Documentation: PM: Drop pme_interrupt reference
[linux-2.6-block.git] / drivers / tee / optee / smc_abi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/arm-smccc.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irqdomain.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/tee_drv.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include "optee_private.h"
27 #include "optee_smc.h"
28 #include "optee_rpc_cmd.h"
29 #include <linux/kmemleak.h>
30 #define CREATE_TRACE_POINTS
31 #include "optee_trace.h"
32
33 /*
34  * This file implement the SMC ABI used when communicating with secure world
35  * OP-TEE OS via raw SMCs.
36  * This file is divided into the following sections:
37  * 1. Convert between struct tee_param and struct optee_msg_param
38  * 2. Low level support functions to register shared memory in secure world
39  * 3. Dynamic shared memory pool based on alloc_pages()
40  * 4. Do a normal scheduled call into secure world
41  * 5. Asynchronous notification
42  * 6. Driver initialization.
43  */
44
45 /*
46  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
47  * with 6 parameters, needed for open session). So with an alignment of 512
48  * we'll waste a bit more than 50%. However, it's only expected that we'll
49  * have a handful of these structs allocated at a time. Most memory will
50  * be allocated aligned to the page size, So all in all this should scale
51  * up and down quite well.
52  */
53 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
54
55 /*
56  * 1. Convert between struct tee_param and struct optee_msg_param
57  *
58  * optee_from_msg_param() and optee_to_msg_param() are the main
59  * functions.
60  */
61
62 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
63                                   const struct optee_msg_param *mp)
64 {
65         struct tee_shm *shm;
66         phys_addr_t pa;
67         int rc;
68
69         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
70                   attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
71         p->u.memref.size = mp->u.tmem.size;
72         shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
73         if (!shm) {
74                 p->u.memref.shm_offs = 0;
75                 p->u.memref.shm = NULL;
76                 return 0;
77         }
78
79         rc = tee_shm_get_pa(shm, 0, &pa);
80         if (rc)
81                 return rc;
82
83         p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
84         p->u.memref.shm = shm;
85
86         return 0;
87 }
88
89 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
90                                    const struct optee_msg_param *mp)
91 {
92         struct tee_shm *shm;
93
94         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
95                   attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
96         p->u.memref.size = mp->u.rmem.size;
97         shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
98
99         if (shm) {
100                 p->u.memref.shm_offs = mp->u.rmem.offs;
101                 p->u.memref.shm = shm;
102         } else {
103                 p->u.memref.shm_offs = 0;
104                 p->u.memref.shm = NULL;
105         }
106 }
107
108 /**
109  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
110  *                          struct tee_param
111  * @optee:      main service struct
112  * @params:     subsystem internal parameter representation
113  * @num_params: number of elements in the parameter arrays
114  * @msg_params: OPTEE_MSG parameters
115  * Returns 0 on success or <0 on failure
116  */
117 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
118                                 size_t num_params,
119                                 const struct optee_msg_param *msg_params)
120 {
121         int rc;
122         size_t n;
123
124         for (n = 0; n < num_params; n++) {
125                 struct tee_param *p = params + n;
126                 const struct optee_msg_param *mp = msg_params + n;
127                 u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
128
129                 switch (attr) {
130                 case OPTEE_MSG_ATTR_TYPE_NONE:
131                         p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
132                         memset(&p->u, 0, sizeof(p->u));
133                         break;
134                 case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
135                 case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
136                 case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
137                         optee_from_msg_param_value(p, attr, mp);
138                         break;
139                 case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
140                 case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
141                 case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
142                         rc = from_msg_param_tmp_mem(p, attr, mp);
143                         if (rc)
144                                 return rc;
145                         break;
146                 case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
147                 case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
148                 case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
149                         from_msg_param_reg_mem(p, attr, mp);
150                         break;
151
152                 default:
153                         return -EINVAL;
154                 }
155         }
156         return 0;
157 }
158
159 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
160                                 const struct tee_param *p)
161 {
162         int rc;
163         phys_addr_t pa;
164
165         mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
166                    TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
167
168         mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
169         mp->u.tmem.size = p->u.memref.size;
170
171         if (!p->u.memref.shm) {
172                 mp->u.tmem.buf_ptr = 0;
173                 return 0;
174         }
175
176         rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
177         if (rc)
178                 return rc;
179
180         mp->u.tmem.buf_ptr = pa;
181         mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
182                     OPTEE_MSG_ATTR_CACHE_SHIFT;
183
184         return 0;
185 }
186
187 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
188                                 const struct tee_param *p)
189 {
190         mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
191                    TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
192
193         mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
194         mp->u.rmem.size = p->u.memref.size;
195         mp->u.rmem.offs = p->u.memref.shm_offs;
196         return 0;
197 }
198
199 /**
200  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
201  * @optee:      main service struct
202  * @msg_params: OPTEE_MSG parameters
203  * @num_params: number of elements in the parameter arrays
204  * @params:     subsystem itnernal parameter representation
205  * Returns 0 on success or <0 on failure
206  */
207 static int optee_to_msg_param(struct optee *optee,
208                               struct optee_msg_param *msg_params,
209                               size_t num_params, const struct tee_param *params)
210 {
211         int rc;
212         size_t n;
213
214         for (n = 0; n < num_params; n++) {
215                 const struct tee_param *p = params + n;
216                 struct optee_msg_param *mp = msg_params + n;
217
218                 switch (p->attr) {
219                 case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
220                         mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
221                         memset(&mp->u, 0, sizeof(mp->u));
222                         break;
223                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
224                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
225                 case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
226                         optee_to_msg_param_value(mp, p);
227                         break;
228                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
229                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
230                 case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
231                         if (tee_shm_is_dynamic(p->u.memref.shm))
232                                 rc = to_msg_param_reg_mem(mp, p);
233                         else
234                                 rc = to_msg_param_tmp_mem(mp, p);
235                         if (rc)
236                                 return rc;
237                         break;
238                 default:
239                         return -EINVAL;
240                 }
241         }
242         return 0;
243 }
244
245 /*
246  * 2. Low level support functions to register shared memory in secure world
247  *
248  * Functions to enable/disable shared memory caching in secure world, that
249  * is, lazy freeing of previously allocated shared memory. Freeing is
250  * performed when a request has been compled.
251  *
252  * Functions to register and unregister shared memory both for normal
253  * clients and for tee-supplicant.
254  */
255
256 /**
257  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
258  *                            in OP-TEE
259  * @optee:      main service struct
260  */
261 static void optee_enable_shm_cache(struct optee *optee)
262 {
263         struct optee_call_waiter w;
264
265         /* We need to retry until secure world isn't busy. */
266         optee_cq_wait_init(&optee->call_queue, &w);
267         while (true) {
268                 struct arm_smccc_res res;
269
270                 optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
271                                      0, 0, 0, 0, 0, 0, 0, &res);
272                 if (res.a0 == OPTEE_SMC_RETURN_OK)
273                         break;
274                 optee_cq_wait_for_completion(&optee->call_queue, &w);
275         }
276         optee_cq_wait_final(&optee->call_queue, &w);
277 }
278
279 /**
280  * __optee_disable_shm_cache() - Disables caching of some shared memory
281  *                               allocation in OP-TEE
282  * @optee:      main service struct
283  * @is_mapped:  true if the cached shared memory addresses were mapped by this
284  *              kernel, are safe to dereference, and should be freed
285  */
286 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
287 {
288         struct optee_call_waiter w;
289
290         /* We need to retry until secure world isn't busy. */
291         optee_cq_wait_init(&optee->call_queue, &w);
292         while (true) {
293                 union {
294                         struct arm_smccc_res smccc;
295                         struct optee_smc_disable_shm_cache_result result;
296                 } res;
297
298                 optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
299                                      0, 0, 0, 0, 0, 0, 0, &res.smccc);
300                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
301                         break; /* All shm's freed */
302                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
303                         struct tee_shm *shm;
304
305                         /*
306                          * Shared memory references that were not mapped by
307                          * this kernel must be ignored to prevent a crash.
308                          */
309                         if (!is_mapped)
310                                 continue;
311
312                         shm = reg_pair_to_ptr(res.result.shm_upper32,
313                                               res.result.shm_lower32);
314                         tee_shm_free(shm);
315                 } else {
316                         optee_cq_wait_for_completion(&optee->call_queue, &w);
317                 }
318         }
319         optee_cq_wait_final(&optee->call_queue, &w);
320 }
321
322 /**
323  * optee_disable_shm_cache() - Disables caching of mapped shared memory
324  *                             allocations in OP-TEE
325  * @optee:      main service struct
326  */
327 static void optee_disable_shm_cache(struct optee *optee)
328 {
329         return __optee_disable_shm_cache(optee, true);
330 }
331
332 /**
333  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
334  *                                      allocations in OP-TEE which are not
335  *                                      currently mapped
336  * @optee:      main service struct
337  */
338 static void optee_disable_unmapped_shm_cache(struct optee *optee)
339 {
340         return __optee_disable_shm_cache(optee, false);
341 }
342
343 #define PAGELIST_ENTRIES_PER_PAGE                               \
344         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
345
346 /*
347  * The final entry in each pagelist page is a pointer to the next
348  * pagelist page.
349  */
350 static size_t get_pages_list_size(size_t num_entries)
351 {
352         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
353
354         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
355 }
356
357 static u64 *optee_allocate_pages_list(size_t num_entries)
358 {
359         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
360 }
361
362 static void optee_free_pages_list(void *list, size_t num_entries)
363 {
364         free_pages_exact(list, get_pages_list_size(num_entries));
365 }
366
367 /**
368  * optee_fill_pages_list() - write list of user pages to given shared
369  * buffer.
370  *
371  * @dst: page-aligned buffer where list of pages will be stored
372  * @pages: array of pages that represents shared buffer
373  * @num_pages: number of entries in @pages
374  * @page_offset: offset of user buffer from page start
375  *
376  * @dst should be big enough to hold list of user page addresses and
377  *      links to the next pages of buffer
378  */
379 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
380                                   size_t page_offset)
381 {
382         int n = 0;
383         phys_addr_t optee_page;
384         /*
385          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
386          * for details.
387          */
388         struct {
389                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
390                 u64 next_page_data;
391         } *pages_data;
392
393         /*
394          * Currently OP-TEE uses 4k page size and it does not looks
395          * like this will change in the future.  On other hand, there are
396          * no know ARM architectures with page size < 4k.
397          * Thus the next built assert looks redundant. But the following
398          * code heavily relies on this assumption, so it is better be
399          * safe than sorry.
400          */
401         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
402
403         pages_data = (void *)dst;
404         /*
405          * If linux page is bigger than 4k, and user buffer offset is
406          * larger than 4k/8k/12k/etc this will skip first 4k pages,
407          * because they bear no value data for OP-TEE.
408          */
409         optee_page = page_to_phys(*pages) +
410                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
411
412         while (true) {
413                 pages_data->pages_list[n++] = optee_page;
414
415                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
416                         pages_data->next_page_data =
417                                 virt_to_phys(pages_data + 1);
418                         pages_data++;
419                         n = 0;
420                 }
421
422                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
423                 if (!(optee_page & ~PAGE_MASK)) {
424                         if (!--num_pages)
425                                 break;
426                         pages++;
427                         optee_page = page_to_phys(*pages);
428                 }
429         }
430 }
431
432 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
433                               struct page **pages, size_t num_pages,
434                               unsigned long start)
435 {
436         struct optee *optee = tee_get_drvdata(ctx->teedev);
437         struct optee_msg_arg *msg_arg;
438         struct tee_shm *shm_arg;
439         u64 *pages_list;
440         size_t sz;
441         int rc;
442
443         if (!num_pages)
444                 return -EINVAL;
445
446         rc = optee_check_mem_type(start, num_pages);
447         if (rc)
448                 return rc;
449
450         pages_list = optee_allocate_pages_list(num_pages);
451         if (!pages_list)
452                 return -ENOMEM;
453
454         /*
455          * We're about to register shared memory we can't register shared
456          * memory for this request or there's a catch-22.
457          *
458          * So in this we'll have to do the good old temporary private
459          * allocation instead of using optee_get_msg_arg().
460          */
461         sz = optee_msg_arg_size(optee->rpc_param_count);
462         shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
463         if (IS_ERR(shm_arg)) {
464                 rc = PTR_ERR(shm_arg);
465                 goto out;
466         }
467         msg_arg = tee_shm_get_va(shm_arg, 0);
468         if (IS_ERR(msg_arg)) {
469                 rc = PTR_ERR(msg_arg);
470                 goto out;
471         }
472
473         optee_fill_pages_list(pages_list, pages, num_pages,
474                               tee_shm_get_page_offset(shm));
475
476         memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
477         msg_arg->num_params = 1;
478         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
479         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
480                                 OPTEE_MSG_ATTR_NONCONTIG;
481         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
482         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
483         /*
484          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
485          * store buffer offset from 4k page, as described in OP-TEE ABI.
486          */
487         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
488           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
489
490         if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
491             msg_arg->ret != TEEC_SUCCESS)
492                 rc = -EINVAL;
493
494         tee_shm_free(shm_arg);
495 out:
496         optee_free_pages_list(pages_list, num_pages);
497         return rc;
498 }
499
500 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
501 {
502         struct optee *optee = tee_get_drvdata(ctx->teedev);
503         struct optee_msg_arg *msg_arg;
504         struct tee_shm *shm_arg;
505         int rc = 0;
506         size_t sz;
507
508         /*
509          * We're about to unregister shared memory and we may not be able
510          * register shared memory for this request in case we're called
511          * from optee_shm_arg_cache_uninit().
512          *
513          * So in order to keep things simple in this function just as in
514          * optee_shm_register() we'll use temporary private allocation
515          * instead of using optee_get_msg_arg().
516          */
517         sz = optee_msg_arg_size(optee->rpc_param_count);
518         shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
519         if (IS_ERR(shm_arg))
520                 return PTR_ERR(shm_arg);
521         msg_arg = tee_shm_get_va(shm_arg, 0);
522         if (IS_ERR(msg_arg)) {
523                 rc = PTR_ERR(msg_arg);
524                 goto out;
525         }
526
527         memset(msg_arg, 0, sz);
528         msg_arg->num_params = 1;
529         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
530         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
531         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
532
533         if (optee->ops->do_call_with_arg(ctx, shm_arg, 0) ||
534             msg_arg->ret != TEEC_SUCCESS)
535                 rc = -EINVAL;
536 out:
537         tee_shm_free(shm_arg);
538         return rc;
539 }
540
541 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
542                                    struct page **pages, size_t num_pages,
543                                    unsigned long start)
544 {
545         /*
546          * We don't want to register supplicant memory in OP-TEE.
547          * Instead information about it will be passed in RPC code.
548          */
549         return optee_check_mem_type(start, num_pages);
550 }
551
552 static int optee_shm_unregister_supp(struct tee_context *ctx,
553                                      struct tee_shm *shm)
554 {
555         return 0;
556 }
557
558 /*
559  * 3. Dynamic shared memory pool based on alloc_pages()
560  *
561  * Implements an OP-TEE specific shared memory pool which is used
562  * when dynamic shared memory is supported by secure world.
563  *
564  * The main function is optee_shm_pool_alloc_pages().
565  */
566
567 static int pool_op_alloc(struct tee_shm_pool *pool,
568                          struct tee_shm *shm, size_t size, size_t align)
569 {
570         /*
571          * Shared memory private to the OP-TEE driver doesn't need
572          * to be registered with OP-TEE.
573          */
574         if (shm->flags & TEE_SHM_PRIV)
575                 return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
576
577         return optee_pool_op_alloc_helper(pool, shm, size, align,
578                                           optee_shm_register);
579 }
580
581 static void pool_op_free(struct tee_shm_pool *pool,
582                          struct tee_shm *shm)
583 {
584         if (!(shm->flags & TEE_SHM_PRIV))
585                 optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
586         else
587                 optee_pool_op_free_helper(pool, shm, NULL);
588 }
589
590 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
591 {
592         kfree(pool);
593 }
594
595 static const struct tee_shm_pool_ops pool_ops = {
596         .alloc = pool_op_alloc,
597         .free = pool_op_free,
598         .destroy_pool = pool_op_destroy_pool,
599 };
600
601 /**
602  * optee_shm_pool_alloc_pages() - create page-based allocator pool
603  *
604  * This pool is used when OP-TEE supports dymanic SHM. In this case
605  * command buffers and such are allocated from kernel's own memory.
606  */
607 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
608 {
609         struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
610
611         if (!pool)
612                 return ERR_PTR(-ENOMEM);
613
614         pool->ops = &pool_ops;
615
616         return pool;
617 }
618
619 /*
620  * 4. Do a normal scheduled call into secure world
621  *
622  * The function optee_smc_do_call_with_arg() performs a normal scheduled
623  * call into secure world. During this call may normal world request help
624  * from normal world using RPCs, Remote Procedure Calls. This includes
625  * delivery of non-secure interrupts to for instance allow rescheduling of
626  * the current task.
627  */
628
629 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
630                                          struct optee_msg_arg *arg)
631 {
632         struct tee_shm *shm;
633
634         arg->ret_origin = TEEC_ORIGIN_COMMS;
635
636         if (arg->num_params != 1 ||
637             arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
638                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
639                 return;
640         }
641
642         shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
643         switch (arg->params[0].u.value.a) {
644         case OPTEE_RPC_SHM_TYPE_APPL:
645                 optee_rpc_cmd_free_suppl(ctx, shm);
646                 break;
647         case OPTEE_RPC_SHM_TYPE_KERNEL:
648                 tee_shm_free(shm);
649                 break;
650         default:
651                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
652         }
653         arg->ret = TEEC_SUCCESS;
654 }
655
656 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
657                                           struct optee *optee,
658                                           struct optee_msg_arg *arg,
659                                           struct optee_call_ctx *call_ctx)
660 {
661         phys_addr_t pa;
662         struct tee_shm *shm;
663         size_t sz;
664         size_t n;
665
666         arg->ret_origin = TEEC_ORIGIN_COMMS;
667
668         if (!arg->num_params ||
669             arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
670                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
671                 return;
672         }
673
674         for (n = 1; n < arg->num_params; n++) {
675                 if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
676                         arg->ret = TEEC_ERROR_BAD_PARAMETERS;
677                         return;
678                 }
679         }
680
681         sz = arg->params[0].u.value.b;
682         switch (arg->params[0].u.value.a) {
683         case OPTEE_RPC_SHM_TYPE_APPL:
684                 shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
685                 break;
686         case OPTEE_RPC_SHM_TYPE_KERNEL:
687                 shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
688                 break;
689         default:
690                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
691                 return;
692         }
693
694         if (IS_ERR(shm)) {
695                 arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
696                 return;
697         }
698
699         if (tee_shm_get_pa(shm, 0, &pa)) {
700                 arg->ret = TEEC_ERROR_BAD_PARAMETERS;
701                 goto bad;
702         }
703
704         sz = tee_shm_get_size(shm);
705
706         if (tee_shm_is_dynamic(shm)) {
707                 struct page **pages;
708                 u64 *pages_list;
709                 size_t page_num;
710
711                 pages = tee_shm_get_pages(shm, &page_num);
712                 if (!pages || !page_num) {
713                         arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
714                         goto bad;
715                 }
716
717                 pages_list = optee_allocate_pages_list(page_num);
718                 if (!pages_list) {
719                         arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
720                         goto bad;
721                 }
722
723                 call_ctx->pages_list = pages_list;
724                 call_ctx->num_entries = page_num;
725
726                 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
727                                       OPTEE_MSG_ATTR_NONCONTIG;
728                 /*
729                  * In the least bits of u.tmem.buf_ptr we store buffer offset
730                  * from 4k page, as described in OP-TEE ABI.
731                  */
732                 arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
733                         (tee_shm_get_page_offset(shm) &
734                          (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
735                 arg->params[0].u.tmem.size = tee_shm_get_size(shm);
736                 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
737
738                 optee_fill_pages_list(pages_list, pages, page_num,
739                                       tee_shm_get_page_offset(shm));
740         } else {
741                 arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
742                 arg->params[0].u.tmem.buf_ptr = pa;
743                 arg->params[0].u.tmem.size = sz;
744                 arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
745         }
746
747         arg->ret = TEEC_SUCCESS;
748         return;
749 bad:
750         tee_shm_free(shm);
751 }
752
753 static void free_pages_list(struct optee_call_ctx *call_ctx)
754 {
755         if (call_ctx->pages_list) {
756                 optee_free_pages_list(call_ctx->pages_list,
757                                       call_ctx->num_entries);
758                 call_ctx->pages_list = NULL;
759                 call_ctx->num_entries = 0;
760         }
761 }
762
763 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
764 {
765         free_pages_list(call_ctx);
766 }
767
768 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
769                                 struct optee_msg_arg *arg,
770                                 struct optee_call_ctx *call_ctx)
771 {
772
773         switch (arg->cmd) {
774         case OPTEE_RPC_CMD_SHM_ALLOC:
775                 free_pages_list(call_ctx);
776                 handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
777                 break;
778         case OPTEE_RPC_CMD_SHM_FREE:
779                 handle_rpc_func_cmd_shm_free(ctx, arg);
780                 break;
781         default:
782                 optee_rpc_cmd(ctx, optee, arg);
783         }
784 }
785
786 /**
787  * optee_handle_rpc() - handle RPC from secure world
788  * @ctx:        context doing the RPC
789  * @param:      value of registers for the RPC
790  * @call_ctx:   call context. Preserved during one OP-TEE invocation
791  *
792  * Result of RPC is written back into @param.
793  */
794 static void optee_handle_rpc(struct tee_context *ctx,
795                              struct optee_msg_arg *rpc_arg,
796                              struct optee_rpc_param *param,
797                              struct optee_call_ctx *call_ctx)
798 {
799         struct tee_device *teedev = ctx->teedev;
800         struct optee *optee = tee_get_drvdata(teedev);
801         struct optee_msg_arg *arg;
802         struct tee_shm *shm;
803         phys_addr_t pa;
804
805         switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
806         case OPTEE_SMC_RPC_FUNC_ALLOC:
807                 shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
808                 if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
809                         reg_pair_from_64(&param->a1, &param->a2, pa);
810                         reg_pair_from_64(&param->a4, &param->a5,
811                                          (unsigned long)shm);
812                 } else {
813                         param->a1 = 0;
814                         param->a2 = 0;
815                         param->a4 = 0;
816                         param->a5 = 0;
817                 }
818                 kmemleak_not_leak(shm);
819                 break;
820         case OPTEE_SMC_RPC_FUNC_FREE:
821                 shm = reg_pair_to_ptr(param->a1, param->a2);
822                 tee_shm_free(shm);
823                 break;
824         case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
825                 /*
826                  * A foreign interrupt was raised while secure world was
827                  * executing, since they are handled in Linux a dummy RPC is
828                  * performed to let Linux take the interrupt through the normal
829                  * vector.
830                  */
831                 break;
832         case OPTEE_SMC_RPC_FUNC_CMD:
833                 if (rpc_arg) {
834                         arg = rpc_arg;
835                 } else {
836                         shm = reg_pair_to_ptr(param->a1, param->a2);
837                         arg = tee_shm_get_va(shm, 0);
838                         if (IS_ERR(arg)) {
839                                 pr_err("%s: tee_shm_get_va %p failed\n",
840                                        __func__, shm);
841                                 break;
842                         }
843                 }
844
845                 handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
846                 break;
847         default:
848                 pr_warn("Unknown RPC func 0x%x\n",
849                         (u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
850                 break;
851         }
852
853         param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
854 }
855
856 /**
857  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
858  * @ctx:        calling context
859  * @shm:        shared memory holding the message to pass to secure world
860  * @offs:       offset of the message in @shm
861  *
862  * Does and SMC to OP-TEE in secure world and handles eventual resulting
863  * Remote Procedure Calls (RPC) from OP-TEE.
864  *
865  * Returns return code from secure world, 0 is OK
866  */
867 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
868                                       struct tee_shm *shm, u_int offs)
869 {
870         struct optee *optee = tee_get_drvdata(ctx->teedev);
871         struct optee_call_waiter w;
872         struct optee_rpc_param param = { };
873         struct optee_call_ctx call_ctx = { };
874         struct optee_msg_arg *rpc_arg = NULL;
875         int rc;
876
877         if (optee->rpc_param_count) {
878                 struct optee_msg_arg *arg;
879                 unsigned int rpc_arg_offs;
880
881                 arg = tee_shm_get_va(shm, offs);
882                 if (IS_ERR(arg))
883                         return PTR_ERR(arg);
884
885                 rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
886                 rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
887                 if (IS_ERR(arg))
888                         return PTR_ERR(arg);
889         }
890
891         if  (rpc_arg && tee_shm_is_dynamic(shm)) {
892                 param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
893                 reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
894                 param.a3 = offs;
895         } else {
896                 phys_addr_t parg;
897
898                 rc = tee_shm_get_pa(shm, offs, &parg);
899                 if (rc)
900                         return rc;
901
902                 if (rpc_arg)
903                         param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
904                 else
905                         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
906                 reg_pair_from_64(&param.a1, &param.a2, parg);
907         }
908         /* Initialize waiter */
909         optee_cq_wait_init(&optee->call_queue, &w);
910         while (true) {
911                 struct arm_smccc_res res;
912
913                 trace_optee_invoke_fn_begin(&param);
914                 optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
915                                      param.a4, param.a5, param.a6, param.a7,
916                                      &res);
917                 trace_optee_invoke_fn_end(&param, &res);
918
919                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
920                         /*
921                          * Out of threads in secure world, wait for a thread
922                          * become available.
923                          */
924                         optee_cq_wait_for_completion(&optee->call_queue, &w);
925                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
926                         cond_resched();
927                         param.a0 = res.a0;
928                         param.a1 = res.a1;
929                         param.a2 = res.a2;
930                         param.a3 = res.a3;
931                         optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
932                 } else {
933                         rc = res.a0;
934                         break;
935                 }
936         }
937
938         optee_rpc_finalize_call(&call_ctx);
939         /*
940          * We're done with our thread in secure world, if there's any
941          * thread waiters wake up one.
942          */
943         optee_cq_wait_final(&optee->call_queue, &w);
944
945         return rc;
946 }
947
948 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
949 {
950         struct optee_shm_arg_entry *entry;
951         struct optee_msg_arg *msg_arg;
952         struct tee_shm *shm;
953         u_int offs;
954
955         msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
956         if (IS_ERR(msg_arg))
957                 return PTR_ERR(msg_arg);
958
959         msg_arg->cmd = cmd;
960         optee_smc_do_call_with_arg(ctx, shm, offs);
961
962         optee_free_msg_arg(ctx, entry, offs);
963         return 0;
964 }
965
966 static int optee_smc_do_bottom_half(struct tee_context *ctx)
967 {
968         return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
969 }
970
971 static int optee_smc_stop_async_notif(struct tee_context *ctx)
972 {
973         return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
974 }
975
976 /*
977  * 5. Asynchronous notification
978  */
979
980 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
981                                  bool *value_pending)
982 {
983         struct arm_smccc_res res;
984
985         invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
986
987         if (res.a0)
988                 return 0;
989         *value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
990         *value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
991         return res.a1;
992 }
993
994 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
995 {
996         struct optee *optee = dev_id;
997         bool do_bottom_half = false;
998         bool value_valid;
999         bool value_pending;
1000         u32 value;
1001
1002         do {
1003                 value = get_async_notif_value(optee->smc.invoke_fn,
1004                                               &value_valid, &value_pending);
1005                 if (!value_valid)
1006                         break;
1007
1008                 if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1009                         do_bottom_half = true;
1010                 else
1011                         optee_notif_send(optee, value);
1012         } while (value_pending);
1013
1014         if (do_bottom_half)
1015                 return IRQ_WAKE_THREAD;
1016         return IRQ_HANDLED;
1017 }
1018
1019 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1020 {
1021         struct optee *optee = dev_id;
1022
1023         optee_smc_do_bottom_half(optee->ctx);
1024
1025         return IRQ_HANDLED;
1026 }
1027
1028 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1029 {
1030         int rc;
1031
1032         rc = request_threaded_irq(irq, notif_irq_handler,
1033                                   notif_irq_thread_fn,
1034                                   0, "optee_notification", optee);
1035         if (rc)
1036                 return rc;
1037
1038         optee->smc.notif_irq = irq;
1039
1040         return 0;
1041 }
1042
1043 static void optee_smc_notif_uninit_irq(struct optee *optee)
1044 {
1045         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1046                 optee_smc_stop_async_notif(optee->ctx);
1047                 if (optee->smc.notif_irq) {
1048                         free_irq(optee->smc.notif_irq, optee);
1049                         irq_dispose_mapping(optee->smc.notif_irq);
1050                 }
1051         }
1052 }
1053
1054 /*
1055  * 6. Driver initialization
1056  *
1057  * During driver initialization is secure world probed to find out which
1058  * features it supports so the driver can be initialized with a matching
1059  * configuration. This involves for instance support for dynamic shared
1060  * memory instead of a static memory carvout.
1061  */
1062
1063 static void optee_get_version(struct tee_device *teedev,
1064                               struct tee_ioctl_version_data *vers)
1065 {
1066         struct tee_ioctl_version_data v = {
1067                 .impl_id = TEE_IMPL_ID_OPTEE,
1068                 .impl_caps = TEE_OPTEE_CAP_TZ,
1069                 .gen_caps = TEE_GEN_CAP_GP,
1070         };
1071         struct optee *optee = tee_get_drvdata(teedev);
1072
1073         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1074                 v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1075         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1076                 v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1077         *vers = v;
1078 }
1079
1080 static int optee_smc_open(struct tee_context *ctx)
1081 {
1082         struct optee *optee = tee_get_drvdata(ctx->teedev);
1083         u32 sec_caps = optee->smc.sec_caps;
1084
1085         return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1086 }
1087
1088 static const struct tee_driver_ops optee_clnt_ops = {
1089         .get_version = optee_get_version,
1090         .open = optee_smc_open,
1091         .release = optee_release,
1092         .open_session = optee_open_session,
1093         .close_session = optee_close_session,
1094         .invoke_func = optee_invoke_func,
1095         .cancel_req = optee_cancel_req,
1096         .shm_register = optee_shm_register,
1097         .shm_unregister = optee_shm_unregister,
1098 };
1099
1100 static const struct tee_desc optee_clnt_desc = {
1101         .name = DRIVER_NAME "-clnt",
1102         .ops = &optee_clnt_ops,
1103         .owner = THIS_MODULE,
1104 };
1105
1106 static const struct tee_driver_ops optee_supp_ops = {
1107         .get_version = optee_get_version,
1108         .open = optee_smc_open,
1109         .release = optee_release_supp,
1110         .supp_recv = optee_supp_recv,
1111         .supp_send = optee_supp_send,
1112         .shm_register = optee_shm_register_supp,
1113         .shm_unregister = optee_shm_unregister_supp,
1114 };
1115
1116 static const struct tee_desc optee_supp_desc = {
1117         .name = DRIVER_NAME "-supp",
1118         .ops = &optee_supp_ops,
1119         .owner = THIS_MODULE,
1120         .flags = TEE_DESC_PRIVILEGED,
1121 };
1122
1123 static const struct optee_ops optee_ops = {
1124         .do_call_with_arg = optee_smc_do_call_with_arg,
1125         .to_msg_param = optee_to_msg_param,
1126         .from_msg_param = optee_from_msg_param,
1127 };
1128
1129 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1130 {
1131         struct arm_smccc_res res;
1132
1133         invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1134
1135         if (res.a0)
1136                 return -EINVAL;
1137         return 0;
1138 }
1139
1140 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1141 {
1142         struct arm_smccc_res res;
1143
1144         invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1145
1146         if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1147             res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1148                 return true;
1149         return false;
1150 }
1151
1152 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1153 {
1154         union {
1155                 struct arm_smccc_res smccc;
1156                 struct optee_smc_call_get_os_revision_result result;
1157         } res = {
1158                 .result = {
1159                         .build_id = 0
1160                 }
1161         };
1162
1163         invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1164                   &res.smccc);
1165
1166         if (res.result.build_id)
1167                 pr_info("revision %lu.%lu (%08lx)", res.result.major,
1168                         res.result.minor, res.result.build_id);
1169         else
1170                 pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1171 }
1172
1173 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1174 {
1175         union {
1176                 struct arm_smccc_res smccc;
1177                 struct optee_smc_calls_revision_result result;
1178         } res;
1179
1180         invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1181
1182         if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1183             (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1184                 return true;
1185         return false;
1186 }
1187
1188 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1189                                             u32 *sec_caps, u32 *max_notif_value,
1190                                             unsigned int *rpc_param_count)
1191 {
1192         union {
1193                 struct arm_smccc_res smccc;
1194                 struct optee_smc_exchange_capabilities_result result;
1195         } res;
1196         u32 a1 = 0;
1197
1198         /*
1199          * TODO This isn't enough to tell if it's UP system (from kernel
1200          * point of view) or not, is_smp() returns the information
1201          * needed, but can't be called directly from here.
1202          */
1203         if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1204                 a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1205
1206         invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1207                   &res.smccc);
1208
1209         if (res.result.status != OPTEE_SMC_RETURN_OK)
1210                 return false;
1211
1212         *sec_caps = res.result.capabilities;
1213         if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1214                 *max_notif_value = res.result.max_notif_value;
1215         else
1216                 *max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1217         if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1218                 *rpc_param_count = (u8)res.result.data;
1219         else
1220                 *rpc_param_count = 0;
1221
1222         return true;
1223 }
1224
1225 static struct tee_shm_pool *
1226 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1227 {
1228         union {
1229                 struct arm_smccc_res smccc;
1230                 struct optee_smc_get_shm_config_result result;
1231         } res;
1232         unsigned long vaddr;
1233         phys_addr_t paddr;
1234         size_t size;
1235         phys_addr_t begin;
1236         phys_addr_t end;
1237         void *va;
1238         void *rc;
1239
1240         invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1241         if (res.result.status != OPTEE_SMC_RETURN_OK) {
1242                 pr_err("static shm service not available\n");
1243                 return ERR_PTR(-ENOENT);
1244         }
1245
1246         if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1247                 pr_err("only normal cached shared memory supported\n");
1248                 return ERR_PTR(-EINVAL);
1249         }
1250
1251         begin = roundup(res.result.start, PAGE_SIZE);
1252         end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1253         paddr = begin;
1254         size = end - begin;
1255
1256         va = memremap(paddr, size, MEMREMAP_WB);
1257         if (!va) {
1258                 pr_err("shared memory ioremap failed\n");
1259                 return ERR_PTR(-EINVAL);
1260         }
1261         vaddr = (unsigned long)va;
1262
1263         rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1264                                         OPTEE_MIN_STATIC_POOL_ALIGN);
1265         if (IS_ERR(rc))
1266                 memunmap(va);
1267         else
1268                 *memremaped_shm = va;
1269
1270         return rc;
1271 }
1272
1273 /* Simple wrapper functions to be able to use a function pointer */
1274 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1275                             unsigned long a2, unsigned long a3,
1276                             unsigned long a4, unsigned long a5,
1277                             unsigned long a6, unsigned long a7,
1278                             struct arm_smccc_res *res)
1279 {
1280         arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1281 }
1282
1283 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1284                             unsigned long a2, unsigned long a3,
1285                             unsigned long a4, unsigned long a5,
1286                             unsigned long a6, unsigned long a7,
1287                             struct arm_smccc_res *res)
1288 {
1289         arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1290 }
1291
1292 static optee_invoke_fn *get_invoke_func(struct device *dev)
1293 {
1294         const char *method;
1295
1296         pr_info("probing for conduit method.\n");
1297
1298         if (device_property_read_string(dev, "method", &method)) {
1299                 pr_warn("missing \"method\" property\n");
1300                 return ERR_PTR(-ENXIO);
1301         }
1302
1303         if (!strcmp("hvc", method))
1304                 return optee_smccc_hvc;
1305         else if (!strcmp("smc", method))
1306                 return optee_smccc_smc;
1307
1308         pr_warn("invalid \"method\" property: %s\n", method);
1309         return ERR_PTR(-EINVAL);
1310 }
1311
1312 /* optee_remove - Device Removal Routine
1313  * @pdev: platform device information struct
1314  *
1315  * optee_remove is called by platform subsystem to alert the driver
1316  * that it should release the device
1317  */
1318 static int optee_smc_remove(struct platform_device *pdev)
1319 {
1320         struct optee *optee = platform_get_drvdata(pdev);
1321
1322         /*
1323          * Ask OP-TEE to free all cached shared memory objects to decrease
1324          * reference counters and also avoid wild pointers in secure world
1325          * into the old shared memory range.
1326          */
1327         if (!optee->rpc_param_count)
1328                 optee_disable_shm_cache(optee);
1329
1330         optee_smc_notif_uninit_irq(optee);
1331
1332         optee_remove_common(optee);
1333
1334         if (optee->smc.memremaped_shm)
1335                 memunmap(optee->smc.memremaped_shm);
1336
1337         kfree(optee);
1338
1339         return 0;
1340 }
1341
1342 /* optee_shutdown - Device Removal Routine
1343  * @pdev: platform device information struct
1344  *
1345  * platform_shutdown is called by the platform subsystem to alert
1346  * the driver that a shutdown, reboot, or kexec is happening and
1347  * device must be disabled.
1348  */
1349 static void optee_shutdown(struct platform_device *pdev)
1350 {
1351         struct optee *optee = platform_get_drvdata(pdev);
1352
1353         if (!optee->rpc_param_count)
1354                 optee_disable_shm_cache(optee);
1355 }
1356
1357 static int optee_probe(struct platform_device *pdev)
1358 {
1359         optee_invoke_fn *invoke_fn;
1360         struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1361         struct optee *optee = NULL;
1362         void *memremaped_shm = NULL;
1363         unsigned int rpc_param_count;
1364         struct tee_device *teedev;
1365         struct tee_context *ctx;
1366         u32 max_notif_value;
1367         u32 arg_cache_flags;
1368         u32 sec_caps;
1369         int rc;
1370
1371         invoke_fn = get_invoke_func(&pdev->dev);
1372         if (IS_ERR(invoke_fn))
1373                 return PTR_ERR(invoke_fn);
1374
1375         if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1376                 pr_warn("api uid mismatch\n");
1377                 return -EINVAL;
1378         }
1379
1380         optee_msg_get_os_revision(invoke_fn);
1381
1382         if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1383                 pr_warn("api revision mismatch\n");
1384                 return -EINVAL;
1385         }
1386
1387         if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1388                                              &max_notif_value,
1389                                              &rpc_param_count)) {
1390                 pr_warn("capabilities mismatch\n");
1391                 return -EINVAL;
1392         }
1393
1394         /*
1395          * Try to use dynamic shared memory if possible
1396          */
1397         if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1398                 /*
1399                  * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1400                  * optee_get_msg_arg() to pre-register (by having
1401                  * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1402                  * an argument struct.
1403                  *
1404                  * With the page is pre-registered we can use a non-zero
1405                  * offset for argument struct, this is indicated with
1406                  * OPTEE_SHM_ARG_SHARED.
1407                  *
1408                  * This means that optee_smc_do_call_with_arg() will use
1409                  * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1410                  */
1411                 if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1412                         arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1413                 else
1414                         arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1415
1416                 pool = optee_shm_pool_alloc_pages();
1417         }
1418
1419         /*
1420          * If dynamic shared memory is not available or failed - try static one
1421          */
1422         if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1423                 /*
1424                  * The static memory pool can use non-zero page offsets so
1425                  * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1426                  *
1427                  * optee_get_msg_arg() should not pre-register the
1428                  * allocated page used to pass an argument struct, this is
1429                  * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1430                  *
1431                  * This means that optee_smc_do_call_with_arg() will use
1432                  * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1433                  * OPTEE_SMC_CALL_WITH_RPC_ARG.
1434                  */
1435                 arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1436                                   OPTEE_SHM_ARG_ALLOC_PRIV;
1437                 pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1438         }
1439
1440         if (IS_ERR(pool))
1441                 return PTR_ERR(pool);
1442
1443         optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1444         if (!optee) {
1445                 rc = -ENOMEM;
1446                 goto err_free_pool;
1447         }
1448
1449         optee->ops = &optee_ops;
1450         optee->smc.invoke_fn = invoke_fn;
1451         optee->smc.sec_caps = sec_caps;
1452         optee->rpc_param_count = rpc_param_count;
1453
1454         teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1455         if (IS_ERR(teedev)) {
1456                 rc = PTR_ERR(teedev);
1457                 goto err_free_optee;
1458         }
1459         optee->teedev = teedev;
1460
1461         teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1462         if (IS_ERR(teedev)) {
1463                 rc = PTR_ERR(teedev);
1464                 goto err_unreg_teedev;
1465         }
1466         optee->supp_teedev = teedev;
1467
1468         rc = tee_device_register(optee->teedev);
1469         if (rc)
1470                 goto err_unreg_supp_teedev;
1471
1472         rc = tee_device_register(optee->supp_teedev);
1473         if (rc)
1474                 goto err_unreg_supp_teedev;
1475
1476         mutex_init(&optee->call_queue.mutex);
1477         INIT_LIST_HEAD(&optee->call_queue.waiters);
1478         optee_supp_init(&optee->supp);
1479         optee->smc.memremaped_shm = memremaped_shm;
1480         optee->pool = pool;
1481         optee_shm_arg_cache_init(optee, arg_cache_flags);
1482
1483         platform_set_drvdata(pdev, optee);
1484         ctx = teedev_open(optee->teedev);
1485         if (IS_ERR(ctx)) {
1486                 rc = PTR_ERR(ctx);
1487                 goto err_supp_uninit;
1488         }
1489         optee->ctx = ctx;
1490         rc = optee_notif_init(optee, max_notif_value);
1491         if (rc)
1492                 goto err_close_ctx;
1493
1494         if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1495                 unsigned int irq;
1496
1497                 rc = platform_get_irq(pdev, 0);
1498                 if (rc < 0) {
1499                         pr_err("platform_get_irq: ret %d\n", rc);
1500                         goto err_notif_uninit;
1501                 }
1502                 irq = rc;
1503
1504                 rc = optee_smc_notif_init_irq(optee, irq);
1505                 if (rc) {
1506                         irq_dispose_mapping(irq);
1507                         goto err_notif_uninit;
1508                 }
1509                 enable_async_notif(optee->smc.invoke_fn);
1510                 pr_info("Asynchronous notifications enabled\n");
1511         }
1512
1513         /*
1514          * Ensure that there are no pre-existing shm objects before enabling
1515          * the shm cache so that there's no chance of receiving an invalid
1516          * address during shutdown. This could occur, for example, if we're
1517          * kexec booting from an older kernel that did not properly cleanup the
1518          * shm cache.
1519          */
1520         optee_disable_unmapped_shm_cache(optee);
1521
1522         /*
1523          * Only enable the shm cache in case we're not able to pass the RPC
1524          * arg struct right after the normal arg struct.
1525          */
1526         if (!optee->rpc_param_count)
1527                 optee_enable_shm_cache(optee);
1528
1529         if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1530                 pr_info("dynamic shared memory is enabled\n");
1531
1532         rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1533         if (rc)
1534                 goto err_disable_shm_cache;
1535
1536         pr_info("initialized driver\n");
1537         return 0;
1538
1539 err_disable_shm_cache:
1540         if (!optee->rpc_param_count)
1541                 optee_disable_shm_cache(optee);
1542         optee_smc_notif_uninit_irq(optee);
1543         optee_unregister_devices();
1544 err_notif_uninit:
1545         optee_notif_uninit(optee);
1546 err_close_ctx:
1547         teedev_close_context(ctx);
1548 err_supp_uninit:
1549         optee_shm_arg_cache_uninit(optee);
1550         optee_supp_uninit(&optee->supp);
1551         mutex_destroy(&optee->call_queue.mutex);
1552 err_unreg_supp_teedev:
1553         tee_device_unregister(optee->supp_teedev);
1554 err_unreg_teedev:
1555         tee_device_unregister(optee->teedev);
1556 err_free_optee:
1557         kfree(optee);
1558 err_free_pool:
1559         tee_shm_pool_free(pool);
1560         if (memremaped_shm)
1561                 memunmap(memremaped_shm);
1562         return rc;
1563 }
1564
1565 static const struct of_device_id optee_dt_match[] = {
1566         { .compatible = "linaro,optee-tz" },
1567         {},
1568 };
1569 MODULE_DEVICE_TABLE(of, optee_dt_match);
1570
1571 static struct platform_driver optee_driver = {
1572         .probe  = optee_probe,
1573         .remove = optee_smc_remove,
1574         .shutdown = optee_shutdown,
1575         .driver = {
1576                 .name = "optee",
1577                 .of_match_table = optee_dt_match,
1578         },
1579 };
1580
1581 int optee_smc_abi_register(void)
1582 {
1583         return platform_driver_register(&optee_driver);
1584 }
1585
1586 void optee_smc_abi_unregister(void)
1587 {
1588         platform_driver_unregister(&optee_driver);
1589 }