Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26
27 /*
28  * Used to enable end-to-end workaround for missing RX packets. Do not
29  * use this ring for anything else.
30  */
31 #define RING_E2E_UNUSED_HOPID   2
32 #define RING_FIRST_USABLE_HOPID TB_PATH_MIN_HOPID
33
34 /*
35  * Minimal number of vectors when we use MSI-X. Two for control channel
36  * Rx/Tx and the rest four are for cross domain DMA paths.
37  */
38 #define MSIX_MIN_VECS           6
39 #define MSIX_MAX_VECS           16
40
41 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
42
43 static int ring_interrupt_index(struct tb_ring *ring)
44 {
45         int bit = ring->hop;
46         if (!ring->is_tx)
47                 bit += ring->nhi->hop_count;
48         return bit;
49 }
50
51 /**
52  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
53  *
54  * ring->nhi->lock must be held.
55  */
56 static void ring_interrupt_active(struct tb_ring *ring, bool active)
57 {
58         int reg = REG_RING_INTERRUPT_BASE +
59                   ring_interrupt_index(ring) / 32 * 4;
60         int bit = ring_interrupt_index(ring) & 31;
61         int mask = 1 << bit;
62         u32 old, new;
63
64         if (ring->irq > 0) {
65                 u32 step, shift, ivr, misc;
66                 void __iomem *ivr_base;
67                 int index;
68
69                 if (ring->is_tx)
70                         index = ring->hop;
71                 else
72                         index = ring->hop + ring->nhi->hop_count;
73
74                 /*
75                  * Ask the hardware to clear interrupt status bits automatically
76                  * since we already know which interrupt was triggered.
77                  */
78                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
79                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
80                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
81                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
82                 }
83
84                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
85                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
87                 ivr = ioread32(ivr_base + step);
88                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
89                 if (active)
90                         ivr |= ring->vector << shift;
91                 iowrite32(ivr, ivr_base + step);
92         }
93
94         old = ioread32(ring->nhi->iobase + reg);
95         if (active)
96                 new = old | mask;
97         else
98                 new = old & ~mask;
99
100         dev_dbg(&ring->nhi->pdev->dev,
101                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
102                 active ? "enabling" : "disabling", reg, bit, old, new);
103
104         if (new == old)
105                 dev_WARN(&ring->nhi->pdev->dev,
106                                          "interrupt for %s %d is already %s\n",
107                                          RING_TYPE(ring), ring->hop,
108                                          active ? "enabled" : "disabled");
109         iowrite32(new, ring->nhi->iobase + reg);
110 }
111
112 /**
113  * nhi_disable_interrupts() - disable interrupts for all rings
114  *
115  * Use only during init and shutdown.
116  */
117 static void nhi_disable_interrupts(struct tb_nhi *nhi)
118 {
119         int i = 0;
120         /* disable interrupts */
121         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
122                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
123
124         /* clear interrupt status bits */
125         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
126                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
127 }
128
129 /* ring helper methods */
130
131 static void __iomem *ring_desc_base(struct tb_ring *ring)
132 {
133         void __iomem *io = ring->nhi->iobase;
134         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
135         io += ring->hop * 16;
136         return io;
137 }
138
139 static void __iomem *ring_options_base(struct tb_ring *ring)
140 {
141         void __iomem *io = ring->nhi->iobase;
142         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
143         io += ring->hop * 32;
144         return io;
145 }
146
147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
148 {
149         /*
150          * The other 16-bits in the register is read-only and writes to it
151          * are ignored by the hardware so we can save one ioread32() by
152          * filling the read-only bits with zeroes.
153          */
154         iowrite32(cons, ring_desc_base(ring) + 8);
155 }
156
157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
158 {
159         /* See ring_iowrite_cons() above for explanation */
160         iowrite32(prod << 16, ring_desc_base(ring) + 8);
161 }
162
163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
164 {
165         iowrite32(value, ring_desc_base(ring) + offset);
166 }
167
168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
169 {
170         iowrite32(value, ring_desc_base(ring) + offset);
171         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
172 }
173
174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
175 {
176         iowrite32(value, ring_options_base(ring) + offset);
177 }
178
179 static bool ring_full(struct tb_ring *ring)
180 {
181         return ((ring->head + 1) % ring->size) == ring->tail;
182 }
183
184 static bool ring_empty(struct tb_ring *ring)
185 {
186         return ring->head == ring->tail;
187 }
188
189 /**
190  * ring_write_descriptors() - post frames from ring->queue to the controller
191  *
192  * ring->lock is held.
193  */
194 static void ring_write_descriptors(struct tb_ring *ring)
195 {
196         struct ring_frame *frame, *n;
197         struct ring_desc *descriptor;
198         list_for_each_entry_safe(frame, n, &ring->queue, list) {
199                 if (ring_full(ring))
200                         break;
201                 list_move_tail(&frame->list, &ring->in_flight);
202                 descriptor = &ring->descriptors[ring->head];
203                 descriptor->phys = frame->buffer_phy;
204                 descriptor->time = 0;
205                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
206                 if (ring->is_tx) {
207                         descriptor->length = frame->size;
208                         descriptor->eof = frame->eof;
209                         descriptor->sof = frame->sof;
210                 }
211                 ring->head = (ring->head + 1) % ring->size;
212                 if (ring->is_tx)
213                         ring_iowrite_prod(ring, ring->head);
214                 else
215                         ring_iowrite_cons(ring, ring->head);
216         }
217 }
218
219 /**
220  * ring_work() - progress completed frames
221  *
222  * If the ring is shutting down then all frames are marked as canceled and
223  * their callbacks are invoked.
224  *
225  * Otherwise we collect all completed frame from the ring buffer, write new
226  * frame to the ring buffer and invoke the callbacks for the completed frames.
227  */
228 static void ring_work(struct work_struct *work)
229 {
230         struct tb_ring *ring = container_of(work, typeof(*ring), work);
231         struct ring_frame *frame;
232         bool canceled = false;
233         unsigned long flags;
234         LIST_HEAD(done);
235
236         spin_lock_irqsave(&ring->lock, flags);
237
238         if (!ring->running) {
239                 /*  Move all frames to done and mark them as canceled. */
240                 list_splice_tail_init(&ring->in_flight, &done);
241                 list_splice_tail_init(&ring->queue, &done);
242                 canceled = true;
243                 goto invoke_callback;
244         }
245
246         while (!ring_empty(ring)) {
247                 if (!(ring->descriptors[ring->tail].flags
248                                 & RING_DESC_COMPLETED))
249                         break;
250                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
251                                          list);
252                 list_move_tail(&frame->list, &done);
253                 if (!ring->is_tx) {
254                         frame->size = ring->descriptors[ring->tail].length;
255                         frame->eof = ring->descriptors[ring->tail].eof;
256                         frame->sof = ring->descriptors[ring->tail].sof;
257                         frame->flags = ring->descriptors[ring->tail].flags;
258                 }
259                 ring->tail = (ring->tail + 1) % ring->size;
260         }
261         ring_write_descriptors(ring);
262
263 invoke_callback:
264         /* allow callbacks to schedule new work */
265         spin_unlock_irqrestore(&ring->lock, flags);
266         while (!list_empty(&done)) {
267                 frame = list_first_entry(&done, typeof(*frame), list);
268                 /*
269                  * The callback may reenqueue or delete frame.
270                  * Do not hold on to it.
271                  */
272                 list_del_init(&frame->list);
273                 if (frame->callback)
274                         frame->callback(ring, frame, canceled);
275         }
276 }
277
278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
279 {
280         unsigned long flags;
281         int ret = 0;
282
283         spin_lock_irqsave(&ring->lock, flags);
284         if (ring->running) {
285                 list_add_tail(&frame->list, &ring->queue);
286                 ring_write_descriptors(ring);
287         } else {
288                 ret = -ESHUTDOWN;
289         }
290         spin_unlock_irqrestore(&ring->lock, flags);
291         return ret;
292 }
293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
294
295 /**
296  * tb_ring_poll() - Poll one completed frame from the ring
297  * @ring: Ring to poll
298  *
299  * This function can be called when @start_poll callback of the @ring
300  * has been called. It will read one completed frame from the ring and
301  * return it to the caller. Returns %NULL if there is no more completed
302  * frames.
303  */
304 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
305 {
306         struct ring_frame *frame = NULL;
307         unsigned long flags;
308
309         spin_lock_irqsave(&ring->lock, flags);
310         if (!ring->running)
311                 goto unlock;
312         if (ring_empty(ring))
313                 goto unlock;
314
315         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
316                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
317                                          list);
318                 list_del_init(&frame->list);
319
320                 if (!ring->is_tx) {
321                         frame->size = ring->descriptors[ring->tail].length;
322                         frame->eof = ring->descriptors[ring->tail].eof;
323                         frame->sof = ring->descriptors[ring->tail].sof;
324                         frame->flags = ring->descriptors[ring->tail].flags;
325                 }
326
327                 ring->tail = (ring->tail + 1) % ring->size;
328         }
329
330 unlock:
331         spin_unlock_irqrestore(&ring->lock, flags);
332         return frame;
333 }
334 EXPORT_SYMBOL_GPL(tb_ring_poll);
335
336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
337 {
338         int idx = ring_interrupt_index(ring);
339         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
340         int bit = idx % 32;
341         u32 val;
342
343         val = ioread32(ring->nhi->iobase + reg);
344         if (mask)
345                 val &= ~BIT(bit);
346         else
347                 val |= BIT(bit);
348         iowrite32(val, ring->nhi->iobase + reg);
349 }
350
351 /* Both @nhi->lock and @ring->lock should be held */
352 static void __ring_interrupt(struct tb_ring *ring)
353 {
354         if (!ring->running)
355                 return;
356
357         if (ring->start_poll) {
358                 __ring_interrupt_mask(ring, true);
359                 ring->start_poll(ring->poll_data);
360         } else {
361                 schedule_work(&ring->work);
362         }
363 }
364
365 /**
366  * tb_ring_poll_complete() - Re-start interrupt for the ring
367  * @ring: Ring to re-start the interrupt
368  *
369  * This will re-start (unmask) the ring interrupt once the user is done
370  * with polling.
371  */
372 void tb_ring_poll_complete(struct tb_ring *ring)
373 {
374         unsigned long flags;
375
376         spin_lock_irqsave(&ring->nhi->lock, flags);
377         spin_lock(&ring->lock);
378         if (ring->start_poll)
379                 __ring_interrupt_mask(ring, false);
380         spin_unlock(&ring->lock);
381         spin_unlock_irqrestore(&ring->nhi->lock, flags);
382 }
383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
384
385 static irqreturn_t ring_msix(int irq, void *data)
386 {
387         struct tb_ring *ring = data;
388
389         spin_lock(&ring->nhi->lock);
390         spin_lock(&ring->lock);
391         __ring_interrupt(ring);
392         spin_unlock(&ring->lock);
393         spin_unlock(&ring->nhi->lock);
394
395         return IRQ_HANDLED;
396 }
397
398 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
399 {
400         struct tb_nhi *nhi = ring->nhi;
401         unsigned long irqflags;
402         int ret;
403
404         if (!nhi->pdev->msix_enabled)
405                 return 0;
406
407         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
408         if (ret < 0)
409                 return ret;
410
411         ring->vector = ret;
412
413         ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
414         if (ring->irq < 0)
415                 return ring->irq;
416
417         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
418         return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
419 }
420
421 static void ring_release_msix(struct tb_ring *ring)
422 {
423         if (ring->irq <= 0)
424                 return;
425
426         free_irq(ring->irq, ring);
427         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
428         ring->vector = 0;
429         ring->irq = 0;
430 }
431
432 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
433 {
434         int ret = 0;
435
436         spin_lock_irq(&nhi->lock);
437
438         if (ring->hop < 0) {
439                 unsigned int i;
440
441                 /*
442                  * Automatically allocate HopID from the non-reserved
443                  * range 8 .. hop_count - 1.
444                  */
445                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
446                         if (ring->is_tx) {
447                                 if (!nhi->tx_rings[i]) {
448                                         ring->hop = i;
449                                         break;
450                                 }
451                         } else {
452                                 if (!nhi->rx_rings[i]) {
453                                         ring->hop = i;
454                                         break;
455                                 }
456                         }
457                 }
458         }
459
460         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
461                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
462                 ret = -EINVAL;
463                 goto err_unlock;
464         }
465         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
466                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
467                          ring->hop);
468                 ret = -EBUSY;
469                 goto err_unlock;
470         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
471                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
472                          ring->hop);
473                 ret = -EBUSY;
474                 goto err_unlock;
475         }
476
477         if (ring->is_tx)
478                 nhi->tx_rings[ring->hop] = ring;
479         else
480                 nhi->rx_rings[ring->hop] = ring;
481
482 err_unlock:
483         spin_unlock_irq(&nhi->lock);
484
485         return ret;
486 }
487
488 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
489                                      bool transmit, unsigned int flags,
490                                      u16 sof_mask, u16 eof_mask,
491                                      void (*start_poll)(void *),
492                                      void *poll_data)
493 {
494         struct tb_ring *ring = NULL;
495
496         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
497                 transmit ? "TX" : "RX", hop, size);
498
499         /* Tx Ring 2 is reserved for E2E workaround */
500         if (transmit && hop == RING_E2E_UNUSED_HOPID)
501                 return NULL;
502
503         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
504         if (!ring)
505                 return NULL;
506
507         spin_lock_init(&ring->lock);
508         INIT_LIST_HEAD(&ring->queue);
509         INIT_LIST_HEAD(&ring->in_flight);
510         INIT_WORK(&ring->work, ring_work);
511
512         ring->nhi = nhi;
513         ring->hop = hop;
514         ring->is_tx = transmit;
515         ring->size = size;
516         ring->flags = flags;
517         ring->sof_mask = sof_mask;
518         ring->eof_mask = eof_mask;
519         ring->head = 0;
520         ring->tail = 0;
521         ring->running = false;
522         ring->start_poll = start_poll;
523         ring->poll_data = poll_data;
524
525         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
526                         size * sizeof(*ring->descriptors),
527                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
528         if (!ring->descriptors)
529                 goto err_free_ring;
530
531         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
532                 goto err_free_descs;
533
534         if (nhi_alloc_hop(nhi, ring))
535                 goto err_release_msix;
536
537         return ring;
538
539 err_release_msix:
540         ring_release_msix(ring);
541 err_free_descs:
542         dma_free_coherent(&ring->nhi->pdev->dev,
543                           ring->size * sizeof(*ring->descriptors),
544                           ring->descriptors, ring->descriptors_dma);
545 err_free_ring:
546         kfree(ring);
547
548         return NULL;
549 }
550
551 /**
552  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
553  * @nhi: Pointer to the NHI the ring is to be allocated
554  * @hop: HopID (ring) to allocate
555  * @size: Number of entries in the ring
556  * @flags: Flags for the ring
557  */
558 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
559                                  unsigned int flags)
560 {
561         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
562 }
563 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
564
565 /**
566  * tb_ring_alloc_rx() - Allocate DMA ring for receive
567  * @nhi: Pointer to the NHI the ring is to be allocated
568  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
569  * @size: Number of entries in the ring
570  * @flags: Flags for the ring
571  * @sof_mask: Mask of PDF values that start a frame
572  * @eof_mask: Mask of PDF values that end a frame
573  * @start_poll: If not %NULL the ring will call this function when an
574  *              interrupt is triggered and masked, instead of callback
575  *              in each Rx frame.
576  * @poll_data: Optional data passed to @start_poll
577  */
578 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
579                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
580                                  void (*start_poll)(void *), void *poll_data)
581 {
582         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
583                              start_poll, poll_data);
584 }
585 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
586
587 /**
588  * tb_ring_start() - enable a ring
589  *
590  * Must not be invoked in parallel with tb_ring_stop().
591  */
592 void tb_ring_start(struct tb_ring *ring)
593 {
594         u16 frame_size;
595         u32 flags;
596
597         spin_lock_irq(&ring->nhi->lock);
598         spin_lock(&ring->lock);
599         if (ring->nhi->going_away)
600                 goto err;
601         if (ring->running) {
602                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
603                 goto err;
604         }
605         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
606                 RING_TYPE(ring), ring->hop);
607
608         if (ring->flags & RING_FLAG_FRAME) {
609                 /* Means 4096 */
610                 frame_size = 0;
611                 flags = RING_FLAG_ENABLE;
612         } else {
613                 frame_size = TB_FRAME_SIZE;
614                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
615         }
616
617         if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
618                 u32 hop;
619
620                 /*
621                  * In order not to lose Rx packets we enable end-to-end
622                  * workaround which transfers Rx credits to an unused Tx
623                  * HopID.
624                  */
625                 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
626                 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
627                 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
628         }
629
630         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
631         if (ring->is_tx) {
632                 ring_iowrite32desc(ring, ring->size, 12);
633                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
634                 ring_iowrite32options(ring, flags, 0);
635         } else {
636                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
637
638                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
639                 ring_iowrite32options(ring, sof_eof_mask, 4);
640                 ring_iowrite32options(ring, flags, 0);
641         }
642         ring_interrupt_active(ring, true);
643         ring->running = true;
644 err:
645         spin_unlock(&ring->lock);
646         spin_unlock_irq(&ring->nhi->lock);
647 }
648 EXPORT_SYMBOL_GPL(tb_ring_start);
649
650 /**
651  * tb_ring_stop() - shutdown a ring
652  *
653  * Must not be invoked from a callback.
654  *
655  * This method will disable the ring. Further calls to
656  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
657  * called.
658  *
659  * All enqueued frames will be canceled and their callbacks will be executed
660  * with frame->canceled set to true (on the callback thread). This method
661  * returns only after all callback invocations have finished.
662  */
663 void tb_ring_stop(struct tb_ring *ring)
664 {
665         spin_lock_irq(&ring->nhi->lock);
666         spin_lock(&ring->lock);
667         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
668                 RING_TYPE(ring), ring->hop);
669         if (ring->nhi->going_away)
670                 goto err;
671         if (!ring->running) {
672                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
673                          RING_TYPE(ring), ring->hop);
674                 goto err;
675         }
676         ring_interrupt_active(ring, false);
677
678         ring_iowrite32options(ring, 0, 0);
679         ring_iowrite64desc(ring, 0, 0);
680         ring_iowrite32desc(ring, 0, 8);
681         ring_iowrite32desc(ring, 0, 12);
682         ring->head = 0;
683         ring->tail = 0;
684         ring->running = false;
685
686 err:
687         spin_unlock(&ring->lock);
688         spin_unlock_irq(&ring->nhi->lock);
689
690         /*
691          * schedule ring->work to invoke callbacks on all remaining frames.
692          */
693         schedule_work(&ring->work);
694         flush_work(&ring->work);
695 }
696 EXPORT_SYMBOL_GPL(tb_ring_stop);
697
698 /*
699  * tb_ring_free() - free ring
700  *
701  * When this method returns all invocations of ring->callback will have
702  * finished.
703  *
704  * Ring must be stopped.
705  *
706  * Must NOT be called from ring_frame->callback!
707  */
708 void tb_ring_free(struct tb_ring *ring)
709 {
710         spin_lock_irq(&ring->nhi->lock);
711         /*
712          * Dissociate the ring from the NHI. This also ensures that
713          * nhi_interrupt_work cannot reschedule ring->work.
714          */
715         if (ring->is_tx)
716                 ring->nhi->tx_rings[ring->hop] = NULL;
717         else
718                 ring->nhi->rx_rings[ring->hop] = NULL;
719
720         if (ring->running) {
721                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
722                          RING_TYPE(ring), ring->hop);
723         }
724         spin_unlock_irq(&ring->nhi->lock);
725
726         ring_release_msix(ring);
727
728         dma_free_coherent(&ring->nhi->pdev->dev,
729                           ring->size * sizeof(*ring->descriptors),
730                           ring->descriptors, ring->descriptors_dma);
731
732         ring->descriptors = NULL;
733         ring->descriptors_dma = 0;
734
735
736         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
737                 ring->hop);
738
739         /**
740          * ring->work can no longer be scheduled (it is scheduled only
741          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
742          * to finish before freeing the ring.
743          */
744         flush_work(&ring->work);
745         kfree(ring);
746 }
747 EXPORT_SYMBOL_GPL(tb_ring_free);
748
749 /**
750  * nhi_mailbox_cmd() - Send a command through NHI mailbox
751  * @nhi: Pointer to the NHI structure
752  * @cmd: Command to send
753  * @data: Data to be send with the command
754  *
755  * Sends mailbox command to the firmware running on NHI. Returns %0 in
756  * case of success and negative errno in case of failure.
757  */
758 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
759 {
760         ktime_t timeout;
761         u32 val;
762
763         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
764
765         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
766         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
767         val |= REG_INMAIL_OP_REQUEST | cmd;
768         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
769
770         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
771         do {
772                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
773                 if (!(val & REG_INMAIL_OP_REQUEST))
774                         break;
775                 usleep_range(10, 20);
776         } while (ktime_before(ktime_get(), timeout));
777
778         if (val & REG_INMAIL_OP_REQUEST)
779                 return -ETIMEDOUT;
780         if (val & REG_INMAIL_ERROR)
781                 return -EIO;
782
783         return 0;
784 }
785
786 /**
787  * nhi_mailbox_mode() - Return current firmware operation mode
788  * @nhi: Pointer to the NHI structure
789  *
790  * The function reads current firmware operation mode using NHI mailbox
791  * registers and returns it to the caller.
792  */
793 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
794 {
795         u32 val;
796
797         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
798         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
799         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
800
801         return (enum nhi_fw_mode)val;
802 }
803
804 static void nhi_interrupt_work(struct work_struct *work)
805 {
806         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
807         int value = 0; /* Suppress uninitialized usage warning. */
808         int bit;
809         int hop = -1;
810         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
811         struct tb_ring *ring;
812
813         spin_lock_irq(&nhi->lock);
814
815         /*
816          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
817          * (TX, RX, RX overflow). We iterate over the bits and read a new
818          * dwords as required. The registers are cleared on read.
819          */
820         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
821                 if (bit % 32 == 0)
822                         value = ioread32(nhi->iobase
823                                          + REG_RING_NOTIFY_BASE
824                                          + 4 * (bit / 32));
825                 if (++hop == nhi->hop_count) {
826                         hop = 0;
827                         type++;
828                 }
829                 if ((value & (1 << (bit % 32))) == 0)
830                         continue;
831                 if (type == 2) {
832                         dev_warn(&nhi->pdev->dev,
833                                  "RX overflow for ring %d\n",
834                                  hop);
835                         continue;
836                 }
837                 if (type == 0)
838                         ring = nhi->tx_rings[hop];
839                 else
840                         ring = nhi->rx_rings[hop];
841                 if (ring == NULL) {
842                         dev_warn(&nhi->pdev->dev,
843                                  "got interrupt for inactive %s ring %d\n",
844                                  type ? "RX" : "TX",
845                                  hop);
846                         continue;
847                 }
848
849                 spin_lock(&ring->lock);
850                 __ring_interrupt(ring);
851                 spin_unlock(&ring->lock);
852         }
853         spin_unlock_irq(&nhi->lock);
854 }
855
856 static irqreturn_t nhi_msi(int irq, void *data)
857 {
858         struct tb_nhi *nhi = data;
859         schedule_work(&nhi->interrupt_work);
860         return IRQ_HANDLED;
861 }
862
863 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
864 {
865         struct pci_dev *pdev = to_pci_dev(dev);
866         struct tb *tb = pci_get_drvdata(pdev);
867         struct tb_nhi *nhi = tb->nhi;
868         int ret;
869
870         ret = tb_domain_suspend_noirq(tb);
871         if (ret)
872                 return ret;
873
874         if (nhi->ops && nhi->ops->suspend_noirq) {
875                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
876                 if (ret)
877                         return ret;
878         }
879
880         return 0;
881 }
882
883 static int nhi_suspend_noirq(struct device *dev)
884 {
885         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
886 }
887
888 static bool nhi_wake_supported(struct pci_dev *pdev)
889 {
890         u8 val;
891
892         /*
893          * If power rails are sustainable for wakeup from S4 this
894          * property is set by the BIOS.
895          */
896         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
897                 return !!val;
898
899         return true;
900 }
901
902 static int nhi_poweroff_noirq(struct device *dev)
903 {
904         struct pci_dev *pdev = to_pci_dev(dev);
905         bool wakeup;
906
907         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
908         return __nhi_suspend_noirq(dev, wakeup);
909 }
910
911 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
912 {
913         /* Throttling is specified in 256ns increments */
914         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
915         unsigned int i;
916
917         /*
918          * Configure interrupt throttling for all vectors even if we
919          * only use few.
920          */
921         for (i = 0; i < MSIX_MAX_VECS; i++) {
922                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
923                 iowrite32(throttle, nhi->iobase + reg);
924         }
925 }
926
927 static int nhi_resume_noirq(struct device *dev)
928 {
929         struct pci_dev *pdev = to_pci_dev(dev);
930         struct tb *tb = pci_get_drvdata(pdev);
931         struct tb_nhi *nhi = tb->nhi;
932         int ret;
933
934         /*
935          * Check that the device is still there. It may be that the user
936          * unplugged last device which causes the host controller to go
937          * away on PCs.
938          */
939         if (!pci_device_is_present(pdev)) {
940                 nhi->going_away = true;
941         } else {
942                 if (nhi->ops && nhi->ops->resume_noirq) {
943                         ret = nhi->ops->resume_noirq(nhi);
944                         if (ret)
945                                 return ret;
946                 }
947                 nhi_enable_int_throttling(tb->nhi);
948         }
949
950         return tb_domain_resume_noirq(tb);
951 }
952
953 static int nhi_suspend(struct device *dev)
954 {
955         struct pci_dev *pdev = to_pci_dev(dev);
956         struct tb *tb = pci_get_drvdata(pdev);
957
958         return tb_domain_suspend(tb);
959 }
960
961 static void nhi_complete(struct device *dev)
962 {
963         struct pci_dev *pdev = to_pci_dev(dev);
964         struct tb *tb = pci_get_drvdata(pdev);
965
966         /*
967          * If we were runtime suspended when system suspend started,
968          * schedule runtime resume now. It should bring the domain back
969          * to functional state.
970          */
971         if (pm_runtime_suspended(&pdev->dev))
972                 pm_runtime_resume(&pdev->dev);
973         else
974                 tb_domain_complete(tb);
975 }
976
977 static int nhi_runtime_suspend(struct device *dev)
978 {
979         struct pci_dev *pdev = to_pci_dev(dev);
980         struct tb *tb = pci_get_drvdata(pdev);
981         struct tb_nhi *nhi = tb->nhi;
982         int ret;
983
984         ret = tb_domain_runtime_suspend(tb);
985         if (ret)
986                 return ret;
987
988         if (nhi->ops && nhi->ops->runtime_suspend) {
989                 ret = nhi->ops->runtime_suspend(tb->nhi);
990                 if (ret)
991                         return ret;
992         }
993         return 0;
994 }
995
996 static int nhi_runtime_resume(struct device *dev)
997 {
998         struct pci_dev *pdev = to_pci_dev(dev);
999         struct tb *tb = pci_get_drvdata(pdev);
1000         struct tb_nhi *nhi = tb->nhi;
1001         int ret;
1002
1003         if (nhi->ops && nhi->ops->runtime_resume) {
1004                 ret = nhi->ops->runtime_resume(nhi);
1005                 if (ret)
1006                         return ret;
1007         }
1008
1009         nhi_enable_int_throttling(nhi);
1010         return tb_domain_runtime_resume(tb);
1011 }
1012
1013 static void nhi_shutdown(struct tb_nhi *nhi)
1014 {
1015         int i;
1016
1017         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1018
1019         for (i = 0; i < nhi->hop_count; i++) {
1020                 if (nhi->tx_rings[i])
1021                         dev_WARN(&nhi->pdev->dev,
1022                                  "TX ring %d is still active\n", i);
1023                 if (nhi->rx_rings[i])
1024                         dev_WARN(&nhi->pdev->dev,
1025                                  "RX ring %d is still active\n", i);
1026         }
1027         nhi_disable_interrupts(nhi);
1028         /*
1029          * We have to release the irq before calling flush_work. Otherwise an
1030          * already executing IRQ handler could call schedule_work again.
1031          */
1032         if (!nhi->pdev->msix_enabled) {
1033                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1034                 flush_work(&nhi->interrupt_work);
1035         }
1036         ida_destroy(&nhi->msix_ida);
1037
1038         if (nhi->ops && nhi->ops->shutdown)
1039                 nhi->ops->shutdown(nhi);
1040 }
1041
1042 static int nhi_init_msi(struct tb_nhi *nhi)
1043 {
1044         struct pci_dev *pdev = nhi->pdev;
1045         int res, irq, nvec;
1046
1047         /* In case someone left them on. */
1048         nhi_disable_interrupts(nhi);
1049
1050         nhi_enable_int_throttling(nhi);
1051
1052         ida_init(&nhi->msix_ida);
1053
1054         /*
1055          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1056          * get all MSI-X vectors and if we succeed, each ring will have
1057          * one MSI-X. If for some reason that does not work out, we
1058          * fallback to a single MSI.
1059          */
1060         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1061                                      PCI_IRQ_MSIX);
1062         if (nvec < 0) {
1063                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1064                 if (nvec < 0)
1065                         return nvec;
1066
1067                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1068
1069                 irq = pci_irq_vector(nhi->pdev, 0);
1070                 if (irq < 0)
1071                         return irq;
1072
1073                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1074                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1075                 if (res) {
1076                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1077                         return res;
1078                 }
1079         }
1080
1081         return 0;
1082 }
1083
1084 static bool nhi_imr_valid(struct pci_dev *pdev)
1085 {
1086         u8 val;
1087
1088         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1089                 return !!val;
1090
1091         return true;
1092 }
1093
1094 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1095 {
1096         struct tb_nhi *nhi;
1097         struct tb *tb;
1098         int res;
1099
1100         if (!nhi_imr_valid(pdev)) {
1101                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1102                 return -ENODEV;
1103         }
1104
1105         res = pcim_enable_device(pdev);
1106         if (res) {
1107                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1108                 return res;
1109         }
1110
1111         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1112         if (res) {
1113                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1114                 return res;
1115         }
1116
1117         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1118         if (!nhi)
1119                 return -ENOMEM;
1120
1121         nhi->pdev = pdev;
1122         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1123         /* cannot fail - table is allocated bin pcim_iomap_regions */
1124         nhi->iobase = pcim_iomap_table(pdev)[0];
1125         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1126         if (nhi->hop_count != 12 && nhi->hop_count != 32)
1127                 dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1128                          nhi->hop_count);
1129
1130         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1131                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1132         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1133                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1134         if (!nhi->tx_rings || !nhi->rx_rings)
1135                 return -ENOMEM;
1136
1137         res = nhi_init_msi(nhi);
1138         if (res) {
1139                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1140                 return res;
1141         }
1142
1143         spin_lock_init(&nhi->lock);
1144
1145         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1146         if (res)
1147                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1148         if (res) {
1149                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1150                 return res;
1151         }
1152
1153         pci_set_master(pdev);
1154
1155         if (nhi->ops && nhi->ops->init) {
1156                 res = nhi->ops->init(nhi);
1157                 if (res)
1158                         return res;
1159         }
1160
1161         tb = icm_probe(nhi);
1162         if (!tb)
1163                 tb = tb_probe(nhi);
1164         if (!tb) {
1165                 dev_err(&nhi->pdev->dev,
1166                         "failed to determine connection manager, aborting\n");
1167                 return -ENODEV;
1168         }
1169
1170         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1171
1172         res = tb_domain_add(tb);
1173         if (res) {
1174                 /*
1175                  * At this point the RX/TX rings might already have been
1176                  * activated. Do a proper shutdown.
1177                  */
1178                 tb_domain_put(tb);
1179                 nhi_shutdown(nhi);
1180                 return res;
1181         }
1182         pci_set_drvdata(pdev, tb);
1183
1184         pm_runtime_allow(&pdev->dev);
1185         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1186         pm_runtime_use_autosuspend(&pdev->dev);
1187         pm_runtime_put_autosuspend(&pdev->dev);
1188
1189         return 0;
1190 }
1191
1192 static void nhi_remove(struct pci_dev *pdev)
1193 {
1194         struct tb *tb = pci_get_drvdata(pdev);
1195         struct tb_nhi *nhi = tb->nhi;
1196
1197         pm_runtime_get_sync(&pdev->dev);
1198         pm_runtime_dont_use_autosuspend(&pdev->dev);
1199         pm_runtime_forbid(&pdev->dev);
1200
1201         tb_domain_remove(tb);
1202         nhi_shutdown(nhi);
1203 }
1204
1205 /*
1206  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1207  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1208  * resume_noirq until we are done.
1209  */
1210 static const struct dev_pm_ops nhi_pm_ops = {
1211         .suspend_noirq = nhi_suspend_noirq,
1212         .resume_noirq = nhi_resume_noirq,
1213         .freeze_noirq = nhi_suspend_noirq, /*
1214                                             * we just disable hotplug, the
1215                                             * pci-tunnels stay alive.
1216                                             */
1217         .thaw_noirq = nhi_resume_noirq,
1218         .restore_noirq = nhi_resume_noirq,
1219         .suspend = nhi_suspend,
1220         .freeze = nhi_suspend,
1221         .poweroff_noirq = nhi_poweroff_noirq,
1222         .poweroff = nhi_suspend,
1223         .complete = nhi_complete,
1224         .runtime_suspend = nhi_runtime_suspend,
1225         .runtime_resume = nhi_runtime_resume,
1226 };
1227
1228 static struct pci_device_id nhi_ids[] = {
1229         /*
1230          * We have to specify class, the TB bridges use the same device and
1231          * vendor (sub)id on gen 1 and gen 2 controllers.
1232          */
1233         {
1234                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1235                 .vendor = PCI_VENDOR_ID_INTEL,
1236                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1237                 .subvendor = 0x2222, .subdevice = 0x1111,
1238         },
1239         {
1240                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1241                 .vendor = PCI_VENDOR_ID_INTEL,
1242                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1243                 .subvendor = 0x2222, .subdevice = 0x1111,
1244         },
1245         {
1246                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1247                 .vendor = PCI_VENDOR_ID_INTEL,
1248                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1249                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1250         },
1251         {
1252                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1253                 .vendor = PCI_VENDOR_ID_INTEL,
1254                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1255                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1256         },
1257
1258         /* Thunderbolt 3 */
1259         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1260         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1261         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1262         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1263         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1264         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1265         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1266         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1267         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1268         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1269         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1270           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1271         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1272           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1273
1274         { 0,}
1275 };
1276
1277 MODULE_DEVICE_TABLE(pci, nhi_ids);
1278 MODULE_LICENSE("GPL");
1279
1280 static struct pci_driver nhi_driver = {
1281         .name = "thunderbolt",
1282         .id_table = nhi_ids,
1283         .probe = nhi_probe,
1284         .remove = nhi_remove,
1285         .driver.pm = &nhi_pm_ops,
1286 };
1287
1288 static int __init nhi_init(void)
1289 {
1290         int ret;
1291
1292         ret = tb_domain_init();
1293         if (ret)
1294                 return ret;
1295         ret = pci_register_driver(&nhi_driver);
1296         if (ret)
1297                 tb_domain_exit();
1298         return ret;
1299 }
1300
1301 static void __exit nhi_unload(void)
1302 {
1303         pci_unregister_driver(&nhi_driver);
1304         tb_domain_exit();
1305 }
1306
1307 rootfs_initcall(nhi_init);
1308 module_exit(nhi_unload);