staging: lttng: cleanup one-bit signed bitfields
[linux-2.6-block.git] / drivers / staging / lttng / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2  * ring_buffer_frontend.c
3  *
4  * (C) Copyright 2005-2010 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5  *
6  * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
7  * recorder (overwrite) modes. See thesis:
8  *
9  * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
10  * dissertation, Ecole Polytechnique de Montreal.
11  * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
12  *
13  * - Algorithm presentation in Chapter 5:
14  *     "Lockless Multi-Core High-Throughput Buffering".
15  * - Algorithm formal verification in Section 8.6:
16  *     "Formal verification of LTTng"
17  *
18  * Author:
19  *      Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
20  *
21  * Inspired from LTT and RelayFS:
22  *  Karim Yaghmour <karim@opersys.com>
23  *  Tom Zanussi <zanussi@us.ibm.com>
24  *  Bob Wisniewski <bob@watson.ibm.com>
25  * And from K42 :
26  *  Bob Wisniewski <bob@watson.ibm.com>
27  *
28  * Buffer reader semantic :
29  *
30  * - get_subbuf_size
31  * while buffer is not finalized and empty
32  *   - get_subbuf
33  *     - if return value != 0, continue
34  *   - splice one subbuffer worth of data to a pipe
35  *   - splice the data from pipe to disk/network
36  *   - put_subbuf
37  *
38  * Dual LGPL v2.1/GPL v2 license.
39  */
40
41 #include <linux/delay.h>
42 #include <linux/module.h>
43 #include <linux/percpu.h>
44
45 #include "../../wrapper/ringbuffer/config.h"
46 #include "../../wrapper/ringbuffer/backend.h"
47 #include "../../wrapper/ringbuffer/frontend.h"
48 #include "../../wrapper/ringbuffer/iterator.h"
49 #include "../../wrapper/ringbuffer/nohz.h"
50
51 /*
52  * Internal structure representing offsets to use at a sub-buffer switch.
53  */
54 struct switch_offsets {
55         unsigned long begin, end, old;
56         size_t pre_header_padding, size;
57         uint switch_new_start:1, switch_new_end:1, switch_old_start:1,
58                      switch_old_end:1;
59 };
60
61 #ifdef CONFIG_NO_HZ
62 enum tick_nohz_val {
63         TICK_NOHZ_STOP,
64         TICK_NOHZ_FLUSH,
65         TICK_NOHZ_RESTART,
66 };
67
68 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
69 #endif /* CONFIG_NO_HZ */
70
71 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
72
73 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
74 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
75
76 static
77 void lib_ring_buffer_print_errors(struct channel *chan,
78                                   struct lib_ring_buffer *buf, int cpu);
79
80 /*
81  * Must be called under cpu hotplug protection.
82  */
83 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
84 {
85         struct channel *chan = buf->backend.chan;
86
87         lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
88         kfree(buf->commit_hot);
89         kfree(buf->commit_cold);
90
91         lib_ring_buffer_backend_free(&buf->backend);
92 }
93
94 /**
95  * lib_ring_buffer_reset - Reset ring buffer to initial values.
96  * @buf: Ring buffer.
97  *
98  * Effectively empty the ring buffer. Should be called when the buffer is not
99  * used for writing. The ring buffer can be opened for reading, but the reader
100  * should not be using the iterator concurrently with reset. The previous
101  * current iterator record is reset.
102  */
103 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
104 {
105         struct channel *chan = buf->backend.chan;
106         const struct lib_ring_buffer_config *config = chan->backend.config;
107         unsigned int i;
108
109         /*
110          * Reset iterator first. It will put the subbuffer if it currently holds
111          * it.
112          */
113         lib_ring_buffer_iterator_reset(buf);
114         v_set(config, &buf->offset, 0);
115         for (i = 0; i < chan->backend.num_subbuf; i++) {
116                 v_set(config, &buf->commit_hot[i].cc, 0);
117                 v_set(config, &buf->commit_hot[i].seq, 0);
118                 v_set(config, &buf->commit_cold[i].cc_sb, 0);
119         }
120         atomic_long_set(&buf->consumed, 0);
121         atomic_set(&buf->record_disabled, 0);
122         v_set(config, &buf->last_tsc, 0);
123         lib_ring_buffer_backend_reset(&buf->backend);
124         /* Don't reset number of active readers */
125         v_set(config, &buf->records_lost_full, 0);
126         v_set(config, &buf->records_lost_wrap, 0);
127         v_set(config, &buf->records_lost_big, 0);
128         v_set(config, &buf->records_count, 0);
129         v_set(config, &buf->records_overrun, 0);
130         buf->finalized = 0;
131 }
132 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
133
134 /**
135  * channel_reset - Reset channel to initial values.
136  * @chan: Channel.
137  *
138  * Effectively empty the channel. Should be called when the channel is not used
139  * for writing. The channel can be opened for reading, but the reader should not
140  * be using the iterator concurrently with reset. The previous current iterator
141  * record is reset.
142  */
143 void channel_reset(struct channel *chan)
144 {
145         /*
146          * Reset iterators first. Will put the subbuffer if held for reading.
147          */
148         channel_iterator_reset(chan);
149         atomic_set(&chan->record_disabled, 0);
150         /* Don't reset commit_count_mask, still valid */
151         channel_backend_reset(&chan->backend);
152         /* Don't reset switch/read timer interval */
153         /* Don't reset notifiers and notifier enable bits */
154         /* Don't reset reader reference count */
155 }
156 EXPORT_SYMBOL_GPL(channel_reset);
157
158 /*
159  * Must be called under cpu hotplug protection.
160  */
161 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
162                            struct channel_backend *chanb, int cpu)
163 {
164         const struct lib_ring_buffer_config *config = chanb->config;
165         struct channel *chan = container_of(chanb, struct channel, backend);
166         void *priv = chanb->priv;
167         size_t subbuf_header_size;
168         u64 tsc;
169         int ret;
170
171         /* Test for cpu hotplug */
172         if (buf->backend.allocated)
173                 return 0;
174
175         /*
176          * Paranoia: per cpu dynamic allocation is not officially documented as
177          * zeroing the memory, so let's do it here too, just in case.
178          */
179         memset(buf, 0, sizeof(*buf));
180
181         ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
182         if (ret)
183                 return ret;
184
185         buf->commit_hot =
186                 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
187                                    * chan->backend.num_subbuf,
188                                    1 << INTERNODE_CACHE_SHIFT),
189                         GFP_KERNEL, cpu_to_node(max(cpu, 0)));
190         if (!buf->commit_hot) {
191                 ret = -ENOMEM;
192                 goto free_chanbuf;
193         }
194
195         buf->commit_cold =
196                 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
197                                    * chan->backend.num_subbuf,
198                                    1 << INTERNODE_CACHE_SHIFT),
199                         GFP_KERNEL, cpu_to_node(max(cpu, 0)));
200         if (!buf->commit_cold) {
201                 ret = -ENOMEM;
202                 goto free_commit;
203         }
204
205         init_waitqueue_head(&buf->read_wait);
206         init_waitqueue_head(&buf->write_wait);
207         raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
208
209         /*
210          * Write the subbuffer header for first subbuffer so we know the total
211          * duration of data gathering.
212          */
213         subbuf_header_size = config->cb.subbuffer_header_size();
214         v_set(config, &buf->offset, subbuf_header_size);
215         subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
216         tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
217         config->cb.buffer_begin(buf, tsc, 0);
218         v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
219
220         if (config->cb.buffer_create) {
221                 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
222                 if (ret)
223                         goto free_init;
224         }
225
226         /*
227          * Ensure the buffer is ready before setting it to allocated and setting
228          * the cpumask.
229          * Used for cpu hotplug vs cpumask iteration.
230          */
231         smp_wmb();
232         buf->backend.allocated = 1;
233
234         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
235                 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
236                              chan->backend.cpumask));
237                 cpumask_set_cpu(cpu, chan->backend.cpumask);
238         }
239
240         return 0;
241
242         /* Error handling */
243 free_init:
244         kfree(buf->commit_cold);
245 free_commit:
246         kfree(buf->commit_hot);
247 free_chanbuf:
248         lib_ring_buffer_backend_free(&buf->backend);
249         return ret;
250 }
251
252 static void switch_buffer_timer(unsigned long data)
253 {
254         struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
255         struct channel *chan = buf->backend.chan;
256         const struct lib_ring_buffer_config *config = chan->backend.config;
257
258         /*
259          * Only flush buffers periodically if readers are active.
260          */
261         if (atomic_long_read(&buf->active_readers))
262                 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
263
264         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
265                 mod_timer_pinned(&buf->switch_timer,
266                                  jiffies + chan->switch_timer_interval);
267         else
268                 mod_timer(&buf->switch_timer,
269                           jiffies + chan->switch_timer_interval);
270 }
271
272 /*
273  * Called with ring_buffer_nohz_lock held for per-cpu buffers.
274  */
275 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
276 {
277         struct channel *chan = buf->backend.chan;
278         const struct lib_ring_buffer_config *config = chan->backend.config;
279
280         if (!chan->switch_timer_interval || buf->switch_timer_enabled)
281                 return;
282         init_timer(&buf->switch_timer);
283         buf->switch_timer.function = switch_buffer_timer;
284         buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
285         buf->switch_timer.data = (unsigned long)buf;
286         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
287                 add_timer_on(&buf->switch_timer, buf->backend.cpu);
288         else
289                 add_timer(&buf->switch_timer);
290         buf->switch_timer_enabled = 1;
291 }
292
293 /*
294  * Called with ring_buffer_nohz_lock held for per-cpu buffers.
295  */
296 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
297 {
298         struct channel *chan = buf->backend.chan;
299
300         if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
301                 return;
302
303         del_timer_sync(&buf->switch_timer);
304         buf->switch_timer_enabled = 0;
305 }
306
307 /*
308  * Polling timer to check the channels for data.
309  */
310 static void read_buffer_timer(unsigned long data)
311 {
312         struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
313         struct channel *chan = buf->backend.chan;
314         const struct lib_ring_buffer_config *config = chan->backend.config;
315
316         CHAN_WARN_ON(chan, !buf->backend.allocated);
317
318         if (atomic_long_read(&buf->active_readers)
319             && lib_ring_buffer_poll_deliver(config, buf, chan)) {
320                 wake_up_interruptible(&buf->read_wait);
321                 wake_up_interruptible(&chan->read_wait);
322         }
323
324         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
325                 mod_timer_pinned(&buf->read_timer,
326                                  jiffies + chan->read_timer_interval);
327         else
328                 mod_timer(&buf->read_timer,
329                           jiffies + chan->read_timer_interval);
330 }
331
332 /*
333  * Called with ring_buffer_nohz_lock held for per-cpu buffers.
334  */
335 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
336 {
337         struct channel *chan = buf->backend.chan;
338         const struct lib_ring_buffer_config *config = chan->backend.config;
339
340         if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
341             || !chan->read_timer_interval
342             || buf->read_timer_enabled)
343                 return;
344
345         init_timer(&buf->read_timer);
346         buf->read_timer.function = read_buffer_timer;
347         buf->read_timer.expires = jiffies + chan->read_timer_interval;
348         buf->read_timer.data = (unsigned long)buf;
349
350         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
351                 add_timer_on(&buf->read_timer, buf->backend.cpu);
352         else
353                 add_timer(&buf->read_timer);
354         buf->read_timer_enabled = 1;
355 }
356
357 /*
358  * Called with ring_buffer_nohz_lock held for per-cpu buffers.
359  */
360 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
361 {
362         struct channel *chan = buf->backend.chan;
363         const struct lib_ring_buffer_config *config = chan->backend.config;
364
365         if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
366             || !chan->read_timer_interval
367             || !buf->read_timer_enabled)
368                 return;
369
370         del_timer_sync(&buf->read_timer);
371         /*
372          * do one more check to catch data that has been written in the last
373          * timer period.
374          */
375         if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
376                 wake_up_interruptible(&buf->read_wait);
377                 wake_up_interruptible(&chan->read_wait);
378         }
379         buf->read_timer_enabled = 0;
380 }
381
382 #ifdef CONFIG_HOTPLUG_CPU
383 /**
384  *      lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
385  *      @nb: notifier block
386  *      @action: hotplug action to take
387  *      @hcpu: CPU number
388  *
389  *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
390  */
391 static
392 int __cpuinit lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
393                                               unsigned long action,
394                                               void *hcpu)
395 {
396         unsigned int cpu = (unsigned long)hcpu;
397         struct channel *chan = container_of(nb, struct channel,
398                                             cpu_hp_notifier);
399         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
400         const struct lib_ring_buffer_config *config = chan->backend.config;
401
402         if (!chan->cpu_hp_enable)
403                 return NOTIFY_DONE;
404
405         CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
406
407         switch (action) {
408         case CPU_DOWN_FAILED:
409         case CPU_DOWN_FAILED_FROZEN:
410         case CPU_ONLINE:
411         case CPU_ONLINE_FROZEN:
412                 wake_up_interruptible(&chan->hp_wait);
413                 lib_ring_buffer_start_switch_timer(buf);
414                 lib_ring_buffer_start_read_timer(buf);
415                 return NOTIFY_OK;
416
417         case CPU_DOWN_PREPARE:
418         case CPU_DOWN_PREPARE_FROZEN:
419                 lib_ring_buffer_stop_switch_timer(buf);
420                 lib_ring_buffer_stop_read_timer(buf);
421                 return NOTIFY_OK;
422
423         case CPU_DEAD:
424         case CPU_DEAD_FROZEN:
425                 /*
426                  * Performing a buffer switch on a remote CPU. Performed by
427                  * the CPU responsible for doing the hotunplug after the target
428                  * CPU stopped running completely. Ensures that all data
429                  * from that remote CPU is flushed.
430                  */
431                 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
432                 return NOTIFY_OK;
433
434         default:
435                 return NOTIFY_DONE;
436         }
437 }
438 #endif
439
440 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
441 /*
442  * For per-cpu buffers, call the reader wakeups before switching the buffer, so
443  * that wake-up-tracing generated events are flushed before going idle (in
444  * tick_nohz). We test if the spinlock is locked to deal with the race where
445  * readers try to sample the ring buffer before we perform the switch. We let
446  * the readers retry in that case. If there is data in the buffer, the wake up
447  * is going to forbid the CPU running the reader thread from going idle.
448  */
449 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
450                                                   unsigned long val,
451                                                   void *data)
452 {
453         struct channel *chan = container_of(nb, struct channel,
454                                             tick_nohz_notifier);
455         const struct lib_ring_buffer_config *config = chan->backend.config;
456         struct lib_ring_buffer *buf;
457         int cpu = smp_processor_id();
458
459         if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
460                 /*
461                  * We don't support keeping the system idle with global buffers
462                  * and streaming active. In order to do so, we would need to
463                  * sample a non-nohz-cpumask racelessly with the nohz updates
464                  * without adding synchronization overhead to nohz. Leave this
465                  * use-case out for now.
466                  */
467                 return 0;
468         }
469
470         buf = channel_get_ring_buffer(config, chan, cpu);
471         switch (val) {
472         case TICK_NOHZ_FLUSH:
473                 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
474                 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
475                     && chan->read_timer_interval
476                     && atomic_long_read(&buf->active_readers)
477                     && (lib_ring_buffer_poll_deliver(config, buf, chan)
478                         || lib_ring_buffer_pending_data(config, buf, chan))) {
479                         wake_up_interruptible(&buf->read_wait);
480                         wake_up_interruptible(&chan->read_wait);
481                 }
482                 if (chan->switch_timer_interval)
483                         lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
484                 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
485                 break;
486         case TICK_NOHZ_STOP:
487                 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
488                 lib_ring_buffer_stop_switch_timer(buf);
489                 lib_ring_buffer_stop_read_timer(buf);
490                 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
491                 break;
492         case TICK_NOHZ_RESTART:
493                 spin_lock(&__get_cpu_var(ring_buffer_nohz_lock));
494                 lib_ring_buffer_start_read_timer(buf);
495                 lib_ring_buffer_start_switch_timer(buf);
496                 spin_unlock(&__get_cpu_var(ring_buffer_nohz_lock));
497                 break;
498         }
499
500         return 0;
501 }
502
503 void notrace lib_ring_buffer_tick_nohz_flush(void)
504 {
505         atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
506                                    NULL);
507 }
508
509 void notrace lib_ring_buffer_tick_nohz_stop(void)
510 {
511         atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
512                                    NULL);
513 }
514
515 void notrace lib_ring_buffer_tick_nohz_restart(void)
516 {
517         atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
518                                    NULL);
519 }
520 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
521
522 /*
523  * Holds CPU hotplug.
524  */
525 static void channel_unregister_notifiers(struct channel *chan)
526 {
527         const struct lib_ring_buffer_config *config = chan->backend.config;
528         int cpu;
529
530         channel_iterator_unregister_notifiers(chan);
531         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
532 #ifdef CONFIG_NO_HZ
533                 /*
534                  * Remove the nohz notifier first, so we are certain we stop
535                  * the timers.
536                  */
537                 atomic_notifier_chain_unregister(&tick_nohz_notifier,
538                                                  &chan->tick_nohz_notifier);
539                 /*
540                  * ring_buffer_nohz_lock will not be needed below, because
541                  * we just removed the notifiers, which were the only source of
542                  * concurrency.
543                  */
544 #endif /* CONFIG_NO_HZ */
545 #ifdef CONFIG_HOTPLUG_CPU
546                 get_online_cpus();
547                 chan->cpu_hp_enable = 0;
548                 for_each_online_cpu(cpu) {
549                         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
550                                                               cpu);
551                         lib_ring_buffer_stop_switch_timer(buf);
552                         lib_ring_buffer_stop_read_timer(buf);
553                 }
554                 put_online_cpus();
555                 unregister_cpu_notifier(&chan->cpu_hp_notifier);
556 #else
557                 for_each_possible_cpu(cpu) {
558                         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
559                                                               cpu);
560                         lib_ring_buffer_stop_switch_timer(buf);
561                         lib_ring_buffer_stop_read_timer(buf);
562                 }
563 #endif
564         } else {
565                 struct lib_ring_buffer *buf = chan->backend.buf;
566
567                 lib_ring_buffer_stop_switch_timer(buf);
568                 lib_ring_buffer_stop_read_timer(buf);
569         }
570         channel_backend_unregister_notifiers(&chan->backend);
571 }
572
573 static void channel_free(struct channel *chan)
574 {
575         channel_iterator_free(chan);
576         channel_backend_free(&chan->backend);
577         kfree(chan);
578 }
579
580 /**
581  * channel_create - Create channel.
582  * @config: ring buffer instance configuration
583  * @name: name of the channel
584  * @priv: ring buffer client private data
585  * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
586  *            address mapping. It is used only by RING_BUFFER_STATIC
587  *            configuration. It can be set to NULL for other backends.
588  * @subbuf_size: subbuffer size
589  * @num_subbuf: number of subbuffers
590  * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
591  *                         padding to let readers get those sub-buffers.
592  *                         Used for live streaming.
593  * @read_timer_interval: Time interval (in us) to wake up pending readers.
594  *
595  * Holds cpu hotplug.
596  * Returns NULL on failure.
597  */
598 struct channel *channel_create(const struct lib_ring_buffer_config *config,
599                    const char *name, void *priv, void *buf_addr,
600                    size_t subbuf_size,
601                    size_t num_subbuf, unsigned int switch_timer_interval,
602                    unsigned int read_timer_interval)
603 {
604         int ret, cpu;
605         struct channel *chan;
606
607         if (lib_ring_buffer_check_config(config, switch_timer_interval,
608                                          read_timer_interval))
609                 return NULL;
610
611         chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
612         if (!chan)
613                 return NULL;
614
615         ret = channel_backend_init(&chan->backend, name, config, priv,
616                                    subbuf_size, num_subbuf);
617         if (ret)
618                 goto error;
619
620         ret = channel_iterator_init(chan);
621         if (ret)
622                 goto error_free_backend;
623
624         chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
625         chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
626         chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
627         kref_init(&chan->ref);
628         init_waitqueue_head(&chan->read_wait);
629         init_waitqueue_head(&chan->hp_wait);
630
631         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
632 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
633                 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
634                 chan->tick_nohz_notifier.notifier_call =
635                         ring_buffer_tick_nohz_callback;
636                 chan->tick_nohz_notifier.priority = ~0U;
637                 atomic_notifier_chain_register(&tick_nohz_notifier,
638                                        &chan->tick_nohz_notifier);
639 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
640
641                 /*
642                  * In case of non-hotplug cpu, if the ring-buffer is allocated
643                  * in early initcall, it will not be notified of secondary cpus.
644                  * In that off case, we need to allocate for all possible cpus.
645                  */
646 #ifdef CONFIG_HOTPLUG_CPU
647                 chan->cpu_hp_notifier.notifier_call =
648                                 lib_ring_buffer_cpu_hp_callback;
649                 chan->cpu_hp_notifier.priority = 6;
650                 register_cpu_notifier(&chan->cpu_hp_notifier);
651
652                 get_online_cpus();
653                 for_each_online_cpu(cpu) {
654                         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
655                                                                cpu);
656                         spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
657                         lib_ring_buffer_start_switch_timer(buf);
658                         lib_ring_buffer_start_read_timer(buf);
659                         spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
660                 }
661                 chan->cpu_hp_enable = 1;
662                 put_online_cpus();
663 #else
664                 for_each_possible_cpu(cpu) {
665                         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
666                                                               cpu);
667                         spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
668                         lib_ring_buffer_start_switch_timer(buf);
669                         lib_ring_buffer_start_read_timer(buf);
670                         spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
671                 }
672 #endif
673         } else {
674                 struct lib_ring_buffer *buf = chan->backend.buf;
675
676                 lib_ring_buffer_start_switch_timer(buf);
677                 lib_ring_buffer_start_read_timer(buf);
678         }
679
680         return chan;
681
682 error_free_backend:
683         channel_backend_free(&chan->backend);
684 error:
685         kfree(chan);
686         return NULL;
687 }
688 EXPORT_SYMBOL_GPL(channel_create);
689
690 static
691 void channel_release(struct kref *kref)
692 {
693         struct channel *chan = container_of(kref, struct channel, ref);
694         channel_free(chan);
695 }
696
697 /**
698  * channel_destroy - Finalize, wait for q.s. and destroy channel.
699  * @chan: channel to destroy
700  *
701  * Holds cpu hotplug.
702  * Call "destroy" callback, finalize channels, and then decrement the
703  * channel reference count.  Note that when readers have completed data
704  * consumption of finalized channels, get_subbuf() will return -ENODATA.
705  * They should release their handle at that point.  Returns the private
706  * data pointer.
707  */
708 void *channel_destroy(struct channel *chan)
709 {
710         int cpu;
711         const struct lib_ring_buffer_config *config = chan->backend.config;
712         void *priv;
713
714         channel_unregister_notifiers(chan);
715
716         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
717                 /*
718                  * No need to hold cpu hotplug, because all notifiers have been
719                  * unregistered.
720                  */
721                 for_each_channel_cpu(cpu, chan) {
722                         struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
723                                                               cpu);
724
725                         if (config->cb.buffer_finalize)
726                                 config->cb.buffer_finalize(buf,
727                                                            chan->backend.priv,
728                                                            cpu);
729                         if (buf->backend.allocated)
730                                 lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
731                         /*
732                          * Perform flush before writing to finalized.
733                          */
734                         smp_wmb();
735                         ACCESS_ONCE(buf->finalized) = 1;
736                         wake_up_interruptible(&buf->read_wait);
737                 }
738         } else {
739                 struct lib_ring_buffer *buf = chan->backend.buf;
740
741                 if (config->cb.buffer_finalize)
742                         config->cb.buffer_finalize(buf, chan->backend.priv, -1);
743                 if (buf->backend.allocated)
744                         lib_ring_buffer_switch_slow(buf, SWITCH_FLUSH);
745                 /*
746                  * Perform flush before writing to finalized.
747                  */
748                 smp_wmb();
749                 ACCESS_ONCE(buf->finalized) = 1;
750                 wake_up_interruptible(&buf->read_wait);
751         }
752         ACCESS_ONCE(chan->finalized) = 1;
753         wake_up_interruptible(&chan->hp_wait);
754         wake_up_interruptible(&chan->read_wait);
755         priv = chan->backend.priv;
756         kref_put(&chan->ref, channel_release);
757         return priv;
758 }
759 EXPORT_SYMBOL_GPL(channel_destroy);
760
761 struct lib_ring_buffer *channel_get_ring_buffer(
762                                         const struct lib_ring_buffer_config *config,
763                                         struct channel *chan, int cpu)
764 {
765         if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
766                 return chan->backend.buf;
767         else
768                 return per_cpu_ptr(chan->backend.buf, cpu);
769 }
770 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
771
772 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
773 {
774         struct channel *chan = buf->backend.chan;
775
776         if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
777                 return -EBUSY;
778         kref_get(&chan->ref);
779         smp_mb__after_atomic_inc();
780         return 0;
781 }
782 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
783
784 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
785 {
786         struct channel *chan = buf->backend.chan;
787
788         CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
789         smp_mb__before_atomic_dec();
790         atomic_long_dec(&buf->active_readers);
791         kref_put(&chan->ref, channel_release);
792 }
793 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
794
795 /*
796  * Promote compiler barrier to a smp_mb().
797  * For the specific ring buffer case, this IPI call should be removed if the
798  * architecture does not reorder writes.  This should eventually be provided by
799  * a separate architecture-specific infrastructure.
800  */
801 static void remote_mb(void *info)
802 {
803         smp_mb();
804 }
805
806 /**
807  * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
808  * @buf: ring buffer
809  * @consumed: consumed count indicating the position where to read
810  * @produced: produced count, indicates position when to stop reading
811  *
812  * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
813  * data to read at consumed position, or 0 if the get operation succeeds.
814  * Busy-loop trying to get data if the tick_nohz sequence lock is held.
815  */
816
817 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
818                              unsigned long *consumed, unsigned long *produced)
819 {
820         struct channel *chan = buf->backend.chan;
821         const struct lib_ring_buffer_config *config = chan->backend.config;
822         unsigned long consumed_cur, write_offset;
823         int finalized;
824
825 retry:
826         finalized = ACCESS_ONCE(buf->finalized);
827         /*
828          * Read finalized before counters.
829          */
830         smp_rmb();
831         consumed_cur = atomic_long_read(&buf->consumed);
832         /*
833          * No need to issue a memory barrier between consumed count read and
834          * write offset read, because consumed count can only change
835          * concurrently in overwrite mode, and we keep a sequence counter
836          * identifier derived from the write offset to check we are getting
837          * the same sub-buffer we are expecting (the sub-buffers are atomically
838          * "tagged" upon writes, tags are checked upon read).
839          */
840         write_offset = v_read(config, &buf->offset);
841
842         /*
843          * Check that we are not about to read the same subbuffer in
844          * which the writer head is.
845          */
846         if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
847             == 0)
848                 goto nodata;
849
850         *consumed = consumed_cur;
851         *produced = subbuf_trunc(write_offset, chan);
852
853         return 0;
854
855 nodata:
856         /*
857          * The memory barriers __wait_event()/wake_up_interruptible() take care
858          * of "raw_spin_is_locked" memory ordering.
859          */
860         if (finalized)
861                 return -ENODATA;
862         else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
863                 goto retry;
864         else
865                 return -EAGAIN;
866 }
867 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
868
869 /**
870  * lib_ring_buffer_put_snapshot - move consumed counter forward
871  *
872  * Should only be called from consumer context.
873  * @buf: ring buffer
874  * @consumed_new: new consumed count value
875  */
876 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
877                                    unsigned long consumed_new)
878 {
879         struct lib_ring_buffer_backend *bufb = &buf->backend;
880         struct channel *chan = bufb->chan;
881         unsigned long consumed;
882
883         CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
884
885         /*
886          * Only push the consumed value forward.
887          * If the consumed cmpxchg fails, this is because we have been pushed by
888          * the writer in flight recorder mode.
889          */
890         consumed = atomic_long_read(&buf->consumed);
891         while ((long) consumed - (long) consumed_new < 0)
892                 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
893                                                consumed_new);
894         /* Wake-up the metadata producer */
895         wake_up_interruptible(&buf->write_wait);
896 }
897 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
898
899 /**
900  * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
901  * @buf: ring buffer
902  * @consumed: consumed count indicating the position where to read
903  *
904  * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
905  * data to read at consumed position, or 0 if the get operation succeeds.
906  * Busy-loop trying to get data if the tick_nohz sequence lock is held.
907  */
908 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
909                                unsigned long consumed)
910 {
911         struct channel *chan = buf->backend.chan;
912         const struct lib_ring_buffer_config *config = chan->backend.config;
913         unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
914         int ret;
915         int finalized;
916
917 retry:
918         finalized = ACCESS_ONCE(buf->finalized);
919         /*
920          * Read finalized before counters.
921          */
922         smp_rmb();
923         consumed_cur = atomic_long_read(&buf->consumed);
924         consumed_idx = subbuf_index(consumed, chan);
925         commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
926         /*
927          * Make sure we read the commit count before reading the buffer
928          * data and the write offset. Correct consumed offset ordering
929          * wrt commit count is insured by the use of cmpxchg to update
930          * the consumed offset.
931          * smp_call_function_single can fail if the remote CPU is offline,
932          * this is OK because then there is no wmb to execute there.
933          * If our thread is executing on the same CPU as the on the buffers
934          * belongs to, we don't have to synchronize it at all. If we are
935          * migrated, the scheduler will take care of the memory barriers.
936          * Normally, smp_call_function_single() should ensure program order when
937          * executing the remote function, which implies that it surrounds the
938          * function execution with :
939          * smp_mb()
940          * send IPI
941          * csd_lock_wait
942          *                recv IPI
943          *                smp_mb()
944          *                exec. function
945          *                smp_mb()
946          *                csd unlock
947          * smp_mb()
948          *
949          * However, smp_call_function_single() does not seem to clearly execute
950          * such barriers. It depends on spinlock semantic to provide the barrier
951          * before executing the IPI and, when busy-looping, csd_lock_wait only
952          * executes smp_mb() when it has to wait for the other CPU.
953          *
954          * I don't trust this code. Therefore, let's add the smp_mb() sequence
955          * required ourself, even if duplicated. It has no performance impact
956          * anyway.
957          *
958          * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
959          * read and write vs write. They do not ensure core synchronization. We
960          * really have to ensure total order between the 3 barriers running on
961          * the 2 CPUs.
962          */
963         if (config->ipi == RING_BUFFER_IPI_BARRIER) {
964                 if (config->sync == RING_BUFFER_SYNC_PER_CPU
965                     && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
966                         if (raw_smp_processor_id() != buf->backend.cpu) {
967                                 /* Total order with IPI handler smp_mb() */
968                                 smp_mb();
969                                 smp_call_function_single(buf->backend.cpu,
970                                                          remote_mb, NULL, 1);
971                                 /* Total order with IPI handler smp_mb() */
972                                 smp_mb();
973                         }
974                 } else {
975                         /* Total order with IPI handler smp_mb() */
976                         smp_mb();
977                         smp_call_function(remote_mb, NULL, 1);
978                         /* Total order with IPI handler smp_mb() */
979                         smp_mb();
980                 }
981         } else {
982                 /*
983                  * Local rmb to match the remote wmb to read the commit count
984                  * before the buffer data and the write offset.
985                  */
986                 smp_rmb();
987         }
988
989         write_offset = v_read(config, &buf->offset);
990
991         /*
992          * Check that the buffer we are getting is after or at consumed_cur
993          * position.
994          */
995         if ((long) subbuf_trunc(consumed, chan)
996             - (long) subbuf_trunc(consumed_cur, chan) < 0)
997                 goto nodata;
998
999         /*
1000          * Check that the subbuffer we are trying to consume has been
1001          * already fully committed.
1002          */
1003         if (((commit_count - chan->backend.subbuf_size)
1004              & chan->commit_count_mask)
1005             - (buf_trunc(consumed_cur, chan)
1006                >> chan->backend.num_subbuf_order)
1007             != 0)
1008                 goto nodata;
1009
1010         /*
1011          * Check that we are not about to read the same subbuffer in
1012          * which the writer head is.
1013          */
1014         if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1015             == 0)
1016                 goto nodata;
1017
1018         /*
1019          * Failure to get the subbuffer causes a busy-loop retry without going
1020          * to a wait queue. These are caused by short-lived race windows where
1021          * the writer is getting access to a subbuffer we were trying to get
1022          * access to. Also checks that the "consumed" buffer count we are
1023          * looking for matches the one contained in the subbuffer id.
1024          */
1025         ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1026                                    consumed_idx, buf_trunc_val(consumed, chan));
1027         if (ret)
1028                 goto retry;
1029         subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1030
1031         buf->get_subbuf_consumed = consumed;
1032         buf->get_subbuf = 1;
1033
1034         return 0;
1035
1036 nodata:
1037         /*
1038          * The memory barriers __wait_event()/wake_up_interruptible() take care
1039          * of "raw_spin_is_locked" memory ordering.
1040          */
1041         if (finalized)
1042                 return -ENODATA;
1043         else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1044                 goto retry;
1045         else
1046                 return -EAGAIN;
1047 }
1048 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1049
1050 /**
1051  * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1052  * @buf: ring buffer
1053  */
1054 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1055 {
1056         struct lib_ring_buffer_backend *bufb = &buf->backend;
1057         struct channel *chan = bufb->chan;
1058         const struct lib_ring_buffer_config *config = chan->backend.config;
1059         unsigned long read_sb_bindex, consumed_idx, consumed;
1060
1061         CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1062
1063         if (!buf->get_subbuf) {
1064                 /*
1065                  * Reader puts a subbuffer it did not get.
1066                  */
1067                 CHAN_WARN_ON(chan, 1);
1068                 return;
1069         }
1070         consumed = buf->get_subbuf_consumed;
1071         buf->get_subbuf = 0;
1072
1073         /*
1074          * Clear the records_unread counter. (overruns counter)
1075          * Can still be non-zero if a file reader simply grabbed the data
1076          * without using iterators.
1077          * Can be below zero if an iterator is used on a snapshot more than
1078          * once.
1079          */
1080         read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1081         v_add(config, v_read(config,
1082                              &bufb->array[read_sb_bindex]->records_unread),
1083               &bufb->records_read);
1084         v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1085         CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1086                      && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1087         subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1088
1089         /*
1090          * Exchange the reader subbuffer with the one we put in its place in the
1091          * writer subbuffer table. Expect the original consumed count. If
1092          * update_read_sb_index fails, this is because the writer updated the
1093          * subbuffer concurrently. We should therefore keep the subbuffer we
1094          * currently have: it has become invalid to try reading this sub-buffer
1095          * consumed count value anyway.
1096          */
1097         consumed_idx = subbuf_index(consumed, chan);
1098         update_read_sb_index(config, &buf->backend, &chan->backend,
1099                              consumed_idx, buf_trunc_val(consumed, chan));
1100         /*
1101          * update_read_sb_index return value ignored. Don't exchange sub-buffer
1102          * if the writer concurrently updated it.
1103          */
1104 }
1105 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1106
1107 /*
1108  * cons_offset is an iterator on all subbuffer offsets between the reader
1109  * position and the writer position. (inclusive)
1110  */
1111 static
1112 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1113                                             struct channel *chan,
1114                                             unsigned long cons_offset,
1115                                             int cpu)
1116 {
1117         const struct lib_ring_buffer_config *config = chan->backend.config;
1118         unsigned long cons_idx, commit_count, commit_count_sb;
1119
1120         cons_idx = subbuf_index(cons_offset, chan);
1121         commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1122         commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1123
1124         if (subbuf_offset(commit_count, chan) != 0)
1125                 printk(KERN_WARNING
1126                        "ring buffer %s, cpu %d: "
1127                        "commit count in subbuffer %lu,\n"
1128                        "expecting multiples of %lu bytes\n"
1129                        "  [ %lu bytes committed, %lu bytes reader-visible ]\n",
1130                        chan->backend.name, cpu, cons_idx,
1131                        chan->backend.subbuf_size,
1132                        commit_count, commit_count_sb);
1133
1134         printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1135                chan->backend.name, cpu, commit_count);
1136 }
1137
1138 static
1139 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1140                                          struct channel *chan,
1141                                          void *priv, int cpu)
1142 {
1143         const struct lib_ring_buffer_config *config = chan->backend.config;
1144         unsigned long write_offset, cons_offset;
1145
1146         /*
1147          * No need to order commit_count, write_offset and cons_offset reads
1148          * because we execute at teardown when no more writer nor reader
1149          * references are left.
1150          */
1151         write_offset = v_read(config, &buf->offset);
1152         cons_offset = atomic_long_read(&buf->consumed);
1153         if (write_offset != cons_offset)
1154                 printk(KERN_DEBUG
1155                        "ring buffer %s, cpu %d: "
1156                        "non-consumed data\n"
1157                        "  [ %lu bytes written, %lu bytes read ]\n",
1158                        chan->backend.name, cpu, write_offset, cons_offset);
1159
1160         for (cons_offset = atomic_long_read(&buf->consumed);
1161              (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1162                                   chan)
1163                      - cons_offset) > 0;
1164              cons_offset = subbuf_align(cons_offset, chan))
1165                 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1166                                                        cpu);
1167 }
1168
1169 static
1170 void lib_ring_buffer_print_errors(struct channel *chan,
1171                                   struct lib_ring_buffer *buf, int cpu)
1172 {
1173         const struct lib_ring_buffer_config *config = chan->backend.config;
1174         void *priv = chan->backend.priv;
1175
1176         printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1177                           "%lu records overrun\n",
1178                           chan->backend.name, cpu,
1179                           v_read(config, &buf->records_count),
1180                           v_read(config, &buf->records_overrun));
1181
1182         if (v_read(config, &buf->records_lost_full)
1183             || v_read(config, &buf->records_lost_wrap)
1184             || v_read(config, &buf->records_lost_big))
1185                 printk(KERN_WARNING
1186                        "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1187                        "  [ %lu buffer full, %lu nest buffer wrap-around, "
1188                        "%lu event too big ]\n",
1189                        chan->backend.name, cpu,
1190                        v_read(config, &buf->records_lost_full),
1191                        v_read(config, &buf->records_lost_wrap),
1192                        v_read(config, &buf->records_lost_big));
1193
1194         lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1195 }
1196
1197 /*
1198  * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1199  *
1200  * Only executed when the buffer is finalized, in SWITCH_FLUSH.
1201  */
1202 static
1203 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1204                                       struct channel *chan,
1205                                       struct switch_offsets *offsets,
1206                                       u64 tsc)
1207 {
1208         const struct lib_ring_buffer_config *config = chan->backend.config;
1209         unsigned long oldidx = subbuf_index(offsets->old, chan);
1210         unsigned long commit_count;
1211
1212         config->cb.buffer_begin(buf, tsc, oldidx);
1213
1214         /*
1215          * Order all writes to buffer before the commit count update that will
1216          * determine that the subbuffer is full.
1217          */
1218         if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1219                 /*
1220                  * Must write slot data before incrementing commit count.  This
1221                  * compiler barrier is upgraded into a smp_mb() by the IPI sent
1222                  * by get_subbuf().
1223                  */
1224                 barrier();
1225         } else
1226                 smp_wmb();
1227         v_add(config, config->cb.subbuffer_header_size(),
1228               &buf->commit_hot[oldidx].cc);
1229         commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1230         /* Check if the written buffer has to be delivered */
1231         lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1232                                       commit_count, oldidx);
1233         lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1234                                              offsets->old, commit_count,
1235                                              config->cb.subbuffer_header_size());
1236 }
1237
1238 /*
1239  * lib_ring_buffer_switch_old_end: switch old subbuffer
1240  *
1241  * Note : offset_old should never be 0 here. It is ok, because we never perform
1242  * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1243  * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1244  * subbuffer.
1245  */
1246 static
1247 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1248                                     struct channel *chan,
1249                                     struct switch_offsets *offsets,
1250                                     u64 tsc)
1251 {
1252         const struct lib_ring_buffer_config *config = chan->backend.config;
1253         unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1254         unsigned long commit_count, padding_size, data_size;
1255
1256         data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1257         padding_size = chan->backend.subbuf_size - data_size;
1258         subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1259
1260         /*
1261          * Order all writes to buffer before the commit count update that will
1262          * determine that the subbuffer is full.
1263          */
1264         if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1265                 /*
1266                  * Must write slot data before incrementing commit count.  This
1267                  * compiler barrier is upgraded into a smp_mb() by the IPI sent
1268                  * by get_subbuf().
1269                  */
1270                 barrier();
1271         } else
1272                 smp_wmb();
1273         v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1274         commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1275         lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1276                                       commit_count, oldidx);
1277         lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1278                                              offsets->old, commit_count,
1279                                              padding_size);
1280 }
1281
1282 /*
1283  * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1284  *
1285  * This code can be executed unordered : writers may already have written to the
1286  * sub-buffer before this code gets executed, caution.  The commit makes sure
1287  * that this code is executed before the deliver of this sub-buffer.
1288  */
1289 static
1290 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1291                                       struct channel *chan,
1292                                       struct switch_offsets *offsets,
1293                                       u64 tsc)
1294 {
1295         const struct lib_ring_buffer_config *config = chan->backend.config;
1296         unsigned long beginidx = subbuf_index(offsets->begin, chan);
1297         unsigned long commit_count;
1298
1299         config->cb.buffer_begin(buf, tsc, beginidx);
1300
1301         /*
1302          * Order all writes to buffer before the commit count update that will
1303          * determine that the subbuffer is full.
1304          */
1305         if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1306                 /*
1307                  * Must write slot data before incrementing commit count.  This
1308                  * compiler barrier is upgraded into a smp_mb() by the IPI sent
1309                  * by get_subbuf().
1310                  */
1311                 barrier();
1312         } else
1313                 smp_wmb();
1314         v_add(config, config->cb.subbuffer_header_size(),
1315               &buf->commit_hot[beginidx].cc);
1316         commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1317         /* Check if the written buffer has to be delivered */
1318         lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1319                                       commit_count, beginidx);
1320         lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1321                                              offsets->begin, commit_count,
1322                                              config->cb.subbuffer_header_size());
1323 }
1324
1325 /*
1326  * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1327  *
1328  * The only remaining threads could be the ones with pending commits. They will
1329  * have to do the deliver themselves.
1330  */
1331 static
1332 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1333                                             struct channel *chan,
1334                                             struct switch_offsets *offsets,
1335                                             u64 tsc)
1336 {
1337         const struct lib_ring_buffer_config *config = chan->backend.config;
1338         unsigned long endidx = subbuf_index(offsets->end - 1, chan);
1339         unsigned long commit_count, padding_size, data_size;
1340
1341         data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1342         padding_size = chan->backend.subbuf_size - data_size;
1343         subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1344
1345         /*
1346          * Order all writes to buffer before the commit count update that will
1347          * determine that the subbuffer is full.
1348          */
1349         if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1350                 /*
1351                  * Must write slot data before incrementing commit count.  This
1352                  * compiler barrier is upgraded into a smp_mb() by the IPI sent
1353                  * by get_subbuf().
1354                  */
1355                 barrier();
1356         } else
1357                 smp_wmb();
1358         v_add(config, padding_size, &buf->commit_hot[endidx].cc);
1359         commit_count = v_read(config, &buf->commit_hot[endidx].cc);
1360         lib_ring_buffer_check_deliver(config, buf, chan, offsets->end - 1,
1361                                   commit_count, endidx);
1362         lib_ring_buffer_write_commit_counter(config, buf, chan, endidx,
1363                                              offsets->end, commit_count,
1364                                              padding_size);
1365 }
1366
1367 /*
1368  * Returns :
1369  * 0 if ok
1370  * !0 if execution must be aborted.
1371  */
1372 static
1373 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1374                                     struct lib_ring_buffer *buf,
1375                                     struct channel *chan,
1376                                     struct switch_offsets *offsets,
1377                                     u64 *tsc)
1378 {
1379         const struct lib_ring_buffer_config *config = chan->backend.config;
1380         unsigned long off;
1381
1382         offsets->begin = v_read(config, &buf->offset);
1383         offsets->old = offsets->begin;
1384         offsets->switch_old_start = 0;
1385         off = subbuf_offset(offsets->begin, chan);
1386
1387         *tsc = config->cb.ring_buffer_clock_read(chan);
1388
1389         /*
1390          * Ensure we flush the header of an empty subbuffer when doing the
1391          * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1392          * total data gathering duration even if there were no records saved
1393          * after the last buffer switch.
1394          * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1395          * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1396          * subbuffer header as appropriate.
1397          * The next record that reserves space will be responsible for
1398          * populating the following subbuffer header. We choose not to populate
1399          * the next subbuffer header here because we want to be able to use
1400          * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1401          * buffer flush, which must guarantee that all the buffer content
1402          * (records and header timestamps) are visible to the reader. This is
1403          * required for quiescence guarantees for the fusion merge.
1404          */
1405         if (mode == SWITCH_FLUSH || off > 0) {
1406                 if (unlikely(off == 0)) {
1407                         /*
1408                          * The client does not save any header information.
1409                          * Don't switch empty subbuffer on finalize, because it
1410                          * is invalid to deliver a completely empty subbuffer.
1411                          */
1412                         if (!config->cb.subbuffer_header_size())
1413                                 return -1;
1414                         /*
1415                          * Need to write the subbuffer start header on finalize.
1416                          */
1417                         offsets->switch_old_start = 1;
1418                 }
1419                 offsets->begin = subbuf_align(offsets->begin, chan);
1420         } else
1421                 return -1;      /* we do not have to switch : buffer is empty */
1422         /* Note: old points to the next subbuf at offset 0 */
1423         offsets->end = offsets->begin;
1424         return 0;
1425 }
1426
1427 /*
1428  * Force a sub-buffer switch. This operation is completely reentrant : can be
1429  * called while tracing is active with absolutely no lock held.
1430  *
1431  * Note, however, that as a v_cmpxchg is used for some atomic
1432  * operations, this function must be called from the CPU which owns the buffer
1433  * for a ACTIVE flush.
1434  */
1435 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1436 {
1437         struct channel *chan = buf->backend.chan;
1438         const struct lib_ring_buffer_config *config = chan->backend.config;
1439         struct switch_offsets offsets;
1440         unsigned long oldidx;
1441         u64 tsc;
1442
1443         offsets.size = 0;
1444
1445         /*
1446          * Perform retryable operations.
1447          */
1448         do {
1449                 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1450                                                     &tsc))
1451                         return; /* Switch not needed */
1452         } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1453                  != offsets.old);
1454
1455         /*
1456          * Atomically update last_tsc. This update races against concurrent
1457          * atomic updates, but the race will always cause supplementary full TSC
1458          * records, never the opposite (missing a full TSC record when it would
1459          * be needed).
1460          */
1461         save_last_tsc(config, buf, tsc);
1462
1463         /*
1464          * Push the reader if necessary
1465          */
1466         lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1467
1468         oldidx = subbuf_index(offsets.old, chan);
1469         lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1470
1471         /*
1472          * May need to populate header start on SWITCH_FLUSH.
1473          */
1474         if (offsets.switch_old_start) {
1475                 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1476                 offsets.old += config->cb.subbuffer_header_size();
1477         }
1478
1479         /*
1480          * Switch old subbuffer.
1481          */
1482         lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1483 }
1484 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1485
1486 /*
1487  * Returns :
1488  * 0 if ok
1489  * -ENOSPC if event size is too large for packet.
1490  * -ENOBUFS if there is currently not enough space in buffer for the event.
1491  * -EIO if data cannot be written into the buffer for any other reason.
1492  */
1493 static
1494 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1495                                      struct channel *chan,
1496                                      struct switch_offsets *offsets,
1497                                      struct lib_ring_buffer_ctx *ctx)
1498 {
1499         const struct lib_ring_buffer_config *config = chan->backend.config;
1500         unsigned long reserve_commit_diff;
1501
1502         offsets->begin = v_read(config, &buf->offset);
1503         offsets->old = offsets->begin;
1504         offsets->switch_new_start = 0;
1505         offsets->switch_new_end = 0;
1506         offsets->switch_old_end = 0;
1507         offsets->pre_header_padding = 0;
1508
1509         ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1510         if ((int64_t) ctx->tsc == -EIO)
1511                 return -EIO;
1512
1513         if (last_tsc_overflow(config, buf, ctx->tsc))
1514                 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1515
1516         if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1517                 offsets->switch_new_start = 1;          /* For offsets->begin */
1518         } else {
1519                 offsets->size = config->cb.record_header_size(config, chan,
1520                                                 offsets->begin,
1521                                                 &offsets->pre_header_padding,
1522                                                 ctx);
1523                 offsets->size +=
1524                         lib_ring_buffer_align(offsets->begin + offsets->size,
1525                                               ctx->largest_align)
1526                         + ctx->data_size;
1527                 if (unlikely(subbuf_offset(offsets->begin, chan) +
1528                              offsets->size > chan->backend.subbuf_size)) {
1529                         offsets->switch_old_end = 1;    /* For offsets->old */
1530                         offsets->switch_new_start = 1;  /* For offsets->begin */
1531                 }
1532         }
1533         if (unlikely(offsets->switch_new_start)) {
1534                 unsigned long sb_index;
1535
1536                 /*
1537                  * We are typically not filling the previous buffer completely.
1538                  */
1539                 if (likely(offsets->switch_old_end))
1540                         offsets->begin = subbuf_align(offsets->begin, chan);
1541                 offsets->begin = offsets->begin
1542                                  + config->cb.subbuffer_header_size();
1543                 /* Test new buffer integrity */
1544                 sb_index = subbuf_index(offsets->begin, chan);
1545                 reserve_commit_diff =
1546                   (buf_trunc(offsets->begin, chan)
1547                    >> chan->backend.num_subbuf_order)
1548                   - ((unsigned long) v_read(config,
1549                                             &buf->commit_cold[sb_index].cc_sb)
1550                      & chan->commit_count_mask);
1551                 if (likely(reserve_commit_diff == 0)) {
1552                         /* Next subbuffer not being written to. */
1553                         if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1554                                 subbuf_trunc(offsets->begin, chan)
1555                                  - subbuf_trunc((unsigned long)
1556                                      atomic_long_read(&buf->consumed), chan)
1557                                 >= chan->backend.buf_size)) {
1558                                 /*
1559                                  * We do not overwrite non consumed buffers
1560                                  * and we are full : record is lost.
1561                                  */
1562                                 v_inc(config, &buf->records_lost_full);
1563                                 return -ENOBUFS;
1564                         } else {
1565                                 /*
1566                                  * Next subbuffer not being written to, and we
1567                                  * are either in overwrite mode or the buffer is
1568                                  * not full. It's safe to write in this new
1569                                  * subbuffer.
1570                                  */
1571                         }
1572                 } else {
1573                         /*
1574                          * Next subbuffer reserve offset does not match the
1575                          * commit offset. Drop record in producer-consumer and
1576                          * overwrite mode. Caused by either a writer OOPS or too
1577                          * many nested writes over a reserve/commit pair.
1578                          */
1579                         v_inc(config, &buf->records_lost_wrap);
1580                         return -EIO;
1581                 }
1582                 offsets->size =
1583                         config->cb.record_header_size(config, chan,
1584                                                 offsets->begin,
1585                                                 &offsets->pre_header_padding,
1586                                                 ctx);
1587                 offsets->size +=
1588                         lib_ring_buffer_align(offsets->begin + offsets->size,
1589                                               ctx->largest_align)
1590                         + ctx->data_size;
1591                 if (unlikely(subbuf_offset(offsets->begin, chan)
1592                              + offsets->size > chan->backend.subbuf_size)) {
1593                         /*
1594                          * Record too big for subbuffers, report error, don't
1595                          * complete the sub-buffer switch.
1596                          */
1597                         v_inc(config, &buf->records_lost_big);
1598                         return -ENOSPC;
1599                 } else {
1600                         /*
1601                          * We just made a successful buffer switch and the
1602                          * record fits in the new subbuffer. Let's write.
1603                          */
1604                 }
1605         } else {
1606                 /*
1607                  * Record fits in the current buffer and we are not on a switch
1608                  * boundary. It's safe to write.
1609                  */
1610         }
1611         offsets->end = offsets->begin + offsets->size;
1612
1613         if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1614                 /*
1615                  * The offset_end will fall at the very beginning of the next
1616                  * subbuffer.
1617                  */
1618                 offsets->switch_new_end = 1;    /* For offsets->begin */
1619         }
1620         return 0;
1621 }
1622
1623 /**
1624  * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1625  * @ctx: ring buffer context.
1626  *
1627  * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1628  * -EIO for other errors, else returns 0.
1629  * It will take care of sub-buffer switching.
1630  */
1631 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1632 {
1633         struct channel *chan = ctx->chan;
1634         const struct lib_ring_buffer_config *config = chan->backend.config;
1635         struct lib_ring_buffer *buf;
1636         struct switch_offsets offsets;
1637         int ret;
1638
1639         if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1640                 buf = per_cpu_ptr(chan->backend.buf, ctx->cpu);
1641         else
1642                 buf = chan->backend.buf;
1643         ctx->buf = buf;
1644
1645         offsets.size = 0;
1646
1647         do {
1648                 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1649                                                        ctx);
1650                 if (unlikely(ret))
1651                         return ret;
1652         } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1653                                     offsets.end)
1654                           != offsets.old));
1655
1656         /*
1657          * Atomically update last_tsc. This update races against concurrent
1658          * atomic updates, but the race will always cause supplementary full TSC
1659          * records, never the opposite (missing a full TSC record when it would
1660          * be needed).
1661          */
1662         save_last_tsc(config, buf, ctx->tsc);
1663
1664         /*
1665          * Push the reader if necessary
1666          */
1667         lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1668
1669         /*
1670          * Clear noref flag for this subbuffer.
1671          */
1672         lib_ring_buffer_clear_noref(config, &buf->backend,
1673                                     subbuf_index(offsets.end - 1, chan));
1674
1675         /*
1676          * Switch old subbuffer if needed.
1677          */
1678         if (unlikely(offsets.switch_old_end)) {
1679                 lib_ring_buffer_clear_noref(config, &buf->backend,
1680                                             subbuf_index(offsets.old - 1, chan));
1681                 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1682         }
1683
1684         /*
1685          * Populate new subbuffer.
1686          */
1687         if (unlikely(offsets.switch_new_start))
1688                 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1689
1690         if (unlikely(offsets.switch_new_end))
1691                 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1692
1693         ctx->slot_size = offsets.size;
1694         ctx->pre_offset = offsets.begin;
1695         ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1696         return 0;
1697 }
1698 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1699
1700 int __init init_lib_ring_buffer_frontend(void)
1701 {
1702         int cpu;
1703
1704         for_each_possible_cpu(cpu)
1705                 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
1706         return 0;
1707 }
1708
1709 module_init(init_lib_ring_buffer_frontend);
1710
1711 void __exit exit_lib_ring_buffer_frontend(void)
1712 {
1713 }
1714
1715 module_exit(exit_lib_ring_buffer_frontend);