staging: vt6656: rxtx.c Create union of struct vnt_rrv_time* stuctures
[linux-2.6-block.git] / drivers / staging / vt6656 / rxtx.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: rxtx.c
20  *
21  * Purpose: handle WMAC/802.3/802.11 rx & tx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      s_vGenerateTxParameter - Generate tx dma required parameter.
29  *      s_vGenerateMACHeader - Translate 802.3 to 802.11 header
30  *      csBeacon_xmit - beacon tx function
31  *      csMgmt_xmit - management tx function
32  *      s_uGetDataDuration - get tx data required duration
33  *      s_uFillDataHead- fulfill tx data duration header
34  *      s_uGetRTSCTSDuration- get rtx/cts required duration
35  *      s_uGetRTSCTSRsvTime- get rts/cts reserved time
36  *      s_uGetTxRsvTime- get frame reserved time
37  *      s_vFillCTSHead- fulfill CTS ctl header
38  *      s_vFillFragParameter- Set fragment ctl parameter.
39  *      s_vFillRTSHead- fulfill RTS ctl header
40  *      s_vFillTxKey- fulfill tx encrypt key
41  *      s_vSWencryption- Software encrypt header
42  *      vDMA0_tx_80211- tx 802.11 frame via dma0
43  *      vGenerateFIFOHeader- Generate tx FIFO ctl header
44  *
45  * Revision History:
46  *
47  */
48
49 #include "device.h"
50 #include "rxtx.h"
51 #include "tether.h"
52 #include "card.h"
53 #include "bssdb.h"
54 #include "mac.h"
55 #include "michael.h"
56 #include "tkip.h"
57 #include "tcrc.h"
58 #include "wctl.h"
59 #include "hostap.h"
60 #include "rf.h"
61 #include "datarate.h"
62 #include "usbpipe.h"
63 #include "iocmd.h"
64
65 static int          msglevel                = MSG_LEVEL_INFO;
66
67 const u16 wTimeStampOff[2][MAX_RATE] = {
68         {384, 288, 226, 209, 54, 43, 37, 31, 28, 25, 24, 23}, // Long Preamble
69         {384, 192, 130, 113, 54, 43, 37, 31, 28, 25, 24, 23}, // Short Preamble
70     };
71
72 const u16 wFB_Opt0[2][5] = {
73         {RATE_12M, RATE_18M, RATE_24M, RATE_36M, RATE_48M}, // fallback_rate0
74         {RATE_12M, RATE_12M, RATE_18M, RATE_24M, RATE_36M}, // fallback_rate1
75     };
76 const u16 wFB_Opt1[2][5] = {
77         {RATE_12M, RATE_18M, RATE_24M, RATE_24M, RATE_36M}, // fallback_rate0
78         {RATE_6M , RATE_6M,  RATE_12M, RATE_12M, RATE_18M}, // fallback_rate1
79     };
80
81 #define RTSDUR_BB       0
82 #define RTSDUR_BA       1
83 #define RTSDUR_AA       2
84 #define CTSDUR_BA       3
85 #define RTSDUR_BA_F0    4
86 #define RTSDUR_AA_F0    5
87 #define RTSDUR_BA_F1    6
88 #define RTSDUR_AA_F1    7
89 #define CTSDUR_BA_F0    8
90 #define CTSDUR_BA_F1    9
91 #define DATADUR_B       10
92 #define DATADUR_A       11
93 #define DATADUR_A_F0    12
94 #define DATADUR_A_F1    13
95
96 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
97         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl);
98
99 static void *s_vGetFreeContext(struct vnt_private *pDevice);
100
101 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
102         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
103         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
104         struct ethhdr *psEthHeader, bool need_rts);
105
106 static u32 s_uFillDataHead(struct vnt_private *pDevice,
107         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
108         u32 uDMAIdx, int bNeedAck, u8 byFBOption);
109
110 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
111         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
112         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx);
113
114 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
115         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf, u16 wPayloadLen,
116         struct vnt_mic_hdr *mic_hdr);
117
118 static void s_vSWencryption(struct vnt_private *pDevice,
119         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize);
120
121 static unsigned int s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
122         u32 cbFrameLength, u16 wRate, int bNeedAck);
123
124 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice, u8 byRTSRsvType,
125         u8 byPktType, u32 cbFrameLength, u16 wCurrentRate);
126
127 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
128         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
129         int bNeedAck, u16 wCurrentRate, u8 byFBOption);
130
131 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
132         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
133         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption);
134
135 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
136         u8 byPktType, int bNeedAck);
137
138 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice,
139         u8 byDurType, u32 cbFrameLength, u8 byPktType, u16 wRate,
140         int bNeedAck, u8 byFBOption);
141
142 static void *s_vGetFreeContext(struct vnt_private *pDevice)
143 {
144         struct vnt_usb_send_context *pContext = NULL;
145         struct vnt_usb_send_context *pReturnContext = NULL;
146         int ii;
147
148     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"GetFreeContext()\n");
149
150     for (ii = 0; ii < pDevice->cbTD; ii++) {
151         pContext = pDevice->apTD[ii];
152         if (pContext->bBoolInUse == false) {
153             pContext->bBoolInUse = true;
154                 memset(pContext->Data, 0, MAX_TOTAL_SIZE_WITH_ALL_HEADERS);
155             pReturnContext = pContext;
156             break;
157         }
158     }
159     if ( ii == pDevice->cbTD ) {
160         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Free Tx Context\n");
161     }
162     return (void *) pReturnContext;
163 }
164
165 static void s_vSaveTxPktInfo(struct vnt_private *pDevice, u8 byPktNum,
166         u8 *pbyDestAddr, u16 wPktLength, u16 wFIFOCtl)
167 {
168         PSStatCounter pStatistic = &pDevice->scStatistic;
169
170     if (is_broadcast_ether_addr(pbyDestAddr))
171         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_BROAD;
172     else if (is_multicast_ether_addr(pbyDestAddr))
173         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_MULTI;
174     else
175         pStatistic->abyTxPktInfo[byPktNum].byBroadMultiUni = TX_PKT_UNI;
176
177     pStatistic->abyTxPktInfo[byPktNum].wLength = wPktLength;
178     pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl = wFIFOCtl;
179     memcpy(pStatistic->abyTxPktInfo[byPktNum].abyDestAddr,
180            pbyDestAddr,
181            ETH_ALEN);
182 }
183
184 static void s_vFillTxKey(struct vnt_private *pDevice, u8 *pbyBuf,
185         u8 *pbyIVHead, PSKeyItem pTransmitKey, u8 *pbyHdrBuf,
186         u16 wPayloadLen, struct vnt_mic_hdr *mic_hdr)
187 {
188         u32 *pdwIV = (u32 *)pbyIVHead;
189         u32 *pdwExtIV = (u32 *)((u8 *)pbyIVHead + 4);
190         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyHdrBuf;
191         u32 dwRevIVCounter;
192
193         /* Fill TXKEY */
194         if (pTransmitKey == NULL)
195                 return;
196
197         dwRevIVCounter = cpu_to_le32(pDevice->dwIVCounter);
198         *pdwIV = pDevice->dwIVCounter;
199         pDevice->byKeyIndex = pTransmitKey->dwKeyIndex & 0xf;
200
201         switch (pTransmitKey->byCipherSuite) {
202         case KEY_CTL_WEP:
203                 if (pTransmitKey->uKeyLength == WLAN_WEP232_KEYLEN) {
204                         memcpy(pDevice->abyPRNG, (u8 *)&dwRevIVCounter, 3);
205                         memcpy(pDevice->abyPRNG + 3, pTransmitKey->abyKey,
206                                                 pTransmitKey->uKeyLength);
207                 } else {
208                         memcpy(pbyBuf, (u8 *)&dwRevIVCounter, 3);
209                         memcpy(pbyBuf + 3, pTransmitKey->abyKey,
210                                                 pTransmitKey->uKeyLength);
211                         if (pTransmitKey->uKeyLength == WLAN_WEP40_KEYLEN) {
212                                 memcpy(pbyBuf+8, (u8 *)&dwRevIVCounter, 3);
213                         memcpy(pbyBuf+11, pTransmitKey->abyKey,
214                                                 pTransmitKey->uKeyLength);
215                         }
216
217                         memcpy(pDevice->abyPRNG, pbyBuf, 16);
218                 }
219                 /* Append IV after Mac Header */
220                 *pdwIV &= WEP_IV_MASK;
221                 *pdwIV |= (u32)pDevice->byKeyIndex << 30;
222                 *pdwIV = cpu_to_le32(*pdwIV);
223
224                 pDevice->dwIVCounter++;
225                 if (pDevice->dwIVCounter > WEP_IV_MASK)
226                         pDevice->dwIVCounter = 0;
227
228                 break;
229         case KEY_CTL_TKIP:
230                 pTransmitKey->wTSC15_0++;
231                 if (pTransmitKey->wTSC15_0 == 0)
232                         pTransmitKey->dwTSC47_16++;
233
234                 TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
235                         pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16,
236                                                         pDevice->abyPRNG);
237                 memcpy(pbyBuf, pDevice->abyPRNG, 16);
238
239                 /* Make IV */
240                 memcpy(pdwIV, pDevice->abyPRNG, 3);
241
242                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
243                                                         0xc0) | 0x20);
244                 /*  Append IV&ExtIV after Mac Header */
245                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
246
247                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
248                         "vFillTxKey()---- pdwExtIV: %x\n", *pdwExtIV);
249
250                 break;
251         case KEY_CTL_CCMP:
252                 pTransmitKey->wTSC15_0++;
253                 if (pTransmitKey->wTSC15_0 == 0)
254                         pTransmitKey->dwTSC47_16++;
255
256                 memcpy(pbyBuf, pTransmitKey->abyKey, 16);
257
258                 /* Make IV */
259                 *pdwIV = 0;
260                 *(pbyIVHead+3) = (u8)(((pDevice->byKeyIndex << 6) &
261                                                         0xc0) | 0x20);
262
263                 *pdwIV |= cpu_to_le16((u16)(pTransmitKey->wTSC15_0));
264
265                 /* Append IV&ExtIV after Mac Header */
266                 *pdwExtIV = cpu_to_le32(pTransmitKey->dwTSC47_16);
267
268                 if (!mic_hdr)
269                         return;
270
271                 /* MICHDR0 */
272                 mic_hdr->id = 0x59;
273                 mic_hdr->payload_len = cpu_to_be16(wPayloadLen);
274                 memcpy(mic_hdr->mic_addr2, pMACHeader->addr2, ETH_ALEN);
275
276                 mic_hdr->tsc_47_16 = cpu_to_be32(pTransmitKey->dwTSC47_16);
277                 mic_hdr->tsc_15_0 = cpu_to_be16(pTransmitKey->wTSC15_0);
278
279                 /* MICHDR1 */
280                 if (pDevice->bLongHeader)
281                         mic_hdr->hlen = cpu_to_be16(28);
282                 else
283                         mic_hdr->hlen = cpu_to_be16(22);
284
285                 memcpy(mic_hdr->addr1, pMACHeader->addr1, ETH_ALEN);
286                 memcpy(mic_hdr->addr2, pMACHeader->addr2, ETH_ALEN);
287
288                 /* MICHDR2 */
289                 memcpy(mic_hdr->addr3, pMACHeader->addr3, ETH_ALEN);
290                 mic_hdr->frame_control = cpu_to_le16(pMACHeader->frame_control
291                                                                 & 0xc78f);
292                 mic_hdr->seq_ctrl = cpu_to_le16(pMACHeader->seq_ctrl & 0xf);
293
294                 if (pDevice->bLongHeader)
295                         memcpy(mic_hdr->addr4, pMACHeader->addr4, ETH_ALEN);
296         }
297 }
298
299 static void s_vSWencryption(struct vnt_private *pDevice,
300         PSKeyItem pTransmitKey, u8 *pbyPayloadHead, u16 wPayloadSize)
301 {
302         u32 cbICVlen = 4;
303         u32 dwICV = 0xffffffff;
304         u32 *pdwICV;
305
306     if (pTransmitKey == NULL)
307         return;
308
309     if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
310         //=======================================================================
311         // Append ICV after payload
312         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
313         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
314         // finally, we must invert dwCRC to get the correct answer
315         *pdwICV = cpu_to_le32(~dwICV);
316         // RC4 encryption
317         rc4_init(&pDevice->SBox, pDevice->abyPRNG, pTransmitKey->uKeyLength + 3);
318         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
319         //=======================================================================
320     } else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
321         //=======================================================================
322         //Append ICV after payload
323         dwICV = CRCdwGetCrc32Ex(pbyPayloadHead, wPayloadSize, dwICV);//ICV(Payload)
324         pdwICV = (u32 *)(pbyPayloadHead + wPayloadSize);
325         // finally, we must invert dwCRC to get the correct answer
326         *pdwICV = cpu_to_le32(~dwICV);
327         // RC4 encryption
328         rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
329         rc4_encrypt(&pDevice->SBox, pbyPayloadHead, pbyPayloadHead, wPayloadSize+cbICVlen);
330         //=======================================================================
331     }
332 }
333
334 static u16 vnt_time_stamp_off(struct vnt_private *priv, u16 rate)
335 {
336         return cpu_to_le16(wTimeStampOff[priv->byPreambleType % 2]
337                                                         [rate % MAX_RATE]);
338 }
339
340 /*byPktType : PK_TYPE_11A     0
341              PK_TYPE_11B     1
342              PK_TYPE_11GB    2
343              PK_TYPE_11GA    3
344 */
345 static u32 s_uGetTxRsvTime(struct vnt_private *pDevice, u8 byPktType,
346         u32 cbFrameLength, u16 wRate, int bNeedAck)
347 {
348         u32 uDataTime, uAckTime;
349
350     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wRate);
351     if (byPktType == PK_TYPE_11B) {//llb,CCK mode
352         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopCCKBasicRate);
353     } else {//11g 2.4G OFDM mode & 11a 5G OFDM mode
354         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, (u16)pDevice->byTopOFDMBasicRate);
355     }
356
357     if (bNeedAck) {
358         return (uDataTime + pDevice->uSIFS + uAckTime);
359     }
360     else {
361         return uDataTime;
362     }
363 }
364
365 static u16 vnt_rxtx_rsvtime_le16(struct vnt_private *priv, u8 pkt_type,
366         u32 frame_length, u16 rate, int need_ack)
367 {
368         return cpu_to_le16((u16)s_uGetTxRsvTime(priv, pkt_type,
369                 frame_length, rate, need_ack));
370 }
371
372 //byFreqType: 0=>5GHZ 1=>2.4GHZ
373 static u16 s_uGetRTSCTSRsvTime(struct vnt_private *pDevice,
374         u8 byRTSRsvType, u8 byPktType, u32 cbFrameLength, u16 wCurrentRate)
375 {
376         u32 uRrvTime, uRTSTime, uCTSTime, uAckTime, uDataTime;
377
378     uRrvTime = uRTSTime = uCTSTime = uAckTime = uDataTime = 0;
379
380     uDataTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, cbFrameLength, wCurrentRate);
381     if (byRTSRsvType == 0) { //RTSTxRrvTime_bb
382         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
383         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
384     }
385     else if (byRTSRsvType == 1){ //RTSTxRrvTime_ba, only in 2.4GHZ
386         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopCCKBasicRate);
387         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
388         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
389     }
390     else if (byRTSRsvType == 2) { //RTSTxRrvTime_aa
391         uRTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 20, pDevice->byTopOFDMBasicRate);
392         uCTSTime = uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
393     }
394     else if (byRTSRsvType == 3) { //CTSTxRrvTime_ba, only in 2.4GHZ
395         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
396         uAckTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
397         uRrvTime = uCTSTime + uAckTime + uDataTime + 2*pDevice->uSIFS;
398         return uRrvTime;
399     }
400
401     //RTSRrvTime
402     uRrvTime = uRTSTime + uCTSTime + uAckTime + uDataTime + 3*pDevice->uSIFS;
403         return cpu_to_le16((u16)uRrvTime);
404 }
405
406 //byFreqType 0: 5GHz, 1:2.4Ghz
407 static u16 s_uGetDataDuration(struct vnt_private *pDevice,
408                                         u8 byPktType, int bNeedAck)
409 {
410         u32 uAckTime = 0;
411
412         if (bNeedAck) {
413                 if (byPktType == PK_TYPE_11B)
414                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
415                                 byPktType, 14, pDevice->byTopCCKBasicRate);
416                 else
417                         uAckTime = BBuGetFrameTime(pDevice->byPreambleType,
418                                 byPktType, 14, pDevice->byTopOFDMBasicRate);
419                 return cpu_to_le16((u16)(pDevice->uSIFS + uAckTime));
420         }
421
422         return 0;
423 }
424
425 //byFreqType: 0=>5GHZ 1=>2.4GHZ
426 static u16 s_uGetRTSCTSDuration(struct vnt_private *pDevice, u8 byDurType,
427         u32 cbFrameLength, u8 byPktType, u16 wRate, int bNeedAck,
428         u8 byFBOption)
429 {
430         u32 uCTSTime = 0, uDurTime = 0;
431
432     switch (byDurType) {
433
434     case RTSDUR_BB:    //RTSDuration_bb
435         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
436         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
437         break;
438
439     case RTSDUR_BA:    //RTSDuration_ba
440         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
441         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
442         break;
443
444     case RTSDUR_AA:    //RTSDuration_aa
445         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
446         uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
447         break;
448
449     case CTSDUR_BA:    //CTSDuration_ba
450         uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wRate, bNeedAck);
451         break;
452
453     case RTSDUR_BA_F0: //RTSDuration_ba_f0
454         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
455         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
456             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
457         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
458             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
459         }
460         break;
461
462     case RTSDUR_AA_F0: //RTSDuration_aa_f0
463         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
464         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
465             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
466         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
467             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
468         }
469         break;
470
471     case RTSDUR_BA_F1: //RTSDuration_ba_f1
472         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopCCKBasicRate);
473         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
474             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
475         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
476             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
477         }
478         break;
479
480     case RTSDUR_AA_F1: //RTSDuration_aa_f1
481         uCTSTime = BBuGetFrameTime(pDevice->byPreambleType, byPktType, 14, pDevice->byTopOFDMBasicRate);
482         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
483             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
484         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
485             uDurTime = uCTSTime + 2*pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
486         }
487         break;
488
489     case CTSDUR_BA_F0: //CTSDuration_ba_f0
490         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
491             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE0][wRate-RATE_18M], bNeedAck);
492         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
493             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE0][wRate-RATE_18M], bNeedAck);
494         }
495         break;
496
497     case CTSDUR_BA_F1: //CTSDuration_ba_f1
498         if ((byFBOption == AUTO_FB_0) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
499             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt0[FB_RATE1][wRate-RATE_18M], bNeedAck);
500         } else if ((byFBOption == AUTO_FB_1) && (wRate >= RATE_18M) && (wRate <=RATE_54M)) {
501             uDurTime = pDevice->uSIFS + s_uGetTxRsvTime(pDevice, byPktType, cbFrameLength, wFB_Opt1[FB_RATE1][wRate-RATE_18M], bNeedAck);
502         }
503         break;
504
505     default:
506         break;
507     }
508
509         return cpu_to_le16((u16)uDurTime);
510 }
511
512 static u32 s_uFillDataHead(struct vnt_private *pDevice,
513         u8 byPktType, u16 wCurrentRate, void *pTxDataHead, u32 cbFrameLength,
514         u32 uDMAIdx, int bNeedAck, u8 byFBOption)
515 {
516
517     if (pTxDataHead == NULL) {
518         return 0;
519     }
520
521     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
522             if (byFBOption == AUTO_FB_NONE) {
523                 struct vnt_tx_datahead_g *pBuf =
524                                 (struct vnt_tx_datahead_g *)pTxDataHead;
525                 //Get SignalField,ServiceField,Length
526                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
527                         byPktType, &pBuf->a);
528                 BBvCalculateParameter(pDevice, cbFrameLength,
529                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
530                 //Get Duration and TimeStamp
531                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
532                                                         byPktType, bNeedAck);
533                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
534                                                         PK_TYPE_11B, bNeedAck);
535
536                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
537                                                                 wCurrentRate);
538                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
539                                                 pDevice->byTopCCKBasicRate);
540                 return (pBuf->wDuration_a);
541              } else {
542                 // Auto Fallback
543                 struct vnt_tx_datahead_g_fb *pBuf =
544                         (struct vnt_tx_datahead_g_fb *)pTxDataHead;
545                 //Get SignalField,ServiceField,Length
546                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
547                         byPktType, &pBuf->a);
548                 BBvCalculateParameter(pDevice, cbFrameLength,
549                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
550                 //Get Duration and TimeStamp
551                 pBuf->wDuration_a = s_uGetDataDuration(pDevice,
552                                                         byPktType, bNeedAck);
553                 pBuf->wDuration_b = s_uGetDataDuration(pDevice,
554                                                         PK_TYPE_11B, bNeedAck);
555                 pBuf->wDuration_a_f0 = s_uGetDataDuration(pDevice,
556                                                         byPktType, bNeedAck);
557                 pBuf->wDuration_a_f1 = s_uGetDataDuration(pDevice,
558                                                         byPktType, bNeedAck);
559                 pBuf->wTimeStampOff_a = vnt_time_stamp_off(pDevice,
560                                                                 wCurrentRate);
561                 pBuf->wTimeStampOff_b = vnt_time_stamp_off(pDevice,
562                                                 pDevice->byTopCCKBasicRate);
563                 return (pBuf->wDuration_a);
564             } //if (byFBOption == AUTO_FB_NONE)
565     }
566     else if (byPktType == PK_TYPE_11A) {
567         if (byFBOption != AUTO_FB_NONE) {
568                 struct vnt_tx_datahead_a_fb *pBuf =
569                         (struct vnt_tx_datahead_a_fb *)pTxDataHead;
570             //Get SignalField,ServiceField,Length
571                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
572                         byPktType, &pBuf->a);
573             //Get Duration and TimeStampOff
574                 pBuf->wDuration = s_uGetDataDuration(pDevice,
575                                         byPktType, bNeedAck);
576                 pBuf->wDuration_f0 = s_uGetDataDuration(pDevice,
577                                         byPktType, bNeedAck);
578                 pBuf->wDuration_f1 = s_uGetDataDuration(pDevice,
579                                                         byPktType, bNeedAck);
580                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
581                                                                 wCurrentRate);
582             return (pBuf->wDuration);
583         } else {
584                 struct vnt_tx_datahead_ab *pBuf =
585                         (struct vnt_tx_datahead_ab *)pTxDataHead;
586             //Get SignalField,ServiceField,Length
587                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
588                         byPktType, &pBuf->ab);
589             //Get Duration and TimeStampOff
590                 pBuf->wDuration = s_uGetDataDuration(pDevice,
591                                 byPktType, bNeedAck);
592                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
593                                                                 wCurrentRate);
594             return (pBuf->wDuration);
595         }
596     }
597     else if (byPktType == PK_TYPE_11B) {
598                 struct vnt_tx_datahead_ab *pBuf =
599                         (struct vnt_tx_datahead_ab *)pTxDataHead;
600             //Get SignalField,ServiceField,Length
601                 BBvCalculateParameter(pDevice, cbFrameLength, wCurrentRate,
602                         byPktType, &pBuf->ab);
603             //Get Duration and TimeStampOff
604                 pBuf->wDuration = s_uGetDataDuration(pDevice,
605                                 byPktType, bNeedAck);
606                 pBuf->wTimeStampOff = vnt_time_stamp_off(pDevice,
607                                                                 wCurrentRate);
608             return (pBuf->wDuration);
609     }
610     return 0;
611 }
612
613 static int vnt_fill_ieee80211_rts(struct vnt_private *priv,
614         struct ieee80211_rts *rts, struct ethhdr *eth_hdr,
615                 u16 duration)
616 {
617         rts->duration = duration;
618         rts->frame_control = TYPE_CTL_RTS;
619
620         if (priv->eOPMode == OP_MODE_ADHOC || priv->eOPMode == OP_MODE_AP)
621                 memcpy(rts->ra, eth_hdr->h_dest, ETH_ALEN);
622         else
623                 memcpy(rts->ra, priv->abyBSSID, ETH_ALEN);
624
625         if (priv->eOPMode == OP_MODE_AP)
626                 memcpy(rts->ta, priv->abyBSSID, ETH_ALEN);
627         else
628                 memcpy(rts->ta, eth_hdr->h_source, ETH_ALEN);
629
630         return 0;
631 }
632
633 static int vnt_rxtx_rts_g_head(struct vnt_private *priv,
634         struct vnt_rts_g *buf, struct ethhdr *eth_hdr,
635         u8 pkt_type, u32 frame_len, int need_ack,
636         u16 current_rate, u8 fb_option)
637 {
638         u16 rts_frame_len = 20;
639
640         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
641                 PK_TYPE_11B, &buf->b);
642         BBvCalculateParameter(priv, rts_frame_len,
643                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
644
645         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
646                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
647         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
648                 pkt_type, current_rate, need_ack, fb_option);
649         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
650                 pkt_type, current_rate, need_ack, fb_option);
651
652         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
653
654         return 0;
655 }
656
657 static int vnt_rxtx_rts_g_fb_head(struct vnt_private *priv,
658         struct vnt_rts_g_fb *buf, struct ethhdr *eth_hdr,
659         u8 pkt_type, u32 frame_len, int need_ack,
660         u16 current_rate, u8 fb_option)
661 {
662         u16 rts_frame_len = 20;
663
664         BBvCalculateParameter(priv, rts_frame_len, priv->byTopCCKBasicRate,
665                 PK_TYPE_11B, &buf->b);
666         BBvCalculateParameter(priv, rts_frame_len,
667                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
668
669
670         buf->wDuration_bb = s_uGetRTSCTSDuration(priv, RTSDUR_BB, frame_len,
671                 PK_TYPE_11B, priv->byTopCCKBasicRate, need_ack, fb_option);
672         buf->wDuration_aa = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
673                 pkt_type, current_rate, need_ack, fb_option);
674         buf->wDuration_ba = s_uGetRTSCTSDuration(priv, RTSDUR_BA, frame_len,
675                 pkt_type, current_rate, need_ack, fb_option);
676
677
678         buf->wRTSDuration_ba_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F0,
679                 frame_len, pkt_type, current_rate, need_ack, fb_option);
680         buf->wRTSDuration_aa_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
681                 frame_len, pkt_type, current_rate, need_ack, fb_option);
682         buf->wRTSDuration_ba_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_BA_F1,
683                 frame_len, pkt_type, current_rate, need_ack, fb_option);
684         buf->wRTSDuration_aa_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
685                 frame_len, pkt_type, current_rate, need_ack, fb_option);
686
687         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration_aa);
688
689         return 0;
690 }
691
692 static int vnt_rxtx_rts_ab_head(struct vnt_private *priv,
693         struct vnt_rts_ab *buf, struct ethhdr *eth_hdr,
694         u8 pkt_type, u32 frame_len, int need_ack,
695         u16 current_rate, u8 fb_option)
696 {
697         u16 rts_frame_len = 20;
698
699         BBvCalculateParameter(priv, rts_frame_len,
700                 priv->byTopOFDMBasicRate, pkt_type, &buf->ab);
701
702         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
703                 pkt_type, current_rate, need_ack, fb_option);
704
705         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
706
707         return 0;
708 }
709
710 static int vnt_rxtx_rts_a_fb_head(struct vnt_private *priv,
711         struct vnt_rts_a_fb *buf, struct ethhdr *eth_hdr,
712         u8 pkt_type, u32 frame_len, int need_ack,
713         u16 current_rate, u8 fb_option)
714 {
715         u16 rts_frame_len = 20;
716
717         BBvCalculateParameter(priv, rts_frame_len,
718                 priv->byTopOFDMBasicRate, pkt_type, &buf->a);
719
720         buf->wDuration = s_uGetRTSCTSDuration(priv, RTSDUR_AA, frame_len,
721                 pkt_type, current_rate, need_ack, fb_option);
722
723         buf->wRTSDuration_f0 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F0,
724                 frame_len, pkt_type, current_rate, need_ack, fb_option);
725
726         buf->wRTSDuration_f1 = s_uGetRTSCTSDuration(priv, RTSDUR_AA_F1,
727                 frame_len, pkt_type, current_rate, need_ack, fb_option);
728
729         vnt_fill_ieee80211_rts(priv, &buf->data, eth_hdr, buf->wDuration);
730
731         return 0;
732 }
733
734 static void s_vFillRTSHead(struct vnt_private *pDevice, u8 byPktType,
735         union vnt_tx_data_head *head, u32 cbFrameLength, int bNeedAck,
736         struct ethhdr *psEthHeader, u16 wCurrentRate, u8 byFBOption)
737 {
738
739         if (!head)
740                 return;
741
742         /* Note: So far RTSHead doesn't appear in ATIM
743         *       & Beacom DMA, so we don't need to take them
744         *       into account.
745         *       Otherwise, we need to modified codes for them.
746         */
747         switch (byPktType) {
748         case PK_TYPE_11GB:
749         case PK_TYPE_11GA:
750                 if (byFBOption == AUTO_FB_NONE)
751                         vnt_rxtx_rts_g_head(pDevice, &head->rts_g,
752                                 psEthHeader, byPktType, cbFrameLength,
753                                 bNeedAck, wCurrentRate, byFBOption);
754                 else
755                         vnt_rxtx_rts_g_fb_head(pDevice, &head->rts_g_fb,
756                                 psEthHeader, byPktType, cbFrameLength,
757                                 bNeedAck, wCurrentRate, byFBOption);
758                 break;
759         case PK_TYPE_11A:
760                 if (byFBOption) {
761                         vnt_rxtx_rts_a_fb_head(pDevice, &head->rts_a_fb,
762                                 psEthHeader, byPktType, cbFrameLength,
763                                 bNeedAck, wCurrentRate, byFBOption);
764                         break;
765                 }
766         case PK_TYPE_11B:
767                 vnt_rxtx_rts_ab_head(pDevice, &head->rts_ab,
768                         psEthHeader, byPktType, cbFrameLength,
769                         bNeedAck, wCurrentRate, byFBOption);
770         }
771 }
772
773 static void s_vFillCTSHead(struct vnt_private *pDevice, u32 uDMAIdx,
774         u8 byPktType, union vnt_tx_data_head *head, u32 cbFrameLength,
775         int bNeedAck, u16 wCurrentRate, u8 byFBOption)
776 {
777         u32 uCTSFrameLen = 14;
778
779         if (!head)
780                 return;
781
782         if (byFBOption != AUTO_FB_NONE) {
783                 /* Auto Fall back */
784                 struct vnt_cts_fb *pBuf = &head->cts_g_fb;
785                 /* Get SignalField,ServiceField,Length */
786                 BBvCalculateParameter(pDevice, uCTSFrameLen,
787                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
788                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice, CTSDUR_BA,
789                         cbFrameLength, byPktType,
790                         wCurrentRate, bNeedAck, byFBOption);
791                 /* Get CTSDuration_ba_f0 */
792                 pBuf->wCTSDuration_ba_f0 = s_uGetRTSCTSDuration(pDevice,
793                         CTSDUR_BA_F0, cbFrameLength, byPktType, wCurrentRate,
794                         bNeedAck, byFBOption);
795                 /* Get CTSDuration_ba_f1 */
796                 pBuf->wCTSDuration_ba_f1 = s_uGetRTSCTSDuration(pDevice,
797                         CTSDUR_BA_F1, cbFrameLength, byPktType, wCurrentRate,
798                         bNeedAck, byFBOption);
799                 /* Get CTS Frame body */
800                 pBuf->data.duration = pBuf->wDuration_ba;
801                 pBuf->data.frame_control = TYPE_CTL_CTS;
802                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
803         } else {
804                 struct vnt_cts *pBuf = &head->cts_g;
805                 /* Get SignalField,ServiceField,Length */
806                 BBvCalculateParameter(pDevice, uCTSFrameLen,
807                         pDevice->byTopCCKBasicRate, PK_TYPE_11B, &pBuf->b);
808                 /* Get CTSDuration_ba */
809                 pBuf->wDuration_ba = s_uGetRTSCTSDuration(pDevice,
810                         CTSDUR_BA, cbFrameLength, byPktType,
811                         wCurrentRate, bNeedAck, byFBOption);
812                 /*Get CTS Frame body*/
813                 pBuf->data.duration = pBuf->wDuration_ba;
814                 pBuf->data.frame_control = TYPE_CTL_CTS;
815                 memcpy(pBuf->data.ra, pDevice->abyCurrentNetAddr, ETH_ALEN);
816         }
817 }
818
819 /*+
820  *
821  * Description:
822  *      Generate FIFO control for MAC & Baseband controller
823  *
824  * Parameters:
825  *  In:
826  *      pDevice         - Pointer to adpater
827  *      pTxDataHead     - Transmit Data Buffer
828  *      pTxBufHead      - pTxBufHead
829  *      pvRrvTime        - pvRrvTime
830  *      pvRTS            - RTS Buffer
831  *      pCTS            - CTS Buffer
832  *      cbFrameSize     - Transmit Data Length (Hdr+Payload+FCS)
833  *      bNeedACK        - If need ACK
834  *      uDMAIdx         - DMA Index
835  *  Out:
836  *      none
837  *
838  * Return Value: none
839  *
840 -*/
841
842 static void s_vGenerateTxParameter(struct vnt_private *pDevice,
843         u8 byPktType, u16 wCurrentRate, struct vnt_tx_buffer *tx_buffer,
844         void *rts_cts, u32 cbFrameSize, int bNeedACK, u32 uDMAIdx,
845         struct ethhdr *psEthHeader, bool need_rts)
846 {
847         struct vnt_tx_fifo_head *pFifoHead = &tx_buffer->fifo_head;
848         union vnt_tx_data_head *head = rts_cts;
849         u32 cbMACHdLen = WLAN_HDR_ADDR3_LEN; /* 24 */
850         u16 wFifoCtl;
851         u8 byFBOption = AUTO_FB_NONE;
852
853     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter...\n");
854     pFifoHead->wReserved = wCurrentRate;
855     wFifoCtl = pFifoHead->wFIFOCtl;
856
857     if (wFifoCtl & FIFOCTL_AUTO_FB_0) {
858         byFBOption = AUTO_FB_0;
859     }
860     else if (wFifoCtl & FIFOCTL_AUTO_FB_1) {
861         byFBOption = AUTO_FB_1;
862     }
863
864         if (!pFifoHead)
865                 return;
866
867     if (pDevice->bLongHeader)
868         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
869
870     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
871         if (need_rts) {
872             //Fill RsvTime
873                 struct vnt_rrv_time_rts *pBuf = &tx_buffer->tx_head.rts;
874
875                 pBuf->wRTSTxRrvTime_aa = s_uGetRTSCTSRsvTime(pDevice, 2,
876                                 byPktType, cbFrameSize, wCurrentRate);
877                 pBuf->wRTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 1,
878                                 byPktType, cbFrameSize, wCurrentRate);
879                 pBuf->wRTSTxRrvTime_bb = s_uGetRTSCTSRsvTime(pDevice, 0,
880                                 byPktType, cbFrameSize, wCurrentRate);
881                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice,
882                         byPktType, cbFrameSize, wCurrentRate, bNeedACK);
883                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
884                         PK_TYPE_11B, cbFrameSize, pDevice->byTopCCKBasicRate,
885                                 bNeedACK);
886                 /* Fill RTS */
887                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
888                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
889         }
890         else {//RTS_needless, PCF mode
891             //Fill RsvTime
892                 struct vnt_rrv_time_cts *pBuf = &tx_buffer->tx_head.cts;
893
894                 pBuf->wTxRrvTime_a = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
895                         cbFrameSize, wCurrentRate, bNeedACK);
896                 pBuf->wTxRrvTime_b = vnt_rxtx_rsvtime_le16(pDevice,
897                         PK_TYPE_11B, cbFrameSize,
898                         pDevice->byTopCCKBasicRate, bNeedACK);
899                 pBuf->wCTSTxRrvTime_ba = s_uGetRTSCTSRsvTime(pDevice, 3,
900                                 byPktType, cbFrameSize, wCurrentRate);
901                 /* Fill CTS */
902                 s_vFillCTSHead(pDevice, uDMAIdx, byPktType, head,
903                         cbFrameSize, bNeedACK, wCurrentRate, byFBOption);
904         }
905     }
906     else if (byPktType == PK_TYPE_11A) {
907         if (need_rts) {
908             //Fill RsvTime
909                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.ab;
910
911                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 2,
912                                 byPktType, cbFrameSize, wCurrentRate);
913                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, byPktType,
914                                 cbFrameSize, wCurrentRate, bNeedACK);
915                 /* Fill RTS */
916                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
917                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
918         } else {
919             //Fill RsvTime
920                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.ab;
921
922                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11A,
923                         cbFrameSize, wCurrentRate, bNeedACK);
924         }
925     }
926     else if (byPktType == PK_TYPE_11B) {
927         if (need_rts) {
928             //Fill RsvTime
929                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.ab;
930
931                 pBuf->wRTSTxRrvTime = s_uGetRTSCTSRsvTime(pDevice, 0,
932                                 byPktType, cbFrameSize, wCurrentRate);
933                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
934                                 cbFrameSize, wCurrentRate, bNeedACK);
935                 /* Fill RTS */
936                 s_vFillRTSHead(pDevice, byPktType, head, cbFrameSize,
937                         bNeedACK, psEthHeader, wCurrentRate, byFBOption);
938         }
939         else { //RTS_needless, non PCF mode
940             //Fill RsvTime
941                 struct vnt_rrv_time_ab *pBuf = &tx_buffer->tx_head.ab;
942
943                 pBuf->wTxRrvTime = vnt_rxtx_rsvtime_le16(pDevice, PK_TYPE_11B,
944                         cbFrameSize, wCurrentRate, bNeedACK);
945         }
946     }
947     //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"s_vGenerateTxParameter END.\n");
948 }
949 /*
950     u8 * pbyBuffer,//point to pTxBufHead
951     u16  wFragType,//00:Non-Frag, 01:Start, 02:Mid, 03:Last
952     unsigned int  cbFragmentSize,//Hdr+payoad+FCS
953 */
954
955 static int s_bPacketToWirelessUsb(struct vnt_private *pDevice, u8 byPktType,
956         struct vnt_tx_buffer *tx_buffer, int bNeedEncryption,
957         u32 uSkbPacketLen, u32 uDMAIdx, struct ethhdr *psEthHeader,
958         u8 *pPacket, PSKeyItem pTransmitKey, u32 uNodeIndex, u16 wCurrentRate,
959         u32 *pcbHeaderLen, u32 *pcbTotalLen)
960 {
961         struct vnt_tx_fifo_head *pTxBufHead = &tx_buffer->fifo_head;
962         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
963         u32 cbFrameSize, cbFrameBodySize;
964         u32 cb802_1_H_len;
965         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbMACHdLen = 0;
966         u32 cbFCSlen = 4, cbMICHDR = 0;
967         int bNeedACK;
968         bool bRTS = false;
969         u8 *pbyType, *pbyMacHdr, *pbyIVHead, *pbyPayloadHead, *pbyTxBufferAddr;
970         u8 abySNAP_RFC1042[ETH_ALEN] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00};
971         u8 abySNAP_Bridgetunnel[ETH_ALEN]
972                 = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0xF8};
973         u32 uDuration;
974         u32 cbHeaderLength = 0, uPadding = 0;
975         struct vnt_mic_hdr *pMICHDR;
976         void *rts_cts = NULL;
977         void *pvTxDataHd;
978         u8 byFBOption = AUTO_FB_NONE, byFragType;
979         u16 wTxBufSize;
980         u32 dwMICKey0, dwMICKey1, dwMIC_Priority;
981         u32 *pdwMIC_L, *pdwMIC_R;
982         int bSoftWEP = false;
983
984         pMICHDR = pvTxDataHd = NULL;
985
986         if (bNeedEncryption && pTransmitKey->pvKeyTable) {
987                 if (((PSKeyTable)pTransmitKey->pvKeyTable)->bSoftWEP == true)
988                         bSoftWEP = true; /* WEP 256 */
989         }
990
991     // Get pkt type
992     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
993         if (pDevice->dwDiagRefCount == 0) {
994             cb802_1_H_len = 8;
995         } else {
996             cb802_1_H_len = 2;
997         }
998     } else {
999         cb802_1_H_len = 0;
1000     }
1001
1002     cbFrameBodySize = uSkbPacketLen - ETH_HLEN + cb802_1_H_len;
1003
1004     //Set packet type
1005     pTxBufHead->wFIFOCtl |= (u16)(byPktType<<8);
1006
1007     if (pDevice->dwDiagRefCount != 0) {
1008         bNeedACK = false;
1009         pTxBufHead->wFIFOCtl = pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1010     } else { //if (pDevice->dwDiagRefCount != 0) {
1011         if ((pDevice->eOPMode == OP_MODE_ADHOC) ||
1012             (pDevice->eOPMode == OP_MODE_AP)) {
1013                 if (is_multicast_ether_addr(psEthHeader->h_dest)) {
1014                         bNeedACK = false;
1015                         pTxBufHead->wFIFOCtl =
1016                                 pTxBufHead->wFIFOCtl & (~FIFOCTL_NEEDACK);
1017                 } else {
1018                         bNeedACK = true;
1019                         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1020                 }
1021         }
1022         else {
1023             // MSDUs in Infra mode always need ACK
1024             bNeedACK = true;
1025             pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1026         }
1027     } //if (pDevice->dwDiagRefCount != 0) {
1028
1029     pTxBufHead->wTimeStamp = DEFAULT_MSDU_LIFETIME_RES_64us;
1030
1031     //Set FIFOCTL_LHEAD
1032     if (pDevice->bLongHeader)
1033         pTxBufHead->wFIFOCtl |= FIFOCTL_LHEAD;
1034
1035     //Set FRAGCTL_MACHDCNT
1036     if (pDevice->bLongHeader) {
1037         cbMACHdLen = WLAN_HDR_ADDR3_LEN + 6;
1038     } else {
1039         cbMACHdLen = WLAN_HDR_ADDR3_LEN;
1040     }
1041     pTxBufHead->wFragCtl |= (u16)(cbMACHdLen << 10);
1042
1043     //Set FIFOCTL_GrpAckPolicy
1044     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1045         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1046     }
1047
1048     //Set Auto Fallback Ctl
1049     if (wCurrentRate >= RATE_18M) {
1050         if (pDevice->byAutoFBCtrl == AUTO_FB_0) {
1051             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_0;
1052             byFBOption = AUTO_FB_0;
1053         } else if (pDevice->byAutoFBCtrl == AUTO_FB_1) {
1054             pTxBufHead->wFIFOCtl |= FIFOCTL_AUTO_FB_1;
1055             byFBOption = AUTO_FB_1;
1056         }
1057     }
1058
1059     if (bSoftWEP != true) {
1060         if ((bNeedEncryption) && (pTransmitKey != NULL))  { //WEP enabled
1061             if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) { //WEP40 or WEP104
1062                 pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1063             }
1064             if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1065                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Tx Set wFragCtl == FRAGCTL_TKIP\n");
1066                 pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1067             }
1068             else if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) { //CCMP
1069                 pTxBufHead->wFragCtl |= FRAGCTL_AES;
1070             }
1071         }
1072     }
1073
1074     if ((bNeedEncryption) && (pTransmitKey != NULL))  {
1075         if (pTransmitKey->byCipherSuite == KEY_CTL_WEP) {
1076             cbIVlen = 4;
1077             cbICVlen = 4;
1078         }
1079         else if (pTransmitKey->byCipherSuite == KEY_CTL_TKIP) {
1080             cbIVlen = 8;//IV+ExtIV
1081             cbMIClen = 8;
1082             cbICVlen = 4;
1083         }
1084         if (pTransmitKey->byCipherSuite == KEY_CTL_CCMP) {
1085             cbIVlen = 8;//RSN Header
1086             cbICVlen = 8;//MIC
1087             cbMICHDR = sizeof(struct vnt_mic_hdr);
1088         }
1089         if (bSoftWEP == false) {
1090             //MAC Header should be padding 0 to DW alignment.
1091             uPadding = 4 - (cbMACHdLen%4);
1092             uPadding %= 4;
1093         }
1094     }
1095
1096     cbFrameSize = cbMACHdLen + cbIVlen + (cbFrameBodySize + cbMIClen) + cbICVlen + cbFCSlen;
1097
1098     if ( (bNeedACK == false) ||(cbFrameSize < pDevice->wRTSThreshold) ) {
1099         bRTS = false;
1100     } else {
1101         bRTS = true;
1102         pTxBufHead->wFIFOCtl |= (FIFOCTL_RTS | FIFOCTL_LRETRY);
1103     }
1104
1105     pbyTxBufferAddr = (u8 *) &(pTxBufHead->adwTxKey[0]);
1106         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1107
1108     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1109         if (byFBOption == AUTO_FB_NONE) {
1110             if (bRTS == true) {//RTS_need
1111                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1112                                         sizeof(struct vnt_rrv_time_rts));
1113                 rts_cts = (struct vnt_rts_g *) (pbyTxBufferAddr + wTxBufSize +
1114                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1115                 pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
1116                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1117                                 cbMICHDR + sizeof(struct vnt_rts_g));
1118                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1119                         cbMICHDR + sizeof(struct vnt_rts_g) +
1120                                 sizeof(struct vnt_tx_datahead_g);
1121             }
1122             else { //RTS_needless
1123                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1124                         sizeof(struct vnt_rrv_time_cts));
1125                 rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1126                                 sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1127                 pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr +
1128                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1129                                 cbMICHDR + sizeof(struct vnt_cts));
1130                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1131                         cbMICHDR + sizeof(struct vnt_cts) +
1132                                 sizeof(struct vnt_tx_datahead_g);
1133             }
1134         } else {
1135             // Auto Fall Back
1136             if (bRTS == true) {//RTS_need
1137                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1138                                         sizeof(struct vnt_rrv_time_rts));
1139                 rts_cts = (struct vnt_rts_g_fb *)(pbyTxBufferAddr + wTxBufSize +
1140                                 sizeof(struct vnt_rrv_time_rts) + cbMICHDR);
1141                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1142                         wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1143                                 cbMICHDR + sizeof(struct vnt_rts_g_fb));
1144                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_rts) +
1145                         cbMICHDR + sizeof(struct vnt_rts_g_fb) +
1146                                 sizeof(struct vnt_tx_datahead_g_fb);
1147             }
1148             else if (bRTS == false) { //RTS_needless
1149                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1150                                 sizeof(struct vnt_rrv_time_cts));
1151                 rts_cts = (struct vnt_cts_fb *) (pbyTxBufferAddr + wTxBufSize +
1152                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
1153                 pvTxDataHd = (struct vnt_tx_datahead_g_fb *) (pbyTxBufferAddr +
1154                         wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1155                                 cbMICHDR + sizeof(struct vnt_cts_fb));
1156                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1157                                 cbMICHDR + sizeof(struct vnt_cts_fb) +
1158                                         sizeof(struct vnt_tx_datahead_g_fb);
1159             }
1160         } // Auto Fall Back
1161     }
1162     else {//802.11a/b packet
1163         if (byFBOption == AUTO_FB_NONE) {
1164             if (bRTS == true) {//RTS_need
1165                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1166                                                 sizeof(struct vnt_rrv_time_ab));
1167                 rts_cts = (struct vnt_rts_ab *) (pbyTxBufferAddr + wTxBufSize +
1168                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1169                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1170                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1171                                                 sizeof(struct vnt_rts_ab));
1172                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1173                         cbMICHDR + sizeof(struct vnt_rts_ab) +
1174                                 sizeof(struct vnt_tx_datahead_ab);
1175             }
1176             else if (bRTS == false) { //RTS_needless, no MICHDR
1177                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1178                                                 sizeof(struct vnt_rrv_time_ab));
1179                 pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
1180                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1181                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1182                                 cbMICHDR + sizeof(struct vnt_tx_datahead_ab);
1183             }
1184         } else {
1185             // Auto Fall Back
1186             if (bRTS == true) {//RTS_need
1187                 pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
1188                         sizeof(struct vnt_rrv_time_ab));
1189                 rts_cts = (struct vnt_rts_a_fb *)(pbyTxBufferAddr + wTxBufSize +
1190                                 sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1191                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1192                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
1193                                         sizeof(struct vnt_rts_a_fb));
1194                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1195                         cbMICHDR + sizeof(struct vnt_rts_a_fb) +
1196                                         sizeof(struct vnt_tx_datahead_a_fb);
1197             }
1198             else if (bRTS == false) { //RTS_needless
1199                 pMICHDR = (struct vnt_mic_hdr *)(pbyTxBufferAddr + wTxBufSize +
1200                                                 sizeof(struct vnt_rrv_time_ab));
1201                 pvTxDataHd = (struct vnt_tx_datahead_a_fb *)(pbyTxBufferAddr +
1202                         wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
1203                 cbHeaderLength = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1204                         cbMICHDR + sizeof(struct vnt_tx_datahead_a_fb);
1205             }
1206         } // Auto Fall Back
1207     }
1208
1209     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderLength);
1210     pbyIVHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding);
1211     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMACHdLen + uPadding + cbIVlen);
1212
1213     //=========================
1214     //    No Fragmentation
1215     //=========================
1216     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"No Fragmentation...\n");
1217     byFragType = FRAGCTL_NONFRAG;
1218     //uDMAIdx = TYPE_AC0DMA;
1219     //pTxBufHead = (PSTxBufHead) &(pTxBufHead->adwTxKey[0]);
1220
1221     //Fill FIFO,RrvTime,RTS,and CTS
1222     s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1223                 tx_buffer, rts_cts,
1224                 cbFrameSize, bNeedACK, uDMAIdx, psEthHeader, bRTS);
1225     //Fill DataHead
1226     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, uDMAIdx, bNeedACK,
1227                                 byFBOption);
1228     // Generate TX MAC Header
1229     s_vGenerateMACHeader(pDevice, pbyMacHdr, (u16)uDuration, psEthHeader, bNeedEncryption,
1230                            byFragType, uDMAIdx, 0);
1231
1232     if (bNeedEncryption == true) {
1233         //Fill TXKEY
1234         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1235                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
1236
1237         if (pDevice->bEnableHostWEP) {
1238             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
1239             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
1240         }
1241     }
1242
1243     // 802.1H
1244     if (ntohs(psEthHeader->h_proto) > ETH_DATA_LEN) {
1245         if (pDevice->dwDiagRefCount == 0) {
1246                 if ((psEthHeader->h_proto == cpu_to_be16(ETH_P_IPX)) ||
1247                     (psEthHeader->h_proto == cpu_to_le16(0xF380))) {
1248                         memcpy((u8 *) (pbyPayloadHead),
1249                                abySNAP_Bridgetunnel, 6);
1250             } else {
1251                 memcpy((u8 *) (pbyPayloadHead), &abySNAP_RFC1042[0], 6);
1252             }
1253             pbyType = (u8 *) (pbyPayloadHead + 6);
1254             memcpy(pbyType, &(psEthHeader->h_proto), sizeof(u16));
1255         } else {
1256             memcpy((u8 *) (pbyPayloadHead), &(psEthHeader->h_proto), sizeof(u16));
1257
1258         }
1259
1260     }
1261
1262     if (pPacket != NULL) {
1263         // Copy the Packet into a tx Buffer
1264         memcpy((pbyPayloadHead + cb802_1_H_len),
1265                  (pPacket + ETH_HLEN),
1266                  uSkbPacketLen - ETH_HLEN
1267                  );
1268
1269     } else {
1270         // while bRelayPacketSend psEthHeader is point to header+payload
1271         memcpy((pbyPayloadHead + cb802_1_H_len), ((u8 *)psEthHeader) + ETH_HLEN, uSkbPacketLen - ETH_HLEN);
1272     }
1273
1274     if ((bNeedEncryption == true) && (pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
1275
1276         ///////////////////////////////////////////////////////////////////
1277
1278         if (pDevice->vnt_mgmt.eAuthenMode == WMAC_AUTH_WPANONE) {
1279                 dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1280                 dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1281         }
1282         else if ((pTransmitKey->dwKeyIndex & AUTHENTICATOR_KEY) != 0) {
1283             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
1284             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
1285         }
1286         else {
1287             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[24]);
1288             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[28]);
1289         }
1290         // DO Software Michael
1291         MIC_vInit(dwMICKey0, dwMICKey1);
1292         MIC_vAppend((u8 *)&(psEthHeader->h_dest[0]), 12);
1293         dwMIC_Priority = 0;
1294         MIC_vAppend((u8 *)&dwMIC_Priority, 4);
1295         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC KEY: %X, %X\n",
1296                 dwMICKey0, dwMICKey1);
1297
1298         ///////////////////////////////////////////////////////////////////
1299
1300         //DBG_PRN_GRP12(("Length:%d, %d\n", cbFrameBodySize, uFromHDtoPLDLength));
1301         //for (ii = 0; ii < cbFrameBodySize; ii++) {
1302         //    DBG_PRN_GRP12(("%02x ", *((u8 *)((pbyPayloadHead + cb802_1_H_len) + ii))));
1303         //}
1304         //DBG_PRN_GRP12(("\n\n\n"));
1305
1306         MIC_vAppend(pbyPayloadHead, cbFrameBodySize);
1307
1308         pdwMIC_L = (u32 *)(pbyPayloadHead + cbFrameBodySize);
1309         pdwMIC_R = (u32 *)(pbyPayloadHead + cbFrameBodySize + 4);
1310
1311         MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
1312         MIC_vUnInit();
1313
1314         if (pDevice->bTxMICFail == true) {
1315             *pdwMIC_L = 0;
1316             *pdwMIC_R = 0;
1317             pDevice->bTxMICFail = false;
1318         }
1319         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
1320         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderLength, uPadding, cbIVlen);
1321         //DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%lX, %lX\n", *pdwMIC_L, *pdwMIC_R);
1322     }
1323
1324     if (bSoftWEP == true) {
1325
1326         s_vSWencryption(pDevice, pTransmitKey, (pbyPayloadHead), (u16)(cbFrameBodySize + cbMIClen));
1327
1328     } else if (  ((pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) && (bNeedEncryption == true))  ||
1329           ((pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) && (bNeedEncryption == true))   ||
1330           ((pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) && (bNeedEncryption == true))      ) {
1331         cbFrameSize -= cbICVlen;
1332     }
1333
1334         cbFrameSize -= cbFCSlen;
1335
1336     *pcbHeaderLen = cbHeaderLength;
1337     *pcbTotalLen = cbHeaderLength + cbFrameSize ;
1338
1339     //Set FragCtl in TxBufferHead
1340     pTxBufHead->wFragCtl |= (u16)byFragType;
1341
1342     return true;
1343
1344 }
1345
1346 /*+
1347  *
1348  * Description:
1349  *      Translate 802.3 to 802.11 header
1350  *
1351  * Parameters:
1352  *  In:
1353  *      pDevice         - Pointer to adapter
1354  *      dwTxBufferAddr  - Transmit Buffer
1355  *      pPacket         - Packet from upper layer
1356  *      cbPacketSize    - Transmit Data Length
1357  *  Out:
1358  *      pcbHeadSize         - Header size of MAC&Baseband control and 802.11 Header
1359  *      pcbAppendPayload    - size of append payload for 802.1H translation
1360  *
1361  * Return Value: none
1362  *
1363 -*/
1364
1365 static void s_vGenerateMACHeader(struct vnt_private *pDevice,
1366         u8 *pbyBufferAddr, u16 wDuration, struct ethhdr *psEthHeader,
1367         int bNeedEncrypt, u16 wFragType, u32 uDMAIdx, u32 uFragIdx)
1368 {
1369         struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *)pbyBufferAddr;
1370
1371         pMACHeader->frame_control = TYPE_802_11_DATA;
1372
1373     if (pDevice->eOPMode == OP_MODE_AP) {
1374         memcpy(&(pMACHeader->addr1[0]),
1375                &(psEthHeader->h_dest[0]),
1376                ETH_ALEN);
1377         memcpy(&(pMACHeader->addr2[0]), &(pDevice->abyBSSID[0]), ETH_ALEN);
1378         memcpy(&(pMACHeader->addr3[0]),
1379                &(psEthHeader->h_source[0]),
1380                ETH_ALEN);
1381         pMACHeader->frame_control |= FC_FROMDS;
1382     } else {
1383         if (pDevice->eOPMode == OP_MODE_ADHOC) {
1384                 memcpy(&(pMACHeader->addr1[0]),
1385                        &(psEthHeader->h_dest[0]),
1386                        ETH_ALEN);
1387                 memcpy(&(pMACHeader->addr2[0]),
1388                        &(psEthHeader->h_source[0]),
1389                        ETH_ALEN);
1390                 memcpy(&(pMACHeader->addr3[0]),
1391                        &(pDevice->abyBSSID[0]),
1392                        ETH_ALEN);
1393         } else {
1394                 memcpy(&(pMACHeader->addr3[0]),
1395                        &(psEthHeader->h_dest[0]),
1396                        ETH_ALEN);
1397                 memcpy(&(pMACHeader->addr2[0]),
1398                        &(psEthHeader->h_source[0]),
1399                        ETH_ALEN);
1400                 memcpy(&(pMACHeader->addr1[0]),
1401                        &(pDevice->abyBSSID[0]),
1402                        ETH_ALEN);
1403             pMACHeader->frame_control |= FC_TODS;
1404         }
1405     }
1406
1407     if (bNeedEncrypt)
1408         pMACHeader->frame_control |= cpu_to_le16((u16)WLAN_SET_FC_ISWEP(1));
1409
1410     pMACHeader->duration_id = cpu_to_le16(wDuration);
1411
1412     if (pDevice->bLongHeader) {
1413         PWLAN_80211HDR_A4 pMACA4Header  = (PWLAN_80211HDR_A4) pbyBufferAddr;
1414         pMACHeader->frame_control |= (FC_TODS | FC_FROMDS);
1415         memcpy(pMACA4Header->abyAddr4, pDevice->abyBSSID, WLAN_ADDR_LEN);
1416     }
1417     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1418
1419     //Set FragNumber in Sequence Control
1420     pMACHeader->seq_ctrl |= cpu_to_le16((u16)uFragIdx);
1421
1422     if ((wFragType == FRAGCTL_ENDFRAG) || (wFragType == FRAGCTL_NONFRAG)) {
1423         pDevice->wSeqCounter++;
1424         if (pDevice->wSeqCounter > 0x0fff)
1425             pDevice->wSeqCounter = 0;
1426     }
1427
1428     if ((wFragType == FRAGCTL_STAFRAG) || (wFragType == FRAGCTL_MIDFRAG)) { //StartFrag or MidFrag
1429         pMACHeader->frame_control |= FC_MOREFRAG;
1430     }
1431 }
1432
1433 /*+
1434  *
1435  * Description:
1436  *      Request instructs a MAC to transmit a 802.11 management packet through
1437  *      the adapter onto the medium.
1438  *
1439  * Parameters:
1440  *  In:
1441  *      hDeviceContext  - Pointer to the adapter
1442  *      pPacket         - A pointer to a descriptor for the packet to transmit
1443  *  Out:
1444  *      none
1445  *
1446  * Return Value: CMD_STATUS_PENDING if MAC Tx resource available; otherwise false
1447  *
1448 -*/
1449
1450 CMD_STATUS csMgmt_xmit(struct vnt_private *pDevice,
1451         struct vnt_tx_mgmt *pPacket)
1452 {
1453         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1454         struct vnt_tx_buffer *pTX_Buffer;
1455         struct vnt_usb_send_context *pContext;
1456         struct vnt_tx_fifo_head *pTxBufHead;
1457         struct ieee80211_hdr *pMACHeader;
1458         struct ethhdr sEthHeader;
1459         u8 byPktType, *pbyTxBufferAddr;
1460         void *rts_cts = NULL;
1461         void *pvTxDataHd, *pMICHDR;
1462         u32 uDuration, cbReqCount, cbHeaderSize, cbFrameBodySize, cbFrameSize;
1463         int bNeedACK, bIsPSPOLL = false;
1464         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1465         u32 uPadding = 0;
1466         u16 wTxBufSize;
1467         u32 cbMacHdLen;
1468         u16 wCurrentRate = RATE_1M;
1469
1470         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1471
1472     if (NULL == pContext) {
1473         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1474         return CMD_STATUS_RESOURCES;
1475     }
1476
1477         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1478     cbFrameBodySize = pPacket->cbPayloadLen;
1479         pTxBufHead = &pTX_Buffer->fifo_head;
1480         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1481         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1482
1483     if (pDevice->byBBType == BB_TYPE_11A) {
1484         wCurrentRate = RATE_6M;
1485         byPktType = PK_TYPE_11A;
1486     } else {
1487         wCurrentRate = RATE_1M;
1488         byPktType = PK_TYPE_11B;
1489     }
1490
1491     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1492     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1493     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1494     //                    to set power here.
1495     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1496         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1497     } else {
1498         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1499     }
1500     pDevice->wCurrentRate = wCurrentRate;
1501
1502     //Set packet type
1503     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1504         pTxBufHead->wFIFOCtl = 0;
1505     }
1506     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1507         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1508     }
1509     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1510         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1511     }
1512     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1513         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1514     }
1515
1516     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1517     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1518
1519     if (is_multicast_ether_addr(pPacket->p80211Header->sA3.abyAddr1)) {
1520         bNeedACK = false;
1521     }
1522     else {
1523         bNeedACK = true;
1524         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1525     };
1526
1527     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1528         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1529
1530         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1531         //Set Preamble type always long
1532         //pDevice->byPreambleType = PREAMBLE_LONG;
1533         // probe-response don't retry
1534         //if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1535         //     bNeedACK = false;
1536         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1537         //}
1538     }
1539
1540     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1541
1542     if ((pPacket->p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1543         bIsPSPOLL = true;
1544         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1545     } else {
1546         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1547     }
1548
1549     //Set FRAGCTL_MACHDCNT
1550     pTxBufHead->wFragCtl |= cpu_to_le16((u16)(cbMacHdLen << 10));
1551
1552     // Notes:
1553     // Although spec says MMPDU can be fragmented; In most case,
1554     // no one will send a MMPDU under fragmentation. With RTS may occur.
1555     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1556
1557     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1558         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1559             cbIVlen = 4;
1560             cbICVlen = 4;
1561             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1562         }
1563         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1564             cbIVlen = 8;//IV+ExtIV
1565             cbMIClen = 8;
1566             cbICVlen = 4;
1567             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1568             //We need to get seed here for filling TxKey entry.
1569             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1570             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1571         }
1572         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1573             cbIVlen = 8;//RSN Header
1574             cbICVlen = 8;//MIC
1575             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1576             pDevice->bAES = true;
1577         }
1578         //MAC Header should be padding 0 to DW alignment.
1579         uPadding = 4 - (cbMacHdLen%4);
1580         uPadding %= 4;
1581     }
1582
1583     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen;
1584
1585     //Set FIFOCTL_GrpAckPolicy
1586     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1587         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1588     }
1589     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1590
1591     //Set RrvTime/RTS/CTS Buffer
1592     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
1593         pMICHDR = NULL;
1594         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
1595                                         sizeof(struct vnt_rrv_time_cts));
1596         pvTxDataHd = (struct vnt_tx_datahead_g *)(pbyTxBufferAddr + wTxBufSize +
1597                 sizeof(struct vnt_rrv_time_cts) + sizeof(struct vnt_cts));
1598         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) +
1599                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
1600     }
1601     else { // 802.11a/b packet
1602         pMICHDR = NULL;
1603         pvTxDataHd = (struct vnt_tx_datahead_ab *) (pbyTxBufferAddr +
1604                 wTxBufSize + sizeof(struct vnt_rrv_time_ab));
1605         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) +
1606                 sizeof(struct vnt_tx_datahead_ab);
1607     }
1608
1609     memcpy(&(sEthHeader.h_dest[0]),
1610            &(pPacket->p80211Header->sA3.abyAddr1[0]),
1611            ETH_ALEN);
1612     memcpy(&(sEthHeader.h_source[0]),
1613            &(pPacket->p80211Header->sA3.abyAddr2[0]),
1614            ETH_ALEN);
1615     //=========================
1616     //    No Fragmentation
1617     //=========================
1618     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
1619
1620         /* Fill FIFO,RrvTime,RTS,and CTS */
1621         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
1622                 pTX_Buffer, rts_cts,
1623                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
1624
1625     //Fill DataHead
1626     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
1627                                 AUTO_FB_NONE);
1628
1629     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
1630
1631     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + cbFrameBodySize;
1632
1633     if (WLAN_GET_FC_ISWEP(pPacket->p80211Header->sA4.wFrameCtl) != 0) {
1634         u8 *           pbyIVHead;
1635         u8 *           pbyPayloadHead;
1636         u8 *           pbyBSSID;
1637         PSKeyItem       pTransmitKey = NULL;
1638
1639         pbyIVHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding);
1640         pbyPayloadHead = (u8 *)(pbyTxBufferAddr + cbHeaderSize + cbMacHdLen + uPadding + cbIVlen);
1641         do {
1642             if ((pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
1643                 (pDevice->bLinkPass == true)) {
1644                 pbyBSSID = pDevice->abyBSSID;
1645                 // get pairwise key
1646                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
1647                     // get group key
1648                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
1649                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1650                         break;
1651                     }
1652                 } else {
1653                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get PTK.\n");
1654                     break;
1655                 }
1656             }
1657             // get group key
1658             pbyBSSID = pDevice->abyBroadcastAddr;
1659             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
1660                 pTransmitKey = NULL;
1661                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"KEY is NULL. OP Mode[%d]\n", pDevice->eOPMode);
1662             } else {
1663                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Get GTK.\n");
1664             }
1665         } while(false);
1666         //Fill TXKEY
1667         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
1668                      (u8 *)pMACHeader, (u16)cbFrameBodySize, NULL);
1669
1670         memcpy(pMACHeader, pPacket->p80211Header, cbMacHdLen);
1671         memcpy(pbyPayloadHead, ((u8 *)(pPacket->p80211Header) + cbMacHdLen),
1672                  cbFrameBodySize);
1673     }
1674     else {
1675         // Copy the Packet into a tx Buffer
1676         memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1677     }
1678
1679     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1680     pDevice->wSeqCounter++ ;
1681     if (pDevice->wSeqCounter > 0x0fff)
1682         pDevice->wSeqCounter = 0;
1683
1684     if (bIsPSPOLL) {
1685         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
1686         // of FIFO control header.
1687         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
1688         // in the same place of other packet's Duration-field).
1689         // And it will cause Cisco-AP to issue Disassociation-packet
1690         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
1691                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
1692                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1693                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
1694                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1695         } else {
1696                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
1697                         cpu_to_le16(pPacket->p80211Header->sA2.wDurationID);
1698         }
1699     }
1700
1701     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
1702     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1703     pTX_Buffer->byType = 0x00;
1704
1705     pContext->pPacket = NULL;
1706     pContext->Type = CONTEXT_MGMT_PACKET;
1707     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1708
1709     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
1710         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1711                         &pMACHeader->addr1[0], (u16)cbFrameSize,
1712                         pTxBufHead->wFIFOCtl);
1713     }
1714     else {
1715         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
1716                         &pMACHeader->addr3[0], (u16)cbFrameSize,
1717                         pTxBufHead->wFIFOCtl);
1718     }
1719
1720     PIPEnsSendBulkOut(pDevice,pContext);
1721     return CMD_STATUS_PENDING;
1722 }
1723
1724 CMD_STATUS csBeacon_xmit(struct vnt_private *pDevice,
1725         struct vnt_tx_mgmt *pPacket)
1726 {
1727         struct vnt_beacon_buffer *pTX_Buffer;
1728         u32 cbFrameSize = pPacket->cbMPDULen + WLAN_FCS_LEN;
1729         u32 cbHeaderSize = 0;
1730         u16 wTxBufSize = sizeof(STxShortBufHead);
1731         PSTxShortBufHead pTxBufHead;
1732         struct ieee80211_hdr *pMACHeader;
1733         struct vnt_tx_datahead_ab *pTxDataHead;
1734         u16 wCurrentRate;
1735         u32 cbFrameBodySize;
1736         u32 cbReqCount;
1737         u8 *pbyTxBufferAddr;
1738         struct vnt_usb_send_context *pContext;
1739         CMD_STATUS status;
1740
1741         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1742     if (NULL == pContext) {
1743         status = CMD_STATUS_RESOURCES;
1744         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ManagementSend TX...NO CONTEXT!\n");
1745         return status ;
1746     }
1747
1748         pTX_Buffer = (struct vnt_beacon_buffer *)&pContext->Data[0];
1749     pbyTxBufferAddr = (u8 *)&(pTX_Buffer->wFIFOCtl);
1750
1751     cbFrameBodySize = pPacket->cbPayloadLen;
1752
1753     pTxBufHead = (PSTxShortBufHead) pbyTxBufferAddr;
1754     wTxBufSize = sizeof(STxShortBufHead);
1755
1756     if (pDevice->byBBType == BB_TYPE_11A) {
1757         wCurrentRate = RATE_6M;
1758         pTxDataHead = (struct vnt_tx_datahead_ab *)
1759                         (pbyTxBufferAddr + wTxBufSize);
1760         //Get SignalField,ServiceField,Length
1761         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11A,
1762                                                         &pTxDataHead->ab);
1763         //Get Duration and TimeStampOff
1764         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1765                                                 PK_TYPE_11A, false);
1766         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1767         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1768     } else {
1769         wCurrentRate = RATE_1M;
1770         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1771         pTxDataHead = (struct vnt_tx_datahead_ab *)
1772                                 (pbyTxBufferAddr + wTxBufSize);
1773         //Get SignalField,ServiceField,Length
1774         BBvCalculateParameter(pDevice, cbFrameSize, wCurrentRate, PK_TYPE_11B,
1775                                                         &pTxDataHead->ab);
1776         //Get Duration and TimeStampOff
1777         pTxDataHead->wDuration = s_uGetDataDuration(pDevice,
1778                                                 PK_TYPE_11B, false);
1779         pTxDataHead->wTimeStampOff = vnt_time_stamp_off(pDevice, wCurrentRate);
1780         cbHeaderSize = wTxBufSize + sizeof(struct vnt_tx_datahead_ab);
1781     }
1782
1783     //Generate Beacon Header
1784     pMACHeader = (struct ieee80211_hdr *)(pbyTxBufferAddr + cbHeaderSize);
1785     memcpy(pMACHeader, pPacket->p80211Header, pPacket->cbMPDULen);
1786
1787     pMACHeader->duration_id = 0;
1788     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
1789     pDevice->wSeqCounter++ ;
1790     if (pDevice->wSeqCounter > 0x0fff)
1791         pDevice->wSeqCounter = 0;
1792
1793     cbReqCount = cbHeaderSize + WLAN_HDR_ADDR3_LEN + cbFrameBodySize;
1794
1795     pTX_Buffer->wTxByteCount = (u16)cbReqCount;
1796     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
1797     pTX_Buffer->byType = 0x01;
1798
1799     pContext->pPacket = NULL;
1800     pContext->Type = CONTEXT_MGMT_PACKET;
1801     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
1802
1803     PIPEnsSendBulkOut(pDevice,pContext);
1804     return CMD_STATUS_PENDING;
1805
1806 }
1807
1808 void vDMA0_tx_80211(struct vnt_private *pDevice, struct sk_buff *skb)
1809 {
1810         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1811         struct vnt_tx_buffer *pTX_Buffer;
1812         struct vnt_tx_fifo_head *pTxBufHead;
1813         u8 byPktType;
1814         u8 *pbyTxBufferAddr;
1815         void *rts_cts = NULL;
1816         void *pvTxDataHd;
1817         u32 uDuration, cbReqCount;
1818         struct ieee80211_hdr *pMACHeader;
1819         u32 cbHeaderSize, cbFrameBodySize;
1820         int bNeedACK, bIsPSPOLL = false;
1821         u32 cbFrameSize;
1822         u32 cbIVlen = 0, cbICVlen = 0, cbMIClen = 0, cbFCSlen = 4;
1823         u32 uPadding = 0;
1824         u32 cbMICHDR = 0, uLength = 0;
1825         u32 dwMICKey0, dwMICKey1;
1826         u32 dwMIC_Priority;
1827         u32 *pdwMIC_L, *pdwMIC_R;
1828         u16 wTxBufSize;
1829         u32 cbMacHdLen;
1830         struct ethhdr sEthHeader;
1831         void *pMICHDR;
1832         u32 wCurrentRate = RATE_1M;
1833         PUWLAN_80211HDR  p80211Header;
1834         u32 uNodeIndex = 0;
1835         int bNodeExist = false;
1836         SKeyItem STempKey;
1837         PSKeyItem pTransmitKey = NULL;
1838         u8 *pbyIVHead, *pbyPayloadHead, *pbyMacHdr;
1839         u32 cbExtSuppRate = 0;
1840         struct vnt_usb_send_context *pContext;
1841
1842         pMICHDR = pvTxDataHd = NULL;
1843
1844     if(skb->len <= WLAN_HDR_ADDR3_LEN) {
1845        cbFrameBodySize = 0;
1846     }
1847     else {
1848        cbFrameBodySize = skb->len - WLAN_HDR_ADDR3_LEN;
1849     }
1850     p80211Header = (PUWLAN_80211HDR)skb->data;
1851
1852         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
1853
1854     if (NULL == pContext) {
1855         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0 TX...NO CONTEXT!\n");
1856         dev_kfree_skb_irq(skb);
1857         return ;
1858     }
1859
1860         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
1861         pTxBufHead = &pTX_Buffer->fifo_head;
1862         pbyTxBufferAddr = (u8 *)&pTxBufHead->adwTxKey[0];
1863         wTxBufSize = sizeof(struct vnt_tx_fifo_head);
1864
1865     if (pDevice->byBBType == BB_TYPE_11A) {
1866         wCurrentRate = RATE_6M;
1867         byPktType = PK_TYPE_11A;
1868     } else {
1869         wCurrentRate = RATE_1M;
1870         byPktType = PK_TYPE_11B;
1871     }
1872
1873     // SetPower will cause error power TX state for OFDM Date packet in TX buffer.
1874     // 2004.11.11 Kyle -- Using OFDM power to tx MngPkt will decrease the connection capability.
1875     //                    And cmd timer will wait data pkt TX finish before scanning so it's OK
1876     //                    to set power here.
1877     if (pMgmt->eScanState != WMAC_NO_SCANNING) {
1878         RFbSetPower(pDevice, wCurrentRate, pDevice->byCurrentCh);
1879     } else {
1880         RFbSetPower(pDevice, wCurrentRate, pMgmt->uCurrChannel);
1881     }
1882
1883     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"vDMA0_tx_80211: p80211Header->sA3.wFrameCtl = %x \n", p80211Header->sA3.wFrameCtl);
1884
1885     //Set packet type
1886     if (byPktType == PK_TYPE_11A) {//0000 0000 0000 0000
1887         pTxBufHead->wFIFOCtl = 0;
1888     }
1889     else if (byPktType == PK_TYPE_11B) {//0000 0001 0000 0000
1890         pTxBufHead->wFIFOCtl |= FIFOCTL_11B;
1891     }
1892     else if (byPktType == PK_TYPE_11GB) {//0000 0010 0000 0000
1893         pTxBufHead->wFIFOCtl |= FIFOCTL_11GB;
1894     }
1895     else if (byPktType == PK_TYPE_11GA) {//0000 0011 0000 0000
1896         pTxBufHead->wFIFOCtl |= FIFOCTL_11GA;
1897     }
1898
1899     pTxBufHead->wFIFOCtl |= FIFOCTL_TMOEN;
1900     pTxBufHead->wTimeStamp = cpu_to_le16(DEFAULT_MGN_LIFETIME_RES_64us);
1901
1902     if (is_multicast_ether_addr(p80211Header->sA3.abyAddr1)) {
1903         bNeedACK = false;
1904         if (pDevice->bEnableHostWEP) {
1905             uNodeIndex = 0;
1906             bNodeExist = true;
1907         }
1908     }
1909     else {
1910         if (pDevice->bEnableHostWEP) {
1911             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p80211Header->sA3.abyAddr1), &uNodeIndex))
1912                 bNodeExist = true;
1913         }
1914         bNeedACK = true;
1915         pTxBufHead->wFIFOCtl |= FIFOCTL_NEEDACK;
1916     };
1917
1918     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) ||
1919         (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ) {
1920
1921         pTxBufHead->wFIFOCtl |= FIFOCTL_LRETRY;
1922         //Set Preamble type always long
1923         //pDevice->byPreambleType = PREAMBLE_LONG;
1924
1925         // probe-response don't retry
1926         //if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_MGMT_PROBE_RSP) {
1927         //     bNeedACK = false;
1928         //     pTxBufHead->wFIFOCtl  &= (~FIFOCTL_NEEDACK);
1929         //}
1930     }
1931
1932     pTxBufHead->wFIFOCtl |= (FIFOCTL_GENINT | FIFOCTL_ISDMA0);
1933
1934     if ((p80211Header->sA4.wFrameCtl & TYPE_SUBTYPE_MASK) == TYPE_CTL_PSPOLL) {
1935         bIsPSPOLL = true;
1936         cbMacHdLen = WLAN_HDR_ADDR2_LEN;
1937     } else {
1938         cbMacHdLen = WLAN_HDR_ADDR3_LEN;
1939     }
1940
1941     // hostapd daemon ext support rate patch
1942     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
1943
1944         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0) {
1945             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN;
1946          }
1947
1948         if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0) {
1949             cbExtSuppRate += ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN;
1950          }
1951
1952          if (cbExtSuppRate >0) {
1953             cbFrameBodySize = WLAN_ASSOCRESP_OFF_SUPP_RATES;
1954          }
1955     }
1956
1957     //Set FRAGCTL_MACHDCNT
1958     pTxBufHead->wFragCtl |= cpu_to_le16((u16)cbMacHdLen << 10);
1959
1960     // Notes:
1961     // Although spec says MMPDU can be fragmented; In most case,
1962     // no one will send a MMPDU under fragmentation. With RTS may occur.
1963     pDevice->bAES = false;  //Set FRAGCTL_WEPTYP
1964
1965     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
1966         if (pDevice->eEncryptionStatus == Ndis802_11Encryption1Enabled) {
1967             cbIVlen = 4;
1968             cbICVlen = 4;
1969             pTxBufHead->wFragCtl |= FRAGCTL_LEGACY;
1970         }
1971         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption2Enabled) {
1972             cbIVlen = 8;//IV+ExtIV
1973             cbMIClen = 8;
1974             cbICVlen = 4;
1975             pTxBufHead->wFragCtl |= FRAGCTL_TKIP;
1976             //We need to get seed here for filling TxKey entry.
1977             //TKIPvMixKey(pTransmitKey->abyKey, pDevice->abyCurrentNetAddr,
1978             //            pTransmitKey->wTSC15_0, pTransmitKey->dwTSC47_16, pDevice->abyPRNG);
1979         }
1980         else if (pDevice->eEncryptionStatus == Ndis802_11Encryption3Enabled) {
1981             cbIVlen = 8;//RSN Header
1982             cbICVlen = 8;//MIC
1983             cbMICHDR = sizeof(struct vnt_mic_hdr);
1984             pTxBufHead->wFragCtl |= FRAGCTL_AES;
1985             pDevice->bAES = true;
1986         }
1987         //MAC Header should be padding 0 to DW alignment.
1988         uPadding = 4 - (cbMacHdLen%4);
1989         uPadding %= 4;
1990     }
1991
1992     cbFrameSize = cbMacHdLen + cbFrameBodySize + cbIVlen + cbMIClen + cbICVlen + cbFCSlen + cbExtSuppRate;
1993
1994     //Set FIFOCTL_GrpAckPolicy
1995     if (pDevice->bGrpAckPolicy == true) {//0000 0100 0000 0000
1996         pTxBufHead->wFIFOCtl |= FIFOCTL_GRPACK;
1997     }
1998     //the rest of pTxBufHead->wFragCtl:FragTyp will be set later in s_vFillFragParameter()
1999
2000     if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {//802.11g packet
2001         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2002                                         sizeof(struct vnt_rrv_time_cts));
2003         rts_cts = (struct vnt_cts *) (pbyTxBufferAddr + wTxBufSize +
2004                         sizeof(struct vnt_rrv_time_cts) + cbMICHDR);
2005         pvTxDataHd = (struct vnt_tx_datahead_g *) (pbyTxBufferAddr +
2006                 wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2007                                         sizeof(struct vnt_cts));
2008         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_cts) + cbMICHDR +
2009                 sizeof(struct vnt_cts) + sizeof(struct vnt_tx_datahead_g);
2010
2011     }
2012     else {//802.11a/b packet
2013         pMICHDR = (struct vnt_mic_hdr *) (pbyTxBufferAddr + wTxBufSize +
2014                 sizeof(struct vnt_rrv_time_ab));
2015         pvTxDataHd = (struct vnt_tx_datahead_ab *)(pbyTxBufferAddr +
2016                 wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR);
2017         cbHeaderSize = wTxBufSize + sizeof(struct vnt_rrv_time_ab) + cbMICHDR +
2018                                         sizeof(struct vnt_tx_datahead_ab);
2019     }
2020     memcpy(&(sEthHeader.h_dest[0]),
2021            &(p80211Header->sA3.abyAddr1[0]),
2022            ETH_ALEN);
2023     memcpy(&(sEthHeader.h_source[0]),
2024            &(p80211Header->sA3.abyAddr2[0]),
2025            ETH_ALEN);
2026     //=========================
2027     //    No Fragmentation
2028     //=========================
2029     pTxBufHead->wFragCtl |= (u16)FRAGCTL_NONFRAG;
2030
2031         /* Fill FIFO,RrvTime,RTS,and CTS */
2032         s_vGenerateTxParameter(pDevice, byPktType, wCurrentRate,
2033                 pTX_Buffer, rts_cts,
2034                 cbFrameSize, bNeedACK, TYPE_TXDMA0, &sEthHeader, false);
2035
2036     //Fill DataHead
2037     uDuration = s_uFillDataHead(pDevice, byPktType, wCurrentRate, pvTxDataHd, cbFrameSize, TYPE_TXDMA0, bNeedACK,
2038                                 AUTO_FB_NONE);
2039
2040     pMACHeader = (struct ieee80211_hdr *) (pbyTxBufferAddr + cbHeaderSize);
2041
2042     cbReqCount = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen + (cbFrameBodySize + cbMIClen) + cbExtSuppRate;
2043
2044     pbyMacHdr = (u8 *)(pbyTxBufferAddr + cbHeaderSize);
2045     pbyPayloadHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding + cbIVlen);
2046     pbyIVHead = (u8 *)(pbyMacHdr + cbMacHdLen + uPadding);
2047
2048     // Copy the Packet into a tx Buffer
2049     memcpy(pbyMacHdr, skb->data, cbMacHdLen);
2050
2051     // version set to 0, patch for hostapd deamon
2052     pMACHeader->frame_control &= cpu_to_le16(0xfffc);
2053     memcpy(pbyPayloadHead, (skb->data + cbMacHdLen), cbFrameBodySize);
2054
2055     // replace support rate, patch for hostapd daemon( only support 11M)
2056     if (WLAN_GET_FC_FSTYPE(p80211Header->sA4.wFrameCtl) == WLAN_FSTYPE_ASSOCRESP) {
2057         if (cbExtSuppRate != 0) {
2058             if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len != 0)
2059                 memcpy((pbyPayloadHead + cbFrameBodySize),
2060                         pMgmt->abyCurrSuppRates,
2061                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN
2062                        );
2063              if (((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len != 0)
2064                 memcpy((pbyPayloadHead + cbFrameBodySize) + ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates)->len + WLAN_IEHDR_LEN,
2065                         pMgmt->abyCurrExtSuppRates,
2066                         ((PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates)->len + WLAN_IEHDR_LEN
2067                        );
2068          }
2069     }
2070
2071     // Set wep
2072     if (WLAN_GET_FC_ISWEP(p80211Header->sA4.wFrameCtl) != 0) {
2073
2074         if (pDevice->bEnableHostWEP) {
2075             pTransmitKey = &STempKey;
2076             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2077             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2078             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2079             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2080             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2081             memcpy(pTransmitKey->abyKey,
2082                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2083                 pTransmitKey->uKeyLength
2084                 );
2085         }
2086
2087         if ((pTransmitKey != NULL) && (pTransmitKey->byCipherSuite == KEY_CTL_TKIP)) {
2088
2089             dwMICKey0 = *(u32 *)(&pTransmitKey->abyKey[16]);
2090             dwMICKey1 = *(u32 *)(&pTransmitKey->abyKey[20]);
2091
2092             // DO Software Michael
2093             MIC_vInit(dwMICKey0, dwMICKey1);
2094             MIC_vAppend((u8 *)&(sEthHeader.h_dest[0]), 12);
2095             dwMIC_Priority = 0;
2096             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
2097                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"DMA0_tx_8021:MIC KEY:"\
2098                         " %X, %X\n", dwMICKey0, dwMICKey1);
2099
2100             uLength = cbHeaderSize + cbMacHdLen + uPadding + cbIVlen;
2101
2102             MIC_vAppend((pbyTxBufferAddr + uLength), cbFrameBodySize);
2103
2104             pdwMIC_L = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize);
2105             pdwMIC_R = (u32 *)(pbyTxBufferAddr + uLength + cbFrameBodySize + 4);
2106
2107             MIC_vGetMIC(pdwMIC_L, pdwMIC_R);
2108             MIC_vUnInit();
2109
2110             if (pDevice->bTxMICFail == true) {
2111                 *pdwMIC_L = 0;
2112                 *pdwMIC_R = 0;
2113                 pDevice->bTxMICFail = false;
2114             }
2115
2116             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"uLength: %d, %d\n", uLength, cbFrameBodySize);
2117             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"cbReqCount:%d, %d, %d, %d\n", cbReqCount, cbHeaderSize, uPadding, cbIVlen);
2118                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC:%x, %x\n",
2119                         *pdwMIC_L, *pdwMIC_R);
2120
2121         }
2122
2123         s_vFillTxKey(pDevice, (u8 *)(pTxBufHead->adwTxKey), pbyIVHead, pTransmitKey,
2124                 pbyMacHdr, (u16)cbFrameBodySize, pMICHDR);
2125
2126         if (pDevice->bEnableHostWEP) {
2127             pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16 = pTransmitKey->dwTSC47_16;
2128             pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0 = pTransmitKey->wTSC15_0;
2129         }
2130
2131         if ((pDevice->byLocalID <= REV_ID_VT3253_A1)) {
2132             s_vSWencryption(pDevice, pTransmitKey, pbyPayloadHead, (u16)(cbFrameBodySize + cbMIClen));
2133         }
2134     }
2135
2136     pMACHeader->seq_ctrl = cpu_to_le16(pDevice->wSeqCounter << 4);
2137     pDevice->wSeqCounter++ ;
2138     if (pDevice->wSeqCounter > 0x0fff)
2139         pDevice->wSeqCounter = 0;
2140
2141     if (bIsPSPOLL) {
2142         // The MAC will automatically replace the Duration-field of MAC header by Duration-field
2143         // of  FIFO control header.
2144         // This will cause AID-field of PS-POLL packet be incorrect (Because PS-POLL's AID field is
2145         // in the same place of other packet's Duration-field).
2146         // And it will cause Cisco-AP to issue Disassociation-packet
2147         if (byPktType == PK_TYPE_11GB || byPktType == PK_TYPE_11GA) {
2148                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_a =
2149                         cpu_to_le16(p80211Header->sA2.wDurationID);
2150                 ((struct vnt_tx_datahead_g *)pvTxDataHd)->wDuration_b =
2151                         cpu_to_le16(p80211Header->sA2.wDurationID);
2152         } else {
2153                 ((struct vnt_tx_datahead_ab *)pvTxDataHd)->wDuration =
2154                         cpu_to_le16(p80211Header->sA2.wDurationID);
2155         }
2156     }
2157
2158     pTX_Buffer->wTxByteCount = cpu_to_le16((u16)(cbReqCount));
2159     pTX_Buffer->byPKTNO = (u8) (((wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2160     pTX_Buffer->byType = 0x00;
2161
2162     pContext->pPacket = skb;
2163     pContext->Type = CONTEXT_MGMT_PACKET;
2164     pContext->uBufLen = (u16)cbReqCount + 4;  //USB header
2165
2166     if (WLAN_GET_FC_TODS(pMACHeader->frame_control) == 0) {
2167         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2168                         &pMACHeader->addr1[0], (u16)cbFrameSize,
2169                         pTxBufHead->wFIFOCtl);
2170     }
2171     else {
2172         s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2173                         &pMACHeader->addr3[0], (u16)cbFrameSize,
2174                         pTxBufHead->wFIFOCtl);
2175     }
2176     PIPEnsSendBulkOut(pDevice,pContext);
2177     return ;
2178
2179 }
2180
2181 //TYPE_AC0DMA data tx
2182 /*
2183  * Description:
2184  *      Tx packet via AC0DMA(DMA1)
2185  *
2186  * Parameters:
2187  *  In:
2188  *      pDevice         - Pointer to the adapter
2189  *      skb             - Pointer to tx skb packet
2190  *  Out:
2191  *      void
2192  *
2193  * Return Value: NULL
2194  */
2195
2196 int nsDMA_tx_packet(struct vnt_private *pDevice,
2197         u32 uDMAIdx, struct sk_buff *skb)
2198 {
2199         struct net_device_stats *pStats = &pDevice->stats;
2200         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2201         struct vnt_tx_buffer *pTX_Buffer;
2202         u32 BytesToWrite = 0, uHeaderLen = 0;
2203         u32 uNodeIndex = 0;
2204         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
2205         u16 wAID;
2206         u8 byPktType;
2207         int bNeedEncryption = false;
2208         PSKeyItem pTransmitKey = NULL;
2209         SKeyItem STempKey;
2210         int ii;
2211         int bTKIP_UseGTK = false;
2212         int bNeedDeAuth = false;
2213         u8 *pbyBSSID;
2214         int bNodeExist = false;
2215         struct vnt_usb_send_context *pContext;
2216         bool fConvertedPacket;
2217         u32 status;
2218         u16 wKeepRate = pDevice->wCurrentRate;
2219         int bTxeapol_key = false;
2220
2221     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
2222
2223         if (pDevice->uAssocCount == 0) {
2224             dev_kfree_skb_irq(skb);
2225             return 0;
2226         }
2227
2228         if (is_multicast_ether_addr((u8 *)(skb->data))) {
2229             uNodeIndex = 0;
2230             bNodeExist = true;
2231             if (pMgmt->sNodeDBTable[0].bPSEnable) {
2232
2233                 skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skb);
2234                 pMgmt->sNodeDBTable[0].wEnQueueCnt++;
2235                 // set tx map
2236                 pMgmt->abyPSTxMap[0] |= byMask[0];
2237                 return 0;
2238             }
2239             // multicast/broadcast data rate
2240
2241             if (pDevice->byBBType != BB_TYPE_11A)
2242                 pDevice->wCurrentRate = RATE_2M;
2243             else
2244                 pDevice->wCurrentRate = RATE_24M;
2245             // long preamble type
2246             pDevice->byPreambleType = PREAMBLE_SHORT;
2247
2248         }else {
2249
2250             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data), &uNodeIndex)) {
2251
2252                 if (pMgmt->sNodeDBTable[uNodeIndex].bPSEnable) {
2253
2254                     skb_queue_tail(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue, skb);
2255
2256                     pMgmt->sNodeDBTable[uNodeIndex].wEnQueueCnt++;
2257                     // set tx map
2258                     wAID = pMgmt->sNodeDBTable[uNodeIndex].wAID;
2259                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
2260                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Set:pMgmt->abyPSTxMap[%d]= %d\n",
2261                              (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
2262
2263                     return 0;
2264                 }
2265                 // AP rate decided from node
2266                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2267                 // tx preamble decided from node
2268
2269                 if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2270                     pDevice->byPreambleType = pDevice->byShortPreamble;
2271
2272                 }else {
2273                     pDevice->byPreambleType = PREAMBLE_LONG;
2274                 }
2275                 bNodeExist = true;
2276             }
2277         }
2278
2279         if (bNodeExist == false) {
2280             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Unknown STA not found in node DB \n");
2281             dev_kfree_skb_irq(skb);
2282             return 0;
2283         }
2284     }
2285
2286         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2287
2288     if (pContext == NULL) {
2289         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG" pContext == NULL\n");
2290         dev_kfree_skb_irq(skb);
2291         return STATUS_RESOURCES;
2292     }
2293
2294     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)(skb->data), ETH_HLEN);
2295
2296 //mike add:station mode check eapol-key challenge--->
2297 {
2298     u8  Protocol_Version;    //802.1x Authentication
2299     u8  Packet_Type;           //802.1x Authentication
2300     u8  Descriptor_type;
2301     u16 Key_info;
2302
2303     Protocol_Version = skb->data[ETH_HLEN];
2304     Packet_Type = skb->data[ETH_HLEN+1];
2305     Descriptor_type = skb->data[ETH_HLEN+1+1+2];
2306     Key_info = (skb->data[ETH_HLEN+1+1+2+1] << 8)|(skb->data[ETH_HLEN+1+1+2+2]);
2307         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2308                 /* 802.1x OR eapol-key challenge frame transfer */
2309                 if (((Protocol_Version == 1) || (Protocol_Version == 2)) &&
2310                         (Packet_Type == 3)) {
2311                         bTxeapol_key = true;
2312                        if(!(Key_info & BIT3) &&  //WPA or RSN group-key challenge
2313                            (Key_info & BIT8) && (Key_info & BIT9)) {    //send 2/2 key
2314                           if(Descriptor_type==254) {
2315                                pDevice->fWPA_Authened = true;
2316                              PRINT_K("WPA ");
2317                           }
2318                           else {
2319                                pDevice->fWPA_Authened = true;
2320                              PRINT_K("WPA2(re-keying) ");
2321                           }
2322                           PRINT_K("Authentication completed!!\n");
2323                         }
2324                     else if((Key_info & BIT3) && (Descriptor_type==2) &&  //RSN pairwise-key challenge
2325                                (Key_info & BIT8) && (Key_info & BIT9)) {
2326                           pDevice->fWPA_Authened = true;
2327                             PRINT_K("WPA2 Authentication completed!!\n");
2328                      }
2329              }
2330    }
2331 }
2332 //mike add:station mode check eapol-key challenge<---
2333
2334     if (pDevice->bEncryptionEnable == true) {
2335         bNeedEncryption = true;
2336         // get Transmit key
2337         do {
2338             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
2339                 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2340                 pbyBSSID = pDevice->abyBSSID;
2341                 // get pairwise key
2342                 if (KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == false) {
2343                     // get group key
2344                     if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == true) {
2345                         bTKIP_UseGTK = true;
2346                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2347                         break;
2348                     }
2349                 } else {
2350                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get PTK.\n");
2351                     break;
2352                 }
2353             }else if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2354               /* TO_DS = 0 and FROM_DS = 0 --> 802.11 MAC Address1 */
2355                 pbyBSSID = pDevice->sTxEthHeader.h_dest;
2356                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS Serach Key: \n");
2357                 for (ii = 0; ii< 6; ii++)
2358                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"%x \n", *(pbyBSSID+ii));
2359                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"\n");
2360
2361                 // get pairwise key
2362                 if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, PAIRWISE_KEY, &pTransmitKey) == true)
2363                     break;
2364             }
2365             // get group key
2366             pbyBSSID = pDevice->abyBroadcastAddr;
2367             if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2368                 pTransmitKey = NULL;
2369                 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
2370                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2371                 }
2372                 else
2373                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"NOT IBSS and KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2374             } else {
2375                 bTKIP_UseGTK = true;
2376                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2377             }
2378         } while(false);
2379     }
2380
2381     if (pDevice->bEnableHostWEP) {
2382         DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"acdma0: STA index %d\n", uNodeIndex);
2383         if (pDevice->bEncryptionEnable == true) {
2384             pTransmitKey = &STempKey;
2385             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2386             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2387             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2388             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2389             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2390             memcpy(pTransmitKey->abyKey,
2391                 &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2392                 pTransmitKey->uKeyLength
2393                 );
2394          }
2395     }
2396
2397     byPktType = (u8)pDevice->byPacketType;
2398
2399     if (pDevice->bFixRate) {
2400         if (pDevice->byBBType == BB_TYPE_11B) {
2401             if (pDevice->uConnectionRate >= RATE_11M) {
2402                 pDevice->wCurrentRate = RATE_11M;
2403             } else {
2404                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2405             }
2406         } else {
2407             if ((pDevice->byBBType == BB_TYPE_11A) &&
2408                 (pDevice->uConnectionRate <= RATE_6M)) {
2409                 pDevice->wCurrentRate = RATE_6M;
2410             } else {
2411                 if (pDevice->uConnectionRate >= RATE_54M)
2412                     pDevice->wCurrentRate = RATE_54M;
2413                 else
2414                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2415             }
2416         }
2417     }
2418     else {
2419         if (pDevice->eOPMode == OP_MODE_ADHOC) {
2420             // Adhoc Tx rate decided from node DB
2421             if (is_multicast_ether_addr(pDevice->sTxEthHeader.h_dest)) {
2422                 // Multicast use highest data rate
2423                 pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2424                 // preamble type
2425                 pDevice->byPreambleType = pDevice->byShortPreamble;
2426             }
2427             else {
2428                 if (BSSbIsSTAInNodeDB(pDevice, &(pDevice->sTxEthHeader.h_dest[0]), &uNodeIndex)) {
2429                     pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2430                     if (pMgmt->sNodeDBTable[uNodeIndex].bShortPreamble) {
2431                         pDevice->byPreambleType = pDevice->byShortPreamble;
2432
2433                     }
2434                     else {
2435                         pDevice->byPreambleType = PREAMBLE_LONG;
2436                     }
2437                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Found Node Index is [%d]  Tx Data Rate:[%d]\n",uNodeIndex, pDevice->wCurrentRate);
2438                 }
2439                 else {
2440                     if (pDevice->byBBType != BB_TYPE_11A)
2441                        pDevice->wCurrentRate = RATE_2M;
2442                     else
2443                        pDevice->wCurrentRate = RATE_24M; // refer to vMgrCreateOwnIBSS()'s
2444                                                          // abyCurrExtSuppRates[]
2445                     pDevice->byPreambleType = PREAMBLE_SHORT;
2446                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Not Found Node use highest basic Rate.....\n");
2447                 }
2448             }
2449         }
2450         if (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) {
2451             // Infra STA rate decided from AP Node, index = 0
2452             pDevice->wCurrentRate = pMgmt->sNodeDBTable[0].wTxDataRate;
2453         }
2454     }
2455
2456         if (pDevice->sTxEthHeader.h_proto == cpu_to_be16(ETH_P_PAE)) {
2457                 if (pDevice->byBBType != BB_TYPE_11A) {
2458                         pDevice->wCurrentRate = RATE_1M;
2459                         pDevice->byACKRate = RATE_1M;
2460                         pDevice->byTopCCKBasicRate = RATE_1M;
2461                         pDevice->byTopOFDMBasicRate = RATE_6M;
2462                 } else {
2463                         pDevice->wCurrentRate = RATE_6M;
2464                         pDevice->byACKRate = RATE_6M;
2465                         pDevice->byTopCCKBasicRate = RATE_1M;
2466                         pDevice->byTopOFDMBasicRate = RATE_6M;
2467                 }
2468         }
2469
2470     DBG_PRT(MSG_LEVEL_DEBUG,
2471             KERN_INFO "dma_tx: pDevice->wCurrentRate = %d\n",
2472             pDevice->wCurrentRate);
2473
2474     if (wKeepRate != pDevice->wCurrentRate) {
2475         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2476     }
2477
2478     if (pDevice->wCurrentRate <= RATE_11M) {
2479         byPktType = PK_TYPE_11B;
2480     }
2481
2482     if (bNeedEncryption == true) {
2483         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ntohs Pkt Type=%04x\n", ntohs(pDevice->sTxEthHeader.h_proto));
2484         if ((pDevice->sTxEthHeader.h_proto) == cpu_to_be16(ETH_P_PAE)) {
2485                 bNeedEncryption = false;
2486             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Pkt Type=%04x\n", (pDevice->sTxEthHeader.h_proto));
2487             if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
2488                 if (pTransmitKey == NULL) {
2489                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Don't Find TX KEY\n");
2490                 }
2491                 else {
2492                     if (bTKIP_UseGTK == true) {
2493                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"error: KEY is GTK!!~~\n");
2494                     }
2495                     else {
2496                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2497                                 pTransmitKey->dwKeyIndex);
2498                         bNeedEncryption = true;
2499                     }
2500                 }
2501             }
2502
2503             if (pDevice->bEnableHostWEP) {
2504                 if ((uNodeIndex != 0) &&
2505                     (pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex & PAIRWISE_KEY)) {
2506                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Find PTK [%X]\n",
2507                                 pTransmitKey->dwKeyIndex);
2508                     bNeedEncryption = true;
2509                  }
2510              }
2511         }
2512         else {
2513
2514             if (pTransmitKey == NULL) {
2515                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"return no tx key\n");
2516                 pContext->bBoolInUse = false;
2517                 dev_kfree_skb_irq(skb);
2518                 pStats->tx_dropped++;
2519                 return STATUS_FAILURE;
2520             }
2521         }
2522     }
2523
2524         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2525
2526     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2527                         pTX_Buffer, bNeedEncryption,
2528                         skb->len, uDMAIdx, &pDevice->sTxEthHeader,
2529                         (u8 *)skb->data, pTransmitKey, uNodeIndex,
2530                         pDevice->wCurrentRate,
2531                         &uHeaderLen, &BytesToWrite
2532                        );
2533
2534     if (fConvertedPacket == false) {
2535         pContext->bBoolInUse = false;
2536         dev_kfree_skb_irq(skb);
2537         return STATUS_FAILURE;
2538     }
2539
2540     if ( pDevice->bEnablePSMode == true ) {
2541         if ( !pDevice->bPSModeTxBurst ) {
2542                 bScheduleCommand((void *) pDevice,
2543                                  WLAN_CMD_MAC_DISPOWERSAVING,
2544                                  NULL);
2545             pDevice->bPSModeTxBurst = true;
2546         }
2547     }
2548
2549     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2550     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2551
2552     pContext->pPacket = skb;
2553     pContext->Type = CONTEXT_DATA_PACKET;
2554     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2555
2556     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2557                         &pContext->sEthHeader.h_dest[0],
2558                         (u16)(BytesToWrite-uHeaderLen),
2559                         pTX_Buffer->fifo_head.wFIFOCtl);
2560
2561     status = PIPEnsSendBulkOut(pDevice,pContext);
2562
2563     if (bNeedDeAuth == true) {
2564         u16 wReason = WLAN_MGMT_REASON_MIC_FAILURE;
2565
2566         bScheduleCommand((void *) pDevice, WLAN_CMD_DEAUTH, (u8 *) &wReason);
2567     }
2568
2569   if(status!=STATUS_PENDING) {
2570      pContext->bBoolInUse = false;
2571     dev_kfree_skb_irq(skb);
2572     return STATUS_FAILURE;
2573   }
2574   else
2575     return 0;
2576
2577 }
2578
2579 /*
2580  * Description:
2581  *      Relay packet send (AC1DMA) from rx dpc.
2582  *
2583  * Parameters:
2584  *  In:
2585  *      pDevice         - Pointer to the adapter
2586  *      pPacket         - Pointer to rx packet
2587  *      cbPacketSize    - rx ethernet frame size
2588  *  Out:
2589  *      TURE, false
2590  *
2591  * Return Value: Return true if packet is copy to dma1; otherwise false
2592  */
2593
2594 int bRelayPacketSend(struct vnt_private *pDevice, u8 *pbySkbData, u32 uDataLen,
2595         u32 uNodeIndex)
2596 {
2597         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
2598         struct vnt_tx_buffer *pTX_Buffer;
2599         u32 BytesToWrite = 0, uHeaderLen = 0;
2600         u8 byPktType = PK_TYPE_11B;
2601         int bNeedEncryption = false;
2602         SKeyItem STempKey;
2603         PSKeyItem pTransmitKey = NULL;
2604         u8 *pbyBSSID;
2605         struct vnt_usb_send_context *pContext;
2606         u8 byPktTyp;
2607         int fConvertedPacket;
2608         u32 status;
2609         u16 wKeepRate = pDevice->wCurrentRate;
2610
2611         pContext = (struct vnt_usb_send_context *)s_vGetFreeContext(pDevice);
2612
2613     if (NULL == pContext) {
2614         return false;
2615     }
2616
2617     memcpy(pDevice->sTxEthHeader.h_dest, (u8 *)pbySkbData, ETH_HLEN);
2618
2619     if (pDevice->bEncryptionEnable == true) {
2620         bNeedEncryption = true;
2621         // get group key
2622         pbyBSSID = pDevice->abyBroadcastAddr;
2623         if(KeybGetTransmitKey(&(pDevice->sKey), pbyBSSID, GROUP_KEY, &pTransmitKey) == false) {
2624             pTransmitKey = NULL;
2625             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"KEY is NULL. [%d]\n", pMgmt->eCurrMode);
2626         } else {
2627             DBG_PRT(MSG_LEVEL_DEBUG, KERN_DEBUG"Get GTK.\n");
2628         }
2629     }
2630
2631     if (pDevice->bEnableHostWEP) {
2632         if (uNodeIndex < MAX_NODE_NUM + 1) {
2633             pTransmitKey = &STempKey;
2634             pTransmitKey->byCipherSuite = pMgmt->sNodeDBTable[uNodeIndex].byCipherSuite;
2635             pTransmitKey->dwKeyIndex = pMgmt->sNodeDBTable[uNodeIndex].dwKeyIndex;
2636             pTransmitKey->uKeyLength = pMgmt->sNodeDBTable[uNodeIndex].uWepKeyLength;
2637             pTransmitKey->dwTSC47_16 = pMgmt->sNodeDBTable[uNodeIndex].dwTSC47_16;
2638             pTransmitKey->wTSC15_0 = pMgmt->sNodeDBTable[uNodeIndex].wTSC15_0;
2639             memcpy(pTransmitKey->abyKey,
2640                     &pMgmt->sNodeDBTable[uNodeIndex].abyWepKey[0],
2641                     pTransmitKey->uKeyLength
2642                   );
2643         }
2644     }
2645
2646     if ( bNeedEncryption && (pTransmitKey == NULL) ) {
2647         pContext->bBoolInUse = false;
2648         return false;
2649     }
2650
2651     byPktTyp = (u8)pDevice->byPacketType;
2652
2653     if (pDevice->bFixRate) {
2654         if (pDevice->byBBType == BB_TYPE_11B) {
2655             if (pDevice->uConnectionRate >= RATE_11M) {
2656                 pDevice->wCurrentRate = RATE_11M;
2657             } else {
2658                 pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2659             }
2660         } else {
2661             if ((pDevice->byBBType == BB_TYPE_11A) &&
2662                 (pDevice->uConnectionRate <= RATE_6M)) {
2663                 pDevice->wCurrentRate = RATE_6M;
2664             } else {
2665                 if (pDevice->uConnectionRate >= RATE_54M)
2666                     pDevice->wCurrentRate = RATE_54M;
2667                 else
2668                     pDevice->wCurrentRate = (u16)pDevice->uConnectionRate;
2669             }
2670         }
2671     }
2672     else {
2673         pDevice->wCurrentRate = pMgmt->sNodeDBTable[uNodeIndex].wTxDataRate;
2674     }
2675
2676     if (wKeepRate != pDevice->wCurrentRate) {
2677         bScheduleCommand((void *) pDevice, WLAN_CMD_SETPOWER, NULL);
2678     }
2679
2680     if (pDevice->wCurrentRate <= RATE_11M)
2681         byPktType = PK_TYPE_11B;
2682
2683     BytesToWrite = uDataLen + ETH_FCS_LEN;
2684
2685     // Convert the packet to an usb frame and copy into our buffer
2686     // and send the irp.
2687
2688         pTX_Buffer = (struct vnt_tx_buffer *)&pContext->Data[0];
2689
2690     fConvertedPacket = s_bPacketToWirelessUsb(pDevice, byPktType,
2691                         pTX_Buffer, bNeedEncryption,
2692                          uDataLen, TYPE_AC0DMA, &pDevice->sTxEthHeader,
2693                          pbySkbData, pTransmitKey, uNodeIndex,
2694                          pDevice->wCurrentRate,
2695                          &uHeaderLen, &BytesToWrite
2696                         );
2697
2698     if (fConvertedPacket == false) {
2699         pContext->bBoolInUse = false;
2700         return false;
2701     }
2702
2703     pTX_Buffer->byPKTNO = (u8) (((pDevice->wCurrentRate<<4) &0x00F0) | ((pDevice->wSeqCounter - 1) & 0x000F));
2704     pTX_Buffer->wTxByteCount = (u16)BytesToWrite;
2705
2706     pContext->pPacket = NULL;
2707     pContext->Type = CONTEXT_DATA_PACKET;
2708     pContext->uBufLen = (u16)BytesToWrite + 4 ; //USB header
2709
2710     s_vSaveTxPktInfo(pDevice, (u8)(pTX_Buffer->byPKTNO & 0x0F),
2711                 &pContext->sEthHeader.h_dest[0],
2712                 (u16)(BytesToWrite - uHeaderLen),
2713                 pTX_Buffer->fifo_head.wFIFOCtl);
2714
2715     status = PIPEnsSendBulkOut(pDevice,pContext);
2716
2717     return true;
2718 }
2719