TTY: extract driver lookup from tty_open
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793
794         if (!current->signal->leader)
795                 return;
796
797         tty = get_current_tty();
798         if (tty) {
799                 struct pid *tty_pgrp = get_pid(tty->pgrp);
800                 if (on_exit) {
801                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
802                                 tty_vhangup(tty);
803                 }
804                 tty_kref_put(tty);
805                 if (tty_pgrp) {
806                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807                         if (!on_exit)
808                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
809                         put_pid(tty_pgrp);
810                 }
811         } else if (on_exit) {
812                 struct pid *old_pgrp;
813                 spin_lock_irq(&current->sighand->siglock);
814                 old_pgrp = current->signal->tty_old_pgrp;
815                 current->signal->tty_old_pgrp = NULL;
816                 spin_unlock_irq(&current->sighand->siglock);
817                 if (old_pgrp) {
818                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
819                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
820                         put_pid(old_pgrp);
821                 }
822                 return;
823         }
824
825         spin_lock_irq(&current->sighand->siglock);
826         put_pid(current->signal->tty_old_pgrp);
827         current->signal->tty_old_pgrp = NULL;
828         spin_unlock_irq(&current->sighand->siglock);
829
830         tty = get_current_tty();
831         if (tty) {
832                 unsigned long flags;
833                 spin_lock_irqsave(&tty->ctrl_lock, flags);
834                 put_pid(tty->session);
835                 put_pid(tty->pgrp);
836                 tty->session = NULL;
837                 tty->pgrp = NULL;
838                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
839                 tty_kref_put(tty);
840         } else {
841 #ifdef TTY_DEBUG_HANGUP
842                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
843                        " = NULL", tty);
844 #endif
845         }
846
847         /* Now clear signal->tty under the lock */
848         read_lock(&tasklist_lock);
849         session_clear_tty(task_session(current));
850         read_unlock(&tasklist_lock);
851 }
852
853 /**
854  *
855  *      no_tty  - Ensure the current process does not have a controlling tty
856  */
857 void no_tty(void)
858 {
859         struct task_struct *tsk = current;
860         tty_lock();
861         disassociate_ctty(0);
862         tty_unlock();
863         proc_clear_tty(tsk);
864 }
865
866
867 /**
868  *      stop_tty        -       propagate flow control
869  *      @tty: tty to stop
870  *
871  *      Perform flow control to the driver. For PTY/TTY pairs we
872  *      must also propagate the TIOCKPKT status. May be called
873  *      on an already stopped device and will not re-call the driver
874  *      method.
875  *
876  *      This functionality is used by both the line disciplines for
877  *      halting incoming flow and by the driver. It may therefore be
878  *      called from any context, may be under the tty atomic_write_lock
879  *      but not always.
880  *
881  *      Locking:
882  *              Uses the tty control lock internally
883  */
884
885 void stop_tty(struct tty_struct *tty)
886 {
887         unsigned long flags;
888         spin_lock_irqsave(&tty->ctrl_lock, flags);
889         if (tty->stopped) {
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 return;
892         }
893         tty->stopped = 1;
894         if (tty->link && tty->link->packet) {
895                 tty->ctrl_status &= ~TIOCPKT_START;
896                 tty->ctrl_status |= TIOCPKT_STOP;
897                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898         }
899         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900         if (tty->ops->stop)
901                 (tty->ops->stop)(tty);
902 }
903
904 EXPORT_SYMBOL(stop_tty);
905
906 /**
907  *      start_tty       -       propagate flow control
908  *      @tty: tty to start
909  *
910  *      Start a tty that has been stopped if at all possible. Perform
911  *      any necessary wakeups and propagate the TIOCPKT status. If this
912  *      is the tty was previous stopped and is being started then the
913  *      driver start method is invoked and the line discipline woken.
914  *
915  *      Locking:
916  *              ctrl_lock
917  */
918
919 void start_tty(struct tty_struct *tty)
920 {
921         unsigned long flags;
922         spin_lock_irqsave(&tty->ctrl_lock, flags);
923         if (!tty->stopped || tty->flow_stopped) {
924                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925                 return;
926         }
927         tty->stopped = 0;
928         if (tty->link && tty->link->packet) {
929                 tty->ctrl_status &= ~TIOCPKT_STOP;
930                 tty->ctrl_status |= TIOCPKT_START;
931                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932         }
933         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934         if (tty->ops->start)
935                 (tty->ops->start)(tty);
936         /* If we have a running line discipline it may need kicking */
937         tty_wakeup(tty);
938 }
939
940 EXPORT_SYMBOL(start_tty);
941
942 /**
943  *      tty_read        -       read method for tty device files
944  *      @file: pointer to tty file
945  *      @buf: user buffer
946  *      @count: size of user buffer
947  *      @ppos: unused
948  *
949  *      Perform the read system call function on this terminal device. Checks
950  *      for hung up devices before calling the line discipline method.
951  *
952  *      Locking:
953  *              Locks the line discipline internally while needed. Multiple
954  *      read calls may be outstanding in parallel.
955  */
956
957 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958                         loff_t *ppos)
959 {
960         int i;
961         struct inode *inode = file->f_path.dentry->d_inode;
962         struct tty_struct *tty = file_tty(file);
963         struct tty_ldisc *ld;
964
965         if (tty_paranoia_check(tty, inode, "tty_read"))
966                 return -EIO;
967         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968                 return -EIO;
969
970         /* We want to wait for the line discipline to sort out in this
971            situation */
972         ld = tty_ldisc_ref_wait(tty);
973         if (ld->ops->read)
974                 i = (ld->ops->read)(tty, file, buf, count);
975         else
976                 i = -EIO;
977         tty_ldisc_deref(ld);
978         if (i > 0)
979                 inode->i_atime = current_fs_time(inode->i_sb);
980         return i;
981 }
982
983 void tty_write_unlock(struct tty_struct *tty)
984         __releases(&tty->atomic_write_lock)
985 {
986         mutex_unlock(&tty->atomic_write_lock);
987         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988 }
989
990 int tty_write_lock(struct tty_struct *tty, int ndelay)
991         __acquires(&tty->atomic_write_lock)
992 {
993         if (!mutex_trylock(&tty->atomic_write_lock)) {
994                 if (ndelay)
995                         return -EAGAIN;
996                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997                         return -ERESTARTSYS;
998         }
999         return 0;
1000 }
1001
1002 /*
1003  * Split writes up in sane blocksizes to avoid
1004  * denial-of-service type attacks
1005  */
1006 static inline ssize_t do_tty_write(
1007         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008         struct tty_struct *tty,
1009         struct file *file,
1010         const char __user *buf,
1011         size_t count)
1012 {
1013         ssize_t ret, written = 0;
1014         unsigned int chunk;
1015
1016         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017         if (ret < 0)
1018                 return ret;
1019
1020         /*
1021          * We chunk up writes into a temporary buffer. This
1022          * simplifies low-level drivers immensely, since they
1023          * don't have locking issues and user mode accesses.
1024          *
1025          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026          * big chunk-size..
1027          *
1028          * The default chunk-size is 2kB, because the NTTY
1029          * layer has problems with bigger chunks. It will
1030          * claim to be able to handle more characters than
1031          * it actually does.
1032          *
1033          * FIXME: This can probably go away now except that 64K chunks
1034          * are too likely to fail unless switched to vmalloc...
1035          */
1036         chunk = 2048;
1037         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038                 chunk = 65536;
1039         if (count < chunk)
1040                 chunk = count;
1041
1042         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043         if (tty->write_cnt < chunk) {
1044                 unsigned char *buf_chunk;
1045
1046                 if (chunk < 1024)
1047                         chunk = 1024;
1048
1049                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050                 if (!buf_chunk) {
1051                         ret = -ENOMEM;
1052                         goto out;
1053                 }
1054                 kfree(tty->write_buf);
1055                 tty->write_cnt = chunk;
1056                 tty->write_buf = buf_chunk;
1057         }
1058
1059         /* Do the write .. */
1060         for (;;) {
1061                 size_t size = count;
1062                 if (size > chunk)
1063                         size = chunk;
1064                 ret = -EFAULT;
1065                 if (copy_from_user(tty->write_buf, buf, size))
1066                         break;
1067                 ret = write(tty, file, tty->write_buf, size);
1068                 if (ret <= 0)
1069                         break;
1070                 written += ret;
1071                 buf += ret;
1072                 count -= ret;
1073                 if (!count)
1074                         break;
1075                 ret = -ERESTARTSYS;
1076                 if (signal_pending(current))
1077                         break;
1078                 cond_resched();
1079         }
1080         if (written) {
1081                 struct inode *inode = file->f_path.dentry->d_inode;
1082                 inode->i_mtime = current_fs_time(inode->i_sb);
1083                 ret = written;
1084         }
1085 out:
1086         tty_write_unlock(tty);
1087         return ret;
1088 }
1089
1090 /**
1091  * tty_write_message - write a message to a certain tty, not just the console.
1092  * @tty: the destination tty_struct
1093  * @msg: the message to write
1094  *
1095  * This is used for messages that need to be redirected to a specific tty.
1096  * We don't put it into the syslog queue right now maybe in the future if
1097  * really needed.
1098  *
1099  * We must still hold the BTM and test the CLOSING flag for the moment.
1100  */
1101
1102 void tty_write_message(struct tty_struct *tty, char *msg)
1103 {
1104         if (tty) {
1105                 mutex_lock(&tty->atomic_write_lock);
1106                 tty_lock();
1107                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108                         tty_unlock();
1109                         tty->ops->write(tty, msg, strlen(msg));
1110                 } else
1111                         tty_unlock();
1112                 tty_write_unlock(tty);
1113         }
1114         return;
1115 }
1116
1117
1118 /**
1119  *      tty_write               -       write method for tty device file
1120  *      @file: tty file pointer
1121  *      @buf: user data to write
1122  *      @count: bytes to write
1123  *      @ppos: unused
1124  *
1125  *      Write data to a tty device via the line discipline.
1126  *
1127  *      Locking:
1128  *              Locks the line discipline as required
1129  *              Writes to the tty driver are serialized by the atomic_write_lock
1130  *      and are then processed in chunks to the device. The line discipline
1131  *      write method will not be invoked in parallel for each device.
1132  */
1133
1134 static ssize_t tty_write(struct file *file, const char __user *buf,
1135                                                 size_t count, loff_t *ppos)
1136 {
1137         struct inode *inode = file->f_path.dentry->d_inode;
1138         struct tty_struct *tty = file_tty(file);
1139         struct tty_ldisc *ld;
1140         ssize_t ret;
1141
1142         if (tty_paranoia_check(tty, inode, "tty_write"))
1143                 return -EIO;
1144         if (!tty || !tty->ops->write ||
1145                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146                         return -EIO;
1147         /* Short term debug to catch buggy drivers */
1148         if (tty->ops->write_room == NULL)
1149                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150                         tty->driver->name);
1151         ld = tty_ldisc_ref_wait(tty);
1152         if (!ld->ops->write)
1153                 ret = -EIO;
1154         else
1155                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156         tty_ldisc_deref(ld);
1157         return ret;
1158 }
1159
1160 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161                                                 size_t count, loff_t *ppos)
1162 {
1163         struct file *p = NULL;
1164
1165         spin_lock(&redirect_lock);
1166         if (redirect) {
1167                 get_file(redirect);
1168                 p = redirect;
1169         }
1170         spin_unlock(&redirect_lock);
1171
1172         if (p) {
1173                 ssize_t res;
1174                 res = vfs_write(p, buf, count, &p->f_pos);
1175                 fput(p);
1176                 return res;
1177         }
1178         return tty_write(file, buf, count, ppos);
1179 }
1180
1181 static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183 /**
1184  *      pty_line_name   -       generate name for a pty
1185  *      @driver: the tty driver in use
1186  *      @index: the minor number
1187  *      @p: output buffer of at least 6 bytes
1188  *
1189  *      Generate a name from a driver reference and write it to the output
1190  *      buffer.
1191  *
1192  *      Locking: None
1193  */
1194 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 {
1196         int i = index + driver->name_base;
1197         /* ->name is initialized to "ttyp", but "tty" is expected */
1198         sprintf(p, "%s%c%x",
1199                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200                 ptychar[i >> 4 & 0xf], i & 0xf);
1201 }
1202
1203 /**
1204  *      tty_line_name   -       generate name for a tty
1205  *      @driver: the tty driver in use
1206  *      @index: the minor number
1207  *      @p: output buffer of at least 7 bytes
1208  *
1209  *      Generate a name from a driver reference and write it to the output
1210  *      buffer.
1211  *
1212  *      Locking: None
1213  */
1214 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 {
1216         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217 }
1218
1219 /**
1220  *      tty_driver_lookup_tty() - find an existing tty, if any
1221  *      @driver: the driver for the tty
1222  *      @idx:    the minor number
1223  *
1224  *      Return the tty, if found or ERR_PTR() otherwise.
1225  *
1226  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1227  *      be held until the 'fast-open' is also done. Will change once we
1228  *      have refcounting in the driver and per driver locking
1229  */
1230 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231                 struct inode *inode, int idx)
1232 {
1233         struct tty_struct *tty;
1234
1235         if (driver->ops->lookup)
1236                 return driver->ops->lookup(driver, inode, idx);
1237
1238         tty = driver->ttys[idx];
1239         return tty;
1240 }
1241
1242 /**
1243  *      tty_init_termios        -  helper for termios setup
1244  *      @tty: the tty to set up
1245  *
1246  *      Initialise the termios structures for this tty. Thus runs under
1247  *      the tty_mutex currently so we can be relaxed about ordering.
1248  */
1249
1250 int tty_init_termios(struct tty_struct *tty)
1251 {
1252         struct ktermios *tp;
1253         int idx = tty->index;
1254
1255         tp = tty->driver->termios[idx];
1256         if (tp == NULL) {
1257                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1258                 if (tp == NULL)
1259                         return -ENOMEM;
1260                 memcpy(tp, &tty->driver->init_termios,
1261                                                 sizeof(struct ktermios));
1262                 tty->driver->termios[idx] = tp;
1263         }
1264         tty->termios = tp;
1265         tty->termios_locked = tp + 1;
1266
1267         /* Compatibility until drivers always set this */
1268         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1269         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1270         return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(tty_init_termios);
1273
1274 /**
1275  *      tty_driver_install_tty() - install a tty entry in the driver
1276  *      @driver: the driver for the tty
1277  *      @tty: the tty
1278  *
1279  *      Install a tty object into the driver tables. The tty->index field
1280  *      will be set by the time this is called. This method is responsible
1281  *      for ensuring any need additional structures are allocated and
1282  *      configured.
1283  *
1284  *      Locking: tty_mutex for now
1285  */
1286 static int tty_driver_install_tty(struct tty_driver *driver,
1287                                                 struct tty_struct *tty)
1288 {
1289         int idx = tty->index;
1290         int ret;
1291
1292         if (driver->ops->install) {
1293                 ret = driver->ops->install(driver, tty);
1294                 return ret;
1295         }
1296
1297         if (tty_init_termios(tty) == 0) {
1298                 tty_driver_kref_get(driver);
1299                 tty->count++;
1300                 driver->ttys[idx] = tty;
1301                 return 0;
1302         }
1303         return -ENOMEM;
1304 }
1305
1306 /**
1307  *      tty_driver_remove_tty() - remove a tty from the driver tables
1308  *      @driver: the driver for the tty
1309  *      @idx:    the minor number
1310  *
1311  *      Remvoe a tty object from the driver tables. The tty->index field
1312  *      will be set by the time this is called.
1313  *
1314  *      Locking: tty_mutex for now
1315  */
1316 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1317 {
1318         if (driver->ops->remove)
1319                 driver->ops->remove(driver, tty);
1320         else
1321                 driver->ttys[tty->index] = NULL;
1322 }
1323
1324 /*
1325  *      tty_reopen()    - fast re-open of an open tty
1326  *      @tty    - the tty to open
1327  *
1328  *      Return 0 on success, -errno on error.
1329  *
1330  *      Locking: tty_mutex must be held from the time the tty was found
1331  *               till this open completes.
1332  */
1333 static int tty_reopen(struct tty_struct *tty)
1334 {
1335         struct tty_driver *driver = tty->driver;
1336
1337         if (test_bit(TTY_CLOSING, &tty->flags) ||
1338                         test_bit(TTY_HUPPING, &tty->flags) ||
1339                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1340                 return -EIO;
1341
1342         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1343             driver->subtype == PTY_TYPE_MASTER) {
1344                 /*
1345                  * special case for PTY masters: only one open permitted,
1346                  * and the slave side open count is incremented as well.
1347                  */
1348                 if (tty->count)
1349                         return -EIO;
1350
1351                 tty->link->count++;
1352         }
1353         tty->count++;
1354         tty->driver = driver; /* N.B. why do this every time?? */
1355
1356         mutex_lock(&tty->ldisc_mutex);
1357         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1358         mutex_unlock(&tty->ldisc_mutex);
1359
1360         return 0;
1361 }
1362
1363 /**
1364  *      tty_init_dev            -       initialise a tty device
1365  *      @driver: tty driver we are opening a device on
1366  *      @idx: device index
1367  *      @ret_tty: returned tty structure
1368  *      @first_ok: ok to open a new device (used by ptmx)
1369  *
1370  *      Prepare a tty device. This may not be a "new" clean device but
1371  *      could also be an active device. The pty drivers require special
1372  *      handling because of this.
1373  *
1374  *      Locking:
1375  *              The function is called under the tty_mutex, which
1376  *      protects us from the tty struct or driver itself going away.
1377  *
1378  *      On exit the tty device has the line discipline attached and
1379  *      a reference count of 1. If a pair was created for pty/tty use
1380  *      and the other was a pty master then it too has a reference count of 1.
1381  *
1382  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1383  * failed open.  The new code protects the open with a mutex, so it's
1384  * really quite straightforward.  The mutex locking can probably be
1385  * relaxed for the (most common) case of reopening a tty.
1386  */
1387
1388 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1389                                                                 int first_ok)
1390 {
1391         struct tty_struct *tty;
1392         int retval;
1393
1394         /* Check if pty master is being opened multiple times */
1395         if (driver->subtype == PTY_TYPE_MASTER &&
1396                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1397                 return ERR_PTR(-EIO);
1398         }
1399
1400         /*
1401          * First time open is complex, especially for PTY devices.
1402          * This code guarantees that either everything succeeds and the
1403          * TTY is ready for operation, or else the table slots are vacated
1404          * and the allocated memory released.  (Except that the termios
1405          * and locked termios may be retained.)
1406          */
1407
1408         if (!try_module_get(driver->owner))
1409                 return ERR_PTR(-ENODEV);
1410
1411         tty = alloc_tty_struct();
1412         if (!tty) {
1413                 retval = -ENOMEM;
1414                 goto err_module_put;
1415         }
1416         initialize_tty_struct(tty, driver, idx);
1417
1418         retval = tty_driver_install_tty(driver, tty);
1419         if (retval < 0)
1420                 goto err_deinit_tty;
1421
1422         /*
1423          * Structures all installed ... call the ldisc open routines.
1424          * If we fail here just call release_tty to clean up.  No need
1425          * to decrement the use counts, as release_tty doesn't care.
1426          */
1427         retval = tty_ldisc_setup(tty, tty->link);
1428         if (retval)
1429                 goto err_release_tty;
1430         return tty;
1431
1432 err_deinit_tty:
1433         deinitialize_tty_struct(tty);
1434         free_tty_struct(tty);
1435 err_module_put:
1436         module_put(driver->owner);
1437         return ERR_PTR(retval);
1438
1439         /* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1442                                  "clearing slot %d\n", idx);
1443         release_tty(tty, idx);
1444         return ERR_PTR(retval);
1445 }
1446
1447 void tty_free_termios(struct tty_struct *tty)
1448 {
1449         struct ktermios *tp;
1450         int idx = tty->index;
1451         /* Kill this flag and push into drivers for locking etc */
1452         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1453                 /* FIXME: Locking on ->termios array */
1454                 tp = tty->termios;
1455                 tty->driver->termios[idx] = NULL;
1456                 kfree(tp);
1457         }
1458 }
1459 EXPORT_SYMBOL(tty_free_termios);
1460
1461 void tty_shutdown(struct tty_struct *tty)
1462 {
1463         tty_driver_remove_tty(tty->driver, tty);
1464         tty_free_termios(tty);
1465 }
1466 EXPORT_SYMBOL(tty_shutdown);
1467
1468 /**
1469  *      release_one_tty         -       release tty structure memory
1470  *      @kref: kref of tty we are obliterating
1471  *
1472  *      Releases memory associated with a tty structure, and clears out the
1473  *      driver table slots. This function is called when a device is no longer
1474  *      in use. It also gets called when setup of a device fails.
1475  *
1476  *      Locking:
1477  *              tty_mutex - sometimes only
1478  *              takes the file list lock internally when working on the list
1479  *      of ttys that the driver keeps.
1480  *
1481  *      This method gets called from a work queue so that the driver private
1482  *      cleanup ops can sleep (needed for USB at least)
1483  */
1484 static void release_one_tty(struct work_struct *work)
1485 {
1486         struct tty_struct *tty =
1487                 container_of(work, struct tty_struct, hangup_work);
1488         struct tty_driver *driver = tty->driver;
1489
1490         if (tty->ops->cleanup)
1491                 tty->ops->cleanup(tty);
1492
1493         tty->magic = 0;
1494         tty_driver_kref_put(driver);
1495         module_put(driver->owner);
1496
1497         spin_lock(&tty_files_lock);
1498         list_del_init(&tty->tty_files);
1499         spin_unlock(&tty_files_lock);
1500
1501         put_pid(tty->pgrp);
1502         put_pid(tty->session);
1503         free_tty_struct(tty);
1504 }
1505
1506 static void queue_release_one_tty(struct kref *kref)
1507 {
1508         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1509
1510         if (tty->ops->shutdown)
1511                 tty->ops->shutdown(tty);
1512         else
1513                 tty_shutdown(tty);
1514
1515         /* The hangup queue is now free so we can reuse it rather than
1516            waste a chunk of memory for each port */
1517         INIT_WORK(&tty->hangup_work, release_one_tty);
1518         schedule_work(&tty->hangup_work);
1519 }
1520
1521 /**
1522  *      tty_kref_put            -       release a tty kref
1523  *      @tty: tty device
1524  *
1525  *      Release a reference to a tty device and if need be let the kref
1526  *      layer destruct the object for us
1527  */
1528
1529 void tty_kref_put(struct tty_struct *tty)
1530 {
1531         if (tty)
1532                 kref_put(&tty->kref, queue_release_one_tty);
1533 }
1534 EXPORT_SYMBOL(tty_kref_put);
1535
1536 /**
1537  *      release_tty             -       release tty structure memory
1538  *
1539  *      Release both @tty and a possible linked partner (think pty pair),
1540  *      and decrement the refcount of the backing module.
1541  *
1542  *      Locking:
1543  *              tty_mutex - sometimes only
1544  *              takes the file list lock internally when working on the list
1545  *      of ttys that the driver keeps.
1546  *              FIXME: should we require tty_mutex is held here ??
1547  *
1548  */
1549 static void release_tty(struct tty_struct *tty, int idx)
1550 {
1551         /* This should always be true but check for the moment */
1552         WARN_ON(tty->index != idx);
1553
1554         if (tty->link)
1555                 tty_kref_put(tty->link);
1556         tty_kref_put(tty);
1557 }
1558
1559 /**
1560  *      tty_release             -       vfs callback for close
1561  *      @inode: inode of tty
1562  *      @filp: file pointer for handle to tty
1563  *
1564  *      Called the last time each file handle is closed that references
1565  *      this tty. There may however be several such references.
1566  *
1567  *      Locking:
1568  *              Takes bkl. See tty_release_dev
1569  *
1570  * Even releasing the tty structures is a tricky business.. We have
1571  * to be very careful that the structures are all released at the
1572  * same time, as interrupts might otherwise get the wrong pointers.
1573  *
1574  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1575  * lead to double frees or releasing memory still in use.
1576  */
1577
1578 int tty_release(struct inode *inode, struct file *filp)
1579 {
1580         struct tty_struct *tty = file_tty(filp);
1581         struct tty_struct *o_tty;
1582         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1583         int     devpts;
1584         int     idx;
1585         char    buf[64];
1586
1587         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1588                 return 0;
1589
1590         tty_lock();
1591         check_tty_count(tty, "tty_release_dev");
1592
1593         __tty_fasync(-1, filp, 0);
1594
1595         idx = tty->index;
1596         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1597                       tty->driver->subtype == PTY_TYPE_MASTER);
1598         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1599         o_tty = tty->link;
1600
1601 #ifdef TTY_PARANOIA_CHECK
1602         if (idx < 0 || idx >= tty->driver->num) {
1603                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1604                                   "free (%s)\n", tty->name);
1605                 tty_unlock();
1606                 return 0;
1607         }
1608         if (!devpts) {
1609                 if (tty != tty->driver->ttys[idx]) {
1610                         tty_unlock();
1611                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1612                                "for (%s)\n", idx, tty->name);
1613                         return 0;
1614                 }
1615                 if (tty->termios != tty->driver->termios[idx]) {
1616                         tty_unlock();
1617                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1618                                "for (%s)\n",
1619                                idx, tty->name);
1620                         return 0;
1621                 }
1622         }
1623 #endif
1624
1625 #ifdef TTY_DEBUG_HANGUP
1626         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1627                tty_name(tty, buf), tty->count);
1628 #endif
1629
1630 #ifdef TTY_PARANOIA_CHECK
1631         if (tty->driver->other &&
1632              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1633                 if (o_tty != tty->driver->other->ttys[idx]) {
1634                         tty_unlock();
1635                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1636                                           "not o_tty for (%s)\n",
1637                                idx, tty->name);
1638                         return 0 ;
1639                 }
1640                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1641                         tty_unlock();
1642                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1643                                           "not o_termios for (%s)\n",
1644                                idx, tty->name);
1645                         return 0;
1646                 }
1647                 if (o_tty->link != tty) {
1648                         tty_unlock();
1649                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1650                         return 0;
1651                 }
1652         }
1653 #endif
1654         if (tty->ops->close)
1655                 tty->ops->close(tty, filp);
1656
1657         tty_unlock();
1658         /*
1659          * Sanity check: if tty->count is going to zero, there shouldn't be
1660          * any waiters on tty->read_wait or tty->write_wait.  We test the
1661          * wait queues and kick everyone out _before_ actually starting to
1662          * close.  This ensures that we won't block while releasing the tty
1663          * structure.
1664          *
1665          * The test for the o_tty closing is necessary, since the master and
1666          * slave sides may close in any order.  If the slave side closes out
1667          * first, its count will be one, since the master side holds an open.
1668          * Thus this test wouldn't be triggered at the time the slave closes,
1669          * so we do it now.
1670          *
1671          * Note that it's possible for the tty to be opened again while we're
1672          * flushing out waiters.  By recalculating the closing flags before
1673          * each iteration we avoid any problems.
1674          */
1675         while (1) {
1676                 /* Guard against races with tty->count changes elsewhere and
1677                    opens on /dev/tty */
1678
1679                 mutex_lock(&tty_mutex);
1680                 tty_lock();
1681                 tty_closing = tty->count <= 1;
1682                 o_tty_closing = o_tty &&
1683                         (o_tty->count <= (pty_master ? 1 : 0));
1684                 do_sleep = 0;
1685
1686                 if (tty_closing) {
1687                         if (waitqueue_active(&tty->read_wait)) {
1688                                 wake_up_poll(&tty->read_wait, POLLIN);
1689                                 do_sleep++;
1690                         }
1691                         if (waitqueue_active(&tty->write_wait)) {
1692                                 wake_up_poll(&tty->write_wait, POLLOUT);
1693                                 do_sleep++;
1694                         }
1695                 }
1696                 if (o_tty_closing) {
1697                         if (waitqueue_active(&o_tty->read_wait)) {
1698                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1699                                 do_sleep++;
1700                         }
1701                         if (waitqueue_active(&o_tty->write_wait)) {
1702                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1703                                 do_sleep++;
1704                         }
1705                 }
1706                 if (!do_sleep)
1707                         break;
1708
1709                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1710                                     "active!\n", tty_name(tty, buf));
1711                 tty_unlock();
1712                 mutex_unlock(&tty_mutex);
1713                 schedule();
1714         }
1715
1716         /*
1717          * The closing flags are now consistent with the open counts on
1718          * both sides, and we've completed the last operation that could
1719          * block, so it's safe to proceed with closing.
1720          */
1721         if (pty_master) {
1722                 if (--o_tty->count < 0) {
1723                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1724                                             "(%d) for %s\n",
1725                                o_tty->count, tty_name(o_tty, buf));
1726                         o_tty->count = 0;
1727                 }
1728         }
1729         if (--tty->count < 0) {
1730                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1731                        tty->count, tty_name(tty, buf));
1732                 tty->count = 0;
1733         }
1734
1735         /*
1736          * We've decremented tty->count, so we need to remove this file
1737          * descriptor off the tty->tty_files list; this serves two
1738          * purposes:
1739          *  - check_tty_count sees the correct number of file descriptors
1740          *    associated with this tty.
1741          *  - do_tty_hangup no longer sees this file descriptor as
1742          *    something that needs to be handled for hangups.
1743          */
1744         tty_del_file(filp);
1745
1746         /*
1747          * Perform some housekeeping before deciding whether to return.
1748          *
1749          * Set the TTY_CLOSING flag if this was the last open.  In the
1750          * case of a pty we may have to wait around for the other side
1751          * to close, and TTY_CLOSING makes sure we can't be reopened.
1752          */
1753         if (tty_closing)
1754                 set_bit(TTY_CLOSING, &tty->flags);
1755         if (o_tty_closing)
1756                 set_bit(TTY_CLOSING, &o_tty->flags);
1757
1758         /*
1759          * If _either_ side is closing, make sure there aren't any
1760          * processes that still think tty or o_tty is their controlling
1761          * tty.
1762          */
1763         if (tty_closing || o_tty_closing) {
1764                 read_lock(&tasklist_lock);
1765                 session_clear_tty(tty->session);
1766                 if (o_tty)
1767                         session_clear_tty(o_tty->session);
1768                 read_unlock(&tasklist_lock);
1769         }
1770
1771         mutex_unlock(&tty_mutex);
1772
1773         /* check whether both sides are closing ... */
1774         if (!tty_closing || (o_tty && !o_tty_closing)) {
1775                 tty_unlock();
1776                 return 0;
1777         }
1778
1779 #ifdef TTY_DEBUG_HANGUP
1780         printk(KERN_DEBUG "freeing tty structure...");
1781 #endif
1782         /*
1783          * Ask the line discipline code to release its structures
1784          */
1785         tty_ldisc_release(tty, o_tty);
1786         /*
1787          * The release_tty function takes care of the details of clearing
1788          * the slots and preserving the termios structure.
1789          */
1790         release_tty(tty, idx);
1791
1792         /* Make this pty number available for reallocation */
1793         if (devpts)
1794                 devpts_kill_index(inode, idx);
1795         tty_unlock();
1796         return 0;
1797 }
1798
1799 /**
1800  *      tty_open_current_tty - get tty of current task for open
1801  *      @device: device number
1802  *      @filp: file pointer to tty
1803  *      @return: tty of the current task iff @device is /dev/tty
1804  *
1805  *      We cannot return driver and index like for the other nodes because
1806  *      devpts will not work then. It expects inodes to be from devpts FS.
1807  */
1808 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809 {
1810         struct tty_struct *tty;
1811
1812         if (device != MKDEV(TTYAUX_MAJOR, 0))
1813                 return NULL;
1814
1815         tty = get_current_tty();
1816         if (!tty)
1817                 return ERR_PTR(-ENXIO);
1818
1819         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820         /* noctty = 1; */
1821         tty_kref_put(tty);
1822         /* FIXME: we put a reference and return a TTY! */
1823         return tty;
1824 }
1825
1826 /**
1827  *      tty_lookup_driver - lookup a tty driver for a given device file
1828  *      @device: device number
1829  *      @filp: file pointer to tty
1830  *      @noctty: set if the device should not become a controlling tty
1831  *      @index: index for the device in the @return driver
1832  *      @return: driver for this inode (with increased refcount)
1833  *
1834  *      If @return is not erroneous, the caller is responsible to decrement the
1835  *      refcount by tty_driver_kref_put.
1836  *
1837  *      Locking: tty_mutex protects get_tty_driver
1838  */
1839 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1840                 int *noctty, int *index)
1841 {
1842         struct tty_driver *driver;
1843
1844 #ifdef CONFIG_VT
1845         if (device == MKDEV(TTY_MAJOR, 0)) {
1846                 extern struct tty_driver *console_driver;
1847                 driver = tty_driver_kref_get(console_driver);
1848                 *index = fg_console;
1849                 *noctty = 1;
1850                 return driver;
1851         }
1852 #endif
1853         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1854                 struct tty_driver *console_driver = console_device(index);
1855                 if (console_driver) {
1856                         driver = tty_driver_kref_get(console_driver);
1857                         if (driver) {
1858                                 /* Don't let /dev/console block */
1859                                 filp->f_flags |= O_NONBLOCK;
1860                                 *noctty = 1;
1861                                 return driver;
1862                         }
1863                 }
1864                 return ERR_PTR(-ENODEV);
1865         }
1866
1867         driver = get_tty_driver(device, index);
1868         if (!driver)
1869                 return ERR_PTR(-ENODEV);
1870         return driver;
1871 }
1872
1873 /**
1874  *      tty_open                -       open a tty device
1875  *      @inode: inode of device file
1876  *      @filp: file pointer to tty
1877  *
1878  *      tty_open and tty_release keep up the tty count that contains the
1879  *      number of opens done on a tty. We cannot use the inode-count, as
1880  *      different inodes might point to the same tty.
1881  *
1882  *      Open-counting is needed for pty masters, as well as for keeping
1883  *      track of serial lines: DTR is dropped when the last close happens.
1884  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1885  *
1886  *      The termios state of a pty is reset on first open so that
1887  *      settings don't persist across reuse.
1888  *
1889  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1890  *               tty->count should protect the rest.
1891  *               ->siglock protects ->signal/->sighand
1892  */
1893
1894 static int tty_open(struct inode *inode, struct file *filp)
1895 {
1896         struct tty_struct *tty;
1897         int noctty, retval;
1898         struct tty_driver *driver = NULL;
1899         int index;
1900         dev_t device = inode->i_rdev;
1901         unsigned saved_flags = filp->f_flags;
1902
1903         nonseekable_open(inode, filp);
1904
1905 retry_open:
1906         retval = tty_alloc_file(filp);
1907         if (retval)
1908                 return -ENOMEM;
1909
1910         noctty = filp->f_flags & O_NOCTTY;
1911         index  = -1;
1912         retval = 0;
1913
1914         mutex_lock(&tty_mutex);
1915         tty_lock();
1916
1917         tty = tty_open_current_tty(device, filp);
1918         if (IS_ERR(tty)) {
1919                 tty_unlock();
1920                 mutex_unlock(&tty_mutex);
1921                 tty_free_file(filp);
1922                 return PTR_ERR(tty);
1923         } else if (!tty) {
1924                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1925                 if (IS_ERR(driver)) {
1926                         tty_unlock();
1927                         mutex_unlock(&tty_mutex);
1928                         tty_free_file(filp);
1929                         return PTR_ERR(driver);
1930                 }
1931
1932                 /* check whether we're reopening an existing tty */
1933                 tty = tty_driver_lookup_tty(driver, inode, index);
1934                 if (IS_ERR(tty)) {
1935                         tty_unlock();
1936                         mutex_unlock(&tty_mutex);
1937                         tty_driver_kref_put(driver);
1938                         tty_free_file(filp);
1939                         return PTR_ERR(tty);
1940                 }
1941         }
1942
1943         if (tty) {
1944                 retval = tty_reopen(tty);
1945                 if (retval)
1946                         tty = ERR_PTR(retval);
1947         } else
1948                 tty = tty_init_dev(driver, index, 0);
1949
1950         mutex_unlock(&tty_mutex);
1951         if (driver)
1952                 tty_driver_kref_put(driver);
1953         if (IS_ERR(tty)) {
1954                 tty_unlock();
1955                 tty_free_file(filp);
1956                 return PTR_ERR(tty);
1957         }
1958
1959         tty_add_file(tty, filp);
1960
1961         check_tty_count(tty, "tty_open");
1962         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1963             tty->driver->subtype == PTY_TYPE_MASTER)
1964                 noctty = 1;
1965 #ifdef TTY_DEBUG_HANGUP
1966         printk(KERN_DEBUG "opening %s...", tty->name);
1967 #endif
1968         if (tty->ops->open)
1969                 retval = tty->ops->open(tty, filp);
1970         else
1971                 retval = -ENODEV;
1972         filp->f_flags = saved_flags;
1973
1974         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1975                                                 !capable(CAP_SYS_ADMIN))
1976                 retval = -EBUSY;
1977
1978         if (retval) {
1979 #ifdef TTY_DEBUG_HANGUP
1980                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1981                        tty->name);
1982 #endif
1983                 tty_unlock(); /* need to call tty_release without BTM */
1984                 tty_release(inode, filp);
1985                 if (retval != -ERESTARTSYS)
1986                         return retval;
1987
1988                 if (signal_pending(current))
1989                         return retval;
1990
1991                 schedule();
1992                 /*
1993                  * Need to reset f_op in case a hangup happened.
1994                  */
1995                 tty_lock();
1996                 if (filp->f_op == &hung_up_tty_fops)
1997                         filp->f_op = &tty_fops;
1998                 tty_unlock();
1999                 goto retry_open;
2000         }
2001         tty_unlock();
2002
2003
2004         mutex_lock(&tty_mutex);
2005         tty_lock();
2006         spin_lock_irq(&current->sighand->siglock);
2007         if (!noctty &&
2008             current->signal->leader &&
2009             !current->signal->tty &&
2010             tty->session == NULL)
2011                 __proc_set_tty(current, tty);
2012         spin_unlock_irq(&current->sighand->siglock);
2013         tty_unlock();
2014         mutex_unlock(&tty_mutex);
2015         return 0;
2016 }
2017
2018
2019
2020 /**
2021  *      tty_poll        -       check tty status
2022  *      @filp: file being polled
2023  *      @wait: poll wait structures to update
2024  *
2025  *      Call the line discipline polling method to obtain the poll
2026  *      status of the device.
2027  *
2028  *      Locking: locks called line discipline but ldisc poll method
2029  *      may be re-entered freely by other callers.
2030  */
2031
2032 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2033 {
2034         struct tty_struct *tty = file_tty(filp);
2035         struct tty_ldisc *ld;
2036         int ret = 0;
2037
2038         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2039                 return 0;
2040
2041         ld = tty_ldisc_ref_wait(tty);
2042         if (ld->ops->poll)
2043                 ret = (ld->ops->poll)(tty, filp, wait);
2044         tty_ldisc_deref(ld);
2045         return ret;
2046 }
2047
2048 static int __tty_fasync(int fd, struct file *filp, int on)
2049 {
2050         struct tty_struct *tty = file_tty(filp);
2051         unsigned long flags;
2052         int retval = 0;
2053
2054         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2055                 goto out;
2056
2057         retval = fasync_helper(fd, filp, on, &tty->fasync);
2058         if (retval <= 0)
2059                 goto out;
2060
2061         if (on) {
2062                 enum pid_type type;
2063                 struct pid *pid;
2064                 if (!waitqueue_active(&tty->read_wait))
2065                         tty->minimum_to_wake = 1;
2066                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2067                 if (tty->pgrp) {
2068                         pid = tty->pgrp;
2069                         type = PIDTYPE_PGID;
2070                 } else {
2071                         pid = task_pid(current);
2072                         type = PIDTYPE_PID;
2073                 }
2074                 get_pid(pid);
2075                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2076                 retval = __f_setown(filp, pid, type, 0);
2077                 put_pid(pid);
2078                 if (retval)
2079                         goto out;
2080         } else {
2081                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2082                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2083         }
2084         retval = 0;
2085 out:
2086         return retval;
2087 }
2088
2089 static int tty_fasync(int fd, struct file *filp, int on)
2090 {
2091         int retval;
2092         tty_lock();
2093         retval = __tty_fasync(fd, filp, on);
2094         tty_unlock();
2095         return retval;
2096 }
2097
2098 /**
2099  *      tiocsti                 -       fake input character
2100  *      @tty: tty to fake input into
2101  *      @p: pointer to character
2102  *
2103  *      Fake input to a tty device. Does the necessary locking and
2104  *      input management.
2105  *
2106  *      FIXME: does not honour flow control ??
2107  *
2108  *      Locking:
2109  *              Called functions take tty_ldisc_lock
2110  *              current->signal->tty check is safe without locks
2111  *
2112  *      FIXME: may race normal receive processing
2113  */
2114
2115 static int tiocsti(struct tty_struct *tty, char __user *p)
2116 {
2117         char ch, mbz = 0;
2118         struct tty_ldisc *ld;
2119
2120         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2121                 return -EPERM;
2122         if (get_user(ch, p))
2123                 return -EFAULT;
2124         tty_audit_tiocsti(tty, ch);
2125         ld = tty_ldisc_ref_wait(tty);
2126         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2127         tty_ldisc_deref(ld);
2128         return 0;
2129 }
2130
2131 /**
2132  *      tiocgwinsz              -       implement window query ioctl
2133  *      @tty; tty
2134  *      @arg: user buffer for result
2135  *
2136  *      Copies the kernel idea of the window size into the user buffer.
2137  *
2138  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2139  *              is consistent.
2140  */
2141
2142 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2143 {
2144         int err;
2145
2146         mutex_lock(&tty->termios_mutex);
2147         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2148         mutex_unlock(&tty->termios_mutex);
2149
2150         return err ? -EFAULT: 0;
2151 }
2152
2153 /**
2154  *      tty_do_resize           -       resize event
2155  *      @tty: tty being resized
2156  *      @rows: rows (character)
2157  *      @cols: cols (character)
2158  *
2159  *      Update the termios variables and send the necessary signals to
2160  *      peform a terminal resize correctly
2161  */
2162
2163 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2164 {
2165         struct pid *pgrp;
2166         unsigned long flags;
2167
2168         /* Lock the tty */
2169         mutex_lock(&tty->termios_mutex);
2170         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2171                 goto done;
2172         /* Get the PID values and reference them so we can
2173            avoid holding the tty ctrl lock while sending signals */
2174         spin_lock_irqsave(&tty->ctrl_lock, flags);
2175         pgrp = get_pid(tty->pgrp);
2176         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2177
2178         if (pgrp)
2179                 kill_pgrp(pgrp, SIGWINCH, 1);
2180         put_pid(pgrp);
2181
2182         tty->winsize = *ws;
2183 done:
2184         mutex_unlock(&tty->termios_mutex);
2185         return 0;
2186 }
2187
2188 /**
2189  *      tiocswinsz              -       implement window size set ioctl
2190  *      @tty; tty side of tty
2191  *      @arg: user buffer for result
2192  *
2193  *      Copies the user idea of the window size to the kernel. Traditionally
2194  *      this is just advisory information but for the Linux console it
2195  *      actually has driver level meaning and triggers a VC resize.
2196  *
2197  *      Locking:
2198  *              Driver dependent. The default do_resize method takes the
2199  *      tty termios mutex and ctrl_lock. The console takes its own lock
2200  *      then calls into the default method.
2201  */
2202
2203 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2204 {
2205         struct winsize tmp_ws;
2206         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2207                 return -EFAULT;
2208
2209         if (tty->ops->resize)
2210                 return tty->ops->resize(tty, &tmp_ws);
2211         else
2212                 return tty_do_resize(tty, &tmp_ws);
2213 }
2214
2215 /**
2216  *      tioccons        -       allow admin to move logical console
2217  *      @file: the file to become console
2218  *
2219  *      Allow the administrator to move the redirected console device
2220  *
2221  *      Locking: uses redirect_lock to guard the redirect information
2222  */
2223
2224 static int tioccons(struct file *file)
2225 {
2226         if (!capable(CAP_SYS_ADMIN))
2227                 return -EPERM;
2228         if (file->f_op->write == redirected_tty_write) {
2229                 struct file *f;
2230                 spin_lock(&redirect_lock);
2231                 f = redirect;
2232                 redirect = NULL;
2233                 spin_unlock(&redirect_lock);
2234                 if (f)
2235                         fput(f);
2236                 return 0;
2237         }
2238         spin_lock(&redirect_lock);
2239         if (redirect) {
2240                 spin_unlock(&redirect_lock);
2241                 return -EBUSY;
2242         }
2243         get_file(file);
2244         redirect = file;
2245         spin_unlock(&redirect_lock);
2246         return 0;
2247 }
2248
2249 /**
2250  *      fionbio         -       non blocking ioctl
2251  *      @file: file to set blocking value
2252  *      @p: user parameter
2253  *
2254  *      Historical tty interfaces had a blocking control ioctl before
2255  *      the generic functionality existed. This piece of history is preserved
2256  *      in the expected tty API of posix OS's.
2257  *
2258  *      Locking: none, the open file handle ensures it won't go away.
2259  */
2260
2261 static int fionbio(struct file *file, int __user *p)
2262 {
2263         int nonblock;
2264
2265         if (get_user(nonblock, p))
2266                 return -EFAULT;
2267
2268         spin_lock(&file->f_lock);
2269         if (nonblock)
2270                 file->f_flags |= O_NONBLOCK;
2271         else
2272                 file->f_flags &= ~O_NONBLOCK;
2273         spin_unlock(&file->f_lock);
2274         return 0;
2275 }
2276
2277 /**
2278  *      tiocsctty       -       set controlling tty
2279  *      @tty: tty structure
2280  *      @arg: user argument
2281  *
2282  *      This ioctl is used to manage job control. It permits a session
2283  *      leader to set this tty as the controlling tty for the session.
2284  *
2285  *      Locking:
2286  *              Takes tty_mutex() to protect tty instance
2287  *              Takes tasklist_lock internally to walk sessions
2288  *              Takes ->siglock() when updating signal->tty
2289  */
2290
2291 static int tiocsctty(struct tty_struct *tty, int arg)
2292 {
2293         int ret = 0;
2294         if (current->signal->leader && (task_session(current) == tty->session))
2295                 return ret;
2296
2297         mutex_lock(&tty_mutex);
2298         /*
2299          * The process must be a session leader and
2300          * not have a controlling tty already.
2301          */
2302         if (!current->signal->leader || current->signal->tty) {
2303                 ret = -EPERM;
2304                 goto unlock;
2305         }
2306
2307         if (tty->session) {
2308                 /*
2309                  * This tty is already the controlling
2310                  * tty for another session group!
2311                  */
2312                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2313                         /*
2314                          * Steal it away
2315                          */
2316                         read_lock(&tasklist_lock);
2317                         session_clear_tty(tty->session);
2318                         read_unlock(&tasklist_lock);
2319                 } else {
2320                         ret = -EPERM;
2321                         goto unlock;
2322                 }
2323         }
2324         proc_set_tty(current, tty);
2325 unlock:
2326         mutex_unlock(&tty_mutex);
2327         return ret;
2328 }
2329
2330 /**
2331  *      tty_get_pgrp    -       return a ref counted pgrp pid
2332  *      @tty: tty to read
2333  *
2334  *      Returns a refcounted instance of the pid struct for the process
2335  *      group controlling the tty.
2336  */
2337
2338 struct pid *tty_get_pgrp(struct tty_struct *tty)
2339 {
2340         unsigned long flags;
2341         struct pid *pgrp;
2342
2343         spin_lock_irqsave(&tty->ctrl_lock, flags);
2344         pgrp = get_pid(tty->pgrp);
2345         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2346
2347         return pgrp;
2348 }
2349 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2350
2351 /**
2352  *      tiocgpgrp               -       get process group
2353  *      @tty: tty passed by user
2354  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2355  *      @p: returned pid
2356  *
2357  *      Obtain the process group of the tty. If there is no process group
2358  *      return an error.
2359  *
2360  *      Locking: none. Reference to current->signal->tty is safe.
2361  */
2362
2363 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2364 {
2365         struct pid *pid;
2366         int ret;
2367         /*
2368          * (tty == real_tty) is a cheap way of
2369          * testing if the tty is NOT a master pty.
2370          */
2371         if (tty == real_tty && current->signal->tty != real_tty)
2372                 return -ENOTTY;
2373         pid = tty_get_pgrp(real_tty);
2374         ret =  put_user(pid_vnr(pid), p);
2375         put_pid(pid);
2376         return ret;
2377 }
2378
2379 /**
2380  *      tiocspgrp               -       attempt to set process group
2381  *      @tty: tty passed by user
2382  *      @real_tty: tty side device matching tty passed by user
2383  *      @p: pid pointer
2384  *
2385  *      Set the process group of the tty to the session passed. Only
2386  *      permitted where the tty session is our session.
2387  *
2388  *      Locking: RCU, ctrl lock
2389  */
2390
2391 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2392 {
2393         struct pid *pgrp;
2394         pid_t pgrp_nr;
2395         int retval = tty_check_change(real_tty);
2396         unsigned long flags;
2397
2398         if (retval == -EIO)
2399                 return -ENOTTY;
2400         if (retval)
2401                 return retval;
2402         if (!current->signal->tty ||
2403             (current->signal->tty != real_tty) ||
2404             (real_tty->session != task_session(current)))
2405                 return -ENOTTY;
2406         if (get_user(pgrp_nr, p))
2407                 return -EFAULT;
2408         if (pgrp_nr < 0)
2409                 return -EINVAL;
2410         rcu_read_lock();
2411         pgrp = find_vpid(pgrp_nr);
2412         retval = -ESRCH;
2413         if (!pgrp)
2414                 goto out_unlock;
2415         retval = -EPERM;
2416         if (session_of_pgrp(pgrp) != task_session(current))
2417                 goto out_unlock;
2418         retval = 0;
2419         spin_lock_irqsave(&tty->ctrl_lock, flags);
2420         put_pid(real_tty->pgrp);
2421         real_tty->pgrp = get_pid(pgrp);
2422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2423 out_unlock:
2424         rcu_read_unlock();
2425         return retval;
2426 }
2427
2428 /**
2429  *      tiocgsid                -       get session id
2430  *      @tty: tty passed by user
2431  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2432  *      @p: pointer to returned session id
2433  *
2434  *      Obtain the session id of the tty. If there is no session
2435  *      return an error.
2436  *
2437  *      Locking: none. Reference to current->signal->tty is safe.
2438  */
2439
2440 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2441 {
2442         /*
2443          * (tty == real_tty) is a cheap way of
2444          * testing if the tty is NOT a master pty.
2445         */
2446         if (tty == real_tty && current->signal->tty != real_tty)
2447                 return -ENOTTY;
2448         if (!real_tty->session)
2449                 return -ENOTTY;
2450         return put_user(pid_vnr(real_tty->session), p);
2451 }
2452
2453 /**
2454  *      tiocsetd        -       set line discipline
2455  *      @tty: tty device
2456  *      @p: pointer to user data
2457  *
2458  *      Set the line discipline according to user request.
2459  *
2460  *      Locking: see tty_set_ldisc, this function is just a helper
2461  */
2462
2463 static int tiocsetd(struct tty_struct *tty, int __user *p)
2464 {
2465         int ldisc;
2466         int ret;
2467
2468         if (get_user(ldisc, p))
2469                 return -EFAULT;
2470
2471         ret = tty_set_ldisc(tty, ldisc);
2472
2473         return ret;
2474 }
2475
2476 /**
2477  *      send_break      -       performed time break
2478  *      @tty: device to break on
2479  *      @duration: timeout in mS
2480  *
2481  *      Perform a timed break on hardware that lacks its own driver level
2482  *      timed break functionality.
2483  *
2484  *      Locking:
2485  *              atomic_write_lock serializes
2486  *
2487  */
2488
2489 static int send_break(struct tty_struct *tty, unsigned int duration)
2490 {
2491         int retval;
2492
2493         if (tty->ops->break_ctl == NULL)
2494                 return 0;
2495
2496         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2497                 retval = tty->ops->break_ctl(tty, duration);
2498         else {
2499                 /* Do the work ourselves */
2500                 if (tty_write_lock(tty, 0) < 0)
2501                         return -EINTR;
2502                 retval = tty->ops->break_ctl(tty, -1);
2503                 if (retval)
2504                         goto out;
2505                 if (!signal_pending(current))
2506                         msleep_interruptible(duration);
2507                 retval = tty->ops->break_ctl(tty, 0);
2508 out:
2509                 tty_write_unlock(tty);
2510                 if (signal_pending(current))
2511                         retval = -EINTR;
2512         }
2513         return retval;
2514 }
2515
2516 /**
2517  *      tty_tiocmget            -       get modem status
2518  *      @tty: tty device
2519  *      @file: user file pointer
2520  *      @p: pointer to result
2521  *
2522  *      Obtain the modem status bits from the tty driver if the feature
2523  *      is supported. Return -EINVAL if it is not available.
2524  *
2525  *      Locking: none (up to the driver)
2526  */
2527
2528 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2529 {
2530         int retval = -EINVAL;
2531
2532         if (tty->ops->tiocmget) {
2533                 retval = tty->ops->tiocmget(tty);
2534
2535                 if (retval >= 0)
2536                         retval = put_user(retval, p);
2537         }
2538         return retval;
2539 }
2540
2541 /**
2542  *      tty_tiocmset            -       set modem status
2543  *      @tty: tty device
2544  *      @cmd: command - clear bits, set bits or set all
2545  *      @p: pointer to desired bits
2546  *
2547  *      Set the modem status bits from the tty driver if the feature
2548  *      is supported. Return -EINVAL if it is not available.
2549  *
2550  *      Locking: none (up to the driver)
2551  */
2552
2553 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2554              unsigned __user *p)
2555 {
2556         int retval;
2557         unsigned int set, clear, val;
2558
2559         if (tty->ops->tiocmset == NULL)
2560                 return -EINVAL;
2561
2562         retval = get_user(val, p);
2563         if (retval)
2564                 return retval;
2565         set = clear = 0;
2566         switch (cmd) {
2567         case TIOCMBIS:
2568                 set = val;
2569                 break;
2570         case TIOCMBIC:
2571                 clear = val;
2572                 break;
2573         case TIOCMSET:
2574                 set = val;
2575                 clear = ~val;
2576                 break;
2577         }
2578         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2579         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2580         return tty->ops->tiocmset(tty, set, clear);
2581 }
2582
2583 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2584 {
2585         int retval = -EINVAL;
2586         struct serial_icounter_struct icount;
2587         memset(&icount, 0, sizeof(icount));
2588         if (tty->ops->get_icount)
2589                 retval = tty->ops->get_icount(tty, &icount);
2590         if (retval != 0)
2591                 return retval;
2592         if (copy_to_user(arg, &icount, sizeof(icount)))
2593                 return -EFAULT;
2594         return 0;
2595 }
2596
2597 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2598 {
2599         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2600             tty->driver->subtype == PTY_TYPE_MASTER)
2601                 tty = tty->link;
2602         return tty;
2603 }
2604 EXPORT_SYMBOL(tty_pair_get_tty);
2605
2606 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2607 {
2608         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2609             tty->driver->subtype == PTY_TYPE_MASTER)
2610             return tty;
2611         return tty->link;
2612 }
2613 EXPORT_SYMBOL(tty_pair_get_pty);
2614
2615 /*
2616  * Split this up, as gcc can choke on it otherwise..
2617  */
2618 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2619 {
2620         struct tty_struct *tty = file_tty(file);
2621         struct tty_struct *real_tty;
2622         void __user *p = (void __user *)arg;
2623         int retval;
2624         struct tty_ldisc *ld;
2625         struct inode *inode = file->f_dentry->d_inode;
2626
2627         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2628                 return -EINVAL;
2629
2630         real_tty = tty_pair_get_tty(tty);
2631
2632         /*
2633          * Factor out some common prep work
2634          */
2635         switch (cmd) {
2636         case TIOCSETD:
2637         case TIOCSBRK:
2638         case TIOCCBRK:
2639         case TCSBRK:
2640         case TCSBRKP:
2641                 retval = tty_check_change(tty);
2642                 if (retval)
2643                         return retval;
2644                 if (cmd != TIOCCBRK) {
2645                         tty_wait_until_sent(tty, 0);
2646                         if (signal_pending(current))
2647                                 return -EINTR;
2648                 }
2649                 break;
2650         }
2651
2652         /*
2653          *      Now do the stuff.
2654          */
2655         switch (cmd) {
2656         case TIOCSTI:
2657                 return tiocsti(tty, p);
2658         case TIOCGWINSZ:
2659                 return tiocgwinsz(real_tty, p);
2660         case TIOCSWINSZ:
2661                 return tiocswinsz(real_tty, p);
2662         case TIOCCONS:
2663                 return real_tty != tty ? -EINVAL : tioccons(file);
2664         case FIONBIO:
2665                 return fionbio(file, p);
2666         case TIOCEXCL:
2667                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2668                 return 0;
2669         case TIOCNXCL:
2670                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2671                 return 0;
2672         case TIOCNOTTY:
2673                 if (current->signal->tty != tty)
2674                         return -ENOTTY;
2675                 no_tty();
2676                 return 0;
2677         case TIOCSCTTY:
2678                 return tiocsctty(tty, arg);
2679         case TIOCGPGRP:
2680                 return tiocgpgrp(tty, real_tty, p);
2681         case TIOCSPGRP:
2682                 return tiocspgrp(tty, real_tty, p);
2683         case TIOCGSID:
2684                 return tiocgsid(tty, real_tty, p);
2685         case TIOCGETD:
2686                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2687         case TIOCSETD:
2688                 return tiocsetd(tty, p);
2689         case TIOCVHANGUP:
2690                 if (!capable(CAP_SYS_ADMIN))
2691                         return -EPERM;
2692                 tty_vhangup(tty);
2693                 return 0;
2694         case TIOCGDEV:
2695         {
2696                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2697                 return put_user(ret, (unsigned int __user *)p);
2698         }
2699         /*
2700          * Break handling
2701          */
2702         case TIOCSBRK:  /* Turn break on, unconditionally */
2703                 if (tty->ops->break_ctl)
2704                         return tty->ops->break_ctl(tty, -1);
2705                 return 0;
2706         case TIOCCBRK:  /* Turn break off, unconditionally */
2707                 if (tty->ops->break_ctl)
2708                         return tty->ops->break_ctl(tty, 0);
2709                 return 0;
2710         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2711                 /* non-zero arg means wait for all output data
2712                  * to be sent (performed above) but don't send break.
2713                  * This is used by the tcdrain() termios function.
2714                  */
2715                 if (!arg)
2716                         return send_break(tty, 250);
2717                 return 0;
2718         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2719                 return send_break(tty, arg ? arg*100 : 250);
2720
2721         case TIOCMGET:
2722                 return tty_tiocmget(tty, p);
2723         case TIOCMSET:
2724         case TIOCMBIC:
2725         case TIOCMBIS:
2726                 return tty_tiocmset(tty, cmd, p);
2727         case TIOCGICOUNT:
2728                 retval = tty_tiocgicount(tty, p);
2729                 /* For the moment allow fall through to the old method */
2730                 if (retval != -EINVAL)
2731                         return retval;
2732                 break;
2733         case TCFLSH:
2734                 switch (arg) {
2735                 case TCIFLUSH:
2736                 case TCIOFLUSH:
2737                 /* flush tty buffer and allow ldisc to process ioctl */
2738                         tty_buffer_flush(tty);
2739                         break;
2740                 }
2741                 break;
2742         }
2743         if (tty->ops->ioctl) {
2744                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2745                 if (retval != -ENOIOCTLCMD)
2746                         return retval;
2747         }
2748         ld = tty_ldisc_ref_wait(tty);
2749         retval = -EINVAL;
2750         if (ld->ops->ioctl) {
2751                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2752                 if (retval == -ENOIOCTLCMD)
2753                         retval = -EINVAL;
2754         }
2755         tty_ldisc_deref(ld);
2756         return retval;
2757 }
2758
2759 #ifdef CONFIG_COMPAT
2760 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2761                                 unsigned long arg)
2762 {
2763         struct inode *inode = file->f_dentry->d_inode;
2764         struct tty_struct *tty = file_tty(file);
2765         struct tty_ldisc *ld;
2766         int retval = -ENOIOCTLCMD;
2767
2768         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2769                 return -EINVAL;
2770
2771         if (tty->ops->compat_ioctl) {
2772                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2773                 if (retval != -ENOIOCTLCMD)
2774                         return retval;
2775         }
2776
2777         ld = tty_ldisc_ref_wait(tty);
2778         if (ld->ops->compat_ioctl)
2779                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2780         else
2781                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2782         tty_ldisc_deref(ld);
2783
2784         return retval;
2785 }
2786 #endif
2787
2788 /*
2789  * This implements the "Secure Attention Key" ---  the idea is to
2790  * prevent trojan horses by killing all processes associated with this
2791  * tty when the user hits the "Secure Attention Key".  Required for
2792  * super-paranoid applications --- see the Orange Book for more details.
2793  *
2794  * This code could be nicer; ideally it should send a HUP, wait a few
2795  * seconds, then send a INT, and then a KILL signal.  But you then
2796  * have to coordinate with the init process, since all processes associated
2797  * with the current tty must be dead before the new getty is allowed
2798  * to spawn.
2799  *
2800  * Now, if it would be correct ;-/ The current code has a nasty hole -
2801  * it doesn't catch files in flight. We may send the descriptor to ourselves
2802  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2803  *
2804  * Nasty bug: do_SAK is being called in interrupt context.  This can
2805  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2806  */
2807 void __do_SAK(struct tty_struct *tty)
2808 {
2809 #ifdef TTY_SOFT_SAK
2810         tty_hangup(tty);
2811 #else
2812         struct task_struct *g, *p;
2813         struct pid *session;
2814         int             i;
2815         struct file     *filp;
2816         struct fdtable *fdt;
2817
2818         if (!tty)
2819                 return;
2820         session = tty->session;
2821
2822         tty_ldisc_flush(tty);
2823
2824         tty_driver_flush_buffer(tty);
2825
2826         read_lock(&tasklist_lock);
2827         /* Kill the entire session */
2828         do_each_pid_task(session, PIDTYPE_SID, p) {
2829                 printk(KERN_NOTICE "SAK: killed process %d"
2830                         " (%s): task_session(p)==tty->session\n",
2831                         task_pid_nr(p), p->comm);
2832                 send_sig(SIGKILL, p, 1);
2833         } while_each_pid_task(session, PIDTYPE_SID, p);
2834         /* Now kill any processes that happen to have the
2835          * tty open.
2836          */
2837         do_each_thread(g, p) {
2838                 if (p->signal->tty == tty) {
2839                         printk(KERN_NOTICE "SAK: killed process %d"
2840                             " (%s): task_session(p)==tty->session\n",
2841                             task_pid_nr(p), p->comm);
2842                         send_sig(SIGKILL, p, 1);
2843                         continue;
2844                 }
2845                 task_lock(p);
2846                 if (p->files) {
2847                         /*
2848                          * We don't take a ref to the file, so we must
2849                          * hold ->file_lock instead.
2850                          */
2851                         spin_lock(&p->files->file_lock);
2852                         fdt = files_fdtable(p->files);
2853                         for (i = 0; i < fdt->max_fds; i++) {
2854                                 filp = fcheck_files(p->files, i);
2855                                 if (!filp)
2856                                         continue;
2857                                 if (filp->f_op->read == tty_read &&
2858                                     file_tty(filp) == tty) {
2859                                         printk(KERN_NOTICE "SAK: killed process %d"
2860                                             " (%s): fd#%d opened to the tty\n",
2861                                             task_pid_nr(p), p->comm, i);
2862                                         force_sig(SIGKILL, p);
2863                                         break;
2864                                 }
2865                         }
2866                         spin_unlock(&p->files->file_lock);
2867                 }
2868                 task_unlock(p);
2869         } while_each_thread(g, p);
2870         read_unlock(&tasklist_lock);
2871 #endif
2872 }
2873
2874 static void do_SAK_work(struct work_struct *work)
2875 {
2876         struct tty_struct *tty =
2877                 container_of(work, struct tty_struct, SAK_work);
2878         __do_SAK(tty);
2879 }
2880
2881 /*
2882  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2883  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2884  * the values which we write to it will be identical to the values which it
2885  * already has. --akpm
2886  */
2887 void do_SAK(struct tty_struct *tty)
2888 {
2889         if (!tty)
2890                 return;
2891         schedule_work(&tty->SAK_work);
2892 }
2893
2894 EXPORT_SYMBOL(do_SAK);
2895
2896 static int dev_match_devt(struct device *dev, void *data)
2897 {
2898         dev_t *devt = data;
2899         return dev->devt == *devt;
2900 }
2901
2902 /* Must put_device() after it's unused! */
2903 static struct device *tty_get_device(struct tty_struct *tty)
2904 {
2905         dev_t devt = tty_devnum(tty);
2906         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2907 }
2908
2909
2910 /**
2911  *      initialize_tty_struct
2912  *      @tty: tty to initialize
2913  *
2914  *      This subroutine initializes a tty structure that has been newly
2915  *      allocated.
2916  *
2917  *      Locking: none - tty in question must not be exposed at this point
2918  */
2919
2920 void initialize_tty_struct(struct tty_struct *tty,
2921                 struct tty_driver *driver, int idx)
2922 {
2923         memset(tty, 0, sizeof(struct tty_struct));
2924         kref_init(&tty->kref);
2925         tty->magic = TTY_MAGIC;
2926         tty_ldisc_init(tty);
2927         tty->session = NULL;
2928         tty->pgrp = NULL;
2929         tty->overrun_time = jiffies;
2930         tty->buf.head = tty->buf.tail = NULL;
2931         tty_buffer_init(tty);
2932         mutex_init(&tty->termios_mutex);
2933         mutex_init(&tty->ldisc_mutex);
2934         init_waitqueue_head(&tty->write_wait);
2935         init_waitqueue_head(&tty->read_wait);
2936         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2937         mutex_init(&tty->atomic_read_lock);
2938         mutex_init(&tty->atomic_write_lock);
2939         mutex_init(&tty->output_lock);
2940         mutex_init(&tty->echo_lock);
2941         spin_lock_init(&tty->read_lock);
2942         spin_lock_init(&tty->ctrl_lock);
2943         INIT_LIST_HEAD(&tty->tty_files);
2944         INIT_WORK(&tty->SAK_work, do_SAK_work);
2945
2946         tty->driver = driver;
2947         tty->ops = driver->ops;
2948         tty->index = idx;
2949         tty_line_name(driver, idx, tty->name);
2950         tty->dev = tty_get_device(tty);
2951 }
2952
2953 /**
2954  *      deinitialize_tty_struct
2955  *      @tty: tty to deinitialize
2956  *
2957  *      This subroutine deinitializes a tty structure that has been newly
2958  *      allocated but tty_release cannot be called on that yet.
2959  *
2960  *      Locking: none - tty in question must not be exposed at this point
2961  */
2962 void deinitialize_tty_struct(struct tty_struct *tty)
2963 {
2964         tty_ldisc_deinit(tty);
2965 }
2966
2967 /**
2968  *      tty_put_char    -       write one character to a tty
2969  *      @tty: tty
2970  *      @ch: character
2971  *
2972  *      Write one byte to the tty using the provided put_char method
2973  *      if present. Returns the number of characters successfully output.
2974  *
2975  *      Note: the specific put_char operation in the driver layer may go
2976  *      away soon. Don't call it directly, use this method
2977  */
2978
2979 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2980 {
2981         if (tty->ops->put_char)
2982                 return tty->ops->put_char(tty, ch);
2983         return tty->ops->write(tty, &ch, 1);
2984 }
2985 EXPORT_SYMBOL_GPL(tty_put_char);
2986
2987 struct class *tty_class;
2988
2989 /**
2990  *      tty_register_device - register a tty device
2991  *      @driver: the tty driver that describes the tty device
2992  *      @index: the index in the tty driver for this tty device
2993  *      @device: a struct device that is associated with this tty device.
2994  *              This field is optional, if there is no known struct device
2995  *              for this tty device it can be set to NULL safely.
2996  *
2997  *      Returns a pointer to the struct device for this tty device
2998  *      (or ERR_PTR(-EFOO) on error).
2999  *
3000  *      This call is required to be made to register an individual tty device
3001  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3002  *      that bit is not set, this function should not be called by a tty
3003  *      driver.
3004  *
3005  *      Locking: ??
3006  */
3007
3008 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3009                                    struct device *device)
3010 {
3011         char name[64];
3012         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3013
3014         if (index >= driver->num) {
3015                 printk(KERN_ERR "Attempt to register invalid tty line number "
3016                        " (%d).\n", index);
3017                 return ERR_PTR(-EINVAL);
3018         }
3019
3020         if (driver->type == TTY_DRIVER_TYPE_PTY)
3021                 pty_line_name(driver, index, name);
3022         else
3023                 tty_line_name(driver, index, name);
3024
3025         return device_create(tty_class, device, dev, NULL, name);
3026 }
3027 EXPORT_SYMBOL(tty_register_device);
3028
3029 /**
3030  *      tty_unregister_device - unregister a tty device
3031  *      @driver: the tty driver that describes the tty device
3032  *      @index: the index in the tty driver for this tty device
3033  *
3034  *      If a tty device is registered with a call to tty_register_device() then
3035  *      this function must be called when the tty device is gone.
3036  *
3037  *      Locking: ??
3038  */
3039
3040 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3041 {
3042         device_destroy(tty_class,
3043                 MKDEV(driver->major, driver->minor_start) + index);
3044 }
3045 EXPORT_SYMBOL(tty_unregister_device);
3046
3047 struct tty_driver *alloc_tty_driver(int lines)
3048 {
3049         struct tty_driver *driver;
3050
3051         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052         if (driver) {
3053                 kref_init(&driver->kref);
3054                 driver->magic = TTY_DRIVER_MAGIC;
3055                 driver->num = lines;
3056                 /* later we'll move allocation of tables here */
3057         }
3058         return driver;
3059 }
3060 EXPORT_SYMBOL(alloc_tty_driver);
3061
3062 static void destruct_tty_driver(struct kref *kref)
3063 {
3064         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3065         int i;
3066         struct ktermios *tp;
3067         void *p;
3068
3069         if (driver->flags & TTY_DRIVER_INSTALLED) {
3070                 /*
3071                  * Free the termios and termios_locked structures because
3072                  * we don't want to get memory leaks when modular tty
3073                  * drivers are removed from the kernel.
3074                  */
3075                 for (i = 0; i < driver->num; i++) {
3076                         tp = driver->termios[i];
3077                         if (tp) {
3078                                 driver->termios[i] = NULL;
3079                                 kfree(tp);
3080                         }
3081                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3082                                 tty_unregister_device(driver, i);
3083                 }
3084                 p = driver->ttys;
3085                 proc_tty_unregister_driver(driver);
3086                 driver->ttys = NULL;
3087                 driver->termios = NULL;
3088                 kfree(p);
3089                 cdev_del(&driver->cdev);
3090         }
3091         kfree(driver);
3092 }
3093
3094 void tty_driver_kref_put(struct tty_driver *driver)
3095 {
3096         kref_put(&driver->kref, destruct_tty_driver);
3097 }
3098 EXPORT_SYMBOL(tty_driver_kref_put);
3099
3100 void tty_set_operations(struct tty_driver *driver,
3101                         const struct tty_operations *op)
3102 {
3103         driver->ops = op;
3104 };
3105 EXPORT_SYMBOL(tty_set_operations);
3106
3107 void put_tty_driver(struct tty_driver *d)
3108 {
3109         tty_driver_kref_put(d);
3110 }
3111 EXPORT_SYMBOL(put_tty_driver);
3112
3113 /*
3114  * Called by a tty driver to register itself.
3115  */
3116 int tty_register_driver(struct tty_driver *driver)
3117 {
3118         int error;
3119         int i;
3120         dev_t dev;
3121         void **p = NULL;
3122         struct device *d;
3123
3124         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3125                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3126                 if (!p)
3127                         return -ENOMEM;
3128         }
3129
3130         if (!driver->major) {
3131                 error = alloc_chrdev_region(&dev, driver->minor_start,
3132                                                 driver->num, driver->name);
3133                 if (!error) {
3134                         driver->major = MAJOR(dev);
3135                         driver->minor_start = MINOR(dev);
3136                 }
3137         } else {
3138                 dev = MKDEV(driver->major, driver->minor_start);
3139                 error = register_chrdev_region(dev, driver->num, driver->name);
3140         }
3141         if (error < 0) {
3142                 kfree(p);
3143                 return error;
3144         }
3145
3146         if (p) {
3147                 driver->ttys = (struct tty_struct **)p;
3148                 driver->termios = (struct ktermios **)(p + driver->num);
3149         } else {
3150                 driver->ttys = NULL;
3151                 driver->termios = NULL;
3152         }
3153
3154         cdev_init(&driver->cdev, &tty_fops);
3155         driver->cdev.owner = driver->owner;
3156         error = cdev_add(&driver->cdev, dev, driver->num);
3157         if (error) {
3158                 unregister_chrdev_region(dev, driver->num);
3159                 driver->ttys = NULL;
3160                 driver->termios = NULL;
3161                 kfree(p);
3162                 return error;
3163         }
3164
3165         mutex_lock(&tty_mutex);
3166         list_add(&driver->tty_drivers, &tty_drivers);
3167         mutex_unlock(&tty_mutex);
3168
3169         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3170                 for (i = 0; i < driver->num; i++) {
3171                         d = tty_register_device(driver, i, NULL);
3172                         if (IS_ERR(d)) {
3173                                 error = PTR_ERR(d);
3174                                 goto err;
3175                         }
3176                 }
3177         }
3178         proc_tty_register_driver(driver);
3179         driver->flags |= TTY_DRIVER_INSTALLED;
3180         return 0;
3181
3182 err:
3183         for (i--; i >= 0; i--)
3184                 tty_unregister_device(driver, i);
3185
3186         mutex_lock(&tty_mutex);
3187         list_del(&driver->tty_drivers);
3188         mutex_unlock(&tty_mutex);
3189
3190         unregister_chrdev_region(dev, driver->num);
3191         driver->ttys = NULL;
3192         driver->termios = NULL;
3193         kfree(p);
3194         return error;
3195 }
3196
3197 EXPORT_SYMBOL(tty_register_driver);
3198
3199 /*
3200  * Called by a tty driver to unregister itself.
3201  */
3202 int tty_unregister_driver(struct tty_driver *driver)
3203 {
3204 #if 0
3205         /* FIXME */
3206         if (driver->refcount)
3207                 return -EBUSY;
3208 #endif
3209         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3210                                 driver->num);
3211         mutex_lock(&tty_mutex);
3212         list_del(&driver->tty_drivers);
3213         mutex_unlock(&tty_mutex);
3214         return 0;
3215 }
3216
3217 EXPORT_SYMBOL(tty_unregister_driver);
3218
3219 dev_t tty_devnum(struct tty_struct *tty)
3220 {
3221         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3222 }
3223 EXPORT_SYMBOL(tty_devnum);
3224
3225 void proc_clear_tty(struct task_struct *p)
3226 {
3227         unsigned long flags;
3228         struct tty_struct *tty;
3229         spin_lock_irqsave(&p->sighand->siglock, flags);
3230         tty = p->signal->tty;
3231         p->signal->tty = NULL;
3232         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3233         tty_kref_put(tty);
3234 }
3235
3236 /* Called under the sighand lock */
3237
3238 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3239 {
3240         if (tty) {
3241                 unsigned long flags;
3242                 /* We should not have a session or pgrp to put here but.... */
3243                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3244                 put_pid(tty->session);
3245                 put_pid(tty->pgrp);
3246                 tty->pgrp = get_pid(task_pgrp(tsk));
3247                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3248                 tty->session = get_pid(task_session(tsk));
3249                 if (tsk->signal->tty) {
3250                         printk(KERN_DEBUG "tty not NULL!!\n");
3251                         tty_kref_put(tsk->signal->tty);
3252                 }
3253         }
3254         put_pid(tsk->signal->tty_old_pgrp);
3255         tsk->signal->tty = tty_kref_get(tty);
3256         tsk->signal->tty_old_pgrp = NULL;
3257 }
3258
3259 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3260 {
3261         spin_lock_irq(&tsk->sighand->siglock);
3262         __proc_set_tty(tsk, tty);
3263         spin_unlock_irq(&tsk->sighand->siglock);
3264 }
3265
3266 struct tty_struct *get_current_tty(void)
3267 {
3268         struct tty_struct *tty;
3269         unsigned long flags;
3270
3271         spin_lock_irqsave(&current->sighand->siglock, flags);
3272         tty = tty_kref_get(current->signal->tty);
3273         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3274         return tty;
3275 }
3276 EXPORT_SYMBOL_GPL(get_current_tty);
3277
3278 void tty_default_fops(struct file_operations *fops)
3279 {
3280         *fops = tty_fops;
3281 }
3282
3283 /*
3284  * Initialize the console device. This is called *early*, so
3285  * we can't necessarily depend on lots of kernel help here.
3286  * Just do some early initializations, and do the complex setup
3287  * later.
3288  */
3289 void __init console_init(void)
3290 {
3291         initcall_t *call;
3292
3293         /* Setup the default TTY line discipline. */
3294         tty_ldisc_begin();
3295
3296         /*
3297          * set up the console device so that later boot sequences can
3298          * inform about problems etc..
3299          */
3300         call = __con_initcall_start;
3301         while (call < __con_initcall_end) {
3302                 (*call)();
3303                 call++;
3304         }
3305 }
3306
3307 static char *tty_devnode(struct device *dev, mode_t *mode)
3308 {
3309         if (!mode)
3310                 return NULL;
3311         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3312             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3313                 *mode = 0666;
3314         return NULL;
3315 }
3316
3317 static int __init tty_class_init(void)
3318 {
3319         tty_class = class_create(THIS_MODULE, "tty");
3320         if (IS_ERR(tty_class))
3321                 return PTR_ERR(tty_class);
3322         tty_class->devnode = tty_devnode;
3323         return 0;
3324 }
3325
3326 postcore_initcall(tty_class_init);
3327
3328 /* 3/2004 jmc: why do these devices exist? */
3329 static struct cdev tty_cdev, console_cdev;
3330
3331 static ssize_t show_cons_active(struct device *dev,
3332                                 struct device_attribute *attr, char *buf)
3333 {
3334         struct console *cs[16];
3335         int i = 0;
3336         struct console *c;
3337         ssize_t count = 0;
3338
3339         console_lock();
3340         for_each_console(c) {
3341                 if (!c->device)
3342                         continue;
3343                 if (!c->write)
3344                         continue;
3345                 if ((c->flags & CON_ENABLED) == 0)
3346                         continue;
3347                 cs[i++] = c;
3348                 if (i >= ARRAY_SIZE(cs))
3349                         break;
3350         }
3351         while (i--)
3352                 count += sprintf(buf + count, "%s%d%c",
3353                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3354         console_unlock();
3355
3356         return count;
3357 }
3358 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3359
3360 static struct device *consdev;
3361
3362 void console_sysfs_notify(void)
3363 {
3364         if (consdev)
3365                 sysfs_notify(&consdev->kobj, NULL, "active");
3366 }
3367
3368 /*
3369  * Ok, now we can initialize the rest of the tty devices and can count
3370  * on memory allocations, interrupts etc..
3371  */
3372 int __init tty_init(void)
3373 {
3374         cdev_init(&tty_cdev, &tty_fops);
3375         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3376             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3377                 panic("Couldn't register /dev/tty driver\n");
3378         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3379
3380         cdev_init(&console_cdev, &console_fops);
3381         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3382             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3383                 panic("Couldn't register /dev/console driver\n");
3384         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3385                               "console");
3386         if (IS_ERR(consdev))
3387                 consdev = NULL;
3388         else
3389                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3390
3391 #ifdef CONFIG_VT
3392         vty_init(&console_fops);
3393 #endif
3394         return 0;
3395 }
3396