_device);
3174
3175 /**
3176  * __tty_alloc_driver -- allocate tty driver
3177  * @lines: count of lines this driver can handle at most
3178  * @owner: module which is repsonsible for this driver
3179  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3180  *
3181  * This should not be called directly, some of the provided macros should be
3182  * used instead. Use IS_ERR and friends on @retval.
3183  */
3184 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3185                 unsigned long flags)
3186 {
3187         struct tty_driver *driver;
3188         unsigned int cdevs = 1;
3189         int err;
3190
3191         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3192                 return ERR_PTR(-EINVAL);
3193
3194         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3195         if (!driver)
3196                 return ERR_PTR(-ENOMEM);
3197
3198         kref_init(&driver->kref);
3199         driver->magic = TTY_DRIVER_MAGIC;
3200         driver->num = lines;
3201         driver->owner = owner;
3202         driver->flags = flags;
3203
3204         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3205                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3206                                 GFP_KERNEL);
3207                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3208                                 GFP_KERNEL);
3209                 if (!driver->ttys || !driver->termios) {
3210                         err = -ENOMEM;
3211                         goto err_free_all;
3212                 }
3213         }
3214
3215         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3216                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3217                                 GFP_KERNEL);
3218                 if (!driver->ports) {
3219                         err = -ENOMEM;
3220                         goto err_free_all;
3221                 }
3222                 cdevs = lines;
3223         }
3224
3225         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3226         if (!driver->cdevs) {
3227                 err = -ENOMEM;
3228                 goto err_free_all;
3229         }
3230
3231         return driver;
3232 err_free_all:
3233         kfree(driver->ports);
3234         kfree(driver->ttys);
3235         kfree(driver->termios);
3236         kfree(driver);
3237         return ERR_PTR(err);
3238 }
3239 EXPORT_SYMBOL(__tty_alloc_driver);
3240
3241 static void destruct_tty_driver(struct kref *kref)
3242 {
3243         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3244         int i;
3245         struct ktermios *tp;
3246
3247         if (driver->flags & TTY_DRIVER_INSTALLED) {
3248                 /*
3249                  * Free the termios and termios_locked structures because
3250                  * we don't want to get memory leaks when modular tty
3251                  * drivers are removed from the kernel.
3252                  */
3253                 for (i = 0; i < driver->num; i++) {
3254                         tp = driver->termios[i];
3255                         if (tp) {
3256                                 driver->termios[i] = NULL;
3257                                 kfree(tp);
3258                         }
3259                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3260                                 tty_unregister_device(driver, i);
3261                 }
3262                 proc_tty_unregister_driver(driver);
3263                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3264                         cdev_del(&driver->cdevs[0]);
3265         }
3266         kfree(driver->cdevs);
3267         kfree(driver->ports);
3268         kfree(driver->termios);
3269         kfree(driver->ttys);
3270         kfree(driver);
3271 }
3272
3273 void tty_driver_kref_put(struct tty_driver *driver)
3274 {
3275         kref_put(&driver->kref, destruct_tty_driver);
3276 }
3277 EXPORT_SYMBOL(tty_driver_kref_put);
3278
3279 void tty_set_operations(struct tty_driver *driver,
3280                         const struct tty_operations *op)
3281 {
3282         driver->ops = op;
3283 };
3284 EXPORT_SYMBOL(tty_set_operations);
3285
3286 void put_tty_driver(struct tty_driver *d)
3287 {
3288         tty_driver_kref_put(d);
3289 }
3290 EXPORT_SYMBOL(put_tty_driver);
3291
3292 /*
3293  * Called by a tty driver to register itself.
3294  */
3295 int tty_register_driver(struct tty_driver *driver)
3296 {
3297         int error;
3298         int i;
3299         dev_t dev;
3300         struct device *d;
3301
3302         if (!driver->major) {
3303                 error = alloc_chrdev_region(&dev, driver->minor_start,
3304                                                 driver->num, driver->name);
3305                 if (!error) {
3306                         driver->major = MAJOR(dev);
3307                         driver->minor_start = MINOR(dev);
3308                 }
3309         } else {
3310                 dev = MKDEV(driver->major, driver->minor_start);
3311                 error = register_chrdev_region(dev, driver->num, driver->name);
3312         }
3313         if (error < 0)
3314                 goto err;
3315
3316         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3317                 error = tty_cdev_add(driver, dev, 0, driver->num);
3318                 if (error)
3319                         goto err_unreg_char;
3320         }
3321
3322         mutex_lock(&tty_mutex);
3323         list_add(&driver->tty_drivers, &tty_drivers);
3324         mutex_unlock(&tty_mutex);
3325
3326         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3327                 for (i = 0; i < driver->num; i++) {
3328                         d = tty_register_device(driver, i, NULL);
3329                         if (IS_ERR(d)) {
3330                                 error = PTR_ERR(d);
3331                                 goto err_unreg_devs;
3332                         }
3333                 }
3334         }
3335         proc_tty_register_driver(driver);
3336         driver->flags |= TTY_DRIVER_INSTALLED;
3337         return 0;
3338
3339 err_unreg_devs:
3340         for (i--; i >= 0; i--)
3341                 tty_unregister_device(driver, i);
3342
3343         mutex_lock(&tty_mutex);
3344         list_del(&driver->tty_drivers);
3345         mutex_unlock(&tty_mutex);
3346
3347 err_unreg_char:
3348         unregister_chrdev_region(dev, driver->num);
3349 err:
3350         return error;
3351 }
3352 EXPORT_SYMBOL(tty_register_driver);
3353
3354 /*
3355  * Called by a tty driver to unregister itself.
3356  */
3357 int tty_unregister_driver(struct tty_driver *driver)
3358 {
3359 #if 0
3360         /* FIXME */
3361         if (driver->refcount)
3362                 return -EBUSY;
3363 #endif
3364         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3365                                 driver->num);
3366         mutex_lock(&tty_mutex);
3367         list_del(&driver->tty_drivers);
3368         mutex_unlock(&tty_mutex);
3369         return 0;
3370 }
3371
3372 EXPORT_SYMBOL(tty_unregister_driver);
3373
3374 dev_t tty_devnum(struct tty_struct *tty)
3375 {
3376         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3377 }
3378 EXPORT_SYMBOL(tty_devnum);
3379
3380 void proc_clear_tty(struct task_struct *p)
3381 {
3382         unsigned long flags;
3383         struct tty_struct *tty;
3384         spin_lock_irqsave(&p->sighand->siglock, flags);
3385         tty = p->signal->tty;
3386         p->signal->tty = NULL;
3387         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3388         tty_kref_put(tty);
3389 }
3390
3391 /* Called under the sighand lock */
3392
3393 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3394 {
3395         if (tty) {
3396                 unsigned long flags;
3397                 /* We should not have a session or pgrp to put here but.... */
3398                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3399                 put_pid(tty->session);
3400                 put_pid(tty->pgrp);
3401                 tty->pgrp = get_pid(task_pgrp(tsk));
3402                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3403                 tty->session = get_pid(task_session(tsk));
3404                 if (tsk->signal->tty) {
3405                         printk(KERN_DEBUG "tty not NULL!!\n");
3406                         tty_kref_put(tsk->signal->tty);
3407                 }
3408         }
3409         put_pid(tsk->signal->tty_old_pgrp);
3410         tsk->signal->tty = tty_kref_get(tty);
3411         tsk->signal->tty_old_pgrp = NULL;
3412 }
3413
3414 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3415 {
3416         spin_lock_irq(&tsk->sighand->siglock);
3417         __proc_set_tty(tsk, tty);
3418         spin_unlock_irq(&tsk->sighand->siglock);
3419 }
3420
3421 struct tty_struct *get_current_tty(void)
3422 {
3423         struct tty_struct *tty;
3424         unsigned long flags;
3425
3426         spin_lock_irqsave(&current->sighand->siglock, flags);
3427         tty = tty_kref_get(current->signal->tty);
3428         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3429         return tty;
3430 }
3431 EXPORT_SYMBOL_GPL(get_current_tty);
3432
3433 void tty_default_fops(struct file_operations *fops)
3434 {
3435         *fops = tty_fops;
3436 }
3437
3438 /*
3439  * Initialize the console device. This is called *early*, so
3440  * we can't necessarily depend on lots of kernel help here.
3441  * Just do some early initializations, and do the complex setup
3442  * later.
3443  */
3444 void __init console_init(void)
3445 {
3446         initcall_t *call;
3447
3448         /* Setup the default TTY line discipline. */
3449         tty_ldisc_begin();
3450
3451         /*
3452          * set up the console device so that later boot sequences can
3453          * inform about problems etc..
3454          */
3455         call = __con_initcall_start;
3456         while (call < __con_initcall_end) {
3457                 (*call)();
3458                 call++;
3459         }
3460 }
3461
3462 static char *tty_devnode(struct device *dev, umode_t *mode)
3463 {
3464         if (!mode)
3465                 return NULL;
3466         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3467             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3468                 *mode = 0666;
3469         return NULL;
3470 }
3471
3472 static int __init tty_class_init(void)
3473 {
3474         tty_class = class_create(THIS_MODULE, "tty");
3475         if (IS_ERR(tty_class))
3476                 return PTR_ERR(tty_class);
3477         tty_class->devnode = tty_devnode;
3478         return 0;
3479 }
3480
3481 postcore_initcall(tty_class_init);
3482
3483 /* 3/2004 jmc: why do these devices exist? */
3484 static struct cdev tty_cdev, console_cdev;
3485
3486 static ssize_t show_cons_active(struct device *dev,
3487                                 struct device_attribute *attr, char *buf)
3488 {
3489         struct console *cs[16];
3490         int i = 0;
3491         struct console *c;
3492         ssize_t count = 0;
3493
3494         console_lock();
3495         for_each_console(c) {
3496                 if (!c->device)
3497                         continue;
3498                 if (!c->write)
3499                         continue;
3500                 if ((c->flags & CON_ENABLED) == 0)
3501                         continue;
3502                 cs[i++] = c;
3503                 if (i >= ARRAY_SIZE(cs))
3504                         break;
3505         }
3506         while (i--)
3507                 count += sprintf(buf + count, "%s%d%c",
3508                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3509         console_unlock();
3510
3511         return count;
3512 }
3513 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3514
3515 static struct device *consdev;
3516
3517 void console_sysfs_notify(void)
3518 {
3519         if (consdev)
3520                 sysfs_notify(&consdev->kobj, NULL, "active");
3521 }
3522
3523 /*
3524  * Ok, now we can initialize the rest of the tty devices and can count
3525  * on memory allocations, interrupts etc..
3526  */
3527 int __init tty_init(void)
3528 {
3529         cdev_init(&tty_cdev, &tty_fops);
3530         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3531             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3532                 panic("Couldn't register /dev/tty driver\n");
3533         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3534
3535         cdev_init(&console_cdev, &console_fops);
3536         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3537             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3538                 panic("Couldn't register /dev/console driver\n");
3539         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3540                               "console");
3541         if (IS_ERR(consdev))
3542                 consdev = NULL;
3543         else
3544                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3545
3546 #ifdef CONFIG_VT
3547         vty_init(&console_fops);
3548 #endif
3549         return 0;
3550 }
3551