tty: Use spin_lock() inside existing critical region
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *
538  *      Send SIGHUP and SIGCONT to the session leader and its
539  *      process group.
540  *
541  *      Returns the number of processes in the session with this tty
542  *      as their controlling terminal. This value is used to drop
543  *      tty references for those processes.
544  */
545 static int tty_signal_session_leader(struct tty_struct *tty)
546 {
547         struct task_struct *p;
548         int refs = 0;
549
550         read_lock(&tasklist_lock);
551         if (tty->session) {
552                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
553                         spin_lock_irq(&p->sighand->siglock);
554                         if (p->signal->tty == tty) {
555                                 p->signal->tty = NULL;
556                                 /* We defer the dereferences outside fo
557                                    the tasklist lock */
558                                 refs++;
559                         }
560                         if (!p->signal->leader) {
561                                 spin_unlock_irq(&p->sighand->siglock);
562                                 continue;
563                         }
564                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
565                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
566                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
567                         spin_lock(&tty->ctrl_lock);
568                         if (tty->pgrp)
569                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
570                         spin_unlock(&tty->ctrl_lock);
571                         spin_unlock_irq(&p->sighand->siglock);
572                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
573         }
574         read_unlock(&tasklist_lock);
575
576         return refs;
577 }
578
579 /**
580  *      __tty_hangup            -       actual handler for hangup events
581  *      @work: tty device
582  *
583  *      This can be called by a "kworker" kernel thread.  That is process
584  *      synchronous but doesn't hold any locks, so we need to make sure we
585  *      have the appropriate locks for what we're doing.
586  *
587  *      The hangup event clears any pending redirections onto the hung up
588  *      device. It ensures future writes will error and it does the needed
589  *      line discipline hangup and signal delivery. The tty object itself
590  *      remains intact.
591  *
592  *      Locking:
593  *              BTM
594  *                redirect lock for undoing redirection
595  *                file list lock for manipulating list of ttys
596  *                tty_ldisc_lock from called functions
597  *                termios_mutex resetting termios data
598  *                tasklist_lock to walk task list for hangup event
599  *                  ->siglock to protect ->signal/->sighand
600  */
601 static void __tty_hangup(struct tty_struct *tty)
602 {
603         struct file *cons_filp = NULL;
604         struct file *filp, *f = NULL;
605         struct tty_file_private *priv;
606         int    closecount = 0, n;
607         int refs;
608
609         if (!tty)
610                 return;
611
612
613         spin_lock(&redirect_lock);
614         if (redirect && file_tty(redirect) == tty) {
615                 f = redirect;
616                 redirect = NULL;
617         }
618         spin_unlock(&redirect_lock);
619
620         tty_lock(tty);
621
622         /* some functions below drop BTM, so we need this bit */
623         set_bit(TTY_HUPPING, &tty->flags);
624
625         /* inuse_filps is protected by the single tty lock,
626            this really needs to change if we want to flush the
627            workqueue with the lock held */
628         check_tty_count(tty, "tty_hangup");
629
630         spin_lock(&tty_files_lock);
631         /* This breaks for file handles being sent over AF_UNIX sockets ? */
632         list_for_each_entry(priv, &tty->tty_files, list) {
633                 filp = priv->file;
634                 if (filp->f_op->write == redirected_tty_write)
635                         cons_filp = filp;
636                 if (filp->f_op->write != tty_write)
637                         continue;
638                 closecount++;
639                 __tty_fasync(-1, filp, 0);      /* can't block */
640                 filp->f_op = &hung_up_tty_fops;
641         }
642         spin_unlock(&tty_files_lock);
643
644         /*
645          * it drops BTM and thus races with reopen
646          * we protect the race by TTY_HUPPING
647          */
648         tty_ldisc_hangup(tty);
649
650         refs = tty_signal_session_leader(tty);
651         /* Account for the p->signal references we killed */
652         while (refs--)
653                 tty_kref_put(tty);
654
655         spin_lock_irq(&tty->ctrl_lock);
656         clear_bit(TTY_THROTTLED, &tty->flags);
657         clear_bit(TTY_PUSH, &tty->flags);
658         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659         put_pid(tty->session);
660         put_pid(tty->pgrp);
661         tty->session = NULL;
662         tty->pgrp = NULL;
663         tty->ctrl_status = 0;
664         spin_unlock_irq(&tty->ctrl_lock);
665
666         /*
667          * If one of the devices matches a console pointer, we
668          * cannot just call hangup() because that will cause
669          * tty->count and state->count to go out of sync.
670          * So we just call close() the right number of times.
671          */
672         if (cons_filp) {
673                 if (tty->ops->close)
674                         for (n = 0; n < closecount; n++)
675                                 tty->ops->close(tty, cons_filp);
676         } else if (tty->ops->hangup)
677                 (tty->ops->hangup)(tty);
678         /*
679          * We don't want to have driver/ldisc interactions beyond
680          * the ones we did here. The driver layer expects no
681          * calls after ->hangup() from the ldisc side. However we
682          * can't yet guarantee all that.
683          */
684         set_bit(TTY_HUPPED, &tty->flags);
685         clear_bit(TTY_HUPPING, &tty->flags);
686         tty_ldisc_enable(tty);
687
688         tty_unlock(tty);
689
690         if (f)
691                 fput(f);
692 }
693
694 static void do_tty_hangup(struct work_struct *work)
695 {
696         struct tty_struct *tty =
697                 container_of(work, struct tty_struct, hangup_work);
698
699         __tty_hangup(tty);
700 }
701
702 /**
703  *      tty_hangup              -       trigger a hangup event
704  *      @tty: tty to hangup
705  *
706  *      A carrier loss (virtual or otherwise) has occurred on this like
707  *      schedule a hangup sequence to run after this event.
708  */
709
710 void tty_hangup(struct tty_struct *tty)
711 {
712 #ifdef TTY_DEBUG_HANGUP
713         char    buf[64];
714         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
715 #endif
716         schedule_work(&tty->hangup_work);
717 }
718
719 EXPORT_SYMBOL(tty_hangup);
720
721 /**
722  *      tty_vhangup             -       process vhangup
723  *      @tty: tty to hangup
724  *
725  *      The user has asked via system call for the terminal to be hung up.
726  *      We do this synchronously so that when the syscall returns the process
727  *      is complete. That guarantee is necessary for security reasons.
728  */
729
730 void tty_vhangup(struct tty_struct *tty)
731 {
732 #ifdef TTY_DEBUG_HANGUP
733         char    buf[64];
734
735         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
736 #endif
737         __tty_hangup(tty);
738 }
739
740 EXPORT_SYMBOL(tty_vhangup);
741
742
743 /**
744  *      tty_vhangup_self        -       process vhangup for own ctty
745  *
746  *      Perform a vhangup on the current controlling tty
747  */
748
749 void tty_vhangup_self(void)
750 {
751         struct tty_struct *tty;
752
753         tty = get_current_tty();
754         if (tty) {
755                 tty_vhangup(tty);
756                 tty_kref_put(tty);
757         }
758 }
759
760 /**
761  *      tty_hung_up_p           -       was tty hung up
762  *      @filp: file pointer of tty
763  *
764  *      Return true if the tty has been subject to a vhangup or a carrier
765  *      loss
766  */
767
768 int tty_hung_up_p(struct file *filp)
769 {
770         return (filp->f_op == &hung_up_tty_fops);
771 }
772
773 EXPORT_SYMBOL(tty_hung_up_p);
774
775 static void session_clear_tty(struct pid *session)
776 {
777         struct task_struct *p;
778         do_each_pid_task(session, PIDTYPE_SID, p) {
779                 proc_clear_tty(p);
780         } while_each_pid_task(session, PIDTYPE_SID, p);
781 }
782
783 /**
784  *      disassociate_ctty       -       disconnect controlling tty
785  *      @on_exit: true if exiting so need to "hang up" the session
786  *
787  *      This function is typically called only by the session leader, when
788  *      it wants to disassociate itself from its controlling tty.
789  *
790  *      It performs the following functions:
791  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
792  *      (2)  Clears the tty from being controlling the session
793  *      (3)  Clears the controlling tty for all processes in the
794  *              session group.
795  *
796  *      The argument on_exit is set to 1 if called when a process is
797  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
798  *
799  *      Locking:
800  *              BTM is taken for hysterical raisins, and held when
801  *                called from no_tty().
802  *                tty_mutex is taken to protect tty
803  *                ->siglock is taken to protect ->signal/->sighand
804  *                tasklist_lock is taken to walk process list for sessions
805  *                  ->siglock is taken to protect ->signal/->sighand
806  */
807
808 void disassociate_ctty(int on_exit)
809 {
810         struct tty_struct *tty;
811
812         if (!current->signal->leader)
813                 return;
814
815         tty = get_current_tty();
816         if (tty) {
817                 struct pid *tty_pgrp = get_pid(tty->pgrp);
818                 if (on_exit) {
819                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
820                                 tty_vhangup(tty);
821                 }
822                 tty_kref_put(tty);
823                 if (tty_pgrp) {
824                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
825                         if (!on_exit)
826                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
827                         put_pid(tty_pgrp);
828                 }
829         } else if (on_exit) {
830                 struct pid *old_pgrp;
831                 spin_lock_irq(&current->sighand->siglock);
832                 old_pgrp = current->signal->tty_old_pgrp;
833                 current->signal->tty_old_pgrp = NULL;
834                 spin_unlock_irq(&current->sighand->siglock);
835                 if (old_pgrp) {
836                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
837                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
838                         put_pid(old_pgrp);
839                 }
840                 return;
841         }
842
843         spin_lock_irq(&current->sighand->siglock);
844         put_pid(current->signal->tty_old_pgrp);
845         current->signal->tty_old_pgrp = NULL;
846         spin_unlock_irq(&current->sighand->siglock);
847
848         tty = get_current_tty();
849         if (tty) {
850                 unsigned long flags;
851                 spin_lock_irqsave(&tty->ctrl_lock, flags);
852                 put_pid(tty->session);
853                 put_pid(tty->pgrp);
854                 tty->session = NULL;
855                 tty->pgrp = NULL;
856                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
857                 tty_kref_put(tty);
858         } else {
859 #ifdef TTY_DEBUG_HANGUP
860                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
861                        " = NULL", tty);
862 #endif
863         }
864
865         /* Now clear signal->tty under the lock */
866         read_lock(&tasklist_lock);
867         session_clear_tty(task_session(current));
868         read_unlock(&tasklist_lock);
869 }
870
871 /**
872  *
873  *      no_tty  - Ensure the current process does not have a controlling tty
874  */
875 void no_tty(void)
876 {
877         /* FIXME: Review locking here. The tty_lock never covered any race
878            between a new association and proc_clear_tty but possible we need
879            to protect against this anyway */
880         struct task_struct *tsk = current;
881         disassociate_ctty(0);
882         proc_clear_tty(tsk);
883 }
884
885
886 /**
887  *      stop_tty        -       propagate flow control
888  *      @tty: tty to stop
889  *
890  *      Perform flow control to the driver. For PTY/TTY pairs we
891  *      must also propagate the TIOCKPKT status. May be called
892  *      on an already stopped device and will not re-call the driver
893  *      method.
894  *
895  *      This functionality is used by both the line disciplines for
896  *      halting incoming flow and by the driver. It may therefore be
897  *      called from any context, may be under the tty atomic_write_lock
898  *      but not always.
899  *
900  *      Locking:
901  *              Uses the tty control lock internally
902  */
903
904 void stop_tty(struct tty_struct *tty)
905 {
906         unsigned long flags;
907         spin_lock_irqsave(&tty->ctrl_lock, flags);
908         if (tty->stopped) {
909                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910                 return;
911         }
912         tty->stopped = 1;
913         if (tty->link && tty->link->packet) {
914                 tty->ctrl_status &= ~TIOCPKT_START;
915                 tty->ctrl_status |= TIOCPKT_STOP;
916                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
917         }
918         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919         if (tty->ops->stop)
920                 (tty->ops->stop)(tty);
921 }
922
923 EXPORT_SYMBOL(stop_tty);
924
925 /**
926  *      start_tty       -       propagate flow control
927  *      @tty: tty to start
928  *
929  *      Start a tty that has been stopped if at all possible. Perform
930  *      any necessary wakeups and propagate the TIOCPKT status. If this
931  *      is the tty was previous stopped and is being started then the
932  *      driver start method is invoked and the line discipline woken.
933  *
934  *      Locking:
935  *              ctrl_lock
936  */
937
938 void start_tty(struct tty_struct *tty)
939 {
940         unsigned long flags;
941         spin_lock_irqsave(&tty->ctrl_lock, flags);
942         if (!tty->stopped || tty->flow_stopped) {
943                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
944                 return;
945         }
946         tty->stopped = 0;
947         if (tty->link && tty->link->packet) {
948                 tty->ctrl_status &= ~TIOCPKT_STOP;
949                 tty->ctrl_status |= TIOCPKT_START;
950                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
951         }
952         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
953         if (tty->ops->start)
954                 (tty->ops->start)(tty);
955         /* If we have a running line discipline it may need kicking */
956         tty_wakeup(tty);
957 }
958
959 EXPORT_SYMBOL(start_tty);
960
961 /**
962  *      tty_read        -       read method for tty device files
963  *      @file: pointer to tty file
964  *      @buf: user buffer
965  *      @count: size of user buffer
966  *      @ppos: unused
967  *
968  *      Perform the read system call function on this terminal device. Checks
969  *      for hung up devices before calling the line discipline method.
970  *
971  *      Locking:
972  *              Locks the line discipline internally while needed. Multiple
973  *      read calls may be outstanding in parallel.
974  */
975
976 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
977                         loff_t *ppos)
978 {
979         int i;
980         struct tty_struct *tty = file_tty(file);
981         struct tty_ldisc *ld;
982
983         if (tty_paranoia_check(tty, file_inode(file), "tty_read"))
984                 return -EIO;
985         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
986                 return -EIO;
987
988         /* We want to wait for the line discipline to sort out in this
989            situation */
990         ld = tty_ldisc_ref_wait(tty);
991         if (ld->ops->read)
992                 i = (ld->ops->read)(tty, file, buf, count);
993         else
994                 i = -EIO;
995         tty_ldisc_deref(ld);
996
997         return i;
998 }
999
1000 void tty_write_unlock(struct tty_struct *tty)
1001         __releases(&tty->atomic_write_lock)
1002 {
1003         mutex_unlock(&tty->atomic_write_lock);
1004         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1005 }
1006
1007 int tty_write_lock(struct tty_struct *tty, int ndelay)
1008         __acquires(&tty->atomic_write_lock)
1009 {
1010         if (!mutex_trylock(&tty->atomic_write_lock)) {
1011                 if (ndelay)
1012                         return -EAGAIN;
1013                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1014                         return -ERESTARTSYS;
1015         }
1016         return 0;
1017 }
1018
1019 /*
1020  * Split writes up in sane blocksizes to avoid
1021  * denial-of-service type attacks
1022  */
1023 static inline ssize_t do_tty_write(
1024         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1025         struct tty_struct *tty,
1026         struct file *file,
1027         const char __user *buf,
1028         size_t count)
1029 {
1030         ssize_t ret, written = 0;
1031         unsigned int chunk;
1032
1033         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1034         if (ret < 0)
1035                 return ret;
1036
1037         /*
1038          * We chunk up writes into a temporary buffer. This
1039          * simplifies low-level drivers immensely, since they
1040          * don't have locking issues and user mode accesses.
1041          *
1042          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1043          * big chunk-size..
1044          *
1045          * The default chunk-size is 2kB, because the NTTY
1046          * layer has problems with bigger chunks. It will
1047          * claim to be able to handle more characters than
1048          * it actually does.
1049          *
1050          * FIXME: This can probably go away now except that 64K chunks
1051          * are too likely to fail unless switched to vmalloc...
1052          */
1053         chunk = 2048;
1054         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1055                 chunk = 65536;
1056         if (count < chunk)
1057                 chunk = count;
1058
1059         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1060         if (tty->write_cnt < chunk) {
1061                 unsigned char *buf_chunk;
1062
1063                 if (chunk < 1024)
1064                         chunk = 1024;
1065
1066                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1067                 if (!buf_chunk) {
1068                         ret = -ENOMEM;
1069                         goto out;
1070                 }
1071                 kfree(tty->write_buf);
1072                 tty->write_cnt = chunk;
1073                 tty->write_buf = buf_chunk;
1074         }
1075
1076         /* Do the write .. */
1077         for (;;) {
1078                 size_t size = count;
1079                 if (size > chunk)
1080                         size = chunk;
1081                 ret = -EFAULT;
1082                 if (copy_from_user(tty->write_buf, buf, size))
1083                         break;
1084                 ret = write(tty, file, tty->write_buf, size);
1085                 if (ret <= 0)
1086                         break;
1087                 written += ret;
1088                 buf += ret;
1089                 count -= ret;
1090                 if (!count)
1091                         break;
1092                 ret = -ERESTARTSYS;
1093                 if (signal_pending(current))
1094                         break;
1095                 cond_resched();
1096         }
1097         if (written)
1098                 ret = written;
1099 out:
1100         tty_write_unlock(tty);
1101         return ret;
1102 }
1103
1104 /**
1105  * tty_write_message - write a message to a certain tty, not just the console.
1106  * @tty: the destination tty_struct
1107  * @msg: the message to write
1108  *
1109  * This is used for messages that need to be redirected to a specific tty.
1110  * We don't put it into the syslog queue right now maybe in the future if
1111  * really needed.
1112  *
1113  * We must still hold the BTM and test the CLOSING flag for the moment.
1114  */
1115
1116 void tty_write_message(struct tty_struct *tty, char *msg)
1117 {
1118         if (tty) {
1119                 mutex_lock(&tty->atomic_write_lock);
1120                 tty_lock(tty);
1121                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1122                         tty_unlock(tty);
1123                         tty->ops->write(tty, msg, strlen(msg));
1124                 } else
1125                         tty_unlock(tty);
1126                 tty_write_unlock(tty);
1127         }
1128         return;
1129 }
1130
1131
1132 /**
1133  *      tty_write               -       write method for tty device file
1134  *      @file: tty file pointer
1135  *      @buf: user data to write
1136  *      @count: bytes to write
1137  *      @ppos: unused
1138  *
1139  *      Write data to a tty device via the line discipline.
1140  *
1141  *      Locking:
1142  *              Locks the line discipline as required
1143  *              Writes to the tty driver are serialized by the atomic_write_lock
1144  *      and are then processed in chunks to the device. The line discipline
1145  *      write method will not be invoked in parallel for each device.
1146  */
1147
1148 static ssize_t tty_write(struct file *file, const char __user *buf,
1149                                                 size_t count, loff_t *ppos)
1150 {
1151         struct tty_struct *tty = file_tty(file);
1152         struct tty_ldisc *ld;
1153         ssize_t ret;
1154
1155         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1156                 return -EIO;
1157         if (!tty || !tty->ops->write ||
1158                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1159                         return -EIO;
1160         /* Short term debug to catch buggy drivers */
1161         if (tty->ops->write_room == NULL)
1162                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1163                         tty->driver->name);
1164         ld = tty_ldisc_ref_wait(tty);
1165         if (!ld->ops->write)
1166                 ret = -EIO;
1167         else
1168                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1169         tty_ldisc_deref(ld);
1170         return ret;
1171 }
1172
1173 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1174                                                 size_t count, loff_t *ppos)
1175 {
1176         struct file *p = NULL;
1177
1178         spin_lock(&redirect_lock);
1179         if (redirect)
1180                 p = get_file(redirect);
1181         spin_unlock(&redirect_lock);
1182
1183         if (p) {
1184                 ssize_t res;
1185                 res = vfs_write(p, buf, count, &p->f_pos);
1186                 fput(p);
1187                 return res;
1188         }
1189         return tty_write(file, buf, count, ppos);
1190 }
1191
1192 static char ptychar[] = "pqrstuvwxyzabcde";
1193
1194 /**
1195  *      pty_line_name   -       generate name for a pty
1196  *      @driver: the tty driver in use
1197  *      @index: the minor number
1198  *      @p: output buffer of at least 6 bytes
1199  *
1200  *      Generate a name from a driver reference and write it to the output
1201  *      buffer.
1202  *
1203  *      Locking: None
1204  */
1205 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1206 {
1207         int i = index + driver->name_base;
1208         /* ->name is initialized to "ttyp", but "tty" is expected */
1209         sprintf(p, "%s%c%x",
1210                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1211                 ptychar[i >> 4 & 0xf], i & 0xf);
1212 }
1213
1214 /**
1215  *      tty_line_name   -       generate name for a tty
1216  *      @driver: the tty driver in use
1217  *      @index: the minor number
1218  *      @p: output buffer of at least 7 bytes
1219  *
1220  *      Generate a name from a driver reference and write it to the output
1221  *      buffer.
1222  *
1223  *      Locking: None
1224  */
1225 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1226 {
1227         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1228                 strcpy(p, driver->name);
1229         else
1230                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1231 }
1232
1233 /**
1234  *      tty_driver_lookup_tty() - find an existing tty, if any
1235  *      @driver: the driver for the tty
1236  *      @idx:    the minor number
1237  *
1238  *      Return the tty, if found or ERR_PTR() otherwise.
1239  *
1240  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1241  *      be held until the 'fast-open' is also done. Will change once we
1242  *      have refcounting in the driver and per driver locking
1243  */
1244 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1245                 struct inode *inode, int idx)
1246 {
1247         if (driver->ops->lookup)
1248                 return driver->ops->lookup(driver, inode, idx);
1249
1250         return driver->ttys[idx];
1251 }
1252
1253 /**
1254  *      tty_init_termios        -  helper for termios setup
1255  *      @tty: the tty to set up
1256  *
1257  *      Initialise the termios structures for this tty. Thus runs under
1258  *      the tty_mutex currently so we can be relaxed about ordering.
1259  */
1260
1261 int tty_init_termios(struct tty_struct *tty)
1262 {
1263         struct ktermios *tp;
1264         int idx = tty->index;
1265
1266         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1267                 tty->termios = tty->driver->init_termios;
1268         else {
1269                 /* Check for lazy saved data */
1270                 tp = tty->driver->termios[idx];
1271                 if (tp != NULL)
1272                         tty->termios = *tp;
1273                 else
1274                         tty->termios = tty->driver->init_termios;
1275         }
1276         /* Compatibility until drivers always set this */
1277         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1278         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1279         return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(tty_init_termios);
1282
1283 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1284 {
1285         int ret = tty_init_termios(tty);
1286         if (ret)
1287                 return ret;
1288
1289         tty_driver_kref_get(driver);
1290         tty->count++;
1291         driver->ttys[tty->index] = tty;
1292         return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296 /**
1297  *      tty_driver_install_tty() - install a tty entry in the driver
1298  *      @driver: the driver for the tty
1299  *      @tty: the tty
1300  *
1301  *      Install a tty object into the driver tables. The tty->index field
1302  *      will be set by the time this is called. This method is responsible
1303  *      for ensuring any need additional structures are allocated and
1304  *      configured.
1305  *
1306  *      Locking: tty_mutex for now
1307  */
1308 static int tty_driver_install_tty(struct tty_driver *driver,
1309                                                 struct tty_struct *tty)
1310 {
1311         return driver->ops->install ? driver->ops->install(driver, tty) :
1312                 tty_standard_install(driver, tty);
1313 }
1314
1315 /**
1316  *      tty_driver_remove_tty() - remove a tty from the driver tables
1317  *      @driver: the driver for the tty
1318  *      @idx:    the minor number
1319  *
1320  *      Remvoe a tty object from the driver tables. The tty->index field
1321  *      will be set by the time this is called.
1322  *
1323  *      Locking: tty_mutex for now
1324  */
1325 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1326 {
1327         if (driver->ops->remove)
1328                 driver->ops->remove(driver, tty);
1329         else
1330                 driver->ttys[tty->index] = NULL;
1331 }
1332
1333 /*
1334  *      tty_reopen()    - fast re-open of an open tty
1335  *      @tty    - the tty to open
1336  *
1337  *      Return 0 on success, -errno on error.
1338  *
1339  *      Locking: tty_mutex must be held from the time the tty was found
1340  *               till this open completes.
1341  */
1342 static int tty_reopen(struct tty_struct *tty)
1343 {
1344         struct tty_driver *driver = tty->driver;
1345
1346         if (test_bit(TTY_CLOSING, &tty->flags) ||
1347                         test_bit(TTY_HUPPING, &tty->flags) ||
1348                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1349                 return -EIO;
1350
1351         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1352             driver->subtype == PTY_TYPE_MASTER) {
1353                 /*
1354                  * special case for PTY masters: only one open permitted,
1355                  * and the slave side open count is incremented as well.
1356                  */
1357                 if (tty->count)
1358                         return -EIO;
1359
1360                 tty->link->count++;
1361         }
1362         tty->count++;
1363
1364         mutex_lock(&tty->ldisc_mutex);
1365         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1366         mutex_unlock(&tty->ldisc_mutex);
1367
1368         return 0;
1369 }
1370
1371 /**
1372  *      tty_init_dev            -       initialise a tty device
1373  *      @driver: tty driver we are opening a device on
1374  *      @idx: device index
1375  *      @ret_tty: returned tty structure
1376  *
1377  *      Prepare a tty device. This may not be a "new" clean device but
1378  *      could also be an active device. The pty drivers require special
1379  *      handling because of this.
1380  *
1381  *      Locking:
1382  *              The function is called under the tty_mutex, which
1383  *      protects us from the tty struct or driver itself going away.
1384  *
1385  *      On exit the tty device has the line discipline attached and
1386  *      a reference count of 1. If a pair was created for pty/tty use
1387  *      and the other was a pty master then it too has a reference count of 1.
1388  *
1389  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1390  * failed open.  The new code protects the open with a mutex, so it's
1391  * really quite straightforward.  The mutex locking can probably be
1392  * relaxed for the (most common) case of reopening a tty.
1393  */
1394
1395 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1396 {
1397         struct tty_struct *tty;
1398         int retval;
1399
1400         /*
1401          * First time open is complex, especially for PTY devices.
1402          * This code guarantees that either everything succeeds and the
1403          * TTY is ready for operation, or else the table slots are vacated
1404          * and the allocated memory released.  (Except that the termios
1405          * and locked termios may be retained.)
1406          */
1407
1408         if (!try_module_get(driver->owner))
1409                 return ERR_PTR(-ENODEV);
1410
1411         tty = alloc_tty_struct();
1412         if (!tty) {
1413                 retval = -ENOMEM;
1414                 goto err_module_put;
1415         }
1416         initialize_tty_struct(tty, driver, idx);
1417
1418         tty_lock(tty);
1419         retval = tty_driver_install_tty(driver, tty);
1420         if (retval < 0)
1421                 goto err_deinit_tty;
1422
1423         if (!tty->port)
1424                 tty->port = driver->ports[idx];
1425
1426         WARN_RATELIMIT(!tty->port,
1427                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1428                         __func__, tty->driver->name);
1429
1430         tty->port->itty = tty;
1431
1432         /*
1433          * Structures all installed ... call the ldisc open routines.
1434          * If we fail here just call release_tty to clean up.  No need
1435          * to decrement the use counts, as release_tty doesn't care.
1436          */
1437         retval = tty_ldisc_setup(tty, tty->link);
1438         if (retval)
1439                 goto err_release_tty;
1440         /* Return the tty locked so that it cannot vanish under the caller */
1441         return tty;
1442
1443 err_deinit_tty:
1444         tty_unlock(tty);
1445         deinitialize_tty_struct(tty);
1446         free_tty_struct(tty);
1447 err_module_put:
1448         module_put(driver->owner);
1449         return ERR_PTR(retval);
1450
1451         /* call the tty release_tty routine to clean out this slot */
1452 err_release_tty:
1453         tty_unlock(tty);
1454         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1455                                  "clearing slot %d\n", idx);
1456         release_tty(tty, idx);
1457         return ERR_PTR(retval);
1458 }
1459
1460 void tty_free_termios(struct tty_struct *tty)
1461 {
1462         struct ktermios *tp;
1463         int idx = tty->index;
1464
1465         /* If the port is going to reset then it has no termios to save */
1466         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1467                 return;
1468
1469         /* Stash the termios data */
1470         tp = tty->driver->termios[idx];
1471         if (tp == NULL) {
1472                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1473                 if (tp == NULL) {
1474                         pr_warn("tty: no memory to save termios state.\n");
1475                         return;
1476                 }
1477                 tty->driver->termios[idx] = tp;
1478         }
1479         *tp = tty->termios;
1480 }
1481 EXPORT_SYMBOL(tty_free_termios);
1482
1483
1484 /**
1485  *      release_one_tty         -       release tty structure memory
1486  *      @kref: kref of tty we are obliterating
1487  *
1488  *      Releases memory associated with a tty structure, and clears out the
1489  *      driver table slots. This function is called when a device is no longer
1490  *      in use. It also gets called when setup of a device fails.
1491  *
1492  *      Locking:
1493  *              takes the file list lock internally when working on the list
1494  *      of ttys that the driver keeps.
1495  *
1496  *      This method gets called from a work queue so that the driver private
1497  *      cleanup ops can sleep (needed for USB at least)
1498  */
1499 static void release_one_tty(struct work_struct *work)
1500 {
1501         struct tty_struct *tty =
1502                 container_of(work, struct tty_struct, hangup_work);
1503         struct tty_driver *driver = tty->driver;
1504
1505         if (tty->ops->cleanup)
1506                 tty->ops->cleanup(tty);
1507
1508         tty->magic = 0;
1509         tty_driver_kref_put(driver);
1510         module_put(driver->owner);
1511
1512         spin_lock(&tty_files_lock);
1513         list_del_init(&tty->tty_files);
1514         spin_unlock(&tty_files_lock);
1515
1516         put_pid(tty->pgrp);
1517         put_pid(tty->session);
1518         free_tty_struct(tty);
1519 }
1520
1521 static void queue_release_one_tty(struct kref *kref)
1522 {
1523         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1524
1525         /* The hangup queue is now free so we can reuse it rather than
1526            waste a chunk of memory for each port */
1527         INIT_WORK(&tty->hangup_work, release_one_tty);
1528         schedule_work(&tty->hangup_work);
1529 }
1530
1531 /**
1532  *      tty_kref_put            -       release a tty kref
1533  *      @tty: tty device
1534  *
1535  *      Release a reference to a tty device and if need be let the kref
1536  *      layer destruct the object for us
1537  */
1538
1539 void tty_kref_put(struct tty_struct *tty)
1540 {
1541         if (tty)
1542                 kref_put(&tty->kref, queue_release_one_tty);
1543 }
1544 EXPORT_SYMBOL(tty_kref_put);
1545
1546 /**
1547  *      release_tty             -       release tty structure memory
1548  *
1549  *      Release both @tty and a possible linked partner (think pty pair),
1550  *      and decrement the refcount of the backing module.
1551  *
1552  *      Locking:
1553  *              tty_mutex
1554  *              takes the file list lock internally when working on the list
1555  *      of ttys that the driver keeps.
1556  *
1557  */
1558 static void release_tty(struct tty_struct *tty, int idx)
1559 {
1560         /* This should always be true but check for the moment */
1561         WARN_ON(tty->index != idx);
1562         WARN_ON(!mutex_is_locked(&tty_mutex));
1563         if (tty->ops->shutdown)
1564                 tty->ops->shutdown(tty);
1565         tty_free_termios(tty);
1566         tty_driver_remove_tty(tty->driver, tty);
1567         tty->port->itty = NULL;
1568
1569         if (tty->link)
1570                 tty_kref_put(tty->link);
1571         tty_kref_put(tty);
1572 }
1573
1574 /**
1575  *      tty_release_checks - check a tty before real release
1576  *      @tty: tty to check
1577  *      @o_tty: link of @tty (if any)
1578  *      @idx: index of the tty
1579  *
1580  *      Performs some paranoid checking before true release of the @tty.
1581  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1582  */
1583 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1584                 int idx)
1585 {
1586 #ifdef TTY_PARANOIA_CHECK
1587         if (idx < 0 || idx >= tty->driver->num) {
1588                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1589                                 __func__, tty->name);
1590                 return -1;
1591         }
1592
1593         /* not much to check for devpts */
1594         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1595                 return 0;
1596
1597         if (tty != tty->driver->ttys[idx]) {
1598                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1599                                 __func__, idx, tty->name);
1600                 return -1;
1601         }
1602         if (tty->driver->other) {
1603                 if (o_tty != tty->driver->other->ttys[idx]) {
1604                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1605                                         __func__, idx, tty->name);
1606                         return -1;
1607                 }
1608                 if (o_tty->link != tty) {
1609                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1610                         return -1;
1611                 }
1612         }
1613 #endif
1614         return 0;
1615 }
1616
1617 /**
1618  *      tty_release             -       vfs callback for close
1619  *      @inode: inode of tty
1620  *      @filp: file pointer for handle to tty
1621  *
1622  *      Called the last time each file handle is closed that references
1623  *      this tty. There may however be several such references.
1624  *
1625  *      Locking:
1626  *              Takes bkl. See tty_release_dev
1627  *
1628  * Even releasing the tty structures is a tricky business.. We have
1629  * to be very careful that the structures are all released at the
1630  * same time, as interrupts might otherwise get the wrong pointers.
1631  *
1632  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1633  * lead to double frees or releasing memory still in use.
1634  */
1635
1636 int tty_release(struct inode *inode, struct file *filp)
1637 {
1638         struct tty_struct *tty = file_tty(filp);
1639         struct tty_struct *o_tty;
1640         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1641         int     idx;
1642         char    buf[64];
1643
1644         if (tty_paranoia_check(tty, inode, __func__))
1645                 return 0;
1646
1647         tty_lock(tty);
1648         check_tty_count(tty, __func__);
1649
1650         __tty_fasync(-1, filp, 0);
1651
1652         idx = tty->index;
1653         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1654                       tty->driver->subtype == PTY_TYPE_MASTER);
1655         /* Review: parallel close */
1656         o_tty = tty->link;
1657
1658         if (tty_release_checks(tty, o_tty, idx)) {
1659                 tty_unlock(tty);
1660                 return 0;
1661         }
1662
1663 #ifdef TTY_DEBUG_HANGUP
1664         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1665                         tty_name(tty, buf), tty->count);
1666 #endif
1667
1668         if (tty->ops->close)
1669                 tty->ops->close(tty, filp);
1670
1671         tty_unlock(tty);
1672         /*
1673          * Sanity check: if tty->count is going to zero, there shouldn't be
1674          * any waiters on tty->read_wait or tty->write_wait.  We test the
1675          * wait queues and kick everyone out _before_ actually starting to
1676          * close.  This ensures that we won't block while releasing the tty
1677          * structure.
1678          *
1679          * The test for the o_tty closing is necessary, since the master and
1680          * slave sides may close in any order.  If the slave side closes out
1681          * first, its count will be one, since the master side holds an open.
1682          * Thus this test wouldn't be triggered at the time the slave closes,
1683          * so we do it now.
1684          *
1685          * Note that it's possible for the tty to be opened again while we're
1686          * flushing out waiters.  By recalculating the closing flags before
1687          * each iteration we avoid any problems.
1688          */
1689         while (1) {
1690                 /* Guard against races with tty->count changes elsewhere and
1691                    opens on /dev/tty */
1692
1693                 mutex_lock(&tty_mutex);
1694                 tty_lock_pair(tty, o_tty);
1695                 tty_closing = tty->count <= 1;
1696                 o_tty_closing = o_tty &&
1697                         (o_tty->count <= (pty_master ? 1 : 0));
1698                 do_sleep = 0;
1699
1700                 if (tty_closing) {
1701                         if (waitqueue_active(&tty->read_wait)) {
1702                                 wake_up_poll(&tty->read_wait, POLLIN);
1703                                 do_sleep++;
1704                         }
1705                         if (waitqueue_active(&tty->write_wait)) {
1706                                 wake_up_poll(&tty->write_wait, POLLOUT);
1707                                 do_sleep++;
1708                         }
1709                 }
1710                 if (o_tty_closing) {
1711                         if (waitqueue_active(&o_tty->read_wait)) {
1712                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1713                                 do_sleep++;
1714                         }
1715                         if (waitqueue_active(&o_tty->write_wait)) {
1716                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1717                                 do_sleep++;
1718                         }
1719                 }
1720                 if (!do_sleep)
1721                         break;
1722
1723                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1724                                 __func__, tty_name(tty, buf));
1725                 tty_unlock_pair(tty, o_tty);
1726                 mutex_unlock(&tty_mutex);
1727                 schedule();
1728         }
1729
1730         /*
1731          * The closing flags are now consistent with the open counts on
1732          * both sides, and we've completed the last operation that could
1733          * block, so it's safe to proceed with closing.
1734          *
1735          * We must *not* drop the tty_mutex until we ensure that a further
1736          * entry into tty_open can not pick up this tty.
1737          */
1738         if (pty_master) {
1739                 if (--o_tty->count < 0) {
1740                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1741                                 __func__, o_tty->count, tty_name(o_tty, buf));
1742                         o_tty->count = 0;
1743                 }
1744         }
1745         if (--tty->count < 0) {
1746                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1747                                 __func__, tty->count, tty_name(tty, buf));
1748                 tty->count = 0;
1749         }
1750
1751         /*
1752          * We've decremented tty->count, so we need to remove this file
1753          * descriptor off the tty->tty_files list; this serves two
1754          * purposes:
1755          *  - check_tty_count sees the correct number of file descriptors
1756          *    associated with this tty.
1757          *  - do_tty_hangup no longer sees this file descriptor as
1758          *    something that needs to be handled for hangups.
1759          */
1760         tty_del_file(filp);
1761
1762         /*
1763          * Perform some housekeeping before deciding whether to return.
1764          *
1765          * Set the TTY_CLOSING flag if this was the last open.  In the
1766          * case of a pty we may have to wait around for the other side
1767          * to close, and TTY_CLOSING makes sure we can't be reopened.
1768          */
1769         if (tty_closing)
1770                 set_bit(TTY_CLOSING, &tty->flags);
1771         if (o_tty_closing)
1772                 set_bit(TTY_CLOSING, &o_tty->flags);
1773
1774         /*
1775          * If _either_ side is closing, make sure there aren't any
1776          * processes that still think tty or o_tty is their controlling
1777          * tty.
1778          */
1779         if (tty_closing || o_tty_closing) {
1780                 read_lock(&tasklist_lock);
1781                 session_clear_tty(tty->session);
1782                 if (o_tty)
1783                         session_clear_tty(o_tty->session);
1784                 read_unlock(&tasklist_lock);
1785         }
1786
1787         mutex_unlock(&tty_mutex);
1788         tty_unlock_pair(tty, o_tty);
1789         /* At this point the TTY_CLOSING flag should ensure a dead tty
1790            cannot be re-opened by a racing opener */
1791
1792         /* check whether both sides are closing ... */
1793         if (!tty_closing || (o_tty && !o_tty_closing))
1794                 return 0;
1795
1796 #ifdef TTY_DEBUG_HANGUP
1797         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1798 #endif
1799         /*
1800          * Ask the line discipline code to release its structures
1801          */
1802         tty_ldisc_release(tty, o_tty);
1803         /*
1804          * The release_tty function takes care of the details of clearing
1805          * the slots and preserving the termios structure. The tty_unlock_pair
1806          * should be safe as we keep a kref while the tty is locked (so the
1807          * unlock never unlocks a freed tty).
1808          */
1809         mutex_lock(&tty_mutex);
1810         release_tty(tty, idx);
1811         mutex_unlock(&tty_mutex);
1812
1813         return 0;
1814 }
1815
1816 /**
1817  *      tty_open_current_tty - get tty of current task for open
1818  *      @device: device number
1819  *      @filp: file pointer to tty
1820  *      @return: tty of the current task iff @device is /dev/tty
1821  *
1822  *      We cannot return driver and index like for the other nodes because
1823  *      devpts will not work then. It expects inodes to be from devpts FS.
1824  *
1825  *      We need to move to returning a refcounted object from all the lookup
1826  *      paths including this one.
1827  */
1828 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1829 {
1830         struct tty_struct *tty;
1831
1832         if (device != MKDEV(TTYAUX_MAJOR, 0))
1833                 return NULL;
1834
1835         tty = get_current_tty();
1836         if (!tty)
1837                 return ERR_PTR(-ENXIO);
1838
1839         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1840         /* noctty = 1; */
1841         tty_kref_put(tty);
1842         /* FIXME: we put a reference and return a TTY! */
1843         /* This is only safe because the caller holds tty_mutex */
1844         return tty;
1845 }
1846
1847 /**
1848  *      tty_lookup_driver - lookup a tty driver for a given device file
1849  *      @device: device number
1850  *      @filp: file pointer to tty
1851  *      @noctty: set if the device should not become a controlling tty
1852  *      @index: index for the device in the @return driver
1853  *      @return: driver for this inode (with increased refcount)
1854  *
1855  *      If @return is not erroneous, the caller is responsible to decrement the
1856  *      refcount by tty_driver_kref_put.
1857  *
1858  *      Locking: tty_mutex protects get_tty_driver
1859  */
1860 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1861                 int *noctty, int *index)
1862 {
1863         struct tty_driver *driver;
1864
1865         switch (device) {
1866 #ifdef CONFIG_VT
1867         case MKDEV(TTY_MAJOR, 0): {
1868                 extern struct tty_driver *console_driver;
1869                 driver = tty_driver_kref_get(console_driver);
1870                 *index = fg_console;
1871                 *noctty = 1;
1872                 break;
1873         }
1874 #endif
1875         case MKDEV(TTYAUX_MAJOR, 1): {
1876                 struct tty_driver *console_driver = console_device(index);
1877                 if (console_driver) {
1878                         driver = tty_driver_kref_get(console_driver);
1879                         if (driver) {
1880                                 /* Don't let /dev/console block */
1881                                 filp->f_flags |= O_NONBLOCK;
1882                                 *noctty = 1;
1883                                 break;
1884                         }
1885                 }
1886                 return ERR_PTR(-ENODEV);
1887         }
1888         default:
1889                 driver = get_tty_driver(device, index);
1890                 if (!driver)
1891                         return ERR_PTR(-ENODEV);
1892                 break;
1893         }
1894         return driver;
1895 }
1896
1897 /**
1898  *      tty_open                -       open a tty device
1899  *      @inode: inode of device file
1900  *      @filp: file pointer to tty
1901  *
1902  *      tty_open and tty_release keep up the tty count that contains the
1903  *      number of opens done on a tty. We cannot use the inode-count, as
1904  *      different inodes might point to the same tty.
1905  *
1906  *      Open-counting is needed for pty masters, as well as for keeping
1907  *      track of serial lines: DTR is dropped when the last close happens.
1908  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1909  *
1910  *      The termios state of a pty is reset on first open so that
1911  *      settings don't persist across reuse.
1912  *
1913  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1914  *               tty->count should protect the rest.
1915  *               ->siglock protects ->signal/->sighand
1916  *
1917  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1918  *      tty_mutex
1919  */
1920
1921 static int tty_open(struct inode *inode, struct file *filp)
1922 {
1923         struct tty_struct *tty;
1924         int noctty, retval;
1925         struct tty_driver *driver = NULL;
1926         int index;
1927         dev_t device = inode->i_rdev;
1928         unsigned saved_flags = filp->f_flags;
1929
1930         nonseekable_open(inode, filp);
1931
1932 retry_open:
1933         retval = tty_alloc_file(filp);
1934         if (retval)
1935                 return -ENOMEM;
1936
1937         noctty = filp->f_flags & O_NOCTTY;
1938         index  = -1;
1939         retval = 0;
1940
1941         mutex_lock(&tty_mutex);
1942         /* This is protected by the tty_mutex */
1943         tty = tty_open_current_tty(device, filp);
1944         if (IS_ERR(tty)) {
1945                 retval = PTR_ERR(tty);
1946                 goto err_unlock;
1947         } else if (!tty) {
1948                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1949                 if (IS_ERR(driver)) {
1950                         retval = PTR_ERR(driver);
1951                         goto err_unlock;
1952                 }
1953
1954                 /* check whether we're reopening an existing tty */
1955                 tty = tty_driver_lookup_tty(driver, inode, index);
1956                 if (IS_ERR(tty)) {
1957                         retval = PTR_ERR(tty);
1958                         goto err_unlock;
1959                 }
1960         }
1961
1962         if (tty) {
1963                 tty_lock(tty);
1964                 retval = tty_reopen(tty);
1965                 if (retval < 0) {
1966                         tty_unlock(tty);
1967                         tty = ERR_PTR(retval);
1968                 }
1969         } else  /* Returns with the tty_lock held for now */
1970                 tty = tty_init_dev(driver, index);
1971
1972         mutex_unlock(&tty_mutex);
1973         if (driver)
1974                 tty_driver_kref_put(driver);
1975         if (IS_ERR(tty)) {
1976                 retval = PTR_ERR(tty);
1977                 goto err_file;
1978         }
1979
1980         tty_add_file(tty, filp);
1981
1982         check_tty_count(tty, __func__);
1983         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1984             tty->driver->subtype == PTY_TYPE_MASTER)
1985                 noctty = 1;
1986 #ifdef TTY_DEBUG_HANGUP
1987         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1988 #endif
1989         if (tty->ops->open)
1990                 retval = tty->ops->open(tty, filp);
1991         else
1992                 retval = -ENODEV;
1993         filp->f_flags = saved_flags;
1994
1995         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1996                                                 !capable(CAP_SYS_ADMIN))
1997                 retval = -EBUSY;
1998
1999         if (retval) {
2000 #ifdef TTY_DEBUG_HANGUP
2001                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2002                                 retval, tty->name);
2003 #endif
2004                 tty_unlock(tty); /* need to call tty_release without BTM */
2005                 tty_release(inode, filp);
2006                 if (retval != -ERESTARTSYS)
2007                         return retval;
2008
2009                 if (signal_pending(current))
2010                         return retval;
2011
2012                 schedule();
2013                 /*
2014                  * Need to reset f_op in case a hangup happened.
2015                  */
2016                 if (filp->f_op == &hung_up_tty_fops)
2017                         filp->f_op = &tty_fops;
2018                 goto retry_open;
2019         }
2020         tty_unlock(tty);
2021
2022
2023         mutex_lock(&tty_mutex);
2024         tty_lock(tty);
2025         spin_lock_irq(&current->sighand->siglock);
2026         if (!noctty &&
2027             current->signal->leader &&
2028             !current->signal->tty &&
2029             tty->session == NULL)
2030                 __proc_set_tty(current, tty);
2031         spin_unlock_irq(&current->sighand->siglock);
2032         tty_unlock(tty);
2033         mutex_unlock(&tty_mutex);
2034         return 0;
2035 err_unlock:
2036         mutex_unlock(&tty_mutex);
2037         /* after locks to avoid deadlock */
2038         if (!IS_ERR_OR_NULL(driver))
2039                 tty_driver_kref_put(driver);
2040 err_file:
2041         tty_free_file(filp);
2042         return retval;
2043 }
2044
2045
2046
2047 /**
2048  *      tty_poll        -       check tty status
2049  *      @filp: file being polled
2050  *      @wait: poll wait structures to update
2051  *
2052  *      Call the line discipline polling method to obtain the poll
2053  *      status of the device.
2054  *
2055  *      Locking: locks called line discipline but ldisc poll method
2056  *      may be re-entered freely by other callers.
2057  */
2058
2059 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2060 {
2061         struct tty_struct *tty = file_tty(filp);
2062         struct tty_ldisc *ld;
2063         int ret = 0;
2064
2065         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2066                 return 0;
2067
2068         ld = tty_ldisc_ref_wait(tty);
2069         if (ld->ops->poll)
2070                 ret = (ld->ops->poll)(tty, filp, wait);
2071         tty_ldisc_deref(ld);
2072         return ret;
2073 }
2074
2075 static int __tty_fasync(int fd, struct file *filp, int on)
2076 {
2077         struct tty_struct *tty = file_tty(filp);
2078         unsigned long flags;
2079         int retval = 0;
2080
2081         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2082                 goto out;
2083
2084         retval = fasync_helper(fd, filp, on, &tty->fasync);
2085         if (retval <= 0)
2086                 goto out;
2087
2088         if (on) {
2089                 enum pid_type type;
2090                 struct pid *pid;
2091                 if (!waitqueue_active(&tty->read_wait))
2092                         tty->minimum_to_wake = 1;
2093                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2094                 if (tty->pgrp) {
2095                         pid = tty->pgrp;
2096                         type = PIDTYPE_PGID;
2097                 } else {
2098                         pid = task_pid(current);
2099                         type = PIDTYPE_PID;
2100                 }
2101                 get_pid(pid);
2102                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2103                 retval = __f_setown(filp, pid, type, 0);
2104                 put_pid(pid);
2105                 if (retval)
2106                         goto out;
2107         } else {
2108                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2109                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2110         }
2111         retval = 0;
2112 out:
2113         return retval;
2114 }
2115
2116 static int tty_fasync(int fd, struct file *filp, int on)
2117 {
2118         struct tty_struct *tty = file_tty(filp);
2119         int retval;
2120
2121         tty_lock(tty);
2122         retval = __tty_fasync(fd, filp, on);
2123         tty_unlock(tty);
2124
2125         return retval;
2126 }
2127
2128 /**
2129  *      tiocsti                 -       fake input character
2130  *      @tty: tty to fake input into
2131  *      @p: pointer to character
2132  *
2133  *      Fake input to a tty device. Does the necessary locking and
2134  *      input management.
2135  *
2136  *      FIXME: does not honour flow control ??
2137  *
2138  *      Locking:
2139  *              Called functions take tty_ldisc_lock
2140  *              current->signal->tty check is safe without locks
2141  *
2142  *      FIXME: may race normal receive processing
2143  */
2144
2145 static int tiocsti(struct tty_struct *tty, char __user *p)
2146 {
2147         char ch, mbz = 0;
2148         struct tty_ldisc *ld;
2149
2150         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2151                 return -EPERM;
2152         if (get_user(ch, p))
2153                 return -EFAULT;
2154         tty_audit_tiocsti(tty, ch);
2155         ld = tty_ldisc_ref_wait(tty);
2156         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2157         tty_ldisc_deref(ld);
2158         return 0;
2159 }
2160
2161 /**
2162  *      tiocgwinsz              -       implement window query ioctl
2163  *      @tty; tty
2164  *      @arg: user buffer for result
2165  *
2166  *      Copies the kernel idea of the window size into the user buffer.
2167  *
2168  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2169  *              is consistent.
2170  */
2171
2172 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2173 {
2174         int err;
2175
2176         mutex_lock(&tty->termios_mutex);
2177         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2178         mutex_unlock(&tty->termios_mutex);
2179
2180         return err ? -EFAULT: 0;
2181 }
2182
2183 /**
2184  *      tty_do_resize           -       resize event
2185  *      @tty: tty being resized
2186  *      @rows: rows (character)
2187  *      @cols: cols (character)
2188  *
2189  *      Update the termios variables and send the necessary signals to
2190  *      peform a terminal resize correctly
2191  */
2192
2193 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2194 {
2195         struct pid *pgrp;
2196         unsigned long flags;
2197
2198         /* Lock the tty */
2199         mutex_lock(&tty->termios_mutex);
2200         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2201                 goto done;
2202         /* Get the PID values and reference them so we can
2203            avoid holding the tty ctrl lock while sending signals */
2204         spin_lock_irqsave(&tty->ctrl_lock, flags);
2205         pgrp = get_pid(tty->pgrp);
2206         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2207
2208         if (pgrp)
2209                 kill_pgrp(pgrp, SIGWINCH, 1);
2210         put_pid(pgrp);
2211
2212         tty->winsize = *ws;
2213 done:
2214         mutex_unlock(&tty->termios_mutex);
2215         return 0;
2216 }
2217 EXPORT_SYMBOL(tty_do_resize);
2218
2219 /**
2220  *      tiocswinsz              -       implement window size set ioctl
2221  *      @tty; tty side of tty
2222  *      @arg: user buffer for result
2223  *
2224  *      Copies the user idea of the window size to the kernel. Traditionally
2225  *      this is just advisory information but for the Linux console it
2226  *      actually has driver level meaning and triggers a VC resize.
2227  *
2228  *      Locking:
2229  *              Driver dependent. The default do_resize method takes the
2230  *      tty termios mutex and ctrl_lock. The console takes its own lock
2231  *      then calls into the default method.
2232  */
2233
2234 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2235 {
2236         struct winsize tmp_ws;
2237         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2238                 return -EFAULT;
2239
2240         if (tty->ops->resize)
2241                 return tty->ops->resize(tty, &tmp_ws);
2242         else
2243                 return tty_do_resize(tty, &tmp_ws);
2244 }
2245
2246 /**
2247  *      tioccons        -       allow admin to move logical console
2248  *      @file: the file to become console
2249  *
2250  *      Allow the administrator to move the redirected console device
2251  *
2252  *      Locking: uses redirect_lock to guard the redirect information
2253  */
2254
2255 static int tioccons(struct file *file)
2256 {
2257         if (!capable(CAP_SYS_ADMIN))
2258                 return -EPERM;
2259         if (file->f_op->write == redirected_tty_write) {
2260                 struct file *f;
2261                 spin_lock(&redirect_lock);
2262                 f = redirect;
2263                 redirect = NULL;
2264                 spin_unlock(&redirect_lock);
2265                 if (f)
2266                         fput(f);
2267                 return 0;
2268         }
2269         spin_lock(&redirect_lock);
2270         if (redirect) {
2271                 spin_unlock(&redirect_lock);
2272                 return -EBUSY;
2273         }
2274         redirect = get_file(file);
2275         spin_unlock(&redirect_lock);
2276         return 0;
2277 }
2278
2279 /**
2280  *      fionbio         -       non blocking ioctl
2281  *      @file: file to set blocking value
2282  *      @p: user parameter
2283  *
2284  *      Historical tty interfaces had a blocking control ioctl before
2285  *      the generic functionality existed. This piece of history is preserved
2286  *      in the expected tty API of posix OS's.
2287  *
2288  *      Locking: none, the open file handle ensures it won't go away.
2289  */
2290
2291 static int fionbio(struct file *file, int __user *p)
2292 {
2293         int nonblock;
2294
2295         if (get_user(nonblock, p))
2296                 return -EFAULT;
2297
2298         spin_lock(&file->f_lock);
2299         if (nonblock)
2300                 file->f_flags |= O_NONBLOCK;
2301         else
2302                 file->f_flags &= ~O_NONBLOCK;
2303         spin_unlock(&file->f_lock);
2304         return 0;
2305 }
2306
2307 /**
2308  *      tiocsctty       -       set controlling tty
2309  *      @tty: tty structure
2310  *      @arg: user argument
2311  *
2312  *      This ioctl is used to manage job control. It permits a session
2313  *      leader to set this tty as the controlling tty for the session.
2314  *
2315  *      Locking:
2316  *              Takes tty_mutex() to protect tty instance
2317  *              Takes tasklist_lock internally to walk sessions
2318  *              Takes ->siglock() when updating signal->tty
2319  */
2320
2321 static int tiocsctty(struct tty_struct *tty, int arg)
2322 {
2323         int ret = 0;
2324         if (current->signal->leader && (task_session(current) == tty->session))
2325                 return ret;
2326
2327         mutex_lock(&tty_mutex);
2328         /*
2329          * The process must be a session leader and
2330          * not have a controlling tty already.
2331          */
2332         if (!current->signal->leader || current->signal->tty) {
2333                 ret = -EPERM;
2334                 goto unlock;
2335         }
2336
2337         if (tty->session) {
2338                 /*
2339                  * This tty is already the controlling
2340                  * tty for another session group!
2341                  */
2342                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2343                         /*
2344                          * Steal it away
2345                          */
2346                         read_lock(&tasklist_lock);
2347                         session_clear_tty(tty->session);
2348                         read_unlock(&tasklist_lock);
2349                 } else {
2350                         ret = -EPERM;
2351                         goto unlock;
2352                 }
2353         }
2354         proc_set_tty(current, tty);
2355 unlock:
2356         mutex_unlock(&tty_mutex);
2357         return ret;
2358 }
2359
2360 /**
2361  *      tty_get_pgrp    -       return a ref counted pgrp pid
2362  *      @tty: tty to read
2363  *
2364  *      Returns a refcounted instance of the pid struct for the process
2365  *      group controlling the tty.
2366  */
2367
2368 struct pid *tty_get_pgrp(struct tty_struct *tty)
2369 {
2370         unsigned long flags;
2371         struct pid *pgrp;
2372
2373         spin_lock_irqsave(&tty->ctrl_lock, flags);
2374         pgrp = get_pid(tty->pgrp);
2375         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2376
2377         return pgrp;
2378 }
2379 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2380
2381 /**
2382  *      tiocgpgrp               -       get process group
2383  *      @tty: tty passed by user
2384  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2385  *      @p: returned pid
2386  *
2387  *      Obtain the process group of the tty. If there is no process group
2388  *      return an error.
2389  *
2390  *      Locking: none. Reference to current->signal->tty is safe.
2391  */
2392
2393 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2394 {
2395         struct pid *pid;
2396         int ret;
2397         /*
2398          * (tty == real_tty) is a cheap way of
2399          * testing if the tty is NOT a master pty.
2400          */
2401         if (tty == real_tty && current->signal->tty != real_tty)
2402                 return -ENOTTY;
2403         pid = tty_get_pgrp(real_tty);
2404         ret =  put_user(pid_vnr(pid), p);
2405         put_pid(pid);
2406         return ret;
2407 }
2408
2409 /**
2410  *      tiocspgrp               -       attempt to set process group
2411  *      @tty: tty passed by user
2412  *      @real_tty: tty side device matching tty passed by user
2413  *      @p: pid pointer
2414  *
2415  *      Set the process group of the tty to the session passed. Only
2416  *      permitted where the tty session is our session.
2417  *
2418  *      Locking: RCU, ctrl lock
2419  */
2420
2421 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2422 {
2423         struct pid *pgrp;
2424         pid_t pgrp_nr;
2425         int retval = tty_check_change(real_tty);
2426         unsigned long flags;
2427
2428         if (retval == -EIO)
2429                 return -ENOTTY;
2430         if (retval)
2431                 return retval;
2432         if (!current->signal->tty ||
2433             (current->signal->tty != real_tty) ||
2434             (real_tty->session != task_session(current)))
2435                 return -ENOTTY;
2436         if (get_user(pgrp_nr, p))
2437                 return -EFAULT;
2438         if (pgrp_nr < 0)
2439                 return -EINVAL;
2440         rcu_read_lock();
2441         pgrp = find_vpid(pgrp_nr);
2442         retval = -ESRCH;
2443         if (!pgrp)
2444                 goto out_unlock;
2445         retval = -EPERM;
2446         if (session_of_pgrp(pgrp) != task_session(current))
2447                 goto out_unlock;
2448         retval = 0;
2449         spin_lock_irqsave(&tty->ctrl_lock, flags);
2450         put_pid(real_tty->pgrp);
2451         real_tty->pgrp = get_pid(pgrp);
2452         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2453 out_unlock:
2454         rcu_read_unlock();
2455         return retval;
2456 }
2457
2458 /**
2459  *      tiocgsid                -       get session id
2460  *      @tty: tty passed by user
2461  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2462  *      @p: pointer to returned session id
2463  *
2464  *      Obtain the session id of the tty. If there is no session
2465  *      return an error.
2466  *
2467  *      Locking: none. Reference to current->signal->tty is safe.
2468  */
2469
2470 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2471 {
2472         /*
2473          * (tty == real_tty) is a cheap way of
2474          * testing if the tty is NOT a master pty.
2475         */
2476         if (tty == real_tty && current->signal->tty != real_tty)
2477                 return -ENOTTY;
2478         if (!real_tty->session)
2479                 return -ENOTTY;
2480         return put_user(pid_vnr(real_tty->session), p);
2481 }
2482
2483 /**
2484  *      tiocsetd        -       set line discipline
2485  *      @tty: tty device
2486  *      @p: pointer to user data
2487  *
2488  *      Set the line discipline according to user request.
2489  *
2490  *      Locking: see tty_set_ldisc, this function is just a helper
2491  */
2492
2493 static int tiocsetd(struct tty_struct *tty, int __user *p)
2494 {
2495         int ldisc;
2496         int ret;
2497
2498         if (get_user(ldisc, p))
2499                 return -EFAULT;
2500
2501         ret = tty_set_ldisc(tty, ldisc);
2502
2503         return ret;
2504 }
2505
2506 /**
2507  *      send_break      -       performed time break
2508  *      @tty: device to break on
2509  *      @duration: timeout in mS
2510  *
2511  *      Perform a timed break on hardware that lacks its own driver level
2512  *      timed break functionality.
2513  *
2514  *      Locking:
2515  *              atomic_write_lock serializes
2516  *
2517  */
2518
2519 static int send_break(struct tty_struct *tty, unsigned int duration)
2520 {
2521         int retval;
2522
2523         if (tty->ops->break_ctl == NULL)
2524                 return 0;
2525
2526         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2527                 retval = tty->ops->break_ctl(tty, duration);
2528         else {
2529                 /* Do the work ourselves */
2530                 if (tty_write_lock(tty, 0) < 0)
2531                         return -EINTR;
2532                 retval = tty->ops->break_ctl(tty, -1);
2533                 if (retval)
2534                         goto out;
2535                 if (!signal_pending(current))
2536                         msleep_interruptible(duration);
2537                 retval = tty->ops->break_ctl(tty, 0);
2538 out:
2539                 tty_write_unlock(tty);
2540                 if (signal_pending(current))
2541                         retval = -EINTR;
2542         }
2543         return retval;
2544 }
2545
2546 /**
2547  *      tty_tiocmget            -       get modem status
2548  *      @tty: tty device
2549  *      @file: user file pointer
2550  *      @p: pointer to result
2551  *
2552  *      Obtain the modem status bits from the tty driver if the feature
2553  *      is supported. Return -EINVAL if it is not available.
2554  *
2555  *      Locking: none (up to the driver)
2556  */
2557
2558 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2559 {
2560         int retval = -EINVAL;
2561
2562         if (tty->ops->tiocmget) {
2563                 retval = tty->ops->tiocmget(tty);
2564
2565                 if (retval >= 0)
2566                         retval = put_user(retval, p);
2567         }
2568         return retval;
2569 }
2570
2571 /**
2572  *      tty_tiocmset            -       set modem status
2573  *      @tty: tty device
2574  *      @cmd: command - clear bits, set bits or set all
2575  *      @p: pointer to desired bits
2576  *
2577  *      Set the modem status bits from the tty driver if the feature
2578  *      is supported. Return -EINVAL if it is not available.
2579  *
2580  *      Locking: none (up to the driver)
2581  */
2582
2583 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2584              unsigned __user *p)
2585 {
2586         int retval;
2587         unsigned int set, clear, val;
2588
2589         if (tty->ops->tiocmset == NULL)
2590                 return -EINVAL;
2591
2592         retval = get_user(val, p);
2593         if (retval)
2594                 return retval;
2595         set = clear = 0;
2596         switch (cmd) {
2597         case TIOCMBIS:
2598                 set = val;
2599                 break;
2600         case TIOCMBIC:
2601                 clear = val;
2602                 break;
2603         case TIOCMSET:
2604                 set = val;
2605                 clear = ~val;
2606                 break;
2607         }
2608         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2609         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2610         return tty->ops->tiocmset(tty, set, clear);
2611 }
2612
2613 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2614 {
2615         int retval = -EINVAL;
2616         struct serial_icounter_struct icount;
2617         memset(&icount, 0, sizeof(icount));
2618         if (tty->ops->get_icount)
2619                 retval = tty->ops->get_icount(tty, &icount);
2620         if (retval != 0)
2621                 return retval;
2622         if (copy_to_user(arg, &icount, sizeof(icount)))
2623                 return -EFAULT;
2624         return 0;
2625 }
2626
2627 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2628 {
2629         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2630             tty->driver->subtype == PTY_TYPE_MASTER)
2631                 tty = tty->link;
2632         return tty;
2633 }
2634 EXPORT_SYMBOL(tty_pair_get_tty);
2635
2636 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2637 {
2638         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2639             tty->driver->subtype == PTY_TYPE_MASTER)
2640             return tty;
2641         return tty->link;
2642 }
2643 EXPORT_SYMBOL(tty_pair_get_pty);
2644
2645 /*
2646  * Split this up, as gcc can choke on it otherwise..
2647  */
2648 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2649 {
2650         struct tty_struct *tty = file_tty(file);
2651         struct tty_struct *real_tty;
2652         void __user *p = (void __user *)arg;
2653         int retval;
2654         struct tty_ldisc *ld;
2655
2656         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2657                 return -EINVAL;
2658
2659         real_tty = tty_pair_get_tty(tty);
2660
2661         /*
2662          * Factor out some common prep work
2663          */
2664         switch (cmd) {
2665         case TIOCSETD:
2666         case TIOCSBRK:
2667         case TIOCCBRK:
2668         case TCSBRK:
2669         case TCSBRKP:
2670                 retval = tty_check_change(tty);
2671                 if (retval)
2672                         return retval;
2673                 if (cmd != TIOCCBRK) {
2674                         tty_wait_until_sent(tty, 0);
2675                         if (signal_pending(current))
2676                                 return -EINTR;
2677                 }
2678                 break;
2679         }
2680
2681         /*
2682          *      Now do the stuff.
2683          */
2684         switch (cmd) {
2685         case TIOCSTI:
2686                 return tiocsti(tty, p);
2687         case TIOCGWINSZ:
2688                 return tiocgwinsz(real_tty, p);
2689         case TIOCSWINSZ:
2690                 return tiocswinsz(real_tty, p);
2691         case TIOCCONS:
2692                 return real_tty != tty ? -EINVAL : tioccons(file);
2693         case FIONBIO:
2694                 return fionbio(file, p);
2695         case TIOCEXCL:
2696                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2697                 return 0;
2698         case TIOCNXCL:
2699                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2700                 return 0;
2701         case TIOCGEXCL:
2702         {
2703                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2704                 return put_user(excl, (int __user *)p);
2705         }
2706         case TIOCNOTTY:
2707                 if (current->signal->tty != tty)
2708                         return -ENOTTY;
2709                 no_tty();
2710                 return 0;
2711         case TIOCSCTTY:
2712                 return tiocsctty(tty, arg);
2713         case TIOCGPGRP:
2714                 return tiocgpgrp(tty, real_tty, p);
2715         case TIOCSPGRP:
2716                 return tiocspgrp(tty, real_tty, p);
2717         case TIOCGSID:
2718                 return tiocgsid(tty, real_tty, p);
2719         case TIOCGETD:
2720                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2721         case TIOCSETD:
2722                 return tiocsetd(tty, p);
2723         case TIOCVHANGUP:
2724                 if (!capable(CAP_SYS_ADMIN))
2725                         return -EPERM;
2726                 tty_vhangup(tty);
2727                 return 0;
2728         case TIOCGDEV:
2729         {
2730                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2731                 return put_user(ret, (unsigned int __user *)p);
2732         }
2733         /*
2734          * Break handling
2735          */
2736         case TIOCSBRK:  /* Turn break on, unconditionally */
2737                 if (tty->ops->break_ctl)
2738                         return tty->ops->break_ctl(tty, -1);
2739                 return 0;
2740         case TIOCCBRK:  /* Turn break off, unconditionally */
2741                 if (tty->ops->break_ctl)
2742                         return tty->ops->break_ctl(tty, 0);
2743                 return 0;
2744         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2745                 /* non-zero arg means wait for all output data
2746                  * to be sent (performed above) but don't send break.
2747                  * This is used by the tcdrain() termios function.
2748                  */
2749                 if (!arg)
2750                         return send_break(tty, 250);
2751                 return 0;
2752         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2753                 return send_break(tty, arg ? arg*100 : 250);
2754
2755         case TIOCMGET:
2756                 return tty_tiocmget(tty, p);
2757         case TIOCMSET:
2758         case TIOCMBIC:
2759         case TIOCMBIS:
2760                 return tty_tiocmset(tty, cmd, p);
2761         case TIOCGICOUNT:
2762                 retval = tty_tiocgicount(tty, p);
2763                 /* For the moment allow fall through to the old method */
2764                 if (retval != -EINVAL)
2765                         return retval;
2766                 break;
2767         case TCFLSH:
2768                 switch (arg) {
2769                 case TCIFLUSH:
2770                 case TCIOFLUSH:
2771                 /* flush tty buffer and allow ldisc to process ioctl */
2772                         tty_buffer_flush(tty);
2773                         break;
2774                 }
2775                 break;
2776         }
2777         if (tty->ops->ioctl) {
2778                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2779                 if (retval != -ENOIOCTLCMD)
2780                         return retval;
2781         }
2782         ld = tty_ldisc_ref_wait(tty);
2783         retval = -EINVAL;
2784         if (ld->ops->ioctl) {
2785                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2786                 if (retval == -ENOIOCTLCMD)
2787                         retval = -ENOTTY;
2788         }
2789         tty_ldisc_deref(ld);
2790         return retval;
2791 }
2792
2793 #ifdef CONFIG_COMPAT
2794 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2795                                 unsigned long arg)
2796 {
2797         struct tty_struct *tty = file_tty(file);
2798         struct tty_ldisc *ld;
2799         int retval = -ENOIOCTLCMD;
2800
2801         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2802                 return -EINVAL;
2803
2804         if (tty->ops->compat_ioctl) {
2805                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2806                 if (retval != -ENOIOCTLCMD)
2807                         return retval;
2808         }
2809
2810         ld = tty_ldisc_ref_wait(tty);
2811         if (ld->ops->compat_ioctl)
2812                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2813         else
2814                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2815         tty_ldisc_deref(ld);
2816
2817         return retval;
2818 }
2819 #endif
2820
2821 static int this_tty(const void *t, struct file *file, unsigned fd)
2822 {
2823         if (likely(file->f_op->read != tty_read))
2824                 return 0;
2825         return file_tty(file) != t ? 0 : fd + 1;
2826 }
2827         
2828 /*
2829  * This implements the "Secure Attention Key" ---  the idea is to
2830  * prevent trojan horses by killing all processes associated with this
2831  * tty when the user hits the "Secure Attention Key".  Required for
2832  * super-paranoid applications --- see the Orange Book for more details.
2833  *
2834  * This code could be nicer; ideally it should send a HUP, wait a few
2835  * seconds, then send a INT, and then a KILL signal.  But you then
2836  * have to coordinate with the init process, since all processes associated
2837  * with the current tty must be dead before the new getty is allowed
2838  * to spawn.
2839  *
2840  * Now, if it would be correct ;-/ The current code has a nasty hole -
2841  * it doesn't catch files in flight. We may send the descriptor to ourselves
2842  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2843  *
2844  * Nasty bug: do_SAK is being called in interrupt context.  This can
2845  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2846  */
2847 void __do_SAK(struct tty_struct *tty)
2848 {
2849 #ifdef TTY_SOFT_SAK
2850         tty_hangup(tty);
2851 #else
2852         struct task_struct *g, *p;
2853         struct pid *session;
2854         int             i;
2855
2856         if (!tty)
2857                 return;
2858         session = tty->session;
2859
2860         tty_ldisc_flush(tty);
2861
2862         tty_driver_flush_buffer(tty);
2863
2864         read_lock(&tasklist_lock);
2865         /* Kill the entire session */
2866         do_each_pid_task(session, PIDTYPE_SID, p) {
2867                 printk(KERN_NOTICE "SAK: killed process %d"
2868                         " (%s): task_session(p)==tty->session\n",
2869                         task_pid_nr(p), p->comm);
2870                 send_sig(SIGKILL, p, 1);
2871         } while_each_pid_task(session, PIDTYPE_SID, p);
2872         /* Now kill any processes that happen to have the
2873          * tty open.
2874          */
2875         do_each_thread(g, p) {
2876                 if (p->signal->tty == tty) {
2877                         printk(KERN_NOTICE "SAK: killed process %d"
2878                             " (%s): task_session(p)==tty->session\n",
2879                             task_pid_nr(p), p->comm);
2880                         send_sig(SIGKILL, p, 1);
2881                         continue;
2882                 }
2883                 task_lock(p);
2884                 i = iterate_fd(p->files, 0, this_tty, tty);
2885                 if (i != 0) {
2886                         printk(KERN_NOTICE "SAK: killed process %d"
2887                             " (%s): fd#%d opened to the tty\n",
2888                                     task_pid_nr(p), p->comm, i - 1);
2889                         force_sig(SIGKILL, p);
2890                 }
2891                 task_unlock(p);
2892         } while_each_thread(g, p);
2893         read_unlock(&tasklist_lock);
2894 #endif
2895 }
2896
2897 static void do_SAK_work(struct work_struct *work)
2898 {
2899         struct tty_struct *tty =
2900                 container_of(work, struct tty_struct, SAK_work);
2901         __do_SAK(tty);
2902 }
2903
2904 /*
2905  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2906  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2907  * the values which we write to it will be identical to the values which it
2908  * already has. --akpm
2909  */
2910 void do_SAK(struct tty_struct *tty)
2911 {
2912         if (!tty)
2913                 return;
2914         schedule_work(&tty->SAK_work);
2915 }
2916
2917 EXPORT_SYMBOL(do_SAK);
2918
2919 static int dev_match_devt(struct device *dev, const void *data)
2920 {
2921         const dev_t *devt = data;
2922         return dev->devt == *devt;
2923 }
2924
2925 /* Must put_device() after it's unused! */
2926 static struct device *tty_get_device(struct tty_struct *tty)
2927 {
2928         dev_t devt = tty_devnum(tty);
2929         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2930 }
2931
2932
2933 /**
2934  *      initialize_tty_struct
2935  *      @tty: tty to initialize
2936  *
2937  *      This subroutine initializes a tty structure that has been newly
2938  *      allocated.
2939  *
2940  *      Locking: none - tty in question must not be exposed at this point
2941  */
2942
2943 void initialize_tty_struct(struct tty_struct *tty,
2944                 struct tty_driver *driver, int idx)
2945 {
2946         memset(tty, 0, sizeof(struct tty_struct));
2947         kref_init(&tty->kref);
2948         tty->magic = TTY_MAGIC;
2949         tty_ldisc_init(tty);
2950         tty->session = NULL;
2951         tty->pgrp = NULL;
2952         mutex_init(&tty->legacy_mutex);
2953         mutex_init(&tty->termios_mutex);
2954         mutex_init(&tty->ldisc_mutex);
2955         init_waitqueue_head(&tty->write_wait);
2956         init_waitqueue_head(&tty->read_wait);
2957         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2958         mutex_init(&tty->atomic_write_lock);
2959         spin_lock_init(&tty->ctrl_lock);
2960         INIT_LIST_HEAD(&tty->tty_files);
2961         INIT_WORK(&tty->SAK_work, do_SAK_work);
2962
2963         tty->driver = driver;
2964         tty->ops = driver->ops;
2965         tty->index = idx;
2966         tty_line_name(driver, idx, tty->name);
2967         tty->dev = tty_get_device(tty);
2968 }
2969
2970 /**
2971  *      deinitialize_tty_struct
2972  *      @tty: tty to deinitialize
2973  *
2974  *      This subroutine deinitializes a tty structure that has been newly
2975  *      allocated but tty_release cannot be called on that yet.
2976  *
2977  *      Locking: none - tty in question must not be exposed at this point
2978  */
2979 void deinitialize_tty_struct(struct tty_struct *tty)
2980 {
2981         tty_ldisc_deinit(tty);
2982 }
2983
2984 /**
2985  *      tty_put_char    -       write one character to a tty
2986  *      @tty: tty
2987  *      @ch: character
2988  *
2989  *      Write one byte to the tty using the provided put_char method
2990  *      if present. Returns the number of characters successfully output.
2991  *
2992  *      Note: the specific put_char operation in the driver layer may go
2993  *      away soon. Don't call it directly, use this method
2994  */
2995
2996 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2997 {
2998         if (tty->ops->put_char)
2999                 return tty->ops->put_char(tty, ch);
3000         return tty->ops->write(tty, &ch, 1);
3001 }
3002 EXPORT_SYMBOL_GPL(tty_put_char);
3003
3004 struct class *tty_class;
3005
3006 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3007                 unsigned int index, unsigned int count)
3008 {
3009         /* init here, since reused cdevs cause crashes */
3010         cdev_init(&driver->cdevs[index], &tty_fops);
3011         driver->cdevs[index].owner = driver->owner;
3012         return cdev_add(&driver->cdevs[index], dev, count);
3013 }
3014
3015 /**
3016  *      tty_register_device - register a tty device
3017  *      @driver: the tty driver that describes the tty device
3018  *      @index: the index in the tty driver for this tty device
3019  *      @device: a struct device that is associated with this tty device.
3020  *              This field is optional, if there is no known struct device
3021  *              for this tty device it can be set to NULL safely.
3022  *
3023  *      Returns a pointer to the struct device for this tty device
3024  *      (or ERR_PTR(-EFOO) on error).
3025  *
3026  *      This call is required to be made to register an individual tty device
3027  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3028  *      that bit is not set, this function should not be called by a tty
3029  *      driver.
3030  *
3031  *      Locking: ??
3032  */
3033
3034 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3035                                    struct device *device)
3036 {
3037         return tty_register_device_attr(driver, index, device, NULL, NULL);
3038 }
3039 EXPORT_SYMBOL(tty_register_device);
3040
3041 static void tty_device_create_release(struct device *dev)
3042 {
3043         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3044         kfree(dev);
3045 }
3046
3047 /**
3048  *      tty_register_device_attr - register a tty device
3049  *      @driver: the tty driver that describes the tty device
3050  *      @index: the index in the tty driver for this tty device
3051  *      @device: a struct device that is associated with this tty device.
3052  *              This field is optional, if there is no known struct device
3053  *              for this tty device it can be set to NULL safely.
3054  *      @drvdata: Driver data to be set to device.
3055  *      @attr_grp: Attribute group to be set on device.
3056  *
3057  *      Returns a pointer to the struct device for this tty device
3058  *      (or ERR_PTR(-EFOO) on error).
3059  *
3060  *      This call is required to be made to register an individual tty device
3061  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3062  *      that bit is not set, this function should not be called by a tty
3063  *      driver.
3064  *
3065  *      Locking: ??
3066  */
3067 struct device *tty_register_device_attr(struct tty_driver *driver,
3068                                    unsigned index, struct device *device,
3069                                    void *drvdata,
3070                                    const struct attribute_group **attr_grp)
3071 {
3072         char name[64];
3073         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3074         struct device *dev = NULL;
3075         int retval = -ENODEV;
3076         bool cdev = false;
3077
3078         if (index >= driver->num) {
3079                 printk(KERN_ERR "Attempt to register invalid tty line number "
3080                        " (%d).\n", index);
3081                 return ERR_PTR(-EINVAL);
3082         }
3083
3084         if (driver->type == TTY_DRIVER_TYPE_PTY)
3085                 pty_line_name(driver, index, name);
3086         else
3087                 tty_line_name(driver, index, name);
3088
3089         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3090                 retval = tty_cdev_add(driver, devt, index, 1);
3091                 if (retval)
3092                         goto error;
3093                 cdev = true;
3094         }
3095
3096         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3097         if (!dev) {
3098                 retval = -ENOMEM;
3099                 goto error;
3100         }
3101
3102         dev->devt = devt;
3103         dev->class = tty_class;
3104         dev->parent = device;
3105         dev->release = tty_device_create_release;
3106         dev_set_name(dev, "%s", name);
3107         dev->groups = attr_grp;
3108         dev_set_drvdata(dev, drvdata);
3109
3110         retval = device_register(dev);
3111         if (retval)
3112                 goto error;
3113
3114         return dev;
3115
3116 error:
3117         put_device(dev);
3118         if (cdev)
3119                 cdev_del(&driver->cdevs[index]);
3120         return ERR_PTR(retval);
3121 }
3122 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3123
3124 /**
3125  *      tty_unregister_device - unregister a tty device
3126  *      @driver: the tty driver that describes the tty device
3127  *      @index: the index in the tty driver for this tty device
3128  *
3129  *      If a tty device is registered with a call to tty_register_device() then
3130  *      this function must be called when the tty device is gone.
3131  *
3132  *      Locking: ??
3133  */
3134
3135 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3136 {
3137         device_destroy(tty_class,
3138                 MKDEV(driver->major, driver->minor_start) + index);
3139         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3140                 cdev_del(&driver->cdevs[index]);
3141 }
3142 EXPORT_SYMBOL(tty_unregister_device);
3143
3144 /**
3145  * __tty_alloc_driver -- allocate tty driver
3146  * @lines: count of lines this driver can handle at most
3147  * @owner: module which is repsonsible for this driver
3148  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3149  *
3150  * This should not be called directly, some of the provided macros should be
3151  * used instead. Use IS_ERR and friends on @retval.
3152  */
3153 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3154                 unsigned long flags)
3155 {
3156         struct tty_driver *driver;
3157         unsigned int cdevs = 1;
3158         int err;
3159
3160         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3161                 return ERR_PTR(-EINVAL);
3162
3163         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3164         if (!driver)
3165                 return ERR_PTR(-ENOMEM);
3166
3167         kref_init(&driver->kref);
3168         driver->magic = TTY_DRIVER_MAGIC;
3169         driver->num = lines;
3170         driver->owner = owner;
3171         driver->flags = flags;
3172
3173         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3174                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3175                                 GFP_KERNEL);
3176                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3177                                 GFP_KERNEL);
3178                 if (!driver->ttys || !driver->termios) {
3179                         err = -ENOMEM;
3180                         goto err_free_all;
3181                 }
3182         }
3183
3184         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3185                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3186                                 GFP_KERNEL);
3187                 if (!driver->ports) {
3188                         err = -ENOMEM;
3189                         goto err_free_all;
3190                 }
3191                 cdevs = lines;
3192         }
3193
3194         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3195         if (!driver->cdevs) {
3196                 err = -ENOMEM;
3197                 goto err_free_all;
3198         }
3199
3200         return driver;
3201 err_free_all:
3202         kfree(driver->ports);
3203         kfree(driver->ttys);
3204         kfree(driver->termios);
3205         kfree(driver);
3206         return ERR_PTR(err);
3207 }
3208 EXPORT_SYMBOL(__tty_alloc_driver);
3209
3210 static void destruct_tty_driver(struct kref *kref)
3211 {
3212         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3213         int i;
3214         struct ktermios *tp;
3215
3216         if (driver->flags & TTY_DRIVER_INSTALLED) {
3217                 /*
3218                  * Free the termios and termios_locked structures because
3219                  * we don't want to get memory leaks when modular tty
3220                  * drivers are removed from the kernel.
3221                  */
3222                 for (i = 0; i < driver->num; i++) {
3223                         tp = driver->termios[i];
3224                         if (tp) {
3225                                 driver->termios[i] = NULL;
3226                                 kfree(tp);
3227                         }
3228                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3229                                 tty_unregister_device(driver, i);
3230                 }
3231                 proc_tty_unregister_driver(driver);
3232                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3233                         cdev_del(&driver->cdevs[0]);
3234         }
3235         kfree(driver->cdevs);
3236         kfree(driver->ports);
3237         kfree(driver->termios);
3238         kfree(driver->ttys);
3239         kfree(driver);
3240 }
3241
3242 void tty_driver_kref_put(struct tty_driver *driver)
3243 {
3244         kref_put(&driver->kref, destruct_tty_driver);
3245 }
3246 EXPORT_SYMBOL(tty_driver_kref_put);
3247
3248 void tty_set_operations(struct tty_driver *driver,
3249                         const struct tty_operations *op)
3250 {
3251         driver->ops = op;
3252 };
3253 EXPORT_SYMBOL(tty_set_operations);
3254
3255 void put_tty_driver(struct tty_driver *d)
3256 {
3257         tty_driver_kref_put(d);
3258 }
3259 EXPORT_SYMBOL(put_tty_driver);
3260
3261 /*
3262  * Called by a tty driver to register itself.
3263  */
3264 int tty_register_driver(struct tty_driver *driver)
3265 {
3266         int error;
3267         int i;
3268         dev_t dev;
3269         struct device *d;
3270
3271         if (!driver->major) {
3272                 error = alloc_chrdev_region(&dev, driver->minor_start,
3273                                                 driver->num, driver->name);
3274                 if (!error) {
3275                         driver->major = MAJOR(dev);
3276                         driver->minor_start = MINOR(dev);
3277                 }
3278         } else {
3279                 dev = MKDEV(driver->major, driver->minor_start);
3280                 error = register_chrdev_region(dev, driver->num, driver->name);
3281         }
3282         if (error < 0)
3283                 goto err;
3284
3285         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3286                 error = tty_cdev_add(driver, dev, 0, driver->num);
3287                 if (error)
3288                         goto err_unreg_char;
3289         }
3290
3291         mutex_lock(&tty_mutex);
3292         list_add(&driver->tty_drivers, &tty_drivers);
3293         mutex_unlock(&tty_mutex);
3294
3295         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3296                 for (i = 0; i < driver->num; i++) {
3297                         d = tty_register_device(driver, i, NULL);
3298                         if (IS_ERR(d)) {
3299                                 error = PTR_ERR(d);
3300                                 goto err_unreg_devs;
3301                         }
3302                 }
3303         }
3304         proc_tty_register_driver(driver);
3305         driver->flags |= TTY_DRIVER_INSTALLED;
3306         return 0;
3307
3308 err_unreg_devs:
3309         for (i--; i >= 0; i--)
3310                 tty_unregister_device(driver, i);
3311
3312         mutex_lock(&tty_mutex);
3313         list_del(&driver->tty_drivers);
3314         mutex_unlock(&tty_mutex);
3315
3316 err_unreg_char:
3317         unregister_chrdev_region(dev, driver->num);
3318 err:
3319         return error;
3320 }
3321 EXPORT_SYMBOL(tty_register_driver);
3322
3323 /*
3324  * Called by a tty driver to unregister itself.
3325  */
3326 int tty_unregister_driver(struct tty_driver *driver)
3327 {
3328 #if 0
3329         /* FIXME */
3330         if (driver->refcount)
3331                 return -EBUSY;
3332 #endif
3333         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3334                                 driver->num);
3335         mutex_lock(&tty_mutex);
3336         list_del(&driver->tty_drivers);
3337         mutex_unlock(&tty_mutex);
3338         return 0;
3339 }
3340
3341 EXPORT_SYMBOL(tty_unregister_driver);
3342
3343 dev_t tty_devnum(struct tty_struct *tty)
3344 {
3345         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3346 }
3347 EXPORT_SYMBOL(tty_devnum);
3348
3349 void proc_clear_tty(struct task_struct *p)
3350 {
3351         unsigned long flags;
3352         struct tty_struct *tty;
3353         spin_lock_irqsave(&p->sighand->siglock, flags);
3354         tty = p->signal->tty;
3355         p->signal->tty = NULL;
3356         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3357         tty_kref_put(tty);
3358 }
3359
3360 /* Called under the sighand lock */
3361
3362 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3363 {
3364         if (tty) {
3365                 unsigned long flags;
3366                 /* We should not have a session or pgrp to put here but.... */
3367                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3368                 put_pid(tty->session);
3369                 put_pid(tty->pgrp);
3370                 tty->pgrp = get_pid(task_pgrp(tsk));
3371                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3372                 tty->session = get_pid(task_session(tsk));
3373                 if (tsk->signal->tty) {
3374                         printk(KERN_DEBUG "tty not NULL!!\n");
3375                         tty_kref_put(tsk->signal->tty);
3376                 }
3377         }
3378         put_pid(tsk->signal->tty_old_pgrp);
3379         tsk->signal->tty = tty_kref_get(tty);
3380         tsk->signal->tty_old_pgrp = NULL;
3381 }
3382
3383 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3384 {
3385         spin_lock_irq(&tsk->sighand->siglock);
3386         __proc_set_tty(tsk, tty);
3387         spin_unlock_irq(&tsk->sighand->siglock);
3388 }
3389
3390 struct tty_struct *get_current_tty(void)
3391 {
3392         struct tty_struct *tty;
3393         unsigned long flags;
3394
3395         spin_lock_irqsave(&current->sighand->siglock, flags);
3396         tty = tty_kref_get(current->signal->tty);
3397         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3398         return tty;
3399 }
3400 EXPORT_SYMBOL_GPL(get_current_tty);
3401
3402 void tty_default_fops(struct file_operations *fops)
3403 {
3404         *fops = tty_fops;
3405 }
3406
3407 /*
3408  * Initialize the console device. This is called *early*, so
3409  * we can't necessarily depend on lots of kernel help here.
3410  * Just do some early initializations, and do the complex setup
3411  * later.
3412  */
3413 void __init console_init(void)
3414 {
3415         initcall_t *call;
3416
3417         /* Setup the default TTY line discipline. */
3418         tty_ldisc_begin();
3419
3420         /*
3421          * set up the console device so that later boot sequences can
3422          * inform about problems etc..
3423          */
3424         call = __con_initcall_start;
3425         while (call < __con_initcall_end) {
3426                 (*call)();
3427                 call++;
3428         }
3429 }
3430
3431 static char *tty_devnode(struct device *dev, umode_t *mode)
3432 {
3433         if (!mode)
3434                 return NULL;
3435         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3436             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3437                 *mode = 0666;
3438         return NULL;
3439 }
3440
3441 static int __init tty_class_init(void)
3442 {
3443         tty_class = class_create(THIS_MODULE, "tty");
3444         if (IS_ERR(tty_class))
3445                 return PTR_ERR(tty_class);
3446         tty_class->devnode = tty_devnode;
3447         return 0;
3448 }
3449
3450 postcore_initcall(tty_class_init);
3451
3452 /* 3/2004 jmc: why do these devices exist? */
3453 static struct cdev tty_cdev, console_cdev;
3454
3455 static ssize_t show_cons_active(struct device *dev,
3456                                 struct device_attribute *attr, char *buf)
3457 {
3458         struct console *cs[16];
3459         int i = 0;
3460         struct console *c;
3461         ssize_t count = 0;
3462
3463         console_lock();
3464         for_each_console(c) {
3465                 if (!c->device)
3466                         continue;
3467                 if (!c->write)
3468                         continue;
3469                 if ((c->flags & CON_ENABLED) == 0)
3470                         continue;
3471                 cs[i++] = c;
3472                 if (i >= ARRAY_SIZE(cs))
3473                         break;
3474         }
3475         while (i--)
3476                 count += sprintf(buf + count, "%s%d%c",
3477                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3478         console_unlock();
3479
3480         return count;
3481 }
3482 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3483
3484 static struct device *consdev;
3485
3486 void console_sysfs_notify(void)
3487 {
3488         if (consdev)
3489                 sysfs_notify(&consdev->kobj, NULL, "active");
3490 }
3491
3492 /*
3493  * Ok, now we can initialize the rest of the tty devices and can count
3494  * on memory allocations, interrupts etc..
3495  */
3496 int __init tty_init(void)
3497 {
3498         cdev_init(&tty_cdev, &tty_fops);
3499         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3500             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3501                 panic("Couldn't register /dev/tty driver\n");
3502         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3503
3504         cdev_init(&console_cdev, &console_fops);
3505         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3506             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3507                 panic("Couldn't register /dev/console driver\n");
3508         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3509                               "console");
3510         if (IS_ERR(consdev))
3511                 consdev = NULL;
3512         else
3513                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3514
3515 #ifdef CONFIG_VT
3516         vty_init(&console_fops);
3517 #endif
3518         return 0;
3519 }
3520