Merge tag 'input-for-v6.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226         readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228         writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230         writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES   16
236
237 #define AUTOSUSPEND_TIMEOUT     2000
238
239 struct atmel_spi_caps {
240         bool    is_spi2;
241         bool    has_wdrbt;
242         bool    has_dma_support;
243         bool    has_pdc_support;
244 };
245
246 /*
247  * The core SPI transfer engine just talks to a register bank to set up
248  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
249  * framework provides the base clock, subdivided for each spi_device.
250  */
251 struct atmel_spi {
252         spinlock_t              lock;
253         unsigned long           flags;
254
255         phys_addr_t             phybase;
256         void __iomem            *regs;
257         int                     irq;
258         struct clk              *clk;
259         struct platform_device  *pdev;
260         unsigned long           spi_clk;
261
262         struct spi_transfer     *current_transfer;
263         int                     current_remaining_bytes;
264         int                     done_status;
265         dma_addr_t              dma_addr_rx_bbuf;
266         dma_addr_t              dma_addr_tx_bbuf;
267         void                    *addr_rx_bbuf;
268         void                    *addr_tx_bbuf;
269
270         struct completion       xfer_completion;
271
272         struct atmel_spi_caps   caps;
273
274         bool                    use_dma;
275         bool                    use_pdc;
276
277         bool                    keep_cs;
278
279         u32                     fifo_size;
280         bool                    last_polarity;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * This frequency can be anything supported by the controller, but to avoid
295  * unnecessary delay, the highest possible frequency is chosen.
296  *
297  * This frequency is the highest possible which is not interfering with other
298  * chip select registers (see Note for Serial Clock Bit Rate configuration in
299  * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
300  */
301 #define DUMMY_MSG_FREQUENCY     0x02
302 /*
303  * 8 bits is the minimum data the controller is capable of sending.
304  *
305  * This message can be anything as it should not be treated by any SPI device.
306  */
307 #define DUMMY_MSG               0xAA
308
309 /*
310  * Version 2 of the SPI controller has
311  *  - CR.LASTXFER
312  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
314  *  - SPI_CSRx.CSAAT
315  *  - SPI_CSRx.SBCR allows faster clocking
316  */
317 static bool atmel_spi_is_v2(struct atmel_spi *as)
318 {
319         return as->caps.is_spi2;
320 }
321
322 /*
323  * Send a dummy message.
324  *
325  * This is sometimes needed when using a CS GPIO to force clock transition when
326  * switching between devices with different polarities.
327  */
328 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
329 {
330         u32 status;
331         u32 csr;
332
333         /*
334          * Set a clock frequency to allow sending message on SPI bus.
335          * The frequency here can be anything, but is needed for
336          * the controller to send the data.
337          */
338         csr = spi_readl(as, CSR0 + 4 * chip_select);
339         csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
340         spi_writel(as, CSR0 + 4 * chip_select, csr);
341
342         /*
343          * Read all data coming from SPI bus, needed to be able to send
344          * the message.
345          */
346         spi_readl(as, RDR);
347         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
348                 spi_readl(as, RDR);
349                 cpu_relax();
350         }
351
352         spi_writel(as, TDR, DUMMY_MSG);
353
354         readl_poll_timeout_atomic(as->regs + SPI_SR, status,
355                                   (status & SPI_BIT(TXEMPTY)), 1, 1000);
356 }
357
358
359 /*
360  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361  * they assume that spi slave device state will not change on deselect, so
362  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
363  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
364  * controllers have CSAAT and friends.
365  *
366  * Even controller newer than ar91rm9200, using GPIOs can make sens as
367  * it lets us support active-high chipselects despite the controller's
368  * belief that only active-low devices/systems exists.
369  *
370  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371  * right when driven with GPIO.  ("Mode Fault does not allow more than one
372  * Master on Chip Select 0.")  No workaround exists for that ... so for
373  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374  * and (c) will trigger that first erratum in some cases.
375  *
376  * When changing the clock polarity, the SPI controller waits for the next
377  * transmission to enforce the default clock state. This may be an issue when
378  * using a GPIO as Chip Select: the clock level is applied only when the first
379  * packet is sent, once the CS has already been asserted. The workaround is to
380  * avoid this by sending a first (dummy) message before toggling the CS state.
381  */
382 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
383 {
384         struct atmel_spi_device *asd = spi->controller_state;
385         bool new_polarity;
386         int chip_select;
387         u32 mr;
388
389         if (spi_get_csgpiod(spi, 0))
390                 chip_select = as->native_cs_for_gpio;
391         else
392                 chip_select = spi_get_chipselect(spi, 0);
393
394         if (atmel_spi_is_v2(as)) {
395                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
396                 /* For the low SPI version, there is a issue that PDC transfer
397                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
398                  */
399                 spi_writel(as, CSR0, asd->csr);
400                 if (as->caps.has_wdrbt) {
401                         spi_writel(as, MR,
402                                         SPI_BF(PCS, ~(0x01 << chip_select))
403                                         | SPI_BIT(WDRBT)
404                                         | SPI_BIT(MODFDIS)
405                                         | SPI_BIT(MSTR));
406                 } else {
407                         spi_writel(as, MR,
408                                         SPI_BF(PCS, ~(0x01 << chip_select))
409                                         | SPI_BIT(MODFDIS)
410                                         | SPI_BIT(MSTR));
411                 }
412
413                 mr = spi_readl(as, MR);
414
415                 /*
416                  * Ensures the clock polarity is valid before we actually
417                  * assert the CS to avoid spurious clock edges to be
418                  * processed by the spi devices.
419                  */
420                 if (spi_get_csgpiod(spi, 0)) {
421                         new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
422                         if (new_polarity != as->last_polarity) {
423                                 /*
424                                  * Need to disable the GPIO before sending the dummy
425                                  * message because it is already set by the spi core.
426                                  */
427                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
428                                 atmel_spi_send_dummy(as, spi, chip_select);
429                                 as->last_polarity = new_polarity;
430                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
431                         }
432                 }
433         } else {
434                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
435                 int i;
436                 u32 csr;
437
438                 /* Make sure clock polarity is correct */
439                 for (i = 0; i < spi->controller->num_chipselect; i++) {
440                         csr = spi_readl(as, CSR0 + 4 * i);
441                         if ((csr ^ cpol) & SPI_BIT(CPOL))
442                                 spi_writel(as, CSR0 + 4 * i,
443                                                 csr ^ SPI_BIT(CPOL));
444                 }
445
446                 mr = spi_readl(as, MR);
447                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
448                 spi_writel(as, MR, mr);
449         }
450
451         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
452 }
453
454 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
455 {
456         int chip_select;
457         u32 mr;
458
459         if (spi_get_csgpiod(spi, 0))
460                 chip_select = as->native_cs_for_gpio;
461         else
462                 chip_select = spi_get_chipselect(spi, 0);
463
464         /* only deactivate *this* device; sometimes transfers to
465          * another device may be active when this routine is called.
466          */
467         mr = spi_readl(as, MR);
468         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
469                 mr = SPI_BFINS(PCS, 0xf, mr);
470                 spi_writel(as, MR, mr);
471         }
472
473         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
474
475         if (!spi_get_csgpiod(spi, 0))
476                 spi_writel(as, CR, SPI_BIT(LASTXFER));
477 }
478
479 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
480 {
481         spin_lock_irqsave(&as->lock, as->flags);
482 }
483
484 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
485 {
486         spin_unlock_irqrestore(&as->lock, as->flags);
487 }
488
489 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
490 {
491         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
492 }
493
494 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
495                                 struct spi_transfer *xfer)
496 {
497         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
498 }
499
500 static bool atmel_spi_can_dma(struct spi_controller *host,
501                               struct spi_device *spi,
502                               struct spi_transfer *xfer)
503 {
504         struct atmel_spi *as = spi_controller_get_devdata(host);
505
506         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
507                 return atmel_spi_use_dma(as, xfer) &&
508                         !atmel_spi_is_vmalloc_xfer(xfer);
509         else
510                 return atmel_spi_use_dma(as, xfer);
511
512 }
513
514 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
515 {
516         struct spi_controller *host = platform_get_drvdata(as->pdev);
517         struct dma_slave_config slave_config;
518         int err = 0;
519
520         if (bits_per_word > 8) {
521                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
522                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
523         } else {
524                 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
525                 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
526         }
527
528         slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
529         slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
530         slave_config.src_maxburst = 1;
531         slave_config.dst_maxburst = 1;
532         slave_config.device_fc = false;
533
534         /*
535          * This driver uses fixed peripheral select mode (PS bit set to '0' in
536          * the Mode Register).
537          * So according to the datasheet, when FIFOs are available (and
538          * enabled), the Transmit FIFO operates in Multiple Data Mode.
539          * In this mode, up to 2 data, not 4, can be written into the Transmit
540          * Data Register in a single access.
541          * However, the first data has to be written into the lowest 16 bits and
542          * the second data into the highest 16 bits of the Transmit
543          * Data Register. For 8bit data (the most frequent case), it would
544          * require to rework tx_buf so each data would actually fit 16 bits.
545          * So we'd rather write only one data at the time. Hence the transmit
546          * path works the same whether FIFOs are available (and enabled) or not.
547          */
548         if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
549                 dev_err(&as->pdev->dev,
550                         "failed to configure tx dma channel\n");
551                 err = -EINVAL;
552         }
553
554         /*
555          * This driver configures the spi controller for host mode (MSTR bit
556          * set to '1' in the Mode Register).
557          * So according to the datasheet, when FIFOs are available (and
558          * enabled), the Receive FIFO operates in Single Data Mode.
559          * So the receive path works the same whether FIFOs are available (and
560          * enabled) or not.
561          */
562         if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
563                 dev_err(&as->pdev->dev,
564                         "failed to configure rx dma channel\n");
565                 err = -EINVAL;
566         }
567
568         return err;
569 }
570
571 static int atmel_spi_configure_dma(struct spi_controller *host,
572                                    struct atmel_spi *as)
573 {
574         struct device *dev = &as->pdev->dev;
575         int err;
576
577         host->dma_tx = dma_request_chan(dev, "tx");
578         if (IS_ERR(host->dma_tx)) {
579                 err = PTR_ERR(host->dma_tx);
580                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
581                 goto error_clear;
582         }
583
584         host->dma_rx = dma_request_chan(dev, "rx");
585         if (IS_ERR(host->dma_rx)) {
586                 err = PTR_ERR(host->dma_rx);
587                 /*
588                  * No reason to check EPROBE_DEFER here since we have already
589                  * requested tx channel.
590                  */
591                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
592                 goto error;
593         }
594
595         err = atmel_spi_dma_slave_config(as, 8);
596         if (err)
597                 goto error;
598
599         dev_info(&as->pdev->dev,
600                         "Using %s (tx) and %s (rx) for DMA transfers\n",
601                         dma_chan_name(host->dma_tx),
602                         dma_chan_name(host->dma_rx));
603
604         return 0;
605 error:
606         if (!IS_ERR(host->dma_rx))
607                 dma_release_channel(host->dma_rx);
608         if (!IS_ERR(host->dma_tx))
609                 dma_release_channel(host->dma_tx);
610 error_clear:
611         host->dma_tx = host->dma_rx = NULL;
612         return err;
613 }
614
615 static void atmel_spi_stop_dma(struct spi_controller *host)
616 {
617         if (host->dma_rx)
618                 dmaengine_terminate_all(host->dma_rx);
619         if (host->dma_tx)
620                 dmaengine_terminate_all(host->dma_tx);
621 }
622
623 static void atmel_spi_release_dma(struct spi_controller *host)
624 {
625         if (host->dma_rx) {
626                 dma_release_channel(host->dma_rx);
627                 host->dma_rx = NULL;
628         }
629         if (host->dma_tx) {
630                 dma_release_channel(host->dma_tx);
631                 host->dma_tx = NULL;
632         }
633 }
634
635 /* This function is called by the DMA driver from tasklet context */
636 static void dma_callback(void *data)
637 {
638         struct spi_controller   *host = data;
639         struct atmel_spi        *as = spi_controller_get_devdata(host);
640
641         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
642             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
643                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
644                        as->current_transfer->len);
645         }
646         complete(&as->xfer_completion);
647 }
648
649 /*
650  * Next transfer using PIO without FIFO.
651  */
652 static void atmel_spi_next_xfer_single(struct spi_controller *host,
653                                        struct spi_transfer *xfer)
654 {
655         struct atmel_spi        *as = spi_controller_get_devdata(host);
656         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
657
658         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
659
660         /* Make sure data is not remaining in RDR */
661         spi_readl(as, RDR);
662         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
663                 spi_readl(as, RDR);
664                 cpu_relax();
665         }
666
667         if (xfer->bits_per_word > 8)
668                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
669         else
670                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
671
672         dev_dbg(host->dev.parent,
673                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
675                 xfer->bits_per_word);
676
677         /* Enable relevant interrupts */
678         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
679 }
680
681 /*
682  * Next transfer using PIO with FIFO.
683  */
684 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
685                                      struct spi_transfer *xfer)
686 {
687         struct atmel_spi *as = spi_controller_get_devdata(host);
688         u32 current_remaining_data, num_data;
689         u32 offset = xfer->len - as->current_remaining_bytes;
690         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
691         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
692         u16 td0, td1;
693         u32 fifomr;
694
695         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
696
697         /* Compute the number of data to transfer in the current iteration */
698         current_remaining_data = ((xfer->bits_per_word > 8) ?
699                                   ((u32)as->current_remaining_bytes >> 1) :
700                                   (u32)as->current_remaining_bytes);
701         num_data = min(current_remaining_data, as->fifo_size);
702
703         /* Flush RX and TX FIFOs */
704         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
705         while (spi_readl(as, FLR))
706                 cpu_relax();
707
708         /* Set RX FIFO Threshold to the number of data to transfer */
709         fifomr = spi_readl(as, FMR);
710         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
711
712         /* Clear FIFO flags in the Status Register, especially RXFTHF */
713         (void)spi_readl(as, SR);
714
715         /* Fill TX FIFO */
716         while (num_data >= 2) {
717                 if (xfer->bits_per_word > 8) {
718                         td0 = *words++;
719                         td1 = *words++;
720                 } else {
721                         td0 = *bytes++;
722                         td1 = *bytes++;
723                 }
724
725                 spi_writel(as, TDR, (td1 << 16) | td0);
726                 num_data -= 2;
727         }
728
729         if (num_data) {
730                 if (xfer->bits_per_word > 8)
731                         td0 = *words++;
732                 else
733                         td0 = *bytes++;
734
735                 spi_writew(as, TDR, td0);
736                 num_data--;
737         }
738
739         dev_dbg(host->dev.parent,
740                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
742                 xfer->bits_per_word);
743
744         /*
745          * Enable RX FIFO Threshold Flag interrupt to be notified about
746          * transfer completion.
747          */
748         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
749 }
750
751 /*
752  * Next transfer using PIO.
753  */
754 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
755                                     struct spi_transfer *xfer)
756 {
757         struct atmel_spi *as = spi_controller_get_devdata(host);
758
759         if (as->fifo_size)
760                 atmel_spi_next_xfer_fifo(host, xfer);
761         else
762                 atmel_spi_next_xfer_single(host, xfer);
763 }
764
765 /*
766  * Submit next transfer for DMA.
767  */
768 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
769                                 struct spi_transfer *xfer,
770                                 u32 *plen)
771 {
772         struct atmel_spi        *as = spi_controller_get_devdata(host);
773         struct dma_chan         *rxchan = host->dma_rx;
774         struct dma_chan         *txchan = host->dma_tx;
775         struct dma_async_tx_descriptor *rxdesc;
776         struct dma_async_tx_descriptor *txdesc;
777         dma_cookie_t            cookie;
778
779         dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
780
781         /* Check that the channels are available */
782         if (!rxchan || !txchan)
783                 return -ENODEV;
784
785
786         *plen = xfer->len;
787
788         if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
789                 goto err_exit;
790
791         /* Send both scatterlists */
792         if (atmel_spi_is_vmalloc_xfer(xfer) &&
793             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
794                 rxdesc = dmaengine_prep_slave_single(rxchan,
795                                                      as->dma_addr_rx_bbuf,
796                                                      xfer->len,
797                                                      DMA_DEV_TO_MEM,
798                                                      DMA_PREP_INTERRUPT |
799                                                      DMA_CTRL_ACK);
800         } else {
801                 rxdesc = dmaengine_prep_slave_sg(rxchan,
802                                                  xfer->rx_sg.sgl,
803                                                  xfer->rx_sg.nents,
804                                                  DMA_DEV_TO_MEM,
805                                                  DMA_PREP_INTERRUPT |
806                                                  DMA_CTRL_ACK);
807         }
808         if (!rxdesc)
809                 goto err_dma;
810
811         if (atmel_spi_is_vmalloc_xfer(xfer) &&
812             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
813                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
814                 txdesc = dmaengine_prep_slave_single(txchan,
815                                                      as->dma_addr_tx_bbuf,
816                                                      xfer->len, DMA_MEM_TO_DEV,
817                                                      DMA_PREP_INTERRUPT |
818                                                      DMA_CTRL_ACK);
819         } else {
820                 txdesc = dmaengine_prep_slave_sg(txchan,
821                                                  xfer->tx_sg.sgl,
822                                                  xfer->tx_sg.nents,
823                                                  DMA_MEM_TO_DEV,
824                                                  DMA_PREP_INTERRUPT |
825                                                  DMA_CTRL_ACK);
826         }
827         if (!txdesc)
828                 goto err_dma;
829
830         dev_dbg(host->dev.parent,
831                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
833                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
834
835         /* Enable relevant interrupts */
836         spi_writel(as, IER, SPI_BIT(OVRES));
837
838         /* Put the callback on the RX transfer only, that should finish last */
839         rxdesc->callback = dma_callback;
840         rxdesc->callback_param = host;
841
842         /* Submit and fire RX and TX with TX last so we're ready to read! */
843         cookie = rxdesc->tx_submit(rxdesc);
844         if (dma_submit_error(cookie))
845                 goto err_dma;
846         cookie = txdesc->tx_submit(txdesc);
847         if (dma_submit_error(cookie))
848                 goto err_dma;
849         rxchan->device->device_issue_pending(rxchan);
850         txchan->device->device_issue_pending(txchan);
851
852         return 0;
853
854 err_dma:
855         spi_writel(as, IDR, SPI_BIT(OVRES));
856         atmel_spi_stop_dma(host);
857 err_exit:
858         return -ENOMEM;
859 }
860
861 static void atmel_spi_next_xfer_data(struct spi_controller *host,
862                                 struct spi_transfer *xfer,
863                                 dma_addr_t *tx_dma,
864                                 dma_addr_t *rx_dma,
865                                 u32 *plen)
866 {
867         *rx_dma = xfer->rx_dma + xfer->len - *plen;
868         *tx_dma = xfer->tx_dma + xfer->len - *plen;
869         if (*plen > host->max_dma_len)
870                 *plen = host->max_dma_len;
871 }
872
873 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
874                                     struct spi_device *spi,
875                                     struct spi_transfer *xfer)
876 {
877         u32                     scbr, csr;
878         unsigned long           bus_hz;
879         int chip_select;
880
881         if (spi_get_csgpiod(spi, 0))
882                 chip_select = as->native_cs_for_gpio;
883         else
884                 chip_select = spi_get_chipselect(spi, 0);
885
886         /* v1 chips start out at half the peripheral bus speed. */
887         bus_hz = as->spi_clk;
888         if (!atmel_spi_is_v2(as))
889                 bus_hz /= 2;
890
891         /*
892          * Calculate the lowest divider that satisfies the
893          * constraint, assuming div32/fdiv/mbz == 0.
894          */
895         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
896
897         /*
898          * If the resulting divider doesn't fit into the
899          * register bitfield, we can't satisfy the constraint.
900          */
901         if (scbr >= (1 << SPI_SCBR_SIZE)) {
902                 dev_err(&spi->dev,
903                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904                         xfer->speed_hz, scbr, bus_hz/255);
905                 return -EINVAL;
906         }
907         if (scbr == 0) {
908                 dev_err(&spi->dev,
909                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
910                         xfer->speed_hz, scbr, bus_hz);
911                 return -EINVAL;
912         }
913         csr = spi_readl(as, CSR0 + 4 * chip_select);
914         csr = SPI_BFINS(SCBR, scbr, csr);
915         spi_writel(as, CSR0 + 4 * chip_select, csr);
916         xfer->effective_speed_hz = bus_hz / scbr;
917
918         return 0;
919 }
920
921 /*
922  * Submit next transfer for PDC.
923  * lock is held, spi irq is blocked
924  */
925 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
926                                         struct spi_transfer *xfer)
927 {
928         struct atmel_spi        *as = spi_controller_get_devdata(host);
929         u32                     len;
930         dma_addr_t              tx_dma, rx_dma;
931
932         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
933
934         len = as->current_remaining_bytes;
935         atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
936         as->current_remaining_bytes -= len;
937
938         spi_writel(as, RPR, rx_dma);
939         spi_writel(as, TPR, tx_dma);
940
941         if (xfer->bits_per_word > 8)
942                 len >>= 1;
943         spi_writel(as, RCR, len);
944         spi_writel(as, TCR, len);
945
946         dev_dbg(&host->dev,
947                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948                 xfer, xfer->len, xfer->tx_buf,
949                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
950                 (unsigned long long)xfer->rx_dma);
951
952         if (as->current_remaining_bytes) {
953                 len = as->current_remaining_bytes;
954                 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
955                 as->current_remaining_bytes -= len;
956
957                 spi_writel(as, RNPR, rx_dma);
958                 spi_writel(as, TNPR, tx_dma);
959
960                 if (xfer->bits_per_word > 8)
961                         len >>= 1;
962                 spi_writel(as, RNCR, len);
963                 spi_writel(as, TNCR, len);
964
965                 dev_dbg(&host->dev,
966                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967                         xfer, xfer->len, xfer->tx_buf,
968                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
969                         (unsigned long long)xfer->rx_dma);
970         }
971
972         /* REVISIT: We're waiting for RXBUFF before we start the next
973          * transfer because we need to handle some difficult timing
974          * issues otherwise. If we wait for TXBUFE in one transfer and
975          * then starts waiting for RXBUFF in the next, it's difficult
976          * to tell the difference between the RXBUFF interrupt we're
977          * actually waiting for and the RXBUFF interrupt of the
978          * previous transfer.
979          *
980          * It should be doable, though. Just not now...
981          */
982         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
983         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
984 }
985
986 /*
987  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988  *  - The buffer is either valid for CPU access, else NULL
989  *  - If the buffer is valid, so is its DMA address
990  */
991 static int
992 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
993 {
994         struct device   *dev = &as->pdev->dev;
995
996         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
997         if (xfer->tx_buf) {
998                 /* tx_buf is a const void* where we need a void * for the dma
999                  * mapping */
1000                 void *nonconst_tx = (void *)xfer->tx_buf;
1001
1002                 xfer->tx_dma = dma_map_single(dev,
1003                                 nonconst_tx, xfer->len,
1004                                 DMA_TO_DEVICE);
1005                 if (dma_mapping_error(dev, xfer->tx_dma))
1006                         return -ENOMEM;
1007         }
1008         if (xfer->rx_buf) {
1009                 xfer->rx_dma = dma_map_single(dev,
1010                                 xfer->rx_buf, xfer->len,
1011                                 DMA_FROM_DEVICE);
1012                 if (dma_mapping_error(dev, xfer->rx_dma)) {
1013                         if (xfer->tx_buf)
1014                                 dma_unmap_single(dev,
1015                                                 xfer->tx_dma, xfer->len,
1016                                                 DMA_TO_DEVICE);
1017                         return -ENOMEM;
1018                 }
1019         }
1020         return 0;
1021 }
1022
1023 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1024                                      struct spi_transfer *xfer)
1025 {
1026         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1027                 dma_unmap_single(host->dev.parent, xfer->tx_dma,
1028                                  xfer->len, DMA_TO_DEVICE);
1029         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1030                 dma_unmap_single(host->dev.parent, xfer->rx_dma,
1031                                  xfer->len, DMA_FROM_DEVICE);
1032 }
1033
1034 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1035 {
1036         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1037 }
1038
1039 static void
1040 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1041 {
1042         u8              *rxp;
1043         u16             *rxp16;
1044         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1045
1046         if (xfer->bits_per_word > 8) {
1047                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1048                 *rxp16 = spi_readl(as, RDR);
1049         } else {
1050                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1051                 *rxp = spi_readl(as, RDR);
1052         }
1053         if (xfer->bits_per_word > 8) {
1054                 if (as->current_remaining_bytes > 2)
1055                         as->current_remaining_bytes -= 2;
1056                 else
1057                         as->current_remaining_bytes = 0;
1058         } else {
1059                 as->current_remaining_bytes--;
1060         }
1061 }
1062
1063 static void
1064 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1065 {
1066         u32 fifolr = spi_readl(as, FLR);
1067         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1068         u32 offset = xfer->len - as->current_remaining_bytes;
1069         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1070         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1071         u16 rd; /* RD field is the lowest 16 bits of RDR */
1072
1073         /* Update the number of remaining bytes to transfer */
1074         num_bytes = ((xfer->bits_per_word > 8) ?
1075                      (num_data << 1) :
1076                      num_data);
1077
1078         if (as->current_remaining_bytes > num_bytes)
1079                 as->current_remaining_bytes -= num_bytes;
1080         else
1081                 as->current_remaining_bytes = 0;
1082
1083         /* Handle odd number of bytes when data are more than 8bit width */
1084         if (xfer->bits_per_word > 8)
1085                 as->current_remaining_bytes &= ~0x1;
1086
1087         /* Read data */
1088         while (num_data) {
1089                 rd = spi_readl(as, RDR);
1090                 if (xfer->bits_per_word > 8)
1091                         *words++ = rd;
1092                 else
1093                         *bytes++ = rd;
1094                 num_data--;
1095         }
1096 }
1097
1098 /* Called from IRQ
1099  *
1100  * Must update "current_remaining_bytes" to keep track of data
1101  * to transfer.
1102  */
1103 static void
1104 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1105 {
1106         if (as->fifo_size)
1107                 atmel_spi_pump_fifo_data(as, xfer);
1108         else
1109                 atmel_spi_pump_single_data(as, xfer);
1110 }
1111
1112 /* Interrupt
1113  *
1114  */
1115 static irqreturn_t
1116 atmel_spi_pio_interrupt(int irq, void *dev_id)
1117 {
1118         struct spi_controller   *host = dev_id;
1119         struct atmel_spi        *as = spi_controller_get_devdata(host);
1120         u32                     status, pending, imr;
1121         struct spi_transfer     *xfer;
1122         int                     ret = IRQ_NONE;
1123
1124         imr = spi_readl(as, IMR);
1125         status = spi_readl(as, SR);
1126         pending = status & imr;
1127
1128         if (pending & SPI_BIT(OVRES)) {
1129                 ret = IRQ_HANDLED;
1130                 spi_writel(as, IDR, SPI_BIT(OVRES));
1131                 dev_warn(host->dev.parent, "overrun\n");
1132
1133                 /*
1134                  * When we get an overrun, we disregard the current
1135                  * transfer. Data will not be copied back from any
1136                  * bounce buffer and msg->actual_len will not be
1137                  * updated with the last xfer.
1138                  *
1139                  * We will also not process any remaning transfers in
1140                  * the message.
1141                  */
1142                 as->done_status = -EIO;
1143                 smp_wmb();
1144
1145                 /* Clear any overrun happening while cleaning up */
1146                 spi_readl(as, SR);
1147
1148                 complete(&as->xfer_completion);
1149
1150         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1151                 atmel_spi_lock(as);
1152
1153                 if (as->current_remaining_bytes) {
1154                         ret = IRQ_HANDLED;
1155                         xfer = as->current_transfer;
1156                         atmel_spi_pump_pio_data(as, xfer);
1157                         if (!as->current_remaining_bytes)
1158                                 spi_writel(as, IDR, pending);
1159
1160                         complete(&as->xfer_completion);
1161                 }
1162
1163                 atmel_spi_unlock(as);
1164         } else {
1165                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1166                 ret = IRQ_HANDLED;
1167                 spi_writel(as, IDR, pending);
1168         }
1169
1170         return ret;
1171 }
1172
1173 static irqreturn_t
1174 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1175 {
1176         struct spi_controller   *host = dev_id;
1177         struct atmel_spi        *as = spi_controller_get_devdata(host);
1178         u32                     status, pending, imr;
1179         int                     ret = IRQ_NONE;
1180
1181         imr = spi_readl(as, IMR);
1182         status = spi_readl(as, SR);
1183         pending = status & imr;
1184
1185         if (pending & SPI_BIT(OVRES)) {
1186
1187                 ret = IRQ_HANDLED;
1188
1189                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1190                                      | SPI_BIT(OVRES)));
1191
1192                 /* Clear any overrun happening while cleaning up */
1193                 spi_readl(as, SR);
1194
1195                 as->done_status = -EIO;
1196
1197                 complete(&as->xfer_completion);
1198
1199         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1200                 ret = IRQ_HANDLED;
1201
1202                 spi_writel(as, IDR, pending);
1203
1204                 complete(&as->xfer_completion);
1205         }
1206
1207         return ret;
1208 }
1209
1210 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1211 {
1212         struct spi_delay *delay = &spi->word_delay;
1213         u32 value = delay->value;
1214
1215         switch (delay->unit) {
1216         case SPI_DELAY_UNIT_NSECS:
1217                 value /= 1000;
1218                 break;
1219         case SPI_DELAY_UNIT_USECS:
1220                 break;
1221         default:
1222                 return -EINVAL;
1223         }
1224
1225         return (as->spi_clk / 1000000 * value) >> 5;
1226 }
1227
1228 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1229 {
1230         int i;
1231         struct spi_controller *host = platform_get_drvdata(as->pdev);
1232
1233         if (!as->native_cs_free)
1234                 return; /* already initialized */
1235
1236         if (!host->cs_gpiods)
1237                 return; /* No CS GPIO */
1238
1239         /*
1240          * On the first version of the controller (AT91RM9200), CS0
1241          * can't be used associated with GPIO
1242          */
1243         if (atmel_spi_is_v2(as))
1244                 i = 0;
1245         else
1246                 i = 1;
1247
1248         for (; i < 4; i++)
1249                 if (host->cs_gpiods[i])
1250                         as->native_cs_free |= BIT(i);
1251
1252         if (as->native_cs_free)
1253                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1254 }
1255
1256 static int atmel_spi_setup(struct spi_device *spi)
1257 {
1258         struct atmel_spi        *as;
1259         struct atmel_spi_device *asd;
1260         u32                     csr;
1261         unsigned int            bits = spi->bits_per_word;
1262         int chip_select;
1263         int                     word_delay_csr;
1264
1265         as = spi_controller_get_devdata(spi->controller);
1266
1267         /* see notes above re chipselect */
1268         if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1269                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1270                 return -EINVAL;
1271         }
1272
1273         /* Setup() is called during spi_register_controller(aka
1274          * spi_register_master) but after all membmers of the cs_gpiod
1275          * array have been filled, so we can looked for which native
1276          * CS will be free for using with GPIO
1277          */
1278         initialize_native_cs_for_gpio(as);
1279
1280         if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1281                 dev_err(&spi->dev,
1282                         "No native CS available to support this GPIO CS\n");
1283                 return -EBUSY;
1284         }
1285
1286         if (spi_get_csgpiod(spi, 0))
1287                 chip_select = as->native_cs_for_gpio;
1288         else
1289                 chip_select = spi_get_chipselect(spi, 0);
1290
1291         csr = SPI_BF(BITS, bits - 8);
1292         if (spi->mode & SPI_CPOL)
1293                 csr |= SPI_BIT(CPOL);
1294         if (!(spi->mode & SPI_CPHA))
1295                 csr |= SPI_BIT(NCPHA);
1296
1297         if (!spi_get_csgpiod(spi, 0))
1298                 csr |= SPI_BIT(CSAAT);
1299         csr |= SPI_BF(DLYBS, 0);
1300
1301         word_delay_csr = atmel_word_delay_csr(spi, as);
1302         if (word_delay_csr < 0)
1303                 return word_delay_csr;
1304
1305         /* DLYBCT adds delays between words.  This is useful for slow devices
1306          * that need a bit of time to setup the next transfer.
1307          */
1308         csr |= SPI_BF(DLYBCT, word_delay_csr);
1309
1310         asd = spi->controller_state;
1311         if (!asd) {
1312                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1313                 if (!asd)
1314                         return -ENOMEM;
1315
1316                 spi->controller_state = asd;
1317         }
1318
1319         asd->csr = csr;
1320
1321         dev_dbg(&spi->dev,
1322                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1323                 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1324
1325         if (!atmel_spi_is_v2(as))
1326                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1327
1328         return 0;
1329 }
1330
1331 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1332 {
1333         struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1334         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1335          * since we already have routines for activate/deactivate translate
1336          * high/low to active/inactive
1337          */
1338         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1339
1340         if (enable) {
1341                 cs_activate(as, spi);
1342         } else {
1343                 cs_deactivate(as, spi);
1344         }
1345
1346 }
1347
1348 static int atmel_spi_one_transfer(struct spi_controller *host,
1349                                         struct spi_device *spi,
1350                                         struct spi_transfer *xfer)
1351 {
1352         struct atmel_spi        *as;
1353         u8                      bits;
1354         u32                     len;
1355         struct atmel_spi_device *asd;
1356         int                     timeout;
1357         int                     ret;
1358         unsigned int            dma_timeout;
1359         long                    ret_timeout;
1360
1361         as = spi_controller_get_devdata(host);
1362
1363         asd = spi->controller_state;
1364         bits = (asd->csr >> 4) & 0xf;
1365         if (bits != xfer->bits_per_word - 8) {
1366                 dev_dbg(&spi->dev,
1367                         "you can't yet change bits_per_word in transfers\n");
1368                 return -ENOPROTOOPT;
1369         }
1370
1371         /*
1372          * DMA map early, for performance (empties dcache ASAP) and
1373          * better fault reporting.
1374          */
1375         if (as->use_pdc) {
1376                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1377                         return -ENOMEM;
1378         }
1379
1380         atmel_spi_set_xfer_speed(as, spi, xfer);
1381
1382         as->done_status = 0;
1383         as->current_transfer = xfer;
1384         as->current_remaining_bytes = xfer->len;
1385         while (as->current_remaining_bytes) {
1386                 reinit_completion(&as->xfer_completion);
1387
1388                 if (as->use_pdc) {
1389                         atmel_spi_lock(as);
1390                         atmel_spi_pdc_next_xfer(host, xfer);
1391                         atmel_spi_unlock(as);
1392                 } else if (atmel_spi_use_dma(as, xfer)) {
1393                         len = as->current_remaining_bytes;
1394                         ret = atmel_spi_next_xfer_dma_submit(host,
1395                                                                 xfer, &len);
1396                         if (ret) {
1397                                 dev_err(&spi->dev,
1398                                         "unable to use DMA, fallback to PIO\n");
1399                                 as->done_status = ret;
1400                                 break;
1401                         } else {
1402                                 as->current_remaining_bytes -= len;
1403                                 if (as->current_remaining_bytes < 0)
1404                                         as->current_remaining_bytes = 0;
1405                         }
1406                 } else {
1407                         atmel_spi_lock(as);
1408                         atmel_spi_next_xfer_pio(host, xfer);
1409                         atmel_spi_unlock(as);
1410                 }
1411
1412                 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1413                 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1414                 if (!ret_timeout) {
1415                         dev_err(&spi->dev, "spi transfer timeout\n");
1416                         as->done_status = -EIO;
1417                 }
1418
1419                 if (as->done_status)
1420                         break;
1421         }
1422
1423         if (as->done_status) {
1424                 if (as->use_pdc) {
1425                         dev_warn(host->dev.parent,
1426                                 "overrun (%u/%u remaining)\n",
1427                                 spi_readl(as, TCR), spi_readl(as, RCR));
1428
1429                         /*
1430                          * Clean up DMA registers and make sure the data
1431                          * registers are empty.
1432                          */
1433                         spi_writel(as, RNCR, 0);
1434                         spi_writel(as, TNCR, 0);
1435                         spi_writel(as, RCR, 0);
1436                         spi_writel(as, TCR, 0);
1437                         for (timeout = 1000; timeout; timeout--)
1438                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1439                                         break;
1440                         if (!timeout)
1441                                 dev_warn(host->dev.parent,
1442                                          "timeout waiting for TXEMPTY");
1443                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1444                                 spi_readl(as, RDR);
1445
1446                         /* Clear any overrun happening while cleaning up */
1447                         spi_readl(as, SR);
1448
1449                 } else if (atmel_spi_use_dma(as, xfer)) {
1450                         atmel_spi_stop_dma(host);
1451                 }
1452         }
1453
1454         if (as->use_pdc)
1455                 atmel_spi_dma_unmap_xfer(host, xfer);
1456
1457         if (as->use_pdc)
1458                 atmel_spi_disable_pdc_transfer(as);
1459
1460         return as->done_status;
1461 }
1462
1463 static void atmel_spi_cleanup(struct spi_device *spi)
1464 {
1465         struct atmel_spi_device *asd = spi->controller_state;
1466
1467         if (!asd)
1468                 return;
1469
1470         spi->controller_state = NULL;
1471         kfree(asd);
1472 }
1473
1474 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1475 {
1476         return spi_readl(as, VERSION) & 0x00000fff;
1477 }
1478
1479 static void atmel_get_caps(struct atmel_spi *as)
1480 {
1481         unsigned int version;
1482
1483         version = atmel_get_version(as);
1484
1485         as->caps.is_spi2 = version > 0x121;
1486         as->caps.has_wdrbt = version >= 0x210;
1487         as->caps.has_dma_support = version >= 0x212;
1488         as->caps.has_pdc_support = version < 0x212;
1489 }
1490
1491 static void atmel_spi_init(struct atmel_spi *as)
1492 {
1493         spi_writel(as, CR, SPI_BIT(SWRST));
1494         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1495
1496         /* It is recommended to enable FIFOs first thing after reset */
1497         if (as->fifo_size)
1498                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1499
1500         if (as->caps.has_wdrbt) {
1501                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1502                                 | SPI_BIT(MSTR));
1503         } else {
1504                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1505         }
1506
1507         if (as->use_pdc)
1508                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1509         spi_writel(as, CR, SPI_BIT(SPIEN));
1510 }
1511
1512 static int atmel_spi_probe(struct platform_device *pdev)
1513 {
1514         struct resource         *regs;
1515         int                     irq;
1516         struct clk              *clk;
1517         int                     ret;
1518         struct spi_controller   *host;
1519         struct atmel_spi        *as;
1520
1521         /* Select default pin state */
1522         pinctrl_pm_select_default_state(&pdev->dev);
1523
1524         irq = platform_get_irq(pdev, 0);
1525         if (irq < 0)
1526                 return irq;
1527
1528         clk = devm_clk_get(&pdev->dev, "spi_clk");
1529         if (IS_ERR(clk))
1530                 return PTR_ERR(clk);
1531
1532         /* setup spi core then atmel-specific driver state */
1533         host = spi_alloc_host(&pdev->dev, sizeof(*as));
1534         if (!host)
1535                 return -ENOMEM;
1536
1537         /* the spi->mode bits understood by this driver: */
1538         host->use_gpio_descriptors = true;
1539         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1540         host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1541         host->dev.of_node = pdev->dev.of_node;
1542         host->bus_num = pdev->id;
1543         host->num_chipselect = 4;
1544         host->setup = atmel_spi_setup;
1545         host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1546                         SPI_CONTROLLER_GPIO_SS);
1547         host->transfer_one = atmel_spi_one_transfer;
1548         host->set_cs = atmel_spi_set_cs;
1549         host->cleanup = atmel_spi_cleanup;
1550         host->auto_runtime_pm = true;
1551         host->max_dma_len = SPI_MAX_DMA_XFER;
1552         host->can_dma = atmel_spi_can_dma;
1553         platform_set_drvdata(pdev, host);
1554
1555         as = spi_controller_get_devdata(host);
1556
1557         spin_lock_init(&as->lock);
1558
1559         as->pdev = pdev;
1560         as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1561         if (IS_ERR(as->regs)) {
1562                 ret = PTR_ERR(as->regs);
1563                 goto out_unmap_regs;
1564         }
1565         as->phybase = regs->start;
1566         as->irq = irq;
1567         as->clk = clk;
1568
1569         init_completion(&as->xfer_completion);
1570
1571         atmel_get_caps(as);
1572
1573         as->use_dma = false;
1574         as->use_pdc = false;
1575         if (as->caps.has_dma_support) {
1576                 ret = atmel_spi_configure_dma(host, as);
1577                 if (ret == 0) {
1578                         as->use_dma = true;
1579                 } else if (ret == -EPROBE_DEFER) {
1580                         goto out_unmap_regs;
1581                 }
1582         } else if (as->caps.has_pdc_support) {
1583                 as->use_pdc = true;
1584         }
1585
1586         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1587                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1588                                                       SPI_MAX_DMA_XFER,
1589                                                       &as->dma_addr_rx_bbuf,
1590                                                       GFP_KERNEL | GFP_DMA);
1591                 if (!as->addr_rx_bbuf) {
1592                         as->use_dma = false;
1593                 } else {
1594                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1595                                         SPI_MAX_DMA_XFER,
1596                                         &as->dma_addr_tx_bbuf,
1597                                         GFP_KERNEL | GFP_DMA);
1598                         if (!as->addr_tx_bbuf) {
1599                                 as->use_dma = false;
1600                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1601                                                   as->addr_rx_bbuf,
1602                                                   as->dma_addr_rx_bbuf);
1603                         }
1604                 }
1605                 if (!as->use_dma)
1606                         dev_info(host->dev.parent,
1607                                  "  can not allocate dma coherent memory\n");
1608         }
1609
1610         if (as->caps.has_dma_support && !as->use_dma)
1611                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1612
1613         if (as->use_pdc) {
1614                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1615                                         0, dev_name(&pdev->dev), host);
1616         } else {
1617                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1618                                         0, dev_name(&pdev->dev), host);
1619         }
1620         if (ret)
1621                 goto out_unmap_regs;
1622
1623         /* Initialize the hardware */
1624         ret = clk_prepare_enable(clk);
1625         if (ret)
1626                 goto out_free_irq;
1627
1628         as->spi_clk = clk_get_rate(clk);
1629
1630         as->fifo_size = 0;
1631         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632                                   &as->fifo_size)) {
1633                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634         }
1635
1636         atmel_spi_init(as);
1637
1638         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1639         pm_runtime_use_autosuspend(&pdev->dev);
1640         pm_runtime_set_active(&pdev->dev);
1641         pm_runtime_enable(&pdev->dev);
1642
1643         ret = devm_spi_register_controller(&pdev->dev, host);
1644         if (ret)
1645                 goto out_free_dma;
1646
1647         /* go! */
1648         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1649                         atmel_get_version(as), (unsigned long)regs->start,
1650                         irq);
1651
1652         return 0;
1653
1654 out_free_dma:
1655         pm_runtime_disable(&pdev->dev);
1656         pm_runtime_set_suspended(&pdev->dev);
1657
1658         if (as->use_dma)
1659                 atmel_spi_release_dma(host);
1660
1661         spi_writel(as, CR, SPI_BIT(SWRST));
1662         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1663         clk_disable_unprepare(clk);
1664 out_free_irq:
1665 out_unmap_regs:
1666         spi_controller_put(host);
1667         return ret;
1668 }
1669
1670 static void atmel_spi_remove(struct platform_device *pdev)
1671 {
1672         struct spi_controller   *host = platform_get_drvdata(pdev);
1673         struct atmel_spi        *as = spi_controller_get_devdata(host);
1674
1675         pm_runtime_get_sync(&pdev->dev);
1676
1677         /* reset the hardware and block queue progress */
1678         if (as->use_dma) {
1679                 atmel_spi_stop_dma(host);
1680                 atmel_spi_release_dma(host);
1681                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1682                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683                                           as->addr_tx_bbuf,
1684                                           as->dma_addr_tx_bbuf);
1685                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1686                                           as->addr_rx_bbuf,
1687                                           as->dma_addr_rx_bbuf);
1688                 }
1689         }
1690
1691         spin_lock_irq(&as->lock);
1692         spi_writel(as, CR, SPI_BIT(SWRST));
1693         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1694         spi_readl(as, SR);
1695         spin_unlock_irq(&as->lock);
1696
1697         clk_disable_unprepare(as->clk);
1698
1699         pm_runtime_put_noidle(&pdev->dev);
1700         pm_runtime_disable(&pdev->dev);
1701 }
1702
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1704 {
1705         struct spi_controller *host = dev_get_drvdata(dev);
1706         struct atmel_spi *as = spi_controller_get_devdata(host);
1707
1708         clk_disable_unprepare(as->clk);
1709         pinctrl_pm_select_sleep_state(dev);
1710
1711         return 0;
1712 }
1713
1714 static int atmel_spi_runtime_resume(struct device *dev)
1715 {
1716         struct spi_controller *host = dev_get_drvdata(dev);
1717         struct atmel_spi *as = spi_controller_get_devdata(host);
1718
1719         pinctrl_pm_select_default_state(dev);
1720
1721         return clk_prepare_enable(as->clk);
1722 }
1723
1724 static int atmel_spi_suspend(struct device *dev)
1725 {
1726         struct spi_controller *host = dev_get_drvdata(dev);
1727         int ret;
1728
1729         /* Stop the queue running */
1730         ret = spi_controller_suspend(host);
1731         if (ret)
1732                 return ret;
1733
1734         if (!pm_runtime_suspended(dev))
1735                 atmel_spi_runtime_suspend(dev);
1736
1737         return 0;
1738 }
1739
1740 static int atmel_spi_resume(struct device *dev)
1741 {
1742         struct spi_controller *host = dev_get_drvdata(dev);
1743         struct atmel_spi *as = spi_controller_get_devdata(host);
1744         int ret;
1745
1746         ret = clk_prepare_enable(as->clk);
1747         if (ret)
1748                 return ret;
1749
1750         atmel_spi_init(as);
1751
1752         clk_disable_unprepare(as->clk);
1753
1754         if (!pm_runtime_suspended(dev)) {
1755                 ret = atmel_spi_runtime_resume(dev);
1756                 if (ret)
1757                         return ret;
1758         }
1759
1760         /* Start the queue running */
1761         return spi_controller_resume(host);
1762 }
1763
1764 static const struct dev_pm_ops atmel_spi_pm_ops = {
1765         SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1766         RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1767                        atmel_spi_runtime_resume, NULL)
1768 };
1769
1770 static const struct of_device_id atmel_spi_dt_ids[] = {
1771         { .compatible = "atmel,at91rm9200-spi" },
1772         { /* sentinel */ }
1773 };
1774
1775 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1776
1777 static struct platform_driver atmel_spi_driver = {
1778         .driver         = {
1779                 .name   = "atmel_spi",
1780                 .pm     = pm_ptr(&atmel_spi_pm_ops),
1781                 .of_match_table = atmel_spi_dt_ids,
1782         },
1783         .probe          = atmel_spi_probe,
1784         .remove_new     = atmel_spi_remove,
1785 };
1786 module_platform_driver(atmel_spi_driver);
1787
1788 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1789 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("platform:atmel_spi");