drm/amd/powerplay: drop unused code
[linux-2.6-block.git] / drivers / spi / spi-rspi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SH RSPI driver
4  *
5  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
6  * Copyright (C) 2014 Glider bvba
7  *
8  * Based on spi-sh.c:
9  * Copyright (C) 2011 Renesas Solutions Corp.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27 #include <linux/spinlock.h>
28
29 #define RSPI_SPCR               0x00    /* Control Register */
30 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
31 #define RSPI_SPPCR              0x02    /* Pin Control Register */
32 #define RSPI_SPSR               0x03    /* Status Register */
33 #define RSPI_SPDR               0x04    /* Data Register */
34 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
35 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
36 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
37 #define RSPI_SPDCR              0x0b    /* Data Control Register */
38 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
39 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
40 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
41 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
43 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
44 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
45 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
46 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
47 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
48 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
49 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
50 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD          8
52 #define RSPI_RZ_NUM_SPCMD       4
53 #define QSPI_NUM_SPCMD          4
54
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
57 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
58
59 /* QSPI only */
60 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
61 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
67
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
70 #define SPCR_SPE                0x40    /* Function Enable */
71 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
73 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
74 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
81
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
84
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM              0x04
89 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
91
92 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95 /* SPSR - Status Register */
96 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
97 #define SPSR_TEND               0x40    /* Transmit End */
98 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF               0x08    /* Parity Error Flag */
100 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
101 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
102 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
103
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
106
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
109 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
110
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD           SPDCR_SPLW1
117 #define SPDCR_SPLBYTE           SPDCR_SPLW0
118 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1            0x08
121 #define SPDCR_SLSEL0            0x04
122 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1             0x02
124 #define SPDCR_SPFC0             0x01
125 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
126
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
129
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
132
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
135
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
138 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
139 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE              0x01    /* Parity Enable */
141
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
146 #define SPCMD_LSBF              0x1000  /* LSB First */
147 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
150 #define SPCMD_SPB_16BIT         0x0100
151 #define SPCMD_SPB_20BIT         0x0000
152 #define SPCMD_SPB_24BIT         0x0100
153 #define SPCMD_SPB_32BIT         0x0200
154 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1           0x0040
157 #define SPCMD_SPIMOD0           0x0020
158 #define SPCMD_SPIMOD_SINGLE     0
159 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
161 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
164 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
165 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
166
167 /* SPBFCR - Buffer Control Register */
168 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
169 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
170 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
171 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
172 /* QSPI on R-Car Gen2 */
173 #define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
174 #define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
175 #define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
176 #define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
177
178 #define QSPI_BUFFER_SIZE        32u
179
180 struct rspi_data {
181         void __iomem *addr;
182         u32 max_speed_hz;
183         struct spi_controller *ctlr;
184         struct platform_device *pdev;
185         wait_queue_head_t wait;
186         spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
187         struct clk *clk;
188         u16 spcmd;
189         u8 spsr;
190         u8 sppcr;
191         int rx_irq, tx_irq;
192         const struct spi_ops *ops;
193
194         unsigned dma_callbacked:1;
195         unsigned byte_access:1;
196 };
197
198 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
199 {
200         iowrite8(data, rspi->addr + offset);
201 }
202
203 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
204 {
205         iowrite16(data, rspi->addr + offset);
206 }
207
208 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
209 {
210         iowrite32(data, rspi->addr + offset);
211 }
212
213 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
214 {
215         return ioread8(rspi->addr + offset);
216 }
217
218 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
219 {
220         return ioread16(rspi->addr + offset);
221 }
222
223 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
224 {
225         if (rspi->byte_access)
226                 rspi_write8(rspi, data, RSPI_SPDR);
227         else /* 16 bit */
228                 rspi_write16(rspi, data, RSPI_SPDR);
229 }
230
231 static u16 rspi_read_data(const struct rspi_data *rspi)
232 {
233         if (rspi->byte_access)
234                 return rspi_read8(rspi, RSPI_SPDR);
235         else /* 16 bit */
236                 return rspi_read16(rspi, RSPI_SPDR);
237 }
238
239 /* optional functions */
240 struct spi_ops {
241         int (*set_config_register)(struct rspi_data *rspi, int access_size);
242         int (*transfer_one)(struct spi_controller *ctlr,
243                             struct spi_device *spi, struct spi_transfer *xfer);
244         u16 extra_mode_bits;
245         u16 flags;
246         u16 fifo_size;
247         u8 num_hw_ss;
248 };
249
250 /*
251  * functions for RSPI on legacy SH
252  */
253 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
254 {
255         int spbr;
256
257         /* Sets output mode, MOSI signal, and (optionally) loopback */
258         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
259
260         /* Sets transfer bit rate */
261         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
262                             2 * rspi->max_speed_hz) - 1;
263         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
264
265         /* Disable dummy transmission, set 16-bit word access, 1 frame */
266         rspi_write8(rspi, 0, RSPI_SPDCR);
267         rspi->byte_access = 0;
268
269         /* Sets RSPCK, SSL, next-access delay value */
270         rspi_write8(rspi, 0x00, RSPI_SPCKD);
271         rspi_write8(rspi, 0x00, RSPI_SSLND);
272         rspi_write8(rspi, 0x00, RSPI_SPND);
273
274         /* Sets parity, interrupt mask */
275         rspi_write8(rspi, 0x00, RSPI_SPCR2);
276
277         /* Resets sequencer */
278         rspi_write8(rspi, 0, RSPI_SPSCR);
279         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
280         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
281
282         /* Sets RSPI mode */
283         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
284
285         return 0;
286 }
287
288 /*
289  * functions for RSPI on RZ
290  */
291 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
292 {
293         int spbr;
294         int div = 0;
295         unsigned long clksrc;
296
297         /* Sets output mode, MOSI signal, and (optionally) loopback */
298         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
299
300         clksrc = clk_get_rate(rspi->clk);
301         while (div < 3) {
302                 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
303                         break;
304                 div++;
305                 clksrc /= 2;
306         }
307
308         /* Sets transfer bit rate */
309         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
310         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
311         rspi->spcmd |= div << 2;
312
313         /* Disable dummy transmission, set byte access */
314         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
315         rspi->byte_access = 1;
316
317         /* Sets RSPCK, SSL, next-access delay value */
318         rspi_write8(rspi, 0x00, RSPI_SPCKD);
319         rspi_write8(rspi, 0x00, RSPI_SSLND);
320         rspi_write8(rspi, 0x00, RSPI_SPND);
321
322         /* Resets sequencer */
323         rspi_write8(rspi, 0, RSPI_SPSCR);
324         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
325         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
326
327         /* Sets RSPI mode */
328         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
329
330         return 0;
331 }
332
333 /*
334  * functions for QSPI
335  */
336 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
337 {
338         int spbr;
339
340         /* Sets output mode, MOSI signal, and (optionally) loopback */
341         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
342
343         /* Sets transfer bit rate */
344         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
345         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
346
347         /* Disable dummy transmission, set byte access */
348         rspi_write8(rspi, 0, RSPI_SPDCR);
349         rspi->byte_access = 1;
350
351         /* Sets RSPCK, SSL, next-access delay value */
352         rspi_write8(rspi, 0x00, RSPI_SPCKD);
353         rspi_write8(rspi, 0x00, RSPI_SSLND);
354         rspi_write8(rspi, 0x00, RSPI_SPND);
355
356         /* Data Length Setting */
357         if (access_size == 8)
358                 rspi->spcmd |= SPCMD_SPB_8BIT;
359         else if (access_size == 16)
360                 rspi->spcmd |= SPCMD_SPB_16BIT;
361         else
362                 rspi->spcmd |= SPCMD_SPB_32BIT;
363
364         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
365
366         /* Resets transfer data length */
367         rspi_write32(rspi, 0, QSPI_SPBMUL0);
368
369         /* Resets transmit and receive buffer */
370         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
371         /* Sets buffer to allow normal operation */
372         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
373
374         /* Resets sequencer */
375         rspi_write8(rspi, 0, RSPI_SPSCR);
376         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
377
378         /* Sets RSPI mode */
379         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
380
381         return 0;
382 }
383
384 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
385 {
386         u8 data;
387
388         data = rspi_read8(rspi, reg);
389         data &= ~mask;
390         data |= (val & mask);
391         rspi_write8(rspi, data, reg);
392 }
393
394 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
395                                           unsigned int len)
396 {
397         unsigned int n;
398
399         n = min(len, QSPI_BUFFER_SIZE);
400
401         if (len >= QSPI_BUFFER_SIZE) {
402                 /* sets triggering number to 32 bytes */
403                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
404                              SPBFCR_TXTRG_32B, QSPI_SPBFCR);
405         } else {
406                 /* sets triggering number to 1 byte */
407                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
408                              SPBFCR_TXTRG_1B, QSPI_SPBFCR);
409         }
410
411         return n;
412 }
413
414 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
415 {
416         unsigned int n;
417
418         n = min(len, QSPI_BUFFER_SIZE);
419
420         if (len >= QSPI_BUFFER_SIZE) {
421                 /* sets triggering number to 32 bytes */
422                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
423                              SPBFCR_RXTRG_32B, QSPI_SPBFCR);
424         } else {
425                 /* sets triggering number to 1 byte */
426                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
427                              SPBFCR_RXTRG_1B, QSPI_SPBFCR);
428         }
429         return n;
430 }
431
432 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
433 {
434         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
435 }
436
437 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
438 {
439         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
440 }
441
442 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
443                                    u8 enable_bit)
444 {
445         int ret;
446
447         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
448         if (rspi->spsr & wait_mask)
449                 return 0;
450
451         rspi_enable_irq(rspi, enable_bit);
452         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
453         if (ret == 0 && !(rspi->spsr & wait_mask))
454                 return -ETIMEDOUT;
455
456         return 0;
457 }
458
459 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
460 {
461         return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
462 }
463
464 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
465 {
466         return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
467 }
468
469 static int rspi_data_out(struct rspi_data *rspi, u8 data)
470 {
471         int error = rspi_wait_for_tx_empty(rspi);
472         if (error < 0) {
473                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
474                 return error;
475         }
476         rspi_write_data(rspi, data);
477         return 0;
478 }
479
480 static int rspi_data_in(struct rspi_data *rspi)
481 {
482         int error;
483         u8 data;
484
485         error = rspi_wait_for_rx_full(rspi);
486         if (error < 0) {
487                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
488                 return error;
489         }
490         data = rspi_read_data(rspi);
491         return data;
492 }
493
494 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
495                              unsigned int n)
496 {
497         while (n-- > 0) {
498                 if (tx) {
499                         int ret = rspi_data_out(rspi, *tx++);
500                         if (ret < 0)
501                                 return ret;
502                 }
503                 if (rx) {
504                         int ret = rspi_data_in(rspi);
505                         if (ret < 0)
506                                 return ret;
507                         *rx++ = ret;
508                 }
509         }
510
511         return 0;
512 }
513
514 static void rspi_dma_complete(void *arg)
515 {
516         struct rspi_data *rspi = arg;
517
518         rspi->dma_callbacked = 1;
519         wake_up_interruptible(&rspi->wait);
520 }
521
522 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
523                              struct sg_table *rx)
524 {
525         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
526         u8 irq_mask = 0;
527         unsigned int other_irq = 0;
528         dma_cookie_t cookie;
529         int ret;
530
531         /* First prepare and submit the DMA request(s), as this may fail */
532         if (rx) {
533                 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
534                                         rx->nents, DMA_DEV_TO_MEM,
535                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
536                 if (!desc_rx) {
537                         ret = -EAGAIN;
538                         goto no_dma_rx;
539                 }
540
541                 desc_rx->callback = rspi_dma_complete;
542                 desc_rx->callback_param = rspi;
543                 cookie = dmaengine_submit(desc_rx);
544                 if (dma_submit_error(cookie)) {
545                         ret = cookie;
546                         goto no_dma_rx;
547                 }
548
549                 irq_mask |= SPCR_SPRIE;
550         }
551
552         if (tx) {
553                 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
554                                         tx->nents, DMA_MEM_TO_DEV,
555                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
556                 if (!desc_tx) {
557                         ret = -EAGAIN;
558                         goto no_dma_tx;
559                 }
560
561                 if (rx) {
562                         /* No callback */
563                         desc_tx->callback = NULL;
564                 } else {
565                         desc_tx->callback = rspi_dma_complete;
566                         desc_tx->callback_param = rspi;
567                 }
568                 cookie = dmaengine_submit(desc_tx);
569                 if (dma_submit_error(cookie)) {
570                         ret = cookie;
571                         goto no_dma_tx;
572                 }
573
574                 irq_mask |= SPCR_SPTIE;
575         }
576
577         /*
578          * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
579          * called. So, this driver disables the IRQ while DMA transfer.
580          */
581         if (tx)
582                 disable_irq(other_irq = rspi->tx_irq);
583         if (rx && rspi->rx_irq != other_irq)
584                 disable_irq(rspi->rx_irq);
585
586         rspi_enable_irq(rspi, irq_mask);
587         rspi->dma_callbacked = 0;
588
589         /* Now start DMA */
590         if (rx)
591                 dma_async_issue_pending(rspi->ctlr->dma_rx);
592         if (tx)
593                 dma_async_issue_pending(rspi->ctlr->dma_tx);
594
595         ret = wait_event_interruptible_timeout(rspi->wait,
596                                                rspi->dma_callbacked, HZ);
597         if (ret > 0 && rspi->dma_callbacked) {
598                 ret = 0;
599         } else {
600                 if (!ret) {
601                         dev_err(&rspi->ctlr->dev, "DMA timeout\n");
602                         ret = -ETIMEDOUT;
603                 }
604                 if (tx)
605                         dmaengine_terminate_all(rspi->ctlr->dma_tx);
606                 if (rx)
607                         dmaengine_terminate_all(rspi->ctlr->dma_rx);
608         }
609
610         rspi_disable_irq(rspi, irq_mask);
611
612         if (tx)
613                 enable_irq(rspi->tx_irq);
614         if (rx && rspi->rx_irq != other_irq)
615                 enable_irq(rspi->rx_irq);
616
617         return ret;
618
619 no_dma_tx:
620         if (rx)
621                 dmaengine_terminate_all(rspi->ctlr->dma_rx);
622 no_dma_rx:
623         if (ret == -EAGAIN) {
624                 dev_warn_once(&rspi->ctlr->dev,
625                               "DMA not available, falling back to PIO\n");
626         }
627         return ret;
628 }
629
630 static void rspi_receive_init(const struct rspi_data *rspi)
631 {
632         u8 spsr;
633
634         spsr = rspi_read8(rspi, RSPI_SPSR);
635         if (spsr & SPSR_SPRF)
636                 rspi_read_data(rspi);   /* dummy read */
637         if (spsr & SPSR_OVRF)
638                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
639                             RSPI_SPSR);
640 }
641
642 static void rspi_rz_receive_init(const struct rspi_data *rspi)
643 {
644         rspi_receive_init(rspi);
645         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
646         rspi_write8(rspi, 0, RSPI_SPBFCR);
647 }
648
649 static void qspi_receive_init(const struct rspi_data *rspi)
650 {
651         u8 spsr;
652
653         spsr = rspi_read8(rspi, RSPI_SPSR);
654         if (spsr & SPSR_SPRF)
655                 rspi_read_data(rspi);   /* dummy read */
656         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
657         rspi_write8(rspi, 0, QSPI_SPBFCR);
658 }
659
660 static bool __rspi_can_dma(const struct rspi_data *rspi,
661                            const struct spi_transfer *xfer)
662 {
663         return xfer->len > rspi->ops->fifo_size;
664 }
665
666 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
667                          struct spi_transfer *xfer)
668 {
669         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
670
671         return __rspi_can_dma(rspi, xfer);
672 }
673
674 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
675                                          struct spi_transfer *xfer)
676 {
677         if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
678                 return -EAGAIN;
679
680         /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
681         return rspi_dma_transfer(rspi, &xfer->tx_sg,
682                                 xfer->rx_buf ? &xfer->rx_sg : NULL);
683 }
684
685 static int rspi_common_transfer(struct rspi_data *rspi,
686                                 struct spi_transfer *xfer)
687 {
688         int ret;
689
690         ret = rspi_dma_check_then_transfer(rspi, xfer);
691         if (ret != -EAGAIN)
692                 return ret;
693
694         ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
695         if (ret < 0)
696                 return ret;
697
698         /* Wait for the last transmission */
699         rspi_wait_for_tx_empty(rspi);
700
701         return 0;
702 }
703
704 static int rspi_transfer_one(struct spi_controller *ctlr,
705                              struct spi_device *spi, struct spi_transfer *xfer)
706 {
707         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
708         u8 spcr;
709
710         spcr = rspi_read8(rspi, RSPI_SPCR);
711         if (xfer->rx_buf) {
712                 rspi_receive_init(rspi);
713                 spcr &= ~SPCR_TXMD;
714         } else {
715                 spcr |= SPCR_TXMD;
716         }
717         rspi_write8(rspi, spcr, RSPI_SPCR);
718
719         return rspi_common_transfer(rspi, xfer);
720 }
721
722 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
723                                 struct spi_device *spi,
724                                 struct spi_transfer *xfer)
725 {
726         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
727
728         rspi_rz_receive_init(rspi);
729
730         return rspi_common_transfer(rspi, xfer);
731 }
732
733 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
734                                         u8 *rx, unsigned int len)
735 {
736         unsigned int i, n;
737         int ret;
738
739         while (len > 0) {
740                 n = qspi_set_send_trigger(rspi, len);
741                 qspi_set_receive_trigger(rspi, len);
742                 ret = rspi_wait_for_tx_empty(rspi);
743                 if (ret < 0) {
744                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
745                         return ret;
746                 }
747                 for (i = 0; i < n; i++)
748                         rspi_write_data(rspi, *tx++);
749
750                 ret = rspi_wait_for_rx_full(rspi);
751                 if (ret < 0) {
752                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
753                         return ret;
754                 }
755                 for (i = 0; i < n; i++)
756                         *rx++ = rspi_read_data(rspi);
757
758                 len -= n;
759         }
760
761         return 0;
762 }
763
764 static int qspi_transfer_out_in(struct rspi_data *rspi,
765                                 struct spi_transfer *xfer)
766 {
767         int ret;
768
769         qspi_receive_init(rspi);
770
771         ret = rspi_dma_check_then_transfer(rspi, xfer);
772         if (ret != -EAGAIN)
773                 return ret;
774
775         return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
776                                             xfer->rx_buf, xfer->len);
777 }
778
779 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
780 {
781         const u8 *tx = xfer->tx_buf;
782         unsigned int n = xfer->len;
783         unsigned int i, len;
784         int ret;
785
786         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
787                 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
788                 if (ret != -EAGAIN)
789                         return ret;
790         }
791
792         while (n > 0) {
793                 len = qspi_set_send_trigger(rspi, n);
794                 ret = rspi_wait_for_tx_empty(rspi);
795                 if (ret < 0) {
796                         dev_err(&rspi->ctlr->dev, "transmit timeout\n");
797                         return ret;
798                 }
799                 for (i = 0; i < len; i++)
800                         rspi_write_data(rspi, *tx++);
801
802                 n -= len;
803         }
804
805         /* Wait for the last transmission */
806         rspi_wait_for_tx_empty(rspi);
807
808         return 0;
809 }
810
811 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
812 {
813         u8 *rx = xfer->rx_buf;
814         unsigned int n = xfer->len;
815         unsigned int i, len;
816         int ret;
817
818         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
819                 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
820                 if (ret != -EAGAIN)
821                         return ret;
822         }
823
824         while (n > 0) {
825                 len = qspi_set_receive_trigger(rspi, n);
826                 ret = rspi_wait_for_rx_full(rspi);
827                 if (ret < 0) {
828                         dev_err(&rspi->ctlr->dev, "receive timeout\n");
829                         return ret;
830                 }
831                 for (i = 0; i < len; i++)
832                         *rx++ = rspi_read_data(rspi);
833
834                 n -= len;
835         }
836
837         return 0;
838 }
839
840 static int qspi_transfer_one(struct spi_controller *ctlr,
841                              struct spi_device *spi, struct spi_transfer *xfer)
842 {
843         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
844
845         if (spi->mode & SPI_LOOP) {
846                 return qspi_transfer_out_in(rspi, xfer);
847         } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
848                 /* Quad or Dual SPI Write */
849                 return qspi_transfer_out(rspi, xfer);
850         } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
851                 /* Quad or Dual SPI Read */
852                 return qspi_transfer_in(rspi, xfer);
853         } else {
854                 /* Single SPI Transfer */
855                 return qspi_transfer_out_in(rspi, xfer);
856         }
857 }
858
859 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
860 {
861         if (xfer->tx_buf)
862                 switch (xfer->tx_nbits) {
863                 case SPI_NBITS_QUAD:
864                         return SPCMD_SPIMOD_QUAD;
865                 case SPI_NBITS_DUAL:
866                         return SPCMD_SPIMOD_DUAL;
867                 default:
868                         return 0;
869                 }
870         if (xfer->rx_buf)
871                 switch (xfer->rx_nbits) {
872                 case SPI_NBITS_QUAD:
873                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
874                 case SPI_NBITS_DUAL:
875                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
876                 default:
877                         return 0;
878                 }
879
880         return 0;
881 }
882
883 static int qspi_setup_sequencer(struct rspi_data *rspi,
884                                 const struct spi_message *msg)
885 {
886         const struct spi_transfer *xfer;
887         unsigned int i = 0, len = 0;
888         u16 current_mode = 0xffff, mode;
889
890         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
891                 mode = qspi_transfer_mode(xfer);
892                 if (mode == current_mode) {
893                         len += xfer->len;
894                         continue;
895                 }
896
897                 /* Transfer mode change */
898                 if (i) {
899                         /* Set transfer data length of previous transfer */
900                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
901                 }
902
903                 if (i >= QSPI_NUM_SPCMD) {
904                         dev_err(&msg->spi->dev,
905                                 "Too many different transfer modes");
906                         return -EINVAL;
907                 }
908
909                 /* Program transfer mode for this transfer */
910                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
911                 current_mode = mode;
912                 len = xfer->len;
913                 i++;
914         }
915         if (i) {
916                 /* Set final transfer data length and sequence length */
917                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
918                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
919         }
920
921         return 0;
922 }
923
924 static int rspi_setup(struct spi_device *spi)
925 {
926         struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
927         u8 sslp;
928
929         if (spi->cs_gpiod)
930                 return 0;
931
932         pm_runtime_get_sync(&rspi->pdev->dev);
933         spin_lock_irq(&rspi->lock);
934
935         sslp = rspi_read8(rspi, RSPI_SSLP);
936         if (spi->mode & SPI_CS_HIGH)
937                 sslp |= SSLP_SSLP(spi->chip_select);
938         else
939                 sslp &= ~SSLP_SSLP(spi->chip_select);
940         rspi_write8(rspi, sslp, RSPI_SSLP);
941
942         spin_unlock_irq(&rspi->lock);
943         pm_runtime_put(&rspi->pdev->dev);
944         return 0;
945 }
946
947 static int rspi_prepare_message(struct spi_controller *ctlr,
948                                 struct spi_message *msg)
949 {
950         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
951         struct spi_device *spi = msg->spi;
952         int ret;
953
954         rspi->max_speed_hz = spi->max_speed_hz;
955
956         rspi->spcmd = SPCMD_SSLKP;
957         if (spi->mode & SPI_CPOL)
958                 rspi->spcmd |= SPCMD_CPOL;
959         if (spi->mode & SPI_CPHA)
960                 rspi->spcmd |= SPCMD_CPHA;
961         if (spi->mode & SPI_LSB_FIRST)
962                 rspi->spcmd |= SPCMD_LSBF;
963
964         /* Configure slave signal to assert */
965         rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
966                                                 : spi->chip_select);
967
968         /* CMOS output mode and MOSI signal from previous transfer */
969         rspi->sppcr = 0;
970         if (spi->mode & SPI_LOOP)
971                 rspi->sppcr |= SPPCR_SPLP;
972
973         rspi->ops->set_config_register(rspi, 8);
974
975         if (msg->spi->mode &
976             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
977                 /* Setup sequencer for messages with multiple transfer modes */
978                 ret = qspi_setup_sequencer(rspi, msg);
979                 if (ret < 0)
980                         return ret;
981         }
982
983         /* Enable SPI function in master mode */
984         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
985         return 0;
986 }
987
988 static int rspi_unprepare_message(struct spi_controller *ctlr,
989                                   struct spi_message *msg)
990 {
991         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
992
993         /* Disable SPI function */
994         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
995
996         /* Reset sequencer for Single SPI Transfers */
997         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
998         rspi_write8(rspi, 0, RSPI_SPSCR);
999         return 0;
1000 }
1001
1002 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1003 {
1004         struct rspi_data *rspi = _sr;
1005         u8 spsr;
1006         irqreturn_t ret = IRQ_NONE;
1007         u8 disable_irq = 0;
1008
1009         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1010         if (spsr & SPSR_SPRF)
1011                 disable_irq |= SPCR_SPRIE;
1012         if (spsr & SPSR_SPTEF)
1013                 disable_irq |= SPCR_SPTIE;
1014
1015         if (disable_irq) {
1016                 ret = IRQ_HANDLED;
1017                 rspi_disable_irq(rspi, disable_irq);
1018                 wake_up(&rspi->wait);
1019         }
1020
1021         return ret;
1022 }
1023
1024 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1025 {
1026         struct rspi_data *rspi = _sr;
1027         u8 spsr;
1028
1029         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1030         if (spsr & SPSR_SPRF) {
1031                 rspi_disable_irq(rspi, SPCR_SPRIE);
1032                 wake_up(&rspi->wait);
1033                 return IRQ_HANDLED;
1034         }
1035
1036         return 0;
1037 }
1038
1039 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1040 {
1041         struct rspi_data *rspi = _sr;
1042         u8 spsr;
1043
1044         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1045         if (spsr & SPSR_SPTEF) {
1046                 rspi_disable_irq(rspi, SPCR_SPTIE);
1047                 wake_up(&rspi->wait);
1048                 return IRQ_HANDLED;
1049         }
1050
1051         return 0;
1052 }
1053
1054 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1055                                               enum dma_transfer_direction dir,
1056                                               unsigned int id,
1057                                               dma_addr_t port_addr)
1058 {
1059         dma_cap_mask_t mask;
1060         struct dma_chan *chan;
1061         struct dma_slave_config cfg;
1062         int ret;
1063
1064         dma_cap_zero(mask);
1065         dma_cap_set(DMA_SLAVE, mask);
1066
1067         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1068                                 (void *)(unsigned long)id, dev,
1069                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1070         if (!chan) {
1071                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1072                 return NULL;
1073         }
1074
1075         memset(&cfg, 0, sizeof(cfg));
1076         cfg.direction = dir;
1077         if (dir == DMA_MEM_TO_DEV) {
1078                 cfg.dst_addr = port_addr;
1079                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1080         } else {
1081                 cfg.src_addr = port_addr;
1082                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1083         }
1084
1085         ret = dmaengine_slave_config(chan, &cfg);
1086         if (ret) {
1087                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1088                 dma_release_channel(chan);
1089                 return NULL;
1090         }
1091
1092         return chan;
1093 }
1094
1095 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1096                             const struct resource *res)
1097 {
1098         const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1099         unsigned int dma_tx_id, dma_rx_id;
1100
1101         if (dev->of_node) {
1102                 /* In the OF case we will get the slave IDs from the DT */
1103                 dma_tx_id = 0;
1104                 dma_rx_id = 0;
1105         } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1106                 dma_tx_id = rspi_pd->dma_tx_id;
1107                 dma_rx_id = rspi_pd->dma_rx_id;
1108         } else {
1109                 /* The driver assumes no error. */
1110                 return 0;
1111         }
1112
1113         ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1114                                              res->start + RSPI_SPDR);
1115         if (!ctlr->dma_tx)
1116                 return -ENODEV;
1117
1118         ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1119                                              res->start + RSPI_SPDR);
1120         if (!ctlr->dma_rx) {
1121                 dma_release_channel(ctlr->dma_tx);
1122                 ctlr->dma_tx = NULL;
1123                 return -ENODEV;
1124         }
1125
1126         ctlr->can_dma = rspi_can_dma;
1127         dev_info(dev, "DMA available");
1128         return 0;
1129 }
1130
1131 static void rspi_release_dma(struct spi_controller *ctlr)
1132 {
1133         if (ctlr->dma_tx)
1134                 dma_release_channel(ctlr->dma_tx);
1135         if (ctlr->dma_rx)
1136                 dma_release_channel(ctlr->dma_rx);
1137 }
1138
1139 static int rspi_remove(struct platform_device *pdev)
1140 {
1141         struct rspi_data *rspi = platform_get_drvdata(pdev);
1142
1143         rspi_release_dma(rspi->ctlr);
1144         pm_runtime_disable(&pdev->dev);
1145
1146         return 0;
1147 }
1148
1149 static const struct spi_ops rspi_ops = {
1150         .set_config_register =  rspi_set_config_register,
1151         .transfer_one =         rspi_transfer_one,
1152         .flags =                SPI_CONTROLLER_MUST_TX,
1153         .fifo_size =            8,
1154         .num_hw_ss =            2,
1155 };
1156
1157 static const struct spi_ops rspi_rz_ops = {
1158         .set_config_register =  rspi_rz_set_config_register,
1159         .transfer_one =         rspi_rz_transfer_one,
1160         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1161         .fifo_size =            8,      /* 8 for TX, 32 for RX */
1162         .num_hw_ss =            1,
1163 };
1164
1165 static const struct spi_ops qspi_ops = {
1166         .set_config_register =  qspi_set_config_register,
1167         .transfer_one =         qspi_transfer_one,
1168         .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1169                                 SPI_RX_DUAL | SPI_RX_QUAD,
1170         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1171         .fifo_size =            32,
1172         .num_hw_ss =            1,
1173 };
1174
1175 #ifdef CONFIG_OF
1176 static const struct of_device_id rspi_of_match[] = {
1177         /* RSPI on legacy SH */
1178         { .compatible = "renesas,rspi", .data = &rspi_ops },
1179         /* RSPI on RZ/A1H */
1180         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1181         /* QSPI on R-Car Gen2 */
1182         { .compatible = "renesas,qspi", .data = &qspi_ops },
1183         { /* sentinel */ }
1184 };
1185
1186 MODULE_DEVICE_TABLE(of, rspi_of_match);
1187
1188 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1189 {
1190         u32 num_cs;
1191         int error;
1192
1193         /* Parse DT properties */
1194         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1195         if (error) {
1196                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1197                 return error;
1198         }
1199
1200         ctlr->num_chipselect = num_cs;
1201         return 0;
1202 }
1203 #else
1204 #define rspi_of_match   NULL
1205 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1206 {
1207         return -EINVAL;
1208 }
1209 #endif /* CONFIG_OF */
1210
1211 static int rspi_request_irq(struct device *dev, unsigned int irq,
1212                             irq_handler_t handler, const char *suffix,
1213                             void *dev_id)
1214 {
1215         const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1216                                           dev_name(dev), suffix);
1217         if (!name)
1218                 return -ENOMEM;
1219
1220         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1221 }
1222
1223 static int rspi_probe(struct platform_device *pdev)
1224 {
1225         struct resource *res;
1226         struct spi_controller *ctlr;
1227         struct rspi_data *rspi;
1228         int ret;
1229         const struct rspi_plat_data *rspi_pd;
1230         const struct spi_ops *ops;
1231
1232         ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1233         if (ctlr == NULL)
1234                 return -ENOMEM;
1235
1236         ops = of_device_get_match_data(&pdev->dev);
1237         if (ops) {
1238                 ret = rspi_parse_dt(&pdev->dev, ctlr);
1239                 if (ret)
1240                         goto error1;
1241         } else {
1242                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1243                 rspi_pd = dev_get_platdata(&pdev->dev);
1244                 if (rspi_pd && rspi_pd->num_chipselect)
1245                         ctlr->num_chipselect = rspi_pd->num_chipselect;
1246                 else
1247                         ctlr->num_chipselect = 2; /* default */
1248         }
1249
1250         /* ops parameter check */
1251         if (!ops->set_config_register) {
1252                 dev_err(&pdev->dev, "there is no set_config_register\n");
1253                 ret = -ENODEV;
1254                 goto error1;
1255         }
1256
1257         rspi = spi_controller_get_devdata(ctlr);
1258         platform_set_drvdata(pdev, rspi);
1259         rspi->ops = ops;
1260         rspi->ctlr = ctlr;
1261
1262         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263         rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1264         if (IS_ERR(rspi->addr)) {
1265                 ret = PTR_ERR(rspi->addr);
1266                 goto error1;
1267         }
1268
1269         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1270         if (IS_ERR(rspi->clk)) {
1271                 dev_err(&pdev->dev, "cannot get clock\n");
1272                 ret = PTR_ERR(rspi->clk);
1273                 goto error1;
1274         }
1275
1276         rspi->pdev = pdev;
1277         pm_runtime_enable(&pdev->dev);
1278
1279         init_waitqueue_head(&rspi->wait);
1280         spin_lock_init(&rspi->lock);
1281
1282         ctlr->bus_num = pdev->id;
1283         ctlr->setup = rspi_setup;
1284         ctlr->auto_runtime_pm = true;
1285         ctlr->transfer_one = ops->transfer_one;
1286         ctlr->prepare_message = rspi_prepare_message;
1287         ctlr->unprepare_message = rspi_unprepare_message;
1288         ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1289                           SPI_LOOP | ops->extra_mode_bits;
1290         ctlr->flags = ops->flags;
1291         ctlr->dev.of_node = pdev->dev.of_node;
1292         ctlr->use_gpio_descriptors = true;
1293         ctlr->max_native_cs = rspi->ops->num_hw_ss;
1294
1295         ret = platform_get_irq_byname_optional(pdev, "rx");
1296         if (ret < 0) {
1297                 ret = platform_get_irq_byname_optional(pdev, "mux");
1298                 if (ret < 0)
1299                         ret = platform_get_irq(pdev, 0);
1300                 if (ret >= 0)
1301                         rspi->rx_irq = rspi->tx_irq = ret;
1302         } else {
1303                 rspi->rx_irq = ret;
1304                 ret = platform_get_irq_byname(pdev, "tx");
1305                 if (ret >= 0)
1306                         rspi->tx_irq = ret;
1307         }
1308
1309         if (rspi->rx_irq == rspi->tx_irq) {
1310                 /* Single multiplexed interrupt */
1311                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1312                                        "mux", rspi);
1313         } else {
1314                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1315                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1316                                        "rx", rspi);
1317                 if (!ret)
1318                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1319                                                rspi_irq_tx, "tx", rspi);
1320         }
1321         if (ret < 0) {
1322                 dev_err(&pdev->dev, "request_irq error\n");
1323                 goto error2;
1324         }
1325
1326         ret = rspi_request_dma(&pdev->dev, ctlr, res);
1327         if (ret < 0)
1328                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1329
1330         ret = devm_spi_register_controller(&pdev->dev, ctlr);
1331         if (ret < 0) {
1332                 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1333                 goto error3;
1334         }
1335
1336         dev_info(&pdev->dev, "probed\n");
1337
1338         return 0;
1339
1340 error3:
1341         rspi_release_dma(ctlr);
1342 error2:
1343         pm_runtime_disable(&pdev->dev);
1344 error1:
1345         spi_controller_put(ctlr);
1346
1347         return ret;
1348 }
1349
1350 static const struct platform_device_id spi_driver_ids[] = {
1351         { "rspi",       (kernel_ulong_t)&rspi_ops },
1352         {},
1353 };
1354
1355 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1356
1357 #ifdef CONFIG_PM_SLEEP
1358 static int rspi_suspend(struct device *dev)
1359 {
1360         struct rspi_data *rspi = dev_get_drvdata(dev);
1361
1362         return spi_controller_suspend(rspi->ctlr);
1363 }
1364
1365 static int rspi_resume(struct device *dev)
1366 {
1367         struct rspi_data *rspi = dev_get_drvdata(dev);
1368
1369         return spi_controller_resume(rspi->ctlr);
1370 }
1371
1372 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1373 #define DEV_PM_OPS      &rspi_pm_ops
1374 #else
1375 #define DEV_PM_OPS      NULL
1376 #endif /* CONFIG_PM_SLEEP */
1377
1378 static struct platform_driver rspi_driver = {
1379         .probe =        rspi_probe,
1380         .remove =       rspi_remove,
1381         .id_table =     spi_driver_ids,
1382         .driver         = {
1383                 .name = "renesas_spi",
1384                 .pm = DEV_PM_OPS,
1385                 .of_match_table = of_match_ptr(rspi_of_match),
1386         },
1387 };
1388 module_platform_driver(rspi_driver);
1389
1390 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1391 MODULE_LICENSE("GPL v2");
1392 MODULE_AUTHOR("Yoshihiro Shimoda");
1393 MODULE_ALIAS("platform:rspi");