Merge tag 'tag-chrome-platform-fixes-for-v5.7-rc5' of git://git.kernel.org/pub/scm...
[linux-block.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/spi/spi.h>
19
20 #define DRIVER_NAME "spi_stm32"
21
22 /* STM32F4 SPI registers */
23 #define STM32F4_SPI_CR1                 0x00
24 #define STM32F4_SPI_CR2                 0x04
25 #define STM32F4_SPI_SR                  0x08
26 #define STM32F4_SPI_DR                  0x0C
27 #define STM32F4_SPI_I2SCFGR             0x1C
28
29 /* STM32F4_SPI_CR1 bit fields */
30 #define STM32F4_SPI_CR1_CPHA            BIT(0)
31 #define STM32F4_SPI_CR1_CPOL            BIT(1)
32 #define STM32F4_SPI_CR1_MSTR            BIT(2)
33 #define STM32F4_SPI_CR1_BR_SHIFT        3
34 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
35 #define STM32F4_SPI_CR1_SPE             BIT(6)
36 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
37 #define STM32F4_SPI_CR1_SSI             BIT(8)
38 #define STM32F4_SPI_CR1_SSM             BIT(9)
39 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
40 #define STM32F4_SPI_CR1_DFF             BIT(11)
41 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
42 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
43 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
44 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
45 #define STM32F4_SPI_CR1_BR_MIN          0
46 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
47
48 /* STM32F4_SPI_CR2 bit fields */
49 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
50 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
51 #define STM32F4_SPI_CR2_SSOE            BIT(2)
52 #define STM32F4_SPI_CR2_FRF             BIT(4)
53 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
54 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
55 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
56
57 /* STM32F4_SPI_SR bit fields */
58 #define STM32F4_SPI_SR_RXNE             BIT(0)
59 #define STM32F4_SPI_SR_TXE              BIT(1)
60 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
61 #define STM32F4_SPI_SR_UDR              BIT(3)
62 #define STM32F4_SPI_SR_CRCERR           BIT(4)
63 #define STM32F4_SPI_SR_MODF             BIT(5)
64 #define STM32F4_SPI_SR_OVR              BIT(6)
65 #define STM32F4_SPI_SR_BSY              BIT(7)
66 #define STM32F4_SPI_SR_FRE              BIT(8)
67
68 /* STM32F4_SPI_I2SCFGR bit fields */
69 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
70
71 /* STM32F4 SPI Baud Rate min/max divisor */
72 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
73 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
74
75 /* STM32H7 SPI registers */
76 #define STM32H7_SPI_CR1                 0x00
77 #define STM32H7_SPI_CR2                 0x04
78 #define STM32H7_SPI_CFG1                0x08
79 #define STM32H7_SPI_CFG2                0x0C
80 #define STM32H7_SPI_IER                 0x10
81 #define STM32H7_SPI_SR                  0x14
82 #define STM32H7_SPI_IFCR                0x18
83 #define STM32H7_SPI_TXDR                0x20
84 #define STM32H7_SPI_RXDR                0x30
85 #define STM32H7_SPI_I2SCFGR             0x50
86
87 /* STM32H7_SPI_CR1 bit fields */
88 #define STM32H7_SPI_CR1_SPE             BIT(0)
89 #define STM32H7_SPI_CR1_MASRX           BIT(8)
90 #define STM32H7_SPI_CR1_CSTART          BIT(9)
91 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
92 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
93 #define STM32H7_SPI_CR1_SSI             BIT(12)
94
95 /* STM32H7_SPI_CR2 bit fields */
96 #define STM32H7_SPI_CR2_TSIZE_SHIFT     0
97 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
98
99 /* STM32H7_SPI_CFG1 bit fields */
100 #define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
101 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
102 #define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
103 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
106 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
107 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
108 #define STM32H7_SPI_CFG1_MBR_MIN        0
109 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI_SHIFT     4
113 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
114 #define STM32H7_SPI_CFG2_COMM_SHIFT     17
115 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
116 #define STM32H7_SPI_CFG2_SP_SHIFT       19
117 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
118 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
119 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
120 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
121 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
122 #define STM32H7_SPI_CFG2_SSM            BIT(26)
123 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
124
125 /* STM32H7_SPI_IER bit fields */
126 #define STM32H7_SPI_IER_RXPIE           BIT(0)
127 #define STM32H7_SPI_IER_TXPIE           BIT(1)
128 #define STM32H7_SPI_IER_DXPIE           BIT(2)
129 #define STM32H7_SPI_IER_EOTIE           BIT(3)
130 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
131 #define STM32H7_SPI_IER_OVRIE           BIT(6)
132 #define STM32H7_SPI_IER_MODFIE          BIT(9)
133 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
134
135 /* STM32H7_SPI_SR bit fields */
136 #define STM32H7_SPI_SR_RXP              BIT(0)
137 #define STM32H7_SPI_SR_TXP              BIT(1)
138 #define STM32H7_SPI_SR_EOT              BIT(3)
139 #define STM32H7_SPI_SR_OVR              BIT(6)
140 #define STM32H7_SPI_SR_MODF             BIT(9)
141 #define STM32H7_SPI_SR_SUSP             BIT(11)
142 #define STM32H7_SPI_SR_RXPLVL_SHIFT     13
143 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
144 #define STM32H7_SPI_SR_RXWNE            BIT(15)
145
146 /* STM32H7_SPI_IFCR bit fields */
147 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
148
149 /* STM32H7_SPI_I2SCFGR bit fields */
150 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
151
152 /* STM32H7 SPI Master Baud Rate min/max divisor */
153 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
154 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
155
156 /* STM32H7 SPI Communication mode */
157 #define STM32H7_SPI_FULL_DUPLEX         0
158 #define STM32H7_SPI_SIMPLEX_TX          1
159 #define STM32H7_SPI_SIMPLEX_RX          2
160 #define STM32H7_SPI_HALF_DUPLEX         3
161
162 /* SPI Communication type */
163 #define SPI_FULL_DUPLEX         0
164 #define SPI_SIMPLEX_TX          1
165 #define SPI_SIMPLEX_RX          2
166 #define SPI_3WIRE_TX            3
167 #define SPI_3WIRE_RX            4
168
169 #define SPI_1HZ_NS              1000000000
170
171 /*
172  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
173  * without fifo buffers.
174  */
175 #define SPI_DMA_MIN_BYTES       16
176
177 /**
178  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
179  * @reg:                register offset
180  * @mask:               bitfield mask
181  * @shift:              left shift
182  */
183 struct stm32_spi_reg {
184         int reg;
185         int mask;
186         int shift;
187 };
188
189 /**
190  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
191  * @en: enable register and SPI enable bit
192  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
193  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
194  * @cpol: clock polarity register and polarity bit
195  * @cpha: clock phase register and phase bit
196  * @lsb_first: LSB transmitted first register and bit
197  * @br: baud rate register and bitfields
198  * @rx: SPI RX data register
199  * @tx: SPI TX data register
200  */
201 struct stm32_spi_regspec {
202         const struct stm32_spi_reg en;
203         const struct stm32_spi_reg dma_rx_en;
204         const struct stm32_spi_reg dma_tx_en;
205         const struct stm32_spi_reg cpol;
206         const struct stm32_spi_reg cpha;
207         const struct stm32_spi_reg lsb_first;
208         const struct stm32_spi_reg br;
209         const struct stm32_spi_reg rx;
210         const struct stm32_spi_reg tx;
211 };
212
213 struct stm32_spi;
214
215 /**
216  * struct stm32_spi_cfg - stm32 compatible configuration data
217  * @regs: registers descriptions
218  * @get_fifo_size: routine to get fifo size
219  * @get_bpw_mask: routine to get bits per word mask
220  * @disable: routine to disable controller
221  * @config: routine to configure controller as SPI Master
222  * @set_bpw: routine to configure registers to for bits per word
223  * @set_mode: routine to configure registers to desired mode
224  * @set_data_idleness: optional routine to configure registers to desired idle
225  * time between frames (if driver has this functionality)
226  * @set_number_of_data: optional routine to configure registers to desired
227  * number of data (if driver has this functionality)
228  * @can_dma: routine to determine if the transfer is eligible for DMA use
229  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
230  * using DMA
231  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
232  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
233  * @transfer_one_irq: routine to configure interrupts for driver
234  * @irq_handler_event: Interrupt handler for SPI controller events
235  * @irq_handler_thread: thread of interrupt handler for SPI controller
236  * @baud_rate_div_min: minimum baud rate divisor
237  * @baud_rate_div_max: maximum baud rate divisor
238  * @has_fifo: boolean to know if fifo is used for driver
239  * @has_startbit: boolean to know if start bit is used to start transfer
240  */
241 struct stm32_spi_cfg {
242         const struct stm32_spi_regspec *regs;
243         int (*get_fifo_size)(struct stm32_spi *spi);
244         int (*get_bpw_mask)(struct stm32_spi *spi);
245         void (*disable)(struct stm32_spi *spi);
246         int (*config)(struct stm32_spi *spi);
247         void (*set_bpw)(struct stm32_spi *spi);
248         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
249         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
250         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
251         void (*transfer_one_dma_start)(struct stm32_spi *spi);
252         void (*dma_rx_cb)(void *data);
253         void (*dma_tx_cb)(void *data);
254         int (*transfer_one_irq)(struct stm32_spi *spi);
255         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
256         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
257         unsigned int baud_rate_div_min;
258         unsigned int baud_rate_div_max;
259         bool has_fifo;
260 };
261
262 /**
263  * struct stm32_spi - private data of the SPI controller
264  * @dev: driver model representation of the controller
265  * @master: controller master interface
266  * @cfg: compatible configuration data
267  * @base: virtual memory area
268  * @clk: hw kernel clock feeding the SPI clock generator
269  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
270  * @rst: SPI controller reset line
271  * @lock: prevent I/O concurrent access
272  * @irq: SPI controller interrupt line
273  * @fifo_size: size of the embedded fifo in bytes
274  * @cur_midi: master inter-data idleness in ns
275  * @cur_speed: speed configured in Hz
276  * @cur_bpw: number of bits in a single SPI data frame
277  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
278  * @cur_comm: SPI communication mode
279  * @cur_xferlen: current transfer length in bytes
280  * @cur_usedma: boolean to know if dma is used in current transfer
281  * @tx_buf: data to be written, or NULL
282  * @rx_buf: data to be read, or NULL
283  * @tx_len: number of data to be written in bytes
284  * @rx_len: number of data to be read in bytes
285  * @dma_tx: dma channel for TX transfer
286  * @dma_rx: dma channel for RX transfer
287  * @phys_addr: SPI registers physical base address
288  */
289 struct stm32_spi {
290         struct device *dev;
291         struct spi_master *master;
292         const struct stm32_spi_cfg *cfg;
293         void __iomem *base;
294         struct clk *clk;
295         u32 clk_rate;
296         struct reset_control *rst;
297         spinlock_t lock; /* prevent I/O concurrent access */
298         int irq;
299         unsigned int fifo_size;
300
301         unsigned int cur_midi;
302         unsigned int cur_speed;
303         unsigned int cur_bpw;
304         unsigned int cur_fthlv;
305         unsigned int cur_comm;
306         unsigned int cur_xferlen;
307         bool cur_usedma;
308
309         const void *tx_buf;
310         void *rx_buf;
311         int tx_len;
312         int rx_len;
313         struct dma_chan *dma_tx;
314         struct dma_chan *dma_rx;
315         dma_addr_t phys_addr;
316 };
317
318 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
319         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
320
321         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
322         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
323
324         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
325         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
326         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
327         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
328
329         .rx = { STM32F4_SPI_DR },
330         .tx = { STM32F4_SPI_DR },
331 };
332
333 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
334         /* SPI data transfer is enabled but spi_ker_ck is idle.
335          * CFG1 and CFG2 registers are write protected when SPE is enabled.
336          */
337         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
338
339         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
340         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
341
342         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
343         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
344         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
345         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
346                 STM32H7_SPI_CFG1_MBR_SHIFT },
347
348         .rx = { STM32H7_SPI_RXDR },
349         .tx = { STM32H7_SPI_TXDR },
350 };
351
352 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
353                                       u32 offset, u32 bits)
354 {
355         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
356                        spi->base + offset);
357 }
358
359 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
360                                       u32 offset, u32 bits)
361 {
362         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
363                        spi->base + offset);
364 }
365
366 /**
367  * stm32h7_spi_get_fifo_size - Return fifo size
368  * @spi: pointer to the spi controller data structure
369  */
370 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
371 {
372         unsigned long flags;
373         u32 count = 0;
374
375         spin_lock_irqsave(&spi->lock, flags);
376
377         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
378
379         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
380                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
381
382         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
383
384         spin_unlock_irqrestore(&spi->lock, flags);
385
386         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
387
388         return count;
389 }
390
391 /**
392  * stm32f4_spi_get_bpw_mask - Return bits per word mask
393  * @spi: pointer to the spi controller data structure
394  */
395 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
396 {
397         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
398         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
399 }
400
401 /**
402  * stm32h7_spi_get_bpw_mask - Return bits per word mask
403  * @spi: pointer to the spi controller data structure
404  */
405 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
406 {
407         unsigned long flags;
408         u32 cfg1, max_bpw;
409
410         spin_lock_irqsave(&spi->lock, flags);
411
412         /*
413          * The most significant bit at DSIZE bit field is reserved when the
414          * maximum data size of periperal instances is limited to 16-bit
415          */
416         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
417
418         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
419         max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
420                   STM32H7_SPI_CFG1_DSIZE_SHIFT;
421         max_bpw += 1;
422
423         spin_unlock_irqrestore(&spi->lock, flags);
424
425         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
426
427         return SPI_BPW_RANGE_MASK(4, max_bpw);
428 }
429
430 /**
431  * stm32_spi_prepare_mbr - Determine baud rate divisor value
432  * @spi: pointer to the spi controller data structure
433  * @speed_hz: requested speed
434  * @min_div: minimum baud rate divisor
435  * @max_div: maximum baud rate divisor
436  *
437  * Return baud rate divisor value in case of success or -EINVAL
438  */
439 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
440                                  u32 min_div, u32 max_div)
441 {
442         u32 div, mbrdiv;
443
444         div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
445
446         /*
447          * SPI framework set xfer->speed_hz to master->max_speed_hz if
448          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
449          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
450          * no need to check it there.
451          * However, we need to ensure the following calculations.
452          */
453         if ((div < min_div) || (div > max_div))
454                 return -EINVAL;
455
456         /* Determine the first power of 2 greater than or equal to div */
457         if (div & (div - 1))
458                 mbrdiv = fls(div);
459         else
460                 mbrdiv = fls(div) - 1;
461
462         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
463
464         return mbrdiv - 1;
465 }
466
467 /**
468  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
469  * @spi: pointer to the spi controller data structure
470  */
471 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
472 {
473         u32 fthlv, half_fifo;
474
475         /* data packet should not exceed 1/2 of fifo space */
476         half_fifo = (spi->fifo_size / 2);
477
478         if (spi->cur_bpw <= 8)
479                 fthlv = half_fifo;
480         else if (spi->cur_bpw <= 16)
481                 fthlv = half_fifo / 2;
482         else
483                 fthlv = half_fifo / 4;
484
485         /* align packet size with data registers access */
486         if (spi->cur_bpw > 8)
487                 fthlv -= (fthlv % 2); /* multiple of 2 */
488         else
489                 fthlv -= (fthlv % 4); /* multiple of 4 */
490
491         return fthlv;
492 }
493
494 /**
495  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
496  * @spi: pointer to the spi controller data structure
497  *
498  * Read from tx_buf depends on remaining bytes to avoid to read beyond
499  * tx_buf end.
500  */
501 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
502 {
503         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
504                                   STM32F4_SPI_SR_TXE)) {
505                 u32 offs = spi->cur_xferlen - spi->tx_len;
506
507                 if (spi->cur_bpw == 16) {
508                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
509
510                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
511                         spi->tx_len -= sizeof(u16);
512                 } else {
513                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
514
515                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
516                         spi->tx_len -= sizeof(u8);
517                 }
518         }
519
520         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
521 }
522
523 /**
524  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
525  * @spi: pointer to the spi controller data structure
526  *
527  * Read from tx_buf depends on remaining bytes to avoid to read beyond
528  * tx_buf end.
529  */
530 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
531 {
532         while ((spi->tx_len > 0) &&
533                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
534                         STM32H7_SPI_SR_TXP)) {
535                 u32 offs = spi->cur_xferlen - spi->tx_len;
536
537                 if (spi->tx_len >= sizeof(u32)) {
538                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
539
540                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
541                         spi->tx_len -= sizeof(u32);
542                 } else if (spi->tx_len >= sizeof(u16)) {
543                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
544
545                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
546                         spi->tx_len -= sizeof(u16);
547                 } else {
548                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
549
550                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
551                         spi->tx_len -= sizeof(u8);
552                 }
553         }
554
555         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
556 }
557
558 /**
559  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
560  * @spi: pointer to the spi controller data structure
561  *
562  * Write in rx_buf depends on remaining bytes to avoid to write beyond
563  * rx_buf end.
564  */
565 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
566 {
567         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
568                                   STM32F4_SPI_SR_RXNE)) {
569                 u32 offs = spi->cur_xferlen - spi->rx_len;
570
571                 if (spi->cur_bpw == 16) {
572                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
573
574                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
575                         spi->rx_len -= sizeof(u16);
576                 } else {
577                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
578
579                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
580                         spi->rx_len -= sizeof(u8);
581                 }
582         }
583
584         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
585 }
586
587 /**
588  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
589  * @spi: pointer to the spi controller data structure
590  * @flush: boolean indicating that FIFO should be flushed
591  *
592  * Write in rx_buf depends on remaining bytes to avoid to write beyond
593  * rx_buf end.
594  */
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
596 {
597         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598         u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
599                      STM32H7_SPI_SR_RXPLVL_SHIFT;
600
601         while ((spi->rx_len > 0) &&
602                ((sr & STM32H7_SPI_SR_RXP) ||
603                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604                 u32 offs = spi->cur_xferlen - spi->rx_len;
605
606                 if ((spi->rx_len >= sizeof(u32)) ||
607                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
608                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609
610                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611                         spi->rx_len -= sizeof(u32);
612                 } else if ((spi->rx_len >= sizeof(u16)) ||
613                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
614                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
615
616                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
617                         spi->rx_len -= sizeof(u16);
618                 } else {
619                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
620
621                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
622                         spi->rx_len -= sizeof(u8);
623                 }
624
625                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
626                 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
627                          STM32H7_SPI_SR_RXPLVL_SHIFT;
628         }
629
630         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
631                 flush ? "(flush)" : "", spi->rx_len);
632 }
633
634 /**
635  * stm32_spi_enable - Enable SPI controller
636  * @spi: pointer to the spi controller data structure
637  */
638 static void stm32_spi_enable(struct stm32_spi *spi)
639 {
640         dev_dbg(spi->dev, "enable controller\n");
641
642         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643                            spi->cfg->regs->en.mask);
644 }
645
646 /**
647  * stm32f4_spi_disable - Disable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
651 {
652         unsigned long flags;
653         u32 sr;
654
655         dev_dbg(spi->dev, "disable controller\n");
656
657         spin_lock_irqsave(&spi->lock, flags);
658
659         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660               STM32F4_SPI_CR1_SPE)) {
661                 spin_unlock_irqrestore(&spi->lock, flags);
662                 return;
663         }
664
665         /* Disable interrupts */
666         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667                                                  STM32F4_SPI_CR2_RXNEIE |
668                                                  STM32F4_SPI_CR2_ERRIE);
669
670         /* Wait until BSY = 0 */
671         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672                                               sr, !(sr & STM32F4_SPI_SR_BSY),
673                                               10, 100000) < 0) {
674                 dev_warn(spi->dev, "disabling condition timeout\n");
675         }
676
677         if (spi->cur_usedma && spi->dma_tx)
678                 dmaengine_terminate_all(spi->dma_tx);
679         if (spi->cur_usedma && spi->dma_rx)
680                 dmaengine_terminate_all(spi->dma_rx);
681
682         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683
684         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685                                                  STM32F4_SPI_CR2_RXDMAEN);
686
687         /* Sequence to clear OVR flag */
688         readl_relaxed(spi->base + STM32F4_SPI_DR);
689         readl_relaxed(spi->base + STM32F4_SPI_SR);
690
691         spin_unlock_irqrestore(&spi->lock, flags);
692 }
693
694 /**
695  * stm32h7_spi_disable - Disable SPI controller
696  * @spi: pointer to the spi controller data structure
697  *
698  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
699  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
700  * RX-Fifo.
701  * Normally, if TSIZE has been configured, we should relax the hardware at the
702  * reception of the EOT interrupt. But in case of error, EOT will not be
703  * raised. So the subsystem unprepare_message call allows us to properly
704  * complete the transfer from an hardware point of view.
705  */
706 static void stm32h7_spi_disable(struct stm32_spi *spi)
707 {
708         unsigned long flags;
709         u32 cr1, sr;
710
711         dev_dbg(spi->dev, "disable controller\n");
712
713         spin_lock_irqsave(&spi->lock, flags);
714
715         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
716
717         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
718                 spin_unlock_irqrestore(&spi->lock, flags);
719                 return;
720         }
721
722         /* Wait on EOT or suspend the flow */
723         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
724                                               sr, !(sr & STM32H7_SPI_SR_EOT),
725                                               10, 100000) < 0) {
726                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
727                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
728                                        spi->base + STM32H7_SPI_CR1);
729                         if (readl_relaxed_poll_timeout_atomic(
730                                                 spi->base + STM32H7_SPI_SR,
731                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
732                                                 10, 100000) < 0)
733                                 dev_warn(spi->dev,
734                                          "Suspend request timeout\n");
735                 }
736         }
737
738         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
739                 stm32h7_spi_read_rxfifo(spi, true);
740
741         if (spi->cur_usedma && spi->dma_tx)
742                 dmaengine_terminate_all(spi->dma_tx);
743         if (spi->cur_usedma && spi->dma_rx)
744                 dmaengine_terminate_all(spi->dma_rx);
745
746         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
747
748         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
749                                                 STM32H7_SPI_CFG1_RXDMAEN);
750
751         /* Disable interrupts and clear status flags */
752         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
753         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
754
755         spin_unlock_irqrestore(&spi->lock, flags);
756 }
757
758 /**
759  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
760  * @master: controller master interface
761  * @spi_dev: pointer to the spi device
762  * @transfer: pointer to spi transfer
763  *
764  * If driver has fifo and the current transfer size is greater than fifo size,
765  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
766  */
767 static bool stm32_spi_can_dma(struct spi_master *master,
768                               struct spi_device *spi_dev,
769                               struct spi_transfer *transfer)
770 {
771         unsigned int dma_size;
772         struct stm32_spi *spi = spi_master_get_devdata(master);
773
774         if (spi->cfg->has_fifo)
775                 dma_size = spi->fifo_size;
776         else
777                 dma_size = SPI_DMA_MIN_BYTES;
778
779         dev_dbg(spi->dev, "%s: %s\n", __func__,
780                 (transfer->len > dma_size) ? "true" : "false");
781
782         return (transfer->len > dma_size);
783 }
784
785 /**
786  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
787  * @irq: interrupt line
788  * @dev_id: SPI controller master interface
789  */
790 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
791 {
792         struct spi_master *master = dev_id;
793         struct stm32_spi *spi = spi_master_get_devdata(master);
794         u32 sr, mask = 0;
795         unsigned long flags;
796         bool end = false;
797
798         spin_lock_irqsave(&spi->lock, flags);
799
800         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
801         /*
802          * BSY flag is not handled in interrupt but it is normal behavior when
803          * this flag is set.
804          */
805         sr &= ~STM32F4_SPI_SR_BSY;
806
807         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
808                                  spi->cur_comm == SPI_3WIRE_TX)) {
809                 /* OVR flag shouldn't be handled for TX only mode */
810                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
811                 mask |= STM32F4_SPI_SR_TXE;
812         }
813
814         if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
815                 /* TXE flag is set and is handled when RXNE flag occurs */
816                 sr &= ~STM32F4_SPI_SR_TXE;
817                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
818         }
819
820         if (!(sr & mask)) {
821                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
822                 spin_unlock_irqrestore(&spi->lock, flags);
823                 return IRQ_NONE;
824         }
825
826         if (sr & STM32F4_SPI_SR_OVR) {
827                 dev_warn(spi->dev, "Overrun: received value discarded\n");
828
829                 /* Sequence to clear OVR flag */
830                 readl_relaxed(spi->base + STM32F4_SPI_DR);
831                 readl_relaxed(spi->base + STM32F4_SPI_SR);
832
833                 /*
834                  * If overrun is detected, it means that something went wrong,
835                  * so stop the current transfer. Transfer can wait for next
836                  * RXNE but DR is already read and end never happens.
837                  */
838                 end = true;
839                 goto end_irq;
840         }
841
842         if (sr & STM32F4_SPI_SR_TXE) {
843                 if (spi->tx_buf)
844                         stm32f4_spi_write_tx(spi);
845                 if (spi->tx_len == 0)
846                         end = true;
847         }
848
849         if (sr & STM32F4_SPI_SR_RXNE) {
850                 stm32f4_spi_read_rx(spi);
851                 if (spi->rx_len == 0)
852                         end = true;
853                 else /* Load data for discontinuous mode */
854                         stm32f4_spi_write_tx(spi);
855         }
856
857 end_irq:
858         if (end) {
859                 /* Immediately disable interrupts to do not generate new one */
860                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
861                                         STM32F4_SPI_CR2_TXEIE |
862                                         STM32F4_SPI_CR2_RXNEIE |
863                                         STM32F4_SPI_CR2_ERRIE);
864                 spin_unlock_irqrestore(&spi->lock, flags);
865                 return IRQ_WAKE_THREAD;
866         }
867
868         spin_unlock_irqrestore(&spi->lock, flags);
869         return IRQ_HANDLED;
870 }
871
872 /**
873  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
874  * @irq: interrupt line
875  * @dev_id: SPI controller master interface
876  */
877 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
878 {
879         struct spi_master *master = dev_id;
880         struct stm32_spi *spi = spi_master_get_devdata(master);
881
882         spi_finalize_current_transfer(master);
883         stm32f4_spi_disable(spi);
884
885         return IRQ_HANDLED;
886 }
887
888 /**
889  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
890  * @irq: interrupt line
891  * @dev_id: SPI controller master interface
892  */
893 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
894 {
895         struct spi_master *master = dev_id;
896         struct stm32_spi *spi = spi_master_get_devdata(master);
897         u32 sr, ier, mask;
898         unsigned long flags;
899         bool end = false;
900
901         spin_lock_irqsave(&spi->lock, flags);
902
903         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
904         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
905
906         mask = ier;
907         /* EOTIE is triggered on EOT, SUSP and TXC events. */
908         mask |= STM32H7_SPI_SR_SUSP;
909         /*
910          * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
911          * Full-Duplex, need to poll RXP event to know if there are remaining
912          * data, before disabling SPI.
913          */
914         if (spi->rx_buf && !spi->cur_usedma)
915                 mask |= STM32H7_SPI_SR_RXP;
916
917         if (!(sr & mask)) {
918                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
919                         sr, ier);
920                 spin_unlock_irqrestore(&spi->lock, flags);
921                 return IRQ_NONE;
922         }
923
924         if (sr & STM32H7_SPI_SR_SUSP) {
925                 dev_warn(spi->dev, "Communication suspended\n");
926                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
927                         stm32h7_spi_read_rxfifo(spi, false);
928                 /*
929                  * If communication is suspended while using DMA, it means
930                  * that something went wrong, so stop the current transfer
931                  */
932                 if (spi->cur_usedma)
933                         end = true;
934         }
935
936         if (sr & STM32H7_SPI_SR_MODF) {
937                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
938                 end = true;
939         }
940
941         if (sr & STM32H7_SPI_SR_OVR) {
942                 dev_warn(spi->dev, "Overrun: received value discarded\n");
943                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
944                         stm32h7_spi_read_rxfifo(spi, false);
945                 /*
946                  * If overrun is detected while using DMA, it means that
947                  * something went wrong, so stop the current transfer
948                  */
949                 if (spi->cur_usedma)
950                         end = true;
951         }
952
953         if (sr & STM32H7_SPI_SR_EOT) {
954                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
955                         stm32h7_spi_read_rxfifo(spi, true);
956                 end = true;
957         }
958
959         if (sr & STM32H7_SPI_SR_TXP)
960                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
961                         stm32h7_spi_write_txfifo(spi);
962
963         if (sr & STM32H7_SPI_SR_RXP)
964                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
965                         stm32h7_spi_read_rxfifo(spi, false);
966
967         writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
968
969         spin_unlock_irqrestore(&spi->lock, flags);
970
971         if (end) {
972                 spi_finalize_current_transfer(master);
973                 stm32h7_spi_disable(spi);
974         }
975
976         return IRQ_HANDLED;
977 }
978
979 /**
980  * stm32_spi_prepare_msg - set up the controller to transfer a single message
981  * @master: controller master interface
982  * @msg: pointer to spi message
983  */
984 static int stm32_spi_prepare_msg(struct spi_master *master,
985                                  struct spi_message *msg)
986 {
987         struct stm32_spi *spi = spi_master_get_devdata(master);
988         struct spi_device *spi_dev = msg->spi;
989         struct device_node *np = spi_dev->dev.of_node;
990         unsigned long flags;
991         u32 clrb = 0, setb = 0;
992
993         /* SPI slave device may need time between data frames */
994         spi->cur_midi = 0;
995         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
996                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
997
998         if (spi_dev->mode & SPI_CPOL)
999                 setb |= spi->cfg->regs->cpol.mask;
1000         else
1001                 clrb |= spi->cfg->regs->cpol.mask;
1002
1003         if (spi_dev->mode & SPI_CPHA)
1004                 setb |= spi->cfg->regs->cpha.mask;
1005         else
1006                 clrb |= spi->cfg->regs->cpha.mask;
1007
1008         if (spi_dev->mode & SPI_LSB_FIRST)
1009                 setb |= spi->cfg->regs->lsb_first.mask;
1010         else
1011                 clrb |= spi->cfg->regs->lsb_first.mask;
1012
1013         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1014                 spi_dev->mode & SPI_CPOL,
1015                 spi_dev->mode & SPI_CPHA,
1016                 spi_dev->mode & SPI_LSB_FIRST,
1017                 spi_dev->mode & SPI_CS_HIGH);
1018
1019         spin_lock_irqsave(&spi->lock, flags);
1020
1021         /* CPOL, CPHA and LSB FIRST bits have common register */
1022         if (clrb || setb)
1023                 writel_relaxed(
1024                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1025                          ~clrb) | setb,
1026                         spi->base + spi->cfg->regs->cpol.reg);
1027
1028         spin_unlock_irqrestore(&spi->lock, flags);
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * stm32f4_spi_dma_tx_cb - dma callback
1035  * @data: pointer to the spi controller data structure
1036  *
1037  * DMA callback is called when the transfer is complete for DMA TX channel.
1038  */
1039 static void stm32f4_spi_dma_tx_cb(void *data)
1040 {
1041         struct stm32_spi *spi = data;
1042
1043         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1044                 spi_finalize_current_transfer(spi->master);
1045                 stm32f4_spi_disable(spi);
1046         }
1047 }
1048
1049 /**
1050  * stm32f4_spi_dma_rx_cb - dma callback
1051  * @data: pointer to the spi controller data structure
1052  *
1053  * DMA callback is called when the transfer is complete for DMA RX channel.
1054  */
1055 static void stm32f4_spi_dma_rx_cb(void *data)
1056 {
1057         struct stm32_spi *spi = data;
1058
1059         spi_finalize_current_transfer(spi->master);
1060         stm32f4_spi_disable(spi);
1061 }
1062
1063 /**
1064  * stm32h7_spi_dma_cb - dma callback
1065  * @data: pointer to the spi controller data structure
1066  *
1067  * DMA callback is called when the transfer is complete or when an error
1068  * occurs. If the transfer is complete, EOT flag is raised.
1069  */
1070 static void stm32h7_spi_dma_cb(void *data)
1071 {
1072         struct stm32_spi *spi = data;
1073         unsigned long flags;
1074         u32 sr;
1075
1076         spin_lock_irqsave(&spi->lock, flags);
1077
1078         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1079
1080         spin_unlock_irqrestore(&spi->lock, flags);
1081
1082         if (!(sr & STM32H7_SPI_SR_EOT))
1083                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1084
1085         /* Now wait for EOT, or SUSP or OVR in case of error */
1086 }
1087
1088 /**
1089  * stm32_spi_dma_config - configure dma slave channel depending on current
1090  *                        transfer bits_per_word.
1091  * @spi: pointer to the spi controller data structure
1092  * @dma_conf: pointer to the dma_slave_config structure
1093  * @dir: direction of the dma transfer
1094  */
1095 static void stm32_spi_dma_config(struct stm32_spi *spi,
1096                                  struct dma_slave_config *dma_conf,
1097                                  enum dma_transfer_direction dir)
1098 {
1099         enum dma_slave_buswidth buswidth;
1100         u32 maxburst;
1101
1102         if (spi->cur_bpw <= 8)
1103                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1104         else if (spi->cur_bpw <= 16)
1105                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1106         else
1107                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1108
1109         if (spi->cfg->has_fifo) {
1110                 /* Valid for DMA Half or Full Fifo threshold */
1111                 if (spi->cur_fthlv == 2)
1112                         maxburst = 1;
1113                 else
1114                         maxburst = spi->cur_fthlv;
1115         } else {
1116                 maxburst = 1;
1117         }
1118
1119         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1120         dma_conf->direction = dir;
1121         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1122                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1123                 dma_conf->src_addr_width = buswidth;
1124                 dma_conf->src_maxburst = maxburst;
1125
1126                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1127                         buswidth, maxburst);
1128         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1129                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1130                 dma_conf->dst_addr_width = buswidth;
1131                 dma_conf->dst_maxburst = maxburst;
1132
1133                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1134                         buswidth, maxburst);
1135         }
1136 }
1137
1138 /**
1139  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1140  *                                interrupts
1141  * @spi: pointer to the spi controller data structure
1142  *
1143  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1144  * in progress.
1145  */
1146 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1147 {
1148         unsigned long flags;
1149         u32 cr2 = 0;
1150
1151         /* Enable the interrupts relative to the current communication mode */
1152         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1153                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1154         } else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1155                 /* In transmit-only mode, the OVR flag is set in the SR register
1156                  * since the received data are never read. Therefore set OVR
1157                  * interrupt only when rx buffer is available.
1158                  */
1159                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1160         } else {
1161                 return -EINVAL;
1162         }
1163
1164         spin_lock_irqsave(&spi->lock, flags);
1165
1166         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1167
1168         stm32_spi_enable(spi);
1169
1170         /* starting data transfer when buffer is loaded */
1171         if (spi->tx_buf)
1172                 stm32f4_spi_write_tx(spi);
1173
1174         spin_unlock_irqrestore(&spi->lock, flags);
1175
1176         return 1;
1177 }
1178
1179 /**
1180  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1181  *                                interrupts
1182  * @spi: pointer to the spi controller data structure
1183  *
1184  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1185  * in progress.
1186  */
1187 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1188 {
1189         unsigned long flags;
1190         u32 ier = 0;
1191
1192         /* Enable the interrupts relative to the current communication mode */
1193         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1194                 ier |= STM32H7_SPI_IER_DXPIE;
1195         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1196                 ier |= STM32H7_SPI_IER_TXPIE;
1197         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1198                 ier |= STM32H7_SPI_IER_RXPIE;
1199
1200         /* Enable the interrupts relative to the end of transfer */
1201         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1202                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1203
1204         spin_lock_irqsave(&spi->lock, flags);
1205
1206         stm32_spi_enable(spi);
1207
1208         /* Be sure to have data in fifo before starting data transfer */
1209         if (spi->tx_buf)
1210                 stm32h7_spi_write_txfifo(spi);
1211
1212         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1213
1214         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1215
1216         spin_unlock_irqrestore(&spi->lock, flags);
1217
1218         return 1;
1219 }
1220
1221 /**
1222  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1223  *                                      transfer using DMA
1224  * @spi: pointer to the spi controller data structure
1225  */
1226 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1227 {
1228         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1229         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1230             spi->cur_comm == SPI_FULL_DUPLEX) {
1231                 /*
1232                  * In transmit-only mode, the OVR flag is set in the SR register
1233                  * since the received data are never read. Therefore set OVR
1234                  * interrupt only when rx buffer is available.
1235                  */
1236                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1237         }
1238
1239         stm32_spi_enable(spi);
1240 }
1241
1242 /**
1243  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1244  *                                      transfer using DMA
1245  * @spi: pointer to the spi controller data structure
1246  */
1247 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1248 {
1249         /* Enable the interrupts relative to the end of transfer */
1250         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1251                                                  STM32H7_SPI_IER_TXTFIE |
1252                                                  STM32H7_SPI_IER_OVRIE |
1253                                                  STM32H7_SPI_IER_MODFIE);
1254
1255         stm32_spi_enable(spi);
1256
1257         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1258 }
1259
1260 /**
1261  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1262  * @spi: pointer to the spi controller data structure
1263  * @xfer: pointer to the spi_transfer structure
1264  *
1265  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1266  * in progress.
1267  */
1268 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1269                                       struct spi_transfer *xfer)
1270 {
1271         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1272         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1273         unsigned long flags;
1274
1275         spin_lock_irqsave(&spi->lock, flags);
1276
1277         rx_dma_desc = NULL;
1278         if (spi->rx_buf && spi->dma_rx) {
1279                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1280                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1281
1282                 /* Enable Rx DMA request */
1283                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1284                                    spi->cfg->regs->dma_rx_en.mask);
1285
1286                 rx_dma_desc = dmaengine_prep_slave_sg(
1287                                         spi->dma_rx, xfer->rx_sg.sgl,
1288                                         xfer->rx_sg.nents,
1289                                         rx_dma_conf.direction,
1290                                         DMA_PREP_INTERRUPT);
1291         }
1292
1293         tx_dma_desc = NULL;
1294         if (spi->tx_buf && spi->dma_tx) {
1295                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1296                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1297
1298                 tx_dma_desc = dmaengine_prep_slave_sg(
1299                                         spi->dma_tx, xfer->tx_sg.sgl,
1300                                         xfer->tx_sg.nents,
1301                                         tx_dma_conf.direction,
1302                                         DMA_PREP_INTERRUPT);
1303         }
1304
1305         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1306             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1307                 goto dma_desc_error;
1308
1309         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1310                 goto dma_desc_error;
1311
1312         if (rx_dma_desc) {
1313                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1314                 rx_dma_desc->callback_param = spi;
1315
1316                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1317                         dev_err(spi->dev, "Rx DMA submit failed\n");
1318                         goto dma_desc_error;
1319                 }
1320                 /* Enable Rx DMA channel */
1321                 dma_async_issue_pending(spi->dma_rx);
1322         }
1323
1324         if (tx_dma_desc) {
1325                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1326                     spi->cur_comm == SPI_3WIRE_TX) {
1327                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1328                         tx_dma_desc->callback_param = spi;
1329                 }
1330
1331                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1332                         dev_err(spi->dev, "Tx DMA submit failed\n");
1333                         goto dma_submit_error;
1334                 }
1335                 /* Enable Tx DMA channel */
1336                 dma_async_issue_pending(spi->dma_tx);
1337
1338                 /* Enable Tx DMA request */
1339                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1340                                    spi->cfg->regs->dma_tx_en.mask);
1341         }
1342
1343         spi->cfg->transfer_one_dma_start(spi);
1344
1345         spin_unlock_irqrestore(&spi->lock, flags);
1346
1347         return 1;
1348
1349 dma_submit_error:
1350         if (spi->dma_rx)
1351                 dmaengine_terminate_all(spi->dma_rx);
1352
1353 dma_desc_error:
1354         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1355                            spi->cfg->regs->dma_rx_en.mask);
1356
1357         spin_unlock_irqrestore(&spi->lock, flags);
1358
1359         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1360
1361         spi->cur_usedma = false;
1362         return spi->cfg->transfer_one_irq(spi);
1363 }
1364
1365 /**
1366  * stm32f4_spi_set_bpw - Configure bits per word
1367  * @spi: pointer to the spi controller data structure
1368  */
1369 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1370 {
1371         if (spi->cur_bpw == 16)
1372                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1373         else
1374                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1375 }
1376
1377 /**
1378  * stm32h7_spi_set_bpw - configure bits per word
1379  * @spi: pointer to the spi controller data structure
1380  */
1381 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1382 {
1383         u32 bpw, fthlv;
1384         u32 cfg1_clrb = 0, cfg1_setb = 0;
1385
1386         bpw = spi->cur_bpw - 1;
1387
1388         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1389         cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1390                      STM32H7_SPI_CFG1_DSIZE;
1391
1392         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1393         fthlv = spi->cur_fthlv - 1;
1394
1395         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1396         cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1397                      STM32H7_SPI_CFG1_FTHLV;
1398
1399         writel_relaxed(
1400                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1401                  ~cfg1_clrb) | cfg1_setb,
1402                 spi->base + STM32H7_SPI_CFG1);
1403 }
1404
1405 /**
1406  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1407  * @spi: pointer to the spi controller data structure
1408  * @mbrdiv: baud rate divisor value
1409  */
1410 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1411 {
1412         u32 clrb = 0, setb = 0;
1413
1414         clrb |= spi->cfg->regs->br.mask;
1415         setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1416                 spi->cfg->regs->br.mask;
1417
1418         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1419                         ~clrb) | setb,
1420                        spi->base + spi->cfg->regs->br.reg);
1421 }
1422
1423 /**
1424  * stm32_spi_communication_type - return transfer communication type
1425  * @spi_dev: pointer to the spi device
1426  * @transfer: pointer to spi transfer
1427  */
1428 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1429                                                  struct spi_transfer *transfer)
1430 {
1431         unsigned int type = SPI_FULL_DUPLEX;
1432
1433         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1434                 /*
1435                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1436                  * is forbidden and unvalidated by SPI subsystem so depending
1437                  * on the valid buffer, we can determine the direction of the
1438                  * transfer.
1439                  */
1440                 if (!transfer->tx_buf)
1441                         type = SPI_3WIRE_RX;
1442                 else
1443                         type = SPI_3WIRE_TX;
1444         } else {
1445                 if (!transfer->tx_buf)
1446                         type = SPI_SIMPLEX_RX;
1447                 else if (!transfer->rx_buf)
1448                         type = SPI_SIMPLEX_TX;
1449         }
1450
1451         return type;
1452 }
1453
1454 /**
1455  * stm32f4_spi_set_mode - configure communication mode
1456  * @spi: pointer to the spi controller data structure
1457  * @comm_type: type of communication to configure
1458  */
1459 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1460 {
1461         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1462                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1463                                         STM32F4_SPI_CR1_BIDIMODE |
1464                                         STM32F4_SPI_CR1_BIDIOE);
1465         } else if (comm_type == SPI_FULL_DUPLEX) {
1466                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1467                                         STM32F4_SPI_CR1_BIDIMODE |
1468                                         STM32F4_SPI_CR1_BIDIOE);
1469         } else {
1470                 return -EINVAL;
1471         }
1472
1473         return 0;
1474 }
1475
1476 /**
1477  * stm32h7_spi_set_mode - configure communication mode
1478  * @spi: pointer to the spi controller data structure
1479  * @comm_type: type of communication to configure
1480  */
1481 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1482 {
1483         u32 mode;
1484         u32 cfg2_clrb = 0, cfg2_setb = 0;
1485
1486         if (comm_type == SPI_3WIRE_RX) {
1487                 mode = STM32H7_SPI_HALF_DUPLEX;
1488                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1489         } else if (comm_type == SPI_3WIRE_TX) {
1490                 mode = STM32H7_SPI_HALF_DUPLEX;
1491                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1492         } else if (comm_type == SPI_SIMPLEX_RX) {
1493                 mode = STM32H7_SPI_SIMPLEX_RX;
1494         } else if (comm_type == SPI_SIMPLEX_TX) {
1495                 mode = STM32H7_SPI_SIMPLEX_TX;
1496         } else {
1497                 mode = STM32H7_SPI_FULL_DUPLEX;
1498         }
1499
1500         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1501         cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1502                      STM32H7_SPI_CFG2_COMM;
1503
1504         writel_relaxed(
1505                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1506                  ~cfg2_clrb) | cfg2_setb,
1507                 spi->base + STM32H7_SPI_CFG2);
1508
1509         return 0;
1510 }
1511
1512 /**
1513  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1514  *                             consecutive data frames in master mode
1515  * @spi: pointer to the spi controller data structure
1516  * @len: transfer len
1517  */
1518 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1519 {
1520         u32 cfg2_clrb = 0, cfg2_setb = 0;
1521
1522         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1523         if ((len > 1) && (spi->cur_midi > 0)) {
1524                 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1525                 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1526                                (u32)STM32H7_SPI_CFG2_MIDI >>
1527                                STM32H7_SPI_CFG2_MIDI_SHIFT);
1528
1529                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1530                         sck_period_ns, midi, midi * sck_period_ns);
1531                 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1532                              STM32H7_SPI_CFG2_MIDI;
1533         }
1534
1535         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1536                         ~cfg2_clrb) | cfg2_setb,
1537                        spi->base + STM32H7_SPI_CFG2);
1538 }
1539
1540 /**
1541  * stm32h7_spi_number_of_data - configure number of data at current transfer
1542  * @spi: pointer to the spi controller data structure
1543  * @nb_words: transfer length (in words)
1544  */
1545 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1546 {
1547         u32 cr2_clrb = 0, cr2_setb = 0;
1548
1549         if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1550                          STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1551                 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1552                 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1553                 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1554                                 ~cr2_clrb) | cr2_setb,
1555                                spi->base + STM32H7_SPI_CR2);
1556         } else {
1557                 return -EMSGSIZE;
1558         }
1559
1560         return 0;
1561 }
1562
1563 /**
1564  * stm32_spi_transfer_one_setup - common setup to transfer a single
1565  *                                spi_transfer either using DMA or
1566  *                                interrupts.
1567  * @spi: pointer to the spi controller data structure
1568  * @spi_dev: pointer to the spi device
1569  * @transfer: pointer to spi transfer
1570  */
1571 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1572                                         struct spi_device *spi_dev,
1573                                         struct spi_transfer *transfer)
1574 {
1575         unsigned long flags;
1576         unsigned int comm_type;
1577         int nb_words, ret = 0;
1578
1579         spin_lock_irqsave(&spi->lock, flags);
1580
1581         if (spi->cur_bpw != transfer->bits_per_word) {
1582                 spi->cur_bpw = transfer->bits_per_word;
1583                 spi->cfg->set_bpw(spi);
1584         }
1585
1586         if (spi->cur_speed != transfer->speed_hz) {
1587                 int mbr;
1588
1589                 /* Update spi->cur_speed with real clock speed */
1590                 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1591                                             spi->cfg->baud_rate_div_min,
1592                                             spi->cfg->baud_rate_div_max);
1593                 if (mbr < 0) {
1594                         ret = mbr;
1595                         goto out;
1596                 }
1597
1598                 transfer->speed_hz = spi->cur_speed;
1599                 stm32_spi_set_mbr(spi, mbr);
1600         }
1601
1602         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1603         if (spi->cur_comm != comm_type) {
1604                 ret = spi->cfg->set_mode(spi, comm_type);
1605
1606                 if (ret < 0)
1607                         goto out;
1608
1609                 spi->cur_comm = comm_type;
1610         }
1611
1612         if (spi->cfg->set_data_idleness)
1613                 spi->cfg->set_data_idleness(spi, transfer->len);
1614
1615         if (spi->cur_bpw <= 8)
1616                 nb_words = transfer->len;
1617         else if (spi->cur_bpw <= 16)
1618                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1619         else
1620                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1621
1622         if (spi->cfg->set_number_of_data) {
1623                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1624                 if (ret < 0)
1625                         goto out;
1626         }
1627
1628         spi->cur_xferlen = transfer->len;
1629
1630         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1631                 spi->cur_comm);
1632         dev_dbg(spi->dev,
1633                 "data frame of %d-bit, data packet of %d data frames\n",
1634                 spi->cur_bpw, spi->cur_fthlv);
1635         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1636         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1637                 spi->cur_xferlen, nb_words);
1638         dev_dbg(spi->dev, "dma %s\n",
1639                 (spi->cur_usedma) ? "enabled" : "disabled");
1640
1641 out:
1642         spin_unlock_irqrestore(&spi->lock, flags);
1643
1644         return ret;
1645 }
1646
1647 /**
1648  * stm32_spi_transfer_one - transfer a single spi_transfer
1649  * @master: controller master interface
1650  * @spi_dev: pointer to the spi device
1651  * @transfer: pointer to spi transfer
1652  *
1653  * It must return 0 if the transfer is finished or 1 if the transfer is still
1654  * in progress.
1655  */
1656 static int stm32_spi_transfer_one(struct spi_master *master,
1657                                   struct spi_device *spi_dev,
1658                                   struct spi_transfer *transfer)
1659 {
1660         struct stm32_spi *spi = spi_master_get_devdata(master);
1661         int ret;
1662
1663         spi->tx_buf = transfer->tx_buf;
1664         spi->rx_buf = transfer->rx_buf;
1665         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1667
1668         spi->cur_usedma = (master->can_dma &&
1669                            master->can_dma(master, spi_dev, transfer));
1670
1671         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672         if (ret) {
1673                 dev_err(spi->dev, "SPI transfer setup failed\n");
1674                 return ret;
1675         }
1676
1677         if (spi->cur_usedma)
1678                 return stm32_spi_transfer_one_dma(spi, transfer);
1679         else
1680                 return spi->cfg->transfer_one_irq(spi);
1681 }
1682
1683 /**
1684  * stm32_spi_unprepare_msg - relax the hardware
1685  * @master: controller master interface
1686  * @msg: pointer to the spi message
1687  */
1688 static int stm32_spi_unprepare_msg(struct spi_master *master,
1689                                    struct spi_message *msg)
1690 {
1691         struct stm32_spi *spi = spi_master_get_devdata(master);
1692
1693         spi->cfg->disable(spi);
1694
1695         return 0;
1696 }
1697
1698 /**
1699  * stm32f4_spi_config - Configure SPI controller as SPI master
1700  * @spi: pointer to the spi controller data structure
1701  */
1702 static int stm32f4_spi_config(struct stm32_spi *spi)
1703 {
1704         unsigned long flags;
1705
1706         spin_lock_irqsave(&spi->lock, flags);
1707
1708         /* Ensure I2SMOD bit is kept cleared */
1709         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1710                            STM32F4_SPI_I2SCFGR_I2SMOD);
1711
1712         /*
1713          * - SS input value high
1714          * - transmitter half duplex direction
1715          * - Set the master mode (default Motorola mode)
1716          * - Consider 1 master/n slaves configuration and
1717          *   SS input value is determined by the SSI bit
1718          */
1719         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1720                                                  STM32F4_SPI_CR1_BIDIOE |
1721                                                  STM32F4_SPI_CR1_MSTR |
1722                                                  STM32F4_SPI_CR1_SSM);
1723
1724         spin_unlock_irqrestore(&spi->lock, flags);
1725
1726         return 0;
1727 }
1728
1729 /**
1730  * stm32h7_spi_config - Configure SPI controller as SPI master
1731  * @spi: pointer to the spi controller data structure
1732  */
1733 static int stm32h7_spi_config(struct stm32_spi *spi)
1734 {
1735         unsigned long flags;
1736
1737         spin_lock_irqsave(&spi->lock, flags);
1738
1739         /* Ensure I2SMOD bit is kept cleared */
1740         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1741                            STM32H7_SPI_I2SCFGR_I2SMOD);
1742
1743         /*
1744          * - SS input value high
1745          * - transmitter half duplex direction
1746          * - automatic communication suspend when RX-Fifo is full
1747          */
1748         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1749                                                  STM32H7_SPI_CR1_HDDIR |
1750                                                  STM32H7_SPI_CR1_MASRX);
1751
1752         /*
1753          * - Set the master mode (default Motorola mode)
1754          * - Consider 1 master/n slaves configuration and
1755          *   SS input value is determined by the SSI bit
1756          * - keep control of all associated GPIOs
1757          */
1758         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1759                                                   STM32H7_SPI_CFG2_SSM |
1760                                                   STM32H7_SPI_CFG2_AFCNTR);
1761
1762         spin_unlock_irqrestore(&spi->lock, flags);
1763
1764         return 0;
1765 }
1766
1767 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1768         .regs = &stm32f4_spi_regspec,
1769         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1770         .disable = stm32f4_spi_disable,
1771         .config = stm32f4_spi_config,
1772         .set_bpw = stm32f4_spi_set_bpw,
1773         .set_mode = stm32f4_spi_set_mode,
1774         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1775         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1776         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1777         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1778         .irq_handler_event = stm32f4_spi_irq_event,
1779         .irq_handler_thread = stm32f4_spi_irq_thread,
1780         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1781         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1782         .has_fifo = false,
1783 };
1784
1785 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1786         .regs = &stm32h7_spi_regspec,
1787         .get_fifo_size = stm32h7_spi_get_fifo_size,
1788         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1789         .disable = stm32h7_spi_disable,
1790         .config = stm32h7_spi_config,
1791         .set_bpw = stm32h7_spi_set_bpw,
1792         .set_mode = stm32h7_spi_set_mode,
1793         .set_data_idleness = stm32h7_spi_data_idleness,
1794         .set_number_of_data = stm32h7_spi_number_of_data,
1795         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1796         .dma_rx_cb = stm32h7_spi_dma_cb,
1797         .dma_tx_cb = stm32h7_spi_dma_cb,
1798         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1799         .irq_handler_thread = stm32h7_spi_irq_thread,
1800         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1801         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1802         .has_fifo = true,
1803 };
1804
1805 static const struct of_device_id stm32_spi_of_match[] = {
1806         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1807         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1808         {},
1809 };
1810 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1811
1812 static int stm32_spi_probe(struct platform_device *pdev)
1813 {
1814         struct spi_master *master;
1815         struct stm32_spi *spi;
1816         struct resource *res;
1817         int ret;
1818
1819         master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1820         if (!master) {
1821                 dev_err(&pdev->dev, "spi master allocation failed\n");
1822                 return -ENOMEM;
1823         }
1824         platform_set_drvdata(pdev, master);
1825
1826         spi = spi_master_get_devdata(master);
1827         spi->dev = &pdev->dev;
1828         spi->master = master;
1829         spin_lock_init(&spi->lock);
1830
1831         spi->cfg = (const struct stm32_spi_cfg *)
1832                 of_match_device(pdev->dev.driver->of_match_table,
1833                                 &pdev->dev)->data;
1834
1835         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1836         spi->base = devm_ioremap_resource(&pdev->dev, res);
1837         if (IS_ERR(spi->base)) {
1838                 ret = PTR_ERR(spi->base);
1839                 goto err_master_put;
1840         }
1841
1842         spi->phys_addr = (dma_addr_t)res->start;
1843
1844         spi->irq = platform_get_irq(pdev, 0);
1845         if (spi->irq <= 0) {
1846                 ret = spi->irq;
1847                 if (ret != -EPROBE_DEFER)
1848                         dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1849                 goto err_master_put;
1850         }
1851         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1852                                         spi->cfg->irq_handler_event,
1853                                         spi->cfg->irq_handler_thread,
1854                                         IRQF_ONESHOT, pdev->name, master);
1855         if (ret) {
1856                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1857                         ret);
1858                 goto err_master_put;
1859         }
1860
1861         spi->clk = devm_clk_get(&pdev->dev, NULL);
1862         if (IS_ERR(spi->clk)) {
1863                 ret = PTR_ERR(spi->clk);
1864                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1865                 goto err_master_put;
1866         }
1867
1868         ret = clk_prepare_enable(spi->clk);
1869         if (ret) {
1870                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1871                 goto err_master_put;
1872         }
1873         spi->clk_rate = clk_get_rate(spi->clk);
1874         if (!spi->clk_rate) {
1875                 dev_err(&pdev->dev, "clk rate = 0\n");
1876                 ret = -EINVAL;
1877                 goto err_clk_disable;
1878         }
1879
1880         spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1881         if (!IS_ERR(spi->rst)) {
1882                 reset_control_assert(spi->rst);
1883                 udelay(2);
1884                 reset_control_deassert(spi->rst);
1885         }
1886
1887         if (spi->cfg->has_fifo)
1888                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1889
1890         ret = spi->cfg->config(spi);
1891         if (ret) {
1892                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1893                         ret);
1894                 goto err_clk_disable;
1895         }
1896
1897         master->dev.of_node = pdev->dev.of_node;
1898         master->auto_runtime_pm = true;
1899         master->bus_num = pdev->id;
1900         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1901                             SPI_3WIRE;
1902         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1903         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1904         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1905         master->use_gpio_descriptors = true;
1906         master->prepare_message = stm32_spi_prepare_msg;
1907         master->transfer_one = stm32_spi_transfer_one;
1908         master->unprepare_message = stm32_spi_unprepare_msg;
1909
1910         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1911         if (IS_ERR(spi->dma_tx)) {
1912                 ret = PTR_ERR(spi->dma_tx);
1913                 spi->dma_tx = NULL;
1914                 if (ret == -EPROBE_DEFER)
1915                         goto err_clk_disable;
1916
1917                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1918         } else {
1919                 master->dma_tx = spi->dma_tx;
1920         }
1921
1922         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1923         if (IS_ERR(spi->dma_rx)) {
1924                 ret = PTR_ERR(spi->dma_rx);
1925                 spi->dma_rx = NULL;
1926                 if (ret == -EPROBE_DEFER)
1927                         goto err_dma_release;
1928
1929                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1930         } else {
1931                 master->dma_rx = spi->dma_rx;
1932         }
1933
1934         if (spi->dma_tx || spi->dma_rx)
1935                 master->can_dma = stm32_spi_can_dma;
1936
1937         pm_runtime_set_active(&pdev->dev);
1938         pm_runtime_enable(&pdev->dev);
1939
1940         ret = devm_spi_register_master(&pdev->dev, master);
1941         if (ret) {
1942                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1943                         ret);
1944                 goto err_pm_disable;
1945         }
1946
1947         if (!master->cs_gpiods) {
1948                 dev_err(&pdev->dev, "no CS gpios available\n");
1949                 ret = -EINVAL;
1950                 goto err_pm_disable;
1951         }
1952
1953         dev_info(&pdev->dev, "driver initialized\n");
1954
1955         return 0;
1956
1957 err_pm_disable:
1958         pm_runtime_disable(&pdev->dev);
1959 err_dma_release:
1960         if (spi->dma_tx)
1961                 dma_release_channel(spi->dma_tx);
1962         if (spi->dma_rx)
1963                 dma_release_channel(spi->dma_rx);
1964 err_clk_disable:
1965         clk_disable_unprepare(spi->clk);
1966 err_master_put:
1967         spi_master_put(master);
1968
1969         return ret;
1970 }
1971
1972 static int stm32_spi_remove(struct platform_device *pdev)
1973 {
1974         struct spi_master *master = platform_get_drvdata(pdev);
1975         struct stm32_spi *spi = spi_master_get_devdata(master);
1976
1977         spi->cfg->disable(spi);
1978
1979         if (master->dma_tx)
1980                 dma_release_channel(master->dma_tx);
1981         if (master->dma_rx)
1982                 dma_release_channel(master->dma_rx);
1983
1984         clk_disable_unprepare(spi->clk);
1985
1986         pm_runtime_disable(&pdev->dev);
1987
1988         return 0;
1989 }
1990
1991 #ifdef CONFIG_PM
1992 static int stm32_spi_runtime_suspend(struct device *dev)
1993 {
1994         struct spi_master *master = dev_get_drvdata(dev);
1995         struct stm32_spi *spi = spi_master_get_devdata(master);
1996
1997         clk_disable_unprepare(spi->clk);
1998
1999         return 0;
2000 }
2001
2002 static int stm32_spi_runtime_resume(struct device *dev)
2003 {
2004         struct spi_master *master = dev_get_drvdata(dev);
2005         struct stm32_spi *spi = spi_master_get_devdata(master);
2006
2007         return clk_prepare_enable(spi->clk);
2008 }
2009 #endif
2010
2011 #ifdef CONFIG_PM_SLEEP
2012 static int stm32_spi_suspend(struct device *dev)
2013 {
2014         struct spi_master *master = dev_get_drvdata(dev);
2015         int ret;
2016
2017         ret = spi_master_suspend(master);
2018         if (ret)
2019                 return ret;
2020
2021         return pm_runtime_force_suspend(dev);
2022 }
2023
2024 static int stm32_spi_resume(struct device *dev)
2025 {
2026         struct spi_master *master = dev_get_drvdata(dev);
2027         struct stm32_spi *spi = spi_master_get_devdata(master);
2028         int ret;
2029
2030         ret = pm_runtime_force_resume(dev);
2031         if (ret)
2032                 return ret;
2033
2034         ret = spi_master_resume(master);
2035         if (ret)
2036                 clk_disable_unprepare(spi->clk);
2037
2038         return ret;
2039 }
2040 #endif
2041
2042 static const struct dev_pm_ops stm32_spi_pm_ops = {
2043         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2044         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2045                            stm32_spi_runtime_resume, NULL)
2046 };
2047
2048 static struct platform_driver stm32_spi_driver = {
2049         .probe = stm32_spi_probe,
2050         .remove = stm32_spi_remove,
2051         .driver = {
2052                 .name = DRIVER_NAME,
2053                 .pm = &stm32_spi_pm_ops,
2054                 .of_match_table = stm32_spi_of_match,
2055         },
2056 };
2057
2058 module_platform_driver(stm32_spi_driver);
2059
2060 MODULE_ALIAS("platform:" DRIVER_NAME);
2061 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2062 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2063 MODULE_LICENSE("GPL v2");