Merge branches 'pm-core' and 'pm-domains'
[linux-2.6-block.git] / drivers / staging / rdma / hfi1 / user_exp_rcv.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54         struct list_head list;
55         unsigned base;
56         u8 size;
57         u8 used;
58         u8 map;
59 };
60
61 struct tid_rb_node {
62         struct mmu_rb_node mmu;
63         unsigned long phys;
64         struct tid_group *grp;
65         u32 rcventry;
66         dma_addr_t dma_addr;
67         bool freed;
68         unsigned npages;
69         struct page *pages[0];
70 };
71
72 struct tid_pageset {
73         u16 idx;
74         u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len)                                     \
80         (1 + (((((unsigned long)(vaddr) +                              \
81                  (unsigned long)(len) - 1) & PAGE_MASK) -              \
82                ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85                             struct rb_root *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88                               struct tid_group *, struct page **, unsigned);
89 static int mmu_rb_insert(struct rb_root *, struct mmu_rb_node *);
90 static void mmu_rb_remove(struct rb_root *, struct mmu_rb_node *,
91                           struct mm_struct *);
92 static int mmu_rb_invalidate(struct rb_root *, struct mmu_rb_node *);
93 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
94                             struct tid_pageset *, unsigned, u16, struct page **,
95                             u32 *, unsigned *, unsigned *);
96 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
97 static void clear_tid_node(struct hfi1_filedata *, u16, struct tid_rb_node *);
98
99 static struct mmu_rb_ops tid_rb_ops = {
100         .insert = mmu_rb_insert,
101         .remove = mmu_rb_remove,
102         .invalidate = mmu_rb_invalidate
103 };
104
105 static inline u32 rcventry2tidinfo(u32 rcventry)
106 {
107         u32 pair = rcventry & ~0x1;
108
109         return EXP_TID_SET(IDX, pair >> 1) |
110                 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
111 }
112
113 static inline void exp_tid_group_init(struct exp_tid_set *set)
114 {
115         INIT_LIST_HEAD(&set->list);
116         set->count = 0;
117 }
118
119 static inline void tid_group_remove(struct tid_group *grp,
120                                     struct exp_tid_set *set)
121 {
122         list_del_init(&grp->list);
123         set->count--;
124 }
125
126 static inline void tid_group_add_tail(struct tid_group *grp,
127                                       struct exp_tid_set *set)
128 {
129         list_add_tail(&grp->list, &set->list);
130         set->count++;
131 }
132
133 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
134 {
135         struct tid_group *grp =
136                 list_first_entry(&set->list, struct tid_group, list);
137         list_del_init(&grp->list);
138         set->count--;
139         return grp;
140 }
141
142 static inline void tid_group_move(struct tid_group *group,
143                                   struct exp_tid_set *s1,
144                                   struct exp_tid_set *s2)
145 {
146         tid_group_remove(group, s1);
147         tid_group_add_tail(group, s2);
148 }
149
150 /*
151  * Initialize context and file private data needed for Expected
152  * receive caching. This needs to be done after the context has
153  * been configured with the eager/expected RcvEntry counts.
154  */
155 int hfi1_user_exp_rcv_init(struct file *fp)
156 {
157         struct hfi1_filedata *fd = fp->private_data;
158         struct hfi1_ctxtdata *uctxt = fd->uctxt;
159         struct hfi1_devdata *dd = uctxt->dd;
160         unsigned tidbase;
161         int i, ret = 0;
162
163         spin_lock_init(&fd->tid_lock);
164         spin_lock_init(&fd->invalid_lock);
165         fd->tid_rb_root = RB_ROOT;
166
167         if (!uctxt->subctxt_cnt || !fd->subctxt) {
168                 exp_tid_group_init(&uctxt->tid_group_list);
169                 exp_tid_group_init(&uctxt->tid_used_list);
170                 exp_tid_group_init(&uctxt->tid_full_list);
171
172                 tidbase = uctxt->expected_base;
173                 for (i = 0; i < uctxt->expected_count /
174                              dd->rcv_entries.group_size; i++) {
175                         struct tid_group *grp;
176
177                         grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178                         if (!grp) {
179                                 /*
180                                  * If we fail here, the groups already
181                                  * allocated will be freed by the close
182                                  * call.
183                                  */
184                                 ret = -ENOMEM;
185                                 goto done;
186                         }
187                         grp->size = dd->rcv_entries.group_size;
188                         grp->base = tidbase;
189                         tid_group_add_tail(grp, &uctxt->tid_group_list);
190                         tidbase += dd->rcv_entries.group_size;
191                 }
192         }
193
194         fd->entry_to_rb = kcalloc(uctxt->expected_count,
195                                      sizeof(struct rb_node *),
196                                      GFP_KERNEL);
197         if (!fd->entry_to_rb)
198                 return -ENOMEM;
199
200         if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
201                 fd->invalid_tid_idx = 0;
202                 fd->invalid_tids = kzalloc(uctxt->expected_count *
203                                            sizeof(u32), GFP_KERNEL);
204                 if (!fd->invalid_tids) {
205                         ret = -ENOMEM;
206                         goto done;
207                 }
208
209                 /*
210                  * Register MMU notifier callbacks. If the registration
211                  * fails, continue but turn off the TID caching for
212                  * all user contexts.
213                  */
214                 ret = hfi1_mmu_rb_register(&fd->tid_rb_root, &tid_rb_ops);
215                 if (ret) {
216                         dd_dev_info(dd,
217                                     "Failed MMU notifier registration %d\n",
218                                     ret);
219                         HFI1_CAP_USET(TID_UNMAP);
220                         ret = 0;
221                 }
222         }
223
224         /*
225          * PSM does not have a good way to separate, count, and
226          * effectively enforce a limit on RcvArray entries used by
227          * subctxts (when context sharing is used) when TID caching
228          * is enabled. To help with that, we calculate a per-process
229          * RcvArray entry share and enforce that.
230          * If TID caching is not in use, PSM deals with usage on its
231          * own. In that case, we allow any subctxt to take all of the
232          * entries.
233          *
234          * Make sure that we set the tid counts only after successful
235          * init.
236          */
237         spin_lock(&fd->tid_lock);
238         if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
239                 u16 remainder;
240
241                 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242                 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243                 if (remainder && fd->subctxt < remainder)
244                         fd->tid_limit++;
245         } else {
246                 fd->tid_limit = uctxt->expected_count;
247         }
248         spin_unlock(&fd->tid_lock);
249 done:
250         return ret;
251 }
252
253 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
254 {
255         struct hfi1_ctxtdata *uctxt = fd->uctxt;
256         struct tid_group *grp, *gptr;
257
258         if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
259                 return 0;
260         /*
261          * The notifier would have been removed when the process'es mm
262          * was freed.
263          */
264         if (!HFI1_CAP_IS_USET(TID_UNMAP))
265                 hfi1_mmu_rb_unregister(&fd->tid_rb_root);
266
267         kfree(fd->invalid_tids);
268
269         if (!uctxt->cnt) {
270                 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
271                         unlock_exp_tids(uctxt, &uctxt->tid_full_list,
272                                         &fd->tid_rb_root);
273                 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
274                         unlock_exp_tids(uctxt, &uctxt->tid_used_list,
275                                         &fd->tid_rb_root);
276                 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
277                                          list) {
278                         list_del_init(&grp->list);
279                         kfree(grp);
280                 }
281                 hfi1_clear_tids(uctxt);
282         }
283
284         kfree(fd->entry_to_rb);
285         return 0;
286 }
287
288 /*
289  * Write an "empty" RcvArray entry.
290  * This function exists so the TID registaration code can use it
291  * to write to unused/unneeded entries and still take advantage
292  * of the WC performance improvements. The HFI will ignore this
293  * write to the RcvArray entry.
294  */
295 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
296 {
297         /*
298          * Doing the WC fill writes only makes sense if the device is
299          * present and the RcvArray has been mapped as WC memory.
300          */
301         if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
302                 writeq(0, dd->rcvarray_wc + (index * 8));
303 }
304
305 /*
306  * RcvArray entry allocation for Expected Receives is done by the
307  * following algorithm:
308  *
309  * The context keeps 3 lists of groups of RcvArray entries:
310  *   1. List of empty groups - tid_group_list
311  *      This list is created during user context creation and
312  *      contains elements which describe sets (of 8) of empty
313  *      RcvArray entries.
314  *   2. List of partially used groups - tid_used_list
315  *      This list contains sets of RcvArray entries which are
316  *      not completely used up. Another mapping request could
317  *      use some of all of the remaining entries.
318  *   3. List of full groups - tid_full_list
319  *      This is the list where sets that are completely used
320  *      up go.
321  *
322  * An attempt to optimize the usage of RcvArray entries is
323  * made by finding all sets of physically contiguous pages in a
324  * user's buffer.
325  * These physically contiguous sets are further split into
326  * sizes supported by the receive engine of the HFI. The
327  * resulting sets of pages are stored in struct tid_pageset,
328  * which describes the sets as:
329  *    * .count - number of pages in this set
330  *    * .idx - starting index into struct page ** array
331  *                    of this set
332  *
333  * From this point on, the algorithm deals with the page sets
334  * described above. The number of pagesets is divided by the
335  * RcvArray group size to produce the number of full groups
336  * needed.
337  *
338  * Groups from the 3 lists are manipulated using the following
339  * rules:
340  *   1. For each set of 8 pagesets, a complete group from
341  *      tid_group_list is taken, programmed, and moved to
342  *      the tid_full_list list.
343  *   2. For all remaining pagesets:
344  *      2.1 If the tid_used_list is empty and the tid_group_list
345  *          is empty, stop processing pageset and return only
346  *          what has been programmed up to this point.
347  *      2.2 If the tid_used_list is empty and the tid_group_list
348  *          is not empty, move a group from tid_group_list to
349  *          tid_used_list.
350  *      2.3 For each group is tid_used_group, program as much as
351  *          can fit into the group. If the group becomes fully
352  *          used, move it to tid_full_list.
353  */
354 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
355 {
356         int ret = 0, need_group = 0, pinned;
357         struct hfi1_filedata *fd = fp->private_data;
358         struct hfi1_ctxtdata *uctxt = fd->uctxt;
359         struct hfi1_devdata *dd = uctxt->dd;
360         unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
361                 tididx = 0, mapped, mapped_pages = 0;
362         unsigned long vaddr = tinfo->vaddr;
363         struct page **pages = NULL;
364         u32 *tidlist = NULL;
365         struct tid_pageset *pagesets = NULL;
366
367         /* Get the number of pages the user buffer spans */
368         npages = num_user_pages(vaddr, tinfo->length);
369         if (!npages)
370                 return -EINVAL;
371
372         if (npages > uctxt->expected_count) {
373                 dd_dev_err(dd, "Expected buffer too big\n");
374                 return -EINVAL;
375         }
376
377         /* Verify that access is OK for the user buffer */
378         if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
379                        npages * PAGE_SIZE)) {
380                 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
381                            (void *)vaddr, npages);
382                 return -EFAULT;
383         }
384
385         pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
386                            GFP_KERNEL);
387         if (!pagesets)
388                 return -ENOMEM;
389
390         /* Allocate the array of struct page pointers needed for pinning */
391         pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
392         if (!pages) {
393                 ret = -ENOMEM;
394                 goto bail;
395         }
396
397         /*
398          * Pin all the pages of the user buffer. If we can't pin all the
399          * pages, accept the amount pinned so far and program only that.
400          * User space knows how to deal with partially programmed buffers.
401          */
402         if (!hfi1_can_pin_pages(dd, fd->tid_n_pinned, npages))
403                 return -ENOMEM;
404         pinned = hfi1_acquire_user_pages(vaddr, npages, true, pages);
405         if (pinned <= 0) {
406                 ret = pinned;
407                 goto bail;
408         }
409         fd->tid_n_pinned += npages;
410
411         /* Find sets of physically contiguous pages */
412         npagesets = find_phys_blocks(pages, pinned, pagesets);
413
414         /*
415          * We don't need to access this under a lock since tid_used is per
416          * process and the same process cannot be in hfi1_user_exp_rcv_clear()
417          * and hfi1_user_exp_rcv_setup() at the same time.
418          */
419         spin_lock(&fd->tid_lock);
420         if (fd->tid_used + npagesets > fd->tid_limit)
421                 pageset_count = fd->tid_limit - fd->tid_used;
422         else
423                 pageset_count = npagesets;
424         spin_unlock(&fd->tid_lock);
425
426         if (!pageset_count)
427                 goto bail;
428
429         ngroups = pageset_count / dd->rcv_entries.group_size;
430         tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
431         if (!tidlist) {
432                 ret = -ENOMEM;
433                 goto nomem;
434         }
435
436         tididx = 0;
437
438         /*
439          * From this point on, we are going to be using shared (between master
440          * and subcontexts) context resources. We need to take the lock.
441          */
442         mutex_lock(&uctxt->exp_lock);
443         /*
444          * The first step is to program the RcvArray entries which are complete
445          * groups.
446          */
447         while (ngroups && uctxt->tid_group_list.count) {
448                 struct tid_group *grp =
449                         tid_group_pop(&uctxt->tid_group_list);
450
451                 ret = program_rcvarray(fp, vaddr, grp, pagesets,
452                                        pageidx, dd->rcv_entries.group_size,
453                                        pages, tidlist, &tididx, &mapped);
454                 /*
455                  * If there was a failure to program the RcvArray
456                  * entries for the entire group, reset the grp fields
457                  * and add the grp back to the free group list.
458                  */
459                 if (ret <= 0) {
460                         tid_group_add_tail(grp, &uctxt->tid_group_list);
461                         hfi1_cdbg(TID,
462                                   "Failed to program RcvArray group %d", ret);
463                         goto unlock;
464                 }
465
466                 tid_group_add_tail(grp, &uctxt->tid_full_list);
467                 ngroups--;
468                 pageidx += ret;
469                 mapped_pages += mapped;
470         }
471
472         while (pageidx < pageset_count) {
473                 struct tid_group *grp, *ptr;
474                 /*
475                  * If we don't have any partially used tid groups, check
476                  * if we have empty groups. If so, take one from there and
477                  * put in the partially used list.
478                  */
479                 if (!uctxt->tid_used_list.count || need_group) {
480                         if (!uctxt->tid_group_list.count)
481                                 goto unlock;
482
483                         grp = tid_group_pop(&uctxt->tid_group_list);
484                         tid_group_add_tail(grp, &uctxt->tid_used_list);
485                         need_group = 0;
486                 }
487                 /*
488                  * There is an optimization opportunity here - instead of
489                  * fitting as many page sets as we can, check for a group
490                  * later on in the list that could fit all of them.
491                  */
492                 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
493                                          list) {
494                         unsigned use = min_t(unsigned, pageset_count - pageidx,
495                                              grp->size - grp->used);
496
497                         ret = program_rcvarray(fp, vaddr, grp, pagesets,
498                                                pageidx, use, pages, tidlist,
499                                                &tididx, &mapped);
500                         if (ret < 0) {
501                                 hfi1_cdbg(TID,
502                                           "Failed to program RcvArray entries %d",
503                                           ret);
504                                 ret = -EFAULT;
505                                 goto unlock;
506                         } else if (ret > 0) {
507                                 if (grp->used == grp->size)
508                                         tid_group_move(grp,
509                                                        &uctxt->tid_used_list,
510                                                        &uctxt->tid_full_list);
511                                 pageidx += ret;
512                                 mapped_pages += mapped;
513                                 need_group = 0;
514                                 /* Check if we are done so we break out early */
515                                 if (pageidx >= pageset_count)
516                                         break;
517                         } else if (WARN_ON(ret == 0)) {
518                                 /*
519                                  * If ret is 0, we did not program any entries
520                                  * into this group, which can only happen if
521                                  * we've screwed up the accounting somewhere.
522                                  * Warn and try to continue.
523                                  */
524                                 need_group = 1;
525                         }
526                 }
527         }
528 unlock:
529         mutex_unlock(&uctxt->exp_lock);
530 nomem:
531         hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
532                   mapped_pages, ret);
533         if (tididx) {
534                 spin_lock(&fd->tid_lock);
535                 fd->tid_used += tididx;
536                 spin_unlock(&fd->tid_lock);
537                 tinfo->tidcnt = tididx;
538                 tinfo->length = mapped_pages * PAGE_SIZE;
539
540                 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
541                                  tidlist, sizeof(tidlist[0]) * tididx)) {
542                         /*
543                          * On failure to copy to the user level, we need to undo
544                          * everything done so far so we don't leak resources.
545                          */
546                         tinfo->tidlist = (unsigned long)&tidlist;
547                         hfi1_user_exp_rcv_clear(fp, tinfo);
548                         tinfo->tidlist = 0;
549                         ret = -EFAULT;
550                         goto bail;
551                 }
552         }
553
554         /*
555          * If not everything was mapped (due to insufficient RcvArray entries,
556          * for example), unpin all unmapped pages so we can pin them nex time.
557          */
558         if (mapped_pages != pinned) {
559                 hfi1_release_user_pages(current->mm, &pages[mapped_pages],
560                                         pinned - mapped_pages,
561                                         false);
562                 fd->tid_n_pinned -= pinned - mapped_pages;
563         }
564 bail:
565         kfree(pagesets);
566         kfree(pages);
567         kfree(tidlist);
568         return ret > 0 ? 0 : ret;
569 }
570
571 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
572 {
573         int ret = 0;
574         struct hfi1_filedata *fd = fp->private_data;
575         struct hfi1_ctxtdata *uctxt = fd->uctxt;
576         u32 *tidinfo;
577         unsigned tididx;
578
579         tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
580         if (!tidinfo)
581                 return -ENOMEM;
582
583         if (copy_from_user(tidinfo, (void __user *)(unsigned long)
584                            tinfo->tidlist, sizeof(tidinfo[0]) *
585                            tinfo->tidcnt)) {
586                 ret = -EFAULT;
587                 goto done;
588         }
589
590         mutex_lock(&uctxt->exp_lock);
591         for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
592                 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
593                 if (ret) {
594                         hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
595                                   ret);
596                         break;
597                 }
598         }
599         spin_lock(&fd->tid_lock);
600         fd->tid_used -= tididx;
601         spin_unlock(&fd->tid_lock);
602         tinfo->tidcnt = tididx;
603         mutex_unlock(&uctxt->exp_lock);
604 done:
605         kfree(tidinfo);
606         return ret;
607 }
608
609 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
610 {
611         struct hfi1_filedata *fd = fp->private_data;
612         struct hfi1_ctxtdata *uctxt = fd->uctxt;
613         unsigned long *ev = uctxt->dd->events +
614                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
615                   HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
616         u32 *array;
617         int ret = 0;
618
619         if (!fd->invalid_tids)
620                 return -EINVAL;
621
622         /*
623          * copy_to_user() can sleep, which will leave the invalid_lock
624          * locked and cause the MMU notifier to be blocked on the lock
625          * for a long time.
626          * Copy the data to a local buffer so we can release the lock.
627          */
628         array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
629         if (!array)
630                 return -EFAULT;
631
632         spin_lock(&fd->invalid_lock);
633         if (fd->invalid_tid_idx) {
634                 memcpy(array, fd->invalid_tids, sizeof(*array) *
635                        fd->invalid_tid_idx);
636                 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
637                        fd->invalid_tid_idx);
638                 tinfo->tidcnt = fd->invalid_tid_idx;
639                 fd->invalid_tid_idx = 0;
640                 /*
641                  * Reset the user flag while still holding the lock.
642                  * Otherwise, PSM can miss events.
643                  */
644                 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
645         } else {
646                 tinfo->tidcnt = 0;
647         }
648         spin_unlock(&fd->invalid_lock);
649
650         if (tinfo->tidcnt) {
651                 if (copy_to_user((void __user *)tinfo->tidlist,
652                                  array, sizeof(*array) * tinfo->tidcnt))
653                         ret = -EFAULT;
654         }
655         kfree(array);
656
657         return ret;
658 }
659
660 static u32 find_phys_blocks(struct page **pages, unsigned npages,
661                             struct tid_pageset *list)
662 {
663         unsigned pagecount, pageidx, setcount = 0, i;
664         unsigned long pfn, this_pfn;
665
666         if (!npages)
667                 return 0;
668
669         /*
670          * Look for sets of physically contiguous pages in the user buffer.
671          * This will allow us to optimize Expected RcvArray entry usage by
672          * using the bigger supported sizes.
673          */
674         pfn = page_to_pfn(pages[0]);
675         for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
676                 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
677
678                 /*
679                  * If the pfn's are not sequential, pages are not physically
680                  * contiguous.
681                  */
682                 if (this_pfn != ++pfn) {
683                         /*
684                          * At this point we have to loop over the set of
685                          * physically contiguous pages and break them down it
686                          * sizes supported by the HW.
687                          * There are two main constraints:
688                          *     1. The max buffer size is MAX_EXPECTED_BUFFER.
689                          *        If the total set size is bigger than that
690                          *        program only a MAX_EXPECTED_BUFFER chunk.
691                          *     2. The buffer size has to be a power of two. If
692                          *        it is not, round down to the closes power of
693                          *        2 and program that size.
694                          */
695                         while (pagecount) {
696                                 int maxpages = pagecount;
697                                 u32 bufsize = pagecount * PAGE_SIZE;
698
699                                 if (bufsize > MAX_EXPECTED_BUFFER)
700                                         maxpages =
701                                                 MAX_EXPECTED_BUFFER >>
702                                                 PAGE_SHIFT;
703                                 else if (!is_power_of_2(bufsize))
704                                         maxpages =
705                                                 rounddown_pow_of_two(bufsize) >>
706                                                 PAGE_SHIFT;
707
708                                 list[setcount].idx = pageidx;
709                                 list[setcount].count = maxpages;
710                                 pagecount -= maxpages;
711                                 pageidx += maxpages;
712                                 setcount++;
713                         }
714                         pageidx = i;
715                         pagecount = 1;
716                         pfn = this_pfn;
717                 } else {
718                         pagecount++;
719                 }
720         }
721         return setcount;
722 }
723
724 /**
725  * program_rcvarray() - program an RcvArray group with receive buffers
726  * @fp: file pointer
727  * @vaddr: starting user virtual address
728  * @grp: RcvArray group
729  * @sets: array of struct tid_pageset holding information on physically
730  *        contiguous chunks from the user buffer
731  * @start: starting index into sets array
732  * @count: number of struct tid_pageset's to program
733  * @pages: an array of struct page * for the user buffer
734  * @tidlist: the array of u32 elements when the information about the
735  *           programmed RcvArray entries is to be encoded.
736  * @tididx: starting offset into tidlist
737  * @pmapped: (output parameter) number of pages programmed into the RcvArray
738  *           entries.
739  *
740  * This function will program up to 'count' number of RcvArray entries from the
741  * group 'grp'. To make best use of write-combining writes, the function will
742  * perform writes to the unused RcvArray entries which will be ignored by the
743  * HW. Each RcvArray entry will be programmed with a physically contiguous
744  * buffer chunk from the user's virtual buffer.
745  *
746  * Return:
747  * -EINVAL if the requested count is larger than the size of the group,
748  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
749  * number of RcvArray entries programmed.
750  */
751 static int program_rcvarray(struct file *fp, unsigned long vaddr,
752                             struct tid_group *grp,
753                             struct tid_pageset *sets,
754                             unsigned start, u16 count, struct page **pages,
755                             u32 *tidlist, unsigned *tididx, unsigned *pmapped)
756 {
757         struct hfi1_filedata *fd = fp->private_data;
758         struct hfi1_ctxtdata *uctxt = fd->uctxt;
759         struct hfi1_devdata *dd = uctxt->dd;
760         u16 idx;
761         u32 tidinfo = 0, rcventry, useidx = 0;
762         int mapped = 0;
763
764         /* Count should never be larger than the group size */
765         if (count > grp->size)
766                 return -EINVAL;
767
768         /* Find the first unused entry in the group */
769         for (idx = 0; idx < grp->size; idx++) {
770                 if (!(grp->map & (1 << idx))) {
771                         useidx = idx;
772                         break;
773                 }
774                 rcv_array_wc_fill(dd, grp->base + idx);
775         }
776
777         idx = 0;
778         while (idx < count) {
779                 u16 npages, pageidx, setidx = start + idx;
780                 int ret = 0;
781
782                 /*
783                  * If this entry in the group is used, move to the next one.
784                  * If we go past the end of the group, exit the loop.
785                  */
786                 if (useidx >= grp->size) {
787                         break;
788                 } else if (grp->map & (1 << useidx)) {
789                         rcv_array_wc_fill(dd, grp->base + useidx);
790                         useidx++;
791                         continue;
792                 }
793
794                 rcventry = grp->base + useidx;
795                 npages = sets[setidx].count;
796                 pageidx = sets[setidx].idx;
797
798                 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
799                                          rcventry, grp, pages + pageidx,
800                                          npages);
801                 if (ret)
802                         return ret;
803                 mapped += npages;
804
805                 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
806                         EXP_TID_SET(LEN, npages);
807                 tidlist[(*tididx)++] = tidinfo;
808                 grp->used++;
809                 grp->map |= 1 << useidx++;
810                 idx++;
811         }
812
813         /* Fill the rest of the group with "blank" writes */
814         for (; useidx < grp->size; useidx++)
815                 rcv_array_wc_fill(dd, grp->base + useidx);
816         *pmapped = mapped;
817         return idx;
818 }
819
820 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
821                               u32 rcventry, struct tid_group *grp,
822                               struct page **pages, unsigned npages)
823 {
824         int ret;
825         struct hfi1_filedata *fd = fp->private_data;
826         struct hfi1_ctxtdata *uctxt = fd->uctxt;
827         struct tid_rb_node *node;
828         struct hfi1_devdata *dd = uctxt->dd;
829         struct rb_root *root = &fd->tid_rb_root;
830         dma_addr_t phys;
831
832         /*
833          * Allocate the node first so we can handle a potential
834          * failure before we've programmed anything.
835          */
836         node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
837                        GFP_KERNEL);
838         if (!node)
839                 return -ENOMEM;
840
841         phys = pci_map_single(dd->pcidev,
842                               __va(page_to_phys(pages[0])),
843                               npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
844         if (dma_mapping_error(&dd->pcidev->dev, phys)) {
845                 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
846                            phys);
847                 kfree(node);
848                 return -EFAULT;
849         }
850
851         node->mmu.addr = vaddr;
852         node->mmu.len = npages * PAGE_SIZE;
853         node->phys = page_to_phys(pages[0]);
854         node->npages = npages;
855         node->rcventry = rcventry;
856         node->dma_addr = phys;
857         node->grp = grp;
858         node->freed = false;
859         memcpy(node->pages, pages, sizeof(struct page *) * npages);
860
861         if (HFI1_CAP_IS_USET(TID_UNMAP))
862                 ret = mmu_rb_insert(root, &node->mmu);
863         else
864                 ret = hfi1_mmu_rb_insert(root, &node->mmu);
865
866         if (ret) {
867                 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
868                           node->rcventry, node->mmu.addr, node->phys, ret);
869                 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
870                                  PCI_DMA_FROMDEVICE);
871                 kfree(node);
872                 return -EFAULT;
873         }
874         hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
875         trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
876                                node->mmu.addr, node->phys, phys);
877         return 0;
878 }
879
880 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
881                               struct tid_group **grp)
882 {
883         struct hfi1_filedata *fd = fp->private_data;
884         struct hfi1_ctxtdata *uctxt = fd->uctxt;
885         struct hfi1_devdata *dd = uctxt->dd;
886         struct tid_rb_node *node;
887         u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
888         u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
889
890         if (tididx >= uctxt->expected_count) {
891                 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
892                            tididx, uctxt->ctxt);
893                 return -EINVAL;
894         }
895
896         if (tidctrl == 0x3)
897                 return -EINVAL;
898
899         rcventry = tididx + (tidctrl - 1);
900
901         node = fd->entry_to_rb[rcventry];
902         if (!node || node->rcventry != (uctxt->expected_base + rcventry))
903                 return -EBADF;
904         if (HFI1_CAP_IS_USET(TID_UNMAP))
905                 mmu_rb_remove(&fd->tid_rb_root, &node->mmu, NULL);
906         else
907                 hfi1_mmu_rb_remove(&fd->tid_rb_root, &node->mmu);
908
909         if (grp)
910                 *grp = node->grp;
911         clear_tid_node(fd, fd->subctxt, node);
912         return 0;
913 }
914
915 static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
916                            struct tid_rb_node *node)
917 {
918         struct hfi1_ctxtdata *uctxt = fd->uctxt;
919         struct hfi1_devdata *dd = uctxt->dd;
920
921         trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
922                                  node->npages, node->mmu.addr, node->phys,
923                                  node->dma_addr);
924
925         hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
926         /*
927          * Make sure device has seen the write before we unpin the
928          * pages.
929          */
930         flush_wc();
931
932         pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
933                          PCI_DMA_FROMDEVICE);
934         hfi1_release_user_pages(current->mm, node->pages, node->npages, true);
935         fd->tid_n_pinned -= node->npages;
936
937         node->grp->used--;
938         node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
939
940         if (node->grp->used == node->grp->size - 1)
941                 tid_group_move(node->grp, &uctxt->tid_full_list,
942                                &uctxt->tid_used_list);
943         else if (!node->grp->used)
944                 tid_group_move(node->grp, &uctxt->tid_used_list,
945                                &uctxt->tid_group_list);
946         kfree(node);
947 }
948
949 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
950                             struct exp_tid_set *set, struct rb_root *root)
951 {
952         struct tid_group *grp, *ptr;
953         struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
954                                                 tid_rb_root);
955         int i;
956
957         list_for_each_entry_safe(grp, ptr, &set->list, list) {
958                 list_del_init(&grp->list);
959
960                 for (i = 0; i < grp->size; i++) {
961                         if (grp->map & (1 << i)) {
962                                 u16 rcventry = grp->base + i;
963                                 struct tid_rb_node *node;
964
965                                 node = fd->entry_to_rb[rcventry -
966                                                           uctxt->expected_base];
967                                 if (!node || node->rcventry != rcventry)
968                                         continue;
969                                 if (HFI1_CAP_IS_USET(TID_UNMAP))
970                                         mmu_rb_remove(&fd->tid_rb_root,
971                                                       &node->mmu, NULL);
972                                 else
973                                         hfi1_mmu_rb_remove(&fd->tid_rb_root,
974                                                            &node->mmu);
975                                 clear_tid_node(fd, -1, node);
976                         }
977                 }
978         }
979 }
980
981 static int mmu_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode)
982 {
983         struct hfi1_filedata *fdata =
984                 container_of(root, struct hfi1_filedata, tid_rb_root);
985         struct hfi1_ctxtdata *uctxt = fdata->uctxt;
986         struct tid_rb_node *node =
987                 container_of(mnode, struct tid_rb_node, mmu);
988
989         if (node->freed)
990                 return 0;
991
992         trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
993                                  node->rcventry, node->npages, node->dma_addr);
994         node->freed = true;
995
996         spin_lock(&fdata->invalid_lock);
997         if (fdata->invalid_tid_idx < uctxt->expected_count) {
998                 fdata->invalid_tids[fdata->invalid_tid_idx] =
999                         rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1000                 fdata->invalid_tids[fdata->invalid_tid_idx] |=
1001                         EXP_TID_SET(LEN, node->npages);
1002                 if (!fdata->invalid_tid_idx) {
1003                         unsigned long *ev;
1004
1005                         /*
1006                          * hfi1_set_uevent_bits() sets a user event flag
1007                          * for all processes. Because calling into the
1008                          * driver to process TID cache invalidations is
1009                          * expensive and TID cache invalidations are
1010                          * handled on a per-process basis, we can
1011                          * optimize this to set the flag only for the
1012                          * process in question.
1013                          */
1014                         ev = uctxt->dd->events +
1015                                 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1016                                   HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1017                         set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1018                 }
1019                 fdata->invalid_tid_idx++;
1020         }
1021         spin_unlock(&fdata->invalid_lock);
1022         return 0;
1023 }
1024
1025 static int mmu_rb_insert(struct rb_root *root, struct mmu_rb_node *node)
1026 {
1027         struct hfi1_filedata *fdata =
1028                 container_of(root, struct hfi1_filedata, tid_rb_root);
1029         struct tid_rb_node *tnode =
1030                 container_of(node, struct tid_rb_node, mmu);
1031         u32 base = fdata->uctxt->expected_base;
1032
1033         fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1034         return 0;
1035 }
1036
1037 static void mmu_rb_remove(struct rb_root *root, struct mmu_rb_node *node,
1038                           struct mm_struct *mm)
1039 {
1040         struct hfi1_filedata *fdata =
1041                 container_of(root, struct hfi1_filedata, tid_rb_root);
1042         struct tid_rb_node *tnode =
1043                 container_of(node, struct tid_rb_node, mmu);
1044         u32 base = fdata->uctxt->expected_base;
1045
1046         fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1047 }