[PATCH] jsm: update for tty buffering revamp
[linux-2.6-block.git] / drivers / serial / jsm / jsm_tty.c
1 /************************************************************************
2  * Copyright 2003 Digi International (www.digi.com)
3  *
4  * Copyright (C) 2004 IBM Corporation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2, or (at your option)
9  * any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13  * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14  * PURPOSE.  See the GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19  * MA  02111-1307, USA.
20  *
21  * Contact Information:
22  * Scott H Kilau <Scott_Kilau@digi.com>
23  * Ananda Venkatarman <mansarov@us.ibm.com>
24  * Modifications:
25  * 01/19/06:    changed jsm_input routine to use the dynamically allocated
26  *              tty_buffer changes. Contributors: Scott Kilau and Ananda V.
27  ***********************************************************************/
28 #include <linux/tty.h>
29 #include <linux/tty_flip.h>
30 #include <linux/serial_reg.h>
31 #include <linux/delay.h>        /* For udelay */
32 #include <linux/pci.h>
33
34 #include "jsm.h"
35
36 static void jsm_carrier(struct jsm_channel *ch);
37
38 static inline int jsm_get_mstat(struct jsm_channel *ch)
39 {
40         unsigned char mstat;
41         unsigned result;
42
43         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
44
45         mstat = (ch->ch_mostat | ch->ch_mistat);
46
47         result = 0;
48
49         if (mstat & UART_MCR_DTR)
50                 result |= TIOCM_DTR;
51         if (mstat & UART_MCR_RTS)
52                 result |= TIOCM_RTS;
53         if (mstat & UART_MSR_CTS)
54                 result |= TIOCM_CTS;
55         if (mstat & UART_MSR_DSR)
56                 result |= TIOCM_DSR;
57         if (mstat & UART_MSR_RI)
58                 result |= TIOCM_RI;
59         if (mstat & UART_MSR_DCD)
60                 result |= TIOCM_CD;
61
62         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
63         return result;
64 }
65
66 static unsigned int jsm_tty_tx_empty(struct uart_port *port)
67 {
68         return TIOCSER_TEMT;
69 }
70
71 /*
72  * Return modem signals to ld.
73  */
74 static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
75 {
76         int result;
77         struct jsm_channel *channel = (struct jsm_channel *)port;
78
79         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
80
81         result = jsm_get_mstat(channel);
82
83         if (result < 0)
84                 return -ENXIO;
85
86         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
87
88         return result;
89 }
90
91 /*
92  * jsm_set_modem_info()
93  *
94  * Set modem signals, called by ld.
95  */
96 static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
97 {
98         struct jsm_channel *channel = (struct jsm_channel *)port;
99
100         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
101
102         if (mctrl & TIOCM_RTS)
103                 channel->ch_mostat |= UART_MCR_RTS;
104         else
105                 channel->ch_mostat &= ~UART_MCR_RTS;
106
107         if (mctrl & TIOCM_DTR)
108                 channel->ch_mostat |= UART_MCR_DTR;
109         else
110                 channel->ch_mostat &= ~UART_MCR_DTR;
111
112         channel->ch_bd->bd_ops->assert_modem_signals(channel);
113
114         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
115         udelay(10);
116 }
117
118 static void jsm_tty_start_tx(struct uart_port *port)
119 {
120         struct jsm_channel *channel = (struct jsm_channel *)port;
121
122         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
123
124         channel->ch_flags &= ~(CH_STOP);
125         jsm_tty_write(port);
126
127         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
128 }
129
130 static void jsm_tty_stop_tx(struct uart_port *port)
131 {
132         struct jsm_channel *channel = (struct jsm_channel *)port;
133
134         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
135
136         channel->ch_flags |= (CH_STOP);
137
138         jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
139 }
140
141 static void jsm_tty_send_xchar(struct uart_port *port, char ch)
142 {
143         unsigned long lock_flags;
144         struct jsm_channel *channel = (struct jsm_channel *)port;
145
146         spin_lock_irqsave(&port->lock, lock_flags);
147         if (ch == port->info->tty->termios->c_cc[VSTART])
148                 channel->ch_bd->bd_ops->send_start_character(channel);
149
150         if (ch == port->info->tty->termios->c_cc[VSTOP])
151                 channel->ch_bd->bd_ops->send_stop_character(channel);
152         spin_unlock_irqrestore(&port->lock, lock_flags);
153 }
154
155 static void jsm_tty_stop_rx(struct uart_port *port)
156 {
157         struct jsm_channel *channel = (struct jsm_channel *)port;
158
159         channel->ch_bd->bd_ops->disable_receiver(channel);
160 }
161
162 static void jsm_tty_break(struct uart_port *port, int break_state)
163 {
164         unsigned long lock_flags;
165         struct jsm_channel *channel = (struct jsm_channel *)port;
166
167         spin_lock_irqsave(&port->lock, lock_flags);
168         if (break_state == -1)
169                 channel->ch_bd->bd_ops->send_break(channel);
170         else
171                 channel->ch_bd->bd_ops->clear_break(channel, 0);
172
173         spin_unlock_irqrestore(&port->lock, lock_flags);
174 }
175
176 static int jsm_tty_open(struct uart_port *port)
177 {
178         struct jsm_board *brd;
179         int rc = 0;
180         struct jsm_channel *channel = (struct jsm_channel *)port;
181
182         /* Get board pointer from our array of majors we have allocated */
183         brd = channel->ch_bd;
184
185         /*
186          * Allocate channel buffers for read/write/error.
187          * Set flag, so we don't get trounced on.
188          */
189         channel->ch_flags |= (CH_OPENING);
190
191         /* Drop locks, as malloc with GFP_KERNEL can sleep */
192
193         if (!channel->ch_rqueue) {
194                 channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
195                 if (!channel->ch_rqueue) {
196                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
197                                 "unable to allocate read queue buf");
198                         return -ENOMEM;
199                 }
200                 memset(channel->ch_rqueue, 0, RQUEUESIZE);
201         }
202         if (!channel->ch_equeue) {
203                 channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
204                 if (!channel->ch_equeue) {
205                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
206                                 "unable to allocate error queue buf");
207                         return -ENOMEM;
208                 }
209                 memset(channel->ch_equeue, 0, EQUEUESIZE);
210         }
211         if (!channel->ch_wqueue) {
212                 channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
213                 if (!channel->ch_wqueue) {
214                         jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
215                                 "unable to allocate write queue buf");
216                         return -ENOMEM;
217                 }
218                 memset(channel->ch_wqueue, 0, WQUEUESIZE);
219         }
220
221         channel->ch_flags &= ~(CH_OPENING);
222         /*
223          * Initialize if neither terminal is open.
224          */
225         jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
226                 "jsm_open: initializing channel in open...\n");
227
228         /*
229          * Flush input queues.
230          */
231         channel->ch_r_head = channel->ch_r_tail = 0;
232         channel->ch_e_head = channel->ch_e_tail = 0;
233         channel->ch_w_head = channel->ch_w_tail = 0;
234
235         brd->bd_ops->flush_uart_write(channel);
236         brd->bd_ops->flush_uart_read(channel);
237
238         channel->ch_flags = 0;
239         channel->ch_cached_lsr = 0;
240         channel->ch_stops_sent = 0;
241
242         channel->ch_c_cflag     = port->info->tty->termios->c_cflag;
243         channel->ch_c_iflag     = port->info->tty->termios->c_iflag;
244         channel->ch_c_oflag     = port->info->tty->termios->c_oflag;
245         channel->ch_c_lflag     = port->info->tty->termios->c_lflag;
246         channel->ch_startc = port->info->tty->termios->c_cc[VSTART];
247         channel->ch_stopc = port->info->tty->termios->c_cc[VSTOP];
248
249         /* Tell UART to init itself */
250         brd->bd_ops->uart_init(channel);
251
252         /*
253          * Run param in case we changed anything
254          */
255         brd->bd_ops->param(channel);
256
257         jsm_carrier(channel);
258
259         channel->ch_open_count++;
260
261         jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
262         return rc;
263 }
264
265 static void jsm_tty_close(struct uart_port *port)
266 {
267         struct jsm_board *bd;
268         struct termios *ts;
269         struct jsm_channel *channel = (struct jsm_channel *)port;
270
271         jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
272
273         bd = channel->ch_bd;
274         ts = channel->uart_port.info->tty->termios;
275
276         channel->ch_flags &= ~(CH_STOPI);
277
278         channel->ch_open_count--;
279
280         /*
281          * If we have HUPCL set, lower DTR and RTS
282          */
283         if (channel->ch_c_cflag & HUPCL) {
284                 jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
285                         "Close. HUPCL set, dropping DTR/RTS\n");
286
287                 /* Drop RTS/DTR */
288                 channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
289                 bd->bd_ops->assert_modem_signals(channel);
290         }
291
292         channel->ch_old_baud = 0;
293
294         /* Turn off UART interrupts for this port */
295         channel->ch_bd->bd_ops->uart_off(channel);
296
297         jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
298 }
299
300 static void jsm_tty_set_termios(struct uart_port *port,
301                                  struct termios *termios,
302                                  struct termios *old_termios)
303 {
304         unsigned long lock_flags;
305         struct jsm_channel *channel = (struct jsm_channel *)port;
306
307         spin_lock_irqsave(&port->lock, lock_flags);
308         channel->ch_c_cflag     = termios->c_cflag;
309         channel->ch_c_iflag     = termios->c_iflag;
310         channel->ch_c_oflag     = termios->c_oflag;
311         channel->ch_c_lflag     = termios->c_lflag;
312         channel->ch_startc      = termios->c_cc[VSTART];
313         channel->ch_stopc       = termios->c_cc[VSTOP];
314
315         channel->ch_bd->bd_ops->param(channel);
316         jsm_carrier(channel);
317         spin_unlock_irqrestore(&port->lock, lock_flags);
318 }
319
320 static const char *jsm_tty_type(struct uart_port *port)
321 {
322         return "jsm";
323 }
324
325 static void jsm_tty_release_port(struct uart_port *port)
326 {
327 }
328
329 static int jsm_tty_request_port(struct uart_port *port)
330 {
331         return 0;
332 }
333
334 static void jsm_config_port(struct uart_port *port, int flags)
335 {
336         port->type = PORT_JSM;
337 }
338
339 static struct uart_ops jsm_ops = {
340         .tx_empty       = jsm_tty_tx_empty,
341         .set_mctrl      = jsm_tty_set_mctrl,
342         .get_mctrl      = jsm_tty_get_mctrl,
343         .stop_tx        = jsm_tty_stop_tx,
344         .start_tx       = jsm_tty_start_tx,
345         .send_xchar     = jsm_tty_send_xchar,
346         .stop_rx        = jsm_tty_stop_rx,
347         .break_ctl      = jsm_tty_break,
348         .startup        = jsm_tty_open,
349         .shutdown       = jsm_tty_close,
350         .set_termios    = jsm_tty_set_termios,
351         .type           = jsm_tty_type,
352         .release_port   = jsm_tty_release_port,
353         .request_port   = jsm_tty_request_port,
354         .config_port    = jsm_config_port,
355 };
356
357 /*
358  * jsm_tty_init()
359  *
360  * Init the tty subsystem.  Called once per board after board has been
361  * downloaded and init'ed.
362  */
363 int jsm_tty_init(struct jsm_board *brd)
364 {
365         int i;
366         void __iomem *vaddr;
367         struct jsm_channel *ch;
368
369         if (!brd)
370                 return -ENXIO;
371
372         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
373
374         /*
375          * Initialize board structure elements.
376          */
377
378         brd->nasync = brd->maxports;
379
380         /*
381          * Allocate channel memory that might not have been allocated
382          * when the driver was first loaded.
383          */
384         for (i = 0; i < brd->nasync; i++) {
385                 if (!brd->channels[i]) {
386
387                         /*
388                          * Okay to malloc with GFP_KERNEL, we are not at
389                          * interrupt context, and there are no locks held.
390                          */
391                         brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
392                         if (!brd->channels[i]) {
393                                 jsm_printk(CORE, ERR, &brd->pci_dev,
394                                         "%s:%d Unable to allocate memory for channel struct\n",
395                                                          __FILE__, __LINE__);
396                         }
397                         memset(brd->channels[i], 0, sizeof(struct jsm_channel));
398                 }
399         }
400
401         ch = brd->channels[0];
402         vaddr = brd->re_map_membase;
403
404         /* Set up channel variables */
405         for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
406
407                 if (!brd->channels[i])
408                         continue;
409
410                 spin_lock_init(&ch->ch_lock);
411
412                 if (brd->bd_uart_offset == 0x200)
413                         ch->ch_neo_uart =  vaddr + (brd->bd_uart_offset * i);
414
415                 ch->ch_bd = brd;
416                 ch->ch_portnum = i;
417
418                 /* .25 second delay */
419                 ch->ch_close_delay = 250;
420
421                 init_waitqueue_head(&ch->ch_flags_wait);
422         }
423
424         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
425         return 0;
426 }
427
428 int jsm_uart_port_init(struct jsm_board *brd)
429 {
430         int i;
431         struct jsm_channel *ch;
432
433         if (!brd)
434                 return -ENXIO;
435
436         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
437
438         /*
439          * Initialize board structure elements.
440          */
441
442         brd->nasync = brd->maxports;
443
444         /* Set up channel variables */
445         for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
446
447                 if (!brd->channels[i])
448                         continue;
449
450                 brd->channels[i]->uart_port.irq = brd->irq;
451                 brd->channels[i]->uart_port.type = PORT_JSM;
452                 brd->channels[i]->uart_port.iotype = UPIO_MEM;
453                 brd->channels[i]->uart_port.membase = brd->re_map_membase;
454                 brd->channels[i]->uart_port.fifosize = 16;
455                 brd->channels[i]->uart_port.ops = &jsm_ops;
456                 brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
457                 if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
458                         printk(KERN_INFO "Added device failed\n");
459                 else
460                         printk(KERN_INFO "Added device \n");
461         }
462
463         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
464         return 0;
465 }
466
467 int jsm_remove_uart_port(struct jsm_board *brd)
468 {
469         int i;
470         struct jsm_channel *ch;
471
472         if (!brd)
473                 return -ENXIO;
474
475         jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
476
477         /*
478          * Initialize board structure elements.
479          */
480
481         brd->nasync = brd->maxports;
482
483         /* Set up channel variables */
484         for (i = 0; i < brd->nasync; i++) {
485
486                 if (!brd->channels[i])
487                         continue;
488
489                 ch = brd->channels[i];
490
491                 uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
492         }
493
494         jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
495         return 0;
496 }
497
498 void jsm_input(struct jsm_channel *ch)
499 {
500         struct jsm_board *bd;
501         struct tty_struct *tp;
502         struct tty_ldisc *ld;
503         u32 rmask;
504         u16 head;
505         u16 tail;
506         int data_len;
507         unsigned long lock_flags;
508         int flip_len = 0;
509         int len = 0;
510         int n = 0;
511         char *buf = NULL;
512         int s = 0;
513         int i = 0;
514
515         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
516
517         if (!ch)
518                 return;
519
520         tp = ch->uart_port.info->tty;
521
522         bd = ch->ch_bd;
523         if(!bd)
524                 return;
525
526         spin_lock_irqsave(&ch->ch_lock, lock_flags);
527
528         /*
529          *Figure the number of characters in the buffer.
530          *Exit immediately if none.
531          */
532
533         rmask = RQUEUEMASK;
534
535         head = ch->ch_r_head & rmask;
536         tail = ch->ch_r_tail & rmask;
537
538         data_len = (head - tail) & rmask;
539         if (data_len == 0) {
540                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
541                 return;
542         }
543
544         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
545
546         /*
547          *If the device is not open, or CREAD is off, flush
548          *input data and return immediately.
549          */
550         if (!tp ||
551                 !(tp->termios->c_cflag & CREAD) ) {
552
553                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
554                         "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
555                 ch->ch_r_head = tail;
556
557                 /* Force queue flow control to be released, if needed */
558                 jsm_check_queue_flow_control(ch);
559
560                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
561                 return;
562         }
563
564         /*
565          * If we are throttled, simply don't read any data.
566          */
567         if (ch->ch_flags & CH_STOPI) {
568                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
569                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
570                         "Port %d throttled, not reading any data. head: %x tail: %x\n",
571                         ch->ch_portnum, head, tail);
572                 return;
573         }
574
575         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
576
577         /*
578          * If the rxbuf is empty and we are not throttled, put as much
579          * as we can directly into the linux TTY buffer.
580          *
581          */
582         flip_len = TTY_FLIPBUF_SIZE;
583
584         len = min(data_len, flip_len);
585         len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
586         ld = tty_ldisc_ref(tp);
587
588         /*
589          * If the DONT_FLIP flag is on, don't flush our buffer, and act
590          * like the ld doesn't have any space to put the data right now.
591          */
592         if (test_bit(TTY_DONT_FLIP, &tp->flags))
593                 len = 0;
594
595         /*
596          * If we were unable to get a reference to the ld,
597          * don't flush our buffer, and act like the ld doesn't
598          * have any space to put the data right now.
599          */
600         if (!ld) {
601                 len = 0;
602         } else {
603                 /*
604                  * If ld doesn't have a pointer to a receive_buf function,
605                  * flush the data, then act like the ld doesn't have any
606                  * space to put the data right now.
607                  */
608                 if (!ld->receive_buf) {
609                                 ch->ch_r_head = ch->ch_r_tail;
610                                 len = 0;
611                 }
612         }
613
614         if (len <= 0) {
615                 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
616                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
617                 if (ld)
618                         tty_ldisc_deref(ld);
619                 return;
620         }
621
622         len = tty_buffer_request_room(tp, len);
623         n = len;
624
625         /*
626          * n now contains the most amount of data we can copy,
627          * bounded either by the flip buffer size or the amount
628          * of data the card actually has pending...
629          */
630         while (n) {
631                 s = ((head >= tail) ? head : RQUEUESIZE) - tail;
632                 s = min(s, n);
633
634                 if (s <= 0)
635                         break;
636
637                         /*
638                          * If conditions are such that ld needs to see all
639                          * UART errors, we will have to walk each character
640                          * and error byte and send them to the buffer one at
641                          * a time.
642                          */
643
644                 if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
645                         for (i = 0; i < s; i++) {
646                                 /*
647                                  * Give the Linux ld the flags in the
648                                  * format it likes.
649                                  */
650                                 if (*(ch->ch_equeue +tail +i) & UART_LSR_BI)
651                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i),  TTY_BREAK);
652                                 else if (*(ch->ch_equeue +tail +i) & UART_LSR_PE)
653                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_PARITY);
654                                 else if (*(ch->ch_equeue +tail +i) & UART_LSR_FE)
655                                         tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_FRAME);
656                                 else
657                                 tty_insert_flip_char(tp, *(ch->ch_rqueue +tail +i), TTY_NORMAL);
658                         }
659                 } else {
660                         tty_insert_flip_string(tp, ch->ch_rqueue + tail, s) ;
661                 }
662                 tail += s;
663                 n -= s;
664                 /* Flip queue if needed */
665                 tail &= rmask;
666         }
667
668         ch->ch_r_tail = tail & rmask;
669         ch->ch_e_tail = tail & rmask;
670         jsm_check_queue_flow_control(ch);
671         spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
672
673         /* Tell the tty layer its okay to "eat" the data now */
674         tty_flip_buffer_push(tp);
675
676         if (ld)
677                 tty_ldisc_deref(ld);
678
679         jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
680 }
681
682 static void jsm_carrier(struct jsm_channel *ch)
683 {
684         struct jsm_board *bd;
685
686         int virt_carrier = 0;
687         int phys_carrier = 0;
688
689         jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
690         if (!ch)
691                 return;
692
693         bd = ch->ch_bd;
694
695         if (!bd)
696                 return;
697
698         if (ch->ch_mistat & UART_MSR_DCD) {
699                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
700                         "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
701                 phys_carrier = 1;
702         }
703
704         if (ch->ch_c_cflag & CLOCAL)
705                 virt_carrier = 1;
706
707         jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
708                 "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
709
710         /*
711          * Test for a VIRTUAL carrier transition to HIGH.
712          */
713         if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
714
715                 /*
716                  * When carrier rises, wake any threads waiting
717                  * for carrier in the open routine.
718                  */
719
720                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
721                         "carrier: virt DCD rose\n");
722
723                 if (waitqueue_active(&(ch->ch_flags_wait)))
724                         wake_up_interruptible(&ch->ch_flags_wait);
725         }
726
727         /*
728          * Test for a PHYSICAL carrier transition to HIGH.
729          */
730         if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
731
732                 /*
733                  * When carrier rises, wake any threads waiting
734                  * for carrier in the open routine.
735                  */
736
737                 jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
738                         "carrier: physical DCD rose\n");
739
740                 if (waitqueue_active(&(ch->ch_flags_wait)))
741                         wake_up_interruptible(&ch->ch_flags_wait);
742         }
743
744         /*
745          *  Test for a PHYSICAL transition to low, so long as we aren't
746          *  currently ignoring physical transitions (which is what "virtual
747          *  carrier" indicates).
748          *
749          *  The transition of the virtual carrier to low really doesn't
750          *  matter... it really only means "ignore carrier state", not
751          *  "make pretend that carrier is there".
752          */
753         if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
754                         && (phys_carrier == 0)) {
755                 /*
756                  *      When carrier drops:
757                  *
758                  *      Drop carrier on all open units.
759                  *
760                  *      Flush queues, waking up any task waiting in the
761                  *      line discipline.
762                  *
763                  *      Send a hangup to the control terminal.
764                  *
765                  *      Enable all select calls.
766                  */
767                 if (waitqueue_active(&(ch->ch_flags_wait)))
768                         wake_up_interruptible(&ch->ch_flags_wait);
769         }
770
771         /*
772          *  Make sure that our cached values reflect the current reality.
773          */
774         if (virt_carrier == 1)
775                 ch->ch_flags |= CH_FCAR;
776         else
777                 ch->ch_flags &= ~CH_FCAR;
778
779         if (phys_carrier == 1)
780                 ch->ch_flags |= CH_CD;
781         else
782                 ch->ch_flags &= ~CH_CD;
783 }
784
785
786 void jsm_check_queue_flow_control(struct jsm_channel *ch)
787 {
788         int qleft = 0;
789
790         /* Store how much space we have left in the queue */
791         if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
792                 qleft += RQUEUEMASK + 1;
793
794         /*
795          * Check to see if we should enforce flow control on our queue because
796          * the ld (or user) isn't reading data out of our queue fast enuf.
797          *
798          * NOTE: This is done based on what the current flow control of the
799          * port is set for.
800          *
801          * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
802          *      This will cause the UART's FIFO to back up, and force
803          *      the RTS signal to be dropped.
804          * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
805          *      the other side, in hopes it will stop sending data to us.
806          * 3) NONE - Nothing we can do.  We will simply drop any extra data
807          *      that gets sent into us when the queue fills up.
808          */
809         if (qleft < 256) {
810                 /* HWFLOW */
811                 if (ch->ch_c_cflag & CRTSCTS) {
812                         if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
813                                 ch->ch_bd->bd_ops->disable_receiver(ch);
814                                 ch->ch_flags |= (CH_RECEIVER_OFF);
815                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
816                                         "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
817                                         qleft);
818                         }
819                 }
820                 /* SWFLOW */
821                 else if (ch->ch_c_iflag & IXOFF) {
822                         if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
823                                 ch->ch_bd->bd_ops->send_stop_character(ch);
824                                 ch->ch_stops_sent++;
825                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
826                                         "Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
827                         }
828                 }
829         }
830
831         /*
832          * Check to see if we should unenforce flow control because
833          * ld (or user) finally read enuf data out of our queue.
834          *
835          * NOTE: This is done based on what the current flow control of the
836          * port is set for.
837          *
838          * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
839          *      This will cause the UART's FIFO to raise RTS back up,
840          *      which will allow the other side to start sending data again.
841          * 2) SWFLOW (IXOFF) - Send a start character to
842          *      the other side, so it will start sending data to us again.
843          * 3) NONE - Do nothing. Since we didn't do anything to turn off the
844          *      other side, we don't need to do anything now.
845          */
846         if (qleft > (RQUEUESIZE / 2)) {
847                 /* HWFLOW */
848                 if (ch->ch_c_cflag & CRTSCTS) {
849                         if (ch->ch_flags & CH_RECEIVER_OFF) {
850                                 ch->ch_bd->bd_ops->enable_receiver(ch);
851                                 ch->ch_flags &= ~(CH_RECEIVER_OFF);
852                                 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
853                                         "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
854                                         qleft);
855                         }
856                 }
857                 /* SWFLOW */
858                 else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
859                         ch->ch_stops_sent = 0;
860                         ch->ch_bd->bd_ops->send_start_character(ch);
861                         jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
862                 }
863         }
864 }
865
866 /*
867  * jsm_tty_write()
868  *
869  * Take data from the user or kernel and send it out to the FEP.
870  * In here exists all the Transparent Print magic as well.
871  */
872 int jsm_tty_write(struct uart_port *port)
873 {
874         int bufcount = 0, n = 0;
875         int data_count = 0,data_count1 =0;
876         u16 head;
877         u16 tail;
878         u16 tmask;
879         u32 remain;
880         int temp_tail = port->info->xmit.tail;
881         struct jsm_channel *channel = (struct jsm_channel *)port;
882
883         tmask = WQUEUEMASK;
884         head = (channel->ch_w_head) & tmask;
885         tail = (channel->ch_w_tail) & tmask;
886
887         if ((bufcount = tail - head - 1) < 0)
888                 bufcount += WQUEUESIZE;
889
890         n = bufcount;
891
892         n = min(n, 56);
893         remain = WQUEUESIZE - head;
894
895         data_count = 0;
896         if (n >= remain) {
897                 n -= remain;
898                 while ((port->info->xmit.head != temp_tail) &&
899                 (data_count < remain)) {
900                         channel->ch_wqueue[head++] =
901                         port->info->xmit.buf[temp_tail];
902
903                         temp_tail++;
904                         temp_tail &= (UART_XMIT_SIZE - 1);
905                         data_count++;
906                 }
907                 if (data_count == remain) head = 0;
908         }
909
910         data_count1 = 0;
911         if (n > 0) {
912                 remain = n;
913                 while ((port->info->xmit.head != temp_tail) &&
914                         (data_count1 < remain)) {
915                         channel->ch_wqueue[head++] =
916                                 port->info->xmit.buf[temp_tail];
917
918                         temp_tail++;
919                         temp_tail &= (UART_XMIT_SIZE - 1);
920                         data_count1++;
921
922                 }
923         }
924
925         port->info->xmit.tail = temp_tail;
926
927         data_count += data_count1;
928         if (data_count) {
929                 head &= tmask;
930                 channel->ch_w_head = head;
931         }
932
933         if (data_count) {
934                 channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
935         }
936
937         return data_count;
938 }