Merge tag 'bcachefs-2024-05-24' of https://evilpiepirate.org/git/bcachefs
[linux-2.6-block.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_message *msg)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if (spi_valid_txbuf(msg, xfer))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if (spi_valid_rxbuf(msg, xfer))
334                 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336         u64_stats_update_end(&stats->syncp);
337         put_cpu();
338 }
339
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346         while (id->name[0]) {
347                 if (!strcmp(name, id->name))
348                         return id;
349                 id++;
350         }
351         return NULL;
352 }
353
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358         return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364         const void *match;
365
366         match = device_get_match_data(&sdev->dev);
367         if (match)
368                 return match;
369
370         return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
374 static int spi_match_device(struct device *dev, struct device_driver *drv)
375 {
376         const struct spi_device *spi = to_spi_device(dev);
377         const struct spi_driver *sdrv = to_spi_driver(drv);
378
379         /* Check override first, and if set, only use the named driver */
380         if (spi->driver_override)
381                 return strcmp(spi->driver_override, drv->name) == 0;
382
383         /* Attempt an OF style match */
384         if (of_driver_match_device(dev, drv))
385                 return 1;
386
387         /* Then try ACPI */
388         if (acpi_driver_match_device(dev, drv))
389                 return 1;
390
391         if (sdrv->id_table)
392                 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394         return strcmp(spi->modalias, drv->name) == 0;
395 }
396
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399         const struct spi_device         *spi = to_spi_device(dev);
400         int rc;
401
402         rc = acpi_device_uevent_modalias(dev, env);
403         if (rc != -ENODEV)
404                 return rc;
405
406         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
409 static int spi_probe(struct device *dev)
410 {
411         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
412         struct spi_device               *spi = to_spi_device(dev);
413         int ret;
414
415         ret = of_clk_set_defaults(dev->of_node, false);
416         if (ret)
417                 return ret;
418
419         if (dev->of_node) {
420                 spi->irq = of_irq_get(dev->of_node, 0);
421                 if (spi->irq == -EPROBE_DEFER)
422                         return -EPROBE_DEFER;
423                 if (spi->irq < 0)
424                         spi->irq = 0;
425         }
426
427         ret = dev_pm_domain_attach(dev, true);
428         if (ret)
429                 return ret;
430
431         if (sdrv->probe) {
432                 ret = sdrv->probe(spi);
433                 if (ret)
434                         dev_pm_domain_detach(dev, true);
435         }
436
437         return ret;
438 }
439
440 static void spi_remove(struct device *dev)
441 {
442         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
443
444         if (sdrv->remove)
445                 sdrv->remove(to_spi_device(dev));
446
447         dev_pm_domain_detach(dev, true);
448 }
449
450 static void spi_shutdown(struct device *dev)
451 {
452         if (dev->driver) {
453                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
454
455                 if (sdrv->shutdown)
456                         sdrv->shutdown(to_spi_device(dev));
457         }
458 }
459
460 const struct bus_type spi_bus_type = {
461         .name           = "spi",
462         .dev_groups     = spi_dev_groups,
463         .match          = spi_match_device,
464         .uevent         = spi_uevent,
465         .probe          = spi_probe,
466         .remove         = spi_remove,
467         .shutdown       = spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470
471 /**
472  * __spi_register_driver - register a SPI driver
473  * @owner: owner module of the driver to register
474  * @sdrv: the driver to register
475  * Context: can sleep
476  *
477  * Return: zero on success, else a negative error code.
478  */
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481         sdrv->driver.owner = owner;
482         sdrv->driver.bus = &spi_bus_type;
483
484         /*
485          * For Really Good Reasons we use spi: modaliases not of:
486          * modaliases for DT so module autoloading won't work if we
487          * don't have a spi_device_id as well as a compatible string.
488          */
489         if (sdrv->driver.of_match_table) {
490                 const struct of_device_id *of_id;
491
492                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493                      of_id++) {
494                         const char *of_name;
495
496                         /* Strip off any vendor prefix */
497                         of_name = strnchr(of_id->compatible,
498                                           sizeof(of_id->compatible), ',');
499                         if (of_name)
500                                 of_name++;
501                         else
502                                 of_name = of_id->compatible;
503
504                         if (sdrv->id_table) {
505                                 const struct spi_device_id *spi_id;
506
507                                 spi_id = spi_match_id(sdrv->id_table, of_name);
508                                 if (spi_id)
509                                         continue;
510                         } else {
511                                 if (strcmp(sdrv->driver.name, of_name) == 0)
512                                         continue;
513                         }
514
515                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
516                                 sdrv->driver.name, of_id->compatible);
517                 }
518         }
519
520         return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523
524 /*-------------------------------------------------------------------------*/
525
526 /*
527  * SPI devices should normally not be created by SPI device drivers; that
528  * would make them board-specific.  Similarly with SPI controller drivers.
529  * Device registration normally goes into like arch/.../mach.../board-YYY.c
530  * with other readonly (flashable) information about mainboard devices.
531  */
532
533 struct boardinfo {
534         struct list_head        list;
535         struct spi_board_info   board_info;
536 };
537
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540
541 /*
542  * Used to protect add/del operation for board_info list and
543  * spi_controller list, and their matching process also used
544  * to protect object of type struct idr.
545  */
546 static DEFINE_MUTEX(board_lock);
547
548 /**
549  * spi_alloc_device - Allocate a new SPI device
550  * @ctlr: Controller to which device is connected
551  * Context: can sleep
552  *
553  * Allows a driver to allocate and initialize a spi_device without
554  * registering it immediately.  This allows a driver to directly
555  * fill the spi_device with device parameters before calling
556  * spi_add_device() on it.
557  *
558  * Caller is responsible to call spi_add_device() on the returned
559  * spi_device structure to add it to the SPI controller.  If the caller
560  * needs to discard the spi_device without adding it, then it should
561  * call spi_dev_put() on it.
562  *
563  * Return: a pointer to the new device, or NULL.
564  */
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567         struct spi_device       *spi;
568
569         if (!spi_controller_get(ctlr))
570                 return NULL;
571
572         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573         if (!spi) {
574                 spi_controller_put(ctlr);
575                 return NULL;
576         }
577
578         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579         if (!spi->pcpu_statistics) {
580                 kfree(spi);
581                 spi_controller_put(ctlr);
582                 return NULL;
583         }
584
585         spi->controller = ctlr;
586         spi->dev.parent = &ctlr->dev;
587         spi->dev.bus = &spi_bus_type;
588         spi->dev.release = spidev_release;
589         spi->mode = ctlr->buswidth_override_bits;
590
591         device_initialize(&spi->dev);
592         return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595
596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598         struct device *dev = &spi->dev;
599         struct fwnode_handle *fwnode = dev_fwnode(dev);
600
601         if (is_acpi_device_node(fwnode)) {
602                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603                 return;
604         }
605
606         if (is_software_node(fwnode)) {
607                 dev_set_name(dev, "spi-%pfwP", fwnode);
608                 return;
609         }
610
611         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612                      spi_get_chipselect(spi, 0));
613 }
614
615 /*
616  * Zero(0) is a valid physical CS value and can be located at any
617  * logical CS in the spi->chip_select[]. If all the physical CS
618  * are initialized to 0 then It would be difficult to differentiate
619  * between a valid physical CS 0 & an unused logical CS whose physical
620  * CS can be 0. As a solution to this issue initialize all the CS to -1.
621  * Now all the unused logical CS will have -1 physical CS value & can be
622  * ignored while performing physical CS validity checks.
623  */
624 #define SPI_INVALID_CS          ((s8)-1)
625
626 static inline bool is_valid_cs(s8 chip_select)
627 {
628         return chip_select != SPI_INVALID_CS;
629 }
630
631 static inline int spi_dev_check_cs(struct device *dev,
632                                    struct spi_device *spi, u8 idx,
633                                    struct spi_device *new_spi, u8 new_idx)
634 {
635         u8 cs, cs_new;
636         u8 idx_new;
637
638         cs = spi_get_chipselect(spi, idx);
639         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640                 cs_new = spi_get_chipselect(new_spi, idx_new);
641                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642                         dev_err(dev, "chipselect %u already in use\n", cs_new);
643                         return -EBUSY;
644                 }
645         }
646         return 0;
647 }
648
649 static int spi_dev_check(struct device *dev, void *data)
650 {
651         struct spi_device *spi = to_spi_device(dev);
652         struct spi_device *new_spi = data;
653         int status, idx;
654
655         if (spi->controller == new_spi->controller) {
656                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658                         if (status)
659                                 return status;
660                 }
661         }
662         return 0;
663 }
664
665 static void spi_cleanup(struct spi_device *spi)
666 {
667         if (spi->controller->cleanup)
668                 spi->controller->cleanup(spi);
669 }
670
671 static int __spi_add_device(struct spi_device *spi)
672 {
673         struct spi_controller *ctlr = spi->controller;
674         struct device *dev = ctlr->dev.parent;
675         int status, idx;
676         u8 cs;
677
678         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679                 /* Chipselects are numbered 0..max; validate. */
680                 cs = spi_get_chipselect(spi, idx);
681                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683                                 ctlr->num_chipselect);
684                         return -EINVAL;
685                 }
686         }
687
688         /*
689          * Make sure that multiple logical CS doesn't map to the same physical CS.
690          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691          */
692         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
693                 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
694                 if (status)
695                         return status;
696         }
697
698         /* Set the bus ID string */
699         spi_dev_set_name(spi);
700
701         /*
702          * We need to make sure there's no other device with this
703          * chipselect **BEFORE** we call setup(), else we'll trash
704          * its configuration.
705          */
706         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
707         if (status)
708                 return status;
709
710         /* Controller may unregister concurrently */
711         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
712             !device_is_registered(&ctlr->dev)) {
713                 return -ENODEV;
714         }
715
716         if (ctlr->cs_gpiods) {
717                 u8 cs;
718
719                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
720                         cs = spi_get_chipselect(spi, idx);
721                         if (is_valid_cs(cs))
722                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
723                 }
724         }
725
726         /*
727          * Drivers may modify this initial i/o setup, but will
728          * normally rely on the device being setup.  Devices
729          * using SPI_CS_HIGH can't coexist well otherwise...
730          */
731         status = spi_setup(spi);
732         if (status < 0) {
733                 dev_err(dev, "can't setup %s, status %d\n",
734                                 dev_name(&spi->dev), status);
735                 return status;
736         }
737
738         /* Device may be bound to an active driver when this returns */
739         status = device_add(&spi->dev);
740         if (status < 0) {
741                 dev_err(dev, "can't add %s, status %d\n",
742                                 dev_name(&spi->dev), status);
743                 spi_cleanup(spi);
744         } else {
745                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
746         }
747
748         return status;
749 }
750
751 /**
752  * spi_add_device - Add spi_device allocated with spi_alloc_device
753  * @spi: spi_device to register
754  *
755  * Companion function to spi_alloc_device.  Devices allocated with
756  * spi_alloc_device can be added onto the SPI bus with this function.
757  *
758  * Return: 0 on success; negative errno on failure
759  */
760 int spi_add_device(struct spi_device *spi)
761 {
762         struct spi_controller *ctlr = spi->controller;
763         int status;
764
765         /* Set the bus ID string */
766         spi_dev_set_name(spi);
767
768         mutex_lock(&ctlr->add_lock);
769         status = __spi_add_device(spi);
770         mutex_unlock(&ctlr->add_lock);
771         return status;
772 }
773 EXPORT_SYMBOL_GPL(spi_add_device);
774
775 static void spi_set_all_cs_unused(struct spi_device *spi)
776 {
777         u8 idx;
778
779         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
780                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
781 }
782
783 /**
784  * spi_new_device - instantiate one new SPI device
785  * @ctlr: Controller to which device is connected
786  * @chip: Describes the SPI device
787  * Context: can sleep
788  *
789  * On typical mainboards, this is purely internal; and it's not needed
790  * after board init creates the hard-wired devices.  Some development
791  * platforms may not be able to use spi_register_board_info though, and
792  * this is exported so that for example a USB or parport based adapter
793  * driver could add devices (which it would learn about out-of-band).
794  *
795  * Return: the new device, or NULL.
796  */
797 struct spi_device *spi_new_device(struct spi_controller *ctlr,
798                                   struct spi_board_info *chip)
799 {
800         struct spi_device       *proxy;
801         int                     status;
802
803         /*
804          * NOTE:  caller did any chip->bus_num checks necessary.
805          *
806          * Also, unless we change the return value convention to use
807          * error-or-pointer (not NULL-or-pointer), troubleshootability
808          * suggests syslogged diagnostics are best here (ugh).
809          */
810
811         proxy = spi_alloc_device(ctlr);
812         if (!proxy)
813                 return NULL;
814
815         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
816
817         /* Use provided chip-select for proxy device */
818         spi_set_all_cs_unused(proxy);
819         spi_set_chipselect(proxy, 0, chip->chip_select);
820
821         proxy->max_speed_hz = chip->max_speed_hz;
822         proxy->mode = chip->mode;
823         proxy->irq = chip->irq;
824         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
825         proxy->dev.platform_data = (void *) chip->platform_data;
826         proxy->controller_data = chip->controller_data;
827         proxy->controller_state = NULL;
828         /*
829          * By default spi->chip_select[0] will hold the physical CS number,
830          * so set bit 0 in spi->cs_index_mask.
831          */
832         proxy->cs_index_mask = BIT(0);
833
834         if (chip->swnode) {
835                 status = device_add_software_node(&proxy->dev, chip->swnode);
836                 if (status) {
837                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838                                 chip->modalias, status);
839                         goto err_dev_put;
840                 }
841         }
842
843         status = spi_add_device(proxy);
844         if (status < 0)
845                 goto err_dev_put;
846
847         return proxy;
848
849 err_dev_put:
850         device_remove_software_node(&proxy->dev);
851         spi_dev_put(proxy);
852         return NULL;
853 }
854 EXPORT_SYMBOL_GPL(spi_new_device);
855
856 /**
857  * spi_unregister_device - unregister a single SPI device
858  * @spi: spi_device to unregister
859  *
860  * Start making the passed SPI device vanish. Normally this would be handled
861  * by spi_unregister_controller().
862  */
863 void spi_unregister_device(struct spi_device *spi)
864 {
865         if (!spi)
866                 return;
867
868         if (spi->dev.of_node) {
869                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870                 of_node_put(spi->dev.of_node);
871         }
872         if (ACPI_COMPANION(&spi->dev))
873                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874         device_remove_software_node(&spi->dev);
875         device_del(&spi->dev);
876         spi_cleanup(spi);
877         put_device(&spi->dev);
878 }
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
880
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882                                               struct spi_board_info *bi)
883 {
884         struct spi_device *dev;
885
886         if (ctlr->bus_num != bi->bus_num)
887                 return;
888
889         dev = spi_new_device(ctlr, bi);
890         if (!dev)
891                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892                         bi->modalias);
893 }
894
895 /**
896  * spi_register_board_info - register SPI devices for a given board
897  * @info: array of chip descriptors
898  * @n: how many descriptors are provided
899  * Context: can sleep
900  *
901  * Board-specific early init code calls this (probably during arch_initcall)
902  * with segments of the SPI device table.  Any device nodes are created later,
903  * after the relevant parent SPI controller (bus_num) is defined.  We keep
904  * this table of devices forever, so that reloading a controller driver will
905  * not make Linux forget about these hard-wired devices.
906  *
907  * Other code can also call this, e.g. a particular add-on board might provide
908  * SPI devices through its expansion connector, so code initializing that board
909  * would naturally declare its SPI devices.
910  *
911  * The board info passed can safely be __initdata ... but be careful of
912  * any embedded pointers (platform_data, etc), they're copied as-is.
913  *
914  * Return: zero on success, else a negative error code.
915  */
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917 {
918         struct boardinfo *bi;
919         int i;
920
921         if (!n)
922                 return 0;
923
924         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
925         if (!bi)
926                 return -ENOMEM;
927
928         for (i = 0; i < n; i++, bi++, info++) {
929                 struct spi_controller *ctlr;
930
931                 memcpy(&bi->board_info, info, sizeof(*info));
932
933                 mutex_lock(&board_lock);
934                 list_add_tail(&bi->list, &board_list);
935                 list_for_each_entry(ctlr, &spi_controller_list, list)
936                         spi_match_controller_to_boardinfo(ctlr,
937                                                           &bi->board_info);
938                 mutex_unlock(&board_lock);
939         }
940
941         return 0;
942 }
943
944 /*-------------------------------------------------------------------------*/
945
946 /* Core methods for SPI resource management */
947
948 /**
949  * spi_res_alloc - allocate a spi resource that is life-cycle managed
950  *                 during the processing of a spi_message while using
951  *                 spi_transfer_one
952  * @spi:     the SPI device for which we allocate memory
953  * @release: the release code to execute for this resource
954  * @size:    size to alloc and return
955  * @gfp:     GFP allocation flags
956  *
957  * Return: the pointer to the allocated data
958  *
959  * This may get enhanced in the future to allocate from a memory pool
960  * of the @spi_device or @spi_controller to avoid repeated allocations.
961  */
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963                            size_t size, gfp_t gfp)
964 {
965         struct spi_res *sres;
966
967         sres = kzalloc(sizeof(*sres) + size, gfp);
968         if (!sres)
969                 return NULL;
970
971         INIT_LIST_HEAD(&sres->entry);
972         sres->release = release;
973
974         return sres->data;
975 }
976
977 /**
978  * spi_res_free - free an SPI resource
979  * @res: pointer to the custom data of a resource
980  */
981 static void spi_res_free(void *res)
982 {
983         struct spi_res *sres = container_of(res, struct spi_res, data);
984
985         if (!res)
986                 return;
987
988         WARN_ON(!list_empty(&sres->entry));
989         kfree(sres);
990 }
991
992 /**
993  * spi_res_add - add a spi_res to the spi_message
994  * @message: the SPI message
995  * @res:     the spi_resource
996  */
997 static void spi_res_add(struct spi_message *message, void *res)
998 {
999         struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001         WARN_ON(!list_empty(&sres->entry));
1002         list_add_tail(&sres->entry, &message->resources);
1003 }
1004
1005 /**
1006  * spi_res_release - release all SPI resources for this message
1007  * @ctlr:  the @spi_controller
1008  * @message: the @spi_message
1009  */
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011 {
1012         struct spi_res *res, *tmp;
1013
1014         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015                 if (res->release)
1016                         res->release(ctlr, message, res->data);
1017
1018                 list_del(&res->entry);
1019
1020                 kfree(res);
1021         }
1022 }
1023
1024 /*-------------------------------------------------------------------------*/
1025 #define spi_for_each_valid_cs(spi, idx)                         \
1026         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1027                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1028
1029 static inline bool spi_is_last_cs(struct spi_device *spi)
1030 {
1031         u8 idx;
1032         bool last = false;
1033
1034         spi_for_each_valid_cs(spi, idx) {
1035                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1036                         last = true;
1037         }
1038         return last;
1039 }
1040
1041 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1042 {
1043         /*
1044          * Historically ACPI has no means of the GPIO polarity and
1045          * thus the SPISerialBus() resource defines it on the per-chip
1046          * basis. In order to avoid a chain of negations, the GPIO
1047          * polarity is considered being Active High. Even for the cases
1048          * when _DSD() is involved (in the updated versions of ACPI)
1049          * the GPIO CS polarity must be defined Active High to avoid
1050          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1051          * into account.
1052          */
1053         if (has_acpi_companion(&spi->dev))
1054                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1055         else
1056                 /* Polarity handled by GPIO library */
1057                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1058
1059         if (activate)
1060                 spi_delay_exec(&spi->cs_setup, NULL);
1061         else
1062                 spi_delay_exec(&spi->cs_inactive, NULL);
1063 }
1064
1065 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1066 {
1067         bool activate = enable;
1068         u8 idx;
1069
1070         /*
1071          * Avoid calling into the driver (or doing delays) if the chip select
1072          * isn't actually changing from the last time this was called.
1073          */
1074         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1075                         spi_is_last_cs(spi)) ||
1076                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077                         !spi_is_last_cs(spi))) &&
1078             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1079                 return;
1080
1081         trace_spi_set_cs(spi, activate);
1082
1083         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1084         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1085                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1086         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1087
1088         if (spi->mode & SPI_CS_HIGH)
1089                 enable = !enable;
1090
1091         /*
1092          * Handle chip select delays for GPIO based CS or controllers without
1093          * programmable chip select timing.
1094          */
1095         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1096                 spi_delay_exec(&spi->cs_hold, NULL);
1097
1098         if (spi_is_csgpiod(spi)) {
1099                 if (!(spi->mode & SPI_NO_CS)) {
1100                         spi_for_each_valid_cs(spi, idx) {
1101                                 if (spi_get_csgpiod(spi, idx))
1102                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1103                         }
1104                 }
1105                 /* Some SPI masters need both GPIO CS & slave_select */
1106                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1107                     spi->controller->set_cs)
1108                         spi->controller->set_cs(spi, !enable);
1109         } else if (spi->controller->set_cs) {
1110                 spi->controller->set_cs(spi, !enable);
1111         }
1112
1113         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1114                 if (activate)
1115                         spi_delay_exec(&spi->cs_setup, NULL);
1116                 else
1117                         spi_delay_exec(&spi->cs_inactive, NULL);
1118         }
1119 }
1120
1121 #ifdef CONFIG_HAS_DMA
1122 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1123                              struct sg_table *sgt, void *buf, size_t len,
1124                              enum dma_data_direction dir, unsigned long attrs)
1125 {
1126         const bool vmalloced_buf = is_vmalloc_addr(buf);
1127         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1128 #ifdef CONFIG_HIGHMEM
1129         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1130                                 (unsigned long)buf < (PKMAP_BASE +
1131                                         (LAST_PKMAP * PAGE_SIZE)));
1132 #else
1133         const bool kmap_buf = false;
1134 #endif
1135         int desc_len;
1136         int sgs;
1137         struct page *vm_page;
1138         struct scatterlist *sg;
1139         void *sg_buf;
1140         size_t min;
1141         int i, ret;
1142
1143         if (vmalloced_buf || kmap_buf) {
1144                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1145                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1146         } else if (virt_addr_valid(buf)) {
1147                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1148                 sgs = DIV_ROUND_UP(len, desc_len);
1149         } else {
1150                 return -EINVAL;
1151         }
1152
1153         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1154         if (ret != 0)
1155                 return ret;
1156
1157         sg = &sgt->sgl[0];
1158         for (i = 0; i < sgs; i++) {
1159
1160                 if (vmalloced_buf || kmap_buf) {
1161                         /*
1162                          * Next scatterlist entry size is the minimum between
1163                          * the desc_len and the remaining buffer length that
1164                          * fits in a page.
1165                          */
1166                         min = min_t(size_t, desc_len,
1167                                     min_t(size_t, len,
1168                                           PAGE_SIZE - offset_in_page(buf)));
1169                         if (vmalloced_buf)
1170                                 vm_page = vmalloc_to_page(buf);
1171                         else
1172                                 vm_page = kmap_to_page(buf);
1173                         if (!vm_page) {
1174                                 sg_free_table(sgt);
1175                                 return -ENOMEM;
1176                         }
1177                         sg_set_page(sg, vm_page,
1178                                     min, offset_in_page(buf));
1179                 } else {
1180                         min = min_t(size_t, len, desc_len);
1181                         sg_buf = buf;
1182                         sg_set_buf(sg, sg_buf, min);
1183                 }
1184
1185                 buf += min;
1186                 len -= min;
1187                 sg = sg_next(sg);
1188         }
1189
1190         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1191         if (ret < 0) {
1192                 sg_free_table(sgt);
1193                 return ret;
1194         }
1195
1196         return 0;
1197 }
1198
1199 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1200                 struct sg_table *sgt, void *buf, size_t len,
1201                 enum dma_data_direction dir)
1202 {
1203         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1204 }
1205
1206 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1207                                 struct device *dev, struct sg_table *sgt,
1208                                 enum dma_data_direction dir,
1209                                 unsigned long attrs)
1210 {
1211         dma_unmap_sgtable(dev, sgt, dir, attrs);
1212         sg_free_table(sgt);
1213         sgt->orig_nents = 0;
1214         sgt->nents = 0;
1215 }
1216
1217 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1218                    struct sg_table *sgt, enum dma_data_direction dir)
1219 {
1220         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1221 }
1222
1223 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1224 {
1225         struct device *tx_dev, *rx_dev;
1226         struct spi_transfer *xfer;
1227         int ret;
1228
1229         if (!ctlr->can_dma)
1230                 return 0;
1231
1232         if (ctlr->dma_tx)
1233                 tx_dev = ctlr->dma_tx->device->dev;
1234         else if (ctlr->dma_map_dev)
1235                 tx_dev = ctlr->dma_map_dev;
1236         else
1237                 tx_dev = ctlr->dev.parent;
1238
1239         if (ctlr->dma_rx)
1240                 rx_dev = ctlr->dma_rx->device->dev;
1241         else if (ctlr->dma_map_dev)
1242                 rx_dev = ctlr->dma_map_dev;
1243         else
1244                 rx_dev = ctlr->dev.parent;
1245
1246         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247                 /* The sync is done before each transfer. */
1248                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1249
1250                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1251                         continue;
1252
1253                 if (xfer->tx_buf != NULL) {
1254                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1255                                                 (void *)xfer->tx_buf,
1256                                                 xfer->len, DMA_TO_DEVICE,
1257                                                 attrs);
1258                         if (ret != 0)
1259                                 return ret;
1260                 }
1261
1262                 if (xfer->rx_buf != NULL) {
1263                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1264                                                 xfer->rx_buf, xfer->len,
1265                                                 DMA_FROM_DEVICE, attrs);
1266                         if (ret != 0) {
1267                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1268                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1269                                                 attrs);
1270
1271                                 return ret;
1272                         }
1273                 }
1274         }
1275
1276         ctlr->cur_rx_dma_dev = rx_dev;
1277         ctlr->cur_tx_dma_dev = tx_dev;
1278         ctlr->cur_msg_mapped = true;
1279
1280         return 0;
1281 }
1282
1283 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1284 {
1285         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1286         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1287         struct spi_transfer *xfer;
1288
1289         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1290                 return 0;
1291
1292         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1293                 /* The sync has already been done after each transfer. */
1294                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1295
1296                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1297                         continue;
1298
1299                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1300                                     DMA_FROM_DEVICE, attrs);
1301                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1302                                     DMA_TO_DEVICE, attrs);
1303         }
1304
1305         ctlr->cur_msg_mapped = false;
1306
1307         return 0;
1308 }
1309
1310 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1311                                     struct spi_transfer *xfer)
1312 {
1313         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1314         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1315
1316         if (!ctlr->cur_msg_mapped)
1317                 return;
1318
1319         dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1320         dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1321 }
1322
1323 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1324                                  struct spi_transfer *xfer)
1325 {
1326         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328
1329         if (!ctlr->cur_msg_mapped)
1330                 return;
1331
1332         dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333         dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1334 }
1335 #else /* !CONFIG_HAS_DMA */
1336 static inline int __spi_map_msg(struct spi_controller *ctlr,
1337                                 struct spi_message *msg)
1338 {
1339         return 0;
1340 }
1341
1342 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1343                                   struct spi_message *msg)
1344 {
1345         return 0;
1346 }
1347
1348 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1349                                     struct spi_transfer *xfer)
1350 {
1351 }
1352
1353 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1354                                  struct spi_transfer *xfer)
1355 {
1356 }
1357 #endif /* !CONFIG_HAS_DMA */
1358
1359 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1360                                 struct spi_message *msg)
1361 {
1362         struct spi_transfer *xfer;
1363
1364         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1365                 /*
1366                  * Restore the original value of tx_buf or rx_buf if they are
1367                  * NULL.
1368                  */
1369                 if (xfer->tx_buf == ctlr->dummy_tx)
1370                         xfer->tx_buf = NULL;
1371                 if (xfer->rx_buf == ctlr->dummy_rx)
1372                         xfer->rx_buf = NULL;
1373         }
1374
1375         return __spi_unmap_msg(ctlr, msg);
1376 }
1377
1378 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1379 {
1380         struct spi_transfer *xfer;
1381         void *tmp;
1382         unsigned int max_tx, max_rx;
1383
1384         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1385                 && !(msg->spi->mode & SPI_3WIRE)) {
1386                 max_tx = 0;
1387                 max_rx = 0;
1388
1389                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1390                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1391                             !xfer->tx_buf)
1392                                 max_tx = max(xfer->len, max_tx);
1393                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1394                             !xfer->rx_buf)
1395                                 max_rx = max(xfer->len, max_rx);
1396                 }
1397
1398                 if (max_tx) {
1399                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1400                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1401                         if (!tmp)
1402                                 return -ENOMEM;
1403                         ctlr->dummy_tx = tmp;
1404                 }
1405
1406                 if (max_rx) {
1407                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1408                                        GFP_KERNEL | GFP_DMA);
1409                         if (!tmp)
1410                                 return -ENOMEM;
1411                         ctlr->dummy_rx = tmp;
1412                 }
1413
1414                 if (max_tx || max_rx) {
1415                         list_for_each_entry(xfer, &msg->transfers,
1416                                             transfer_list) {
1417                                 if (!xfer->len)
1418                                         continue;
1419                                 if (!xfer->tx_buf)
1420                                         xfer->tx_buf = ctlr->dummy_tx;
1421                                 if (!xfer->rx_buf)
1422                                         xfer->rx_buf = ctlr->dummy_rx;
1423                         }
1424                 }
1425         }
1426
1427         return __spi_map_msg(ctlr, msg);
1428 }
1429
1430 static int spi_transfer_wait(struct spi_controller *ctlr,
1431                              struct spi_message *msg,
1432                              struct spi_transfer *xfer)
1433 {
1434         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1435         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1436         u32 speed_hz = xfer->speed_hz;
1437         unsigned long long ms;
1438
1439         if (spi_controller_is_slave(ctlr)) {
1440                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1441                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1442                         return -EINTR;
1443                 }
1444         } else {
1445                 if (!speed_hz)
1446                         speed_hz = 100000;
1447
1448                 /*
1449                  * For each byte we wait for 8 cycles of the SPI clock.
1450                  * Since speed is defined in Hz and we want milliseconds,
1451                  * use respective multiplier, but before the division,
1452                  * otherwise we may get 0 for short transfers.
1453                  */
1454                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1455                 do_div(ms, speed_hz);
1456
1457                 /*
1458                  * Increase it twice and add 200 ms tolerance, use
1459                  * predefined maximum in case of overflow.
1460                  */
1461                 ms += ms + 200;
1462                 if (ms > UINT_MAX)
1463                         ms = UINT_MAX;
1464
1465                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1466                                                  msecs_to_jiffies(ms));
1467
1468                 if (ms == 0) {
1469                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1470                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1471                         dev_err(&msg->spi->dev,
1472                                 "SPI transfer timed out\n");
1473                         return -ETIMEDOUT;
1474                 }
1475
1476                 if (xfer->error & SPI_TRANS_FAIL_IO)
1477                         return -EIO;
1478         }
1479
1480         return 0;
1481 }
1482
1483 static void _spi_transfer_delay_ns(u32 ns)
1484 {
1485         if (!ns)
1486                 return;
1487         if (ns <= NSEC_PER_USEC) {
1488                 ndelay(ns);
1489         } else {
1490                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1491
1492                 if (us <= 10)
1493                         udelay(us);
1494                 else
1495                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1496         }
1497 }
1498
1499 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1500 {
1501         u32 delay = _delay->value;
1502         u32 unit = _delay->unit;
1503         u32 hz;
1504
1505         if (!delay)
1506                 return 0;
1507
1508         switch (unit) {
1509         case SPI_DELAY_UNIT_USECS:
1510                 delay *= NSEC_PER_USEC;
1511                 break;
1512         case SPI_DELAY_UNIT_NSECS:
1513                 /* Nothing to do here */
1514                 break;
1515         case SPI_DELAY_UNIT_SCK:
1516                 /* Clock cycles need to be obtained from spi_transfer */
1517                 if (!xfer)
1518                         return -EINVAL;
1519                 /*
1520                  * If there is unknown effective speed, approximate it
1521                  * by underestimating with half of the requested Hz.
1522                  */
1523                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1524                 if (!hz)
1525                         return -EINVAL;
1526
1527                 /* Convert delay to nanoseconds */
1528                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1529                 break;
1530         default:
1531                 return -EINVAL;
1532         }
1533
1534         return delay;
1535 }
1536 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1537
1538 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1539 {
1540         int delay;
1541
1542         might_sleep();
1543
1544         if (!_delay)
1545                 return -EINVAL;
1546
1547         delay = spi_delay_to_ns(_delay, xfer);
1548         if (delay < 0)
1549                 return delay;
1550
1551         _spi_transfer_delay_ns(delay);
1552
1553         return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(spi_delay_exec);
1556
1557 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1558                                           struct spi_transfer *xfer)
1559 {
1560         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1561         u32 delay = xfer->cs_change_delay.value;
1562         u32 unit = xfer->cs_change_delay.unit;
1563         int ret;
1564
1565         /* Return early on "fast" mode - for everything but USECS */
1566         if (!delay) {
1567                 if (unit == SPI_DELAY_UNIT_USECS)
1568                         _spi_transfer_delay_ns(default_delay_ns);
1569                 return;
1570         }
1571
1572         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1573         if (ret) {
1574                 dev_err_once(&msg->spi->dev,
1575                              "Use of unsupported delay unit %i, using default of %luus\n",
1576                              unit, default_delay_ns / NSEC_PER_USEC);
1577                 _spi_transfer_delay_ns(default_delay_ns);
1578         }
1579 }
1580
1581 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1582                                                   struct spi_transfer *xfer)
1583 {
1584         _spi_transfer_cs_change_delay(msg, xfer);
1585 }
1586 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1587
1588 /*
1589  * spi_transfer_one_message - Default implementation of transfer_one_message()
1590  *
1591  * This is a standard implementation of transfer_one_message() for
1592  * drivers which implement a transfer_one() operation.  It provides
1593  * standard handling of delays and chip select management.
1594  */
1595 static int spi_transfer_one_message(struct spi_controller *ctlr,
1596                                     struct spi_message *msg)
1597 {
1598         struct spi_transfer *xfer;
1599         bool keep_cs = false;
1600         int ret = 0;
1601         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1602         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1603
1604         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1605         spi_set_cs(msg->spi, !xfer->cs_off, false);
1606
1607         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1608         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1609
1610         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611                 trace_spi_transfer_start(msg, xfer);
1612
1613                 spi_statistics_add_transfer_stats(statm, xfer, msg);
1614                 spi_statistics_add_transfer_stats(stats, xfer, msg);
1615
1616                 if (!ctlr->ptp_sts_supported) {
1617                         xfer->ptp_sts_word_pre = 0;
1618                         ptp_read_system_prets(xfer->ptp_sts);
1619                 }
1620
1621                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1622                         reinit_completion(&ctlr->xfer_completion);
1623
1624 fallback_pio:
1625                         spi_dma_sync_for_device(ctlr, xfer);
1626                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1627                         if (ret < 0) {
1628                                 spi_dma_sync_for_cpu(ctlr, xfer);
1629
1630                                 if (ctlr->cur_msg_mapped &&
1631                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1632                                         __spi_unmap_msg(ctlr, msg);
1633                                         ctlr->fallback = true;
1634                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1635                                         goto fallback_pio;
1636                                 }
1637
1638                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1639                                                                errors);
1640                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1641                                                                errors);
1642                                 dev_err(&msg->spi->dev,
1643                                         "SPI transfer failed: %d\n", ret);
1644                                 goto out;
1645                         }
1646
1647                         if (ret > 0) {
1648                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1649                                 if (ret < 0)
1650                                         msg->status = ret;
1651                         }
1652
1653                         spi_dma_sync_for_cpu(ctlr, xfer);
1654                 } else {
1655                         if (xfer->len)
1656                                 dev_err(&msg->spi->dev,
1657                                         "Bufferless transfer has length %u\n",
1658                                         xfer->len);
1659                 }
1660
1661                 if (!ctlr->ptp_sts_supported) {
1662                         ptp_read_system_postts(xfer->ptp_sts);
1663                         xfer->ptp_sts_word_post = xfer->len;
1664                 }
1665
1666                 trace_spi_transfer_stop(msg, xfer);
1667
1668                 if (msg->status != -EINPROGRESS)
1669                         goto out;
1670
1671                 spi_transfer_delay_exec(xfer);
1672
1673                 if (xfer->cs_change) {
1674                         if (list_is_last(&xfer->transfer_list,
1675                                          &msg->transfers)) {
1676                                 keep_cs = true;
1677                         } else {
1678                                 if (!xfer->cs_off)
1679                                         spi_set_cs(msg->spi, false, false);
1680                                 _spi_transfer_cs_change_delay(msg, xfer);
1681                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1682                                         spi_set_cs(msg->spi, true, false);
1683                         }
1684                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1685                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1686                         spi_set_cs(msg->spi, xfer->cs_off, false);
1687                 }
1688
1689                 msg->actual_length += xfer->len;
1690         }
1691
1692 out:
1693         if (ret != 0 || !keep_cs)
1694                 spi_set_cs(msg->spi, false, false);
1695
1696         if (msg->status == -EINPROGRESS)
1697                 msg->status = ret;
1698
1699         if (msg->status && ctlr->handle_err)
1700                 ctlr->handle_err(ctlr, msg);
1701
1702         spi_finalize_current_message(ctlr);
1703
1704         return ret;
1705 }
1706
1707 /**
1708  * spi_finalize_current_transfer - report completion of a transfer
1709  * @ctlr: the controller reporting completion
1710  *
1711  * Called by SPI drivers using the core transfer_one_message()
1712  * implementation to notify it that the current interrupt driven
1713  * transfer has finished and the next one may be scheduled.
1714  */
1715 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1716 {
1717         complete(&ctlr->xfer_completion);
1718 }
1719 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1720
1721 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1722 {
1723         if (ctlr->auto_runtime_pm) {
1724                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1725                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1726         }
1727 }
1728
1729 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1730                 struct spi_message *msg, bool was_busy)
1731 {
1732         struct spi_transfer *xfer;
1733         int ret;
1734
1735         if (!was_busy && ctlr->auto_runtime_pm) {
1736                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1737                 if (ret < 0) {
1738                         pm_runtime_put_noidle(ctlr->dev.parent);
1739                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1740                                 ret);
1741
1742                         msg->status = ret;
1743                         spi_finalize_current_message(ctlr);
1744
1745                         return ret;
1746                 }
1747         }
1748
1749         if (!was_busy)
1750                 trace_spi_controller_busy(ctlr);
1751
1752         if (!was_busy && ctlr->prepare_transfer_hardware) {
1753                 ret = ctlr->prepare_transfer_hardware(ctlr);
1754                 if (ret) {
1755                         dev_err(&ctlr->dev,
1756                                 "failed to prepare transfer hardware: %d\n",
1757                                 ret);
1758
1759                         if (ctlr->auto_runtime_pm)
1760                                 pm_runtime_put(ctlr->dev.parent);
1761
1762                         msg->status = ret;
1763                         spi_finalize_current_message(ctlr);
1764
1765                         return ret;
1766                 }
1767         }
1768
1769         trace_spi_message_start(msg);
1770
1771         if (ctlr->prepare_message) {
1772                 ret = ctlr->prepare_message(ctlr, msg);
1773                 if (ret) {
1774                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1775                                 ret);
1776                         msg->status = ret;
1777                         spi_finalize_current_message(ctlr);
1778                         return ret;
1779                 }
1780                 msg->prepared = true;
1781         }
1782
1783         ret = spi_map_msg(ctlr, msg);
1784         if (ret) {
1785                 msg->status = ret;
1786                 spi_finalize_current_message(ctlr);
1787                 return ret;
1788         }
1789
1790         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1791                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1792                         xfer->ptp_sts_word_pre = 0;
1793                         ptp_read_system_prets(xfer->ptp_sts);
1794                 }
1795         }
1796
1797         /*
1798          * Drivers implementation of transfer_one_message() must arrange for
1799          * spi_finalize_current_message() to get called. Most drivers will do
1800          * this in the calling context, but some don't. For those cases, a
1801          * completion is used to guarantee that this function does not return
1802          * until spi_finalize_current_message() is done accessing
1803          * ctlr->cur_msg.
1804          * Use of the following two flags enable to opportunistically skip the
1805          * use of the completion since its use involves expensive spin locks.
1806          * In case of a race with the context that calls
1807          * spi_finalize_current_message() the completion will always be used,
1808          * due to strict ordering of these flags using barriers.
1809          */
1810         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1811         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1812         reinit_completion(&ctlr->cur_msg_completion);
1813         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1814
1815         ret = ctlr->transfer_one_message(ctlr, msg);
1816         if (ret) {
1817                 dev_err(&ctlr->dev,
1818                         "failed to transfer one message from queue\n");
1819                 return ret;
1820         }
1821
1822         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1823         smp_mb(); /* See spi_finalize_current_message()... */
1824         if (READ_ONCE(ctlr->cur_msg_incomplete))
1825                 wait_for_completion(&ctlr->cur_msg_completion);
1826
1827         return 0;
1828 }
1829
1830 /**
1831  * __spi_pump_messages - function which processes SPI message queue
1832  * @ctlr: controller to process queue for
1833  * @in_kthread: true if we are in the context of the message pump thread
1834  *
1835  * This function checks if there is any SPI message in the queue that
1836  * needs processing and if so call out to the driver to initialize hardware
1837  * and transfer each message.
1838  *
1839  * Note that it is called both from the kthread itself and also from
1840  * inside spi_sync(); the queue extraction handling at the top of the
1841  * function should deal with this safely.
1842  */
1843 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1844 {
1845         struct spi_message *msg;
1846         bool was_busy = false;
1847         unsigned long flags;
1848         int ret;
1849
1850         /* Take the I/O mutex */
1851         mutex_lock(&ctlr->io_mutex);
1852
1853         /* Lock queue */
1854         spin_lock_irqsave(&ctlr->queue_lock, flags);
1855
1856         /* Make sure we are not already running a message */
1857         if (ctlr->cur_msg)
1858                 goto out_unlock;
1859
1860         /* Check if the queue is idle */
1861         if (list_empty(&ctlr->queue) || !ctlr->running) {
1862                 if (!ctlr->busy)
1863                         goto out_unlock;
1864
1865                 /* Defer any non-atomic teardown to the thread */
1866                 if (!in_kthread) {
1867                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1868                             !ctlr->unprepare_transfer_hardware) {
1869                                 spi_idle_runtime_pm(ctlr);
1870                                 ctlr->busy = false;
1871                                 ctlr->queue_empty = true;
1872                                 trace_spi_controller_idle(ctlr);
1873                         } else {
1874                                 kthread_queue_work(ctlr->kworker,
1875                                                    &ctlr->pump_messages);
1876                         }
1877                         goto out_unlock;
1878                 }
1879
1880                 ctlr->busy = false;
1881                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1882
1883                 kfree(ctlr->dummy_rx);
1884                 ctlr->dummy_rx = NULL;
1885                 kfree(ctlr->dummy_tx);
1886                 ctlr->dummy_tx = NULL;
1887                 if (ctlr->unprepare_transfer_hardware &&
1888                     ctlr->unprepare_transfer_hardware(ctlr))
1889                         dev_err(&ctlr->dev,
1890                                 "failed to unprepare transfer hardware\n");
1891                 spi_idle_runtime_pm(ctlr);
1892                 trace_spi_controller_idle(ctlr);
1893
1894                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1895                 ctlr->queue_empty = true;
1896                 goto out_unlock;
1897         }
1898
1899         /* Extract head of queue */
1900         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1901         ctlr->cur_msg = msg;
1902
1903         list_del_init(&msg->queue);
1904         if (ctlr->busy)
1905                 was_busy = true;
1906         else
1907                 ctlr->busy = true;
1908         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1909
1910         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1911         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1912
1913         ctlr->cur_msg = NULL;
1914         ctlr->fallback = false;
1915
1916         mutex_unlock(&ctlr->io_mutex);
1917
1918         /* Prod the scheduler in case transfer_one() was busy waiting */
1919         if (!ret)
1920                 cond_resched();
1921         return;
1922
1923 out_unlock:
1924         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1925         mutex_unlock(&ctlr->io_mutex);
1926 }
1927
1928 /**
1929  * spi_pump_messages - kthread work function which processes spi message queue
1930  * @work: pointer to kthread work struct contained in the controller struct
1931  */
1932 static void spi_pump_messages(struct kthread_work *work)
1933 {
1934         struct spi_controller *ctlr =
1935                 container_of(work, struct spi_controller, pump_messages);
1936
1937         __spi_pump_messages(ctlr, true);
1938 }
1939
1940 /**
1941  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1942  * @ctlr: Pointer to the spi_controller structure of the driver
1943  * @xfer: Pointer to the transfer being timestamped
1944  * @progress: How many words (not bytes) have been transferred so far
1945  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1946  *            transfer, for less jitter in time measurement. Only compatible
1947  *            with PIO drivers. If true, must follow up with
1948  *            spi_take_timestamp_post or otherwise system will crash.
1949  *            WARNING: for fully predictable results, the CPU frequency must
1950  *            also be under control (governor).
1951  *
1952  * This is a helper for drivers to collect the beginning of the TX timestamp
1953  * for the requested byte from the SPI transfer. The frequency with which this
1954  * function must be called (once per word, once for the whole transfer, once
1955  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1956  * greater than or equal to the requested byte at the time of the call. The
1957  * timestamp is only taken once, at the first such call. It is assumed that
1958  * the driver advances its @tx buffer pointer monotonically.
1959  */
1960 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1961                             struct spi_transfer *xfer,
1962                             size_t progress, bool irqs_off)
1963 {
1964         if (!xfer->ptp_sts)
1965                 return;
1966
1967         if (xfer->timestamped)
1968                 return;
1969
1970         if (progress > xfer->ptp_sts_word_pre)
1971                 return;
1972
1973         /* Capture the resolution of the timestamp */
1974         xfer->ptp_sts_word_pre = progress;
1975
1976         if (irqs_off) {
1977                 local_irq_save(ctlr->irq_flags);
1978                 preempt_disable();
1979         }
1980
1981         ptp_read_system_prets(xfer->ptp_sts);
1982 }
1983 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1984
1985 /**
1986  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1987  * @ctlr: Pointer to the spi_controller structure of the driver
1988  * @xfer: Pointer to the transfer being timestamped
1989  * @progress: How many words (not bytes) have been transferred so far
1990  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1991  *
1992  * This is a helper for drivers to collect the end of the TX timestamp for
1993  * the requested byte from the SPI transfer. Can be called with an arbitrary
1994  * frequency: only the first call where @tx exceeds or is equal to the
1995  * requested word will be timestamped.
1996  */
1997 void spi_take_timestamp_post(struct spi_controller *ctlr,
1998                              struct spi_transfer *xfer,
1999                              size_t progress, bool irqs_off)
2000 {
2001         if (!xfer->ptp_sts)
2002                 return;
2003
2004         if (xfer->timestamped)
2005                 return;
2006
2007         if (progress < xfer->ptp_sts_word_post)
2008                 return;
2009
2010         ptp_read_system_postts(xfer->ptp_sts);
2011
2012         if (irqs_off) {
2013                 local_irq_restore(ctlr->irq_flags);
2014                 preempt_enable();
2015         }
2016
2017         /* Capture the resolution of the timestamp */
2018         xfer->ptp_sts_word_post = progress;
2019
2020         xfer->timestamped = 1;
2021 }
2022 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2023
2024 /**
2025  * spi_set_thread_rt - set the controller to pump at realtime priority
2026  * @ctlr: controller to boost priority of
2027  *
2028  * This can be called because the controller requested realtime priority
2029  * (by setting the ->rt value before calling spi_register_controller()) or
2030  * because a device on the bus said that its transfers needed realtime
2031  * priority.
2032  *
2033  * NOTE: at the moment if any device on a bus says it needs realtime then
2034  * the thread will be at realtime priority for all transfers on that
2035  * controller.  If this eventually becomes a problem we may see if we can
2036  * find a way to boost the priority only temporarily during relevant
2037  * transfers.
2038  */
2039 static void spi_set_thread_rt(struct spi_controller *ctlr)
2040 {
2041         dev_info(&ctlr->dev,
2042                 "will run message pump with realtime priority\n");
2043         sched_set_fifo(ctlr->kworker->task);
2044 }
2045
2046 static int spi_init_queue(struct spi_controller *ctlr)
2047 {
2048         ctlr->running = false;
2049         ctlr->busy = false;
2050         ctlr->queue_empty = true;
2051
2052         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2053         if (IS_ERR(ctlr->kworker)) {
2054                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2055                 return PTR_ERR(ctlr->kworker);
2056         }
2057
2058         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2059
2060         /*
2061          * Controller config will indicate if this controller should run the
2062          * message pump with high (realtime) priority to reduce the transfer
2063          * latency on the bus by minimising the delay between a transfer
2064          * request and the scheduling of the message pump thread. Without this
2065          * setting the message pump thread will remain at default priority.
2066          */
2067         if (ctlr->rt)
2068                 spi_set_thread_rt(ctlr);
2069
2070         return 0;
2071 }
2072
2073 /**
2074  * spi_get_next_queued_message() - called by driver to check for queued
2075  * messages
2076  * @ctlr: the controller to check for queued messages
2077  *
2078  * If there are more messages in the queue, the next message is returned from
2079  * this call.
2080  *
2081  * Return: the next message in the queue, else NULL if the queue is empty.
2082  */
2083 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2084 {
2085         struct spi_message *next;
2086         unsigned long flags;
2087
2088         /* Get a pointer to the next message, if any */
2089         spin_lock_irqsave(&ctlr->queue_lock, flags);
2090         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2091                                         queue);
2092         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2093
2094         return next;
2095 }
2096 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2097
2098 /*
2099  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2100  *                            and spi_maybe_unoptimize_message()
2101  * @msg: the message to unoptimize
2102  *
2103  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2104  * core should use spi_maybe_unoptimize_message() rather than calling this
2105  * function directly.
2106  *
2107  * It is not valid to call this on a message that is not currently optimized.
2108  */
2109 static void __spi_unoptimize_message(struct spi_message *msg)
2110 {
2111         struct spi_controller *ctlr = msg->spi->controller;
2112
2113         if (ctlr->unoptimize_message)
2114                 ctlr->unoptimize_message(msg);
2115
2116         spi_res_release(ctlr, msg);
2117
2118         msg->optimized = false;
2119         msg->opt_state = NULL;
2120 }
2121
2122 /*
2123  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2124  * @msg: the message to unoptimize
2125  *
2126  * This function is used to unoptimize a message if and only if it was
2127  * optimized by the core (via spi_maybe_optimize_message()).
2128  */
2129 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2130 {
2131         if (!msg->pre_optimized && msg->optimized)
2132                 __spi_unoptimize_message(msg);
2133 }
2134
2135 /**
2136  * spi_finalize_current_message() - the current message is complete
2137  * @ctlr: the controller to return the message to
2138  *
2139  * Called by the driver to notify the core that the message in the front of the
2140  * queue is complete and can be removed from the queue.
2141  */
2142 void spi_finalize_current_message(struct spi_controller *ctlr)
2143 {
2144         struct spi_transfer *xfer;
2145         struct spi_message *mesg;
2146         int ret;
2147
2148         mesg = ctlr->cur_msg;
2149
2150         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2151                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2152                         ptp_read_system_postts(xfer->ptp_sts);
2153                         xfer->ptp_sts_word_post = xfer->len;
2154                 }
2155         }
2156
2157         if (unlikely(ctlr->ptp_sts_supported))
2158                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2159                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2160
2161         spi_unmap_msg(ctlr, mesg);
2162
2163         if (mesg->prepared && ctlr->unprepare_message) {
2164                 ret = ctlr->unprepare_message(ctlr, mesg);
2165                 if (ret) {
2166                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2167                                 ret);
2168                 }
2169         }
2170
2171         mesg->prepared = false;
2172
2173         spi_maybe_unoptimize_message(mesg);
2174
2175         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2176         smp_mb(); /* See __spi_pump_transfer_message()... */
2177         if (READ_ONCE(ctlr->cur_msg_need_completion))
2178                 complete(&ctlr->cur_msg_completion);
2179
2180         trace_spi_message_done(mesg);
2181
2182         mesg->state = NULL;
2183         if (mesg->complete)
2184                 mesg->complete(mesg->context);
2185 }
2186 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2187
2188 static int spi_start_queue(struct spi_controller *ctlr)
2189 {
2190         unsigned long flags;
2191
2192         spin_lock_irqsave(&ctlr->queue_lock, flags);
2193
2194         if (ctlr->running || ctlr->busy) {
2195                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2196                 return -EBUSY;
2197         }
2198
2199         ctlr->running = true;
2200         ctlr->cur_msg = NULL;
2201         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2202
2203         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2204
2205         return 0;
2206 }
2207
2208 static int spi_stop_queue(struct spi_controller *ctlr)
2209 {
2210         unsigned long flags;
2211         unsigned limit = 500;
2212         int ret = 0;
2213
2214         spin_lock_irqsave(&ctlr->queue_lock, flags);
2215
2216         /*
2217          * This is a bit lame, but is optimized for the common execution path.
2218          * A wait_queue on the ctlr->busy could be used, but then the common
2219          * execution path (pump_messages) would be required to call wake_up or
2220          * friends on every SPI message. Do this instead.
2221          */
2222         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2223                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2224                 usleep_range(10000, 11000);
2225                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2226         }
2227
2228         if (!list_empty(&ctlr->queue) || ctlr->busy)
2229                 ret = -EBUSY;
2230         else
2231                 ctlr->running = false;
2232
2233         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2234
2235         return ret;
2236 }
2237
2238 static int spi_destroy_queue(struct spi_controller *ctlr)
2239 {
2240         int ret;
2241
2242         ret = spi_stop_queue(ctlr);
2243
2244         /*
2245          * kthread_flush_worker will block until all work is done.
2246          * If the reason that stop_queue timed out is that the work will never
2247          * finish, then it does no good to call flush/stop thread, so
2248          * return anyway.
2249          */
2250         if (ret) {
2251                 dev_err(&ctlr->dev, "problem destroying queue\n");
2252                 return ret;
2253         }
2254
2255         kthread_destroy_worker(ctlr->kworker);
2256
2257         return 0;
2258 }
2259
2260 static int __spi_queued_transfer(struct spi_device *spi,
2261                                  struct spi_message *msg,
2262                                  bool need_pump)
2263 {
2264         struct spi_controller *ctlr = spi->controller;
2265         unsigned long flags;
2266
2267         spin_lock_irqsave(&ctlr->queue_lock, flags);
2268
2269         if (!ctlr->running) {
2270                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2271                 return -ESHUTDOWN;
2272         }
2273         msg->actual_length = 0;
2274         msg->status = -EINPROGRESS;
2275
2276         list_add_tail(&msg->queue, &ctlr->queue);
2277         ctlr->queue_empty = false;
2278         if (!ctlr->busy && need_pump)
2279                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280
2281         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282         return 0;
2283 }
2284
2285 /**
2286  * spi_queued_transfer - transfer function for queued transfers
2287  * @spi: SPI device which is requesting transfer
2288  * @msg: SPI message which is to handled is queued to driver queue
2289  *
2290  * Return: zero on success, else a negative error code.
2291  */
2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 {
2294         return __spi_queued_transfer(spi, msg, true);
2295 }
2296
2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2298 {
2299         int ret;
2300
2301         ctlr->transfer = spi_queued_transfer;
2302         if (!ctlr->transfer_one_message)
2303                 ctlr->transfer_one_message = spi_transfer_one_message;
2304
2305         /* Initialize and start queue */
2306         ret = spi_init_queue(ctlr);
2307         if (ret) {
2308                 dev_err(&ctlr->dev, "problem initializing queue\n");
2309                 goto err_init_queue;
2310         }
2311         ctlr->queued = true;
2312         ret = spi_start_queue(ctlr);
2313         if (ret) {
2314                 dev_err(&ctlr->dev, "problem starting queue\n");
2315                 goto err_start_queue;
2316         }
2317
2318         return 0;
2319
2320 err_start_queue:
2321         spi_destroy_queue(ctlr);
2322 err_init_queue:
2323         return ret;
2324 }
2325
2326 /**
2327  * spi_flush_queue - Send all pending messages in the queue from the callers'
2328  *                   context
2329  * @ctlr: controller to process queue for
2330  *
2331  * This should be used when one wants to ensure all pending messages have been
2332  * sent before doing something. Is used by the spi-mem code to make sure SPI
2333  * memory operations do not preempt regular SPI transfers that have been queued
2334  * before the spi-mem operation.
2335  */
2336 void spi_flush_queue(struct spi_controller *ctlr)
2337 {
2338         if (ctlr->transfer == spi_queued_transfer)
2339                 __spi_pump_messages(ctlr, false);
2340 }
2341
2342 /*-------------------------------------------------------------------------*/
2343
2344 #if defined(CONFIG_OF)
2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2346                                      struct spi_delay *delay, const char *prop)
2347 {
2348         u32 value;
2349
2350         if (!of_property_read_u32(nc, prop, &value)) {
2351                 if (value > U16_MAX) {
2352                         delay->value = DIV_ROUND_UP(value, 1000);
2353                         delay->unit = SPI_DELAY_UNIT_USECS;
2354                 } else {
2355                         delay->value = value;
2356                         delay->unit = SPI_DELAY_UNIT_NSECS;
2357                 }
2358         }
2359 }
2360
2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2362                            struct device_node *nc)
2363 {
2364         u32 value, cs[SPI_CS_CNT_MAX];
2365         int rc, idx;
2366
2367         /* Mode (clock phase/polarity/etc.) */
2368         if (of_property_read_bool(nc, "spi-cpha"))
2369                 spi->mode |= SPI_CPHA;
2370         if (of_property_read_bool(nc, "spi-cpol"))
2371                 spi->mode |= SPI_CPOL;
2372         if (of_property_read_bool(nc, "spi-3wire"))
2373                 spi->mode |= SPI_3WIRE;
2374         if (of_property_read_bool(nc, "spi-lsb-first"))
2375                 spi->mode |= SPI_LSB_FIRST;
2376         if (of_property_read_bool(nc, "spi-cs-high"))
2377                 spi->mode |= SPI_CS_HIGH;
2378
2379         /* Device DUAL/QUAD mode */
2380         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2381                 switch (value) {
2382                 case 0:
2383                         spi->mode |= SPI_NO_TX;
2384                         break;
2385                 case 1:
2386                         break;
2387                 case 2:
2388                         spi->mode |= SPI_TX_DUAL;
2389                         break;
2390                 case 4:
2391                         spi->mode |= SPI_TX_QUAD;
2392                         break;
2393                 case 8:
2394                         spi->mode |= SPI_TX_OCTAL;
2395                         break;
2396                 default:
2397                         dev_warn(&ctlr->dev,
2398                                 "spi-tx-bus-width %d not supported\n",
2399                                 value);
2400                         break;
2401                 }
2402         }
2403
2404         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2405                 switch (value) {
2406                 case 0:
2407                         spi->mode |= SPI_NO_RX;
2408                         break;
2409                 case 1:
2410                         break;
2411                 case 2:
2412                         spi->mode |= SPI_RX_DUAL;
2413                         break;
2414                 case 4:
2415                         spi->mode |= SPI_RX_QUAD;
2416                         break;
2417                 case 8:
2418                         spi->mode |= SPI_RX_OCTAL;
2419                         break;
2420                 default:
2421                         dev_warn(&ctlr->dev,
2422                                 "spi-rx-bus-width %d not supported\n",
2423                                 value);
2424                         break;
2425                 }
2426         }
2427
2428         if (spi_controller_is_slave(ctlr)) {
2429                 if (!of_node_name_eq(nc, "slave")) {
2430                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2431                                 nc);
2432                         return -EINVAL;
2433                 }
2434                 return 0;
2435         }
2436
2437         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2438                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2439                 return -EINVAL;
2440         }
2441
2442         spi_set_all_cs_unused(spi);
2443
2444         /* Device address */
2445         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2446                                                  SPI_CS_CNT_MAX);
2447         if (rc < 0) {
2448                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2449                         nc, rc);
2450                 return rc;
2451         }
2452         if (rc > ctlr->num_chipselect) {
2453                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2454                         nc, rc);
2455                 return rc;
2456         }
2457         if ((of_property_read_bool(nc, "parallel-memories")) &&
2458             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2459                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2460                 return -EINVAL;
2461         }
2462         for (idx = 0; idx < rc; idx++)
2463                 spi_set_chipselect(spi, idx, cs[idx]);
2464
2465         /*
2466          * By default spi->chip_select[0] will hold the physical CS number,
2467          * so set bit 0 in spi->cs_index_mask.
2468          */
2469         spi->cs_index_mask = BIT(0);
2470
2471         /* Device speed */
2472         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2473                 spi->max_speed_hz = value;
2474
2475         /* Device CS delays */
2476         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2477         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2478         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2479
2480         return 0;
2481 }
2482
2483 static struct spi_device *
2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 {
2486         struct spi_device *spi;
2487         int rc;
2488
2489         /* Alloc an spi_device */
2490         spi = spi_alloc_device(ctlr);
2491         if (!spi) {
2492                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2493                 rc = -ENOMEM;
2494                 goto err_out;
2495         }
2496
2497         /* Select device driver */
2498         rc = of_alias_from_compatible(nc, spi->modalias,
2499                                       sizeof(spi->modalias));
2500         if (rc < 0) {
2501                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2502                 goto err_out;
2503         }
2504
2505         rc = of_spi_parse_dt(ctlr, spi, nc);
2506         if (rc)
2507                 goto err_out;
2508
2509         /* Store a pointer to the node in the device structure */
2510         of_node_get(nc);
2511
2512         device_set_node(&spi->dev, of_fwnode_handle(nc));
2513
2514         /* Register the new device */
2515         rc = spi_add_device(spi);
2516         if (rc) {
2517                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2518                 goto err_of_node_put;
2519         }
2520
2521         return spi;
2522
2523 err_of_node_put:
2524         of_node_put(nc);
2525 err_out:
2526         spi_dev_put(spi);
2527         return ERR_PTR(rc);
2528 }
2529
2530 /**
2531  * of_register_spi_devices() - Register child devices onto the SPI bus
2532  * @ctlr:       Pointer to spi_controller device
2533  *
2534  * Registers an spi_device for each child node of controller node which
2535  * represents a valid SPI slave.
2536  */
2537 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 {
2539         struct spi_device *spi;
2540         struct device_node *nc;
2541
2542         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2543                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544                         continue;
2545                 spi = of_register_spi_device(ctlr, nc);
2546                 if (IS_ERR(spi)) {
2547                         dev_warn(&ctlr->dev,
2548                                  "Failed to create SPI device for %pOF\n", nc);
2549                         of_node_clear_flag(nc, OF_POPULATED);
2550                 }
2551         }
2552 }
2553 #else
2554 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2555 #endif
2556
2557 /**
2558  * spi_new_ancillary_device() - Register ancillary SPI device
2559  * @spi:         Pointer to the main SPI device registering the ancillary device
2560  * @chip_select: Chip Select of the ancillary device
2561  *
2562  * Register an ancillary SPI device; for example some chips have a chip-select
2563  * for normal device usage and another one for setup/firmware upload.
2564  *
2565  * This may only be called from main SPI device's probe routine.
2566  *
2567  * Return: 0 on success; negative errno on failure
2568  */
2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2570                                              u8 chip_select)
2571 {
2572         struct spi_controller *ctlr = spi->controller;
2573         struct spi_device *ancillary;
2574         int rc = 0;
2575
2576         /* Alloc an spi_device */
2577         ancillary = spi_alloc_device(ctlr);
2578         if (!ancillary) {
2579                 rc = -ENOMEM;
2580                 goto err_out;
2581         }
2582
2583         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584
2585         /* Use provided chip-select for ancillary device */
2586         spi_set_all_cs_unused(ancillary);
2587         spi_set_chipselect(ancillary, 0, chip_select);
2588
2589         /* Take over SPI mode/speed from SPI main device */
2590         ancillary->max_speed_hz = spi->max_speed_hz;
2591         ancillary->mode = spi->mode;
2592         /*
2593          * By default spi->chip_select[0] will hold the physical CS number,
2594          * so set bit 0 in spi->cs_index_mask.
2595          */
2596         ancillary->cs_index_mask = BIT(0);
2597
2598         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599
2600         /* Register the new device */
2601         rc = __spi_add_device(ancillary);
2602         if (rc) {
2603                 dev_err(&spi->dev, "failed to register ancillary device\n");
2604                 goto err_out;
2605         }
2606
2607         return ancillary;
2608
2609 err_out:
2610         spi_dev_put(ancillary);
2611         return ERR_PTR(rc);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2614
2615 #ifdef CONFIG_ACPI
2616 struct acpi_spi_lookup {
2617         struct spi_controller   *ctlr;
2618         u32                     max_speed_hz;
2619         u32                     mode;
2620         int                     irq;
2621         u8                      bits_per_word;
2622         u8                      chip_select;
2623         int                     n;
2624         int                     index;
2625 };
2626
2627 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 {
2629         struct acpi_resource_spi_serialbus *sb;
2630         int *count = data;
2631
2632         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2633                 return 1;
2634
2635         sb = &ares->data.spi_serial_bus;
2636         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2637                 return 1;
2638
2639         *count = *count + 1;
2640
2641         return 1;
2642 }
2643
2644 /**
2645  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2646  * @adev:       ACPI device
2647  *
2648  * Return: the number of SpiSerialBus resources in the ACPI-device's
2649  * resource-list; or a negative error code.
2650  */
2651 int acpi_spi_count_resources(struct acpi_device *adev)
2652 {
2653         LIST_HEAD(r);
2654         int count = 0;
2655         int ret;
2656
2657         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2658         if (ret < 0)
2659                 return ret;
2660
2661         acpi_dev_free_resource_list(&r);
2662
2663         return count;
2664 }
2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666
2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2668                                             struct acpi_spi_lookup *lookup)
2669 {
2670         const union acpi_object *obj;
2671
2672         if (!x86_apple_machine)
2673                 return;
2674
2675         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2676             && obj->buffer.length >= 4)
2677                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678
2679         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2680             && obj->buffer.length == 8)
2681                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682
2683         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2684             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2685                 lookup->mode |= SPI_LSB_FIRST;
2686
2687         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2688             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2689                 lookup->mode |= SPI_CPOL;
2690
2691         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2692             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2693                 lookup->mode |= SPI_CPHA;
2694 }
2695
2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 {
2698         struct acpi_spi_lookup *lookup = data;
2699         struct spi_controller *ctlr = lookup->ctlr;
2700
2701         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2702                 struct acpi_resource_spi_serialbus *sb;
2703                 acpi_handle parent_handle;
2704                 acpi_status status;
2705
2706                 sb = &ares->data.spi_serial_bus;
2707                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708
2709                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2710                                 return 1;
2711
2712                         status = acpi_get_handle(NULL,
2713                                                  sb->resource_source.string_ptr,
2714                                                  &parent_handle);
2715
2716                         if (ACPI_FAILURE(status))
2717                                 return -ENODEV;
2718
2719                         if (ctlr) {
2720                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2721                                         return -ENODEV;
2722                         } else {
2723                                 struct acpi_device *adev;
2724
2725                                 adev = acpi_fetch_acpi_dev(parent_handle);
2726                                 if (!adev)
2727                                         return -ENODEV;
2728
2729                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2730                                 if (!ctlr)
2731                                         return -EPROBE_DEFER;
2732
2733                                 lookup->ctlr = ctlr;
2734                         }
2735
2736                         /*
2737                          * ACPI DeviceSelection numbering is handled by the
2738                          * host controller driver in Windows and can vary
2739                          * from driver to driver. In Linux we always expect
2740                          * 0 .. max - 1 so we need to ask the driver to
2741                          * translate between the two schemes.
2742                          */
2743                         if (ctlr->fw_translate_cs) {
2744                                 int cs = ctlr->fw_translate_cs(ctlr,
2745                                                 sb->device_selection);
2746                                 if (cs < 0)
2747                                         return cs;
2748                                 lookup->chip_select = cs;
2749                         } else {
2750                                 lookup->chip_select = sb->device_selection;
2751                         }
2752
2753                         lookup->max_speed_hz = sb->connection_speed;
2754                         lookup->bits_per_word = sb->data_bit_length;
2755
2756                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2757                                 lookup->mode |= SPI_CPHA;
2758                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2759                                 lookup->mode |= SPI_CPOL;
2760                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2761                                 lookup->mode |= SPI_CS_HIGH;
2762                 }
2763         } else if (lookup->irq < 0) {
2764                 struct resource r;
2765
2766                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2767                         lookup->irq = r.start;
2768         }
2769
2770         /* Always tell the ACPI core to skip this resource */
2771         return 1;
2772 }
2773
2774 /**
2775  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2776  * @ctlr: controller to which the spi device belongs
2777  * @adev: ACPI Device for the spi device
2778  * @index: Index of the spi resource inside the ACPI Node
2779  *
2780  * This should be used to allocate a new SPI device from and ACPI Device node.
2781  * The caller is responsible for calling spi_add_device to register the SPI device.
2782  *
2783  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2784  * using the resource.
2785  * If index is set to -1, index is not used.
2786  * Note: If index is -1, ctlr must be set.
2787  *
2788  * Return: a pointer to the new device, or ERR_PTR on error.
2789  */
2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2791                                          struct acpi_device *adev,
2792                                          int index)
2793 {
2794         acpi_handle parent_handle = NULL;
2795         struct list_head resource_list;
2796         struct acpi_spi_lookup lookup = {};
2797         struct spi_device *spi;
2798         int ret;
2799
2800         if (!ctlr && index == -1)
2801                 return ERR_PTR(-EINVAL);
2802
2803         lookup.ctlr             = ctlr;
2804         lookup.irq              = -1;
2805         lookup.index            = index;
2806         lookup.n                = 0;
2807
2808         INIT_LIST_HEAD(&resource_list);
2809         ret = acpi_dev_get_resources(adev, &resource_list,
2810                                      acpi_spi_add_resource, &lookup);
2811         acpi_dev_free_resource_list(&resource_list);
2812
2813         if (ret < 0)
2814                 /* Found SPI in _CRS but it points to another controller */
2815                 return ERR_PTR(ret);
2816
2817         if (!lookup.max_speed_hz &&
2818             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2819             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2820                 /* Apple does not use _CRS but nested devices for SPI slaves */
2821                 acpi_spi_parse_apple_properties(adev, &lookup);
2822         }
2823
2824         if (!lookup.max_speed_hz)
2825                 return ERR_PTR(-ENODEV);
2826
2827         spi = spi_alloc_device(lookup.ctlr);
2828         if (!spi) {
2829                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2830                         dev_name(&adev->dev));
2831                 return ERR_PTR(-ENOMEM);
2832         }
2833
2834         spi_set_all_cs_unused(spi);
2835         spi_set_chipselect(spi, 0, lookup.chip_select);
2836
2837         ACPI_COMPANION_SET(&spi->dev, adev);
2838         spi->max_speed_hz       = lookup.max_speed_hz;
2839         spi->mode               |= lookup.mode;
2840         spi->irq                = lookup.irq;
2841         spi->bits_per_word      = lookup.bits_per_word;
2842         /*
2843          * By default spi->chip_select[0] will hold the physical CS number,
2844          * so set bit 0 in spi->cs_index_mask.
2845          */
2846         spi->cs_index_mask      = BIT(0);
2847
2848         return spi;
2849 }
2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851
2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2853                                             struct acpi_device *adev)
2854 {
2855         struct spi_device *spi;
2856
2857         if (acpi_bus_get_status(adev) || !adev->status.present ||
2858             acpi_device_enumerated(adev))
2859                 return AE_OK;
2860
2861         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862         if (IS_ERR(spi)) {
2863                 if (PTR_ERR(spi) == -ENOMEM)
2864                         return AE_NO_MEMORY;
2865                 else
2866                         return AE_OK;
2867         }
2868
2869         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2870                           sizeof(spi->modalias));
2871
2872         if (spi->irq < 0)
2873                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2874
2875         acpi_device_set_enumerated(adev);
2876
2877         adev->power.flags.ignore_parent = true;
2878         if (spi_add_device(spi)) {
2879                 adev->power.flags.ignore_parent = false;
2880                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2881                         dev_name(&adev->dev));
2882                 spi_dev_put(spi);
2883         }
2884
2885         return AE_OK;
2886 }
2887
2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2889                                        void *data, void **return_value)
2890 {
2891         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2892         struct spi_controller *ctlr = data;
2893
2894         if (!adev)
2895                 return AE_OK;
2896
2897         return acpi_register_spi_device(ctlr, adev);
2898 }
2899
2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2901
2902 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2903 {
2904         acpi_status status;
2905         acpi_handle handle;
2906
2907         handle = ACPI_HANDLE(ctlr->dev.parent);
2908         if (!handle)
2909                 return;
2910
2911         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2912                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2913                                      acpi_spi_add_device, NULL, ctlr, NULL);
2914         if (ACPI_FAILURE(status))
2915                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2916 }
2917 #else
2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2919 #endif /* CONFIG_ACPI */
2920
2921 static void spi_controller_release(struct device *dev)
2922 {
2923         struct spi_controller *ctlr;
2924
2925         ctlr = container_of(dev, struct spi_controller, dev);
2926         kfree(ctlr);
2927 }
2928
2929 static struct class spi_master_class = {
2930         .name           = "spi_master",
2931         .dev_release    = spi_controller_release,
2932         .dev_groups     = spi_master_groups,
2933 };
2934
2935 #ifdef CONFIG_SPI_SLAVE
2936 /**
2937  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2938  *                   controller
2939  * @spi: device used for the current transfer
2940  */
2941 int spi_slave_abort(struct spi_device *spi)
2942 {
2943         struct spi_controller *ctlr = spi->controller;
2944
2945         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2946                 return ctlr->slave_abort(ctlr);
2947
2948         return -ENOTSUPP;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_slave_abort);
2951
2952 int spi_target_abort(struct spi_device *spi)
2953 {
2954         struct spi_controller *ctlr = spi->controller;
2955
2956         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2957                 return ctlr->target_abort(ctlr);
2958
2959         return -ENOTSUPP;
2960 }
2961 EXPORT_SYMBOL_GPL(spi_target_abort);
2962
2963 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2964                           char *buf)
2965 {
2966         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967                                                    dev);
2968         struct device *child;
2969
2970         child = device_find_any_child(&ctlr->dev);
2971         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2972 }
2973
2974 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2975                            const char *buf, size_t count)
2976 {
2977         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2978                                                    dev);
2979         struct spi_device *spi;
2980         struct device *child;
2981         char name[32];
2982         int rc;
2983
2984         rc = sscanf(buf, "%31s", name);
2985         if (rc != 1 || !name[0])
2986                 return -EINVAL;
2987
2988         child = device_find_any_child(&ctlr->dev);
2989         if (child) {
2990                 /* Remove registered slave */
2991                 device_unregister(child);
2992                 put_device(child);
2993         }
2994
2995         if (strcmp(name, "(null)")) {
2996                 /* Register new slave */
2997                 spi = spi_alloc_device(ctlr);
2998                 if (!spi)
2999                         return -ENOMEM;
3000
3001                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3002
3003                 rc = spi_add_device(spi);
3004                 if (rc) {
3005                         spi_dev_put(spi);
3006                         return rc;
3007                 }
3008         }
3009
3010         return count;
3011 }
3012
3013 static DEVICE_ATTR_RW(slave);
3014
3015 static struct attribute *spi_slave_attrs[] = {
3016         &dev_attr_slave.attr,
3017         NULL,
3018 };
3019
3020 static const struct attribute_group spi_slave_group = {
3021         .attrs = spi_slave_attrs,
3022 };
3023
3024 static const struct attribute_group *spi_slave_groups[] = {
3025         &spi_controller_statistics_group,
3026         &spi_slave_group,
3027         NULL,
3028 };
3029
3030 static struct class spi_slave_class = {
3031         .name           = "spi_slave",
3032         .dev_release    = spi_controller_release,
3033         .dev_groups     = spi_slave_groups,
3034 };
3035 #else
3036 extern struct class spi_slave_class;    /* dummy */
3037 #endif
3038
3039 /**
3040  * __spi_alloc_controller - allocate an SPI master or slave controller
3041  * @dev: the controller, possibly using the platform_bus
3042  * @size: how much zeroed driver-private data to allocate; the pointer to this
3043  *      memory is in the driver_data field of the returned device, accessible
3044  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3045  *      drivers granting DMA access to portions of their private data need to
3046  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3047  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3048  *      slave (true) controller
3049  * Context: can sleep
3050  *
3051  * This call is used only by SPI controller drivers, which are the
3052  * only ones directly touching chip registers.  It's how they allocate
3053  * an spi_controller structure, prior to calling spi_register_controller().
3054  *
3055  * This must be called from context that can sleep.
3056  *
3057  * The caller is responsible for assigning the bus number and initializing the
3058  * controller's methods before calling spi_register_controller(); and (after
3059  * errors adding the device) calling spi_controller_put() to prevent a memory
3060  * leak.
3061  *
3062  * Return: the SPI controller structure on success, else NULL.
3063  */
3064 struct spi_controller *__spi_alloc_controller(struct device *dev,
3065                                               unsigned int size, bool slave)
3066 {
3067         struct spi_controller   *ctlr;
3068         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3069
3070         if (!dev)
3071                 return NULL;
3072
3073         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3074         if (!ctlr)
3075                 return NULL;
3076
3077         device_initialize(&ctlr->dev);
3078         INIT_LIST_HEAD(&ctlr->queue);
3079         spin_lock_init(&ctlr->queue_lock);
3080         spin_lock_init(&ctlr->bus_lock_spinlock);
3081         mutex_init(&ctlr->bus_lock_mutex);
3082         mutex_init(&ctlr->io_mutex);
3083         mutex_init(&ctlr->add_lock);
3084         ctlr->bus_num = -1;
3085         ctlr->num_chipselect = 1;
3086         ctlr->slave = slave;
3087         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3088                 ctlr->dev.class = &spi_slave_class;
3089         else
3090                 ctlr->dev.class = &spi_master_class;
3091         ctlr->dev.parent = dev;
3092         pm_suspend_ignore_children(&ctlr->dev, true);
3093         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3094
3095         return ctlr;
3096 }
3097 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3098
3099 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3100 {
3101         spi_controller_put(*(struct spi_controller **)ctlr);
3102 }
3103
3104 /**
3105  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3106  * @dev: physical device of SPI controller
3107  * @size: how much zeroed driver-private data to allocate
3108  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3109  * Context: can sleep
3110  *
3111  * Allocate an SPI controller and automatically release a reference on it
3112  * when @dev is unbound from its driver.  Drivers are thus relieved from
3113  * having to call spi_controller_put().
3114  *
3115  * The arguments to this function are identical to __spi_alloc_controller().
3116  *
3117  * Return: the SPI controller structure on success, else NULL.
3118  */
3119 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3120                                                    unsigned int size,
3121                                                    bool slave)
3122 {
3123         struct spi_controller **ptr, *ctlr;
3124
3125         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3126                            GFP_KERNEL);
3127         if (!ptr)
3128                 return NULL;
3129
3130         ctlr = __spi_alloc_controller(dev, size, slave);
3131         if (ctlr) {
3132                 ctlr->devm_allocated = true;
3133                 *ptr = ctlr;
3134                 devres_add(dev, ptr);
3135         } else {
3136                 devres_free(ptr);
3137         }
3138
3139         return ctlr;
3140 }
3141 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3142
3143 /**
3144  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3145  * @ctlr: The SPI master to grab GPIO descriptors for
3146  */
3147 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3148 {
3149         int nb, i;
3150         struct gpio_desc **cs;
3151         struct device *dev = &ctlr->dev;
3152         unsigned long native_cs_mask = 0;
3153         unsigned int num_cs_gpios = 0;
3154
3155         nb = gpiod_count(dev, "cs");
3156         if (nb < 0) {
3157                 /* No GPIOs at all is fine, else return the error */
3158                 if (nb == -ENOENT)
3159                         return 0;
3160                 return nb;
3161         }
3162
3163         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3164
3165         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3166                           GFP_KERNEL);
3167         if (!cs)
3168                 return -ENOMEM;
3169         ctlr->cs_gpiods = cs;
3170
3171         for (i = 0; i < nb; i++) {
3172                 /*
3173                  * Most chipselects are active low, the inverted
3174                  * semantics are handled by special quirks in gpiolib,
3175                  * so initializing them GPIOD_OUT_LOW here means
3176                  * "unasserted", in most cases this will drive the physical
3177                  * line high.
3178                  */
3179                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3180                                                       GPIOD_OUT_LOW);
3181                 if (IS_ERR(cs[i]))
3182                         return PTR_ERR(cs[i]);
3183
3184                 if (cs[i]) {
3185                         /*
3186                          * If we find a CS GPIO, name it after the device and
3187                          * chip select line.
3188                          */
3189                         char *gpioname;
3190
3191                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3192                                                   dev_name(dev), i);
3193                         if (!gpioname)
3194                                 return -ENOMEM;
3195                         gpiod_set_consumer_name(cs[i], gpioname);
3196                         num_cs_gpios++;
3197                         continue;
3198                 }
3199
3200                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3201                         dev_err(dev, "Invalid native chip select %d\n", i);
3202                         return -EINVAL;
3203                 }
3204                 native_cs_mask |= BIT(i);
3205         }
3206
3207         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3208
3209         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3210             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3211                 dev_err(dev, "No unused native chip select available\n");
3212                 return -EINVAL;
3213         }
3214
3215         return 0;
3216 }
3217
3218 static int spi_controller_check_ops(struct spi_controller *ctlr)
3219 {
3220         /*
3221          * The controller may implement only the high-level SPI-memory like
3222          * operations if it does not support regular SPI transfers, and this is
3223          * valid use case.
3224          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3225          * one of the ->transfer_xxx() method be implemented.
3226          */
3227         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3228                 if (!ctlr->transfer && !ctlr->transfer_one &&
3229                    !ctlr->transfer_one_message) {
3230                         return -EINVAL;
3231                 }
3232         }
3233
3234         return 0;
3235 }
3236
3237 /* Allocate dynamic bus number using Linux idr */
3238 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3239 {
3240         int id;
3241
3242         mutex_lock(&board_lock);
3243         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3244         mutex_unlock(&board_lock);
3245         if (WARN(id < 0, "couldn't get idr"))
3246                 return id == -ENOSPC ? -EBUSY : id;
3247         ctlr->bus_num = id;
3248         return 0;
3249 }
3250
3251 /**
3252  * spi_register_controller - register SPI master or slave controller
3253  * @ctlr: initialized master, originally from spi_alloc_master() or
3254  *      spi_alloc_slave()
3255  * Context: can sleep
3256  *
3257  * SPI controllers connect to their drivers using some non-SPI bus,
3258  * such as the platform bus.  The final stage of probe() in that code
3259  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3260  *
3261  * SPI controllers use board specific (often SOC specific) bus numbers,
3262  * and board-specific addressing for SPI devices combines those numbers
3263  * with chip select numbers.  Since SPI does not directly support dynamic
3264  * device identification, boards need configuration tables telling which
3265  * chip is at which address.
3266  *
3267  * This must be called from context that can sleep.  It returns zero on
3268  * success, else a negative error code (dropping the controller's refcount).
3269  * After a successful return, the caller is responsible for calling
3270  * spi_unregister_controller().
3271  *
3272  * Return: zero on success, else a negative error code.
3273  */
3274 int spi_register_controller(struct spi_controller *ctlr)
3275 {
3276         struct device           *dev = ctlr->dev.parent;
3277         struct boardinfo        *bi;
3278         int                     first_dynamic;
3279         int                     status;
3280         int                     idx;
3281
3282         if (!dev)
3283                 return -ENODEV;
3284
3285         /*
3286          * Make sure all necessary hooks are implemented before registering
3287          * the SPI controller.
3288          */
3289         status = spi_controller_check_ops(ctlr);
3290         if (status)
3291                 return status;
3292
3293         if (ctlr->bus_num < 0)
3294                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3295         if (ctlr->bus_num >= 0) {
3296                 /* Devices with a fixed bus num must check-in with the num */
3297                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3298                 if (status)
3299                         return status;
3300         }
3301         if (ctlr->bus_num < 0) {
3302                 first_dynamic = of_alias_get_highest_id("spi");
3303                 if (first_dynamic < 0)
3304                         first_dynamic = 0;
3305                 else
3306                         first_dynamic++;
3307
3308                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3309                 if (status)
3310                         return status;
3311         }
3312         ctlr->bus_lock_flag = 0;
3313         init_completion(&ctlr->xfer_completion);
3314         init_completion(&ctlr->cur_msg_completion);
3315         if (!ctlr->max_dma_len)
3316                 ctlr->max_dma_len = INT_MAX;
3317
3318         /*
3319          * Register the device, then userspace will see it.
3320          * Registration fails if the bus ID is in use.
3321          */
3322         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3323
3324         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3325                 status = spi_get_gpio_descs(ctlr);
3326                 if (status)
3327                         goto free_bus_id;
3328                 /*
3329                  * A controller using GPIO descriptors always
3330                  * supports SPI_CS_HIGH if need be.
3331                  */
3332                 ctlr->mode_bits |= SPI_CS_HIGH;
3333         }
3334
3335         /*
3336          * Even if it's just one always-selected device, there must
3337          * be at least one chipselect.
3338          */
3339         if (!ctlr->num_chipselect) {
3340                 status = -EINVAL;
3341                 goto free_bus_id;
3342         }
3343
3344         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3345         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3346                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3347
3348         status = device_add(&ctlr->dev);
3349         if (status < 0)
3350                 goto free_bus_id;
3351         dev_dbg(dev, "registered %s %s\n",
3352                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3353                         dev_name(&ctlr->dev));
3354
3355         /*
3356          * If we're using a queued driver, start the queue. Note that we don't
3357          * need the queueing logic if the driver is only supporting high-level
3358          * memory operations.
3359          */
3360         if (ctlr->transfer) {
3361                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3362         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3363                 status = spi_controller_initialize_queue(ctlr);
3364                 if (status) {
3365                         device_del(&ctlr->dev);
3366                         goto free_bus_id;
3367                 }
3368         }
3369         /* Add statistics */
3370         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3371         if (!ctlr->pcpu_statistics) {
3372                 dev_err(dev, "Error allocating per-cpu statistics\n");
3373                 status = -ENOMEM;
3374                 goto destroy_queue;
3375         }
3376
3377         mutex_lock(&board_lock);
3378         list_add_tail(&ctlr->list, &spi_controller_list);
3379         list_for_each_entry(bi, &board_list, list)
3380                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3381         mutex_unlock(&board_lock);
3382
3383         /* Register devices from the device tree and ACPI */
3384         of_register_spi_devices(ctlr);
3385         acpi_register_spi_devices(ctlr);
3386         return status;
3387
3388 destroy_queue:
3389         spi_destroy_queue(ctlr);
3390 free_bus_id:
3391         mutex_lock(&board_lock);
3392         idr_remove(&spi_master_idr, ctlr->bus_num);
3393         mutex_unlock(&board_lock);
3394         return status;
3395 }
3396 EXPORT_SYMBOL_GPL(spi_register_controller);
3397
3398 static void devm_spi_unregister(struct device *dev, void *res)
3399 {
3400         spi_unregister_controller(*(struct spi_controller **)res);
3401 }
3402
3403 /**
3404  * devm_spi_register_controller - register managed SPI master or slave
3405  *      controller
3406  * @dev:    device managing SPI controller
3407  * @ctlr: initialized controller, originally from spi_alloc_master() or
3408  *      spi_alloc_slave()
3409  * Context: can sleep
3410  *
3411  * Register a SPI device as with spi_register_controller() which will
3412  * automatically be unregistered and freed.
3413  *
3414  * Return: zero on success, else a negative error code.
3415  */
3416 int devm_spi_register_controller(struct device *dev,
3417                                  struct spi_controller *ctlr)
3418 {
3419         struct spi_controller **ptr;
3420         int ret;
3421
3422         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3423         if (!ptr)
3424                 return -ENOMEM;
3425
3426         ret = spi_register_controller(ctlr);
3427         if (!ret) {
3428                 *ptr = ctlr;
3429                 devres_add(dev, ptr);
3430         } else {
3431                 devres_free(ptr);
3432         }
3433
3434         return ret;
3435 }
3436 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3437
3438 static int __unregister(struct device *dev, void *null)
3439 {
3440         spi_unregister_device(to_spi_device(dev));
3441         return 0;
3442 }
3443
3444 /**
3445  * spi_unregister_controller - unregister SPI master or slave controller
3446  * @ctlr: the controller being unregistered
3447  * Context: can sleep
3448  *
3449  * This call is used only by SPI controller drivers, which are the
3450  * only ones directly touching chip registers.
3451  *
3452  * This must be called from context that can sleep.
3453  *
3454  * Note that this function also drops a reference to the controller.
3455  */
3456 void spi_unregister_controller(struct spi_controller *ctlr)
3457 {
3458         struct spi_controller *found;
3459         int id = ctlr->bus_num;
3460
3461         /* Prevent addition of new devices, unregister existing ones */
3462         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3463                 mutex_lock(&ctlr->add_lock);
3464
3465         device_for_each_child(&ctlr->dev, NULL, __unregister);
3466
3467         /* First make sure that this controller was ever added */
3468         mutex_lock(&board_lock);
3469         found = idr_find(&spi_master_idr, id);
3470         mutex_unlock(&board_lock);
3471         if (ctlr->queued) {
3472                 if (spi_destroy_queue(ctlr))
3473                         dev_err(&ctlr->dev, "queue remove failed\n");
3474         }
3475         mutex_lock(&board_lock);
3476         list_del(&ctlr->list);
3477         mutex_unlock(&board_lock);
3478
3479         device_del(&ctlr->dev);
3480
3481         /* Free bus id */
3482         mutex_lock(&board_lock);
3483         if (found == ctlr)
3484                 idr_remove(&spi_master_idr, id);
3485         mutex_unlock(&board_lock);
3486
3487         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3488                 mutex_unlock(&ctlr->add_lock);
3489
3490         /*
3491          * Release the last reference on the controller if its driver
3492          * has not yet been converted to devm_spi_alloc_master/slave().
3493          */
3494         if (!ctlr->devm_allocated)
3495                 put_device(&ctlr->dev);
3496 }
3497 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3498
3499 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3500 {
3501         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3502 }
3503
3504 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3505 {
3506         mutex_lock(&ctlr->bus_lock_mutex);
3507         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3508         mutex_unlock(&ctlr->bus_lock_mutex);
3509 }
3510
3511 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3512 {
3513         mutex_lock(&ctlr->bus_lock_mutex);
3514         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3515         mutex_unlock(&ctlr->bus_lock_mutex);
3516 }
3517
3518 int spi_controller_suspend(struct spi_controller *ctlr)
3519 {
3520         int ret = 0;
3521
3522         /* Basically no-ops for non-queued controllers */
3523         if (ctlr->queued) {
3524                 ret = spi_stop_queue(ctlr);
3525                 if (ret)
3526                         dev_err(&ctlr->dev, "queue stop failed\n");
3527         }
3528
3529         __spi_mark_suspended(ctlr);
3530         return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3533
3534 int spi_controller_resume(struct spi_controller *ctlr)
3535 {
3536         int ret = 0;
3537
3538         __spi_mark_resumed(ctlr);
3539
3540         if (ctlr->queued) {
3541                 ret = spi_start_queue(ctlr);
3542                 if (ret)
3543                         dev_err(&ctlr->dev, "queue restart failed\n");
3544         }
3545         return ret;
3546 }
3547 EXPORT_SYMBOL_GPL(spi_controller_resume);
3548
3549 /*-------------------------------------------------------------------------*/
3550
3551 /* Core methods for spi_message alterations */
3552
3553 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3554                                             struct spi_message *msg,
3555                                             void *res)
3556 {
3557         struct spi_replaced_transfers *rxfer = res;
3558         size_t i;
3559
3560         /* Call extra callback if requested */
3561         if (rxfer->release)
3562                 rxfer->release(ctlr, msg, res);
3563
3564         /* Insert replaced transfers back into the message */
3565         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3566
3567         /* Remove the formerly inserted entries */
3568         for (i = 0; i < rxfer->inserted; i++)
3569                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3570 }
3571
3572 /**
3573  * spi_replace_transfers - replace transfers with several transfers
3574  *                         and register change with spi_message.resources
3575  * @msg:           the spi_message we work upon
3576  * @xfer_first:    the first spi_transfer we want to replace
3577  * @remove:        number of transfers to remove
3578  * @insert:        the number of transfers we want to insert instead
3579  * @release:       extra release code necessary in some circumstances
3580  * @extradatasize: extra data to allocate (with alignment guarantees
3581  *                 of struct @spi_transfer)
3582  * @gfp:           gfp flags
3583  *
3584  * Returns: pointer to @spi_replaced_transfers,
3585  *          PTR_ERR(...) in case of errors.
3586  */
3587 static struct spi_replaced_transfers *spi_replace_transfers(
3588         struct spi_message *msg,
3589         struct spi_transfer *xfer_first,
3590         size_t remove,
3591         size_t insert,
3592         spi_replaced_release_t release,
3593         size_t extradatasize,
3594         gfp_t gfp)
3595 {
3596         struct spi_replaced_transfers *rxfer;
3597         struct spi_transfer *xfer;
3598         size_t i;
3599
3600         /* Allocate the structure using spi_res */
3601         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3602                               struct_size(rxfer, inserted_transfers, insert)
3603                               + extradatasize,
3604                               gfp);
3605         if (!rxfer)
3606                 return ERR_PTR(-ENOMEM);
3607
3608         /* The release code to invoke before running the generic release */
3609         rxfer->release = release;
3610
3611         /* Assign extradata */
3612         if (extradatasize)
3613                 rxfer->extradata =
3614                         &rxfer->inserted_transfers[insert];
3615
3616         /* Init the replaced_transfers list */
3617         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3618
3619         /*
3620          * Assign the list_entry after which we should reinsert
3621          * the @replaced_transfers - it may be spi_message.messages!
3622          */
3623         rxfer->replaced_after = xfer_first->transfer_list.prev;
3624
3625         /* Remove the requested number of transfers */
3626         for (i = 0; i < remove; i++) {
3627                 /*
3628                  * If the entry after replaced_after it is msg->transfers
3629                  * then we have been requested to remove more transfers
3630                  * than are in the list.
3631                  */
3632                 if (rxfer->replaced_after->next == &msg->transfers) {
3633                         dev_err(&msg->spi->dev,
3634                                 "requested to remove more spi_transfers than are available\n");
3635                         /* Insert replaced transfers back into the message */
3636                         list_splice(&rxfer->replaced_transfers,
3637                                     rxfer->replaced_after);
3638
3639                         /* Free the spi_replace_transfer structure... */
3640                         spi_res_free(rxfer);
3641
3642                         /* ...and return with an error */
3643                         return ERR_PTR(-EINVAL);
3644                 }
3645
3646                 /*
3647                  * Remove the entry after replaced_after from list of
3648                  * transfers and add it to list of replaced_transfers.
3649                  */
3650                 list_move_tail(rxfer->replaced_after->next,
3651                                &rxfer->replaced_transfers);
3652         }
3653
3654         /*
3655          * Create copy of the given xfer with identical settings
3656          * based on the first transfer to get removed.
3657          */
3658         for (i = 0; i < insert; i++) {
3659                 /* We need to run in reverse order */
3660                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3661
3662                 /* Copy all spi_transfer data */
3663                 memcpy(xfer, xfer_first, sizeof(*xfer));
3664
3665                 /* Add to list */
3666                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3667
3668                 /* Clear cs_change and delay for all but the last */
3669                 if (i) {
3670                         xfer->cs_change = false;
3671                         xfer->delay.value = 0;
3672                 }
3673         }
3674
3675         /* Set up inserted... */
3676         rxfer->inserted = insert;
3677
3678         /* ...and register it with spi_res/spi_message */
3679         spi_res_add(msg, rxfer);
3680
3681         return rxfer;
3682 }
3683
3684 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3685                                         struct spi_message *msg,
3686                                         struct spi_transfer **xferp,
3687                                         size_t maxsize)
3688 {
3689         struct spi_transfer *xfer = *xferp, *xfers;
3690         struct spi_replaced_transfers *srt;
3691         size_t offset;
3692         size_t count, i;
3693
3694         /* Calculate how many we have to replace */
3695         count = DIV_ROUND_UP(xfer->len, maxsize);
3696
3697         /* Create replacement */
3698         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3699         if (IS_ERR(srt))
3700                 return PTR_ERR(srt);
3701         xfers = srt->inserted_transfers;
3702
3703         /*
3704          * Now handle each of those newly inserted spi_transfers.
3705          * Note that the replacements spi_transfers all are preset
3706          * to the same values as *xferp, so tx_buf, rx_buf and len
3707          * are all identical (as well as most others)
3708          * so we just have to fix up len and the pointers.
3709          */
3710
3711         /*
3712          * The first transfer just needs the length modified, so we
3713          * run it outside the loop.
3714          */
3715         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3716
3717         /* All the others need rx_buf/tx_buf also set */
3718         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3719                 /* Update rx_buf, tx_buf and DMA */
3720                 if (xfers[i].rx_buf)
3721                         xfers[i].rx_buf += offset;
3722                 if (xfers[i].tx_buf)
3723                         xfers[i].tx_buf += offset;
3724
3725                 /* Update length */
3726                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3727         }
3728
3729         /*
3730          * We set up xferp to the last entry we have inserted,
3731          * so that we skip those already split transfers.
3732          */
3733         *xferp = &xfers[count - 1];
3734
3735         /* Increment statistics counters */
3736         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3737                                        transfers_split_maxsize);
3738         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3739                                        transfers_split_maxsize);
3740
3741         return 0;
3742 }
3743
3744 /**
3745  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3746  *                               when an individual transfer exceeds a
3747  *                               certain size
3748  * @ctlr:    the @spi_controller for this transfer
3749  * @msg:   the @spi_message to transform
3750  * @maxsize:  the maximum when to apply this
3751  *
3752  * This function allocates resources that are automatically freed during the
3753  * spi message unoptimize phase so this function should only be called from
3754  * optimize_message callbacks.
3755  *
3756  * Return: status of transformation
3757  */
3758 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3759                                 struct spi_message *msg,
3760                                 size_t maxsize)
3761 {
3762         struct spi_transfer *xfer;
3763         int ret;
3764
3765         /*
3766          * Iterate over the transfer_list,
3767          * but note that xfer is advanced to the last transfer inserted
3768          * to avoid checking sizes again unnecessarily (also xfer does
3769          * potentially belong to a different list by the time the
3770          * replacement has happened).
3771          */
3772         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3773                 if (xfer->len > maxsize) {
3774                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3775                                                            maxsize);
3776                         if (ret)
3777                                 return ret;
3778                 }
3779         }
3780
3781         return 0;
3782 }
3783 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3784
3785
3786 /**
3787  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3788  *                                when an individual transfer exceeds a
3789  *                                certain number of SPI words
3790  * @ctlr:     the @spi_controller for this transfer
3791  * @msg:      the @spi_message to transform
3792  * @maxwords: the number of words to limit each transfer to
3793  *
3794  * This function allocates resources that are automatically freed during the
3795  * spi message unoptimize phase so this function should only be called from
3796  * optimize_message callbacks.
3797  *
3798  * Return: status of transformation
3799  */
3800 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3801                                  struct spi_message *msg,
3802                                  size_t maxwords)
3803 {
3804         struct spi_transfer *xfer;
3805
3806         /*
3807          * Iterate over the transfer_list,
3808          * but note that xfer is advanced to the last transfer inserted
3809          * to avoid checking sizes again unnecessarily (also xfer does
3810          * potentially belong to a different list by the time the
3811          * replacement has happened).
3812          */
3813         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3814                 size_t maxsize;
3815                 int ret;
3816
3817                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3818                 if (xfer->len > maxsize) {
3819                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3820                                                            maxsize);
3821                         if (ret)
3822                                 return ret;
3823                 }
3824         }
3825
3826         return 0;
3827 }
3828 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3829
3830 /*-------------------------------------------------------------------------*/
3831
3832 /*
3833  * Core methods for SPI controller protocol drivers. Some of the
3834  * other core methods are currently defined as inline functions.
3835  */
3836
3837 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3838                                         u8 bits_per_word)
3839 {
3840         if (ctlr->bits_per_word_mask) {
3841                 /* Only 32 bits fit in the mask */
3842                 if (bits_per_word > 32)
3843                         return -EINVAL;
3844                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3845                         return -EINVAL;
3846         }
3847
3848         return 0;
3849 }
3850
3851 /**
3852  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3853  * @spi: the device that requires specific CS timing configuration
3854  *
3855  * Return: zero on success, else a negative error code.
3856  */
3857 static int spi_set_cs_timing(struct spi_device *spi)
3858 {
3859         struct device *parent = spi->controller->dev.parent;
3860         int status = 0;
3861
3862         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3863                 if (spi->controller->auto_runtime_pm) {
3864                         status = pm_runtime_get_sync(parent);
3865                         if (status < 0) {
3866                                 pm_runtime_put_noidle(parent);
3867                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3868                                         status);
3869                                 return status;
3870                         }
3871
3872                         status = spi->controller->set_cs_timing(spi);
3873                         pm_runtime_mark_last_busy(parent);
3874                         pm_runtime_put_autosuspend(parent);
3875                 } else {
3876                         status = spi->controller->set_cs_timing(spi);
3877                 }
3878         }
3879         return status;
3880 }
3881
3882 /**
3883  * spi_setup - setup SPI mode and clock rate
3884  * @spi: the device whose settings are being modified
3885  * Context: can sleep, and no requests are queued to the device
3886  *
3887  * SPI protocol drivers may need to update the transfer mode if the
3888  * device doesn't work with its default.  They may likewise need
3889  * to update clock rates or word sizes from initial values.  This function
3890  * changes those settings, and must be called from a context that can sleep.
3891  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3892  * effect the next time the device is selected and data is transferred to
3893  * or from it.  When this function returns, the SPI device is deselected.
3894  *
3895  * Note that this call will fail if the protocol driver specifies an option
3896  * that the underlying controller or its driver does not support.  For
3897  * example, not all hardware supports wire transfers using nine bit words,
3898  * LSB-first wire encoding, or active-high chipselects.
3899  *
3900  * Return: zero on success, else a negative error code.
3901  */
3902 int spi_setup(struct spi_device *spi)
3903 {
3904         unsigned        bad_bits, ugly_bits;
3905         int             status = 0;
3906
3907         /*
3908          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3909          * are set at the same time.
3910          */
3911         if ((hweight_long(spi->mode &
3912                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3913             (hweight_long(spi->mode &
3914                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3915                 dev_err(&spi->dev,
3916                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3917                 return -EINVAL;
3918         }
3919         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3920         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3921                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3922                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3923                 return -EINVAL;
3924         /*
3925          * Help drivers fail *cleanly* when they need options
3926          * that aren't supported with their current controller.
3927          * SPI_CS_WORD has a fallback software implementation,
3928          * so it is ignored here.
3929          */
3930         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3931                                  SPI_NO_TX | SPI_NO_RX);
3932         ugly_bits = bad_bits &
3933                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3934                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3935         if (ugly_bits) {
3936                 dev_warn(&spi->dev,
3937                          "setup: ignoring unsupported mode bits %x\n",
3938                          ugly_bits);
3939                 spi->mode &= ~ugly_bits;
3940                 bad_bits &= ~ugly_bits;
3941         }
3942         if (bad_bits) {
3943                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3944                         bad_bits);
3945                 return -EINVAL;
3946         }
3947
3948         if (!spi->bits_per_word) {
3949                 spi->bits_per_word = 8;
3950         } else {
3951                 /*
3952                  * Some controllers may not support the default 8 bits-per-word
3953                  * so only perform the check when this is explicitly provided.
3954                  */
3955                 status = __spi_validate_bits_per_word(spi->controller,
3956                                                       spi->bits_per_word);
3957                 if (status)
3958                         return status;
3959         }
3960
3961         if (spi->controller->max_speed_hz &&
3962             (!spi->max_speed_hz ||
3963              spi->max_speed_hz > spi->controller->max_speed_hz))
3964                 spi->max_speed_hz = spi->controller->max_speed_hz;
3965
3966         mutex_lock(&spi->controller->io_mutex);
3967
3968         if (spi->controller->setup) {
3969                 status = spi->controller->setup(spi);
3970                 if (status) {
3971                         mutex_unlock(&spi->controller->io_mutex);
3972                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3973                                 status);
3974                         return status;
3975                 }
3976         }
3977
3978         status = spi_set_cs_timing(spi);
3979         if (status) {
3980                 mutex_unlock(&spi->controller->io_mutex);
3981                 return status;
3982         }
3983
3984         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3985                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3986                 if (status < 0) {
3987                         mutex_unlock(&spi->controller->io_mutex);
3988                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3989                                 status);
3990                         return status;
3991                 }
3992
3993                 /*
3994                  * We do not want to return positive value from pm_runtime_get,
3995                  * there are many instances of devices calling spi_setup() and
3996                  * checking for a non-zero return value instead of a negative
3997                  * return value.
3998                  */
3999                 status = 0;
4000
4001                 spi_set_cs(spi, false, true);
4002                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4003                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4004         } else {
4005                 spi_set_cs(spi, false, true);
4006         }
4007
4008         mutex_unlock(&spi->controller->io_mutex);
4009
4010         if (spi->rt && !spi->controller->rt) {
4011                 spi->controller->rt = true;
4012                 spi_set_thread_rt(spi->controller);
4013         }
4014
4015         trace_spi_setup(spi, status);
4016
4017         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4018                         spi->mode & SPI_MODE_X_MASK,
4019                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4020                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4021                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4022                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4023                         spi->bits_per_word, spi->max_speed_hz,
4024                         status);
4025
4026         return status;
4027 }
4028 EXPORT_SYMBOL_GPL(spi_setup);
4029
4030 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4031                                        struct spi_device *spi)
4032 {
4033         int delay1, delay2;
4034
4035         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4036         if (delay1 < 0)
4037                 return delay1;
4038
4039         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4040         if (delay2 < 0)
4041                 return delay2;
4042
4043         if (delay1 < delay2)
4044                 memcpy(&xfer->word_delay, &spi->word_delay,
4045                        sizeof(xfer->word_delay));
4046
4047         return 0;
4048 }
4049
4050 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4051 {
4052         struct spi_controller *ctlr = spi->controller;
4053         struct spi_transfer *xfer;
4054         int w_size;
4055
4056         if (list_empty(&message->transfers))
4057                 return -EINVAL;
4058
4059         message->spi = spi;
4060
4061         /*
4062          * Half-duplex links include original MicroWire, and ones with
4063          * only one data pin like SPI_3WIRE (switches direction) or where
4064          * either MOSI or MISO is missing.  They can also be caused by
4065          * software limitations.
4066          */
4067         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4068             (spi->mode & SPI_3WIRE)) {
4069                 unsigned flags = ctlr->flags;
4070
4071                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4072                         if (xfer->rx_buf && xfer->tx_buf)
4073                                 return -EINVAL;
4074                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4075                                 return -EINVAL;
4076                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4077                                 return -EINVAL;
4078                 }
4079         }
4080
4081         /*
4082          * Set transfer bits_per_word and max speed as spi device default if
4083          * it is not set for this transfer.
4084          * Set transfer tx_nbits and rx_nbits as single transfer default
4085          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4086          * Ensure transfer word_delay is at least as long as that required by
4087          * device itself.
4088          */
4089         message->frame_length = 0;
4090         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4091                 xfer->effective_speed_hz = 0;
4092                 message->frame_length += xfer->len;
4093                 if (!xfer->bits_per_word)
4094                         xfer->bits_per_word = spi->bits_per_word;
4095
4096                 if (!xfer->speed_hz)
4097                         xfer->speed_hz = spi->max_speed_hz;
4098
4099                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4100                         xfer->speed_hz = ctlr->max_speed_hz;
4101
4102                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4103                         return -EINVAL;
4104
4105                 /*
4106                  * SPI transfer length should be multiple of SPI word size
4107                  * where SPI word size should be power-of-two multiple.
4108                  */
4109                 if (xfer->bits_per_word <= 8)
4110                         w_size = 1;
4111                 else if (xfer->bits_per_word <= 16)
4112                         w_size = 2;
4113                 else
4114                         w_size = 4;
4115
4116                 /* No partial transfers accepted */
4117                 if (xfer->len % w_size)
4118                         return -EINVAL;
4119
4120                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4121                     xfer->speed_hz < ctlr->min_speed_hz)
4122                         return -EINVAL;
4123
4124                 if (xfer->tx_buf && !xfer->tx_nbits)
4125                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4126                 if (xfer->rx_buf && !xfer->rx_nbits)
4127                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4128                 /*
4129                  * Check transfer tx/rx_nbits:
4130                  * 1. check the value matches one of single, dual and quad
4131                  * 2. check tx/rx_nbits match the mode in spi_device
4132                  */
4133                 if (xfer->tx_buf) {
4134                         if (spi->mode & SPI_NO_TX)
4135                                 return -EINVAL;
4136                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4137                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4138                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4139                                 return -EINVAL;
4140                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142                                 return -EINVAL;
4143                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144                                 !(spi->mode & SPI_TX_QUAD))
4145                                 return -EINVAL;
4146                 }
4147                 /* Check transfer rx_nbits */
4148                 if (xfer->rx_buf) {
4149                         if (spi->mode & SPI_NO_RX)
4150                                 return -EINVAL;
4151                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4153                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4154                                 return -EINVAL;
4155                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4156                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4157                                 return -EINVAL;
4158                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4159                                 !(spi->mode & SPI_RX_QUAD))
4160                                 return -EINVAL;
4161                 }
4162
4163                 if (_spi_xfer_word_delay_update(xfer, spi))
4164                         return -EINVAL;
4165         }
4166
4167         message->status = -EINPROGRESS;
4168
4169         return 0;
4170 }
4171
4172 /*
4173  * spi_split_transfers - generic handling of transfer splitting
4174  * @msg: the message to split
4175  *
4176  * Under certain conditions, a SPI controller may not support arbitrary
4177  * transfer sizes or other features required by a peripheral. This function
4178  * will split the transfers in the message into smaller transfers that are
4179  * supported by the controller.
4180  *
4181  * Controllers with special requirements not covered here can also split
4182  * transfers in the optimize_message() callback.
4183  *
4184  * Context: can sleep
4185  * Return: zero on success, else a negative error code
4186  */
4187 static int spi_split_transfers(struct spi_message *msg)
4188 {
4189         struct spi_controller *ctlr = msg->spi->controller;
4190         struct spi_transfer *xfer;
4191         int ret;
4192
4193         /*
4194          * If an SPI controller does not support toggling the CS line on each
4195          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4196          * for the CS line, we can emulate the CS-per-word hardware function by
4197          * splitting transfers into one-word transfers and ensuring that
4198          * cs_change is set for each transfer.
4199          */
4200         if ((msg->spi->mode & SPI_CS_WORD) &&
4201             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4202                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4203                 if (ret)
4204                         return ret;
4205
4206                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4207                         /* Don't change cs_change on the last entry in the list */
4208                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4209                                 break;
4210
4211                         xfer->cs_change = 1;
4212                 }
4213         } else {
4214                 ret = spi_split_transfers_maxsize(ctlr, msg,
4215                                                   spi_max_transfer_size(msg->spi));
4216                 if (ret)
4217                         return ret;
4218         }
4219
4220         return 0;
4221 }
4222
4223 /*
4224  * __spi_optimize_message - shared implementation for spi_optimize_message()
4225  *                          and spi_maybe_optimize_message()
4226  * @spi: the device that will be used for the message
4227  * @msg: the message to optimize
4228  *
4229  * Peripheral drivers will call spi_optimize_message() and the spi core will
4230  * call spi_maybe_optimize_message() instead of calling this directly.
4231  *
4232  * It is not valid to call this on a message that has already been optimized.
4233  *
4234  * Return: zero on success, else a negative error code
4235  */
4236 static int __spi_optimize_message(struct spi_device *spi,
4237                                   struct spi_message *msg)
4238 {
4239         struct spi_controller *ctlr = spi->controller;
4240         int ret;
4241
4242         ret = __spi_validate(spi, msg);
4243         if (ret)
4244                 return ret;
4245
4246         ret = spi_split_transfers(msg);
4247         if (ret)
4248                 return ret;
4249
4250         if (ctlr->optimize_message) {
4251                 ret = ctlr->optimize_message(msg);
4252                 if (ret) {
4253                         spi_res_release(ctlr, msg);
4254                         return ret;
4255                 }
4256         }
4257
4258         msg->optimized = true;
4259
4260         return 0;
4261 }
4262
4263 /*
4264  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4265  * @spi: the device that will be used for the message
4266  * @msg: the message to optimize
4267  * Return: zero on success, else a negative error code
4268  */
4269 static int spi_maybe_optimize_message(struct spi_device *spi,
4270                                       struct spi_message *msg)
4271 {
4272         if (msg->pre_optimized)
4273                 return 0;
4274
4275         return __spi_optimize_message(spi, msg);
4276 }
4277
4278 /**
4279  * spi_optimize_message - do any one-time validation and setup for a SPI message
4280  * @spi: the device that will be used for the message
4281  * @msg: the message to optimize
4282  *
4283  * Peripheral drivers that reuse the same message repeatedly may call this to
4284  * perform as much message prep as possible once, rather than repeating it each
4285  * time a message transfer is performed to improve throughput and reduce CPU
4286  * usage.
4287  *
4288  * Once a message has been optimized, it cannot be modified with the exception
4289  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4290  * only the data in the memory it points to).
4291  *
4292  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4293  * to avoid leaking resources.
4294  *
4295  * Context: can sleep
4296  * Return: zero on success, else a negative error code
4297  */
4298 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4299 {
4300         int ret;
4301
4302         ret = __spi_optimize_message(spi, msg);
4303         if (ret)
4304                 return ret;
4305
4306         /*
4307          * This flag indicates that the peripheral driver called spi_optimize_message()
4308          * and therefore we shouldn't unoptimize message automatically when finalizing
4309          * the message but rather wait until spi_unoptimize_message() is called
4310          * by the peripheral driver.
4311          */
4312         msg->pre_optimized = true;
4313
4314         return 0;
4315 }
4316 EXPORT_SYMBOL_GPL(spi_optimize_message);
4317
4318 /**
4319  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4320  * @msg: the message to unoptimize
4321  *
4322  * Calls to this function must be balanced with calls to spi_optimize_message().
4323  *
4324  * Context: can sleep
4325  */
4326 void spi_unoptimize_message(struct spi_message *msg)
4327 {
4328         __spi_unoptimize_message(msg);
4329         msg->pre_optimized = false;
4330 }
4331 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4332
4333 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4334 {
4335         struct spi_controller *ctlr = spi->controller;
4336         struct spi_transfer *xfer;
4337
4338         /*
4339          * Some controllers do not support doing regular SPI transfers. Return
4340          * ENOTSUPP when this is the case.
4341          */
4342         if (!ctlr->transfer)
4343                 return -ENOTSUPP;
4344
4345         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4346         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4347
4348         trace_spi_message_submit(message);
4349
4350         if (!ctlr->ptp_sts_supported) {
4351                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4352                         xfer->ptp_sts_word_pre = 0;
4353                         ptp_read_system_prets(xfer->ptp_sts);
4354                 }
4355         }
4356
4357         return ctlr->transfer(spi, message);
4358 }
4359
4360 /**
4361  * spi_async - asynchronous SPI transfer
4362  * @spi: device with which data will be exchanged
4363  * @message: describes the data transfers, including completion callback
4364  * Context: any (IRQs may be blocked, etc)
4365  *
4366  * This call may be used in_irq and other contexts which can't sleep,
4367  * as well as from task contexts which can sleep.
4368  *
4369  * The completion callback is invoked in a context which can't sleep.
4370  * Before that invocation, the value of message->status is undefined.
4371  * When the callback is issued, message->status holds either zero (to
4372  * indicate complete success) or a negative error code.  After that
4373  * callback returns, the driver which issued the transfer request may
4374  * deallocate the associated memory; it's no longer in use by any SPI
4375  * core or controller driver code.
4376  *
4377  * Note that although all messages to a spi_device are handled in
4378  * FIFO order, messages may go to different devices in other orders.
4379  * Some device might be higher priority, or have various "hard" access
4380  * time requirements, for example.
4381  *
4382  * On detection of any fault during the transfer, processing of
4383  * the entire message is aborted, and the device is deselected.
4384  * Until returning from the associated message completion callback,
4385  * no other spi_message queued to that device will be processed.
4386  * (This rule applies equally to all the synchronous transfer calls,
4387  * which are wrappers around this core asynchronous primitive.)
4388  *
4389  * Return: zero on success, else a negative error code.
4390  */
4391 int spi_async(struct spi_device *spi, struct spi_message *message)
4392 {
4393         struct spi_controller *ctlr = spi->controller;
4394         int ret;
4395         unsigned long flags;
4396
4397         ret = spi_maybe_optimize_message(spi, message);
4398         if (ret)
4399                 return ret;
4400
4401         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4402
4403         if (ctlr->bus_lock_flag)
4404                 ret = -EBUSY;
4405         else
4406                 ret = __spi_async(spi, message);
4407
4408         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4409
4410         spi_maybe_unoptimize_message(message);
4411
4412         return ret;
4413 }
4414 EXPORT_SYMBOL_GPL(spi_async);
4415
4416 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4417 {
4418         bool was_busy;
4419         int ret;
4420
4421         mutex_lock(&ctlr->io_mutex);
4422
4423         was_busy = ctlr->busy;
4424
4425         ctlr->cur_msg = msg;
4426         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4427         if (ret)
4428                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4429         ctlr->cur_msg = NULL;
4430         ctlr->fallback = false;
4431
4432         if (!was_busy) {
4433                 kfree(ctlr->dummy_rx);
4434                 ctlr->dummy_rx = NULL;
4435                 kfree(ctlr->dummy_tx);
4436                 ctlr->dummy_tx = NULL;
4437                 if (ctlr->unprepare_transfer_hardware &&
4438                     ctlr->unprepare_transfer_hardware(ctlr))
4439                         dev_err(&ctlr->dev,
4440                                 "failed to unprepare transfer hardware\n");
4441                 spi_idle_runtime_pm(ctlr);
4442         }
4443
4444         mutex_unlock(&ctlr->io_mutex);
4445 }
4446
4447 /*-------------------------------------------------------------------------*/
4448
4449 /*
4450  * Utility methods for SPI protocol drivers, layered on
4451  * top of the core.  Some other utility methods are defined as
4452  * inline functions.
4453  */
4454
4455 static void spi_complete(void *arg)
4456 {
4457         complete(arg);
4458 }
4459
4460 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4461 {
4462         DECLARE_COMPLETION_ONSTACK(done);
4463         unsigned long flags;
4464         int status;
4465         struct spi_controller *ctlr = spi->controller;
4466
4467         if (__spi_check_suspended(ctlr)) {
4468                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4469                 return -ESHUTDOWN;
4470         }
4471
4472         status = spi_maybe_optimize_message(spi, message);
4473         if (status)
4474                 return status;
4475
4476         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4477         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4478
4479         /*
4480          * Checking queue_empty here only guarantees async/sync message
4481          * ordering when coming from the same context. It does not need to
4482          * guard against reentrancy from a different context. The io_mutex
4483          * will catch those cases.
4484          */
4485         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4486                 message->actual_length = 0;
4487                 message->status = -EINPROGRESS;
4488
4489                 trace_spi_message_submit(message);
4490
4491                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4492                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4493
4494                 __spi_transfer_message_noqueue(ctlr, message);
4495
4496                 return message->status;
4497         }
4498
4499         /*
4500          * There are messages in the async queue that could have originated
4501          * from the same context, so we need to preserve ordering.
4502          * Therefor we send the message to the async queue and wait until they
4503          * are completed.
4504          */
4505         message->complete = spi_complete;
4506         message->context = &done;
4507
4508         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4509         status = __spi_async(spi, message);
4510         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4511
4512         if (status == 0) {
4513                 wait_for_completion(&done);
4514                 status = message->status;
4515         }
4516         message->complete = NULL;
4517         message->context = NULL;
4518
4519         return status;
4520 }
4521
4522 /**
4523  * spi_sync - blocking/synchronous SPI data transfers
4524  * @spi: device with which data will be exchanged
4525  * @message: describes the data transfers
4526  * Context: can sleep
4527  *
4528  * This call may only be used from a context that may sleep.  The sleep
4529  * is non-interruptible, and has no timeout.  Low-overhead controller
4530  * drivers may DMA directly into and out of the message buffers.
4531  *
4532  * Note that the SPI device's chip select is active during the message,
4533  * and then is normally disabled between messages.  Drivers for some
4534  * frequently-used devices may want to minimize costs of selecting a chip,
4535  * by leaving it selected in anticipation that the next message will go
4536  * to the same chip.  (That may increase power usage.)
4537  *
4538  * Also, the caller is guaranteeing that the memory associated with the
4539  * message will not be freed before this call returns.
4540  *
4541  * Return: zero on success, else a negative error code.
4542  */
4543 int spi_sync(struct spi_device *spi, struct spi_message *message)
4544 {
4545         int ret;
4546
4547         mutex_lock(&spi->controller->bus_lock_mutex);
4548         ret = __spi_sync(spi, message);
4549         mutex_unlock(&spi->controller->bus_lock_mutex);
4550
4551         return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(spi_sync);
4554
4555 /**
4556  * spi_sync_locked - version of spi_sync with exclusive bus usage
4557  * @spi: device with which data will be exchanged
4558  * @message: describes the data transfers
4559  * Context: can sleep
4560  *
4561  * This call may only be used from a context that may sleep.  The sleep
4562  * is non-interruptible, and has no timeout.  Low-overhead controller
4563  * drivers may DMA directly into and out of the message buffers.
4564  *
4565  * This call should be used by drivers that require exclusive access to the
4566  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4567  * be released by a spi_bus_unlock call when the exclusive access is over.
4568  *
4569  * Return: zero on success, else a negative error code.
4570  */
4571 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4572 {
4573         return __spi_sync(spi, message);
4574 }
4575 EXPORT_SYMBOL_GPL(spi_sync_locked);
4576
4577 /**
4578  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4579  * @ctlr: SPI bus master that should be locked for exclusive bus access
4580  * Context: can sleep
4581  *
4582  * This call may only be used from a context that may sleep.  The sleep
4583  * is non-interruptible, and has no timeout.
4584  *
4585  * This call should be used by drivers that require exclusive access to the
4586  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4587  * exclusive access is over. Data transfer must be done by spi_sync_locked
4588  * and spi_async_locked calls when the SPI bus lock is held.
4589  *
4590  * Return: always zero.
4591  */
4592 int spi_bus_lock(struct spi_controller *ctlr)
4593 {
4594         unsigned long flags;
4595
4596         mutex_lock(&ctlr->bus_lock_mutex);
4597
4598         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4599         ctlr->bus_lock_flag = 1;
4600         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4601
4602         /* Mutex remains locked until spi_bus_unlock() is called */
4603
4604         return 0;
4605 }
4606 EXPORT_SYMBOL_GPL(spi_bus_lock);
4607
4608 /**
4609  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4610  * @ctlr: SPI bus master that was locked for exclusive bus access
4611  * Context: can sleep
4612  *
4613  * This call may only be used from a context that may sleep.  The sleep
4614  * is non-interruptible, and has no timeout.
4615  *
4616  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4617  * call.
4618  *
4619  * Return: always zero.
4620  */
4621 int spi_bus_unlock(struct spi_controller *ctlr)
4622 {
4623         ctlr->bus_lock_flag = 0;
4624
4625         mutex_unlock(&ctlr->bus_lock_mutex);
4626
4627         return 0;
4628 }
4629 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4630
4631 /* Portable code must never pass more than 32 bytes */
4632 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4633
4634 static u8       *buf;
4635
4636 /**
4637  * spi_write_then_read - SPI synchronous write followed by read
4638  * @spi: device with which data will be exchanged
4639  * @txbuf: data to be written (need not be DMA-safe)
4640  * @n_tx: size of txbuf, in bytes
4641  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4642  * @n_rx: size of rxbuf, in bytes
4643  * Context: can sleep
4644  *
4645  * This performs a half duplex MicroWire style transaction with the
4646  * device, sending txbuf and then reading rxbuf.  The return value
4647  * is zero for success, else a negative errno status code.
4648  * This call may only be used from a context that may sleep.
4649  *
4650  * Parameters to this routine are always copied using a small buffer.
4651  * Performance-sensitive or bulk transfer code should instead use
4652  * spi_{async,sync}() calls with DMA-safe buffers.
4653  *
4654  * Return: zero on success, else a negative error code.
4655  */
4656 int spi_write_then_read(struct spi_device *spi,
4657                 const void *txbuf, unsigned n_tx,
4658                 void *rxbuf, unsigned n_rx)
4659 {
4660         static DEFINE_MUTEX(lock);
4661
4662         int                     status;
4663         struct spi_message      message;
4664         struct spi_transfer     x[2];
4665         u8                      *local_buf;
4666
4667         /*
4668          * Use preallocated DMA-safe buffer if we can. We can't avoid
4669          * copying here, (as a pure convenience thing), but we can
4670          * keep heap costs out of the hot path unless someone else is
4671          * using the pre-allocated buffer or the transfer is too large.
4672          */
4673         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4674                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4675                                     GFP_KERNEL | GFP_DMA);
4676                 if (!local_buf)
4677                         return -ENOMEM;
4678         } else {
4679                 local_buf = buf;
4680         }
4681
4682         spi_message_init(&message);
4683         memset(x, 0, sizeof(x));
4684         if (n_tx) {
4685                 x[0].len = n_tx;
4686                 spi_message_add_tail(&x[0], &message);
4687         }
4688         if (n_rx) {
4689                 x[1].len = n_rx;
4690                 spi_message_add_tail(&x[1], &message);
4691         }
4692
4693         memcpy(local_buf, txbuf, n_tx);
4694         x[0].tx_buf = local_buf;
4695         x[1].rx_buf = local_buf + n_tx;
4696
4697         /* Do the I/O */
4698         status = spi_sync(spi, &message);
4699         if (status == 0)
4700                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4701
4702         if (x[0].tx_buf == buf)
4703                 mutex_unlock(&lock);
4704         else
4705                 kfree(local_buf);
4706
4707         return status;
4708 }
4709 EXPORT_SYMBOL_GPL(spi_write_then_read);
4710
4711 /*-------------------------------------------------------------------------*/
4712
4713 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4714 /* Must call put_device() when done with returned spi_device device */
4715 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4716 {
4717         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4718
4719         return dev ? to_spi_device(dev) : NULL;
4720 }
4721
4722 /* The spi controllers are not using spi_bus, so we find it with another way */
4723 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4724 {
4725         struct device *dev;
4726
4727         dev = class_find_device_by_of_node(&spi_master_class, node);
4728         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4729                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4730         if (!dev)
4731                 return NULL;
4732
4733         /* Reference got in class_find_device */
4734         return container_of(dev, struct spi_controller, dev);
4735 }
4736
4737 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4738                          void *arg)
4739 {
4740         struct of_reconfig_data *rd = arg;
4741         struct spi_controller *ctlr;
4742         struct spi_device *spi;
4743
4744         switch (of_reconfig_get_state_change(action, arg)) {
4745         case OF_RECONFIG_CHANGE_ADD:
4746                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4747                 if (ctlr == NULL)
4748                         return NOTIFY_OK;       /* Not for us */
4749
4750                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4751                         put_device(&ctlr->dev);
4752                         return NOTIFY_OK;
4753                 }
4754
4755                 /*
4756                  * Clear the flag before adding the device so that fw_devlink
4757                  * doesn't skip adding consumers to this device.
4758                  */
4759                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4760                 spi = of_register_spi_device(ctlr, rd->dn);
4761                 put_device(&ctlr->dev);
4762
4763                 if (IS_ERR(spi)) {
4764                         pr_err("%s: failed to create for '%pOF'\n",
4765                                         __func__, rd->dn);
4766                         of_node_clear_flag(rd->dn, OF_POPULATED);
4767                         return notifier_from_errno(PTR_ERR(spi));
4768                 }
4769                 break;
4770
4771         case OF_RECONFIG_CHANGE_REMOVE:
4772                 /* Already depopulated? */
4773                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4774                         return NOTIFY_OK;
4775
4776                 /* Find our device by node */
4777                 spi = of_find_spi_device_by_node(rd->dn);
4778                 if (spi == NULL)
4779                         return NOTIFY_OK;       /* No? not meant for us */
4780
4781                 /* Unregister takes one ref away */
4782                 spi_unregister_device(spi);
4783
4784                 /* And put the reference of the find */
4785                 put_device(&spi->dev);
4786                 break;
4787         }
4788
4789         return NOTIFY_OK;
4790 }
4791
4792 static struct notifier_block spi_of_notifier = {
4793         .notifier_call = of_spi_notify,
4794 };
4795 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4796 extern struct notifier_block spi_of_notifier;
4797 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4798
4799 #if IS_ENABLED(CONFIG_ACPI)
4800 static int spi_acpi_controller_match(struct device *dev, const void *data)
4801 {
4802         return ACPI_COMPANION(dev->parent) == data;
4803 }
4804
4805 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4806 {
4807         struct device *dev;
4808
4809         dev = class_find_device(&spi_master_class, NULL, adev,
4810                                 spi_acpi_controller_match);
4811         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4812                 dev = class_find_device(&spi_slave_class, NULL, adev,
4813                                         spi_acpi_controller_match);
4814         if (!dev)
4815                 return NULL;
4816
4817         return container_of(dev, struct spi_controller, dev);
4818 }
4819 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4820
4821 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4822 {
4823         struct device *dev;
4824
4825         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4826         return to_spi_device(dev);
4827 }
4828
4829 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4830                            void *arg)
4831 {
4832         struct acpi_device *adev = arg;
4833         struct spi_controller *ctlr;
4834         struct spi_device *spi;
4835
4836         switch (value) {
4837         case ACPI_RECONFIG_DEVICE_ADD:
4838                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4839                 if (!ctlr)
4840                         break;
4841
4842                 acpi_register_spi_device(ctlr, adev);
4843                 put_device(&ctlr->dev);
4844                 break;
4845         case ACPI_RECONFIG_DEVICE_REMOVE:
4846                 if (!acpi_device_enumerated(adev))
4847                         break;
4848
4849                 spi = acpi_spi_find_device_by_adev(adev);
4850                 if (!spi)
4851                         break;
4852
4853                 spi_unregister_device(spi);
4854                 put_device(&spi->dev);
4855                 break;
4856         }
4857
4858         return NOTIFY_OK;
4859 }
4860
4861 static struct notifier_block spi_acpi_notifier = {
4862         .notifier_call = acpi_spi_notify,
4863 };
4864 #else
4865 extern struct notifier_block spi_acpi_notifier;
4866 #endif
4867
4868 static int __init spi_init(void)
4869 {
4870         int     status;
4871
4872         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4873         if (!buf) {
4874                 status = -ENOMEM;
4875                 goto err0;
4876         }
4877
4878         status = bus_register(&spi_bus_type);
4879         if (status < 0)
4880                 goto err1;
4881
4882         status = class_register(&spi_master_class);
4883         if (status < 0)
4884                 goto err2;
4885
4886         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4887                 status = class_register(&spi_slave_class);
4888                 if (status < 0)
4889                         goto err3;
4890         }
4891
4892         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4893                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4894         if (IS_ENABLED(CONFIG_ACPI))
4895                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4896
4897         return 0;
4898
4899 err3:
4900         class_unregister(&spi_master_class);
4901 err2:
4902         bus_unregister(&spi_bus_type);
4903 err1:
4904         kfree(buf);
4905         buf = NULL;
4906 err0:
4907         return status;
4908 }
4909
4910 /*
4911  * A board_info is normally registered in arch_initcall(),
4912  * but even essential drivers wait till later.
4913  *
4914  * REVISIT only boardinfo really needs static linking. The rest (device and
4915  * driver registration) _could_ be dynamically linked (modular) ... Costs
4916  * include needing to have boardinfo data structures be much more public.
4917  */
4918 postcore_initcall(spi_init);