Merge tag 'tty-5.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[linux-2.6-block.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37
38 #define SPI_COMMAND1                            0x000
39 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
40 #define SPI_PACKED                              (1 << 5)
41 #define SPI_TX_EN                               (1 << 11)
42 #define SPI_RX_EN                               (1 << 12)
43 #define SPI_BOTH_EN_BYTE                        (1 << 13)
44 #define SPI_BOTH_EN_BIT                         (1 << 14)
45 #define SPI_LSBYTE_FE                           (1 << 15)
46 #define SPI_LSBIT_FE                            (1 << 16)
47 #define SPI_BIDIROE                             (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
52 #define SPI_IDLE_SDA_MASK                       (3 << 18)
53 #define SPI_CS_SW_VAL                           (1 << 20)
54 #define SPI_CS_SW_HW                            (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56                                                 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
59
60 #define SPI_CS_SEL_0                            (0 << 26)
61 #define SPI_CS_SEL_1                            (1 << 26)
62 #define SPI_CS_SEL_2                            (2 << 26)
63 #define SPI_CS_SEL_3                            (3 << 26)
64 #define SPI_CS_SEL_MASK                         (3 << 26)
65 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0                      (0 << 28)
67 #define SPI_CONTROL_MODE_1                      (1 << 28)
68 #define SPI_CONTROL_MODE_2                      (2 << 28)
69 #define SPI_CONTROL_MODE_3                      (3 << 28)
70 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
71 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
72 #define SPI_M_S                                 (1 << 30)
73 #define SPI_PIO                                 (1 << 31)
74
75 #define SPI_COMMAND2                            0x004
76 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
78
79 #define SPI_CS_TIMING1                          0x008
80 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
82                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
83                 ((reg) & ~(0xFFu << ((cs) * 8))))
84
85 #define SPI_CS_TIMING2                          0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
95                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
96                         ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
98                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
99                         ((reg) & ~(0xF << ((cs) * 8))))
100
101 #define SPI_TRANS_STATUS                        0x010
102 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
104 #define SPI_RDY                                 (1 << 30)
105
106 #define SPI_FIFO_STATUS                         0x014
107 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
108 #define SPI_RX_FIFO_FULL                        (1 << 1)
109 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
110 #define SPI_TX_FIFO_FULL                        (1 << 3)
111 #define SPI_RX_FIFO_UNF                         (1 << 4)
112 #define SPI_RX_FIFO_OVF                         (1 << 5)
113 #define SPI_TX_FIFO_UNF                         (1 << 6)
114 #define SPI_TX_FIFO_OVF                         (1 << 7)
115 #define SPI_ERR                                 (1 << 8)
116 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
117 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END                           (1 << 30)
121 #define SPI_CS_INACTIVE                         (1 << 31)
122
123 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
124                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127 #define SPI_TX_DATA                             0x018
128 #define SPI_RX_DATA                             0x01C
129
130 #define SPI_DMA_CTL                             0x020
131 #define SPI_TX_TRIG_1                           (0 << 15)
132 #define SPI_TX_TRIG_4                           (1 << 15)
133 #define SPI_TX_TRIG_8                           (2 << 15)
134 #define SPI_TX_TRIG_16                          (3 << 15)
135 #define SPI_TX_TRIG_MASK                        (3 << 15)
136 #define SPI_RX_TRIG_1                           (0 << 19)
137 #define SPI_RX_TRIG_4                           (1 << 19)
138 #define SPI_RX_TRIG_8                           (2 << 19)
139 #define SPI_RX_TRIG_16                          (3 << 19)
140 #define SPI_RX_TRIG_MASK                        (3 << 19)
141 #define SPI_IE_TX                               (1 << 28)
142 #define SPI_IE_RX                               (1 << 29)
143 #define SPI_CONT                                (1 << 30)
144 #define SPI_DMA                                 (1 << 31)
145 #define SPI_DMA_EN                              SPI_DMA
146
147 #define SPI_DMA_BLK                             0x024
148 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
149
150 #define SPI_TX_FIFO                             0x108
151 #define SPI_RX_FIFO                             0x188
152 #define SPI_INTR_MASK                           0x18c
153 #define SPI_INTR_ALL_MASK                       (0x1fUL << 25)
154 #define MAX_CHIP_SELECT                         4
155 #define SPI_FIFO_DEPTH                          64
156 #define DATA_DIR_TX                             (1 << 0)
157 #define DATA_DIR_RX                             (1 << 1)
158
159 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
160 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
161 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
162 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
163 #define MAX_HOLD_CYCLES                         16
164 #define SPI_DEFAULT_SPEED                       25000000
165
166 struct tegra_spi_soc_data {
167         bool has_intr_mask_reg;
168 };
169
170 struct tegra_spi_data {
171         struct device                           *dev;
172         struct spi_master                       *master;
173         spinlock_t                              lock;
174
175         struct clk                              *clk;
176         struct reset_control                    *rst;
177         void __iomem                            *base;
178         phys_addr_t                             phys;
179         unsigned                                irq;
180         u32                                     cur_speed;
181
182         struct spi_device                       *cur_spi;
183         struct spi_device                       *cs_control;
184         unsigned                                cur_pos;
185         unsigned                                words_per_32bit;
186         unsigned                                bytes_per_word;
187         unsigned                                curr_dma_words;
188         unsigned                                cur_direction;
189
190         unsigned                                cur_rx_pos;
191         unsigned                                cur_tx_pos;
192
193         unsigned                                dma_buf_size;
194         unsigned                                max_buf_size;
195         bool                                    is_curr_dma_xfer;
196
197         struct completion                       rx_dma_complete;
198         struct completion                       tx_dma_complete;
199
200         u32                                     tx_status;
201         u32                                     rx_status;
202         u32                                     status_reg;
203         bool                                    is_packed;
204
205         u32                                     command1_reg;
206         u32                                     dma_control_reg;
207         u32                                     def_command1_reg;
208
209         struct completion                       xfer_completion;
210         struct spi_transfer                     *curr_xfer;
211         struct dma_chan                         *rx_dma_chan;
212         u32                                     *rx_dma_buf;
213         dma_addr_t                              rx_dma_phys;
214         struct dma_async_tx_descriptor          *rx_dma_desc;
215
216         struct dma_chan                         *tx_dma_chan;
217         u32                                     *tx_dma_buf;
218         dma_addr_t                              tx_dma_phys;
219         struct dma_async_tx_descriptor          *tx_dma_desc;
220         const struct tegra_spi_soc_data         *soc_data;
221 };
222
223 static int tegra_spi_runtime_suspend(struct device *dev);
224 static int tegra_spi_runtime_resume(struct device *dev);
225
226 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
227                 unsigned long reg)
228 {
229         return readl(tspi->base + reg);
230 }
231
232 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
233                 u32 val, unsigned long reg)
234 {
235         writel(val, tspi->base + reg);
236
237         /* Read back register to make sure that register writes completed */
238         if (reg != SPI_TX_FIFO)
239                 readl(tspi->base + SPI_COMMAND1);
240 }
241
242 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
243 {
244         u32 val;
245
246         /* Write 1 to clear status register */
247         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
248         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
249
250         /* Clear fifo status error if any */
251         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
252         if (val & SPI_ERR)
253                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
254                                 SPI_FIFO_STATUS);
255 }
256
257 static unsigned tegra_spi_calculate_curr_xfer_param(
258         struct spi_device *spi, struct tegra_spi_data *tspi,
259         struct spi_transfer *t)
260 {
261         unsigned remain_len = t->len - tspi->cur_pos;
262         unsigned max_word;
263         unsigned bits_per_word = t->bits_per_word;
264         unsigned max_len;
265         unsigned total_fifo_words;
266
267         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
268
269         if ((bits_per_word == 8 || bits_per_word == 16 ||
270              bits_per_word == 32) && t->len > 3) {
271                 tspi->is_packed = 1;
272                 tspi->words_per_32bit = 32/bits_per_word;
273         } else {
274                 tspi->is_packed = 0;
275                 tspi->words_per_32bit = 1;
276         }
277
278         if (tspi->is_packed) {
279                 max_len = min(remain_len, tspi->max_buf_size);
280                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
281                 total_fifo_words = (max_len + 3) / 4;
282         } else {
283                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
284                 max_word = min(max_word, tspi->max_buf_size/4);
285                 tspi->curr_dma_words = max_word;
286                 total_fifo_words = max_word;
287         }
288         return total_fifo_words;
289 }
290
291 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
292         struct tegra_spi_data *tspi, struct spi_transfer *t)
293 {
294         unsigned nbytes;
295         unsigned tx_empty_count;
296         u32 fifo_status;
297         unsigned max_n_32bit;
298         unsigned i, count;
299         unsigned int written_words;
300         unsigned fifo_words_left;
301         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
302
303         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
304         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
305
306         if (tspi->is_packed) {
307                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
308                 written_words = min(fifo_words_left, tspi->curr_dma_words);
309                 nbytes = written_words * tspi->bytes_per_word;
310                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
311                 for (count = 0; count < max_n_32bit; count++) {
312                         u32 x = 0;
313
314                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
315                                 x |= (u32)(*tx_buf++) << (i * 8);
316                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
317                 }
318
319                 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
320         } else {
321                 unsigned int write_bytes;
322                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
323                 written_words = max_n_32bit;
324                 nbytes = written_words * tspi->bytes_per_word;
325                 if (nbytes > t->len - tspi->cur_pos)
326                         nbytes = t->len - tspi->cur_pos;
327                 write_bytes = nbytes;
328                 for (count = 0; count < max_n_32bit; count++) {
329                         u32 x = 0;
330
331                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
332                                                         i++, nbytes--)
333                                 x |= (u32)(*tx_buf++) << (i * 8);
334                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
335                 }
336
337                 tspi->cur_tx_pos += write_bytes;
338         }
339
340         return written_words;
341 }
342
343 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
344                 struct tegra_spi_data *tspi, struct spi_transfer *t)
345 {
346         unsigned rx_full_count;
347         u32 fifo_status;
348         unsigned i, count;
349         unsigned int read_words = 0;
350         unsigned len;
351         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
352
353         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
354         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
355         if (tspi->is_packed) {
356                 len = tspi->curr_dma_words * tspi->bytes_per_word;
357                 for (count = 0; count < rx_full_count; count++) {
358                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
359
360                         for (i = 0; len && (i < 4); i++, len--)
361                                 *rx_buf++ = (x >> i*8) & 0xFF;
362                 }
363                 read_words += tspi->curr_dma_words;
364                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
365         } else {
366                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
367                 u8 bytes_per_word = tspi->bytes_per_word;
368                 unsigned int read_bytes;
369
370                 len = rx_full_count * bytes_per_word;
371                 if (len > t->len - tspi->cur_pos)
372                         len = t->len - tspi->cur_pos;
373                 read_bytes = len;
374                 for (count = 0; count < rx_full_count; count++) {
375                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
376
377                         for (i = 0; len && (i < bytes_per_word); i++, len--)
378                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
379                 }
380                 read_words += rx_full_count;
381                 tspi->cur_rx_pos += read_bytes;
382         }
383
384         return read_words;
385 }
386
387 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
388                 struct tegra_spi_data *tspi, struct spi_transfer *t)
389 {
390         /* Make the dma buffer to read by cpu */
391         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
392                                 tspi->dma_buf_size, DMA_TO_DEVICE);
393
394         if (tspi->is_packed) {
395                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
396
397                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
398                 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
399         } else {
400                 unsigned int i;
401                 unsigned int count;
402                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
403                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
404                 unsigned int write_bytes;
405
406                 if (consume > t->len - tspi->cur_pos)
407                         consume = t->len - tspi->cur_pos;
408                 write_bytes = consume;
409                 for (count = 0; count < tspi->curr_dma_words; count++) {
410                         u32 x = 0;
411
412                         for (i = 0; consume && (i < tspi->bytes_per_word);
413                                                         i++, consume--)
414                                 x |= (u32)(*tx_buf++) << (i * 8);
415                         tspi->tx_dma_buf[count] = x;
416                 }
417
418                 tspi->cur_tx_pos += write_bytes;
419         }
420
421         /* Make the dma buffer to read by dma */
422         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
423                                 tspi->dma_buf_size, DMA_TO_DEVICE);
424 }
425
426 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
427                 struct tegra_spi_data *tspi, struct spi_transfer *t)
428 {
429         /* Make the dma buffer to read by cpu */
430         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
431                 tspi->dma_buf_size, DMA_FROM_DEVICE);
432
433         if (tspi->is_packed) {
434                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
435
436                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
437                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438         } else {
439                 unsigned int i;
440                 unsigned int count;
441                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
442                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
443                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
444                 unsigned int read_bytes;
445
446                 if (consume > t->len - tspi->cur_pos)
447                         consume = t->len - tspi->cur_pos;
448                 read_bytes = consume;
449                 for (count = 0; count < tspi->curr_dma_words; count++) {
450                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
451
452                         for (i = 0; consume && (i < tspi->bytes_per_word);
453                                                         i++, consume--)
454                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
455                 }
456
457                 tspi->cur_rx_pos += read_bytes;
458         }
459
460         /* Make the dma buffer to read by dma */
461         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
462                 tspi->dma_buf_size, DMA_FROM_DEVICE);
463 }
464
465 static void tegra_spi_dma_complete(void *args)
466 {
467         struct completion *dma_complete = args;
468
469         complete(dma_complete);
470 }
471
472 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
473 {
474         reinit_completion(&tspi->tx_dma_complete);
475         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
476                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
477                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
478         if (!tspi->tx_dma_desc) {
479                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
480                 return -EIO;
481         }
482
483         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
484         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
485
486         dmaengine_submit(tspi->tx_dma_desc);
487         dma_async_issue_pending(tspi->tx_dma_chan);
488         return 0;
489 }
490
491 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
492 {
493         reinit_completion(&tspi->rx_dma_complete);
494         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
495                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
496                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
497         if (!tspi->rx_dma_desc) {
498                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
499                 return -EIO;
500         }
501
502         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
503         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
504
505         dmaengine_submit(tspi->rx_dma_desc);
506         dma_async_issue_pending(tspi->rx_dma_chan);
507         return 0;
508 }
509
510 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
511 {
512         unsigned long timeout = jiffies + HZ;
513         u32 status;
514
515         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
516         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
517                 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
518                 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
519                 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
520                         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
521                         if (time_after(jiffies, timeout)) {
522                                 dev_err(tspi->dev,
523                                         "timeout waiting for fifo flush\n");
524                                 return -EIO;
525                         }
526
527                         udelay(1);
528                 }
529         }
530
531         return 0;
532 }
533
534 static int tegra_spi_start_dma_based_transfer(
535                 struct tegra_spi_data *tspi, struct spi_transfer *t)
536 {
537         u32 val;
538         unsigned int len;
539         int ret = 0;
540         u8 dma_burst;
541         struct dma_slave_config dma_sconfig = {0};
542
543         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
544         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
545
546         if (tspi->is_packed)
547                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
548                                         4) * 4;
549         else
550                 len = tspi->curr_dma_words * 4;
551
552         /* Set attention level based on length of transfer */
553         if (len & 0xF) {
554                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
555                 dma_burst = 1;
556         } else if (((len) >> 4) & 0x1) {
557                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
558                 dma_burst = 4;
559         } else {
560                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
561                 dma_burst = 8;
562         }
563
564         if (!tspi->soc_data->has_intr_mask_reg) {
565                 if (tspi->cur_direction & DATA_DIR_TX)
566                         val |= SPI_IE_TX;
567
568                 if (tspi->cur_direction & DATA_DIR_RX)
569                         val |= SPI_IE_RX;
570         }
571
572         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
573         tspi->dma_control_reg = val;
574
575         dma_sconfig.device_fc = true;
576         if (tspi->cur_direction & DATA_DIR_TX) {
577                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
578                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
579                 dma_sconfig.dst_maxburst = dma_burst;
580                 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
581                 if (ret < 0) {
582                         dev_err(tspi->dev,
583                                 "DMA slave config failed: %d\n", ret);
584                         return ret;
585                 }
586
587                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
588                 ret = tegra_spi_start_tx_dma(tspi, len);
589                 if (ret < 0) {
590                         dev_err(tspi->dev,
591                                 "Starting tx dma failed, err %d\n", ret);
592                         return ret;
593                 }
594         }
595
596         if (tspi->cur_direction & DATA_DIR_RX) {
597                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
598                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599                 dma_sconfig.src_maxburst = dma_burst;
600                 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
601                 if (ret < 0) {
602                         dev_err(tspi->dev,
603                                 "DMA slave config failed: %d\n", ret);
604                         return ret;
605                 }
606
607                 /* Make the dma buffer to read by dma */
608                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
609                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
610
611                 ret = tegra_spi_start_rx_dma(tspi, len);
612                 if (ret < 0) {
613                         dev_err(tspi->dev,
614                                 "Starting rx dma failed, err %d\n", ret);
615                         if (tspi->cur_direction & DATA_DIR_TX)
616                                 dmaengine_terminate_all(tspi->tx_dma_chan);
617                         return ret;
618                 }
619         }
620         tspi->is_curr_dma_xfer = true;
621         tspi->dma_control_reg = val;
622
623         val |= SPI_DMA_EN;
624         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
625         return ret;
626 }
627
628 static int tegra_spi_start_cpu_based_transfer(
629                 struct tegra_spi_data *tspi, struct spi_transfer *t)
630 {
631         u32 val;
632         unsigned cur_words;
633
634         if (tspi->cur_direction & DATA_DIR_TX)
635                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
636         else
637                 cur_words = tspi->curr_dma_words;
638
639         val = SPI_DMA_BLK_SET(cur_words - 1);
640         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
641
642         val = 0;
643         if (tspi->cur_direction & DATA_DIR_TX)
644                 val |= SPI_IE_TX;
645
646         if (tspi->cur_direction & DATA_DIR_RX)
647                 val |= SPI_IE_RX;
648
649         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
650         tspi->dma_control_reg = val;
651
652         tspi->is_curr_dma_xfer = false;
653
654         val = tspi->command1_reg;
655         val |= SPI_PIO;
656         tegra_spi_writel(tspi, val, SPI_COMMAND1);
657         return 0;
658 }
659
660 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
661                         bool dma_to_memory)
662 {
663         struct dma_chan *dma_chan;
664         u32 *dma_buf;
665         dma_addr_t dma_phys;
666         int ret;
667
668         dma_chan = dma_request_slave_channel_reason(tspi->dev,
669                                         dma_to_memory ? "rx" : "tx");
670         if (IS_ERR(dma_chan)) {
671                 ret = PTR_ERR(dma_chan);
672                 if (ret != -EPROBE_DEFER)
673                         dev_err(tspi->dev,
674                                 "Dma channel is not available: %d\n", ret);
675                 return ret;
676         }
677
678         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
679                                 &dma_phys, GFP_KERNEL);
680         if (!dma_buf) {
681                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
682                 dma_release_channel(dma_chan);
683                 return -ENOMEM;
684         }
685
686         if (dma_to_memory) {
687                 tspi->rx_dma_chan = dma_chan;
688                 tspi->rx_dma_buf = dma_buf;
689                 tspi->rx_dma_phys = dma_phys;
690         } else {
691                 tspi->tx_dma_chan = dma_chan;
692                 tspi->tx_dma_buf = dma_buf;
693                 tspi->tx_dma_phys = dma_phys;
694         }
695         return 0;
696 }
697
698 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
699         bool dma_to_memory)
700 {
701         u32 *dma_buf;
702         dma_addr_t dma_phys;
703         struct dma_chan *dma_chan;
704
705         if (dma_to_memory) {
706                 dma_buf = tspi->rx_dma_buf;
707                 dma_chan = tspi->rx_dma_chan;
708                 dma_phys = tspi->rx_dma_phys;
709                 tspi->rx_dma_chan = NULL;
710                 tspi->rx_dma_buf = NULL;
711         } else {
712                 dma_buf = tspi->tx_dma_buf;
713                 dma_chan = tspi->tx_dma_chan;
714                 dma_phys = tspi->tx_dma_phys;
715                 tspi->tx_dma_buf = NULL;
716                 tspi->tx_dma_chan = NULL;
717         }
718         if (!dma_chan)
719                 return;
720
721         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
722         dma_release_channel(dma_chan);
723 }
724
725 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
726                 struct spi_transfer *t, bool is_first_of_msg)
727 {
728         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
729         u32 speed = t->speed_hz;
730         u8 bits_per_word = t->bits_per_word;
731         u32 command1;
732         int req_mode;
733
734         if (speed != tspi->cur_speed) {
735                 clk_set_rate(tspi->clk, speed);
736                 tspi->cur_speed = speed;
737         }
738
739         tspi->cur_spi = spi;
740         tspi->cur_pos = 0;
741         tspi->cur_rx_pos = 0;
742         tspi->cur_tx_pos = 0;
743         tspi->curr_xfer = t;
744
745         if (is_first_of_msg) {
746                 tegra_spi_clear_status(tspi);
747
748                 command1 = tspi->def_command1_reg;
749                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
750
751                 command1 &= ~SPI_CONTROL_MODE_MASK;
752                 req_mode = spi->mode & 0x3;
753                 if (req_mode == SPI_MODE_0)
754                         command1 |= SPI_CONTROL_MODE_0;
755                 else if (req_mode == SPI_MODE_1)
756                         command1 |= SPI_CONTROL_MODE_1;
757                 else if (req_mode == SPI_MODE_2)
758                         command1 |= SPI_CONTROL_MODE_2;
759                 else if (req_mode == SPI_MODE_3)
760                         command1 |= SPI_CONTROL_MODE_3;
761
762                 if (spi->mode & SPI_LSB_FIRST)
763                         command1 |= SPI_LSBIT_FE;
764                 else
765                         command1 &= ~SPI_LSBIT_FE;
766
767                 if (spi->mode & SPI_3WIRE)
768                         command1 |= SPI_BIDIROE;
769                 else
770                         command1 &= ~SPI_BIDIROE;
771
772                 if (tspi->cs_control) {
773                         if (tspi->cs_control != spi)
774                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
775                         tspi->cs_control = NULL;
776                 } else
777                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
778
779                 command1 |= SPI_CS_SW_HW;
780                 if (spi->mode & SPI_CS_HIGH)
781                         command1 |= SPI_CS_SW_VAL;
782                 else
783                         command1 &= ~SPI_CS_SW_VAL;
784
785                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
786         } else {
787                 command1 = tspi->command1_reg;
788                 command1 &= ~SPI_BIT_LENGTH(~0);
789                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
790         }
791
792         return command1;
793 }
794
795 static int tegra_spi_start_transfer_one(struct spi_device *spi,
796                 struct spi_transfer *t, u32 command1)
797 {
798         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
799         unsigned total_fifo_words;
800         int ret;
801
802         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
803
804         if (t->rx_nbits == SPI_NBITS_DUAL || t->tx_nbits == SPI_NBITS_DUAL)
805                 command1 |= SPI_BOTH_EN_BIT;
806         else
807                 command1 &= ~SPI_BOTH_EN_BIT;
808
809         if (tspi->is_packed)
810                 command1 |= SPI_PACKED;
811         else
812                 command1 &= ~SPI_PACKED;
813
814         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
815         tspi->cur_direction = 0;
816         if (t->rx_buf) {
817                 command1 |= SPI_RX_EN;
818                 tspi->cur_direction |= DATA_DIR_RX;
819         }
820         if (t->tx_buf) {
821                 command1 |= SPI_TX_EN;
822                 tspi->cur_direction |= DATA_DIR_TX;
823         }
824         command1 |= SPI_CS_SEL(spi->chip_select);
825         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
826         tspi->command1_reg = command1;
827
828         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
829                 tspi->def_command1_reg, (unsigned)command1);
830
831         ret = tegra_spi_flush_fifos(tspi);
832         if (ret < 0)
833                 return ret;
834         if (total_fifo_words > SPI_FIFO_DEPTH)
835                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
836         else
837                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
838         return ret;
839 }
840
841 static int tegra_spi_setup(struct spi_device *spi)
842 {
843         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
844         u32 val;
845         unsigned long flags;
846         int ret;
847
848         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
849                 spi->bits_per_word,
850                 spi->mode & SPI_CPOL ? "" : "~",
851                 spi->mode & SPI_CPHA ? "" : "~",
852                 spi->max_speed_hz);
853
854         ret = pm_runtime_get_sync(tspi->dev);
855         if (ret < 0) {
856                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
857                 return ret;
858         }
859
860         if (tspi->soc_data->has_intr_mask_reg) {
861                 val = tegra_spi_readl(tspi, SPI_INTR_MASK);
862                 val &= ~SPI_INTR_ALL_MASK;
863                 tegra_spi_writel(tspi, val, SPI_INTR_MASK);
864         }
865
866         spin_lock_irqsave(&tspi->lock, flags);
867         val = tspi->def_command1_reg;
868         if (spi->mode & SPI_CS_HIGH)
869                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
870         else
871                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
872         tspi->def_command1_reg = val;
873         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
874         spin_unlock_irqrestore(&tspi->lock, flags);
875
876         pm_runtime_put(tspi->dev);
877         return 0;
878 }
879
880 static void tegra_spi_transfer_delay(int delay)
881 {
882         if (!delay)
883                 return;
884
885         if (delay >= 1000)
886                 mdelay(delay / 1000);
887
888         udelay(delay % 1000);
889 }
890
891 static void tegra_spi_transfer_end(struct spi_device *spi)
892 {
893         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
894         int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
895
896         if (cs_val)
897                 tspi->command1_reg |= SPI_CS_SW_VAL;
898         else
899                 tspi->command1_reg &= ~SPI_CS_SW_VAL;
900         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
901         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
902 }
903
904 static void tegra_spi_dump_regs(struct tegra_spi_data *tspi)
905 {
906         dev_dbg(tspi->dev, "============ SPI REGISTER DUMP ============\n");
907         dev_dbg(tspi->dev, "Command1:    0x%08x | Command2:    0x%08x\n",
908                 tegra_spi_readl(tspi, SPI_COMMAND1),
909                 tegra_spi_readl(tspi, SPI_COMMAND2));
910         dev_dbg(tspi->dev, "DMA_CTL:     0x%08x | DMA_BLK:     0x%08x\n",
911                 tegra_spi_readl(tspi, SPI_DMA_CTL),
912                 tegra_spi_readl(tspi, SPI_DMA_BLK));
913         dev_dbg(tspi->dev, "TRANS_STAT:  0x%08x | FIFO_STATUS: 0x%08x\n",
914                 tegra_spi_readl(tspi, SPI_TRANS_STATUS),
915                 tegra_spi_readl(tspi, SPI_FIFO_STATUS));
916 }
917
918 static int tegra_spi_transfer_one_message(struct spi_master *master,
919                         struct spi_message *msg)
920 {
921         bool is_first_msg = true;
922         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
923         struct spi_transfer *xfer;
924         struct spi_device *spi = msg->spi;
925         int ret;
926         bool skip = false;
927
928         msg->status = 0;
929         msg->actual_length = 0;
930
931         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
932                 u32 cmd1;
933
934                 reinit_completion(&tspi->xfer_completion);
935
936                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
937
938                 if (!xfer->len) {
939                         ret = 0;
940                         skip = true;
941                         goto complete_xfer;
942                 }
943
944                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
945                 if (ret < 0) {
946                         dev_err(tspi->dev,
947                                 "spi can not start transfer, err %d\n", ret);
948                         goto complete_xfer;
949                 }
950
951                 is_first_msg = false;
952                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
953                                                 SPI_DMA_TIMEOUT);
954                 if (WARN_ON(ret == 0)) {
955                         dev_err(tspi->dev,
956                                 "spi transfer timeout, err %d\n", ret);
957                         if (tspi->is_curr_dma_xfer &&
958                             (tspi->cur_direction & DATA_DIR_TX))
959                                 dmaengine_terminate_all(tspi->tx_dma_chan);
960                         if (tspi->is_curr_dma_xfer &&
961                             (tspi->cur_direction & DATA_DIR_RX))
962                                 dmaengine_terminate_all(tspi->rx_dma_chan);
963                         ret = -EIO;
964                         tegra_spi_dump_regs(tspi);
965                         tegra_spi_flush_fifos(tspi);
966                         reset_control_assert(tspi->rst);
967                         udelay(2);
968                         reset_control_deassert(tspi->rst);
969                         goto complete_xfer;
970                 }
971
972                 if (tspi->tx_status ||  tspi->rx_status) {
973                         dev_err(tspi->dev, "Error in Transfer\n");
974                         ret = -EIO;
975                         tegra_spi_dump_regs(tspi);
976                         goto complete_xfer;
977                 }
978                 msg->actual_length += xfer->len;
979
980 complete_xfer:
981                 if (ret < 0 || skip) {
982                         tegra_spi_transfer_end(spi);
983                         tegra_spi_transfer_delay(xfer->delay_usecs);
984                         goto exit;
985                 } else if (list_is_last(&xfer->transfer_list,
986                                         &msg->transfers)) {
987                         if (xfer->cs_change)
988                                 tspi->cs_control = spi;
989                         else {
990                                 tegra_spi_transfer_end(spi);
991                                 tegra_spi_transfer_delay(xfer->delay_usecs);
992                         }
993                 } else if (xfer->cs_change) {
994                         tegra_spi_transfer_end(spi);
995                         tegra_spi_transfer_delay(xfer->delay_usecs);
996                 }
997
998         }
999         ret = 0;
1000 exit:
1001         msg->status = ret;
1002         spi_finalize_current_message(master);
1003         return ret;
1004 }
1005
1006 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
1007 {
1008         struct spi_transfer *t = tspi->curr_xfer;
1009         unsigned long flags;
1010
1011         spin_lock_irqsave(&tspi->lock, flags);
1012         if (tspi->tx_status ||  tspi->rx_status) {
1013                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
1014                         tspi->status_reg);
1015                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
1016                         tspi->command1_reg, tspi->dma_control_reg);
1017                 tegra_spi_dump_regs(tspi);
1018                 tegra_spi_flush_fifos(tspi);
1019                 complete(&tspi->xfer_completion);
1020                 spin_unlock_irqrestore(&tspi->lock, flags);
1021                 reset_control_assert(tspi->rst);
1022                 udelay(2);
1023                 reset_control_deassert(tspi->rst);
1024                 return IRQ_HANDLED;
1025         }
1026
1027         if (tspi->cur_direction & DATA_DIR_RX)
1028                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
1029
1030         if (tspi->cur_direction & DATA_DIR_TX)
1031                 tspi->cur_pos = tspi->cur_tx_pos;
1032         else
1033                 tspi->cur_pos = tspi->cur_rx_pos;
1034
1035         if (tspi->cur_pos == t->len) {
1036                 complete(&tspi->xfer_completion);
1037                 goto exit;
1038         }
1039
1040         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
1041         tegra_spi_start_cpu_based_transfer(tspi, t);
1042 exit:
1043         spin_unlock_irqrestore(&tspi->lock, flags);
1044         return IRQ_HANDLED;
1045 }
1046
1047 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
1048 {
1049         struct spi_transfer *t = tspi->curr_xfer;
1050         long wait_status;
1051         int err = 0;
1052         unsigned total_fifo_words;
1053         unsigned long flags;
1054
1055         /* Abort dmas if any error */
1056         if (tspi->cur_direction & DATA_DIR_TX) {
1057                 if (tspi->tx_status) {
1058                         dmaengine_terminate_all(tspi->tx_dma_chan);
1059                         err += 1;
1060                 } else {
1061                         wait_status = wait_for_completion_interruptible_timeout(
1062                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1063                         if (wait_status <= 0) {
1064                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1065                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
1066                                 err += 1;
1067                         }
1068                 }
1069         }
1070
1071         if (tspi->cur_direction & DATA_DIR_RX) {
1072                 if (tspi->rx_status) {
1073                         dmaengine_terminate_all(tspi->rx_dma_chan);
1074                         err += 2;
1075                 } else {
1076                         wait_status = wait_for_completion_interruptible_timeout(
1077                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1078                         if (wait_status <= 0) {
1079                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1080                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
1081                                 err += 2;
1082                         }
1083                 }
1084         }
1085
1086         spin_lock_irqsave(&tspi->lock, flags);
1087         if (err) {
1088                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1089                         tspi->status_reg);
1090                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1091                         tspi->command1_reg, tspi->dma_control_reg);
1092                 tegra_spi_dump_regs(tspi);
1093                 tegra_spi_flush_fifos(tspi);
1094                 complete(&tspi->xfer_completion);
1095                 spin_unlock_irqrestore(&tspi->lock, flags);
1096                 reset_control_assert(tspi->rst);
1097                 udelay(2);
1098                 reset_control_deassert(tspi->rst);
1099                 return IRQ_HANDLED;
1100         }
1101
1102         if (tspi->cur_direction & DATA_DIR_RX)
1103                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1104
1105         if (tspi->cur_direction & DATA_DIR_TX)
1106                 tspi->cur_pos = tspi->cur_tx_pos;
1107         else
1108                 tspi->cur_pos = tspi->cur_rx_pos;
1109
1110         if (tspi->cur_pos == t->len) {
1111                 complete(&tspi->xfer_completion);
1112                 goto exit;
1113         }
1114
1115         /* Continue transfer in current message */
1116         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1117                                                         tspi, t);
1118         if (total_fifo_words > SPI_FIFO_DEPTH)
1119                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1120         else
1121                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1122
1123 exit:
1124         spin_unlock_irqrestore(&tspi->lock, flags);
1125         return IRQ_HANDLED;
1126 }
1127
1128 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1129 {
1130         struct tegra_spi_data *tspi = context_data;
1131
1132         if (!tspi->is_curr_dma_xfer)
1133                 return handle_cpu_based_xfer(tspi);
1134         return handle_dma_based_xfer(tspi);
1135 }
1136
1137 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1138 {
1139         struct tegra_spi_data *tspi = context_data;
1140
1141         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1142         if (tspi->cur_direction & DATA_DIR_TX)
1143                 tspi->tx_status = tspi->status_reg &
1144                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1145
1146         if (tspi->cur_direction & DATA_DIR_RX)
1147                 tspi->rx_status = tspi->status_reg &
1148                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1149         tegra_spi_clear_status(tspi);
1150
1151         return IRQ_WAKE_THREAD;
1152 }
1153
1154 static struct tegra_spi_soc_data tegra114_spi_soc_data = {
1155         .has_intr_mask_reg = false,
1156 };
1157
1158 static struct tegra_spi_soc_data tegra124_spi_soc_data = {
1159         .has_intr_mask_reg = false,
1160 };
1161
1162 static struct tegra_spi_soc_data tegra210_spi_soc_data = {
1163         .has_intr_mask_reg = true,
1164 };
1165
1166 static const struct of_device_id tegra_spi_of_match[] = {
1167         {
1168                 .compatible = "nvidia,tegra114-spi",
1169                 .data       = &tegra114_spi_soc_data,
1170         }, {
1171                 .compatible = "nvidia,tegra124-spi",
1172                 .data       = &tegra124_spi_soc_data,
1173         }, {
1174                 .compatible = "nvidia,tegra210-spi",
1175                 .data       = &tegra210_spi_soc_data,
1176         },
1177         {}
1178 };
1179 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1180
1181 static int tegra_spi_probe(struct platform_device *pdev)
1182 {
1183         struct spi_master       *master;
1184         struct tegra_spi_data   *tspi;
1185         struct resource         *r;
1186         int ret, spi_irq;
1187         int bus_num;
1188
1189         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1190         if (!master) {
1191                 dev_err(&pdev->dev, "master allocation failed\n");
1192                 return -ENOMEM;
1193         }
1194         platform_set_drvdata(pdev, master);
1195         tspi = spi_master_get_devdata(master);
1196
1197         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1198                                  &master->max_speed_hz))
1199                 master->max_speed_hz = 25000000; /* 25MHz */
1200
1201         /* the spi->mode bits understood by this driver: */
1202         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
1203                             SPI_TX_DUAL | SPI_RX_DUAL | SPI_3WIRE;
1204         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1205         master->setup = tegra_spi_setup;
1206         master->transfer_one_message = tegra_spi_transfer_one_message;
1207         master->num_chipselect = MAX_CHIP_SELECT;
1208         master->auto_runtime_pm = true;
1209         bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1210         if (bus_num >= 0)
1211                 master->bus_num = bus_num;
1212
1213         tspi->master = master;
1214         tspi->dev = &pdev->dev;
1215         spin_lock_init(&tspi->lock);
1216
1217         tspi->soc_data = of_device_get_match_data(&pdev->dev);
1218         if (!tspi->soc_data) {
1219                 dev_err(&pdev->dev, "unsupported tegra\n");
1220                 ret = -ENODEV;
1221                 goto exit_free_master;
1222         }
1223
1224         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1225         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1226         if (IS_ERR(tspi->base)) {
1227                 ret = PTR_ERR(tspi->base);
1228                 goto exit_free_master;
1229         }
1230         tspi->phys = r->start;
1231
1232         spi_irq = platform_get_irq(pdev, 0);
1233         tspi->irq = spi_irq;
1234
1235         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1236         if (IS_ERR(tspi->clk)) {
1237                 dev_err(&pdev->dev, "can not get clock\n");
1238                 ret = PTR_ERR(tspi->clk);
1239                 goto exit_free_master;
1240         }
1241
1242         tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1243         if (IS_ERR(tspi->rst)) {
1244                 dev_err(&pdev->dev, "can not get reset\n");
1245                 ret = PTR_ERR(tspi->rst);
1246                 goto exit_free_master;
1247         }
1248
1249         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1250         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1251
1252         ret = tegra_spi_init_dma_param(tspi, true);
1253         if (ret < 0)
1254                 goto exit_free_master;
1255         ret = tegra_spi_init_dma_param(tspi, false);
1256         if (ret < 0)
1257                 goto exit_rx_dma_free;
1258         tspi->max_buf_size = tspi->dma_buf_size;
1259         init_completion(&tspi->tx_dma_complete);
1260         init_completion(&tspi->rx_dma_complete);
1261
1262         init_completion(&tspi->xfer_completion);
1263
1264         pm_runtime_enable(&pdev->dev);
1265         if (!pm_runtime_enabled(&pdev->dev)) {
1266                 ret = tegra_spi_runtime_resume(&pdev->dev);
1267                 if (ret)
1268                         goto exit_pm_disable;
1269         }
1270
1271         ret = pm_runtime_get_sync(&pdev->dev);
1272         if (ret < 0) {
1273                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1274                 goto exit_pm_disable;
1275         }
1276
1277         reset_control_assert(tspi->rst);
1278         udelay(2);
1279         reset_control_deassert(tspi->rst);
1280         tspi->def_command1_reg  = SPI_M_S;
1281         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1282         pm_runtime_put(&pdev->dev);
1283         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1284                                    tegra_spi_isr_thread, IRQF_ONESHOT,
1285                                    dev_name(&pdev->dev), tspi);
1286         if (ret < 0) {
1287                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1288                         tspi->irq);
1289                 goto exit_pm_disable;
1290         }
1291
1292         master->dev.of_node = pdev->dev.of_node;
1293         ret = devm_spi_register_master(&pdev->dev, master);
1294         if (ret < 0) {
1295                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1296                 goto exit_free_irq;
1297         }
1298         return ret;
1299
1300 exit_free_irq:
1301         free_irq(spi_irq, tspi);
1302 exit_pm_disable:
1303         pm_runtime_disable(&pdev->dev);
1304         if (!pm_runtime_status_suspended(&pdev->dev))
1305                 tegra_spi_runtime_suspend(&pdev->dev);
1306         tegra_spi_deinit_dma_param(tspi, false);
1307 exit_rx_dma_free:
1308         tegra_spi_deinit_dma_param(tspi, true);
1309 exit_free_master:
1310         spi_master_put(master);
1311         return ret;
1312 }
1313
1314 static int tegra_spi_remove(struct platform_device *pdev)
1315 {
1316         struct spi_master *master = platform_get_drvdata(pdev);
1317         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1318
1319         free_irq(tspi->irq, tspi);
1320
1321         if (tspi->tx_dma_chan)
1322                 tegra_spi_deinit_dma_param(tspi, false);
1323
1324         if (tspi->rx_dma_chan)
1325                 tegra_spi_deinit_dma_param(tspi, true);
1326
1327         pm_runtime_disable(&pdev->dev);
1328         if (!pm_runtime_status_suspended(&pdev->dev))
1329                 tegra_spi_runtime_suspend(&pdev->dev);
1330
1331         return 0;
1332 }
1333
1334 #ifdef CONFIG_PM_SLEEP
1335 static int tegra_spi_suspend(struct device *dev)
1336 {
1337         struct spi_master *master = dev_get_drvdata(dev);
1338
1339         return spi_master_suspend(master);
1340 }
1341
1342 static int tegra_spi_resume(struct device *dev)
1343 {
1344         struct spi_master *master = dev_get_drvdata(dev);
1345         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1346         int ret;
1347
1348         ret = pm_runtime_get_sync(dev);
1349         if (ret < 0) {
1350                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1351                 return ret;
1352         }
1353         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1354         pm_runtime_put(dev);
1355
1356         return spi_master_resume(master);
1357 }
1358 #endif
1359
1360 static int tegra_spi_runtime_suspend(struct device *dev)
1361 {
1362         struct spi_master *master = dev_get_drvdata(dev);
1363         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1364
1365         /* Flush all write which are in PPSB queue by reading back */
1366         tegra_spi_readl(tspi, SPI_COMMAND1);
1367
1368         clk_disable_unprepare(tspi->clk);
1369         return 0;
1370 }
1371
1372 static int tegra_spi_runtime_resume(struct device *dev)
1373 {
1374         struct spi_master *master = dev_get_drvdata(dev);
1375         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1376         int ret;
1377
1378         ret = clk_prepare_enable(tspi->clk);
1379         if (ret < 0) {
1380                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1381                 return ret;
1382         }
1383         return 0;
1384 }
1385
1386 static const struct dev_pm_ops tegra_spi_pm_ops = {
1387         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1388                 tegra_spi_runtime_resume, NULL)
1389         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1390 };
1391 static struct platform_driver tegra_spi_driver = {
1392         .driver = {
1393                 .name           = "spi-tegra114",
1394                 .pm             = &tegra_spi_pm_ops,
1395                 .of_match_table = tegra_spi_of_match,
1396         },
1397         .probe =        tegra_spi_probe,
1398         .remove =       tegra_spi_remove,
1399 };
1400 module_platform_driver(tegra_spi_driver);
1401
1402 MODULE_ALIAS("platform:spi-tegra114");
1403 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1404 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1405 MODULE_LICENSE("GPL v2");