soundwire: bus: Update kernel doc for no_pm functions
[linux-block.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25         return 0;
26 }
27
28 /**
29  * sdw_bus_master_add() - add a bus Master instance
30  * @bus: bus instance
31  * @parent: parent device
32  * @fwnode: firmware node handle
33  *
34  * Initializes the bus instance, read properties and create child
35  * devices.
36  */
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38                        struct fwnode_handle *fwnode)
39 {
40         struct sdw_master_prop *prop = NULL;
41         int ret;
42
43         if (!parent) {
44                 pr_err("SoundWire parent device is not set\n");
45                 return -ENODEV;
46         }
47
48         ret = sdw_get_id(bus);
49         if (ret < 0) {
50                 dev_err(parent, "Failed to get bus id\n");
51                 return ret;
52         }
53
54         ret = sdw_master_device_add(bus, parent, fwnode);
55         if (ret < 0) {
56                 dev_err(parent, "Failed to add master device at link %d\n",
57                         bus->link_id);
58                 return ret;
59         }
60
61         if (!bus->ops) {
62                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63                 return -EINVAL;
64         }
65
66         if (!bus->compute_params) {
67                 dev_err(bus->dev,
68                         "Bandwidth allocation not configured, compute_params no set\n");
69                 return -EINVAL;
70         }
71
72         mutex_init(&bus->msg_lock);
73         mutex_init(&bus->bus_lock);
74         INIT_LIST_HEAD(&bus->slaves);
75         INIT_LIST_HEAD(&bus->m_rt_list);
76
77         /*
78          * Initialize multi_link flag
79          */
80         bus->multi_link = false;
81         if (bus->ops->read_prop) {
82                 ret = bus->ops->read_prop(bus);
83                 if (ret < 0) {
84                         dev_err(bus->dev,
85                                 "Bus read properties failed:%d\n", ret);
86                         return ret;
87                 }
88         }
89
90         sdw_bus_debugfs_init(bus);
91
92         /*
93          * Device numbers in SoundWire are 0 through 15. Enumeration device
94          * number (0), Broadcast device number (15), Group numbers (12 and
95          * 13) and Master device number (14) are not used for assignment so
96          * mask these and other higher bits.
97          */
98
99         /* Set higher order bits */
100         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101
102         /* Set enumuration device number and broadcast device number */
103         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105
106         /* Set group device numbers and master device number */
107         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110
111         /*
112          * SDW is an enumerable bus, but devices can be powered off. So,
113          * they won't be able to report as present.
114          *
115          * Create Slave devices based on Slaves described in
116          * the respective firmware (ACPI/DT)
117          */
118         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119                 ret = sdw_acpi_find_slaves(bus);
120         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121                 ret = sdw_of_find_slaves(bus);
122         else
123                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
124
125         if (ret < 0) {
126                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127                 return ret;
128         }
129
130         /*
131          * Initialize clock values based on Master properties. The max
132          * frequency is read from max_clk_freq property. Current assumption
133          * is that the bus will start at highest clock frequency when
134          * powered on.
135          *
136          * Default active bank will be 0 as out of reset the Slaves have
137          * to start with bank 0 (Table 40 of Spec)
138          */
139         prop = &bus->prop;
140         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141         bus->params.curr_dr_freq = bus->params.max_dr_freq;
142         bus->params.curr_bank = SDW_BANK0;
143         bus->params.next_bank = SDW_BANK1;
144
145         return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148
149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151         struct sdw_slave *slave = dev_to_sdw_dev(dev);
152         struct sdw_bus *bus = slave->bus;
153
154         pm_runtime_disable(dev);
155
156         sdw_slave_debugfs_exit(slave);
157
158         mutex_lock(&bus->bus_lock);
159
160         if (slave->dev_num) { /* clear dev_num if assigned */
161                 clear_bit(slave->dev_num, bus->assigned);
162                 if (bus->dev_num_ida_min)
163                         ida_free(&sdw_peripheral_ida, slave->dev_num);
164         }
165         list_del_init(&slave->node);
166         mutex_unlock(&bus->bus_lock);
167
168         device_unregister(dev);
169         return 0;
170 }
171
172 /**
173  * sdw_bus_master_delete() - delete the bus master instance
174  * @bus: bus to be deleted
175  *
176  * Remove the instance, delete the child devices.
177  */
178 void sdw_bus_master_delete(struct sdw_bus *bus)
179 {
180         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181         sdw_master_device_del(bus);
182
183         sdw_bus_debugfs_exit(bus);
184         ida_free(&sdw_bus_ida, bus->id);
185 }
186 EXPORT_SYMBOL(sdw_bus_master_delete);
187
188 /*
189  * SDW IO Calls
190  */
191
192 static inline int find_response_code(enum sdw_command_response resp)
193 {
194         switch (resp) {
195         case SDW_CMD_OK:
196                 return 0;
197
198         case SDW_CMD_IGNORED:
199                 return -ENODATA;
200
201         case SDW_CMD_TIMEOUT:
202                 return -ETIMEDOUT;
203
204         default:
205                 return -EIO;
206         }
207 }
208
209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210 {
211         int retry = bus->prop.err_threshold;
212         enum sdw_command_response resp;
213         int ret = 0, i;
214
215         for (i = 0; i <= retry; i++) {
216                 resp = bus->ops->xfer_msg(bus, msg);
217                 ret = find_response_code(resp);
218
219                 /* if cmd is ok or ignored return */
220                 if (ret == 0 || ret == -ENODATA)
221                         return ret;
222         }
223
224         return ret;
225 }
226
227 static inline int do_transfer_defer(struct sdw_bus *bus,
228                                     struct sdw_msg *msg)
229 {
230         struct sdw_defer *defer = &bus->defer_msg;
231         int retry = bus->prop.err_threshold;
232         enum sdw_command_response resp;
233         int ret = 0, i;
234
235         defer->msg = msg;
236         defer->length = msg->len;
237         init_completion(&defer->complete);
238
239         for (i = 0; i <= retry; i++) {
240                 resp = bus->ops->xfer_msg_defer(bus);
241                 ret = find_response_code(resp);
242                 /* if cmd is ok or ignored return */
243                 if (ret == 0 || ret == -ENODATA)
244                         return ret;
245         }
246
247         return ret;
248 }
249
250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
251 {
252         int ret;
253
254         ret = do_transfer(bus, msg);
255         if (ret != 0 && ret != -ENODATA)
256                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
257                         msg->dev_num, ret,
258                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
259                         msg->addr, msg->len);
260
261         return ret;
262 }
263
264 /**
265  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
266  * @bus: SDW bus
267  * @msg: SDW message to be xfered
268  */
269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
270 {
271         int ret;
272
273         mutex_lock(&bus->msg_lock);
274
275         ret = sdw_transfer_unlocked(bus, msg);
276
277         mutex_unlock(&bus->msg_lock);
278
279         return ret;
280 }
281
282 /**
283  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
284  * @bus: SDW bus
285  * @sync_delay: Delay before reading status
286  */
287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
288 {
289         u32 status;
290
291         if (!bus->ops->read_ping_status)
292                 return;
293
294         /*
295          * wait for peripheral to sync if desired. 10-15ms should be more than
296          * enough in most cases.
297          */
298         if (sync_delay)
299                 usleep_range(10000, 15000);
300
301         mutex_lock(&bus->msg_lock);
302
303         status = bus->ops->read_ping_status(bus);
304
305         mutex_unlock(&bus->msg_lock);
306
307         if (!status)
308                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
309         else
310                 dev_dbg(bus->dev, "PING status: %#x\n", status);
311 }
312 EXPORT_SYMBOL(sdw_show_ping_status);
313
314 /**
315  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
316  * @bus: SDW bus
317  * @msg: SDW message to be xfered
318  *
319  * Caller needs to hold the msg_lock lock while calling this
320  */
321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
322 {
323         int ret;
324
325         if (!bus->ops->xfer_msg_defer)
326                 return -ENOTSUPP;
327
328         ret = do_transfer_defer(bus, msg);
329         if (ret != 0 && ret != -ENODATA)
330                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
331                         msg->dev_num, ret);
332
333         return ret;
334 }
335
336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
337                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
338 {
339         memset(msg, 0, sizeof(*msg));
340         msg->addr = addr; /* addr is 16 bit and truncated here */
341         msg->len = count;
342         msg->dev_num = dev_num;
343         msg->flags = flags;
344         msg->buf = buf;
345
346         if (addr < SDW_REG_NO_PAGE) /* no paging area */
347                 return 0;
348
349         if (addr >= SDW_REG_MAX) { /* illegal addr */
350                 pr_err("SDW: Invalid address %x passed\n", addr);
351                 return -EINVAL;
352         }
353
354         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
355                 if (slave && !slave->prop.paging_support)
356                         return 0;
357                 /* no need for else as that will fall-through to paging */
358         }
359
360         /* paging mandatory */
361         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
362                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
363                 return -EINVAL;
364         }
365
366         if (!slave) {
367                 pr_err("SDW: No slave for paging addr\n");
368                 return -EINVAL;
369         }
370
371         if (!slave->prop.paging_support) {
372                 dev_err(&slave->dev,
373                         "address %x needs paging but no support\n", addr);
374                 return -EINVAL;
375         }
376
377         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
378         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
379         msg->addr |= BIT(15);
380         msg->page = true;
381
382         return 0;
383 }
384
385 /*
386  * Read/Write IO functions.
387  */
388
389 /**
390  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
391  * @slave: SDW Slave
392  * @addr: Register address
393  * @count: length
394  * @val: Buffer for values to be read
395  */
396 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
397 {
398         struct sdw_msg msg;
399         int ret;
400
401         ret = sdw_fill_msg(&msg, slave, addr, count,
402                            slave->dev_num, SDW_MSG_FLAG_READ, val);
403         if (ret < 0)
404                 return ret;
405
406         ret = sdw_transfer(slave->bus, &msg);
407         if (slave->is_mockup_device)
408                 ret = 0;
409         return ret;
410 }
411 EXPORT_SYMBOL(sdw_nread_no_pm);
412
413 /**
414  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
415  * @slave: SDW Slave
416  * @addr: Register address
417  * @count: length
418  * @val: Buffer for values to be written
419  */
420 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
421 {
422         struct sdw_msg msg;
423         int ret;
424
425         ret = sdw_fill_msg(&msg, slave, addr, count,
426                            slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
427         if (ret < 0)
428                 return ret;
429
430         ret = sdw_transfer(slave->bus, &msg);
431         if (slave->is_mockup_device)
432                 ret = 0;
433         return ret;
434 }
435 EXPORT_SYMBOL(sdw_nwrite_no_pm);
436
437 /**
438  * sdw_write_no_pm() - Write a SDW Slave register with no PM
439  * @slave: SDW Slave
440  * @addr: Register address
441  * @value: Register value
442  */
443 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
444 {
445         return sdw_nwrite_no_pm(slave, addr, 1, &value);
446 }
447 EXPORT_SYMBOL(sdw_write_no_pm);
448
449 static int
450 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
451 {
452         struct sdw_msg msg;
453         u8 buf;
454         int ret;
455
456         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
457                            SDW_MSG_FLAG_READ, &buf);
458         if (ret < 0)
459                 return ret;
460
461         ret = sdw_transfer(bus, &msg);
462         if (ret < 0)
463                 return ret;
464
465         return buf;
466 }
467
468 static int
469 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
470 {
471         struct sdw_msg msg;
472         int ret;
473
474         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
475                            SDW_MSG_FLAG_WRITE, &value);
476         if (ret < 0)
477                 return ret;
478
479         return sdw_transfer(bus, &msg);
480 }
481
482 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
483 {
484         struct sdw_msg msg;
485         u8 buf;
486         int ret;
487
488         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
489                            SDW_MSG_FLAG_READ, &buf);
490         if (ret < 0)
491                 return ret;
492
493         ret = sdw_transfer_unlocked(bus, &msg);
494         if (ret < 0)
495                 return ret;
496
497         return buf;
498 }
499 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
500
501 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
502 {
503         struct sdw_msg msg;
504         int ret;
505
506         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
507                            SDW_MSG_FLAG_WRITE, &value);
508         if (ret < 0)
509                 return ret;
510
511         return sdw_transfer_unlocked(bus, &msg);
512 }
513 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
514
515 /**
516  * sdw_read_no_pm() - Read a SDW Slave register with no PM
517  * @slave: SDW Slave
518  * @addr: Register address
519  */
520 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
521 {
522         u8 buf;
523         int ret;
524
525         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
526         if (ret < 0)
527                 return ret;
528         else
529                 return buf;
530 }
531 EXPORT_SYMBOL(sdw_read_no_pm);
532
533 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
534 {
535         int tmp;
536
537         tmp = sdw_read_no_pm(slave, addr);
538         if (tmp < 0)
539                 return tmp;
540
541         tmp = (tmp & ~mask) | val;
542         return sdw_write_no_pm(slave, addr, tmp);
543 }
544 EXPORT_SYMBOL(sdw_update_no_pm);
545
546 /* Read-Modify-Write Slave register */
547 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
548 {
549         int tmp;
550
551         tmp = sdw_read(slave, addr);
552         if (tmp < 0)
553                 return tmp;
554
555         tmp = (tmp & ~mask) | val;
556         return sdw_write(slave, addr, tmp);
557 }
558 EXPORT_SYMBOL(sdw_update);
559
560 /**
561  * sdw_nread() - Read "n" contiguous SDW Slave registers
562  * @slave: SDW Slave
563  * @addr: Register address
564  * @count: length
565  * @val: Buffer for values to be read
566  *
567  * This version of the function will take a PM reference to the slave
568  * device.
569  */
570 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
571 {
572         int ret;
573
574         ret = pm_runtime_resume_and_get(&slave->dev);
575         if (ret < 0 && ret != -EACCES)
576                 return ret;
577
578         ret = sdw_nread_no_pm(slave, addr, count, val);
579
580         pm_runtime_mark_last_busy(&slave->dev);
581         pm_runtime_put(&slave->dev);
582
583         return ret;
584 }
585 EXPORT_SYMBOL(sdw_nread);
586
587 /**
588  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
589  * @slave: SDW Slave
590  * @addr: Register address
591  * @count: length
592  * @val: Buffer for values to be written
593  *
594  * This version of the function will take a PM reference to the slave
595  * device.
596  */
597 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
598 {
599         int ret;
600
601         ret = pm_runtime_resume_and_get(&slave->dev);
602         if (ret < 0 && ret != -EACCES)
603                 return ret;
604
605         ret = sdw_nwrite_no_pm(slave, addr, count, val);
606
607         pm_runtime_mark_last_busy(&slave->dev);
608         pm_runtime_put(&slave->dev);
609
610         return ret;
611 }
612 EXPORT_SYMBOL(sdw_nwrite);
613
614 /**
615  * sdw_read() - Read a SDW Slave register
616  * @slave: SDW Slave
617  * @addr: Register address
618  *
619  * This version of the function will take a PM reference to the slave
620  * device.
621  */
622 int sdw_read(struct sdw_slave *slave, u32 addr)
623 {
624         u8 buf;
625         int ret;
626
627         ret = sdw_nread(slave, addr, 1, &buf);
628         if (ret < 0)
629                 return ret;
630
631         return buf;
632 }
633 EXPORT_SYMBOL(sdw_read);
634
635 /**
636  * sdw_write() - Write a SDW Slave register
637  * @slave: SDW Slave
638  * @addr: Register address
639  * @value: Register value
640  *
641  * This version of the function will take a PM reference to the slave
642  * device.
643  */
644 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
645 {
646         return sdw_nwrite(slave, addr, 1, &value);
647 }
648 EXPORT_SYMBOL(sdw_write);
649
650 /*
651  * SDW alert handling
652  */
653
654 /* called with bus_lock held */
655 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
656 {
657         struct sdw_slave *slave;
658
659         list_for_each_entry(slave, &bus->slaves, node) {
660                 if (slave->dev_num == i)
661                         return slave;
662         }
663
664         return NULL;
665 }
666
667 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
668 {
669         if (slave->id.mfg_id != id.mfg_id ||
670             slave->id.part_id != id.part_id ||
671             slave->id.class_id != id.class_id ||
672             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
673              slave->id.unique_id != id.unique_id))
674                 return -ENODEV;
675
676         return 0;
677 }
678 EXPORT_SYMBOL(sdw_compare_devid);
679
680 /* called with bus_lock held */
681 static int sdw_get_device_num(struct sdw_slave *slave)
682 {
683         int bit;
684
685         if (slave->bus->dev_num_ida_min) {
686                 bit = ida_alloc_range(&sdw_peripheral_ida,
687                                       slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
688                                       GFP_KERNEL);
689                 if (bit < 0)
690                         goto err;
691         } else {
692                 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
693                 if (bit == SDW_MAX_DEVICES) {
694                         bit = -ENODEV;
695                         goto err;
696                 }
697         }
698
699         /*
700          * Do not update dev_num in Slave data structure here,
701          * Update once program dev_num is successful
702          */
703         set_bit(bit, slave->bus->assigned);
704
705 err:
706         return bit;
707 }
708
709 static int sdw_assign_device_num(struct sdw_slave *slave)
710 {
711         struct sdw_bus *bus = slave->bus;
712         int ret, dev_num;
713         bool new_device = false;
714
715         /* check first if device number is assigned, if so reuse that */
716         if (!slave->dev_num) {
717                 if (!slave->dev_num_sticky) {
718                         mutex_lock(&slave->bus->bus_lock);
719                         dev_num = sdw_get_device_num(slave);
720                         mutex_unlock(&slave->bus->bus_lock);
721                         if (dev_num < 0) {
722                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
723                                         dev_num);
724                                 return dev_num;
725                         }
726                         slave->dev_num = dev_num;
727                         slave->dev_num_sticky = dev_num;
728                         new_device = true;
729                 } else {
730                         slave->dev_num = slave->dev_num_sticky;
731                 }
732         }
733
734         if (!new_device)
735                 dev_dbg(bus->dev,
736                         "Slave already registered, reusing dev_num:%d\n",
737                         slave->dev_num);
738
739         /* Clear the slave->dev_num to transfer message on device 0 */
740         dev_num = slave->dev_num;
741         slave->dev_num = 0;
742
743         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
744         if (ret < 0) {
745                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
746                         dev_num, ret);
747                 return ret;
748         }
749
750         /* After xfer of msg, restore dev_num */
751         slave->dev_num = slave->dev_num_sticky;
752
753         return 0;
754 }
755
756 void sdw_extract_slave_id(struct sdw_bus *bus,
757                           u64 addr, struct sdw_slave_id *id)
758 {
759         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
760
761         id->sdw_version = SDW_VERSION(addr);
762         id->unique_id = SDW_UNIQUE_ID(addr);
763         id->mfg_id = SDW_MFG_ID(addr);
764         id->part_id = SDW_PART_ID(addr);
765         id->class_id = SDW_CLASS_ID(addr);
766
767         dev_dbg(bus->dev,
768                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
769                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
770 }
771 EXPORT_SYMBOL(sdw_extract_slave_id);
772
773 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
774 {
775         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
776         struct sdw_slave *slave, *_s;
777         struct sdw_slave_id id;
778         struct sdw_msg msg;
779         bool found;
780         int count = 0, ret;
781         u64 addr;
782
783         *programmed = false;
784
785         /* No Slave, so use raw xfer api */
786         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
787                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
788         if (ret < 0)
789                 return ret;
790
791         do {
792                 ret = sdw_transfer(bus, &msg);
793                 if (ret == -ENODATA) { /* end of device id reads */
794                         dev_dbg(bus->dev, "No more devices to enumerate\n");
795                         ret = 0;
796                         break;
797                 }
798                 if (ret < 0) {
799                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
800                         break;
801                 }
802
803                 /*
804                  * Construct the addr and extract. Cast the higher shift
805                  * bits to avoid truncation due to size limit.
806                  */
807                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
808                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
809                         ((u64)buf[0] << 40);
810
811                 sdw_extract_slave_id(bus, addr, &id);
812
813                 found = false;
814                 /* Now compare with entries */
815                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
816                         if (sdw_compare_devid(slave, id) == 0) {
817                                 found = true;
818
819                                 /*
820                                  * To prevent skipping state-machine stages don't
821                                  * program a device until we've seen it UNATTACH.
822                                  * Must return here because no other device on #0
823                                  * can be detected until this one has been
824                                  * assigned a device ID.
825                                  */
826                                 if (slave->status != SDW_SLAVE_UNATTACHED)
827                                         return 0;
828
829                                 /*
830                                  * Assign a new dev_num to this Slave and
831                                  * not mark it present. It will be marked
832                                  * present after it reports ATTACHED on new
833                                  * dev_num
834                                  */
835                                 ret = sdw_assign_device_num(slave);
836                                 if (ret < 0) {
837                                         dev_err(bus->dev,
838                                                 "Assign dev_num failed:%d\n",
839                                                 ret);
840                                         return ret;
841                                 }
842
843                                 *programmed = true;
844
845                                 break;
846                         }
847                 }
848
849                 if (!found) {
850                         /* TODO: Park this device in Group 13 */
851
852                         /*
853                          * add Slave device even if there is no platform
854                          * firmware description. There will be no driver probe
855                          * but the user/integration will be able to see the
856                          * device, enumeration status and device number in sysfs
857                          */
858                         sdw_slave_add(bus, &id, NULL);
859
860                         dev_err(bus->dev, "Slave Entry not found\n");
861                 }
862
863                 count++;
864
865                 /*
866                  * Check till error out or retry (count) exhausts.
867                  * Device can drop off and rejoin during enumeration
868                  * so count till twice the bound.
869                  */
870
871         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
872
873         return ret;
874 }
875
876 static void sdw_modify_slave_status(struct sdw_slave *slave,
877                                     enum sdw_slave_status status)
878 {
879         struct sdw_bus *bus = slave->bus;
880
881         mutex_lock(&bus->bus_lock);
882
883         dev_vdbg(bus->dev,
884                  "changing status slave %d status %d new status %d\n",
885                  slave->dev_num, slave->status, status);
886
887         if (status == SDW_SLAVE_UNATTACHED) {
888                 dev_dbg(&slave->dev,
889                         "initializing enumeration and init completion for Slave %d\n",
890                         slave->dev_num);
891
892                 init_completion(&slave->enumeration_complete);
893                 init_completion(&slave->initialization_complete);
894
895         } else if ((status == SDW_SLAVE_ATTACHED) &&
896                    (slave->status == SDW_SLAVE_UNATTACHED)) {
897                 dev_dbg(&slave->dev,
898                         "signaling enumeration completion for Slave %d\n",
899                         slave->dev_num);
900
901                 complete(&slave->enumeration_complete);
902         }
903         slave->status = status;
904         mutex_unlock(&bus->bus_lock);
905 }
906
907 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
908                                        enum sdw_clk_stop_mode mode,
909                                        enum sdw_clk_stop_type type)
910 {
911         int ret = 0;
912
913         mutex_lock(&slave->sdw_dev_lock);
914
915         if (slave->probed)  {
916                 struct device *dev = &slave->dev;
917                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
918
919                 if (drv->ops && drv->ops->clk_stop)
920                         ret = drv->ops->clk_stop(slave, mode, type);
921         }
922
923         mutex_unlock(&slave->sdw_dev_lock);
924
925         return ret;
926 }
927
928 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
929                                       enum sdw_clk_stop_mode mode,
930                                       bool prepare)
931 {
932         bool wake_en;
933         u32 val = 0;
934         int ret;
935
936         wake_en = slave->prop.wake_capable;
937
938         if (prepare) {
939                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
940
941                 if (mode == SDW_CLK_STOP_MODE1)
942                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
943
944                 if (wake_en)
945                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
946         } else {
947                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
948                 if (ret < 0) {
949                         if (ret != -ENODATA)
950                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
951                         return ret;
952                 }
953                 val = ret;
954                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
955         }
956
957         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
958
959         if (ret < 0 && ret != -ENODATA)
960                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
961
962         return ret;
963 }
964
965 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
966 {
967         int retry = bus->clk_stop_timeout;
968         int val;
969
970         do {
971                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
972                 if (val < 0) {
973                         if (val != -ENODATA)
974                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
975                         return val;
976                 }
977                 val &= SDW_SCP_STAT_CLK_STP_NF;
978                 if (!val) {
979                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
980                                 dev_num);
981                         return 0;
982                 }
983
984                 usleep_range(1000, 1500);
985                 retry--;
986         } while (retry);
987
988         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
989                 dev_num);
990
991         return -ETIMEDOUT;
992 }
993
994 /**
995  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
996  *
997  * @bus: SDW bus instance
998  *
999  * Query Slave for clock stop mode and prepare for that mode.
1000  */
1001 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1002 {
1003         bool simple_clk_stop = true;
1004         struct sdw_slave *slave;
1005         bool is_slave = false;
1006         int ret = 0;
1007
1008         /*
1009          * In order to save on transition time, prepare
1010          * each Slave and then wait for all Slave(s) to be
1011          * prepared for clock stop.
1012          * If one of the Slave devices has lost sync and
1013          * replies with Command Ignored/-ENODATA, we continue
1014          * the loop
1015          */
1016         list_for_each_entry(slave, &bus->slaves, node) {
1017                 if (!slave->dev_num)
1018                         continue;
1019
1020                 if (slave->status != SDW_SLAVE_ATTACHED &&
1021                     slave->status != SDW_SLAVE_ALERT)
1022                         continue;
1023
1024                 /* Identify if Slave(s) are available on Bus */
1025                 is_slave = true;
1026
1027                 ret = sdw_slave_clk_stop_callback(slave,
1028                                                   SDW_CLK_STOP_MODE0,
1029                                                   SDW_CLK_PRE_PREPARE);
1030                 if (ret < 0 && ret != -ENODATA) {
1031                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1032                         return ret;
1033                 }
1034
1035                 /* Only prepare a Slave device if needed */
1036                 if (!slave->prop.simple_clk_stop_capable) {
1037                         simple_clk_stop = false;
1038
1039                         ret = sdw_slave_clk_stop_prepare(slave,
1040                                                          SDW_CLK_STOP_MODE0,
1041                                                          true);
1042                         if (ret < 0 && ret != -ENODATA) {
1043                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1044                                 return ret;
1045                         }
1046                 }
1047         }
1048
1049         /* Skip remaining clock stop preparation if no Slave is attached */
1050         if (!is_slave)
1051                 return 0;
1052
1053         /*
1054          * Don't wait for all Slaves to be ready if they follow the simple
1055          * state machine
1056          */
1057         if (!simple_clk_stop) {
1058                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1059                                                        SDW_BROADCAST_DEV_NUM);
1060                 /*
1061                  * if there are no Slave devices present and the reply is
1062                  * Command_Ignored/-ENODATA, we don't need to continue with the
1063                  * flow and can just return here. The error code is not modified
1064                  * and its handling left as an exercise for the caller.
1065                  */
1066                 if (ret < 0)
1067                         return ret;
1068         }
1069
1070         /* Inform slaves that prep is done */
1071         list_for_each_entry(slave, &bus->slaves, node) {
1072                 if (!slave->dev_num)
1073                         continue;
1074
1075                 if (slave->status != SDW_SLAVE_ATTACHED &&
1076                     slave->status != SDW_SLAVE_ALERT)
1077                         continue;
1078
1079                 ret = sdw_slave_clk_stop_callback(slave,
1080                                                   SDW_CLK_STOP_MODE0,
1081                                                   SDW_CLK_POST_PREPARE);
1082
1083                 if (ret < 0 && ret != -ENODATA) {
1084                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1085                         return ret;
1086                 }
1087         }
1088
1089         return 0;
1090 }
1091 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1092
1093 /**
1094  * sdw_bus_clk_stop: stop bus clock
1095  *
1096  * @bus: SDW bus instance
1097  *
1098  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1099  * write to SCP_CTRL register.
1100  */
1101 int sdw_bus_clk_stop(struct sdw_bus *bus)
1102 {
1103         int ret;
1104
1105         /*
1106          * broadcast clock stop now, attached Slaves will ACK this,
1107          * unattached will ignore
1108          */
1109         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1110                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1111         if (ret < 0) {
1112                 if (ret != -ENODATA)
1113                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1114                 return ret;
1115         }
1116
1117         return 0;
1118 }
1119 EXPORT_SYMBOL(sdw_bus_clk_stop);
1120
1121 /**
1122  * sdw_bus_exit_clk_stop: Exit clock stop mode
1123  *
1124  * @bus: SDW bus instance
1125  *
1126  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1127  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1128  * back.
1129  */
1130 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1131 {
1132         bool simple_clk_stop = true;
1133         struct sdw_slave *slave;
1134         bool is_slave = false;
1135         int ret;
1136
1137         /*
1138          * In order to save on transition time, de-prepare
1139          * each Slave and then wait for all Slave(s) to be
1140          * de-prepared after clock resume.
1141          */
1142         list_for_each_entry(slave, &bus->slaves, node) {
1143                 if (!slave->dev_num)
1144                         continue;
1145
1146                 if (slave->status != SDW_SLAVE_ATTACHED &&
1147                     slave->status != SDW_SLAVE_ALERT)
1148                         continue;
1149
1150                 /* Identify if Slave(s) are available on Bus */
1151                 is_slave = true;
1152
1153                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1154                                                   SDW_CLK_PRE_DEPREPARE);
1155                 if (ret < 0)
1156                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1157
1158                 /* Only de-prepare a Slave device if needed */
1159                 if (!slave->prop.simple_clk_stop_capable) {
1160                         simple_clk_stop = false;
1161
1162                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1163                                                          false);
1164
1165                         if (ret < 0)
1166                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1167                 }
1168         }
1169
1170         /* Skip remaining clock stop de-preparation if no Slave is attached */
1171         if (!is_slave)
1172                 return 0;
1173
1174         /*
1175          * Don't wait for all Slaves to be ready if they follow the simple
1176          * state machine
1177          */
1178         if (!simple_clk_stop) {
1179                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1180                 if (ret < 0)
1181                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1182         }
1183
1184         list_for_each_entry(slave, &bus->slaves, node) {
1185                 if (!slave->dev_num)
1186                         continue;
1187
1188                 if (slave->status != SDW_SLAVE_ATTACHED &&
1189                     slave->status != SDW_SLAVE_ALERT)
1190                         continue;
1191
1192                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1193                                                   SDW_CLK_POST_DEPREPARE);
1194                 if (ret < 0)
1195                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1196         }
1197
1198         return 0;
1199 }
1200 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1201
1202 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1203                            int port, bool enable, int mask)
1204 {
1205         u32 addr;
1206         int ret;
1207         u8 val = 0;
1208
1209         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1210                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1211                         enable ? "on" : "off");
1212                 mask |= SDW_DPN_INT_TEST_FAIL;
1213         }
1214
1215         addr = SDW_DPN_INTMASK(port);
1216
1217         /* Set/Clear port ready interrupt mask */
1218         if (enable) {
1219                 val |= mask;
1220                 val |= SDW_DPN_INT_PORT_READY;
1221         } else {
1222                 val &= ~(mask);
1223                 val &= ~SDW_DPN_INT_PORT_READY;
1224         }
1225
1226         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1227         if (ret < 0)
1228                 dev_err(&slave->dev,
1229                         "SDW_DPN_INTMASK write failed:%d\n", val);
1230
1231         return ret;
1232 }
1233
1234 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1235 {
1236         u32 mclk_freq = slave->bus->prop.mclk_freq;
1237         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1238         unsigned int scale;
1239         u8 scale_index;
1240         u8 base;
1241         int ret;
1242
1243         /*
1244          * frequency base and scale registers are required for SDCA
1245          * devices. They may also be used for 1.2+/non-SDCA devices.
1246          * Driver can set the property, we will need a DisCo property
1247          * to discover this case from platform firmware.
1248          */
1249         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1250                 return 0;
1251
1252         if (!mclk_freq) {
1253                 dev_err(&slave->dev,
1254                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1255                 return -EINVAL;
1256         }
1257
1258         /*
1259          * map base frequency using Table 89 of SoundWire 1.2 spec.
1260          * The order of the tests just follows the specification, this
1261          * is not a selection between possible values or a search for
1262          * the best value but just a mapping.  Only one case per platform
1263          * is relevant.
1264          * Some BIOS have inconsistent values for mclk_freq but a
1265          * correct root so we force the mclk_freq to avoid variations.
1266          */
1267         if (!(19200000 % mclk_freq)) {
1268                 mclk_freq = 19200000;
1269                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1270         } else if (!(24000000 % mclk_freq)) {
1271                 mclk_freq = 24000000;
1272                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1273         } else if (!(24576000 % mclk_freq)) {
1274                 mclk_freq = 24576000;
1275                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1276         } else if (!(22579200 % mclk_freq)) {
1277                 mclk_freq = 22579200;
1278                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1279         } else if (!(32000000 % mclk_freq)) {
1280                 mclk_freq = 32000000;
1281                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1282         } else {
1283                 dev_err(&slave->dev,
1284                         "Unsupported clock base, mclk %d\n",
1285                         mclk_freq);
1286                 return -EINVAL;
1287         }
1288
1289         if (mclk_freq % curr_freq) {
1290                 dev_err(&slave->dev,
1291                         "mclk %d is not multiple of bus curr_freq %d\n",
1292                         mclk_freq, curr_freq);
1293                 return -EINVAL;
1294         }
1295
1296         scale = mclk_freq / curr_freq;
1297
1298         /*
1299          * map scale to Table 90 of SoundWire 1.2 spec - and check
1300          * that the scale is a power of two and maximum 64
1301          */
1302         scale_index = ilog2(scale);
1303
1304         if (BIT(scale_index) != scale || scale_index > 6) {
1305                 dev_err(&slave->dev,
1306                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1307                         scale, mclk_freq, curr_freq);
1308                 return -EINVAL;
1309         }
1310         scale_index++;
1311
1312         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1313         if (ret < 0) {
1314                 dev_err(&slave->dev,
1315                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1316                 return ret;
1317         }
1318
1319         /* initialize scale for both banks */
1320         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1321         if (ret < 0) {
1322                 dev_err(&slave->dev,
1323                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1324                 return ret;
1325         }
1326         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1327         if (ret < 0)
1328                 dev_err(&slave->dev,
1329                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1330
1331         dev_dbg(&slave->dev,
1332                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1333                 base, scale_index, mclk_freq, curr_freq);
1334
1335         return ret;
1336 }
1337
1338 static int sdw_initialize_slave(struct sdw_slave *slave)
1339 {
1340         struct sdw_slave_prop *prop = &slave->prop;
1341         int status;
1342         int ret;
1343         u8 val;
1344
1345         ret = sdw_slave_set_frequency(slave);
1346         if (ret < 0)
1347                 return ret;
1348
1349         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1350                 /* Clear bus clash interrupt before enabling interrupt mask */
1351                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1352                 if (status < 0) {
1353                         dev_err(&slave->dev,
1354                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1355                         return status;
1356                 }
1357                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1358                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1359                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1360                         if (ret < 0) {
1361                                 dev_err(&slave->dev,
1362                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1363                                 return ret;
1364                         }
1365                 }
1366         }
1367         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1368             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1369                 /* Clear parity interrupt before enabling interrupt mask */
1370                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1371                 if (status < 0) {
1372                         dev_err(&slave->dev,
1373                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1374                         return status;
1375                 }
1376                 if (status & SDW_SCP_INT1_PARITY) {
1377                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1378                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1379                         if (ret < 0) {
1380                                 dev_err(&slave->dev,
1381                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1382                                 return ret;
1383                         }
1384                 }
1385         }
1386
1387         /*
1388          * Set SCP_INT1_MASK register, typically bus clash and
1389          * implementation-defined interrupt mask. The Parity detection
1390          * may not always be correct on startup so its use is
1391          * device-dependent, it might e.g. only be enabled in
1392          * steady-state after a couple of frames.
1393          */
1394         val = slave->prop.scp_int1_mask;
1395
1396         /* Enable SCP interrupts */
1397         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1398         if (ret < 0) {
1399                 dev_err(&slave->dev,
1400                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1401                 return ret;
1402         }
1403
1404         /* No need to continue if DP0 is not present */
1405         if (!slave->prop.dp0_prop)
1406                 return 0;
1407
1408         /* Enable DP0 interrupts */
1409         val = prop->dp0_prop->imp_def_interrupts;
1410         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1411
1412         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1413         if (ret < 0)
1414                 dev_err(&slave->dev,
1415                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1416         return ret;
1417 }
1418
1419 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1420 {
1421         u8 clear, impl_int_mask;
1422         int status, status2, ret, count = 0;
1423
1424         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1425         if (status < 0) {
1426                 dev_err(&slave->dev,
1427                         "SDW_DP0_INT read failed:%d\n", status);
1428                 return status;
1429         }
1430
1431         do {
1432                 clear = status & ~SDW_DP0_INTERRUPTS;
1433
1434                 if (status & SDW_DP0_INT_TEST_FAIL) {
1435                         dev_err(&slave->dev, "Test fail for port 0\n");
1436                         clear |= SDW_DP0_INT_TEST_FAIL;
1437                 }
1438
1439                 /*
1440                  * Assumption: PORT_READY interrupt will be received only for
1441                  * ports implementing Channel Prepare state machine (CP_SM)
1442                  */
1443
1444                 if (status & SDW_DP0_INT_PORT_READY) {
1445                         complete(&slave->port_ready[0]);
1446                         clear |= SDW_DP0_INT_PORT_READY;
1447                 }
1448
1449                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1450                         dev_err(&slave->dev, "BRA failed\n");
1451                         clear |= SDW_DP0_INT_BRA_FAILURE;
1452                 }
1453
1454                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1455                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1456
1457                 if (status & impl_int_mask) {
1458                         clear |= impl_int_mask;
1459                         *slave_status = clear;
1460                 }
1461
1462                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1463                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1464                 if (ret < 0) {
1465                         dev_err(&slave->dev,
1466                                 "SDW_DP0_INT write failed:%d\n", ret);
1467                         return ret;
1468                 }
1469
1470                 /* Read DP0 interrupt again */
1471                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1472                 if (status2 < 0) {
1473                         dev_err(&slave->dev,
1474                                 "SDW_DP0_INT read failed:%d\n", status2);
1475                         return status2;
1476                 }
1477                 /* filter to limit loop to interrupts identified in the first status read */
1478                 status &= status2;
1479
1480                 count++;
1481
1482                 /* we can get alerts while processing so keep retrying */
1483         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1484
1485         if (count == SDW_READ_INTR_CLEAR_RETRY)
1486                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1487
1488         return ret;
1489 }
1490
1491 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1492                                      int port, u8 *slave_status)
1493 {
1494         u8 clear, impl_int_mask;
1495         int status, status2, ret, count = 0;
1496         u32 addr;
1497
1498         if (port == 0)
1499                 return sdw_handle_dp0_interrupt(slave, slave_status);
1500
1501         addr = SDW_DPN_INT(port);
1502         status = sdw_read_no_pm(slave, addr);
1503         if (status < 0) {
1504                 dev_err(&slave->dev,
1505                         "SDW_DPN_INT read failed:%d\n", status);
1506
1507                 return status;
1508         }
1509
1510         do {
1511                 clear = status & ~SDW_DPN_INTERRUPTS;
1512
1513                 if (status & SDW_DPN_INT_TEST_FAIL) {
1514                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1515                         clear |= SDW_DPN_INT_TEST_FAIL;
1516                 }
1517
1518                 /*
1519                  * Assumption: PORT_READY interrupt will be received only
1520                  * for ports implementing CP_SM.
1521                  */
1522                 if (status & SDW_DPN_INT_PORT_READY) {
1523                         complete(&slave->port_ready[port]);
1524                         clear |= SDW_DPN_INT_PORT_READY;
1525                 }
1526
1527                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1528                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1529
1530                 if (status & impl_int_mask) {
1531                         clear |= impl_int_mask;
1532                         *slave_status = clear;
1533                 }
1534
1535                 /* clear the interrupt but don't touch reserved fields */
1536                 ret = sdw_write_no_pm(slave, addr, clear);
1537                 if (ret < 0) {
1538                         dev_err(&slave->dev,
1539                                 "SDW_DPN_INT write failed:%d\n", ret);
1540                         return ret;
1541                 }
1542
1543                 /* Read DPN interrupt again */
1544                 status2 = sdw_read_no_pm(slave, addr);
1545                 if (status2 < 0) {
1546                         dev_err(&slave->dev,
1547                                 "SDW_DPN_INT read failed:%d\n", status2);
1548                         return status2;
1549                 }
1550                 /* filter to limit loop to interrupts identified in the first status read */
1551                 status &= status2;
1552
1553                 count++;
1554
1555                 /* we can get alerts while processing so keep retrying */
1556         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1557
1558         if (count == SDW_READ_INTR_CLEAR_RETRY)
1559                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1560
1561         return ret;
1562 }
1563
1564 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1565 {
1566         struct sdw_slave_intr_status slave_intr;
1567         u8 clear = 0, bit, port_status[15] = {0};
1568         int port_num, stat, ret, count = 0;
1569         unsigned long port;
1570         bool slave_notify;
1571         u8 sdca_cascade = 0;
1572         u8 buf, buf2[2], _buf, _buf2[2];
1573         bool parity_check;
1574         bool parity_quirk;
1575
1576         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1577
1578         ret = pm_runtime_resume_and_get(&slave->dev);
1579         if (ret < 0 && ret != -EACCES) {
1580                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1581                 return ret;
1582         }
1583
1584         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1585         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1586         if (ret < 0) {
1587                 dev_err(&slave->dev,
1588                         "SDW_SCP_INT1 read failed:%d\n", ret);
1589                 goto io_err;
1590         }
1591         buf = ret;
1592
1593         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1594         if (ret < 0) {
1595                 dev_err(&slave->dev,
1596                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1597                 goto io_err;
1598         }
1599
1600         if (slave->id.class_id) {
1601                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1602                 if (ret < 0) {
1603                         dev_err(&slave->dev,
1604                                 "SDW_DP0_INT read failed:%d\n", ret);
1605                         goto io_err;
1606                 }
1607                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1608         }
1609
1610         do {
1611                 slave_notify = false;
1612
1613                 /*
1614                  * Check parity, bus clash and Slave (impl defined)
1615                  * interrupt
1616                  */
1617                 if (buf & SDW_SCP_INT1_PARITY) {
1618                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1619                         parity_quirk = !slave->first_interrupt_done &&
1620                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1621
1622                         if (parity_check && !parity_quirk)
1623                                 dev_err(&slave->dev, "Parity error detected\n");
1624                         clear |= SDW_SCP_INT1_PARITY;
1625                 }
1626
1627                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1628                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1629                                 dev_err(&slave->dev, "Bus clash detected\n");
1630                         clear |= SDW_SCP_INT1_BUS_CLASH;
1631                 }
1632
1633                 /*
1634                  * When bus clash or parity errors are detected, such errors
1635                  * are unlikely to be recoverable errors.
1636                  * TODO: In such scenario, reset bus. Make this configurable
1637                  * via sysfs property with bus reset being the default.
1638                  */
1639
1640                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1641                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1642                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1643                                 slave_notify = true;
1644                         }
1645                         clear |= SDW_SCP_INT1_IMPL_DEF;
1646                 }
1647
1648                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1649                 if (sdca_cascade)
1650                         slave_notify = true;
1651
1652                 /* Check port 0 - 3 interrupts */
1653                 port = buf & SDW_SCP_INT1_PORT0_3;
1654
1655                 /* To get port number corresponding to bits, shift it */
1656                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1657                 for_each_set_bit(bit, &port, 8) {
1658                         sdw_handle_port_interrupt(slave, bit,
1659                                                   &port_status[bit]);
1660                 }
1661
1662                 /* Check if cascade 2 interrupt is present */
1663                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1664                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1665                         for_each_set_bit(bit, &port, 8) {
1666                                 /* scp2 ports start from 4 */
1667                                 port_num = bit + 4;
1668                                 sdw_handle_port_interrupt(slave,
1669                                                 port_num,
1670                                                 &port_status[port_num]);
1671                         }
1672                 }
1673
1674                 /* now check last cascade */
1675                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1676                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1677                         for_each_set_bit(bit, &port, 8) {
1678                                 /* scp3 ports start from 11 */
1679                                 port_num = bit + 11;
1680                                 sdw_handle_port_interrupt(slave,
1681                                                 port_num,
1682                                                 &port_status[port_num]);
1683                         }
1684                 }
1685
1686                 /* Update the Slave driver */
1687                 if (slave_notify) {
1688                         mutex_lock(&slave->sdw_dev_lock);
1689
1690                         if (slave->probed) {
1691                                 struct device *dev = &slave->dev;
1692                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1693
1694                                 if (drv->ops && drv->ops->interrupt_callback) {
1695                                         slave_intr.sdca_cascade = sdca_cascade;
1696                                         slave_intr.control_port = clear;
1697                                         memcpy(slave_intr.port, &port_status,
1698                                                sizeof(slave_intr.port));
1699
1700                                         drv->ops->interrupt_callback(slave, &slave_intr);
1701                                 }
1702                         }
1703
1704                         mutex_unlock(&slave->sdw_dev_lock);
1705                 }
1706
1707                 /* Ack interrupt */
1708                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1709                 if (ret < 0) {
1710                         dev_err(&slave->dev,
1711                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1712                         goto io_err;
1713                 }
1714
1715                 /* at this point all initial interrupt sources were handled */
1716                 slave->first_interrupt_done = true;
1717
1718                 /*
1719                  * Read status again to ensure no new interrupts arrived
1720                  * while servicing interrupts.
1721                  */
1722                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1723                 if (ret < 0) {
1724                         dev_err(&slave->dev,
1725                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1726                         goto io_err;
1727                 }
1728                 _buf = ret;
1729
1730                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1731                 if (ret < 0) {
1732                         dev_err(&slave->dev,
1733                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1734                         goto io_err;
1735                 }
1736
1737                 if (slave->id.class_id) {
1738                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1739                         if (ret < 0) {
1740                                 dev_err(&slave->dev,
1741                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1742                                 goto io_err;
1743                         }
1744                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1745                 }
1746
1747                 /*
1748                  * Make sure no interrupts are pending, but filter to limit loop
1749                  * to interrupts identified in the first status read
1750                  */
1751                 buf &= _buf;
1752                 buf2[0] &= _buf2[0];
1753                 buf2[1] &= _buf2[1];
1754                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1755
1756                 /*
1757                  * Exit loop if Slave is continuously in ALERT state even
1758                  * after servicing the interrupt multiple times.
1759                  */
1760                 count++;
1761
1762                 /* we can get alerts while processing so keep retrying */
1763         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1764
1765         if (count == SDW_READ_INTR_CLEAR_RETRY)
1766                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1767
1768 io_err:
1769         pm_runtime_mark_last_busy(&slave->dev);
1770         pm_runtime_put_autosuspend(&slave->dev);
1771
1772         return ret;
1773 }
1774
1775 static int sdw_update_slave_status(struct sdw_slave *slave,
1776                                    enum sdw_slave_status status)
1777 {
1778         int ret = 0;
1779
1780         mutex_lock(&slave->sdw_dev_lock);
1781
1782         if (slave->probed) {
1783                 struct device *dev = &slave->dev;
1784                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1785
1786                 if (drv->ops && drv->ops->update_status)
1787                         ret = drv->ops->update_status(slave, status);
1788         }
1789
1790         mutex_unlock(&slave->sdw_dev_lock);
1791
1792         return ret;
1793 }
1794
1795 /**
1796  * sdw_handle_slave_status() - Handle Slave status
1797  * @bus: SDW bus instance
1798  * @status: Status for all Slave(s)
1799  */
1800 int sdw_handle_slave_status(struct sdw_bus *bus,
1801                             enum sdw_slave_status status[])
1802 {
1803         enum sdw_slave_status prev_status;
1804         struct sdw_slave *slave;
1805         bool attached_initializing, id_programmed;
1806         int i, ret = 0;
1807
1808         /* first check if any Slaves fell off the bus */
1809         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1810                 mutex_lock(&bus->bus_lock);
1811                 if (test_bit(i, bus->assigned) == false) {
1812                         mutex_unlock(&bus->bus_lock);
1813                         continue;
1814                 }
1815                 mutex_unlock(&bus->bus_lock);
1816
1817                 slave = sdw_get_slave(bus, i);
1818                 if (!slave)
1819                         continue;
1820
1821                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1822                     slave->status != SDW_SLAVE_UNATTACHED) {
1823                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1824                                  i, slave->status);
1825                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1826
1827                         /* Ensure driver knows that peripheral unattached */
1828                         ret = sdw_update_slave_status(slave, status[i]);
1829                         if (ret < 0)
1830                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1831                 }
1832         }
1833
1834         if (status[0] == SDW_SLAVE_ATTACHED) {
1835                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1836
1837                 /*
1838                  * Programming a device number will have side effects,
1839                  * so we deal with other devices at a later time.
1840                  * This relies on those devices reporting ATTACHED, which will
1841                  * trigger another call to this function. This will only
1842                  * happen if at least one device ID was programmed.
1843                  * Error returns from sdw_program_device_num() are currently
1844                  * ignored because there's no useful recovery that can be done.
1845                  * Returning the error here could result in the current status
1846                  * of other devices not being handled, because if no device IDs
1847                  * were programmed there's nothing to guarantee a status change
1848                  * to trigger another call to this function.
1849                  */
1850                 sdw_program_device_num(bus, &id_programmed);
1851                 if (id_programmed)
1852                         return 0;
1853         }
1854
1855         /* Continue to check other slave statuses */
1856         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1857                 mutex_lock(&bus->bus_lock);
1858                 if (test_bit(i, bus->assigned) == false) {
1859                         mutex_unlock(&bus->bus_lock);
1860                         continue;
1861                 }
1862                 mutex_unlock(&bus->bus_lock);
1863
1864                 slave = sdw_get_slave(bus, i);
1865                 if (!slave)
1866                         continue;
1867
1868                 attached_initializing = false;
1869
1870                 switch (status[i]) {
1871                 case SDW_SLAVE_UNATTACHED:
1872                         if (slave->status == SDW_SLAVE_UNATTACHED)
1873                                 break;
1874
1875                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1876                                  i, slave->status);
1877
1878                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1879                         break;
1880
1881                 case SDW_SLAVE_ALERT:
1882                         ret = sdw_handle_slave_alerts(slave);
1883                         if (ret < 0)
1884                                 dev_err(&slave->dev,
1885                                         "Slave %d alert handling failed: %d\n",
1886                                         i, ret);
1887                         break;
1888
1889                 case SDW_SLAVE_ATTACHED:
1890                         if (slave->status == SDW_SLAVE_ATTACHED)
1891                                 break;
1892
1893                         prev_status = slave->status;
1894                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1895
1896                         if (prev_status == SDW_SLAVE_ALERT)
1897                                 break;
1898
1899                         attached_initializing = true;
1900
1901                         ret = sdw_initialize_slave(slave);
1902                         if (ret < 0)
1903                                 dev_err(&slave->dev,
1904                                         "Slave %d initialization failed: %d\n",
1905                                         i, ret);
1906
1907                         break;
1908
1909                 default:
1910                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1911                                 i, status[i]);
1912                         break;
1913                 }
1914
1915                 ret = sdw_update_slave_status(slave, status[i]);
1916                 if (ret < 0)
1917                         dev_err(&slave->dev,
1918                                 "Update Slave status failed:%d\n", ret);
1919                 if (attached_initializing) {
1920                         dev_dbg(&slave->dev,
1921                                 "signaling initialization completion for Slave %d\n",
1922                                 slave->dev_num);
1923
1924                         complete(&slave->initialization_complete);
1925
1926                         /*
1927                          * If the manager became pm_runtime active, the peripherals will be
1928                          * restarted and attach, but their pm_runtime status may remain
1929                          * suspended. If the 'update_slave_status' callback initiates
1930                          * any sort of deferred processing, this processing would not be
1931                          * cancelled on pm_runtime suspend.
1932                          * To avoid such zombie states, we queue a request to resume.
1933                          * This would be a no-op in case the peripheral was being resumed
1934                          * by e.g. the ALSA/ASoC framework.
1935                          */
1936                         pm_request_resume(&slave->dev);
1937                 }
1938         }
1939
1940         return ret;
1941 }
1942 EXPORT_SYMBOL(sdw_handle_slave_status);
1943
1944 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1945 {
1946         struct sdw_slave *slave;
1947         int i;
1948
1949         /* Check all non-zero devices */
1950         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1951                 mutex_lock(&bus->bus_lock);
1952                 if (test_bit(i, bus->assigned) == false) {
1953                         mutex_unlock(&bus->bus_lock);
1954                         continue;
1955                 }
1956                 mutex_unlock(&bus->bus_lock);
1957
1958                 slave = sdw_get_slave(bus, i);
1959                 if (!slave)
1960                         continue;
1961
1962                 if (slave->status != SDW_SLAVE_UNATTACHED) {
1963                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1964                         slave->first_interrupt_done = false;
1965                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1966                 }
1967
1968                 /* keep track of request, used in pm_runtime resume */
1969                 slave->unattach_request = request;
1970         }
1971 }
1972 EXPORT_SYMBOL(sdw_clear_slave_status);