Merge tag 'v6.4' into next
[linux-2.6-block.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->master = spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613         struct spi_device *spi = to_spi_device(dev);
614         struct spi_device *new_spi = data;
615
616         if (spi->controller == new_spi->controller &&
617             spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
618                 return -EBUSY;
619         return 0;
620 }
621
622 static void spi_cleanup(struct spi_device *spi)
623 {
624         if (spi->controller->cleanup)
625                 spi->controller->cleanup(spi);
626 }
627
628 static int __spi_add_device(struct spi_device *spi)
629 {
630         struct spi_controller *ctlr = spi->controller;
631         struct device *dev = ctlr->dev.parent;
632         int status;
633
634         /*
635          * We need to make sure there's no other device with this
636          * chipselect **BEFORE** we call setup(), else we'll trash
637          * its configuration.
638          */
639         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
640         if (status) {
641                 dev_err(dev, "chipselect %d already in use\n",
642                                 spi_get_chipselect(spi, 0));
643                 return status;
644         }
645
646         /* Controller may unregister concurrently */
647         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
648             !device_is_registered(&ctlr->dev)) {
649                 return -ENODEV;
650         }
651
652         if (ctlr->cs_gpiods)
653                 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
654
655         /*
656          * Drivers may modify this initial i/o setup, but will
657          * normally rely on the device being setup.  Devices
658          * using SPI_CS_HIGH can't coexist well otherwise...
659          */
660         status = spi_setup(spi);
661         if (status < 0) {
662                 dev_err(dev, "can't setup %s, status %d\n",
663                                 dev_name(&spi->dev), status);
664                 return status;
665         }
666
667         /* Device may be bound to an active driver when this returns */
668         status = device_add(&spi->dev);
669         if (status < 0) {
670                 dev_err(dev, "can't add %s, status %d\n",
671                                 dev_name(&spi->dev), status);
672                 spi_cleanup(spi);
673         } else {
674                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
675         }
676
677         return status;
678 }
679
680 /**
681  * spi_add_device - Add spi_device allocated with spi_alloc_device
682  * @spi: spi_device to register
683  *
684  * Companion function to spi_alloc_device.  Devices allocated with
685  * spi_alloc_device can be added onto the spi bus with this function.
686  *
687  * Return: 0 on success; negative errno on failure
688  */
689 int spi_add_device(struct spi_device *spi)
690 {
691         struct spi_controller *ctlr = spi->controller;
692         struct device *dev = ctlr->dev.parent;
693         int status;
694
695         /* Chipselects are numbered 0..max; validate. */
696         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
697                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
698                         ctlr->num_chipselect);
699                 return -EINVAL;
700         }
701
702         /* Set the bus ID string */
703         spi_dev_set_name(spi);
704
705         mutex_lock(&ctlr->add_lock);
706         status = __spi_add_device(spi);
707         mutex_unlock(&ctlr->add_lock);
708         return status;
709 }
710 EXPORT_SYMBOL_GPL(spi_add_device);
711
712 static int spi_add_device_locked(struct spi_device *spi)
713 {
714         struct spi_controller *ctlr = spi->controller;
715         struct device *dev = ctlr->dev.parent;
716
717         /* Chipselects are numbered 0..max; validate. */
718         if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
719                 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
720                         ctlr->num_chipselect);
721                 return -EINVAL;
722         }
723
724         /* Set the bus ID string */
725         spi_dev_set_name(spi);
726
727         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
728         return __spi_add_device(spi);
729 }
730
731 /**
732  * spi_new_device - instantiate one new SPI device
733  * @ctlr: Controller to which device is connected
734  * @chip: Describes the SPI device
735  * Context: can sleep
736  *
737  * On typical mainboards, this is purely internal; and it's not needed
738  * after board init creates the hard-wired devices.  Some development
739  * platforms may not be able to use spi_register_board_info though, and
740  * this is exported so that for example a USB or parport based adapter
741  * driver could add devices (which it would learn about out-of-band).
742  *
743  * Return: the new device, or NULL.
744  */
745 struct spi_device *spi_new_device(struct spi_controller *ctlr,
746                                   struct spi_board_info *chip)
747 {
748         struct spi_device       *proxy;
749         int                     status;
750
751         /*
752          * NOTE:  caller did any chip->bus_num checks necessary.
753          *
754          * Also, unless we change the return value convention to use
755          * error-or-pointer (not NULL-or-pointer), troubleshootability
756          * suggests syslogged diagnostics are best here (ugh).
757          */
758
759         proxy = spi_alloc_device(ctlr);
760         if (!proxy)
761                 return NULL;
762
763         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
764
765         spi_set_chipselect(proxy, 0, chip->chip_select);
766         proxy->max_speed_hz = chip->max_speed_hz;
767         proxy->mode = chip->mode;
768         proxy->irq = chip->irq;
769         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
770         proxy->dev.platform_data = (void *) chip->platform_data;
771         proxy->controller_data = chip->controller_data;
772         proxy->controller_state = NULL;
773
774         if (chip->swnode) {
775                 status = device_add_software_node(&proxy->dev, chip->swnode);
776                 if (status) {
777                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
778                                 chip->modalias, status);
779                         goto err_dev_put;
780                 }
781         }
782
783         status = spi_add_device(proxy);
784         if (status < 0)
785                 goto err_dev_put;
786
787         return proxy;
788
789 err_dev_put:
790         device_remove_software_node(&proxy->dev);
791         spi_dev_put(proxy);
792         return NULL;
793 }
794 EXPORT_SYMBOL_GPL(spi_new_device);
795
796 /**
797  * spi_unregister_device - unregister a single SPI device
798  * @spi: spi_device to unregister
799  *
800  * Start making the passed SPI device vanish. Normally this would be handled
801  * by spi_unregister_controller().
802  */
803 void spi_unregister_device(struct spi_device *spi)
804 {
805         if (!spi)
806                 return;
807
808         if (spi->dev.of_node) {
809                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
810                 of_node_put(spi->dev.of_node);
811         }
812         if (ACPI_COMPANION(&spi->dev))
813                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
814         device_remove_software_node(&spi->dev);
815         device_del(&spi->dev);
816         spi_cleanup(spi);
817         put_device(&spi->dev);
818 }
819 EXPORT_SYMBOL_GPL(spi_unregister_device);
820
821 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
822                                               struct spi_board_info *bi)
823 {
824         struct spi_device *dev;
825
826         if (ctlr->bus_num != bi->bus_num)
827                 return;
828
829         dev = spi_new_device(ctlr, bi);
830         if (!dev)
831                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
832                         bi->modalias);
833 }
834
835 /**
836  * spi_register_board_info - register SPI devices for a given board
837  * @info: array of chip descriptors
838  * @n: how many descriptors are provided
839  * Context: can sleep
840  *
841  * Board-specific early init code calls this (probably during arch_initcall)
842  * with segments of the SPI device table.  Any device nodes are created later,
843  * after the relevant parent SPI controller (bus_num) is defined.  We keep
844  * this table of devices forever, so that reloading a controller driver will
845  * not make Linux forget about these hard-wired devices.
846  *
847  * Other code can also call this, e.g. a particular add-on board might provide
848  * SPI devices through its expansion connector, so code initializing that board
849  * would naturally declare its SPI devices.
850  *
851  * The board info passed can safely be __initdata ... but be careful of
852  * any embedded pointers (platform_data, etc), they're copied as-is.
853  *
854  * Return: zero on success, else a negative error code.
855  */
856 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
857 {
858         struct boardinfo *bi;
859         int i;
860
861         if (!n)
862                 return 0;
863
864         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
865         if (!bi)
866                 return -ENOMEM;
867
868         for (i = 0; i < n; i++, bi++, info++) {
869                 struct spi_controller *ctlr;
870
871                 memcpy(&bi->board_info, info, sizeof(*info));
872
873                 mutex_lock(&board_lock);
874                 list_add_tail(&bi->list, &board_list);
875                 list_for_each_entry(ctlr, &spi_controller_list, list)
876                         spi_match_controller_to_boardinfo(ctlr,
877                                                           &bi->board_info);
878                 mutex_unlock(&board_lock);
879         }
880
881         return 0;
882 }
883
884 /*-------------------------------------------------------------------------*/
885
886 /* Core methods for SPI resource management */
887
888 /**
889  * spi_res_alloc - allocate a spi resource that is life-cycle managed
890  *                 during the processing of a spi_message while using
891  *                 spi_transfer_one
892  * @spi:     the spi device for which we allocate memory
893  * @release: the release code to execute for this resource
894  * @size:    size to alloc and return
895  * @gfp:     GFP allocation flags
896  *
897  * Return: the pointer to the allocated data
898  *
899  * This may get enhanced in the future to allocate from a memory pool
900  * of the @spi_device or @spi_controller to avoid repeated allocations.
901  */
902 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
903                            size_t size, gfp_t gfp)
904 {
905         struct spi_res *sres;
906
907         sres = kzalloc(sizeof(*sres) + size, gfp);
908         if (!sres)
909                 return NULL;
910
911         INIT_LIST_HEAD(&sres->entry);
912         sres->release = release;
913
914         return sres->data;
915 }
916
917 /**
918  * spi_res_free - free an spi resource
919  * @res: pointer to the custom data of a resource
920  */
921 static void spi_res_free(void *res)
922 {
923         struct spi_res *sres = container_of(res, struct spi_res, data);
924
925         if (!res)
926                 return;
927
928         WARN_ON(!list_empty(&sres->entry));
929         kfree(sres);
930 }
931
932 /**
933  * spi_res_add - add a spi_res to the spi_message
934  * @message: the spi message
935  * @res:     the spi_resource
936  */
937 static void spi_res_add(struct spi_message *message, void *res)
938 {
939         struct spi_res *sres = container_of(res, struct spi_res, data);
940
941         WARN_ON(!list_empty(&sres->entry));
942         list_add_tail(&sres->entry, &message->resources);
943 }
944
945 /**
946  * spi_res_release - release all spi resources for this message
947  * @ctlr:  the @spi_controller
948  * @message: the @spi_message
949  */
950 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
951 {
952         struct spi_res *res, *tmp;
953
954         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
955                 if (res->release)
956                         res->release(ctlr, message, res->data);
957
958                 list_del(&res->entry);
959
960                 kfree(res);
961         }
962 }
963
964 /*-------------------------------------------------------------------------*/
965
966 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
967 {
968         bool activate = enable;
969
970         /*
971          * Avoid calling into the driver (or doing delays) if the chip select
972          * isn't actually changing from the last time this was called.
973          */
974         if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
975                        (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
976             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
977                 return;
978
979         trace_spi_set_cs(spi, activate);
980
981         spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
982         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
983
984         if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
985                 spi_delay_exec(&spi->cs_hold, NULL);
986
987         if (spi->mode & SPI_CS_HIGH)
988                 enable = !enable;
989
990         if (spi_get_csgpiod(spi, 0)) {
991                 if (!(spi->mode & SPI_NO_CS)) {
992                         /*
993                          * Historically ACPI has no means of the GPIO polarity and
994                          * thus the SPISerialBus() resource defines it on the per-chip
995                          * basis. In order to avoid a chain of negations, the GPIO
996                          * polarity is considered being Active High. Even for the cases
997                          * when _DSD() is involved (in the updated versions of ACPI)
998                          * the GPIO CS polarity must be defined Active High to avoid
999                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1000                          * into account.
1001                          */
1002                         if (has_acpi_companion(&spi->dev))
1003                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1004                         else
1005                                 /* Polarity handled by GPIO library */
1006                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1007                 }
1008                 /* Some SPI masters need both GPIO CS & slave_select */
1009                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1010                     spi->controller->set_cs)
1011                         spi->controller->set_cs(spi, !enable);
1012         } else if (spi->controller->set_cs) {
1013                 spi->controller->set_cs(spi, !enable);
1014         }
1015
1016         if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1017                 if (activate)
1018                         spi_delay_exec(&spi->cs_setup, NULL);
1019                 else
1020                         spi_delay_exec(&spi->cs_inactive, NULL);
1021         }
1022 }
1023
1024 #ifdef CONFIG_HAS_DMA
1025 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1026                              struct sg_table *sgt, void *buf, size_t len,
1027                              enum dma_data_direction dir, unsigned long attrs)
1028 {
1029         const bool vmalloced_buf = is_vmalloc_addr(buf);
1030         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1031 #ifdef CONFIG_HIGHMEM
1032         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1033                                 (unsigned long)buf < (PKMAP_BASE +
1034                                         (LAST_PKMAP * PAGE_SIZE)));
1035 #else
1036         const bool kmap_buf = false;
1037 #endif
1038         int desc_len;
1039         int sgs;
1040         struct page *vm_page;
1041         struct scatterlist *sg;
1042         void *sg_buf;
1043         size_t min;
1044         int i, ret;
1045
1046         if (vmalloced_buf || kmap_buf) {
1047                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1048                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1049         } else if (virt_addr_valid(buf)) {
1050                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1051                 sgs = DIV_ROUND_UP(len, desc_len);
1052         } else {
1053                 return -EINVAL;
1054         }
1055
1056         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1057         if (ret != 0)
1058                 return ret;
1059
1060         sg = &sgt->sgl[0];
1061         for (i = 0; i < sgs; i++) {
1062
1063                 if (vmalloced_buf || kmap_buf) {
1064                         /*
1065                          * Next scatterlist entry size is the minimum between
1066                          * the desc_len and the remaining buffer length that
1067                          * fits in a page.
1068                          */
1069                         min = min_t(size_t, desc_len,
1070                                     min_t(size_t, len,
1071                                           PAGE_SIZE - offset_in_page(buf)));
1072                         if (vmalloced_buf)
1073                                 vm_page = vmalloc_to_page(buf);
1074                         else
1075                                 vm_page = kmap_to_page(buf);
1076                         if (!vm_page) {
1077                                 sg_free_table(sgt);
1078                                 return -ENOMEM;
1079                         }
1080                         sg_set_page(sg, vm_page,
1081                                     min, offset_in_page(buf));
1082                 } else {
1083                         min = min_t(size_t, len, desc_len);
1084                         sg_buf = buf;
1085                         sg_set_buf(sg, sg_buf, min);
1086                 }
1087
1088                 buf += min;
1089                 len -= min;
1090                 sg = sg_next(sg);
1091         }
1092
1093         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1094         if (ret < 0) {
1095                 sg_free_table(sgt);
1096                 return ret;
1097         }
1098
1099         return 0;
1100 }
1101
1102 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1103                 struct sg_table *sgt, void *buf, size_t len,
1104                 enum dma_data_direction dir)
1105 {
1106         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1107 }
1108
1109 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1110                                 struct device *dev, struct sg_table *sgt,
1111                                 enum dma_data_direction dir,
1112                                 unsigned long attrs)
1113 {
1114         if (sgt->orig_nents) {
1115                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1116                 sg_free_table(sgt);
1117                 sgt->orig_nents = 0;
1118                 sgt->nents = 0;
1119         }
1120 }
1121
1122 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1123                    struct sg_table *sgt, enum dma_data_direction dir)
1124 {
1125         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1126 }
1127
1128 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129 {
1130         struct device *tx_dev, *rx_dev;
1131         struct spi_transfer *xfer;
1132         int ret;
1133
1134         if (!ctlr->can_dma)
1135                 return 0;
1136
1137         if (ctlr->dma_tx)
1138                 tx_dev = ctlr->dma_tx->device->dev;
1139         else if (ctlr->dma_map_dev)
1140                 tx_dev = ctlr->dma_map_dev;
1141         else
1142                 tx_dev = ctlr->dev.parent;
1143
1144         if (ctlr->dma_rx)
1145                 rx_dev = ctlr->dma_rx->device->dev;
1146         else if (ctlr->dma_map_dev)
1147                 rx_dev = ctlr->dma_map_dev;
1148         else
1149                 rx_dev = ctlr->dev.parent;
1150
1151         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1152                 /* The sync is done before each transfer. */
1153                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154
1155                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1156                         continue;
1157
1158                 if (xfer->tx_buf != NULL) {
1159                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1160                                                 (void *)xfer->tx_buf,
1161                                                 xfer->len, DMA_TO_DEVICE,
1162                                                 attrs);
1163                         if (ret != 0)
1164                                 return ret;
1165                 }
1166
1167                 if (xfer->rx_buf != NULL) {
1168                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1169                                                 xfer->rx_buf, xfer->len,
1170                                                 DMA_FROM_DEVICE, attrs);
1171                         if (ret != 0) {
1172                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1173                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1174                                                 attrs);
1175
1176                                 return ret;
1177                         }
1178                 }
1179         }
1180
1181         ctlr->cur_rx_dma_dev = rx_dev;
1182         ctlr->cur_tx_dma_dev = tx_dev;
1183         ctlr->cur_msg_mapped = true;
1184
1185         return 0;
1186 }
1187
1188 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189 {
1190         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1191         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1192         struct spi_transfer *xfer;
1193
1194         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1195                 return 0;
1196
1197         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1198                 /* The sync has already been done after each transfer. */
1199                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200
1201                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1202                         continue;
1203
1204                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1205                                     DMA_FROM_DEVICE, attrs);
1206                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1207                                     DMA_TO_DEVICE, attrs);
1208         }
1209
1210         ctlr->cur_msg_mapped = false;
1211
1212         return 0;
1213 }
1214
1215 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1216                                     struct spi_transfer *xfer)
1217 {
1218         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1219         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220
1221         if (!ctlr->cur_msg_mapped)
1222                 return;
1223
1224         if (xfer->tx_sg.orig_nents)
1225                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1226         if (xfer->rx_sg.orig_nents)
1227                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1228 }
1229
1230 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1231                                  struct spi_transfer *xfer)
1232 {
1233         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1234         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235
1236         if (!ctlr->cur_msg_mapped)
1237                 return;
1238
1239         if (xfer->rx_sg.orig_nents)
1240                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1241         if (xfer->tx_sg.orig_nents)
1242                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243 }
1244 #else /* !CONFIG_HAS_DMA */
1245 static inline int __spi_map_msg(struct spi_controller *ctlr,
1246                                 struct spi_message *msg)
1247 {
1248         return 0;
1249 }
1250
1251 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1252                                   struct spi_message *msg)
1253 {
1254         return 0;
1255 }
1256
1257 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1258                                     struct spi_transfer *xfer)
1259 {
1260 }
1261
1262 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1263                                  struct spi_transfer *xfer)
1264 {
1265 }
1266 #endif /* !CONFIG_HAS_DMA */
1267
1268 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1269                                 struct spi_message *msg)
1270 {
1271         struct spi_transfer *xfer;
1272
1273         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274                 /*
1275                  * Restore the original value of tx_buf or rx_buf if they are
1276                  * NULL.
1277                  */
1278                 if (xfer->tx_buf == ctlr->dummy_tx)
1279                         xfer->tx_buf = NULL;
1280                 if (xfer->rx_buf == ctlr->dummy_rx)
1281                         xfer->rx_buf = NULL;
1282         }
1283
1284         return __spi_unmap_msg(ctlr, msg);
1285 }
1286
1287 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 {
1289         struct spi_transfer *xfer;
1290         void *tmp;
1291         unsigned int max_tx, max_rx;
1292
1293         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1294                 && !(msg->spi->mode & SPI_3WIRE)) {
1295                 max_tx = 0;
1296                 max_rx = 0;
1297
1298                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300                             !xfer->tx_buf)
1301                                 max_tx = max(xfer->len, max_tx);
1302                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303                             !xfer->rx_buf)
1304                                 max_rx = max(xfer->len, max_rx);
1305                 }
1306
1307                 if (max_tx) {
1308                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1309                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1310                         if (!tmp)
1311                                 return -ENOMEM;
1312                         ctlr->dummy_tx = tmp;
1313                 }
1314
1315                 if (max_rx) {
1316                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1317                                        GFP_KERNEL | GFP_DMA);
1318                         if (!tmp)
1319                                 return -ENOMEM;
1320                         ctlr->dummy_rx = tmp;
1321                 }
1322
1323                 if (max_tx || max_rx) {
1324                         list_for_each_entry(xfer, &msg->transfers,
1325                                             transfer_list) {
1326                                 if (!xfer->len)
1327                                         continue;
1328                                 if (!xfer->tx_buf)
1329                                         xfer->tx_buf = ctlr->dummy_tx;
1330                                 if (!xfer->rx_buf)
1331                                         xfer->rx_buf = ctlr->dummy_rx;
1332                         }
1333                 }
1334         }
1335
1336         return __spi_map_msg(ctlr, msg);
1337 }
1338
1339 static int spi_transfer_wait(struct spi_controller *ctlr,
1340                              struct spi_message *msg,
1341                              struct spi_transfer *xfer)
1342 {
1343         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1344         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1345         u32 speed_hz = xfer->speed_hz;
1346         unsigned long long ms;
1347
1348         if (spi_controller_is_slave(ctlr)) {
1349                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1350                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1351                         return -EINTR;
1352                 }
1353         } else {
1354                 if (!speed_hz)
1355                         speed_hz = 100000;
1356
1357                 /*
1358                  * For each byte we wait for 8 cycles of the SPI clock.
1359                  * Since speed is defined in Hz and we want milliseconds,
1360                  * use respective multiplier, but before the division,
1361                  * otherwise we may get 0 for short transfers.
1362                  */
1363                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1364                 do_div(ms, speed_hz);
1365
1366                 /*
1367                  * Increase it twice and add 200 ms tolerance, use
1368                  * predefined maximum in case of overflow.
1369                  */
1370                 ms += ms + 200;
1371                 if (ms > UINT_MAX)
1372                         ms = UINT_MAX;
1373
1374                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1375                                                  msecs_to_jiffies(ms));
1376
1377                 if (ms == 0) {
1378                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1379                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1380                         dev_err(&msg->spi->dev,
1381                                 "SPI transfer timed out\n");
1382                         return -ETIMEDOUT;
1383                 }
1384         }
1385
1386         return 0;
1387 }
1388
1389 static void _spi_transfer_delay_ns(u32 ns)
1390 {
1391         if (!ns)
1392                 return;
1393         if (ns <= NSEC_PER_USEC) {
1394                 ndelay(ns);
1395         } else {
1396                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1397
1398                 if (us <= 10)
1399                         udelay(us);
1400                 else
1401                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1402         }
1403 }
1404
1405 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406 {
1407         u32 delay = _delay->value;
1408         u32 unit = _delay->unit;
1409         u32 hz;
1410
1411         if (!delay)
1412                 return 0;
1413
1414         switch (unit) {
1415         case SPI_DELAY_UNIT_USECS:
1416                 delay *= NSEC_PER_USEC;
1417                 break;
1418         case SPI_DELAY_UNIT_NSECS:
1419                 /* Nothing to do here */
1420                 break;
1421         case SPI_DELAY_UNIT_SCK:
1422                 /* Clock cycles need to be obtained from spi_transfer */
1423                 if (!xfer)
1424                         return -EINVAL;
1425                 /*
1426                  * If there is unknown effective speed, approximate it
1427                  * by underestimating with half of the requested hz.
1428                  */
1429                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1430                 if (!hz)
1431                         return -EINVAL;
1432
1433                 /* Convert delay to nanoseconds */
1434                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1435                 break;
1436         default:
1437                 return -EINVAL;
1438         }
1439
1440         return delay;
1441 }
1442 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443
1444 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1445 {
1446         int delay;
1447
1448         might_sleep();
1449
1450         if (!_delay)
1451                 return -EINVAL;
1452
1453         delay = spi_delay_to_ns(_delay, xfer);
1454         if (delay < 0)
1455                 return delay;
1456
1457         _spi_transfer_delay_ns(delay);
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(spi_delay_exec);
1462
1463 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1464                                           struct spi_transfer *xfer)
1465 {
1466         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1467         u32 delay = xfer->cs_change_delay.value;
1468         u32 unit = xfer->cs_change_delay.unit;
1469         int ret;
1470
1471         /* Return early on "fast" mode - for everything but USECS */
1472         if (!delay) {
1473                 if (unit == SPI_DELAY_UNIT_USECS)
1474                         _spi_transfer_delay_ns(default_delay_ns);
1475                 return;
1476         }
1477
1478         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479         if (ret) {
1480                 dev_err_once(&msg->spi->dev,
1481                              "Use of unsupported delay unit %i, using default of %luus\n",
1482                              unit, default_delay_ns / NSEC_PER_USEC);
1483                 _spi_transfer_delay_ns(default_delay_ns);
1484         }
1485 }
1486
1487 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1488                                                   struct spi_transfer *xfer)
1489 {
1490         _spi_transfer_cs_change_delay(msg, xfer);
1491 }
1492 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1493
1494 /*
1495  * spi_transfer_one_message - Default implementation of transfer_one_message()
1496  *
1497  * This is a standard implementation of transfer_one_message() for
1498  * drivers which implement a transfer_one() operation.  It provides
1499  * standard handling of delays and chip select management.
1500  */
1501 static int spi_transfer_one_message(struct spi_controller *ctlr,
1502                                     struct spi_message *msg)
1503 {
1504         struct spi_transfer *xfer;
1505         bool keep_cs = false;
1506         int ret = 0;
1507         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1508         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1509
1510         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1511         spi_set_cs(msg->spi, !xfer->cs_off, false);
1512
1513         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1514         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1515
1516         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1517                 trace_spi_transfer_start(msg, xfer);
1518
1519                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1520                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1521
1522                 if (!ctlr->ptp_sts_supported) {
1523                         xfer->ptp_sts_word_pre = 0;
1524                         ptp_read_system_prets(xfer->ptp_sts);
1525                 }
1526
1527                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1528                         reinit_completion(&ctlr->xfer_completion);
1529
1530 fallback_pio:
1531                         spi_dma_sync_for_device(ctlr, xfer);
1532                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1533                         if (ret < 0) {
1534                                 spi_dma_sync_for_cpu(ctlr, xfer);
1535
1536                                 if (ctlr->cur_msg_mapped &&
1537                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1538                                         __spi_unmap_msg(ctlr, msg);
1539                                         ctlr->fallback = true;
1540                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1541                                         goto fallback_pio;
1542                                 }
1543
1544                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1545                                                                errors);
1546                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1547                                                                errors);
1548                                 dev_err(&msg->spi->dev,
1549                                         "SPI transfer failed: %d\n", ret);
1550                                 goto out;
1551                         }
1552
1553                         if (ret > 0) {
1554                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1555                                 if (ret < 0)
1556                                         msg->status = ret;
1557                         }
1558
1559                         spi_dma_sync_for_cpu(ctlr, xfer);
1560                 } else {
1561                         if (xfer->len)
1562                                 dev_err(&msg->spi->dev,
1563                                         "Bufferless transfer has length %u\n",
1564                                         xfer->len);
1565                 }
1566
1567                 if (!ctlr->ptp_sts_supported) {
1568                         ptp_read_system_postts(xfer->ptp_sts);
1569                         xfer->ptp_sts_word_post = xfer->len;
1570                 }
1571
1572                 trace_spi_transfer_stop(msg, xfer);
1573
1574                 if (msg->status != -EINPROGRESS)
1575                         goto out;
1576
1577                 spi_transfer_delay_exec(xfer);
1578
1579                 if (xfer->cs_change) {
1580                         if (list_is_last(&xfer->transfer_list,
1581                                          &msg->transfers)) {
1582                                 keep_cs = true;
1583                         } else {
1584                                 if (!xfer->cs_off)
1585                                         spi_set_cs(msg->spi, false, false);
1586                                 _spi_transfer_cs_change_delay(msg, xfer);
1587                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1588                                         spi_set_cs(msg->spi, true, false);
1589                         }
1590                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1591                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1592                         spi_set_cs(msg->spi, xfer->cs_off, false);
1593                 }
1594
1595                 msg->actual_length += xfer->len;
1596         }
1597
1598 out:
1599         if (ret != 0 || !keep_cs)
1600                 spi_set_cs(msg->spi, false, false);
1601
1602         if (msg->status == -EINPROGRESS)
1603                 msg->status = ret;
1604
1605         if (msg->status && ctlr->handle_err)
1606                 ctlr->handle_err(ctlr, msg);
1607
1608         spi_finalize_current_message(ctlr);
1609
1610         return ret;
1611 }
1612
1613 /**
1614  * spi_finalize_current_transfer - report completion of a transfer
1615  * @ctlr: the controller reporting completion
1616  *
1617  * Called by SPI drivers using the core transfer_one_message()
1618  * implementation to notify it that the current interrupt driven
1619  * transfer has finished and the next one may be scheduled.
1620  */
1621 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1622 {
1623         complete(&ctlr->xfer_completion);
1624 }
1625 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1626
1627 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1628 {
1629         if (ctlr->auto_runtime_pm) {
1630                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1631                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1632         }
1633 }
1634
1635 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1636                 struct spi_message *msg, bool was_busy)
1637 {
1638         struct spi_transfer *xfer;
1639         int ret;
1640
1641         if (!was_busy && ctlr->auto_runtime_pm) {
1642                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1643                 if (ret < 0) {
1644                         pm_runtime_put_noidle(ctlr->dev.parent);
1645                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1646                                 ret);
1647                         return ret;
1648                 }
1649         }
1650
1651         if (!was_busy)
1652                 trace_spi_controller_busy(ctlr);
1653
1654         if (!was_busy && ctlr->prepare_transfer_hardware) {
1655                 ret = ctlr->prepare_transfer_hardware(ctlr);
1656                 if (ret) {
1657                         dev_err(&ctlr->dev,
1658                                 "failed to prepare transfer hardware: %d\n",
1659                                 ret);
1660
1661                         if (ctlr->auto_runtime_pm)
1662                                 pm_runtime_put(ctlr->dev.parent);
1663
1664                         msg->status = ret;
1665                         spi_finalize_current_message(ctlr);
1666
1667                         return ret;
1668                 }
1669         }
1670
1671         trace_spi_message_start(msg);
1672
1673         ret = spi_split_transfers_maxsize(ctlr, msg,
1674                                           spi_max_transfer_size(msg->spi),
1675                                           GFP_KERNEL | GFP_DMA);
1676         if (ret) {
1677                 msg->status = ret;
1678                 spi_finalize_current_message(ctlr);
1679                 return ret;
1680         }
1681
1682         if (ctlr->prepare_message) {
1683                 ret = ctlr->prepare_message(ctlr, msg);
1684                 if (ret) {
1685                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1686                                 ret);
1687                         msg->status = ret;
1688                         spi_finalize_current_message(ctlr);
1689                         return ret;
1690                 }
1691                 msg->prepared = true;
1692         }
1693
1694         ret = spi_map_msg(ctlr, msg);
1695         if (ret) {
1696                 msg->status = ret;
1697                 spi_finalize_current_message(ctlr);
1698                 return ret;
1699         }
1700
1701         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1702                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1703                         xfer->ptp_sts_word_pre = 0;
1704                         ptp_read_system_prets(xfer->ptp_sts);
1705                 }
1706         }
1707
1708         /*
1709          * Drivers implementation of transfer_one_message() must arrange for
1710          * spi_finalize_current_message() to get called. Most drivers will do
1711          * this in the calling context, but some don't. For those cases, a
1712          * completion is used to guarantee that this function does not return
1713          * until spi_finalize_current_message() is done accessing
1714          * ctlr->cur_msg.
1715          * Use of the following two flags enable to opportunistically skip the
1716          * use of the completion since its use involves expensive spin locks.
1717          * In case of a race with the context that calls
1718          * spi_finalize_current_message() the completion will always be used,
1719          * due to strict ordering of these flags using barriers.
1720          */
1721         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1722         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1723         reinit_completion(&ctlr->cur_msg_completion);
1724         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1725
1726         ret = ctlr->transfer_one_message(ctlr, msg);
1727         if (ret) {
1728                 dev_err(&ctlr->dev,
1729                         "failed to transfer one message from queue\n");
1730                 return ret;
1731         }
1732
1733         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1734         smp_mb(); /* See spi_finalize_current_message()... */
1735         if (READ_ONCE(ctlr->cur_msg_incomplete))
1736                 wait_for_completion(&ctlr->cur_msg_completion);
1737
1738         return 0;
1739 }
1740
1741 /**
1742  * __spi_pump_messages - function which processes spi message queue
1743  * @ctlr: controller to process queue for
1744  * @in_kthread: true if we are in the context of the message pump thread
1745  *
1746  * This function checks if there is any spi message in the queue that
1747  * needs processing and if so call out to the driver to initialize hardware
1748  * and transfer each message.
1749  *
1750  * Note that it is called both from the kthread itself and also from
1751  * inside spi_sync(); the queue extraction handling at the top of the
1752  * function should deal with this safely.
1753  */
1754 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1755 {
1756         struct spi_message *msg;
1757         bool was_busy = false;
1758         unsigned long flags;
1759         int ret;
1760
1761         /* Take the IO mutex */
1762         mutex_lock(&ctlr->io_mutex);
1763
1764         /* Lock queue */
1765         spin_lock_irqsave(&ctlr->queue_lock, flags);
1766
1767         /* Make sure we are not already running a message */
1768         if (ctlr->cur_msg)
1769                 goto out_unlock;
1770
1771         /* Check if the queue is idle */
1772         if (list_empty(&ctlr->queue) || !ctlr->running) {
1773                 if (!ctlr->busy)
1774                         goto out_unlock;
1775
1776                 /* Defer any non-atomic teardown to the thread */
1777                 if (!in_kthread) {
1778                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1779                             !ctlr->unprepare_transfer_hardware) {
1780                                 spi_idle_runtime_pm(ctlr);
1781                                 ctlr->busy = false;
1782                                 ctlr->queue_empty = true;
1783                                 trace_spi_controller_idle(ctlr);
1784                         } else {
1785                                 kthread_queue_work(ctlr->kworker,
1786                                                    &ctlr->pump_messages);
1787                         }
1788                         goto out_unlock;
1789                 }
1790
1791                 ctlr->busy = false;
1792                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1793
1794                 kfree(ctlr->dummy_rx);
1795                 ctlr->dummy_rx = NULL;
1796                 kfree(ctlr->dummy_tx);
1797                 ctlr->dummy_tx = NULL;
1798                 if (ctlr->unprepare_transfer_hardware &&
1799                     ctlr->unprepare_transfer_hardware(ctlr))
1800                         dev_err(&ctlr->dev,
1801                                 "failed to unprepare transfer hardware\n");
1802                 spi_idle_runtime_pm(ctlr);
1803                 trace_spi_controller_idle(ctlr);
1804
1805                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1806                 ctlr->queue_empty = true;
1807                 goto out_unlock;
1808         }
1809
1810         /* Extract head of queue */
1811         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1812         ctlr->cur_msg = msg;
1813
1814         list_del_init(&msg->queue);
1815         if (ctlr->busy)
1816                 was_busy = true;
1817         else
1818                 ctlr->busy = true;
1819         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820
1821         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1822         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1823
1824         ctlr->cur_msg = NULL;
1825         ctlr->fallback = false;
1826
1827         mutex_unlock(&ctlr->io_mutex);
1828
1829         /* Prod the scheduler in case transfer_one() was busy waiting */
1830         if (!ret)
1831                 cond_resched();
1832         return;
1833
1834 out_unlock:
1835         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1836         mutex_unlock(&ctlr->io_mutex);
1837 }
1838
1839 /**
1840  * spi_pump_messages - kthread work function which processes spi message queue
1841  * @work: pointer to kthread work struct contained in the controller struct
1842  */
1843 static void spi_pump_messages(struct kthread_work *work)
1844 {
1845         struct spi_controller *ctlr =
1846                 container_of(work, struct spi_controller, pump_messages);
1847
1848         __spi_pump_messages(ctlr, true);
1849 }
1850
1851 /**
1852  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1853  * @ctlr: Pointer to the spi_controller structure of the driver
1854  * @xfer: Pointer to the transfer being timestamped
1855  * @progress: How many words (not bytes) have been transferred so far
1856  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1857  *            transfer, for less jitter in time measurement. Only compatible
1858  *            with PIO drivers. If true, must follow up with
1859  *            spi_take_timestamp_post or otherwise system will crash.
1860  *            WARNING: for fully predictable results, the CPU frequency must
1861  *            also be under control (governor).
1862  *
1863  * This is a helper for drivers to collect the beginning of the TX timestamp
1864  * for the requested byte from the SPI transfer. The frequency with which this
1865  * function must be called (once per word, once for the whole transfer, once
1866  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1867  * greater than or equal to the requested byte at the time of the call. The
1868  * timestamp is only taken once, at the first such call. It is assumed that
1869  * the driver advances its @tx buffer pointer monotonically.
1870  */
1871 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1872                             struct spi_transfer *xfer,
1873                             size_t progress, bool irqs_off)
1874 {
1875         if (!xfer->ptp_sts)
1876                 return;
1877
1878         if (xfer->timestamped)
1879                 return;
1880
1881         if (progress > xfer->ptp_sts_word_pre)
1882                 return;
1883
1884         /* Capture the resolution of the timestamp */
1885         xfer->ptp_sts_word_pre = progress;
1886
1887         if (irqs_off) {
1888                 local_irq_save(ctlr->irq_flags);
1889                 preempt_disable();
1890         }
1891
1892         ptp_read_system_prets(xfer->ptp_sts);
1893 }
1894 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1895
1896 /**
1897  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1898  * @ctlr: Pointer to the spi_controller structure of the driver
1899  * @xfer: Pointer to the transfer being timestamped
1900  * @progress: How many words (not bytes) have been transferred so far
1901  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1902  *
1903  * This is a helper for drivers to collect the end of the TX timestamp for
1904  * the requested byte from the SPI transfer. Can be called with an arbitrary
1905  * frequency: only the first call where @tx exceeds or is equal to the
1906  * requested word will be timestamped.
1907  */
1908 void spi_take_timestamp_post(struct spi_controller *ctlr,
1909                              struct spi_transfer *xfer,
1910                              size_t progress, bool irqs_off)
1911 {
1912         if (!xfer->ptp_sts)
1913                 return;
1914
1915         if (xfer->timestamped)
1916                 return;
1917
1918         if (progress < xfer->ptp_sts_word_post)
1919                 return;
1920
1921         ptp_read_system_postts(xfer->ptp_sts);
1922
1923         if (irqs_off) {
1924                 local_irq_restore(ctlr->irq_flags);
1925                 preempt_enable();
1926         }
1927
1928         /* Capture the resolution of the timestamp */
1929         xfer->ptp_sts_word_post = progress;
1930
1931         xfer->timestamped = 1;
1932 }
1933 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1934
1935 /**
1936  * spi_set_thread_rt - set the controller to pump at realtime priority
1937  * @ctlr: controller to boost priority of
1938  *
1939  * This can be called because the controller requested realtime priority
1940  * (by setting the ->rt value before calling spi_register_controller()) or
1941  * because a device on the bus said that its transfers needed realtime
1942  * priority.
1943  *
1944  * NOTE: at the moment if any device on a bus says it needs realtime then
1945  * the thread will be at realtime priority for all transfers on that
1946  * controller.  If this eventually becomes a problem we may see if we can
1947  * find a way to boost the priority only temporarily during relevant
1948  * transfers.
1949  */
1950 static void spi_set_thread_rt(struct spi_controller *ctlr)
1951 {
1952         dev_info(&ctlr->dev,
1953                 "will run message pump with realtime priority\n");
1954         sched_set_fifo(ctlr->kworker->task);
1955 }
1956
1957 static int spi_init_queue(struct spi_controller *ctlr)
1958 {
1959         ctlr->running = false;
1960         ctlr->busy = false;
1961         ctlr->queue_empty = true;
1962
1963         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1964         if (IS_ERR(ctlr->kworker)) {
1965                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1966                 return PTR_ERR(ctlr->kworker);
1967         }
1968
1969         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1970
1971         /*
1972          * Controller config will indicate if this controller should run the
1973          * message pump with high (realtime) priority to reduce the transfer
1974          * latency on the bus by minimising the delay between a transfer
1975          * request and the scheduling of the message pump thread. Without this
1976          * setting the message pump thread will remain at default priority.
1977          */
1978         if (ctlr->rt)
1979                 spi_set_thread_rt(ctlr);
1980
1981         return 0;
1982 }
1983
1984 /**
1985  * spi_get_next_queued_message() - called by driver to check for queued
1986  * messages
1987  * @ctlr: the controller to check for queued messages
1988  *
1989  * If there are more messages in the queue, the next message is returned from
1990  * this call.
1991  *
1992  * Return: the next message in the queue, else NULL if the queue is empty.
1993  */
1994 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1995 {
1996         struct spi_message *next;
1997         unsigned long flags;
1998
1999         /* Get a pointer to the next message, if any */
2000         spin_lock_irqsave(&ctlr->queue_lock, flags);
2001         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2002                                         queue);
2003         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2004
2005         return next;
2006 }
2007 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2008
2009 /**
2010  * spi_finalize_current_message() - the current message is complete
2011  * @ctlr: the controller to return the message to
2012  *
2013  * Called by the driver to notify the core that the message in the front of the
2014  * queue is complete and can be removed from the queue.
2015  */
2016 void spi_finalize_current_message(struct spi_controller *ctlr)
2017 {
2018         struct spi_transfer *xfer;
2019         struct spi_message *mesg;
2020         int ret;
2021
2022         mesg = ctlr->cur_msg;
2023
2024         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2025                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2026                         ptp_read_system_postts(xfer->ptp_sts);
2027                         xfer->ptp_sts_word_post = xfer->len;
2028                 }
2029         }
2030
2031         if (unlikely(ctlr->ptp_sts_supported))
2032                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2033                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2034
2035         spi_unmap_msg(ctlr, mesg);
2036
2037         /*
2038          * In the prepare_messages callback the SPI bus has the opportunity
2039          * to split a transfer to smaller chunks.
2040          *
2041          * Release the split transfers here since spi_map_msg() is done on
2042          * the split transfers.
2043          */
2044         spi_res_release(ctlr, mesg);
2045
2046         if (mesg->prepared && ctlr->unprepare_message) {
2047                 ret = ctlr->unprepare_message(ctlr, mesg);
2048                 if (ret) {
2049                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2050                                 ret);
2051                 }
2052         }
2053
2054         mesg->prepared = false;
2055
2056         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2057         smp_mb(); /* See __spi_pump_transfer_message()... */
2058         if (READ_ONCE(ctlr->cur_msg_need_completion))
2059                 complete(&ctlr->cur_msg_completion);
2060
2061         trace_spi_message_done(mesg);
2062
2063         mesg->state = NULL;
2064         if (mesg->complete)
2065                 mesg->complete(mesg->context);
2066 }
2067 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2068
2069 static int spi_start_queue(struct spi_controller *ctlr)
2070 {
2071         unsigned long flags;
2072
2073         spin_lock_irqsave(&ctlr->queue_lock, flags);
2074
2075         if (ctlr->running || ctlr->busy) {
2076                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2077                 return -EBUSY;
2078         }
2079
2080         ctlr->running = true;
2081         ctlr->cur_msg = NULL;
2082         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2083
2084         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2085
2086         return 0;
2087 }
2088
2089 static int spi_stop_queue(struct spi_controller *ctlr)
2090 {
2091         unsigned long flags;
2092         unsigned limit = 500;
2093         int ret = 0;
2094
2095         spin_lock_irqsave(&ctlr->queue_lock, flags);
2096
2097         /*
2098          * This is a bit lame, but is optimized for the common execution path.
2099          * A wait_queue on the ctlr->busy could be used, but then the common
2100          * execution path (pump_messages) would be required to call wake_up or
2101          * friends on every SPI message. Do this instead.
2102          */
2103         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2104                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2105                 usleep_range(10000, 11000);
2106                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2107         }
2108
2109         if (!list_empty(&ctlr->queue) || ctlr->busy)
2110                 ret = -EBUSY;
2111         else
2112                 ctlr->running = false;
2113
2114         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2115
2116         if (ret) {
2117                 dev_warn(&ctlr->dev, "could not stop message queue\n");
2118                 return ret;
2119         }
2120         return ret;
2121 }
2122
2123 static int spi_destroy_queue(struct spi_controller *ctlr)
2124 {
2125         int ret;
2126
2127         ret = spi_stop_queue(ctlr);
2128
2129         /*
2130          * kthread_flush_worker will block until all work is done.
2131          * If the reason that stop_queue timed out is that the work will never
2132          * finish, then it does no good to call flush/stop thread, so
2133          * return anyway.
2134          */
2135         if (ret) {
2136                 dev_err(&ctlr->dev, "problem destroying queue\n");
2137                 return ret;
2138         }
2139
2140         kthread_destroy_worker(ctlr->kworker);
2141
2142         return 0;
2143 }
2144
2145 static int __spi_queued_transfer(struct spi_device *spi,
2146                                  struct spi_message *msg,
2147                                  bool need_pump)
2148 {
2149         struct spi_controller *ctlr = spi->controller;
2150         unsigned long flags;
2151
2152         spin_lock_irqsave(&ctlr->queue_lock, flags);
2153
2154         if (!ctlr->running) {
2155                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2156                 return -ESHUTDOWN;
2157         }
2158         msg->actual_length = 0;
2159         msg->status = -EINPROGRESS;
2160
2161         list_add_tail(&msg->queue, &ctlr->queue);
2162         ctlr->queue_empty = false;
2163         if (!ctlr->busy && need_pump)
2164                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2165
2166         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2167         return 0;
2168 }
2169
2170 /**
2171  * spi_queued_transfer - transfer function for queued transfers
2172  * @spi: spi device which is requesting transfer
2173  * @msg: spi message which is to handled is queued to driver queue
2174  *
2175  * Return: zero on success, else a negative error code.
2176  */
2177 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2178 {
2179         return __spi_queued_transfer(spi, msg, true);
2180 }
2181
2182 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2183 {
2184         int ret;
2185
2186         ctlr->transfer = spi_queued_transfer;
2187         if (!ctlr->transfer_one_message)
2188                 ctlr->transfer_one_message = spi_transfer_one_message;
2189
2190         /* Initialize and start queue */
2191         ret = spi_init_queue(ctlr);
2192         if (ret) {
2193                 dev_err(&ctlr->dev, "problem initializing queue\n");
2194                 goto err_init_queue;
2195         }
2196         ctlr->queued = true;
2197         ret = spi_start_queue(ctlr);
2198         if (ret) {
2199                 dev_err(&ctlr->dev, "problem starting queue\n");
2200                 goto err_start_queue;
2201         }
2202
2203         return 0;
2204
2205 err_start_queue:
2206         spi_destroy_queue(ctlr);
2207 err_init_queue:
2208         return ret;
2209 }
2210
2211 /**
2212  * spi_flush_queue - Send all pending messages in the queue from the callers'
2213  *                   context
2214  * @ctlr: controller to process queue for
2215  *
2216  * This should be used when one wants to ensure all pending messages have been
2217  * sent before doing something. Is used by the spi-mem code to make sure SPI
2218  * memory operations do not preempt regular SPI transfers that have been queued
2219  * before the spi-mem operation.
2220  */
2221 void spi_flush_queue(struct spi_controller *ctlr)
2222 {
2223         if (ctlr->transfer == spi_queued_transfer)
2224                 __spi_pump_messages(ctlr, false);
2225 }
2226
2227 /*-------------------------------------------------------------------------*/
2228
2229 #if defined(CONFIG_OF)
2230 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2231                                      struct spi_delay *delay, const char *prop)
2232 {
2233         u32 value;
2234
2235         if (!of_property_read_u32(nc, prop, &value)) {
2236                 if (value > U16_MAX) {
2237                         delay->value = DIV_ROUND_UP(value, 1000);
2238                         delay->unit = SPI_DELAY_UNIT_USECS;
2239                 } else {
2240                         delay->value = value;
2241                         delay->unit = SPI_DELAY_UNIT_NSECS;
2242                 }
2243         }
2244 }
2245
2246 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2247                            struct device_node *nc)
2248 {
2249         u32 value;
2250         int rc;
2251
2252         /* Mode (clock phase/polarity/etc.) */
2253         if (of_property_read_bool(nc, "spi-cpha"))
2254                 spi->mode |= SPI_CPHA;
2255         if (of_property_read_bool(nc, "spi-cpol"))
2256                 spi->mode |= SPI_CPOL;
2257         if (of_property_read_bool(nc, "spi-3wire"))
2258                 spi->mode |= SPI_3WIRE;
2259         if (of_property_read_bool(nc, "spi-lsb-first"))
2260                 spi->mode |= SPI_LSB_FIRST;
2261         if (of_property_read_bool(nc, "spi-cs-high"))
2262                 spi->mode |= SPI_CS_HIGH;
2263
2264         /* Device DUAL/QUAD mode */
2265         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2266                 switch (value) {
2267                 case 0:
2268                         spi->mode |= SPI_NO_TX;
2269                         break;
2270                 case 1:
2271                         break;
2272                 case 2:
2273                         spi->mode |= SPI_TX_DUAL;
2274                         break;
2275                 case 4:
2276                         spi->mode |= SPI_TX_QUAD;
2277                         break;
2278                 case 8:
2279                         spi->mode |= SPI_TX_OCTAL;
2280                         break;
2281                 default:
2282                         dev_warn(&ctlr->dev,
2283                                 "spi-tx-bus-width %d not supported\n",
2284                                 value);
2285                         break;
2286                 }
2287         }
2288
2289         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2290                 switch (value) {
2291                 case 0:
2292                         spi->mode |= SPI_NO_RX;
2293                         break;
2294                 case 1:
2295                         break;
2296                 case 2:
2297                         spi->mode |= SPI_RX_DUAL;
2298                         break;
2299                 case 4:
2300                         spi->mode |= SPI_RX_QUAD;
2301                         break;
2302                 case 8:
2303                         spi->mode |= SPI_RX_OCTAL;
2304                         break;
2305                 default:
2306                         dev_warn(&ctlr->dev,
2307                                 "spi-rx-bus-width %d not supported\n",
2308                                 value);
2309                         break;
2310                 }
2311         }
2312
2313         if (spi_controller_is_slave(ctlr)) {
2314                 if (!of_node_name_eq(nc, "slave")) {
2315                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2316                                 nc);
2317                         return -EINVAL;
2318                 }
2319                 return 0;
2320         }
2321
2322         /* Device address */
2323         rc = of_property_read_u32(nc, "reg", &value);
2324         if (rc) {
2325                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2326                         nc, rc);
2327                 return rc;
2328         }
2329         spi_set_chipselect(spi, 0, value);
2330
2331         /* Device speed */
2332         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2333                 spi->max_speed_hz = value;
2334
2335         /* Device CS delays */
2336         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2337         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2338         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2339
2340         return 0;
2341 }
2342
2343 static struct spi_device *
2344 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2345 {
2346         struct spi_device *spi;
2347         int rc;
2348
2349         /* Alloc an spi_device */
2350         spi = spi_alloc_device(ctlr);
2351         if (!spi) {
2352                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2353                 rc = -ENOMEM;
2354                 goto err_out;
2355         }
2356
2357         /* Select device driver */
2358         rc = of_alias_from_compatible(nc, spi->modalias,
2359                                       sizeof(spi->modalias));
2360         if (rc < 0) {
2361                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2362                 goto err_out;
2363         }
2364
2365         rc = of_spi_parse_dt(ctlr, spi, nc);
2366         if (rc)
2367                 goto err_out;
2368
2369         /* Store a pointer to the node in the device structure */
2370         of_node_get(nc);
2371
2372         device_set_node(&spi->dev, of_fwnode_handle(nc));
2373
2374         /* Register the new device */
2375         rc = spi_add_device(spi);
2376         if (rc) {
2377                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2378                 goto err_of_node_put;
2379         }
2380
2381         return spi;
2382
2383 err_of_node_put:
2384         of_node_put(nc);
2385 err_out:
2386         spi_dev_put(spi);
2387         return ERR_PTR(rc);
2388 }
2389
2390 /**
2391  * of_register_spi_devices() - Register child devices onto the SPI bus
2392  * @ctlr:       Pointer to spi_controller device
2393  *
2394  * Registers an spi_device for each child node of controller node which
2395  * represents a valid SPI slave.
2396  */
2397 static void of_register_spi_devices(struct spi_controller *ctlr)
2398 {
2399         struct spi_device *spi;
2400         struct device_node *nc;
2401
2402         if (!ctlr->dev.of_node)
2403                 return;
2404
2405         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2406                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2407                         continue;
2408                 spi = of_register_spi_device(ctlr, nc);
2409                 if (IS_ERR(spi)) {
2410                         dev_warn(&ctlr->dev,
2411                                  "Failed to create SPI device for %pOF\n", nc);
2412                         of_node_clear_flag(nc, OF_POPULATED);
2413                 }
2414         }
2415 }
2416 #else
2417 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2418 #endif
2419
2420 /**
2421  * spi_new_ancillary_device() - Register ancillary SPI device
2422  * @spi:         Pointer to the main SPI device registering the ancillary device
2423  * @chip_select: Chip Select of the ancillary device
2424  *
2425  * Register an ancillary SPI device; for example some chips have a chip-select
2426  * for normal device usage and another one for setup/firmware upload.
2427  *
2428  * This may only be called from main SPI device's probe routine.
2429  *
2430  * Return: 0 on success; negative errno on failure
2431  */
2432 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2433                                              u8 chip_select)
2434 {
2435         struct spi_device *ancillary;
2436         int rc = 0;
2437
2438         /* Alloc an spi_device */
2439         ancillary = spi_alloc_device(spi->controller);
2440         if (!ancillary) {
2441                 rc = -ENOMEM;
2442                 goto err_out;
2443         }
2444
2445         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2446
2447         /* Use provided chip-select for ancillary device */
2448         spi_set_chipselect(ancillary, 0, chip_select);
2449
2450         /* Take over SPI mode/speed from SPI main device */
2451         ancillary->max_speed_hz = spi->max_speed_hz;
2452         ancillary->mode = spi->mode;
2453
2454         /* Register the new device */
2455         rc = spi_add_device_locked(ancillary);
2456         if (rc) {
2457                 dev_err(&spi->dev, "failed to register ancillary device\n");
2458                 goto err_out;
2459         }
2460
2461         return ancillary;
2462
2463 err_out:
2464         spi_dev_put(ancillary);
2465         return ERR_PTR(rc);
2466 }
2467 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2468
2469 #ifdef CONFIG_ACPI
2470 struct acpi_spi_lookup {
2471         struct spi_controller   *ctlr;
2472         u32                     max_speed_hz;
2473         u32                     mode;
2474         int                     irq;
2475         u8                      bits_per_word;
2476         u8                      chip_select;
2477         int                     n;
2478         int                     index;
2479 };
2480
2481 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2482 {
2483         struct acpi_resource_spi_serialbus *sb;
2484         int *count = data;
2485
2486         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2487                 return 1;
2488
2489         sb = &ares->data.spi_serial_bus;
2490         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2491                 return 1;
2492
2493         *count = *count + 1;
2494
2495         return 1;
2496 }
2497
2498 /**
2499  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2500  * @adev:       ACPI device
2501  *
2502  * Returns the number of SpiSerialBus resources in the ACPI-device's
2503  * resource-list; or a negative error code.
2504  */
2505 int acpi_spi_count_resources(struct acpi_device *adev)
2506 {
2507         LIST_HEAD(r);
2508         int count = 0;
2509         int ret;
2510
2511         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2512         if (ret < 0)
2513                 return ret;
2514
2515         acpi_dev_free_resource_list(&r);
2516
2517         return count;
2518 }
2519 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2520
2521 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2522                                             struct acpi_spi_lookup *lookup)
2523 {
2524         const union acpi_object *obj;
2525
2526         if (!x86_apple_machine)
2527                 return;
2528
2529         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2530             && obj->buffer.length >= 4)
2531                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2532
2533         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2534             && obj->buffer.length == 8)
2535                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2536
2537         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2538             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2539                 lookup->mode |= SPI_LSB_FIRST;
2540
2541         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2542             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2543                 lookup->mode |= SPI_CPOL;
2544
2545         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2546             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2547                 lookup->mode |= SPI_CPHA;
2548 }
2549
2550 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2551
2552 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2553 {
2554         struct acpi_spi_lookup *lookup = data;
2555         struct spi_controller *ctlr = lookup->ctlr;
2556
2557         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2558                 struct acpi_resource_spi_serialbus *sb;
2559                 acpi_handle parent_handle;
2560                 acpi_status status;
2561
2562                 sb = &ares->data.spi_serial_bus;
2563                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2564
2565                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2566                                 return 1;
2567
2568                         status = acpi_get_handle(NULL,
2569                                                  sb->resource_source.string_ptr,
2570                                                  &parent_handle);
2571
2572                         if (ACPI_FAILURE(status))
2573                                 return -ENODEV;
2574
2575                         if (ctlr) {
2576                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2577                                         return -ENODEV;
2578                         } else {
2579                                 struct acpi_device *adev;
2580
2581                                 adev = acpi_fetch_acpi_dev(parent_handle);
2582                                 if (!adev)
2583                                         return -ENODEV;
2584
2585                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2586                                 if (!ctlr)
2587                                         return -EPROBE_DEFER;
2588
2589                                 lookup->ctlr = ctlr;
2590                         }
2591
2592                         /*
2593                          * ACPI DeviceSelection numbering is handled by the
2594                          * host controller driver in Windows and can vary
2595                          * from driver to driver. In Linux we always expect
2596                          * 0 .. max - 1 so we need to ask the driver to
2597                          * translate between the two schemes.
2598                          */
2599                         if (ctlr->fw_translate_cs) {
2600                                 int cs = ctlr->fw_translate_cs(ctlr,
2601                                                 sb->device_selection);
2602                                 if (cs < 0)
2603                                         return cs;
2604                                 lookup->chip_select = cs;
2605                         } else {
2606                                 lookup->chip_select = sb->device_selection;
2607                         }
2608
2609                         lookup->max_speed_hz = sb->connection_speed;
2610                         lookup->bits_per_word = sb->data_bit_length;
2611
2612                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2613                                 lookup->mode |= SPI_CPHA;
2614                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2615                                 lookup->mode |= SPI_CPOL;
2616                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2617                                 lookup->mode |= SPI_CS_HIGH;
2618                 }
2619         } else if (lookup->irq < 0) {
2620                 struct resource r;
2621
2622                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2623                         lookup->irq = r.start;
2624         }
2625
2626         /* Always tell the ACPI core to skip this resource */
2627         return 1;
2628 }
2629
2630 /**
2631  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2632  * @ctlr: controller to which the spi device belongs
2633  * @adev: ACPI Device for the spi device
2634  * @index: Index of the spi resource inside the ACPI Node
2635  *
2636  * This should be used to allocate a new spi device from and ACPI Node.
2637  * The caller is responsible for calling spi_add_device to register the spi device.
2638  *
2639  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2640  * using the resource.
2641  * If index is set to -1, index is not used.
2642  * Note: If index is -1, ctlr must be set.
2643  *
2644  * Return: a pointer to the new device, or ERR_PTR on error.
2645  */
2646 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2647                                          struct acpi_device *adev,
2648                                          int index)
2649 {
2650         acpi_handle parent_handle = NULL;
2651         struct list_head resource_list;
2652         struct acpi_spi_lookup lookup = {};
2653         struct spi_device *spi;
2654         int ret;
2655
2656         if (!ctlr && index == -1)
2657                 return ERR_PTR(-EINVAL);
2658
2659         lookup.ctlr             = ctlr;
2660         lookup.irq              = -1;
2661         lookup.index            = index;
2662         lookup.n                = 0;
2663
2664         INIT_LIST_HEAD(&resource_list);
2665         ret = acpi_dev_get_resources(adev, &resource_list,
2666                                      acpi_spi_add_resource, &lookup);
2667         acpi_dev_free_resource_list(&resource_list);
2668
2669         if (ret < 0)
2670                 /* Found SPI in _CRS but it points to another controller */
2671                 return ERR_PTR(ret);
2672
2673         if (!lookup.max_speed_hz &&
2674             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2675             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2676                 /* Apple does not use _CRS but nested devices for SPI slaves */
2677                 acpi_spi_parse_apple_properties(adev, &lookup);
2678         }
2679
2680         if (!lookup.max_speed_hz)
2681                 return ERR_PTR(-ENODEV);
2682
2683         spi = spi_alloc_device(lookup.ctlr);
2684         if (!spi) {
2685                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2686                         dev_name(&adev->dev));
2687                 return ERR_PTR(-ENOMEM);
2688         }
2689
2690         ACPI_COMPANION_SET(&spi->dev, adev);
2691         spi->max_speed_hz       = lookup.max_speed_hz;
2692         spi->mode               |= lookup.mode;
2693         spi->irq                = lookup.irq;
2694         spi->bits_per_word      = lookup.bits_per_word;
2695         spi_set_chipselect(spi, 0, lookup.chip_select);
2696
2697         return spi;
2698 }
2699 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2700
2701 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2702                                             struct acpi_device *adev)
2703 {
2704         struct spi_device *spi;
2705
2706         if (acpi_bus_get_status(adev) || !adev->status.present ||
2707             acpi_device_enumerated(adev))
2708                 return AE_OK;
2709
2710         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2711         if (IS_ERR(spi)) {
2712                 if (PTR_ERR(spi) == -ENOMEM)
2713                         return AE_NO_MEMORY;
2714                 else
2715                         return AE_OK;
2716         }
2717
2718         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2719                           sizeof(spi->modalias));
2720
2721         if (spi->irq < 0)
2722                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2723
2724         acpi_device_set_enumerated(adev);
2725
2726         adev->power.flags.ignore_parent = true;
2727         if (spi_add_device(spi)) {
2728                 adev->power.flags.ignore_parent = false;
2729                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2730                         dev_name(&adev->dev));
2731                 spi_dev_put(spi);
2732         }
2733
2734         return AE_OK;
2735 }
2736
2737 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2738                                        void *data, void **return_value)
2739 {
2740         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2741         struct spi_controller *ctlr = data;
2742
2743         if (!adev)
2744                 return AE_OK;
2745
2746         return acpi_register_spi_device(ctlr, adev);
2747 }
2748
2749 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2750
2751 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2752 {
2753         acpi_status status;
2754         acpi_handle handle;
2755
2756         handle = ACPI_HANDLE(ctlr->dev.parent);
2757         if (!handle)
2758                 return;
2759
2760         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2761                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2762                                      acpi_spi_add_device, NULL, ctlr, NULL);
2763         if (ACPI_FAILURE(status))
2764                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2765 }
2766 #else
2767 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2768 #endif /* CONFIG_ACPI */
2769
2770 static void spi_controller_release(struct device *dev)
2771 {
2772         struct spi_controller *ctlr;
2773
2774         ctlr = container_of(dev, struct spi_controller, dev);
2775         kfree(ctlr);
2776 }
2777
2778 static struct class spi_master_class = {
2779         .name           = "spi_master",
2780         .dev_release    = spi_controller_release,
2781         .dev_groups     = spi_master_groups,
2782 };
2783
2784 #ifdef CONFIG_SPI_SLAVE
2785 /**
2786  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2787  *                   controller
2788  * @spi: device used for the current transfer
2789  */
2790 int spi_slave_abort(struct spi_device *spi)
2791 {
2792         struct spi_controller *ctlr = spi->controller;
2793
2794         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2795                 return ctlr->slave_abort(ctlr);
2796
2797         return -ENOTSUPP;
2798 }
2799 EXPORT_SYMBOL_GPL(spi_slave_abort);
2800
2801 int spi_target_abort(struct spi_device *spi)
2802 {
2803         struct spi_controller *ctlr = spi->controller;
2804
2805         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2806                 return ctlr->target_abort(ctlr);
2807
2808         return -ENOTSUPP;
2809 }
2810 EXPORT_SYMBOL_GPL(spi_target_abort);
2811
2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2813                           char *buf)
2814 {
2815         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2816                                                    dev);
2817         struct device *child;
2818
2819         child = device_find_any_child(&ctlr->dev);
2820         return sprintf(buf, "%s\n",
2821                        child ? to_spi_device(child)->modalias : NULL);
2822 }
2823
2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2825                            const char *buf, size_t count)
2826 {
2827         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2828                                                    dev);
2829         struct spi_device *spi;
2830         struct device *child;
2831         char name[32];
2832         int rc;
2833
2834         rc = sscanf(buf, "%31s", name);
2835         if (rc != 1 || !name[0])
2836                 return -EINVAL;
2837
2838         child = device_find_any_child(&ctlr->dev);
2839         if (child) {
2840                 /* Remove registered slave */
2841                 device_unregister(child);
2842                 put_device(child);
2843         }
2844
2845         if (strcmp(name, "(null)")) {
2846                 /* Register new slave */
2847                 spi = spi_alloc_device(ctlr);
2848                 if (!spi)
2849                         return -ENOMEM;
2850
2851                 strscpy(spi->modalias, name, sizeof(spi->modalias));
2852
2853                 rc = spi_add_device(spi);
2854                 if (rc) {
2855                         spi_dev_put(spi);
2856                         return rc;
2857                 }
2858         }
2859
2860         return count;
2861 }
2862
2863 static DEVICE_ATTR_RW(slave);
2864
2865 static struct attribute *spi_slave_attrs[] = {
2866         &dev_attr_slave.attr,
2867         NULL,
2868 };
2869
2870 static const struct attribute_group spi_slave_group = {
2871         .attrs = spi_slave_attrs,
2872 };
2873
2874 static const struct attribute_group *spi_slave_groups[] = {
2875         &spi_controller_statistics_group,
2876         &spi_slave_group,
2877         NULL,
2878 };
2879
2880 static struct class spi_slave_class = {
2881         .name           = "spi_slave",
2882         .dev_release    = spi_controller_release,
2883         .dev_groups     = spi_slave_groups,
2884 };
2885 #else
2886 extern struct class spi_slave_class;    /* dummy */
2887 #endif
2888
2889 /**
2890  * __spi_alloc_controller - allocate an SPI master or slave controller
2891  * @dev: the controller, possibly using the platform_bus
2892  * @size: how much zeroed driver-private data to allocate; the pointer to this
2893  *      memory is in the driver_data field of the returned device, accessible
2894  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2895  *      drivers granting DMA access to portions of their private data need to
2896  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2897  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2898  *      slave (true) controller
2899  * Context: can sleep
2900  *
2901  * This call is used only by SPI controller drivers, which are the
2902  * only ones directly touching chip registers.  It's how they allocate
2903  * an spi_controller structure, prior to calling spi_register_controller().
2904  *
2905  * This must be called from context that can sleep.
2906  *
2907  * The caller is responsible for assigning the bus number and initializing the
2908  * controller's methods before calling spi_register_controller(); and (after
2909  * errors adding the device) calling spi_controller_put() to prevent a memory
2910  * leak.
2911  *
2912  * Return: the SPI controller structure on success, else NULL.
2913  */
2914 struct spi_controller *__spi_alloc_controller(struct device *dev,
2915                                               unsigned int size, bool slave)
2916 {
2917         struct spi_controller   *ctlr;
2918         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2919
2920         if (!dev)
2921                 return NULL;
2922
2923         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2924         if (!ctlr)
2925                 return NULL;
2926
2927         device_initialize(&ctlr->dev);
2928         INIT_LIST_HEAD(&ctlr->queue);
2929         spin_lock_init(&ctlr->queue_lock);
2930         spin_lock_init(&ctlr->bus_lock_spinlock);
2931         mutex_init(&ctlr->bus_lock_mutex);
2932         mutex_init(&ctlr->io_mutex);
2933         mutex_init(&ctlr->add_lock);
2934         ctlr->bus_num = -1;
2935         ctlr->num_chipselect = 1;
2936         ctlr->slave = slave;
2937         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2938                 ctlr->dev.class = &spi_slave_class;
2939         else
2940                 ctlr->dev.class = &spi_master_class;
2941         ctlr->dev.parent = dev;
2942         pm_suspend_ignore_children(&ctlr->dev, true);
2943         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2944
2945         return ctlr;
2946 }
2947 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2948
2949 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2950 {
2951         spi_controller_put(*(struct spi_controller **)ctlr);
2952 }
2953
2954 /**
2955  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2956  * @dev: physical device of SPI controller
2957  * @size: how much zeroed driver-private data to allocate
2958  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2959  * Context: can sleep
2960  *
2961  * Allocate an SPI controller and automatically release a reference on it
2962  * when @dev is unbound from its driver.  Drivers are thus relieved from
2963  * having to call spi_controller_put().
2964  *
2965  * The arguments to this function are identical to __spi_alloc_controller().
2966  *
2967  * Return: the SPI controller structure on success, else NULL.
2968  */
2969 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2970                                                    unsigned int size,
2971                                                    bool slave)
2972 {
2973         struct spi_controller **ptr, *ctlr;
2974
2975         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2976                            GFP_KERNEL);
2977         if (!ptr)
2978                 return NULL;
2979
2980         ctlr = __spi_alloc_controller(dev, size, slave);
2981         if (ctlr) {
2982                 ctlr->devm_allocated = true;
2983                 *ptr = ctlr;
2984                 devres_add(dev, ptr);
2985         } else {
2986                 devres_free(ptr);
2987         }
2988
2989         return ctlr;
2990 }
2991 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2992
2993 /**
2994  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2995  * @ctlr: The SPI master to grab GPIO descriptors for
2996  */
2997 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2998 {
2999         int nb, i;
3000         struct gpio_desc **cs;
3001         struct device *dev = &ctlr->dev;
3002         unsigned long native_cs_mask = 0;
3003         unsigned int num_cs_gpios = 0;
3004
3005         nb = gpiod_count(dev, "cs");
3006         if (nb < 0) {
3007                 /* No GPIOs at all is fine, else return the error */
3008                 if (nb == -ENOENT)
3009                         return 0;
3010                 return nb;
3011         }
3012
3013         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3014
3015         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3016                           GFP_KERNEL);
3017         if (!cs)
3018                 return -ENOMEM;
3019         ctlr->cs_gpiods = cs;
3020
3021         for (i = 0; i < nb; i++) {
3022                 /*
3023                  * Most chipselects are active low, the inverted
3024                  * semantics are handled by special quirks in gpiolib,
3025                  * so initializing them GPIOD_OUT_LOW here means
3026                  * "unasserted", in most cases this will drive the physical
3027                  * line high.
3028                  */
3029                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3030                                                       GPIOD_OUT_LOW);
3031                 if (IS_ERR(cs[i]))
3032                         return PTR_ERR(cs[i]);
3033
3034                 if (cs[i]) {
3035                         /*
3036                          * If we find a CS GPIO, name it after the device and
3037                          * chip select line.
3038                          */
3039                         char *gpioname;
3040
3041                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3042                                                   dev_name(dev), i);
3043                         if (!gpioname)
3044                                 return -ENOMEM;
3045                         gpiod_set_consumer_name(cs[i], gpioname);
3046                         num_cs_gpios++;
3047                         continue;
3048                 }
3049
3050                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3051                         dev_err(dev, "Invalid native chip select %d\n", i);
3052                         return -EINVAL;
3053                 }
3054                 native_cs_mask |= BIT(i);
3055         }
3056
3057         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3058
3059         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3060             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3061                 dev_err(dev, "No unused native chip select available\n");
3062                 return -EINVAL;
3063         }
3064
3065         return 0;
3066 }
3067
3068 static int spi_controller_check_ops(struct spi_controller *ctlr)
3069 {
3070         /*
3071          * The controller may implement only the high-level SPI-memory like
3072          * operations if it does not support regular SPI transfers, and this is
3073          * valid use case.
3074          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3075          * one of the ->transfer_xxx() method be implemented.
3076          */
3077         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3078                 if (!ctlr->transfer && !ctlr->transfer_one &&
3079                    !ctlr->transfer_one_message) {
3080                         return -EINVAL;
3081                 }
3082         }
3083
3084         return 0;
3085 }
3086
3087 /**
3088  * spi_register_controller - register SPI master or slave controller
3089  * @ctlr: initialized master, originally from spi_alloc_master() or
3090  *      spi_alloc_slave()
3091  * Context: can sleep
3092  *
3093  * SPI controllers connect to their drivers using some non-SPI bus,
3094  * such as the platform bus.  The final stage of probe() in that code
3095  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3096  *
3097  * SPI controllers use board specific (often SOC specific) bus numbers,
3098  * and board-specific addressing for SPI devices combines those numbers
3099  * with chip select numbers.  Since SPI does not directly support dynamic
3100  * device identification, boards need configuration tables telling which
3101  * chip is at which address.
3102  *
3103  * This must be called from context that can sleep.  It returns zero on
3104  * success, else a negative error code (dropping the controller's refcount).
3105  * After a successful return, the caller is responsible for calling
3106  * spi_unregister_controller().
3107  *
3108  * Return: zero on success, else a negative error code.
3109  */
3110 int spi_register_controller(struct spi_controller *ctlr)
3111 {
3112         struct device           *dev = ctlr->dev.parent;
3113         struct boardinfo        *bi;
3114         int                     status;
3115         int                     id, first_dynamic;
3116
3117         if (!dev)
3118                 return -ENODEV;
3119
3120         /*
3121          * Make sure all necessary hooks are implemented before registering
3122          * the SPI controller.
3123          */
3124         status = spi_controller_check_ops(ctlr);
3125         if (status)
3126                 return status;
3127
3128         if (ctlr->bus_num >= 0) {
3129                 /* Devices with a fixed bus num must check-in with the num */
3130                 mutex_lock(&board_lock);
3131                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3132                         ctlr->bus_num + 1, GFP_KERNEL);
3133                 mutex_unlock(&board_lock);
3134                 if (WARN(id < 0, "couldn't get idr"))
3135                         return id == -ENOSPC ? -EBUSY : id;
3136                 ctlr->bus_num = id;
3137         } else if (ctlr->dev.of_node) {
3138                 /* Allocate dynamic bus number using Linux idr */
3139                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3140                 if (id >= 0) {
3141                         ctlr->bus_num = id;
3142                         mutex_lock(&board_lock);
3143                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3144                                        ctlr->bus_num + 1, GFP_KERNEL);
3145                         mutex_unlock(&board_lock);
3146                         if (WARN(id < 0, "couldn't get idr"))
3147                                 return id == -ENOSPC ? -EBUSY : id;
3148                 }
3149         }
3150         if (ctlr->bus_num < 0) {
3151                 first_dynamic = of_alias_get_highest_id("spi");
3152                 if (first_dynamic < 0)
3153                         first_dynamic = 0;
3154                 else
3155                         first_dynamic++;
3156
3157                 mutex_lock(&board_lock);
3158                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3159                                0, GFP_KERNEL);
3160                 mutex_unlock(&board_lock);
3161                 if (WARN(id < 0, "couldn't get idr"))
3162                         return id;
3163                 ctlr->bus_num = id;
3164         }
3165         ctlr->bus_lock_flag = 0;
3166         init_completion(&ctlr->xfer_completion);
3167         init_completion(&ctlr->cur_msg_completion);
3168         if (!ctlr->max_dma_len)
3169                 ctlr->max_dma_len = INT_MAX;
3170
3171         /*
3172          * Register the device, then userspace will see it.
3173          * Registration fails if the bus ID is in use.
3174          */
3175         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3176
3177         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3178                 status = spi_get_gpio_descs(ctlr);
3179                 if (status)
3180                         goto free_bus_id;
3181                 /*
3182                  * A controller using GPIO descriptors always
3183                  * supports SPI_CS_HIGH if need be.
3184                  */
3185                 ctlr->mode_bits |= SPI_CS_HIGH;
3186         }
3187
3188         /*
3189          * Even if it's just one always-selected device, there must
3190          * be at least one chipselect.
3191          */
3192         if (!ctlr->num_chipselect) {
3193                 status = -EINVAL;
3194                 goto free_bus_id;
3195         }
3196
3197         /* Setting last_cs to -1 means no chip selected */
3198         ctlr->last_cs = -1;
3199
3200         status = device_add(&ctlr->dev);
3201         if (status < 0)
3202                 goto free_bus_id;
3203         dev_dbg(dev, "registered %s %s\n",
3204                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3205                         dev_name(&ctlr->dev));
3206
3207         /*
3208          * If we're using a queued driver, start the queue. Note that we don't
3209          * need the queueing logic if the driver is only supporting high-level
3210          * memory operations.
3211          */
3212         if (ctlr->transfer) {
3213                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3214         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3215                 status = spi_controller_initialize_queue(ctlr);
3216                 if (status) {
3217                         device_del(&ctlr->dev);
3218                         goto free_bus_id;
3219                 }
3220         }
3221         /* Add statistics */
3222         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3223         if (!ctlr->pcpu_statistics) {
3224                 dev_err(dev, "Error allocating per-cpu statistics\n");
3225                 status = -ENOMEM;
3226                 goto destroy_queue;
3227         }
3228
3229         mutex_lock(&board_lock);
3230         list_add_tail(&ctlr->list, &spi_controller_list);
3231         list_for_each_entry(bi, &board_list, list)
3232                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3233         mutex_unlock(&board_lock);
3234
3235         /* Register devices from the device tree and ACPI */
3236         of_register_spi_devices(ctlr);
3237         acpi_register_spi_devices(ctlr);
3238         return status;
3239
3240 destroy_queue:
3241         spi_destroy_queue(ctlr);
3242 free_bus_id:
3243         mutex_lock(&board_lock);
3244         idr_remove(&spi_master_idr, ctlr->bus_num);
3245         mutex_unlock(&board_lock);
3246         return status;
3247 }
3248 EXPORT_SYMBOL_GPL(spi_register_controller);
3249
3250 static void devm_spi_unregister(struct device *dev, void *res)
3251 {
3252         spi_unregister_controller(*(struct spi_controller **)res);
3253 }
3254
3255 /**
3256  * devm_spi_register_controller - register managed SPI master or slave
3257  *      controller
3258  * @dev:    device managing SPI controller
3259  * @ctlr: initialized controller, originally from spi_alloc_master() or
3260  *      spi_alloc_slave()
3261  * Context: can sleep
3262  *
3263  * Register a SPI device as with spi_register_controller() which will
3264  * automatically be unregistered and freed.
3265  *
3266  * Return: zero on success, else a negative error code.
3267  */
3268 int devm_spi_register_controller(struct device *dev,
3269                                  struct spi_controller *ctlr)
3270 {
3271         struct spi_controller **ptr;
3272         int ret;
3273
3274         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3275         if (!ptr)
3276                 return -ENOMEM;
3277
3278         ret = spi_register_controller(ctlr);
3279         if (!ret) {
3280                 *ptr = ctlr;
3281                 devres_add(dev, ptr);
3282         } else {
3283                 devres_free(ptr);
3284         }
3285
3286         return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3289
3290 static int __unregister(struct device *dev, void *null)
3291 {
3292         spi_unregister_device(to_spi_device(dev));
3293         return 0;
3294 }
3295
3296 /**
3297  * spi_unregister_controller - unregister SPI master or slave controller
3298  * @ctlr: the controller being unregistered
3299  * Context: can sleep
3300  *
3301  * This call is used only by SPI controller drivers, which are the
3302  * only ones directly touching chip registers.
3303  *
3304  * This must be called from context that can sleep.
3305  *
3306  * Note that this function also drops a reference to the controller.
3307  */
3308 void spi_unregister_controller(struct spi_controller *ctlr)
3309 {
3310         struct spi_controller *found;
3311         int id = ctlr->bus_num;
3312
3313         /* Prevent addition of new devices, unregister existing ones */
3314         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3315                 mutex_lock(&ctlr->add_lock);
3316
3317         device_for_each_child(&ctlr->dev, NULL, __unregister);
3318
3319         /* First make sure that this controller was ever added */
3320         mutex_lock(&board_lock);
3321         found = idr_find(&spi_master_idr, id);
3322         mutex_unlock(&board_lock);
3323         if (ctlr->queued) {
3324                 if (spi_destroy_queue(ctlr))
3325                         dev_err(&ctlr->dev, "queue remove failed\n");
3326         }
3327         mutex_lock(&board_lock);
3328         list_del(&ctlr->list);
3329         mutex_unlock(&board_lock);
3330
3331         device_del(&ctlr->dev);
3332
3333         /* Free bus id */
3334         mutex_lock(&board_lock);
3335         if (found == ctlr)
3336                 idr_remove(&spi_master_idr, id);
3337         mutex_unlock(&board_lock);
3338
3339         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3340                 mutex_unlock(&ctlr->add_lock);
3341
3342         /* Release the last reference on the controller if its driver
3343          * has not yet been converted to devm_spi_alloc_master/slave().
3344          */
3345         if (!ctlr->devm_allocated)
3346                 put_device(&ctlr->dev);
3347 }
3348 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3349
3350 int spi_controller_suspend(struct spi_controller *ctlr)
3351 {
3352         int ret;
3353
3354         /* Basically no-ops for non-queued controllers */
3355         if (!ctlr->queued)
3356                 return 0;
3357
3358         ret = spi_stop_queue(ctlr);
3359         if (ret)
3360                 dev_err(&ctlr->dev, "queue stop failed\n");
3361
3362         return ret;
3363 }
3364 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3365
3366 int spi_controller_resume(struct spi_controller *ctlr)
3367 {
3368         int ret;
3369
3370         if (!ctlr->queued)
3371                 return 0;
3372
3373         ret = spi_start_queue(ctlr);
3374         if (ret)
3375                 dev_err(&ctlr->dev, "queue restart failed\n");
3376
3377         return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(spi_controller_resume);
3380
3381 /*-------------------------------------------------------------------------*/
3382
3383 /* Core methods for spi_message alterations */
3384
3385 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3386                                             struct spi_message *msg,
3387                                             void *res)
3388 {
3389         struct spi_replaced_transfers *rxfer = res;
3390         size_t i;
3391
3392         /* Call extra callback if requested */
3393         if (rxfer->release)
3394                 rxfer->release(ctlr, msg, res);
3395
3396         /* Insert replaced transfers back into the message */
3397         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3398
3399         /* Remove the formerly inserted entries */
3400         for (i = 0; i < rxfer->inserted; i++)
3401                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3402 }
3403
3404 /**
3405  * spi_replace_transfers - replace transfers with several transfers
3406  *                         and register change with spi_message.resources
3407  * @msg:           the spi_message we work upon
3408  * @xfer_first:    the first spi_transfer we want to replace
3409  * @remove:        number of transfers to remove
3410  * @insert:        the number of transfers we want to insert instead
3411  * @release:       extra release code necessary in some circumstances
3412  * @extradatasize: extra data to allocate (with alignment guarantees
3413  *                 of struct @spi_transfer)
3414  * @gfp:           gfp flags
3415  *
3416  * Returns: pointer to @spi_replaced_transfers,
3417  *          PTR_ERR(...) in case of errors.
3418  */
3419 static struct spi_replaced_transfers *spi_replace_transfers(
3420         struct spi_message *msg,
3421         struct spi_transfer *xfer_first,
3422         size_t remove,
3423         size_t insert,
3424         spi_replaced_release_t release,
3425         size_t extradatasize,
3426         gfp_t gfp)
3427 {
3428         struct spi_replaced_transfers *rxfer;
3429         struct spi_transfer *xfer;
3430         size_t i;
3431
3432         /* Allocate the structure using spi_res */
3433         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3434                               struct_size(rxfer, inserted_transfers, insert)
3435                               + extradatasize,
3436                               gfp);
3437         if (!rxfer)
3438                 return ERR_PTR(-ENOMEM);
3439
3440         /* The release code to invoke before running the generic release */
3441         rxfer->release = release;
3442
3443         /* Assign extradata */
3444         if (extradatasize)
3445                 rxfer->extradata =
3446                         &rxfer->inserted_transfers[insert];
3447
3448         /* Init the replaced_transfers list */
3449         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3450
3451         /*
3452          * Assign the list_entry after which we should reinsert
3453          * the @replaced_transfers - it may be spi_message.messages!
3454          */
3455         rxfer->replaced_after = xfer_first->transfer_list.prev;
3456
3457         /* Remove the requested number of transfers */
3458         for (i = 0; i < remove; i++) {
3459                 /*
3460                  * If the entry after replaced_after it is msg->transfers
3461                  * then we have been requested to remove more transfers
3462                  * than are in the list.
3463                  */
3464                 if (rxfer->replaced_after->next == &msg->transfers) {
3465                         dev_err(&msg->spi->dev,
3466                                 "requested to remove more spi_transfers than are available\n");
3467                         /* Insert replaced transfers back into the message */
3468                         list_splice(&rxfer->replaced_transfers,
3469                                     rxfer->replaced_after);
3470
3471                         /* Free the spi_replace_transfer structure... */
3472                         spi_res_free(rxfer);
3473
3474                         /* ...and return with an error */
3475                         return ERR_PTR(-EINVAL);
3476                 }
3477
3478                 /*
3479                  * Remove the entry after replaced_after from list of
3480                  * transfers and add it to list of replaced_transfers.
3481                  */
3482                 list_move_tail(rxfer->replaced_after->next,
3483                                &rxfer->replaced_transfers);
3484         }
3485
3486         /*
3487          * Create copy of the given xfer with identical settings
3488          * based on the first transfer to get removed.
3489          */
3490         for (i = 0; i < insert; i++) {
3491                 /* We need to run in reverse order */
3492                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3493
3494                 /* Copy all spi_transfer data */
3495                 memcpy(xfer, xfer_first, sizeof(*xfer));
3496
3497                 /* Add to list */
3498                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3499
3500                 /* Clear cs_change and delay for all but the last */
3501                 if (i) {
3502                         xfer->cs_change = false;
3503                         xfer->delay.value = 0;
3504                 }
3505         }
3506
3507         /* Set up inserted... */
3508         rxfer->inserted = insert;
3509
3510         /* ...and register it with spi_res/spi_message */
3511         spi_res_add(msg, rxfer);
3512
3513         return rxfer;
3514 }
3515
3516 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3517                                         struct spi_message *msg,
3518                                         struct spi_transfer **xferp,
3519                                         size_t maxsize,
3520                                         gfp_t gfp)
3521 {
3522         struct spi_transfer *xfer = *xferp, *xfers;
3523         struct spi_replaced_transfers *srt;
3524         size_t offset;
3525         size_t count, i;
3526
3527         /* Calculate how many we have to replace */
3528         count = DIV_ROUND_UP(xfer->len, maxsize);
3529
3530         /* Create replacement */
3531         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3532         if (IS_ERR(srt))
3533                 return PTR_ERR(srt);
3534         xfers = srt->inserted_transfers;
3535
3536         /*
3537          * Now handle each of those newly inserted spi_transfers.
3538          * Note that the replacements spi_transfers all are preset
3539          * to the same values as *xferp, so tx_buf, rx_buf and len
3540          * are all identical (as well as most others)
3541          * so we just have to fix up len and the pointers.
3542          *
3543          * This also includes support for the depreciated
3544          * spi_message.is_dma_mapped interface.
3545          */
3546
3547         /*
3548          * The first transfer just needs the length modified, so we
3549          * run it outside the loop.
3550          */
3551         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3552
3553         /* All the others need rx_buf/tx_buf also set */
3554         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3555                 /* Update rx_buf, tx_buf and dma */
3556                 if (xfers[i].rx_buf)
3557                         xfers[i].rx_buf += offset;
3558                 if (xfers[i].rx_dma)
3559                         xfers[i].rx_dma += offset;
3560                 if (xfers[i].tx_buf)
3561                         xfers[i].tx_buf += offset;
3562                 if (xfers[i].tx_dma)
3563                         xfers[i].tx_dma += offset;
3564
3565                 /* Update length */
3566                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3567         }
3568
3569         /*
3570          * We set up xferp to the last entry we have inserted,
3571          * so that we skip those already split transfers.
3572          */
3573         *xferp = &xfers[count - 1];
3574
3575         /* Increment statistics counters */
3576         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3577                                        transfers_split_maxsize);
3578         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3579                                        transfers_split_maxsize);
3580
3581         return 0;
3582 }
3583
3584 /**
3585  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3586  *                               when an individual transfer exceeds a
3587  *                               certain size
3588  * @ctlr:    the @spi_controller for this transfer
3589  * @msg:   the @spi_message to transform
3590  * @maxsize:  the maximum when to apply this
3591  * @gfp: GFP allocation flags
3592  *
3593  * Return: status of transformation
3594  */
3595 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3596                                 struct spi_message *msg,
3597                                 size_t maxsize,
3598                                 gfp_t gfp)
3599 {
3600         struct spi_transfer *xfer;
3601         int ret;
3602
3603         /*
3604          * Iterate over the transfer_list,
3605          * but note that xfer is advanced to the last transfer inserted
3606          * to avoid checking sizes again unnecessarily (also xfer does
3607          * potentially belong to a different list by the time the
3608          * replacement has happened).
3609          */
3610         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3611                 if (xfer->len > maxsize) {
3612                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3613                                                            maxsize, gfp);
3614                         if (ret)
3615                                 return ret;
3616                 }
3617         }
3618
3619         return 0;
3620 }
3621 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3622
3623
3624 /**
3625  * spi_split_transfers_maxwords - split spi transfers into multiple transfers
3626  *                                when an individual transfer exceeds a
3627  *                                certain number of SPI words
3628  * @ctlr:     the @spi_controller for this transfer
3629  * @msg:      the @spi_message to transform
3630  * @maxwords: the number of words to limit each transfer to
3631  * @gfp:      GFP allocation flags
3632  *
3633  * Return: status of transformation
3634  */
3635 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3636                                  struct spi_message *msg,
3637                                  size_t maxwords,
3638                                  gfp_t gfp)
3639 {
3640         struct spi_transfer *xfer;
3641
3642         /*
3643          * Iterate over the transfer_list,
3644          * but note that xfer is advanced to the last transfer inserted
3645          * to avoid checking sizes again unnecessarily (also xfer does
3646          * potentially belong to a different list by the time the
3647          * replacement has happened).
3648          */
3649         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3650                 size_t maxsize;
3651                 int ret;
3652
3653                 if (xfer->bits_per_word <= 8)
3654                         maxsize = maxwords;
3655                 else if (xfer->bits_per_word <= 16)
3656                         maxsize = 2 * maxwords;
3657                 else
3658                         maxsize = 4 * maxwords;
3659
3660                 if (xfer->len > maxsize) {
3661                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3662                                                            maxsize, gfp);
3663                         if (ret)
3664                                 return ret;
3665                 }
3666         }
3667
3668         return 0;
3669 }
3670 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3671
3672 /*-------------------------------------------------------------------------*/
3673
3674 /* Core methods for SPI controller protocol drivers.  Some of the
3675  * other core methods are currently defined as inline functions.
3676  */
3677
3678 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3679                                         u8 bits_per_word)
3680 {
3681         if (ctlr->bits_per_word_mask) {
3682                 /* Only 32 bits fit in the mask */
3683                 if (bits_per_word > 32)
3684                         return -EINVAL;
3685                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3686                         return -EINVAL;
3687         }
3688
3689         return 0;
3690 }
3691
3692 /**
3693  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3694  * @spi: the device that requires specific CS timing configuration
3695  *
3696  * Return: zero on success, else a negative error code.
3697  */
3698 static int spi_set_cs_timing(struct spi_device *spi)
3699 {
3700         struct device *parent = spi->controller->dev.parent;
3701         int status = 0;
3702
3703         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3704                 if (spi->controller->auto_runtime_pm) {
3705                         status = pm_runtime_get_sync(parent);
3706                         if (status < 0) {
3707                                 pm_runtime_put_noidle(parent);
3708                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3709                                         status);
3710                                 return status;
3711                         }
3712
3713                         status = spi->controller->set_cs_timing(spi);
3714                         pm_runtime_mark_last_busy(parent);
3715                         pm_runtime_put_autosuspend(parent);
3716                 } else {
3717                         status = spi->controller->set_cs_timing(spi);
3718                 }
3719         }
3720         return status;
3721 }
3722
3723 /**
3724  * spi_setup - setup SPI mode and clock rate
3725  * @spi: the device whose settings are being modified
3726  * Context: can sleep, and no requests are queued to the device
3727  *
3728  * SPI protocol drivers may need to update the transfer mode if the
3729  * device doesn't work with its default.  They may likewise need
3730  * to update clock rates or word sizes from initial values.  This function
3731  * changes those settings, and must be called from a context that can sleep.
3732  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3733  * effect the next time the device is selected and data is transferred to
3734  * or from it.  When this function returns, the spi device is deselected.
3735  *
3736  * Note that this call will fail if the protocol driver specifies an option
3737  * that the underlying controller or its driver does not support.  For
3738  * example, not all hardware supports wire transfers using nine bit words,
3739  * LSB-first wire encoding, or active-high chipselects.
3740  *
3741  * Return: zero on success, else a negative error code.
3742  */
3743 int spi_setup(struct spi_device *spi)
3744 {
3745         unsigned        bad_bits, ugly_bits;
3746         int             status = 0;
3747
3748         /*
3749          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3750          * are set at the same time.
3751          */
3752         if ((hweight_long(spi->mode &
3753                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3754             (hweight_long(spi->mode &
3755                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3756                 dev_err(&spi->dev,
3757                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3758                 return -EINVAL;
3759         }
3760         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3761         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3762                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3763                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3764                 return -EINVAL;
3765         /*
3766          * Help drivers fail *cleanly* when they need options
3767          * that aren't supported with their current controller.
3768          * SPI_CS_WORD has a fallback software implementation,
3769          * so it is ignored here.
3770          */
3771         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3772                                  SPI_NO_TX | SPI_NO_RX);
3773         ugly_bits = bad_bits &
3774                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3775                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3776         if (ugly_bits) {
3777                 dev_warn(&spi->dev,
3778                          "setup: ignoring unsupported mode bits %x\n",
3779                          ugly_bits);
3780                 spi->mode &= ~ugly_bits;
3781                 bad_bits &= ~ugly_bits;
3782         }
3783         if (bad_bits) {
3784                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3785                         bad_bits);
3786                 return -EINVAL;
3787         }
3788
3789         if (!spi->bits_per_word) {
3790                 spi->bits_per_word = 8;
3791         } else {
3792                 /*
3793                  * Some controllers may not support the default 8 bits-per-word
3794                  * so only perform the check when this is explicitly provided.
3795                  */
3796                 status = __spi_validate_bits_per_word(spi->controller,
3797                                                       spi->bits_per_word);
3798                 if (status)
3799                         return status;
3800         }
3801
3802         if (spi->controller->max_speed_hz &&
3803             (!spi->max_speed_hz ||
3804              spi->max_speed_hz > spi->controller->max_speed_hz))
3805                 spi->max_speed_hz = spi->controller->max_speed_hz;
3806
3807         mutex_lock(&spi->controller->io_mutex);
3808
3809         if (spi->controller->setup) {
3810                 status = spi->controller->setup(spi);
3811                 if (status) {
3812                         mutex_unlock(&spi->controller->io_mutex);
3813                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3814                                 status);
3815                         return status;
3816                 }
3817         }
3818
3819         status = spi_set_cs_timing(spi);
3820         if (status) {
3821                 mutex_unlock(&spi->controller->io_mutex);
3822                 return status;
3823         }
3824
3825         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3826                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3827                 if (status < 0) {
3828                         mutex_unlock(&spi->controller->io_mutex);
3829                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3830                                 status);
3831                         return status;
3832                 }
3833
3834                 /*
3835                  * We do not want to return positive value from pm_runtime_get,
3836                  * there are many instances of devices calling spi_setup() and
3837                  * checking for a non-zero return value instead of a negative
3838                  * return value.
3839                  */
3840                 status = 0;
3841
3842                 spi_set_cs(spi, false, true);
3843                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3844                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3845         } else {
3846                 spi_set_cs(spi, false, true);
3847         }
3848
3849         mutex_unlock(&spi->controller->io_mutex);
3850
3851         if (spi->rt && !spi->controller->rt) {
3852                 spi->controller->rt = true;
3853                 spi_set_thread_rt(spi->controller);
3854         }
3855
3856         trace_spi_setup(spi, status);
3857
3858         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3859                         spi->mode & SPI_MODE_X_MASK,
3860                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3861                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3862                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3863                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3864                         spi->bits_per_word, spi->max_speed_hz,
3865                         status);
3866
3867         return status;
3868 }
3869 EXPORT_SYMBOL_GPL(spi_setup);
3870
3871 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3872                                        struct spi_device *spi)
3873 {
3874         int delay1, delay2;
3875
3876         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3877         if (delay1 < 0)
3878                 return delay1;
3879
3880         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3881         if (delay2 < 0)
3882                 return delay2;
3883
3884         if (delay1 < delay2)
3885                 memcpy(&xfer->word_delay, &spi->word_delay,
3886                        sizeof(xfer->word_delay));
3887
3888         return 0;
3889 }
3890
3891 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3892 {
3893         struct spi_controller *ctlr = spi->controller;
3894         struct spi_transfer *xfer;
3895         int w_size;
3896
3897         if (list_empty(&message->transfers))
3898                 return -EINVAL;
3899
3900         /*
3901          * If an SPI controller does not support toggling the CS line on each
3902          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3903          * for the CS line, we can emulate the CS-per-word hardware function by
3904          * splitting transfers into one-word transfers and ensuring that
3905          * cs_change is set for each transfer.
3906          */
3907         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3908                                           spi_get_csgpiod(spi, 0))) {
3909                 size_t maxsize;
3910                 int ret;
3911
3912                 maxsize = (spi->bits_per_word + 7) / 8;
3913
3914                 /* spi_split_transfers_maxsize() requires message->spi */
3915                 message->spi = spi;
3916
3917                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3918                                                   GFP_KERNEL);
3919                 if (ret)
3920                         return ret;
3921
3922                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3923                         /* Don't change cs_change on the last entry in the list */
3924                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3925                                 break;
3926                         xfer->cs_change = 1;
3927                 }
3928         }
3929
3930         /*
3931          * Half-duplex links include original MicroWire, and ones with
3932          * only one data pin like SPI_3WIRE (switches direction) or where
3933          * either MOSI or MISO is missing.  They can also be caused by
3934          * software limitations.
3935          */
3936         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3937             (spi->mode & SPI_3WIRE)) {
3938                 unsigned flags = ctlr->flags;
3939
3940                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3941                         if (xfer->rx_buf && xfer->tx_buf)
3942                                 return -EINVAL;
3943                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3944                                 return -EINVAL;
3945                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3946                                 return -EINVAL;
3947                 }
3948         }
3949
3950         /*
3951          * Set transfer bits_per_word and max speed as spi device default if
3952          * it is not set for this transfer.
3953          * Set transfer tx_nbits and rx_nbits as single transfer default
3954          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3955          * Ensure transfer word_delay is at least as long as that required by
3956          * device itself.
3957          */
3958         message->frame_length = 0;
3959         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3960                 xfer->effective_speed_hz = 0;
3961                 message->frame_length += xfer->len;
3962                 if (!xfer->bits_per_word)
3963                         xfer->bits_per_word = spi->bits_per_word;
3964
3965                 if (!xfer->speed_hz)
3966                         xfer->speed_hz = spi->max_speed_hz;
3967
3968                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3969                         xfer->speed_hz = ctlr->max_speed_hz;
3970
3971                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3972                         return -EINVAL;
3973
3974                 /*
3975                  * SPI transfer length should be multiple of SPI word size
3976                  * where SPI word size should be power-of-two multiple.
3977                  */
3978                 if (xfer->bits_per_word <= 8)
3979                         w_size = 1;
3980                 else if (xfer->bits_per_word <= 16)
3981                         w_size = 2;
3982                 else
3983                         w_size = 4;
3984
3985                 /* No partial transfers accepted */
3986                 if (xfer->len % w_size)
3987                         return -EINVAL;
3988
3989                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3990                     xfer->speed_hz < ctlr->min_speed_hz)
3991                         return -EINVAL;
3992
3993                 if (xfer->tx_buf && !xfer->tx_nbits)
3994                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3995                 if (xfer->rx_buf && !xfer->rx_nbits)
3996                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3997                 /*
3998                  * Check transfer tx/rx_nbits:
3999                  * 1. check the value matches one of single, dual and quad
4000                  * 2. check tx/rx_nbits match the mode in spi_device
4001                  */
4002                 if (xfer->tx_buf) {
4003                         if (spi->mode & SPI_NO_TX)
4004                                 return -EINVAL;
4005                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4006                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4007                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4008                                 return -EINVAL;
4009                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4010                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4011                                 return -EINVAL;
4012                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4013                                 !(spi->mode & SPI_TX_QUAD))
4014                                 return -EINVAL;
4015                 }
4016                 /* Check transfer rx_nbits */
4017                 if (xfer->rx_buf) {
4018                         if (spi->mode & SPI_NO_RX)
4019                                 return -EINVAL;
4020                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4021                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4022                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4023                                 return -EINVAL;
4024                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4025                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4026                                 return -EINVAL;
4027                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4028                                 !(spi->mode & SPI_RX_QUAD))
4029                                 return -EINVAL;
4030                 }
4031
4032                 if (_spi_xfer_word_delay_update(xfer, spi))
4033                         return -EINVAL;
4034         }
4035
4036         message->status = -EINPROGRESS;
4037
4038         return 0;
4039 }
4040
4041 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4042 {
4043         struct spi_controller *ctlr = spi->controller;
4044         struct spi_transfer *xfer;
4045
4046         /*
4047          * Some controllers do not support doing regular SPI transfers. Return
4048          * ENOTSUPP when this is the case.
4049          */
4050         if (!ctlr->transfer)
4051                 return -ENOTSUPP;
4052
4053         message->spi = spi;
4054
4055         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4056         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4057
4058         trace_spi_message_submit(message);
4059
4060         if (!ctlr->ptp_sts_supported) {
4061                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4062                         xfer->ptp_sts_word_pre = 0;
4063                         ptp_read_system_prets(xfer->ptp_sts);
4064                 }
4065         }
4066
4067         return ctlr->transfer(spi, message);
4068 }
4069
4070 /**
4071  * spi_async - asynchronous SPI transfer
4072  * @spi: device with which data will be exchanged
4073  * @message: describes the data transfers, including completion callback
4074  * Context: any (irqs may be blocked, etc)
4075  *
4076  * This call may be used in_irq and other contexts which can't sleep,
4077  * as well as from task contexts which can sleep.
4078  *
4079  * The completion callback is invoked in a context which can't sleep.
4080  * Before that invocation, the value of message->status is undefined.
4081  * When the callback is issued, message->status holds either zero (to
4082  * indicate complete success) or a negative error code.  After that
4083  * callback returns, the driver which issued the transfer request may
4084  * deallocate the associated memory; it's no longer in use by any SPI
4085  * core or controller driver code.
4086  *
4087  * Note that although all messages to a spi_device are handled in
4088  * FIFO order, messages may go to different devices in other orders.
4089  * Some device might be higher priority, or have various "hard" access
4090  * time requirements, for example.
4091  *
4092  * On detection of any fault during the transfer, processing of
4093  * the entire message is aborted, and the device is deselected.
4094  * Until returning from the associated message completion callback,
4095  * no other spi_message queued to that device will be processed.
4096  * (This rule applies equally to all the synchronous transfer calls,
4097  * which are wrappers around this core asynchronous primitive.)
4098  *
4099  * Return: zero on success, else a negative error code.
4100  */
4101 int spi_async(struct spi_device *spi, struct spi_message *message)
4102 {
4103         struct spi_controller *ctlr = spi->controller;
4104         int ret;
4105         unsigned long flags;
4106
4107         ret = __spi_validate(spi, message);
4108         if (ret != 0)
4109                 return ret;
4110
4111         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4112
4113         if (ctlr->bus_lock_flag)
4114                 ret = -EBUSY;
4115         else
4116                 ret = __spi_async(spi, message);
4117
4118         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4119
4120         return ret;
4121 }
4122 EXPORT_SYMBOL_GPL(spi_async);
4123
4124 /**
4125  * spi_async_locked - version of spi_async with exclusive bus usage
4126  * @spi: device with which data will be exchanged
4127  * @message: describes the data transfers, including completion callback
4128  * Context: any (irqs may be blocked, etc)
4129  *
4130  * This call may be used in_irq and other contexts which can't sleep,
4131  * as well as from task contexts which can sleep.
4132  *
4133  * The completion callback is invoked in a context which can't sleep.
4134  * Before that invocation, the value of message->status is undefined.
4135  * When the callback is issued, message->status holds either zero (to
4136  * indicate complete success) or a negative error code.  After that
4137  * callback returns, the driver which issued the transfer request may
4138  * deallocate the associated memory; it's no longer in use by any SPI
4139  * core or controller driver code.
4140  *
4141  * Note that although all messages to a spi_device are handled in
4142  * FIFO order, messages may go to different devices in other orders.
4143  * Some device might be higher priority, or have various "hard" access
4144  * time requirements, for example.
4145  *
4146  * On detection of any fault during the transfer, processing of
4147  * the entire message is aborted, and the device is deselected.
4148  * Until returning from the associated message completion callback,
4149  * no other spi_message queued to that device will be processed.
4150  * (This rule applies equally to all the synchronous transfer calls,
4151  * which are wrappers around this core asynchronous primitive.)
4152  *
4153  * Return: zero on success, else a negative error code.
4154  */
4155 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4156 {
4157         struct spi_controller *ctlr = spi->controller;
4158         int ret;
4159         unsigned long flags;
4160
4161         ret = __spi_validate(spi, message);
4162         if (ret != 0)
4163                 return ret;
4164
4165         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4166
4167         ret = __spi_async(spi, message);
4168
4169         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4170
4171         return ret;
4172
4173 }
4174
4175 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4176 {
4177         bool was_busy;
4178         int ret;
4179
4180         mutex_lock(&ctlr->io_mutex);
4181
4182         was_busy = ctlr->busy;
4183
4184         ctlr->cur_msg = msg;
4185         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4186         if (ret)
4187                 goto out;
4188
4189         ctlr->cur_msg = NULL;
4190         ctlr->fallback = false;
4191
4192         if (!was_busy) {
4193                 kfree(ctlr->dummy_rx);
4194                 ctlr->dummy_rx = NULL;
4195                 kfree(ctlr->dummy_tx);
4196                 ctlr->dummy_tx = NULL;
4197                 if (ctlr->unprepare_transfer_hardware &&
4198                     ctlr->unprepare_transfer_hardware(ctlr))
4199                         dev_err(&ctlr->dev,
4200                                 "failed to unprepare transfer hardware\n");
4201                 spi_idle_runtime_pm(ctlr);
4202         }
4203
4204 out:
4205         mutex_unlock(&ctlr->io_mutex);
4206 }
4207
4208 /*-------------------------------------------------------------------------*/
4209
4210 /*
4211  * Utility methods for SPI protocol drivers, layered on
4212  * top of the core.  Some other utility methods are defined as
4213  * inline functions.
4214  */
4215
4216 static void spi_complete(void *arg)
4217 {
4218         complete(arg);
4219 }
4220
4221 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4222 {
4223         DECLARE_COMPLETION_ONSTACK(done);
4224         int status;
4225         struct spi_controller *ctlr = spi->controller;
4226
4227         status = __spi_validate(spi, message);
4228         if (status != 0)
4229                 return status;
4230
4231         message->spi = spi;
4232
4233         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4234         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4235
4236         /*
4237          * Checking queue_empty here only guarantees async/sync message
4238          * ordering when coming from the same context. It does not need to
4239          * guard against reentrancy from a different context. The io_mutex
4240          * will catch those cases.
4241          */
4242         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4243                 message->actual_length = 0;
4244                 message->status = -EINPROGRESS;
4245
4246                 trace_spi_message_submit(message);
4247
4248                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4249                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4250
4251                 __spi_transfer_message_noqueue(ctlr, message);
4252
4253                 return message->status;
4254         }
4255
4256         /*
4257          * There are messages in the async queue that could have originated
4258          * from the same context, so we need to preserve ordering.
4259          * Therefor we send the message to the async queue and wait until they
4260          * are completed.
4261          */
4262         message->complete = spi_complete;
4263         message->context = &done;
4264         status = spi_async_locked(spi, message);
4265         if (status == 0) {
4266                 wait_for_completion(&done);
4267                 status = message->status;
4268         }
4269         message->context = NULL;
4270
4271         return status;
4272 }
4273
4274 /**
4275  * spi_sync - blocking/synchronous SPI data transfers
4276  * @spi: device with which data will be exchanged
4277  * @message: describes the data transfers
4278  * Context: can sleep
4279  *
4280  * This call may only be used from a context that may sleep.  The sleep
4281  * is non-interruptible, and has no timeout.  Low-overhead controller
4282  * drivers may DMA directly into and out of the message buffers.
4283  *
4284  * Note that the SPI device's chip select is active during the message,
4285  * and then is normally disabled between messages.  Drivers for some
4286  * frequently-used devices may want to minimize costs of selecting a chip,
4287  * by leaving it selected in anticipation that the next message will go
4288  * to the same chip.  (That may increase power usage.)
4289  *
4290  * Also, the caller is guaranteeing that the memory associated with the
4291  * message will not be freed before this call returns.
4292  *
4293  * Return: zero on success, else a negative error code.
4294  */
4295 int spi_sync(struct spi_device *spi, struct spi_message *message)
4296 {
4297         int ret;
4298
4299         mutex_lock(&spi->controller->bus_lock_mutex);
4300         ret = __spi_sync(spi, message);
4301         mutex_unlock(&spi->controller->bus_lock_mutex);
4302
4303         return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(spi_sync);
4306
4307 /**
4308  * spi_sync_locked - version of spi_sync with exclusive bus usage
4309  * @spi: device with which data will be exchanged
4310  * @message: describes the data transfers
4311  * Context: can sleep
4312  *
4313  * This call may only be used from a context that may sleep.  The sleep
4314  * is non-interruptible, and has no timeout.  Low-overhead controller
4315  * drivers may DMA directly into and out of the message buffers.
4316  *
4317  * This call should be used by drivers that require exclusive access to the
4318  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4319  * be released by a spi_bus_unlock call when the exclusive access is over.
4320  *
4321  * Return: zero on success, else a negative error code.
4322  */
4323 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4324 {
4325         return __spi_sync(spi, message);
4326 }
4327 EXPORT_SYMBOL_GPL(spi_sync_locked);
4328
4329 /**
4330  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4331  * @ctlr: SPI bus master that should be locked for exclusive bus access
4332  * Context: can sleep
4333  *
4334  * This call may only be used from a context that may sleep.  The sleep
4335  * is non-interruptible, and has no timeout.
4336  *
4337  * This call should be used by drivers that require exclusive access to the
4338  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4339  * exclusive access is over. Data transfer must be done by spi_sync_locked
4340  * and spi_async_locked calls when the SPI bus lock is held.
4341  *
4342  * Return: always zero.
4343  */
4344 int spi_bus_lock(struct spi_controller *ctlr)
4345 {
4346         unsigned long flags;
4347
4348         mutex_lock(&ctlr->bus_lock_mutex);
4349
4350         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4351         ctlr->bus_lock_flag = 1;
4352         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4353
4354         /* Mutex remains locked until spi_bus_unlock() is called */
4355
4356         return 0;
4357 }
4358 EXPORT_SYMBOL_GPL(spi_bus_lock);
4359
4360 /**
4361  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4362  * @ctlr: SPI bus master that was locked for exclusive bus access
4363  * Context: can sleep
4364  *
4365  * This call may only be used from a context that may sleep.  The sleep
4366  * is non-interruptible, and has no timeout.
4367  *
4368  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4369  * call.
4370  *
4371  * Return: always zero.
4372  */
4373 int spi_bus_unlock(struct spi_controller *ctlr)
4374 {
4375         ctlr->bus_lock_flag = 0;
4376
4377         mutex_unlock(&ctlr->bus_lock_mutex);
4378
4379         return 0;
4380 }
4381 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4382
4383 /* Portable code must never pass more than 32 bytes */
4384 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4385
4386 static u8       *buf;
4387
4388 /**
4389  * spi_write_then_read - SPI synchronous write followed by read
4390  * @spi: device with which data will be exchanged
4391  * @txbuf: data to be written (need not be dma-safe)
4392  * @n_tx: size of txbuf, in bytes
4393  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4394  * @n_rx: size of rxbuf, in bytes
4395  * Context: can sleep
4396  *
4397  * This performs a half duplex MicroWire style transaction with the
4398  * device, sending txbuf and then reading rxbuf.  The return value
4399  * is zero for success, else a negative errno status code.
4400  * This call may only be used from a context that may sleep.
4401  *
4402  * Parameters to this routine are always copied using a small buffer.
4403  * Performance-sensitive or bulk transfer code should instead use
4404  * spi_{async,sync}() calls with dma-safe buffers.
4405  *
4406  * Return: zero on success, else a negative error code.
4407  */
4408 int spi_write_then_read(struct spi_device *spi,
4409                 const void *txbuf, unsigned n_tx,
4410                 void *rxbuf, unsigned n_rx)
4411 {
4412         static DEFINE_MUTEX(lock);
4413
4414         int                     status;
4415         struct spi_message      message;
4416         struct spi_transfer     x[2];
4417         u8                      *local_buf;
4418
4419         /*
4420          * Use preallocated DMA-safe buffer if we can. We can't avoid
4421          * copying here, (as a pure convenience thing), but we can
4422          * keep heap costs out of the hot path unless someone else is
4423          * using the pre-allocated buffer or the transfer is too large.
4424          */
4425         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4426                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4427                                     GFP_KERNEL | GFP_DMA);
4428                 if (!local_buf)
4429                         return -ENOMEM;
4430         } else {
4431                 local_buf = buf;
4432         }
4433
4434         spi_message_init(&message);
4435         memset(x, 0, sizeof(x));
4436         if (n_tx) {
4437                 x[0].len = n_tx;
4438                 spi_message_add_tail(&x[0], &message);
4439         }
4440         if (n_rx) {
4441                 x[1].len = n_rx;
4442                 spi_message_add_tail(&x[1], &message);
4443         }
4444
4445         memcpy(local_buf, txbuf, n_tx);
4446         x[0].tx_buf = local_buf;
4447         x[1].rx_buf = local_buf + n_tx;
4448
4449         /* Do the i/o */
4450         status = spi_sync(spi, &message);
4451         if (status == 0)
4452                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4453
4454         if (x[0].tx_buf == buf)
4455                 mutex_unlock(&lock);
4456         else
4457                 kfree(local_buf);
4458
4459         return status;
4460 }
4461 EXPORT_SYMBOL_GPL(spi_write_then_read);
4462
4463 /*-------------------------------------------------------------------------*/
4464
4465 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4466 /* Must call put_device() when done with returned spi_device device */
4467 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4468 {
4469         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4470
4471         return dev ? to_spi_device(dev) : NULL;
4472 }
4473
4474 /* The spi controllers are not using spi_bus, so we find it with another way */
4475 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4476 {
4477         struct device *dev;
4478
4479         dev = class_find_device_by_of_node(&spi_master_class, node);
4480         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4481                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4482         if (!dev)
4483                 return NULL;
4484
4485         /* Reference got in class_find_device */
4486         return container_of(dev, struct spi_controller, dev);
4487 }
4488
4489 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4490                          void *arg)
4491 {
4492         struct of_reconfig_data *rd = arg;
4493         struct spi_controller *ctlr;
4494         struct spi_device *spi;
4495
4496         switch (of_reconfig_get_state_change(action, arg)) {
4497         case OF_RECONFIG_CHANGE_ADD:
4498                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4499                 if (ctlr == NULL)
4500                         return NOTIFY_OK;       /* Not for us */
4501
4502                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4503                         put_device(&ctlr->dev);
4504                         return NOTIFY_OK;
4505                 }
4506
4507                 /*
4508                  * Clear the flag before adding the device so that fw_devlink
4509                  * doesn't skip adding consumers to this device.
4510                  */
4511                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4512                 spi = of_register_spi_device(ctlr, rd->dn);
4513                 put_device(&ctlr->dev);
4514
4515                 if (IS_ERR(spi)) {
4516                         pr_err("%s: failed to create for '%pOF'\n",
4517                                         __func__, rd->dn);
4518                         of_node_clear_flag(rd->dn, OF_POPULATED);
4519                         return notifier_from_errno(PTR_ERR(spi));
4520                 }
4521                 break;
4522
4523         case OF_RECONFIG_CHANGE_REMOVE:
4524                 /* Already depopulated? */
4525                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4526                         return NOTIFY_OK;
4527
4528                 /* Find our device by node */
4529                 spi = of_find_spi_device_by_node(rd->dn);
4530                 if (spi == NULL)
4531                         return NOTIFY_OK;       /* No? not meant for us */
4532
4533                 /* Unregister takes one ref away */
4534                 spi_unregister_device(spi);
4535
4536                 /* And put the reference of the find */
4537                 put_device(&spi->dev);
4538                 break;
4539         }
4540
4541         return NOTIFY_OK;
4542 }
4543
4544 static struct notifier_block spi_of_notifier = {
4545         .notifier_call = of_spi_notify,
4546 };
4547 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4548 extern struct notifier_block spi_of_notifier;
4549 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4550
4551 #if IS_ENABLED(CONFIG_ACPI)
4552 static int spi_acpi_controller_match(struct device *dev, const void *data)
4553 {
4554         return ACPI_COMPANION(dev->parent) == data;
4555 }
4556
4557 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4558 {
4559         struct device *dev;
4560
4561         dev = class_find_device(&spi_master_class, NULL, adev,
4562                                 spi_acpi_controller_match);
4563         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4564                 dev = class_find_device(&spi_slave_class, NULL, adev,
4565                                         spi_acpi_controller_match);
4566         if (!dev)
4567                 return NULL;
4568
4569         return container_of(dev, struct spi_controller, dev);
4570 }
4571
4572 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4573 {
4574         struct device *dev;
4575
4576         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4577         return to_spi_device(dev);
4578 }
4579
4580 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4581                            void *arg)
4582 {
4583         struct acpi_device *adev = arg;
4584         struct spi_controller *ctlr;
4585         struct spi_device *spi;
4586
4587         switch (value) {
4588         case ACPI_RECONFIG_DEVICE_ADD:
4589                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4590                 if (!ctlr)
4591                         break;
4592
4593                 acpi_register_spi_device(ctlr, adev);
4594                 put_device(&ctlr->dev);
4595                 break;
4596         case ACPI_RECONFIG_DEVICE_REMOVE:
4597                 if (!acpi_device_enumerated(adev))
4598                         break;
4599
4600                 spi = acpi_spi_find_device_by_adev(adev);
4601                 if (!spi)
4602                         break;
4603
4604                 spi_unregister_device(spi);
4605                 put_device(&spi->dev);
4606                 break;
4607         }
4608
4609         return NOTIFY_OK;
4610 }
4611
4612 static struct notifier_block spi_acpi_notifier = {
4613         .notifier_call = acpi_spi_notify,
4614 };
4615 #else
4616 extern struct notifier_block spi_acpi_notifier;
4617 #endif
4618
4619 static int __init spi_init(void)
4620 {
4621         int     status;
4622
4623         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4624         if (!buf) {
4625                 status = -ENOMEM;
4626                 goto err0;
4627         }
4628
4629         status = bus_register(&spi_bus_type);
4630         if (status < 0)
4631                 goto err1;
4632
4633         status = class_register(&spi_master_class);
4634         if (status < 0)
4635                 goto err2;
4636
4637         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4638                 status = class_register(&spi_slave_class);
4639                 if (status < 0)
4640                         goto err3;
4641         }
4642
4643         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4644                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4645         if (IS_ENABLED(CONFIG_ACPI))
4646                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4647
4648         return 0;
4649
4650 err3:
4651         class_unregister(&spi_master_class);
4652 err2:
4653         bus_unregister(&spi_bus_type);
4654 err1:
4655         kfree(buf);
4656         buf = NULL;
4657 err0:
4658         return status;
4659 }
4660
4661 /*
4662  * A board_info is normally registered in arch_initcall(),
4663  * but even essential drivers wait till later.
4664  *
4665  * REVISIT only boardinfo really needs static linking. The rest (device and
4666  * driver registration) _could_ be dynamically linked (modular) ... Costs
4667  * include needing to have boardinfo data structures be much more public.
4668  */
4669 postcore_initcall(spi_init);