soundwire: amd: add pm_prepare callback and pm ops support
[linux-block.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25         return 0;
26 }
27
28 /**
29  * sdw_bus_master_add() - add a bus Master instance
30  * @bus: bus instance
31  * @parent: parent device
32  * @fwnode: firmware node handle
33  *
34  * Initializes the bus instance, read properties and create child
35  * devices.
36  */
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38                        struct fwnode_handle *fwnode)
39 {
40         struct sdw_master_prop *prop = NULL;
41         int ret;
42
43         if (!parent) {
44                 pr_err("SoundWire parent device is not set\n");
45                 return -ENODEV;
46         }
47
48         ret = sdw_get_id(bus);
49         if (ret < 0) {
50                 dev_err(parent, "Failed to get bus id\n");
51                 return ret;
52         }
53
54         ret = sdw_master_device_add(bus, parent, fwnode);
55         if (ret < 0) {
56                 dev_err(parent, "Failed to add master device at link %d\n",
57                         bus->link_id);
58                 return ret;
59         }
60
61         if (!bus->ops) {
62                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63                 return -EINVAL;
64         }
65
66         if (!bus->compute_params) {
67                 dev_err(bus->dev,
68                         "Bandwidth allocation not configured, compute_params no set\n");
69                 return -EINVAL;
70         }
71
72         mutex_init(&bus->msg_lock);
73         mutex_init(&bus->bus_lock);
74         INIT_LIST_HEAD(&bus->slaves);
75         INIT_LIST_HEAD(&bus->m_rt_list);
76
77         /*
78          * Initialize multi_link flag
79          */
80         bus->multi_link = false;
81         if (bus->ops->read_prop) {
82                 ret = bus->ops->read_prop(bus);
83                 if (ret < 0) {
84                         dev_err(bus->dev,
85                                 "Bus read properties failed:%d\n", ret);
86                         return ret;
87                 }
88         }
89
90         sdw_bus_debugfs_init(bus);
91
92         /*
93          * Device numbers in SoundWire are 0 through 15. Enumeration device
94          * number (0), Broadcast device number (15), Group numbers (12 and
95          * 13) and Master device number (14) are not used for assignment so
96          * mask these and other higher bits.
97          */
98
99         /* Set higher order bits */
100         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101
102         /* Set enumuration device number and broadcast device number */
103         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105
106         /* Set group device numbers and master device number */
107         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110
111         /*
112          * SDW is an enumerable bus, but devices can be powered off. So,
113          * they won't be able to report as present.
114          *
115          * Create Slave devices based on Slaves described in
116          * the respective firmware (ACPI/DT)
117          */
118         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119                 ret = sdw_acpi_find_slaves(bus);
120         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121                 ret = sdw_of_find_slaves(bus);
122         else
123                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
124
125         if (ret < 0) {
126                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127                 return ret;
128         }
129
130         /*
131          * Initialize clock values based on Master properties. The max
132          * frequency is read from max_clk_freq property. Current assumption
133          * is that the bus will start at highest clock frequency when
134          * powered on.
135          *
136          * Default active bank will be 0 as out of reset the Slaves have
137          * to start with bank 0 (Table 40 of Spec)
138          */
139         prop = &bus->prop;
140         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141         bus->params.curr_dr_freq = bus->params.max_dr_freq;
142         bus->params.curr_bank = SDW_BANK0;
143         bus->params.next_bank = SDW_BANK1;
144
145         return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148
149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151         struct sdw_slave *slave = dev_to_sdw_dev(dev);
152         struct sdw_bus *bus = slave->bus;
153
154         pm_runtime_disable(dev);
155
156         sdw_slave_debugfs_exit(slave);
157
158         mutex_lock(&bus->bus_lock);
159
160         if (slave->dev_num) { /* clear dev_num if assigned */
161                 clear_bit(slave->dev_num, bus->assigned);
162                 if (bus->dev_num_ida_min)
163                         ida_free(&sdw_peripheral_ida, slave->dev_num);
164         }
165         list_del_init(&slave->node);
166         mutex_unlock(&bus->bus_lock);
167
168         device_unregister(dev);
169         return 0;
170 }
171
172 /**
173  * sdw_bus_master_delete() - delete the bus master instance
174  * @bus: bus to be deleted
175  *
176  * Remove the instance, delete the child devices.
177  */
178 void sdw_bus_master_delete(struct sdw_bus *bus)
179 {
180         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181         sdw_master_device_del(bus);
182
183         sdw_bus_debugfs_exit(bus);
184         ida_free(&sdw_bus_ida, bus->id);
185 }
186 EXPORT_SYMBOL(sdw_bus_master_delete);
187
188 /*
189  * SDW IO Calls
190  */
191
192 static inline int find_response_code(enum sdw_command_response resp)
193 {
194         switch (resp) {
195         case SDW_CMD_OK:
196                 return 0;
197
198         case SDW_CMD_IGNORED:
199                 return -ENODATA;
200
201         case SDW_CMD_TIMEOUT:
202                 return -ETIMEDOUT;
203
204         default:
205                 return -EIO;
206         }
207 }
208
209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210 {
211         int retry = bus->prop.err_threshold;
212         enum sdw_command_response resp;
213         int ret = 0, i;
214
215         for (i = 0; i <= retry; i++) {
216                 resp = bus->ops->xfer_msg(bus, msg);
217                 ret = find_response_code(resp);
218
219                 /* if cmd is ok or ignored return */
220                 if (ret == 0 || ret == -ENODATA)
221                         return ret;
222         }
223
224         return ret;
225 }
226
227 static inline int do_transfer_defer(struct sdw_bus *bus,
228                                     struct sdw_msg *msg)
229 {
230         struct sdw_defer *defer = &bus->defer_msg;
231         int retry = bus->prop.err_threshold;
232         enum sdw_command_response resp;
233         int ret = 0, i;
234
235         defer->msg = msg;
236         defer->length = msg->len;
237         init_completion(&defer->complete);
238
239         for (i = 0; i <= retry; i++) {
240                 resp = bus->ops->xfer_msg_defer(bus);
241                 ret = find_response_code(resp);
242                 /* if cmd is ok or ignored return */
243                 if (ret == 0 || ret == -ENODATA)
244                         return ret;
245         }
246
247         return ret;
248 }
249
250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
251 {
252         int ret;
253
254         ret = do_transfer(bus, msg);
255         if (ret != 0 && ret != -ENODATA)
256                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
257                         msg->dev_num, ret,
258                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
259                         msg->addr, msg->len);
260
261         return ret;
262 }
263
264 /**
265  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
266  * @bus: SDW bus
267  * @msg: SDW message to be xfered
268  */
269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
270 {
271         int ret;
272
273         mutex_lock(&bus->msg_lock);
274
275         ret = sdw_transfer_unlocked(bus, msg);
276
277         mutex_unlock(&bus->msg_lock);
278
279         return ret;
280 }
281
282 /**
283  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
284  * @bus: SDW bus
285  * @sync_delay: Delay before reading status
286  */
287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
288 {
289         u32 status;
290
291         if (!bus->ops->read_ping_status)
292                 return;
293
294         /*
295          * wait for peripheral to sync if desired. 10-15ms should be more than
296          * enough in most cases.
297          */
298         if (sync_delay)
299                 usleep_range(10000, 15000);
300
301         mutex_lock(&bus->msg_lock);
302
303         status = bus->ops->read_ping_status(bus);
304
305         mutex_unlock(&bus->msg_lock);
306
307         if (!status)
308                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
309         else
310                 dev_dbg(bus->dev, "PING status: %#x\n", status);
311 }
312 EXPORT_SYMBOL(sdw_show_ping_status);
313
314 /**
315  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
316  * @bus: SDW bus
317  * @msg: SDW message to be xfered
318  *
319  * Caller needs to hold the msg_lock lock while calling this
320  */
321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
322 {
323         int ret;
324
325         if (!bus->ops->xfer_msg_defer)
326                 return -ENOTSUPP;
327
328         ret = do_transfer_defer(bus, msg);
329         if (ret != 0 && ret != -ENODATA)
330                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
331                         msg->dev_num, ret);
332
333         return ret;
334 }
335
336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
337                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
338 {
339         memset(msg, 0, sizeof(*msg));
340         msg->addr = addr; /* addr is 16 bit and truncated here */
341         msg->len = count;
342         msg->dev_num = dev_num;
343         msg->flags = flags;
344         msg->buf = buf;
345
346         if (addr < SDW_REG_NO_PAGE) /* no paging area */
347                 return 0;
348
349         if (addr >= SDW_REG_MAX) { /* illegal addr */
350                 pr_err("SDW: Invalid address %x passed\n", addr);
351                 return -EINVAL;
352         }
353
354         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
355                 if (slave && !slave->prop.paging_support)
356                         return 0;
357                 /* no need for else as that will fall-through to paging */
358         }
359
360         /* paging mandatory */
361         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
362                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
363                 return -EINVAL;
364         }
365
366         if (!slave) {
367                 pr_err("SDW: No slave for paging addr\n");
368                 return -EINVAL;
369         }
370
371         if (!slave->prop.paging_support) {
372                 dev_err(&slave->dev,
373                         "address %x needs paging but no support\n", addr);
374                 return -EINVAL;
375         }
376
377         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
378         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
379         msg->addr |= BIT(15);
380         msg->page = true;
381
382         return 0;
383 }
384
385 /*
386  * Read/Write IO functions.
387  * no_pm versions can only be called by the bus, e.g. while enumerating or
388  * handling suspend-resume sequences.
389  * all clients need to use the pm versions
390  */
391
392 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
393 {
394         struct sdw_msg msg;
395         int ret;
396
397         ret = sdw_fill_msg(&msg, slave, addr, count,
398                            slave->dev_num, SDW_MSG_FLAG_READ, val);
399         if (ret < 0)
400                 return ret;
401
402         ret = sdw_transfer(slave->bus, &msg);
403         if (slave->is_mockup_device)
404                 ret = 0;
405         return ret;
406 }
407 EXPORT_SYMBOL(sdw_nread_no_pm);
408
409 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
410 {
411         struct sdw_msg msg;
412         int ret;
413
414         ret = sdw_fill_msg(&msg, slave, addr, count,
415                            slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
416         if (ret < 0)
417                 return ret;
418
419         ret = sdw_transfer(slave->bus, &msg);
420         if (slave->is_mockup_device)
421                 ret = 0;
422         return ret;
423 }
424 EXPORT_SYMBOL(sdw_nwrite_no_pm);
425
426 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
427 {
428         return sdw_nwrite_no_pm(slave, addr, 1, &value);
429 }
430 EXPORT_SYMBOL(sdw_write_no_pm);
431
432 static int
433 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
434 {
435         struct sdw_msg msg;
436         u8 buf;
437         int ret;
438
439         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
440                            SDW_MSG_FLAG_READ, &buf);
441         if (ret < 0)
442                 return ret;
443
444         ret = sdw_transfer(bus, &msg);
445         if (ret < 0)
446                 return ret;
447
448         return buf;
449 }
450
451 static int
452 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
453 {
454         struct sdw_msg msg;
455         int ret;
456
457         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
458                            SDW_MSG_FLAG_WRITE, &value);
459         if (ret < 0)
460                 return ret;
461
462         return sdw_transfer(bus, &msg);
463 }
464
465 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
466 {
467         struct sdw_msg msg;
468         u8 buf;
469         int ret;
470
471         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
472                            SDW_MSG_FLAG_READ, &buf);
473         if (ret < 0)
474                 return ret;
475
476         ret = sdw_transfer_unlocked(bus, &msg);
477         if (ret < 0)
478                 return ret;
479
480         return buf;
481 }
482 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
483
484 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
485 {
486         struct sdw_msg msg;
487         int ret;
488
489         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
490                            SDW_MSG_FLAG_WRITE, &value);
491         if (ret < 0)
492                 return ret;
493
494         return sdw_transfer_unlocked(bus, &msg);
495 }
496 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
497
498 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
499 {
500         u8 buf;
501         int ret;
502
503         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
504         if (ret < 0)
505                 return ret;
506         else
507                 return buf;
508 }
509 EXPORT_SYMBOL(sdw_read_no_pm);
510
511 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
512 {
513         int tmp;
514
515         tmp = sdw_read_no_pm(slave, addr);
516         if (tmp < 0)
517                 return tmp;
518
519         tmp = (tmp & ~mask) | val;
520         return sdw_write_no_pm(slave, addr, tmp);
521 }
522 EXPORT_SYMBOL(sdw_update_no_pm);
523
524 /* Read-Modify-Write Slave register */
525 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
526 {
527         int tmp;
528
529         tmp = sdw_read(slave, addr);
530         if (tmp < 0)
531                 return tmp;
532
533         tmp = (tmp & ~mask) | val;
534         return sdw_write(slave, addr, tmp);
535 }
536 EXPORT_SYMBOL(sdw_update);
537
538 /**
539  * sdw_nread() - Read "n" contiguous SDW Slave registers
540  * @slave: SDW Slave
541  * @addr: Register address
542  * @count: length
543  * @val: Buffer for values to be read
544  */
545 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
546 {
547         int ret;
548
549         ret = pm_runtime_resume_and_get(&slave->dev);
550         if (ret < 0 && ret != -EACCES)
551                 return ret;
552
553         ret = sdw_nread_no_pm(slave, addr, count, val);
554
555         pm_runtime_mark_last_busy(&slave->dev);
556         pm_runtime_put(&slave->dev);
557
558         return ret;
559 }
560 EXPORT_SYMBOL(sdw_nread);
561
562 /**
563  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
564  * @slave: SDW Slave
565  * @addr: Register address
566  * @count: length
567  * @val: Buffer for values to be written
568  */
569 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
570 {
571         int ret;
572
573         ret = pm_runtime_resume_and_get(&slave->dev);
574         if (ret < 0 && ret != -EACCES)
575                 return ret;
576
577         ret = sdw_nwrite_no_pm(slave, addr, count, val);
578
579         pm_runtime_mark_last_busy(&slave->dev);
580         pm_runtime_put(&slave->dev);
581
582         return ret;
583 }
584 EXPORT_SYMBOL(sdw_nwrite);
585
586 /**
587  * sdw_read() - Read a SDW Slave register
588  * @slave: SDW Slave
589  * @addr: Register address
590  */
591 int sdw_read(struct sdw_slave *slave, u32 addr)
592 {
593         u8 buf;
594         int ret;
595
596         ret = sdw_nread(slave, addr, 1, &buf);
597         if (ret < 0)
598                 return ret;
599
600         return buf;
601 }
602 EXPORT_SYMBOL(sdw_read);
603
604 /**
605  * sdw_write() - Write a SDW Slave register
606  * @slave: SDW Slave
607  * @addr: Register address
608  * @value: Register value
609  */
610 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
611 {
612         return sdw_nwrite(slave, addr, 1, &value);
613 }
614 EXPORT_SYMBOL(sdw_write);
615
616 /*
617  * SDW alert handling
618  */
619
620 /* called with bus_lock held */
621 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
622 {
623         struct sdw_slave *slave;
624
625         list_for_each_entry(slave, &bus->slaves, node) {
626                 if (slave->dev_num == i)
627                         return slave;
628         }
629
630         return NULL;
631 }
632
633 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
634 {
635         if (slave->id.mfg_id != id.mfg_id ||
636             slave->id.part_id != id.part_id ||
637             slave->id.class_id != id.class_id ||
638             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
639              slave->id.unique_id != id.unique_id))
640                 return -ENODEV;
641
642         return 0;
643 }
644 EXPORT_SYMBOL(sdw_compare_devid);
645
646 /* called with bus_lock held */
647 static int sdw_get_device_num(struct sdw_slave *slave)
648 {
649         int bit;
650
651         if (slave->bus->dev_num_ida_min) {
652                 bit = ida_alloc_range(&sdw_peripheral_ida,
653                                       slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
654                                       GFP_KERNEL);
655                 if (bit < 0)
656                         goto err;
657         } else {
658                 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
659                 if (bit == SDW_MAX_DEVICES) {
660                         bit = -ENODEV;
661                         goto err;
662                 }
663         }
664
665         /*
666          * Do not update dev_num in Slave data structure here,
667          * Update once program dev_num is successful
668          */
669         set_bit(bit, slave->bus->assigned);
670
671 err:
672         return bit;
673 }
674
675 static int sdw_assign_device_num(struct sdw_slave *slave)
676 {
677         struct sdw_bus *bus = slave->bus;
678         int ret, dev_num;
679         bool new_device = false;
680
681         /* check first if device number is assigned, if so reuse that */
682         if (!slave->dev_num) {
683                 if (!slave->dev_num_sticky) {
684                         mutex_lock(&slave->bus->bus_lock);
685                         dev_num = sdw_get_device_num(slave);
686                         mutex_unlock(&slave->bus->bus_lock);
687                         if (dev_num < 0) {
688                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
689                                         dev_num);
690                                 return dev_num;
691                         }
692                         slave->dev_num = dev_num;
693                         slave->dev_num_sticky = dev_num;
694                         new_device = true;
695                 } else {
696                         slave->dev_num = slave->dev_num_sticky;
697                 }
698         }
699
700         if (!new_device)
701                 dev_dbg(bus->dev,
702                         "Slave already registered, reusing dev_num:%d\n",
703                         slave->dev_num);
704
705         /* Clear the slave->dev_num to transfer message on device 0 */
706         dev_num = slave->dev_num;
707         slave->dev_num = 0;
708
709         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
710         if (ret < 0) {
711                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
712                         dev_num, ret);
713                 return ret;
714         }
715
716         /* After xfer of msg, restore dev_num */
717         slave->dev_num = slave->dev_num_sticky;
718
719         return 0;
720 }
721
722 void sdw_extract_slave_id(struct sdw_bus *bus,
723                           u64 addr, struct sdw_slave_id *id)
724 {
725         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
726
727         id->sdw_version = SDW_VERSION(addr);
728         id->unique_id = SDW_UNIQUE_ID(addr);
729         id->mfg_id = SDW_MFG_ID(addr);
730         id->part_id = SDW_PART_ID(addr);
731         id->class_id = SDW_CLASS_ID(addr);
732
733         dev_dbg(bus->dev,
734                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
735                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
736 }
737 EXPORT_SYMBOL(sdw_extract_slave_id);
738
739 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
740 {
741         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
742         struct sdw_slave *slave, *_s;
743         struct sdw_slave_id id;
744         struct sdw_msg msg;
745         bool found;
746         int count = 0, ret;
747         u64 addr;
748
749         *programmed = false;
750
751         /* No Slave, so use raw xfer api */
752         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
753                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
754         if (ret < 0)
755                 return ret;
756
757         do {
758                 ret = sdw_transfer(bus, &msg);
759                 if (ret == -ENODATA) { /* end of device id reads */
760                         dev_dbg(bus->dev, "No more devices to enumerate\n");
761                         ret = 0;
762                         break;
763                 }
764                 if (ret < 0) {
765                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
766                         break;
767                 }
768
769                 /*
770                  * Construct the addr and extract. Cast the higher shift
771                  * bits to avoid truncation due to size limit.
772                  */
773                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
774                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
775                         ((u64)buf[0] << 40);
776
777                 sdw_extract_slave_id(bus, addr, &id);
778
779                 found = false;
780                 /* Now compare with entries */
781                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
782                         if (sdw_compare_devid(slave, id) == 0) {
783                                 found = true;
784
785                                 /*
786                                  * To prevent skipping state-machine stages don't
787                                  * program a device until we've seen it UNATTACH.
788                                  * Must return here because no other device on #0
789                                  * can be detected until this one has been
790                                  * assigned a device ID.
791                                  */
792                                 if (slave->status != SDW_SLAVE_UNATTACHED)
793                                         return 0;
794
795                                 /*
796                                  * Assign a new dev_num to this Slave and
797                                  * not mark it present. It will be marked
798                                  * present after it reports ATTACHED on new
799                                  * dev_num
800                                  */
801                                 ret = sdw_assign_device_num(slave);
802                                 if (ret < 0) {
803                                         dev_err(bus->dev,
804                                                 "Assign dev_num failed:%d\n",
805                                                 ret);
806                                         return ret;
807                                 }
808
809                                 *programmed = true;
810
811                                 break;
812                         }
813                 }
814
815                 if (!found) {
816                         /* TODO: Park this device in Group 13 */
817
818                         /*
819                          * add Slave device even if there is no platform
820                          * firmware description. There will be no driver probe
821                          * but the user/integration will be able to see the
822                          * device, enumeration status and device number in sysfs
823                          */
824                         sdw_slave_add(bus, &id, NULL);
825
826                         dev_err(bus->dev, "Slave Entry not found\n");
827                 }
828
829                 count++;
830
831                 /*
832                  * Check till error out or retry (count) exhausts.
833                  * Device can drop off and rejoin during enumeration
834                  * so count till twice the bound.
835                  */
836
837         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
838
839         return ret;
840 }
841
842 static void sdw_modify_slave_status(struct sdw_slave *slave,
843                                     enum sdw_slave_status status)
844 {
845         struct sdw_bus *bus = slave->bus;
846
847         mutex_lock(&bus->bus_lock);
848
849         dev_vdbg(bus->dev,
850                  "changing status slave %d status %d new status %d\n",
851                  slave->dev_num, slave->status, status);
852
853         if (status == SDW_SLAVE_UNATTACHED) {
854                 dev_dbg(&slave->dev,
855                         "initializing enumeration and init completion for Slave %d\n",
856                         slave->dev_num);
857
858                 init_completion(&slave->enumeration_complete);
859                 init_completion(&slave->initialization_complete);
860
861         } else if ((status == SDW_SLAVE_ATTACHED) &&
862                    (slave->status == SDW_SLAVE_UNATTACHED)) {
863                 dev_dbg(&slave->dev,
864                         "signaling enumeration completion for Slave %d\n",
865                         slave->dev_num);
866
867                 complete(&slave->enumeration_complete);
868         }
869         slave->status = status;
870         mutex_unlock(&bus->bus_lock);
871 }
872
873 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
874                                        enum sdw_clk_stop_mode mode,
875                                        enum sdw_clk_stop_type type)
876 {
877         int ret = 0;
878
879         mutex_lock(&slave->sdw_dev_lock);
880
881         if (slave->probed)  {
882                 struct device *dev = &slave->dev;
883                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
884
885                 if (drv->ops && drv->ops->clk_stop)
886                         ret = drv->ops->clk_stop(slave, mode, type);
887         }
888
889         mutex_unlock(&slave->sdw_dev_lock);
890
891         return ret;
892 }
893
894 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
895                                       enum sdw_clk_stop_mode mode,
896                                       bool prepare)
897 {
898         bool wake_en;
899         u32 val = 0;
900         int ret;
901
902         wake_en = slave->prop.wake_capable;
903
904         if (prepare) {
905                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
906
907                 if (mode == SDW_CLK_STOP_MODE1)
908                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
909
910                 if (wake_en)
911                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
912         } else {
913                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
914                 if (ret < 0) {
915                         if (ret != -ENODATA)
916                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
917                         return ret;
918                 }
919                 val = ret;
920                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
921         }
922
923         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
924
925         if (ret < 0 && ret != -ENODATA)
926                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
927
928         return ret;
929 }
930
931 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
932 {
933         int retry = bus->clk_stop_timeout;
934         int val;
935
936         do {
937                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
938                 if (val < 0) {
939                         if (val != -ENODATA)
940                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
941                         return val;
942                 }
943                 val &= SDW_SCP_STAT_CLK_STP_NF;
944                 if (!val) {
945                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
946                                 dev_num);
947                         return 0;
948                 }
949
950                 usleep_range(1000, 1500);
951                 retry--;
952         } while (retry);
953
954         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
955                 dev_num);
956
957         return -ETIMEDOUT;
958 }
959
960 /**
961  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
962  *
963  * @bus: SDW bus instance
964  *
965  * Query Slave for clock stop mode and prepare for that mode.
966  */
967 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
968 {
969         bool simple_clk_stop = true;
970         struct sdw_slave *slave;
971         bool is_slave = false;
972         int ret = 0;
973
974         /*
975          * In order to save on transition time, prepare
976          * each Slave and then wait for all Slave(s) to be
977          * prepared for clock stop.
978          * If one of the Slave devices has lost sync and
979          * replies with Command Ignored/-ENODATA, we continue
980          * the loop
981          */
982         list_for_each_entry(slave, &bus->slaves, node) {
983                 if (!slave->dev_num)
984                         continue;
985
986                 if (slave->status != SDW_SLAVE_ATTACHED &&
987                     slave->status != SDW_SLAVE_ALERT)
988                         continue;
989
990                 /* Identify if Slave(s) are available on Bus */
991                 is_slave = true;
992
993                 ret = sdw_slave_clk_stop_callback(slave,
994                                                   SDW_CLK_STOP_MODE0,
995                                                   SDW_CLK_PRE_PREPARE);
996                 if (ret < 0 && ret != -ENODATA) {
997                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
998                         return ret;
999                 }
1000
1001                 /* Only prepare a Slave device if needed */
1002                 if (!slave->prop.simple_clk_stop_capable) {
1003                         simple_clk_stop = false;
1004
1005                         ret = sdw_slave_clk_stop_prepare(slave,
1006                                                          SDW_CLK_STOP_MODE0,
1007                                                          true);
1008                         if (ret < 0 && ret != -ENODATA) {
1009                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1010                                 return ret;
1011                         }
1012                 }
1013         }
1014
1015         /* Skip remaining clock stop preparation if no Slave is attached */
1016         if (!is_slave)
1017                 return 0;
1018
1019         /*
1020          * Don't wait for all Slaves to be ready if they follow the simple
1021          * state machine
1022          */
1023         if (!simple_clk_stop) {
1024                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1025                                                        SDW_BROADCAST_DEV_NUM);
1026                 /*
1027                  * if there are no Slave devices present and the reply is
1028                  * Command_Ignored/-ENODATA, we don't need to continue with the
1029                  * flow and can just return here. The error code is not modified
1030                  * and its handling left as an exercise for the caller.
1031                  */
1032                 if (ret < 0)
1033                         return ret;
1034         }
1035
1036         /* Inform slaves that prep is done */
1037         list_for_each_entry(slave, &bus->slaves, node) {
1038                 if (!slave->dev_num)
1039                         continue;
1040
1041                 if (slave->status != SDW_SLAVE_ATTACHED &&
1042                     slave->status != SDW_SLAVE_ALERT)
1043                         continue;
1044
1045                 ret = sdw_slave_clk_stop_callback(slave,
1046                                                   SDW_CLK_STOP_MODE0,
1047                                                   SDW_CLK_POST_PREPARE);
1048
1049                 if (ret < 0 && ret != -ENODATA) {
1050                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1051                         return ret;
1052                 }
1053         }
1054
1055         return 0;
1056 }
1057 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1058
1059 /**
1060  * sdw_bus_clk_stop: stop bus clock
1061  *
1062  * @bus: SDW bus instance
1063  *
1064  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1065  * write to SCP_CTRL register.
1066  */
1067 int sdw_bus_clk_stop(struct sdw_bus *bus)
1068 {
1069         int ret;
1070
1071         /*
1072          * broadcast clock stop now, attached Slaves will ACK this,
1073          * unattached will ignore
1074          */
1075         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1076                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1077         if (ret < 0) {
1078                 if (ret != -ENODATA)
1079                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1080                 return ret;
1081         }
1082
1083         return 0;
1084 }
1085 EXPORT_SYMBOL(sdw_bus_clk_stop);
1086
1087 /**
1088  * sdw_bus_exit_clk_stop: Exit clock stop mode
1089  *
1090  * @bus: SDW bus instance
1091  *
1092  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1093  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1094  * back.
1095  */
1096 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1097 {
1098         bool simple_clk_stop = true;
1099         struct sdw_slave *slave;
1100         bool is_slave = false;
1101         int ret;
1102
1103         /*
1104          * In order to save on transition time, de-prepare
1105          * each Slave and then wait for all Slave(s) to be
1106          * de-prepared after clock resume.
1107          */
1108         list_for_each_entry(slave, &bus->slaves, node) {
1109                 if (!slave->dev_num)
1110                         continue;
1111
1112                 if (slave->status != SDW_SLAVE_ATTACHED &&
1113                     slave->status != SDW_SLAVE_ALERT)
1114                         continue;
1115
1116                 /* Identify if Slave(s) are available on Bus */
1117                 is_slave = true;
1118
1119                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1120                                                   SDW_CLK_PRE_DEPREPARE);
1121                 if (ret < 0)
1122                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1123
1124                 /* Only de-prepare a Slave device if needed */
1125                 if (!slave->prop.simple_clk_stop_capable) {
1126                         simple_clk_stop = false;
1127
1128                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1129                                                          false);
1130
1131                         if (ret < 0)
1132                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1133                 }
1134         }
1135
1136         /* Skip remaining clock stop de-preparation if no Slave is attached */
1137         if (!is_slave)
1138                 return 0;
1139
1140         /*
1141          * Don't wait for all Slaves to be ready if they follow the simple
1142          * state machine
1143          */
1144         if (!simple_clk_stop) {
1145                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1146                 if (ret < 0)
1147                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1148         }
1149
1150         list_for_each_entry(slave, &bus->slaves, node) {
1151                 if (!slave->dev_num)
1152                         continue;
1153
1154                 if (slave->status != SDW_SLAVE_ATTACHED &&
1155                     slave->status != SDW_SLAVE_ALERT)
1156                         continue;
1157
1158                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1159                                                   SDW_CLK_POST_DEPREPARE);
1160                 if (ret < 0)
1161                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1162         }
1163
1164         return 0;
1165 }
1166 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1167
1168 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1169                            int port, bool enable, int mask)
1170 {
1171         u32 addr;
1172         int ret;
1173         u8 val = 0;
1174
1175         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1176                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1177                         enable ? "on" : "off");
1178                 mask |= SDW_DPN_INT_TEST_FAIL;
1179         }
1180
1181         addr = SDW_DPN_INTMASK(port);
1182
1183         /* Set/Clear port ready interrupt mask */
1184         if (enable) {
1185                 val |= mask;
1186                 val |= SDW_DPN_INT_PORT_READY;
1187         } else {
1188                 val &= ~(mask);
1189                 val &= ~SDW_DPN_INT_PORT_READY;
1190         }
1191
1192         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1193         if (ret < 0)
1194                 dev_err(&slave->dev,
1195                         "SDW_DPN_INTMASK write failed:%d\n", val);
1196
1197         return ret;
1198 }
1199
1200 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1201 {
1202         u32 mclk_freq = slave->bus->prop.mclk_freq;
1203         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1204         unsigned int scale;
1205         u8 scale_index;
1206         u8 base;
1207         int ret;
1208
1209         /*
1210          * frequency base and scale registers are required for SDCA
1211          * devices. They may also be used for 1.2+/non-SDCA devices.
1212          * Driver can set the property, we will need a DisCo property
1213          * to discover this case from platform firmware.
1214          */
1215         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1216                 return 0;
1217
1218         if (!mclk_freq) {
1219                 dev_err(&slave->dev,
1220                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1221                 return -EINVAL;
1222         }
1223
1224         /*
1225          * map base frequency using Table 89 of SoundWire 1.2 spec.
1226          * The order of the tests just follows the specification, this
1227          * is not a selection between possible values or a search for
1228          * the best value but just a mapping.  Only one case per platform
1229          * is relevant.
1230          * Some BIOS have inconsistent values for mclk_freq but a
1231          * correct root so we force the mclk_freq to avoid variations.
1232          */
1233         if (!(19200000 % mclk_freq)) {
1234                 mclk_freq = 19200000;
1235                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1236         } else if (!(24000000 % mclk_freq)) {
1237                 mclk_freq = 24000000;
1238                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1239         } else if (!(24576000 % mclk_freq)) {
1240                 mclk_freq = 24576000;
1241                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1242         } else if (!(22579200 % mclk_freq)) {
1243                 mclk_freq = 22579200;
1244                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1245         } else if (!(32000000 % mclk_freq)) {
1246                 mclk_freq = 32000000;
1247                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1248         } else {
1249                 dev_err(&slave->dev,
1250                         "Unsupported clock base, mclk %d\n",
1251                         mclk_freq);
1252                 return -EINVAL;
1253         }
1254
1255         if (mclk_freq % curr_freq) {
1256                 dev_err(&slave->dev,
1257                         "mclk %d is not multiple of bus curr_freq %d\n",
1258                         mclk_freq, curr_freq);
1259                 return -EINVAL;
1260         }
1261
1262         scale = mclk_freq / curr_freq;
1263
1264         /*
1265          * map scale to Table 90 of SoundWire 1.2 spec - and check
1266          * that the scale is a power of two and maximum 64
1267          */
1268         scale_index = ilog2(scale);
1269
1270         if (BIT(scale_index) != scale || scale_index > 6) {
1271                 dev_err(&slave->dev,
1272                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1273                         scale, mclk_freq, curr_freq);
1274                 return -EINVAL;
1275         }
1276         scale_index++;
1277
1278         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1279         if (ret < 0) {
1280                 dev_err(&slave->dev,
1281                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1282                 return ret;
1283         }
1284
1285         /* initialize scale for both banks */
1286         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1287         if (ret < 0) {
1288                 dev_err(&slave->dev,
1289                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1290                 return ret;
1291         }
1292         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1293         if (ret < 0)
1294                 dev_err(&slave->dev,
1295                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1296
1297         dev_dbg(&slave->dev,
1298                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1299                 base, scale_index, mclk_freq, curr_freq);
1300
1301         return ret;
1302 }
1303
1304 static int sdw_initialize_slave(struct sdw_slave *slave)
1305 {
1306         struct sdw_slave_prop *prop = &slave->prop;
1307         int status;
1308         int ret;
1309         u8 val;
1310
1311         ret = sdw_slave_set_frequency(slave);
1312         if (ret < 0)
1313                 return ret;
1314
1315         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1316                 /* Clear bus clash interrupt before enabling interrupt mask */
1317                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1318                 if (status < 0) {
1319                         dev_err(&slave->dev,
1320                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1321                         return status;
1322                 }
1323                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1324                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1325                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1326                         if (ret < 0) {
1327                                 dev_err(&slave->dev,
1328                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1329                                 return ret;
1330                         }
1331                 }
1332         }
1333         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1334             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1335                 /* Clear parity interrupt before enabling interrupt mask */
1336                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1337                 if (status < 0) {
1338                         dev_err(&slave->dev,
1339                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1340                         return status;
1341                 }
1342                 if (status & SDW_SCP_INT1_PARITY) {
1343                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1344                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1345                         if (ret < 0) {
1346                                 dev_err(&slave->dev,
1347                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1348                                 return ret;
1349                         }
1350                 }
1351         }
1352
1353         /*
1354          * Set SCP_INT1_MASK register, typically bus clash and
1355          * implementation-defined interrupt mask. The Parity detection
1356          * may not always be correct on startup so its use is
1357          * device-dependent, it might e.g. only be enabled in
1358          * steady-state after a couple of frames.
1359          */
1360         val = slave->prop.scp_int1_mask;
1361
1362         /* Enable SCP interrupts */
1363         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1364         if (ret < 0) {
1365                 dev_err(&slave->dev,
1366                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1367                 return ret;
1368         }
1369
1370         /* No need to continue if DP0 is not present */
1371         if (!slave->prop.dp0_prop)
1372                 return 0;
1373
1374         /* Enable DP0 interrupts */
1375         val = prop->dp0_prop->imp_def_interrupts;
1376         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1377
1378         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1379         if (ret < 0)
1380                 dev_err(&slave->dev,
1381                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1382         return ret;
1383 }
1384
1385 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1386 {
1387         u8 clear, impl_int_mask;
1388         int status, status2, ret, count = 0;
1389
1390         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1391         if (status < 0) {
1392                 dev_err(&slave->dev,
1393                         "SDW_DP0_INT read failed:%d\n", status);
1394                 return status;
1395         }
1396
1397         do {
1398                 clear = status & ~SDW_DP0_INTERRUPTS;
1399
1400                 if (status & SDW_DP0_INT_TEST_FAIL) {
1401                         dev_err(&slave->dev, "Test fail for port 0\n");
1402                         clear |= SDW_DP0_INT_TEST_FAIL;
1403                 }
1404
1405                 /*
1406                  * Assumption: PORT_READY interrupt will be received only for
1407                  * ports implementing Channel Prepare state machine (CP_SM)
1408                  */
1409
1410                 if (status & SDW_DP0_INT_PORT_READY) {
1411                         complete(&slave->port_ready[0]);
1412                         clear |= SDW_DP0_INT_PORT_READY;
1413                 }
1414
1415                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1416                         dev_err(&slave->dev, "BRA failed\n");
1417                         clear |= SDW_DP0_INT_BRA_FAILURE;
1418                 }
1419
1420                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1421                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1422
1423                 if (status & impl_int_mask) {
1424                         clear |= impl_int_mask;
1425                         *slave_status = clear;
1426                 }
1427
1428                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1429                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1430                 if (ret < 0) {
1431                         dev_err(&slave->dev,
1432                                 "SDW_DP0_INT write failed:%d\n", ret);
1433                         return ret;
1434                 }
1435
1436                 /* Read DP0 interrupt again */
1437                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1438                 if (status2 < 0) {
1439                         dev_err(&slave->dev,
1440                                 "SDW_DP0_INT read failed:%d\n", status2);
1441                         return status2;
1442                 }
1443                 /* filter to limit loop to interrupts identified in the first status read */
1444                 status &= status2;
1445
1446                 count++;
1447
1448                 /* we can get alerts while processing so keep retrying */
1449         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1450
1451         if (count == SDW_READ_INTR_CLEAR_RETRY)
1452                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1453
1454         return ret;
1455 }
1456
1457 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1458                                      int port, u8 *slave_status)
1459 {
1460         u8 clear, impl_int_mask;
1461         int status, status2, ret, count = 0;
1462         u32 addr;
1463
1464         if (port == 0)
1465                 return sdw_handle_dp0_interrupt(slave, slave_status);
1466
1467         addr = SDW_DPN_INT(port);
1468         status = sdw_read_no_pm(slave, addr);
1469         if (status < 0) {
1470                 dev_err(&slave->dev,
1471                         "SDW_DPN_INT read failed:%d\n", status);
1472
1473                 return status;
1474         }
1475
1476         do {
1477                 clear = status & ~SDW_DPN_INTERRUPTS;
1478
1479                 if (status & SDW_DPN_INT_TEST_FAIL) {
1480                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1481                         clear |= SDW_DPN_INT_TEST_FAIL;
1482                 }
1483
1484                 /*
1485                  * Assumption: PORT_READY interrupt will be received only
1486                  * for ports implementing CP_SM.
1487                  */
1488                 if (status & SDW_DPN_INT_PORT_READY) {
1489                         complete(&slave->port_ready[port]);
1490                         clear |= SDW_DPN_INT_PORT_READY;
1491                 }
1492
1493                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1494                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1495
1496                 if (status & impl_int_mask) {
1497                         clear |= impl_int_mask;
1498                         *slave_status = clear;
1499                 }
1500
1501                 /* clear the interrupt but don't touch reserved fields */
1502                 ret = sdw_write_no_pm(slave, addr, clear);
1503                 if (ret < 0) {
1504                         dev_err(&slave->dev,
1505                                 "SDW_DPN_INT write failed:%d\n", ret);
1506                         return ret;
1507                 }
1508
1509                 /* Read DPN interrupt again */
1510                 status2 = sdw_read_no_pm(slave, addr);
1511                 if (status2 < 0) {
1512                         dev_err(&slave->dev,
1513                                 "SDW_DPN_INT read failed:%d\n", status2);
1514                         return status2;
1515                 }
1516                 /* filter to limit loop to interrupts identified in the first status read */
1517                 status &= status2;
1518
1519                 count++;
1520
1521                 /* we can get alerts while processing so keep retrying */
1522         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1523
1524         if (count == SDW_READ_INTR_CLEAR_RETRY)
1525                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1526
1527         return ret;
1528 }
1529
1530 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1531 {
1532         struct sdw_slave_intr_status slave_intr;
1533         u8 clear = 0, bit, port_status[15] = {0};
1534         int port_num, stat, ret, count = 0;
1535         unsigned long port;
1536         bool slave_notify;
1537         u8 sdca_cascade = 0;
1538         u8 buf, buf2[2], _buf, _buf2[2];
1539         bool parity_check;
1540         bool parity_quirk;
1541
1542         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1543
1544         ret = pm_runtime_resume_and_get(&slave->dev);
1545         if (ret < 0 && ret != -EACCES) {
1546                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1547                 return ret;
1548         }
1549
1550         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1551         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1552         if (ret < 0) {
1553                 dev_err(&slave->dev,
1554                         "SDW_SCP_INT1 read failed:%d\n", ret);
1555                 goto io_err;
1556         }
1557         buf = ret;
1558
1559         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1560         if (ret < 0) {
1561                 dev_err(&slave->dev,
1562                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1563                 goto io_err;
1564         }
1565
1566         if (slave->id.class_id) {
1567                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1568                 if (ret < 0) {
1569                         dev_err(&slave->dev,
1570                                 "SDW_DP0_INT read failed:%d\n", ret);
1571                         goto io_err;
1572                 }
1573                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1574         }
1575
1576         do {
1577                 slave_notify = false;
1578
1579                 /*
1580                  * Check parity, bus clash and Slave (impl defined)
1581                  * interrupt
1582                  */
1583                 if (buf & SDW_SCP_INT1_PARITY) {
1584                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1585                         parity_quirk = !slave->first_interrupt_done &&
1586                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1587
1588                         if (parity_check && !parity_quirk)
1589                                 dev_err(&slave->dev, "Parity error detected\n");
1590                         clear |= SDW_SCP_INT1_PARITY;
1591                 }
1592
1593                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1594                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1595                                 dev_err(&slave->dev, "Bus clash detected\n");
1596                         clear |= SDW_SCP_INT1_BUS_CLASH;
1597                 }
1598
1599                 /*
1600                  * When bus clash or parity errors are detected, such errors
1601                  * are unlikely to be recoverable errors.
1602                  * TODO: In such scenario, reset bus. Make this configurable
1603                  * via sysfs property with bus reset being the default.
1604                  */
1605
1606                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1607                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1608                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1609                                 slave_notify = true;
1610                         }
1611                         clear |= SDW_SCP_INT1_IMPL_DEF;
1612                 }
1613
1614                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1615                 if (sdca_cascade)
1616                         slave_notify = true;
1617
1618                 /* Check port 0 - 3 interrupts */
1619                 port = buf & SDW_SCP_INT1_PORT0_3;
1620
1621                 /* To get port number corresponding to bits, shift it */
1622                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1623                 for_each_set_bit(bit, &port, 8) {
1624                         sdw_handle_port_interrupt(slave, bit,
1625                                                   &port_status[bit]);
1626                 }
1627
1628                 /* Check if cascade 2 interrupt is present */
1629                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1630                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1631                         for_each_set_bit(bit, &port, 8) {
1632                                 /* scp2 ports start from 4 */
1633                                 port_num = bit + 4;
1634                                 sdw_handle_port_interrupt(slave,
1635                                                 port_num,
1636                                                 &port_status[port_num]);
1637                         }
1638                 }
1639
1640                 /* now check last cascade */
1641                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1642                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1643                         for_each_set_bit(bit, &port, 8) {
1644                                 /* scp3 ports start from 11 */
1645                                 port_num = bit + 11;
1646                                 sdw_handle_port_interrupt(slave,
1647                                                 port_num,
1648                                                 &port_status[port_num]);
1649                         }
1650                 }
1651
1652                 /* Update the Slave driver */
1653                 if (slave_notify) {
1654                         mutex_lock(&slave->sdw_dev_lock);
1655
1656                         if (slave->probed) {
1657                                 struct device *dev = &slave->dev;
1658                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1659
1660                                 if (drv->ops && drv->ops->interrupt_callback) {
1661                                         slave_intr.sdca_cascade = sdca_cascade;
1662                                         slave_intr.control_port = clear;
1663                                         memcpy(slave_intr.port, &port_status,
1664                                                sizeof(slave_intr.port));
1665
1666                                         drv->ops->interrupt_callback(slave, &slave_intr);
1667                                 }
1668                         }
1669
1670                         mutex_unlock(&slave->sdw_dev_lock);
1671                 }
1672
1673                 /* Ack interrupt */
1674                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1675                 if (ret < 0) {
1676                         dev_err(&slave->dev,
1677                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1678                         goto io_err;
1679                 }
1680
1681                 /* at this point all initial interrupt sources were handled */
1682                 slave->first_interrupt_done = true;
1683
1684                 /*
1685                  * Read status again to ensure no new interrupts arrived
1686                  * while servicing interrupts.
1687                  */
1688                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1689                 if (ret < 0) {
1690                         dev_err(&slave->dev,
1691                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1692                         goto io_err;
1693                 }
1694                 _buf = ret;
1695
1696                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1697                 if (ret < 0) {
1698                         dev_err(&slave->dev,
1699                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1700                         goto io_err;
1701                 }
1702
1703                 if (slave->id.class_id) {
1704                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1705                         if (ret < 0) {
1706                                 dev_err(&slave->dev,
1707                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1708                                 goto io_err;
1709                         }
1710                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1711                 }
1712
1713                 /*
1714                  * Make sure no interrupts are pending, but filter to limit loop
1715                  * to interrupts identified in the first status read
1716                  */
1717                 buf &= _buf;
1718                 buf2[0] &= _buf2[0];
1719                 buf2[1] &= _buf2[1];
1720                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1721
1722                 /*
1723                  * Exit loop if Slave is continuously in ALERT state even
1724                  * after servicing the interrupt multiple times.
1725                  */
1726                 count++;
1727
1728                 /* we can get alerts while processing so keep retrying */
1729         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1730
1731         if (count == SDW_READ_INTR_CLEAR_RETRY)
1732                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1733
1734 io_err:
1735         pm_runtime_mark_last_busy(&slave->dev);
1736         pm_runtime_put_autosuspend(&slave->dev);
1737
1738         return ret;
1739 }
1740
1741 static int sdw_update_slave_status(struct sdw_slave *slave,
1742                                    enum sdw_slave_status status)
1743 {
1744         int ret = 0;
1745
1746         mutex_lock(&slave->sdw_dev_lock);
1747
1748         if (slave->probed) {
1749                 struct device *dev = &slave->dev;
1750                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1751
1752                 if (drv->ops && drv->ops->update_status)
1753                         ret = drv->ops->update_status(slave, status);
1754         }
1755
1756         mutex_unlock(&slave->sdw_dev_lock);
1757
1758         return ret;
1759 }
1760
1761 /**
1762  * sdw_handle_slave_status() - Handle Slave status
1763  * @bus: SDW bus instance
1764  * @status: Status for all Slave(s)
1765  */
1766 int sdw_handle_slave_status(struct sdw_bus *bus,
1767                             enum sdw_slave_status status[])
1768 {
1769         enum sdw_slave_status prev_status;
1770         struct sdw_slave *slave;
1771         bool attached_initializing, id_programmed;
1772         int i, ret = 0;
1773
1774         /* first check if any Slaves fell off the bus */
1775         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1776                 mutex_lock(&bus->bus_lock);
1777                 if (test_bit(i, bus->assigned) == false) {
1778                         mutex_unlock(&bus->bus_lock);
1779                         continue;
1780                 }
1781                 mutex_unlock(&bus->bus_lock);
1782
1783                 slave = sdw_get_slave(bus, i);
1784                 if (!slave)
1785                         continue;
1786
1787                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1788                     slave->status != SDW_SLAVE_UNATTACHED) {
1789                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1790                                  i, slave->status);
1791                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1792
1793                         /* Ensure driver knows that peripheral unattached */
1794                         ret = sdw_update_slave_status(slave, status[i]);
1795                         if (ret < 0)
1796                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1797                 }
1798         }
1799
1800         if (status[0] == SDW_SLAVE_ATTACHED) {
1801                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1802
1803                 /*
1804                  * Programming a device number will have side effects,
1805                  * so we deal with other devices at a later time.
1806                  * This relies on those devices reporting ATTACHED, which will
1807                  * trigger another call to this function. This will only
1808                  * happen if at least one device ID was programmed.
1809                  * Error returns from sdw_program_device_num() are currently
1810                  * ignored because there's no useful recovery that can be done.
1811                  * Returning the error here could result in the current status
1812                  * of other devices not being handled, because if no device IDs
1813                  * were programmed there's nothing to guarantee a status change
1814                  * to trigger another call to this function.
1815                  */
1816                 sdw_program_device_num(bus, &id_programmed);
1817                 if (id_programmed)
1818                         return 0;
1819         }
1820
1821         /* Continue to check other slave statuses */
1822         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1823                 mutex_lock(&bus->bus_lock);
1824                 if (test_bit(i, bus->assigned) == false) {
1825                         mutex_unlock(&bus->bus_lock);
1826                         continue;
1827                 }
1828                 mutex_unlock(&bus->bus_lock);
1829
1830                 slave = sdw_get_slave(bus, i);
1831                 if (!slave)
1832                         continue;
1833
1834                 attached_initializing = false;
1835
1836                 switch (status[i]) {
1837                 case SDW_SLAVE_UNATTACHED:
1838                         if (slave->status == SDW_SLAVE_UNATTACHED)
1839                                 break;
1840
1841                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1842                                  i, slave->status);
1843
1844                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1845                         break;
1846
1847                 case SDW_SLAVE_ALERT:
1848                         ret = sdw_handle_slave_alerts(slave);
1849                         if (ret < 0)
1850                                 dev_err(&slave->dev,
1851                                         "Slave %d alert handling failed: %d\n",
1852                                         i, ret);
1853                         break;
1854
1855                 case SDW_SLAVE_ATTACHED:
1856                         if (slave->status == SDW_SLAVE_ATTACHED)
1857                                 break;
1858
1859                         prev_status = slave->status;
1860                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1861
1862                         if (prev_status == SDW_SLAVE_ALERT)
1863                                 break;
1864
1865                         attached_initializing = true;
1866
1867                         ret = sdw_initialize_slave(slave);
1868                         if (ret < 0)
1869                                 dev_err(&slave->dev,
1870                                         "Slave %d initialization failed: %d\n",
1871                                         i, ret);
1872
1873                         break;
1874
1875                 default:
1876                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1877                                 i, status[i]);
1878                         break;
1879                 }
1880
1881                 ret = sdw_update_slave_status(slave, status[i]);
1882                 if (ret < 0)
1883                         dev_err(&slave->dev,
1884                                 "Update Slave status failed:%d\n", ret);
1885                 if (attached_initializing) {
1886                         dev_dbg(&slave->dev,
1887                                 "signaling initialization completion for Slave %d\n",
1888                                 slave->dev_num);
1889
1890                         complete(&slave->initialization_complete);
1891
1892                         /*
1893                          * If the manager became pm_runtime active, the peripherals will be
1894                          * restarted and attach, but their pm_runtime status may remain
1895                          * suspended. If the 'update_slave_status' callback initiates
1896                          * any sort of deferred processing, this processing would not be
1897                          * cancelled on pm_runtime suspend.
1898                          * To avoid such zombie states, we queue a request to resume.
1899                          * This would be a no-op in case the peripheral was being resumed
1900                          * by e.g. the ALSA/ASoC framework.
1901                          */
1902                         pm_request_resume(&slave->dev);
1903                 }
1904         }
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL(sdw_handle_slave_status);
1909
1910 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1911 {
1912         struct sdw_slave *slave;
1913         int i;
1914
1915         /* Check all non-zero devices */
1916         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1917                 mutex_lock(&bus->bus_lock);
1918                 if (test_bit(i, bus->assigned) == false) {
1919                         mutex_unlock(&bus->bus_lock);
1920                         continue;
1921                 }
1922                 mutex_unlock(&bus->bus_lock);
1923
1924                 slave = sdw_get_slave(bus, i);
1925                 if (!slave)
1926                         continue;
1927
1928                 if (slave->status != SDW_SLAVE_UNATTACHED) {
1929                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1930                         slave->first_interrupt_done = false;
1931                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1932                 }
1933
1934                 /* keep track of request, used in pm_runtime resume */
1935                 slave->unattach_request = request;
1936         }
1937 }
1938 EXPORT_SYMBOL(sdw_clear_slave_status);