Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-2.6-block.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/bio-integrity.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/bio-integrity.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/rw_hint.h>
52 #include <linux/major.h>
53 #include <linux/mutex.h>
54 #include <linux/string_helpers.h>
55 #include <linux/slab.h>
56 #include <linux/sed-opal.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/pr.h>
59 #include <linux/t10-pi.h>
60 #include <linux/uaccess.h>
61 #include <asm/unaligned.h>
62
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_dbg.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_devinfo.h>
68 #include <scsi/scsi_driver.h>
69 #include <scsi/scsi_eh.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_ioctl.h>
72 #include <scsi/scsicam.h>
73 #include <scsi/scsi_common.h>
74
75 #include "sd.h"
76 #include "scsi_priv.h"
77 #include "scsi_logging.h"
78
79 MODULE_AUTHOR("Eric Youngdale");
80 MODULE_DESCRIPTION("SCSI disk (sd) driver");
81 MODULE_LICENSE("GPL");
82
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
97 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
98 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
101 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
102 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
103
104 #define SD_MINORS       16
105
106 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
107                 unsigned int mode);
108 static void sd_config_write_same(struct scsi_disk *sdkp,
109                 struct queue_limits *lim);
110 static int  sd_revalidate_disk(struct gendisk *);
111 static void sd_unlock_native_capacity(struct gendisk *disk);
112 static void sd_shutdown(struct device *);
113 static void scsi_disk_release(struct device *cdev);
114
115 static DEFINE_IDA(sd_index_ida);
116
117 static mempool_t *sd_page_pool;
118 static struct lock_class_key sd_bio_compl_lkclass;
119
120 static const char *sd_cache_types[] = {
121         "write through", "none", "write back",
122         "write back, no read (daft)"
123 };
124
125 static void sd_set_flush_flag(struct scsi_disk *sdkp,
126                 struct queue_limits *lim)
127 {
128         if (sdkp->WCE) {
129                 lim->features |= BLK_FEAT_WRITE_CACHE;
130                 if (sdkp->DPOFUA)
131                         lim->features |= BLK_FEAT_FUA;
132                 else
133                         lim->features &= ~BLK_FEAT_FUA;
134         } else {
135                 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
136         }
137 }
138
139 static ssize_t
140 cache_type_store(struct device *dev, struct device_attribute *attr,
141                  const char *buf, size_t count)
142 {
143         int ct, rcd, wce, sp;
144         struct scsi_disk *sdkp = to_scsi_disk(dev);
145         struct scsi_device *sdp = sdkp->device;
146         char buffer[64];
147         char *buffer_data;
148         struct scsi_mode_data data;
149         struct scsi_sense_hdr sshdr;
150         static const char temp[] = "temporary ";
151         int len, ret;
152
153         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
154                 /* no cache control on RBC devices; theoretically they
155                  * can do it, but there's probably so many exceptions
156                  * it's not worth the risk */
157                 return -EINVAL;
158
159         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
160                 buf += sizeof(temp) - 1;
161                 sdkp->cache_override = 1;
162         } else {
163                 sdkp->cache_override = 0;
164         }
165
166         ct = sysfs_match_string(sd_cache_types, buf);
167         if (ct < 0)
168                 return -EINVAL;
169
170         rcd = ct & 0x01 ? 1 : 0;
171         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
172
173         if (sdkp->cache_override) {
174                 struct queue_limits lim;
175
176                 sdkp->WCE = wce;
177                 sdkp->RCD = rcd;
178
179                 lim = queue_limits_start_update(sdkp->disk->queue);
180                 sd_set_flush_flag(sdkp, &lim);
181                 blk_mq_freeze_queue(sdkp->disk->queue);
182                 ret = queue_limits_commit_update(sdkp->disk->queue, &lim);
183                 blk_mq_unfreeze_queue(sdkp->disk->queue);
184                 if (ret)
185                         return ret;
186                 return count;
187         }
188
189         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
190                             sdkp->max_retries, &data, NULL))
191                 return -EINVAL;
192         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
193                   data.block_descriptor_length);
194         buffer_data = buffer + data.header_length +
195                 data.block_descriptor_length;
196         buffer_data[2] &= ~0x05;
197         buffer_data[2] |= wce << 2 | rcd;
198         sp = buffer_data[0] & 0x80 ? 1 : 0;
199         buffer_data[0] &= ~0x80;
200
201         /*
202          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
203          * received mode parameter buffer before doing MODE SELECT.
204          */
205         data.device_specific = 0;
206
207         ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
208                                sdkp->max_retries, &data, &sshdr);
209         if (ret) {
210                 if (ret > 0 && scsi_sense_valid(&sshdr))
211                         sd_print_sense_hdr(sdkp, &sshdr);
212                 return -EINVAL;
213         }
214         sd_revalidate_disk(sdkp->disk);
215         return count;
216 }
217
218 static ssize_t
219 manage_start_stop_show(struct device *dev,
220                        struct device_attribute *attr, char *buf)
221 {
222         struct scsi_disk *sdkp = to_scsi_disk(dev);
223         struct scsi_device *sdp = sdkp->device;
224
225         return sysfs_emit(buf, "%u\n",
226                           sdp->manage_system_start_stop &&
227                           sdp->manage_runtime_start_stop &&
228                           sdp->manage_shutdown);
229 }
230 static DEVICE_ATTR_RO(manage_start_stop);
231
232 static ssize_t
233 manage_system_start_stop_show(struct device *dev,
234                               struct device_attribute *attr, char *buf)
235 {
236         struct scsi_disk *sdkp = to_scsi_disk(dev);
237         struct scsi_device *sdp = sdkp->device;
238
239         return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
240 }
241
242 static ssize_t
243 manage_system_start_stop_store(struct device *dev,
244                                struct device_attribute *attr,
245                                const char *buf, size_t count)
246 {
247         struct scsi_disk *sdkp = to_scsi_disk(dev);
248         struct scsi_device *sdp = sdkp->device;
249         bool v;
250
251         if (!capable(CAP_SYS_ADMIN))
252                 return -EACCES;
253
254         if (kstrtobool(buf, &v))
255                 return -EINVAL;
256
257         sdp->manage_system_start_stop = v;
258
259         return count;
260 }
261 static DEVICE_ATTR_RW(manage_system_start_stop);
262
263 static ssize_t
264 manage_runtime_start_stop_show(struct device *dev,
265                                struct device_attribute *attr, char *buf)
266 {
267         struct scsi_disk *sdkp = to_scsi_disk(dev);
268         struct scsi_device *sdp = sdkp->device;
269
270         return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
271 }
272
273 static ssize_t
274 manage_runtime_start_stop_store(struct device *dev,
275                                 struct device_attribute *attr,
276                                 const char *buf, size_t count)
277 {
278         struct scsi_disk *sdkp = to_scsi_disk(dev);
279         struct scsi_device *sdp = sdkp->device;
280         bool v;
281
282         if (!capable(CAP_SYS_ADMIN))
283                 return -EACCES;
284
285         if (kstrtobool(buf, &v))
286                 return -EINVAL;
287
288         sdp->manage_runtime_start_stop = v;
289
290         return count;
291 }
292 static DEVICE_ATTR_RW(manage_runtime_start_stop);
293
294 static ssize_t manage_shutdown_show(struct device *dev,
295                                     struct device_attribute *attr, char *buf)
296 {
297         struct scsi_disk *sdkp = to_scsi_disk(dev);
298         struct scsi_device *sdp = sdkp->device;
299
300         return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
301 }
302
303 static ssize_t manage_shutdown_store(struct device *dev,
304                                      struct device_attribute *attr,
305                                      const char *buf, size_t count)
306 {
307         struct scsi_disk *sdkp = to_scsi_disk(dev);
308         struct scsi_device *sdp = sdkp->device;
309         bool v;
310
311         if (!capable(CAP_SYS_ADMIN))
312                 return -EACCES;
313
314         if (kstrtobool(buf, &v))
315                 return -EINVAL;
316
317         sdp->manage_shutdown = v;
318
319         return count;
320 }
321 static DEVICE_ATTR_RW(manage_shutdown);
322
323 static ssize_t
324 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
325 {
326         struct scsi_disk *sdkp = to_scsi_disk(dev);
327
328         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
329 }
330
331 static ssize_t
332 allow_restart_store(struct device *dev, struct device_attribute *attr,
333                     const char *buf, size_t count)
334 {
335         bool v;
336         struct scsi_disk *sdkp = to_scsi_disk(dev);
337         struct scsi_device *sdp = sdkp->device;
338
339         if (!capable(CAP_SYS_ADMIN))
340                 return -EACCES;
341
342         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
343                 return -EINVAL;
344
345         if (kstrtobool(buf, &v))
346                 return -EINVAL;
347
348         sdp->allow_restart = v;
349
350         return count;
351 }
352 static DEVICE_ATTR_RW(allow_restart);
353
354 static ssize_t
355 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
356 {
357         struct scsi_disk *sdkp = to_scsi_disk(dev);
358         int ct = sdkp->RCD + 2*sdkp->WCE;
359
360         return sprintf(buf, "%s\n", sd_cache_types[ct]);
361 }
362 static DEVICE_ATTR_RW(cache_type);
363
364 static ssize_t
365 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
366 {
367         struct scsi_disk *sdkp = to_scsi_disk(dev);
368
369         return sprintf(buf, "%u\n", sdkp->DPOFUA);
370 }
371 static DEVICE_ATTR_RO(FUA);
372
373 static ssize_t
374 protection_type_show(struct device *dev, struct device_attribute *attr,
375                      char *buf)
376 {
377         struct scsi_disk *sdkp = to_scsi_disk(dev);
378
379         return sprintf(buf, "%u\n", sdkp->protection_type);
380 }
381
382 static ssize_t
383 protection_type_store(struct device *dev, struct device_attribute *attr,
384                       const char *buf, size_t count)
385 {
386         struct scsi_disk *sdkp = to_scsi_disk(dev);
387         unsigned int val;
388         int err;
389
390         if (!capable(CAP_SYS_ADMIN))
391                 return -EACCES;
392
393         err = kstrtouint(buf, 10, &val);
394
395         if (err)
396                 return err;
397
398         if (val <= T10_PI_TYPE3_PROTECTION)
399                 sdkp->protection_type = val;
400
401         return count;
402 }
403 static DEVICE_ATTR_RW(protection_type);
404
405 static ssize_t
406 protection_mode_show(struct device *dev, struct device_attribute *attr,
407                      char *buf)
408 {
409         struct scsi_disk *sdkp = to_scsi_disk(dev);
410         struct scsi_device *sdp = sdkp->device;
411         unsigned int dif, dix;
412
413         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
414         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
415
416         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
417                 dif = 0;
418                 dix = 1;
419         }
420
421         if (!dif && !dix)
422                 return sprintf(buf, "none\n");
423
424         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
425 }
426 static DEVICE_ATTR_RO(protection_mode);
427
428 static ssize_t
429 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
430 {
431         struct scsi_disk *sdkp = to_scsi_disk(dev);
432
433         return sprintf(buf, "%u\n", sdkp->ATO);
434 }
435 static DEVICE_ATTR_RO(app_tag_own);
436
437 static ssize_t
438 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
439                        char *buf)
440 {
441         struct scsi_disk *sdkp = to_scsi_disk(dev);
442
443         return sprintf(buf, "%u\n", sdkp->lbpme);
444 }
445 static DEVICE_ATTR_RO(thin_provisioning);
446
447 /* sysfs_match_string() requires dense arrays */
448 static const char *lbp_mode[] = {
449         [SD_LBP_FULL]           = "full",
450         [SD_LBP_UNMAP]          = "unmap",
451         [SD_LBP_WS16]           = "writesame_16",
452         [SD_LBP_WS10]           = "writesame_10",
453         [SD_LBP_ZERO]           = "writesame_zero",
454         [SD_LBP_DISABLE]        = "disabled",
455 };
456
457 static ssize_t
458 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
459                        char *buf)
460 {
461         struct scsi_disk *sdkp = to_scsi_disk(dev);
462
463         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
464 }
465
466 static ssize_t
467 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
468                         const char *buf, size_t count)
469 {
470         struct scsi_disk *sdkp = to_scsi_disk(dev);
471         struct scsi_device *sdp = sdkp->device;
472         struct queue_limits lim;
473         int mode, err;
474
475         if (!capable(CAP_SYS_ADMIN))
476                 return -EACCES;
477
478         if (sdp->type != TYPE_DISK)
479                 return -EINVAL;
480
481         mode = sysfs_match_string(lbp_mode, buf);
482         if (mode < 0)
483                 return -EINVAL;
484
485         lim = queue_limits_start_update(sdkp->disk->queue);
486         sd_config_discard(sdkp, &lim, mode);
487         blk_mq_freeze_queue(sdkp->disk->queue);
488         err = queue_limits_commit_update(sdkp->disk->queue, &lim);
489         blk_mq_unfreeze_queue(sdkp->disk->queue);
490         if (err)
491                 return err;
492         return count;
493 }
494 static DEVICE_ATTR_RW(provisioning_mode);
495
496 /* sysfs_match_string() requires dense arrays */
497 static const char *zeroing_mode[] = {
498         [SD_ZERO_WRITE]         = "write",
499         [SD_ZERO_WS]            = "writesame",
500         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
501         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
502 };
503
504 static ssize_t
505 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
506                   char *buf)
507 {
508         struct scsi_disk *sdkp = to_scsi_disk(dev);
509
510         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
511 }
512
513 static ssize_t
514 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
515                    const char *buf, size_t count)
516 {
517         struct scsi_disk *sdkp = to_scsi_disk(dev);
518         int mode;
519
520         if (!capable(CAP_SYS_ADMIN))
521                 return -EACCES;
522
523         mode = sysfs_match_string(zeroing_mode, buf);
524         if (mode < 0)
525                 return -EINVAL;
526
527         sdkp->zeroing_mode = mode;
528
529         return count;
530 }
531 static DEVICE_ATTR_RW(zeroing_mode);
532
533 static ssize_t
534 max_medium_access_timeouts_show(struct device *dev,
535                                 struct device_attribute *attr, char *buf)
536 {
537         struct scsi_disk *sdkp = to_scsi_disk(dev);
538
539         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
540 }
541
542 static ssize_t
543 max_medium_access_timeouts_store(struct device *dev,
544                                  struct device_attribute *attr, const char *buf,
545                                  size_t count)
546 {
547         struct scsi_disk *sdkp = to_scsi_disk(dev);
548         int err;
549
550         if (!capable(CAP_SYS_ADMIN))
551                 return -EACCES;
552
553         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
554
555         return err ? err : count;
556 }
557 static DEVICE_ATTR_RW(max_medium_access_timeouts);
558
559 static ssize_t
560 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
561                            char *buf)
562 {
563         struct scsi_disk *sdkp = to_scsi_disk(dev);
564
565         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
566 }
567
568 static ssize_t
569 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
570                             const char *buf, size_t count)
571 {
572         struct scsi_disk *sdkp = to_scsi_disk(dev);
573         struct scsi_device *sdp = sdkp->device;
574         struct queue_limits lim;
575         unsigned long max;
576         int err;
577
578         if (!capable(CAP_SYS_ADMIN))
579                 return -EACCES;
580
581         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
582                 return -EINVAL;
583
584         err = kstrtoul(buf, 10, &max);
585
586         if (err)
587                 return err;
588
589         if (max == 0)
590                 sdp->no_write_same = 1;
591         else if (max <= SD_MAX_WS16_BLOCKS) {
592                 sdp->no_write_same = 0;
593                 sdkp->max_ws_blocks = max;
594         }
595
596         lim = queue_limits_start_update(sdkp->disk->queue);
597         sd_config_write_same(sdkp, &lim);
598         blk_mq_freeze_queue(sdkp->disk->queue);
599         err = queue_limits_commit_update(sdkp->disk->queue, &lim);
600         blk_mq_unfreeze_queue(sdkp->disk->queue);
601         if (err)
602                 return err;
603         return count;
604 }
605 static DEVICE_ATTR_RW(max_write_same_blocks);
606
607 static ssize_t
608 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
609 {
610         struct scsi_disk *sdkp = to_scsi_disk(dev);
611
612         if (sdkp->device->type == TYPE_ZBC)
613                 return sprintf(buf, "host-managed\n");
614         if (sdkp->zoned == 1)
615                 return sprintf(buf, "host-aware\n");
616         if (sdkp->zoned == 2)
617                 return sprintf(buf, "drive-managed\n");
618         return sprintf(buf, "none\n");
619 }
620 static DEVICE_ATTR_RO(zoned_cap);
621
622 static ssize_t
623 max_retries_store(struct device *dev, struct device_attribute *attr,
624                   const char *buf, size_t count)
625 {
626         struct scsi_disk *sdkp = to_scsi_disk(dev);
627         struct scsi_device *sdev = sdkp->device;
628         int retries, err;
629
630         err = kstrtoint(buf, 10, &retries);
631         if (err)
632                 return err;
633
634         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
635                 sdkp->max_retries = retries;
636                 return count;
637         }
638
639         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
640                     SD_MAX_RETRIES);
641         return -EINVAL;
642 }
643
644 static ssize_t
645 max_retries_show(struct device *dev, struct device_attribute *attr,
646                  char *buf)
647 {
648         struct scsi_disk *sdkp = to_scsi_disk(dev);
649
650         return sprintf(buf, "%d\n", sdkp->max_retries);
651 }
652
653 static DEVICE_ATTR_RW(max_retries);
654
655 static struct attribute *sd_disk_attrs[] = {
656         &dev_attr_cache_type.attr,
657         &dev_attr_FUA.attr,
658         &dev_attr_allow_restart.attr,
659         &dev_attr_manage_start_stop.attr,
660         &dev_attr_manage_system_start_stop.attr,
661         &dev_attr_manage_runtime_start_stop.attr,
662         &dev_attr_manage_shutdown.attr,
663         &dev_attr_protection_type.attr,
664         &dev_attr_protection_mode.attr,
665         &dev_attr_app_tag_own.attr,
666         &dev_attr_thin_provisioning.attr,
667         &dev_attr_provisioning_mode.attr,
668         &dev_attr_zeroing_mode.attr,
669         &dev_attr_max_write_same_blocks.attr,
670         &dev_attr_max_medium_access_timeouts.attr,
671         &dev_attr_zoned_cap.attr,
672         &dev_attr_max_retries.attr,
673         NULL,
674 };
675 ATTRIBUTE_GROUPS(sd_disk);
676
677 static struct class sd_disk_class = {
678         .name           = "scsi_disk",
679         .dev_release    = scsi_disk_release,
680         .dev_groups     = sd_disk_groups,
681 };
682
683 /*
684  * Don't request a new module, as that could deadlock in multipath
685  * environment.
686  */
687 static void sd_default_probe(dev_t devt)
688 {
689 }
690
691 /*
692  * Device no to disk mapping:
693  * 
694  *       major         disc2     disc  p1
695  *   |............|.............|....|....| <- dev_t
696  *    31        20 19          8 7  4 3  0
697  * 
698  * Inside a major, we have 16k disks, however mapped non-
699  * contiguously. The first 16 disks are for major0, the next
700  * ones with major1, ... Disk 256 is for major0 again, disk 272 
701  * for major1, ... 
702  * As we stay compatible with our numbering scheme, we can reuse 
703  * the well-know SCSI majors 8, 65--71, 136--143.
704  */
705 static int sd_major(int major_idx)
706 {
707         switch (major_idx) {
708         case 0:
709                 return SCSI_DISK0_MAJOR;
710         case 1 ... 7:
711                 return SCSI_DISK1_MAJOR + major_idx - 1;
712         case 8 ... 15:
713                 return SCSI_DISK8_MAJOR + major_idx - 8;
714         default:
715                 BUG();
716                 return 0;       /* shut up gcc */
717         }
718 }
719
720 #ifdef CONFIG_BLK_SED_OPAL
721 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
722                 size_t len, bool send)
723 {
724         struct scsi_disk *sdkp = data;
725         struct scsi_device *sdev = sdkp->device;
726         u8 cdb[12] = { 0, };
727         const struct scsi_exec_args exec_args = {
728                 .req_flags = BLK_MQ_REQ_PM,
729         };
730         int ret;
731
732         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
733         cdb[1] = secp;
734         put_unaligned_be16(spsp, &cdb[2]);
735         put_unaligned_be32(len, &cdb[6]);
736
737         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
738                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
739                                &exec_args);
740         return ret <= 0 ? ret : -EIO;
741 }
742 #endif /* CONFIG_BLK_SED_OPAL */
743
744 /*
745  * Look up the DIX operation based on whether the command is read or
746  * write and whether dix and dif are enabled.
747  */
748 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
749 {
750         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
751         static const unsigned int ops[] = {     /* wrt dix dif */
752                 SCSI_PROT_NORMAL,               /*  0   0   0  */
753                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
754                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
755                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
756                 SCSI_PROT_NORMAL,               /*  1   0   0  */
757                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
758                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
759                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
760         };
761
762         return ops[write << 2 | dix << 1 | dif];
763 }
764
765 /*
766  * Returns a mask of the protection flags that are valid for a given DIX
767  * operation.
768  */
769 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
770 {
771         static const unsigned int flag_mask[] = {
772                 [SCSI_PROT_NORMAL]              = 0,
773
774                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
775                                                   SCSI_PROT_GUARD_CHECK |
776                                                   SCSI_PROT_REF_CHECK |
777                                                   SCSI_PROT_REF_INCREMENT,
778
779                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
780                                                   SCSI_PROT_IP_CHECKSUM,
781
782                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
783                                                   SCSI_PROT_GUARD_CHECK |
784                                                   SCSI_PROT_REF_CHECK |
785                                                   SCSI_PROT_REF_INCREMENT |
786                                                   SCSI_PROT_IP_CHECKSUM,
787
788                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
789                                                   SCSI_PROT_REF_INCREMENT,
790
791                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
792                                                   SCSI_PROT_REF_CHECK |
793                                                   SCSI_PROT_REF_INCREMENT |
794                                                   SCSI_PROT_IP_CHECKSUM,
795
796                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
797                                                   SCSI_PROT_GUARD_CHECK |
798                                                   SCSI_PROT_REF_CHECK |
799                                                   SCSI_PROT_REF_INCREMENT |
800                                                   SCSI_PROT_IP_CHECKSUM,
801         };
802
803         return flag_mask[prot_op];
804 }
805
806 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
807                                            unsigned int dix, unsigned int dif)
808 {
809         struct request *rq = scsi_cmd_to_rq(scmd);
810         struct bio *bio = rq->bio;
811         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
812         unsigned int protect = 0;
813
814         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
815                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
816                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
817
818                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
819                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
820         }
821
822         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
823                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
824
825                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
826                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
827         }
828
829         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
830                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
831
832                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
833                         protect = 3 << 5;       /* Disable target PI checking */
834                 else
835                         protect = 1 << 5;       /* Enable target PI checking */
836         }
837
838         scsi_set_prot_op(scmd, prot_op);
839         scsi_set_prot_type(scmd, dif);
840         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
841
842         return protect;
843 }
844
845 static void sd_disable_discard(struct scsi_disk *sdkp)
846 {
847         sdkp->provisioning_mode = SD_LBP_DISABLE;
848         blk_queue_disable_discard(sdkp->disk->queue);
849 }
850
851 static void sd_config_discard(struct scsi_disk *sdkp, struct queue_limits *lim,
852                 unsigned int mode)
853 {
854         unsigned int logical_block_size = sdkp->device->sector_size;
855         unsigned int max_blocks = 0;
856
857         lim->discard_alignment = sdkp->unmap_alignment * logical_block_size;
858         lim->discard_granularity = max(sdkp->physical_block_size,
859                         sdkp->unmap_granularity * logical_block_size);
860         sdkp->provisioning_mode = mode;
861
862         switch (mode) {
863
864         case SD_LBP_FULL:
865         case SD_LBP_DISABLE:
866                 break;
867
868         case SD_LBP_UNMAP:
869                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
870                                           (u32)SD_MAX_WS16_BLOCKS);
871                 break;
872
873         case SD_LBP_WS16:
874                 if (sdkp->device->unmap_limit_for_ws)
875                         max_blocks = sdkp->max_unmap_blocks;
876                 else
877                         max_blocks = sdkp->max_ws_blocks;
878
879                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
880                 break;
881
882         case SD_LBP_WS10:
883                 if (sdkp->device->unmap_limit_for_ws)
884                         max_blocks = sdkp->max_unmap_blocks;
885                 else
886                         max_blocks = sdkp->max_ws_blocks;
887
888                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
889                 break;
890
891         case SD_LBP_ZERO:
892                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
893                                           (u32)SD_MAX_WS10_BLOCKS);
894                 break;
895         }
896
897         lim->max_hw_discard_sectors = max_blocks *
898                 (logical_block_size >> SECTOR_SHIFT);
899 }
900
901 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
902 {
903         struct page *page;
904
905         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
906         if (!page)
907                 return NULL;
908         clear_highpage(page);
909         bvec_set_page(&rq->special_vec, page, data_len, 0);
910         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
911         return bvec_virt(&rq->special_vec);
912 }
913
914 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
915 {
916         struct scsi_device *sdp = cmd->device;
917         struct request *rq = scsi_cmd_to_rq(cmd);
918         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
919         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
920         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
921         unsigned int data_len = 24;
922         char *buf;
923
924         buf = sd_set_special_bvec(rq, data_len);
925         if (!buf)
926                 return BLK_STS_RESOURCE;
927
928         cmd->cmd_len = 10;
929         cmd->cmnd[0] = UNMAP;
930         cmd->cmnd[8] = 24;
931
932         put_unaligned_be16(6 + 16, &buf[0]);
933         put_unaligned_be16(16, &buf[2]);
934         put_unaligned_be64(lba, &buf[8]);
935         put_unaligned_be32(nr_blocks, &buf[16]);
936
937         cmd->allowed = sdkp->max_retries;
938         cmd->transfersize = data_len;
939         rq->timeout = SD_TIMEOUT;
940
941         return scsi_alloc_sgtables(cmd);
942 }
943
944 static void sd_config_atomic(struct scsi_disk *sdkp, struct queue_limits *lim)
945 {
946         unsigned int logical_block_size = sdkp->device->sector_size,
947                 physical_block_size_sectors, max_atomic, unit_min, unit_max;
948
949         if ((!sdkp->max_atomic && !sdkp->max_atomic_with_boundary) ||
950             sdkp->protection_type == T10_PI_TYPE2_PROTECTION)
951                 return;
952
953         physical_block_size_sectors = sdkp->physical_block_size /
954                                         sdkp->device->sector_size;
955
956         unit_min = rounddown_pow_of_two(sdkp->atomic_granularity ?
957                                         sdkp->atomic_granularity :
958                                         physical_block_size_sectors);
959
960         /*
961          * Only use atomic boundary when we have the odd scenario of
962          * sdkp->max_atomic == 0, which the spec does permit.
963          */
964         if (sdkp->max_atomic) {
965                 max_atomic = sdkp->max_atomic;
966                 unit_max = rounddown_pow_of_two(sdkp->max_atomic);
967                 sdkp->use_atomic_write_boundary = 0;
968         } else {
969                 max_atomic = sdkp->max_atomic_with_boundary;
970                 unit_max = rounddown_pow_of_two(sdkp->max_atomic_boundary);
971                 sdkp->use_atomic_write_boundary = 1;
972         }
973
974         /*
975          * Ensure compliance with granularity and alignment. For now, keep it
976          * simple and just don't support atomic writes for values mismatched
977          * with max_{boundary}atomic, physical block size, and
978          * atomic_granularity itself.
979          *
980          * We're really being distrustful by checking unit_max also...
981          */
982         if (sdkp->atomic_granularity > 1) {
983                 if (unit_min > 1 && unit_min % sdkp->atomic_granularity)
984                         return;
985                 if (unit_max > 1 && unit_max % sdkp->atomic_granularity)
986                         return;
987         }
988
989         if (sdkp->atomic_alignment > 1) {
990                 if (unit_min > 1 && unit_min % sdkp->atomic_alignment)
991                         return;
992                 if (unit_max > 1 && unit_max % sdkp->atomic_alignment)
993                         return;
994         }
995
996         lim->atomic_write_hw_max = max_atomic * logical_block_size;
997         lim->atomic_write_hw_boundary = 0;
998         lim->atomic_write_hw_unit_min = unit_min * logical_block_size;
999         lim->atomic_write_hw_unit_max = unit_max * logical_block_size;
1000 }
1001
1002 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
1003                 bool unmap)
1004 {
1005         struct scsi_device *sdp = cmd->device;
1006         struct request *rq = scsi_cmd_to_rq(cmd);
1007         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1008         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1009         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1010         u32 data_len = sdp->sector_size;
1011
1012         if (!sd_set_special_bvec(rq, data_len))
1013                 return BLK_STS_RESOURCE;
1014
1015         cmd->cmd_len = 16;
1016         cmd->cmnd[0] = WRITE_SAME_16;
1017         if (unmap)
1018                 cmd->cmnd[1] = 0x8; /* UNMAP */
1019         put_unaligned_be64(lba, &cmd->cmnd[2]);
1020         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1021
1022         cmd->allowed = sdkp->max_retries;
1023         cmd->transfersize = data_len;
1024         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1025
1026         return scsi_alloc_sgtables(cmd);
1027 }
1028
1029 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
1030                 bool unmap)
1031 {
1032         struct scsi_device *sdp = cmd->device;
1033         struct request *rq = scsi_cmd_to_rq(cmd);
1034         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1035         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1036         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1037         u32 data_len = sdp->sector_size;
1038
1039         if (!sd_set_special_bvec(rq, data_len))
1040                 return BLK_STS_RESOURCE;
1041
1042         cmd->cmd_len = 10;
1043         cmd->cmnd[0] = WRITE_SAME;
1044         if (unmap)
1045                 cmd->cmnd[1] = 0x8; /* UNMAP */
1046         put_unaligned_be32(lba, &cmd->cmnd[2]);
1047         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1048
1049         cmd->allowed = sdkp->max_retries;
1050         cmd->transfersize = data_len;
1051         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
1052
1053         return scsi_alloc_sgtables(cmd);
1054 }
1055
1056 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
1057 {
1058         struct request *rq = scsi_cmd_to_rq(cmd);
1059         struct scsi_device *sdp = cmd->device;
1060         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1061         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1062         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1063
1064         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
1065                 switch (sdkp->zeroing_mode) {
1066                 case SD_ZERO_WS16_UNMAP:
1067                         return sd_setup_write_same16_cmnd(cmd, true);
1068                 case SD_ZERO_WS10_UNMAP:
1069                         return sd_setup_write_same10_cmnd(cmd, true);
1070                 }
1071         }
1072
1073         if (sdp->no_write_same) {
1074                 rq->rq_flags |= RQF_QUIET;
1075                 return BLK_STS_TARGET;
1076         }
1077
1078         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
1079                 return sd_setup_write_same16_cmnd(cmd, false);
1080
1081         return sd_setup_write_same10_cmnd(cmd, false);
1082 }
1083
1084 static void sd_disable_write_same(struct scsi_disk *sdkp)
1085 {
1086         sdkp->device->no_write_same = 1;
1087         sdkp->max_ws_blocks = 0;
1088         blk_queue_disable_write_zeroes(sdkp->disk->queue);
1089 }
1090
1091 static void sd_config_write_same(struct scsi_disk *sdkp,
1092                 struct queue_limits *lim)
1093 {
1094         unsigned int logical_block_size = sdkp->device->sector_size;
1095
1096         if (sdkp->device->no_write_same) {
1097                 sdkp->max_ws_blocks = 0;
1098                 goto out;
1099         }
1100
1101         /* Some devices can not handle block counts above 0xffff despite
1102          * supporting WRITE SAME(16). Consequently we default to 64k
1103          * blocks per I/O unless the device explicitly advertises a
1104          * bigger limit.
1105          */
1106         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1107                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1108                                                    (u32)SD_MAX_WS16_BLOCKS);
1109         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1110                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1111                                                    (u32)SD_MAX_WS10_BLOCKS);
1112         else {
1113                 sdkp->device->no_write_same = 1;
1114                 sdkp->max_ws_blocks = 0;
1115         }
1116
1117         if (sdkp->lbprz && sdkp->lbpws)
1118                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1119         else if (sdkp->lbprz && sdkp->lbpws10)
1120                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1121         else if (sdkp->max_ws_blocks)
1122                 sdkp->zeroing_mode = SD_ZERO_WS;
1123         else
1124                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1125
1126         if (sdkp->max_ws_blocks &&
1127             sdkp->physical_block_size > logical_block_size) {
1128                 /*
1129                  * Reporting a maximum number of blocks that is not aligned
1130                  * on the device physical size would cause a large write same
1131                  * request to be split into physically unaligned chunks by
1132                  * __blkdev_issue_write_zeroes() even if the caller of this
1133                  * functions took care to align the large request. So make sure
1134                  * the maximum reported is aligned to the device physical block
1135                  * size. This is only an optional optimization for regular
1136                  * disks, but this is mandatory to avoid failure of large write
1137                  * same requests directed at sequential write required zones of
1138                  * host-managed ZBC disks.
1139                  */
1140                 sdkp->max_ws_blocks =
1141                         round_down(sdkp->max_ws_blocks,
1142                                    bytes_to_logical(sdkp->device,
1143                                                     sdkp->physical_block_size));
1144         }
1145
1146 out:
1147         lim->max_write_zeroes_sectors =
1148                 sdkp->max_ws_blocks * (logical_block_size >> SECTOR_SHIFT);
1149 }
1150
1151 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1152 {
1153         struct request *rq = scsi_cmd_to_rq(cmd);
1154         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1155
1156         /* flush requests don't perform I/O, zero the S/G table */
1157         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1158
1159         if (cmd->device->use_16_for_sync) {
1160                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1161                 cmd->cmd_len = 16;
1162         } else {
1163                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1164                 cmd->cmd_len = 10;
1165         }
1166         cmd->transfersize = 0;
1167         cmd->allowed = sdkp->max_retries;
1168
1169         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1170         return BLK_STS_OK;
1171 }
1172
1173 /**
1174  * sd_group_number() - Compute the GROUP NUMBER field
1175  * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1176  *      field.
1177  *
1178  * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1179  * 0: no relative lifetime.
1180  * 1: shortest relative lifetime.
1181  * 2: second shortest relative lifetime.
1182  * 3 - 0x3d: intermediate relative lifetimes.
1183  * 0x3e: second longest relative lifetime.
1184  * 0x3f: longest relative lifetime.
1185  */
1186 static u8 sd_group_number(struct scsi_cmnd *cmd)
1187 {
1188         const struct request *rq = scsi_cmd_to_rq(cmd);
1189         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1190
1191         if (!sdkp->rscs)
1192                 return 0;
1193
1194         return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1195                     0x3fu);
1196 }
1197
1198 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1199                                        sector_t lba, unsigned int nr_blocks,
1200                                        unsigned char flags, unsigned int dld)
1201 {
1202         cmd->cmd_len = SD_EXT_CDB_SIZE;
1203         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1204         cmd->cmnd[6]  = sd_group_number(cmd);
1205         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1206         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1207         cmd->cmnd[10] = flags;
1208         cmd->cmnd[11] = dld & 0x07;
1209         put_unaligned_be64(lba, &cmd->cmnd[12]);
1210         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1211         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1212
1213         return BLK_STS_OK;
1214 }
1215
1216 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1217                                        sector_t lba, unsigned int nr_blocks,
1218                                        unsigned char flags, unsigned int dld)
1219 {
1220         cmd->cmd_len  = 16;
1221         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1222         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1223         cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1224         cmd->cmnd[15] = 0;
1225         put_unaligned_be64(lba, &cmd->cmnd[2]);
1226         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1227
1228         return BLK_STS_OK;
1229 }
1230
1231 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1232                                        sector_t lba, unsigned int nr_blocks,
1233                                        unsigned char flags)
1234 {
1235         cmd->cmd_len = 10;
1236         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1237         cmd->cmnd[1] = flags;
1238         cmd->cmnd[6] = sd_group_number(cmd);
1239         cmd->cmnd[9] = 0;
1240         put_unaligned_be32(lba, &cmd->cmnd[2]);
1241         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1242
1243         return BLK_STS_OK;
1244 }
1245
1246 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1247                                       sector_t lba, unsigned int nr_blocks,
1248                                       unsigned char flags)
1249 {
1250         /* Avoid that 0 blocks gets translated into 256 blocks. */
1251         if (WARN_ON_ONCE(nr_blocks == 0))
1252                 return BLK_STS_IOERR;
1253
1254         if (unlikely(flags & 0x8)) {
1255                 /*
1256                  * This happens only if this drive failed 10byte rw
1257                  * command with ILLEGAL_REQUEST during operation and
1258                  * thus turned off use_10_for_rw.
1259                  */
1260                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1261                 return BLK_STS_IOERR;
1262         }
1263
1264         cmd->cmd_len = 6;
1265         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1266         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1267         cmd->cmnd[2] = (lba >> 8) & 0xff;
1268         cmd->cmnd[3] = lba & 0xff;
1269         cmd->cmnd[4] = nr_blocks;
1270         cmd->cmnd[5] = 0;
1271
1272         return BLK_STS_OK;
1273 }
1274
1275 /*
1276  * Check if a command has a duration limit set. If it does, and the target
1277  * device supports CDL and the feature is enabled, return the limit
1278  * descriptor index to use. Return 0 (no limit) otherwise.
1279  */
1280 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1281 {
1282         struct scsi_device *sdp = sdkp->device;
1283         int hint;
1284
1285         if (!sdp->cdl_supported || !sdp->cdl_enable)
1286                 return 0;
1287
1288         /*
1289          * Use "no limit" if the request ioprio does not specify a duration
1290          * limit hint.
1291          */
1292         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1293         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1294             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1295                 return 0;
1296
1297         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1298 }
1299
1300 static blk_status_t sd_setup_atomic_cmnd(struct scsi_cmnd *cmd,
1301                                         sector_t lba, unsigned int nr_blocks,
1302                                         bool boundary, unsigned char flags)
1303 {
1304         cmd->cmd_len  = 16;
1305         cmd->cmnd[0]  = WRITE_ATOMIC_16;
1306         cmd->cmnd[1]  = flags;
1307         put_unaligned_be64(lba, &cmd->cmnd[2]);
1308         put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1309         if (boundary)
1310                 put_unaligned_be16(nr_blocks, &cmd->cmnd[10]);
1311         else
1312                 put_unaligned_be16(0, &cmd->cmnd[10]);
1313         put_unaligned_be16(nr_blocks, &cmd->cmnd[12]);
1314         cmd->cmnd[14] = 0;
1315         cmd->cmnd[15] = 0;
1316
1317         return BLK_STS_OK;
1318 }
1319
1320 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1321 {
1322         struct request *rq = scsi_cmd_to_rq(cmd);
1323         struct scsi_device *sdp = cmd->device;
1324         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1325         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1326         sector_t threshold;
1327         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1328         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1329         bool write = rq_data_dir(rq) == WRITE;
1330         unsigned char protect, fua;
1331         unsigned int dld;
1332         blk_status_t ret;
1333         unsigned int dif;
1334         bool dix;
1335
1336         ret = scsi_alloc_sgtables(cmd);
1337         if (ret != BLK_STS_OK)
1338                 return ret;
1339
1340         ret = BLK_STS_IOERR;
1341         if (!scsi_device_online(sdp) || sdp->changed) {
1342                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1343                 goto fail;
1344         }
1345
1346         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1347                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1348                 goto fail;
1349         }
1350
1351         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1352                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1353                 goto fail;
1354         }
1355
1356         /*
1357          * Some SD card readers can't handle accesses which touch the
1358          * last one or two logical blocks. Split accesses as needed.
1359          */
1360         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1361
1362         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1363                 if (lba < threshold) {
1364                         /* Access up to the threshold but not beyond */
1365                         nr_blocks = threshold - lba;
1366                 } else {
1367                         /* Access only a single logical block */
1368                         nr_blocks = 1;
1369                 }
1370         }
1371
1372         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1373         dix = scsi_prot_sg_count(cmd);
1374         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1375         dld = sd_cdl_dld(sdkp, cmd);
1376
1377         if (dif || dix)
1378                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1379         else
1380                 protect = 0;
1381
1382         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1383                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1384                                          protect | fua, dld);
1385         } else if (rq->cmd_flags & REQ_ATOMIC) {
1386                 ret = sd_setup_atomic_cmnd(cmd, lba, nr_blocks,
1387                                 sdkp->use_atomic_write_boundary,
1388                                 protect | fua);
1389         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1390                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1391                                          protect | fua, dld);
1392         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1393                    sdp->use_10_for_rw || protect || rq->write_hint) {
1394                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1395                                          protect | fua);
1396         } else {
1397                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1398                                         protect | fua);
1399         }
1400
1401         if (unlikely(ret != BLK_STS_OK))
1402                 goto fail;
1403
1404         /*
1405          * We shouldn't disconnect in the middle of a sector, so with a dumb
1406          * host adapter, it's safe to assume that we can at least transfer
1407          * this many bytes between each connect / disconnect.
1408          */
1409         cmd->transfersize = sdp->sector_size;
1410         cmd->underflow = nr_blocks << 9;
1411         cmd->allowed = sdkp->max_retries;
1412         cmd->sdb.length = nr_blocks * sdp->sector_size;
1413
1414         SCSI_LOG_HLQUEUE(1,
1415                          scmd_printk(KERN_INFO, cmd,
1416                                      "%s: block=%llu, count=%d\n", __func__,
1417                                      (unsigned long long)blk_rq_pos(rq),
1418                                      blk_rq_sectors(rq)));
1419         SCSI_LOG_HLQUEUE(2,
1420                          scmd_printk(KERN_INFO, cmd,
1421                                      "%s %d/%u 512 byte blocks.\n",
1422                                      write ? "writing" : "reading", nr_blocks,
1423                                      blk_rq_sectors(rq)));
1424
1425         /*
1426          * This indicates that the command is ready from our end to be queued.
1427          */
1428         return BLK_STS_OK;
1429 fail:
1430         scsi_free_sgtables(cmd);
1431         return ret;
1432 }
1433
1434 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1435 {
1436         struct request *rq = scsi_cmd_to_rq(cmd);
1437
1438         switch (req_op(rq)) {
1439         case REQ_OP_DISCARD:
1440                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1441                 case SD_LBP_UNMAP:
1442                         return sd_setup_unmap_cmnd(cmd);
1443                 case SD_LBP_WS16:
1444                         return sd_setup_write_same16_cmnd(cmd, true);
1445                 case SD_LBP_WS10:
1446                         return sd_setup_write_same10_cmnd(cmd, true);
1447                 case SD_LBP_ZERO:
1448                         return sd_setup_write_same10_cmnd(cmd, false);
1449                 default:
1450                         return BLK_STS_TARGET;
1451                 }
1452         case REQ_OP_WRITE_ZEROES:
1453                 return sd_setup_write_zeroes_cmnd(cmd);
1454         case REQ_OP_FLUSH:
1455                 return sd_setup_flush_cmnd(cmd);
1456         case REQ_OP_READ:
1457         case REQ_OP_WRITE:
1458                 return sd_setup_read_write_cmnd(cmd);
1459         case REQ_OP_ZONE_RESET:
1460                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1461                                                    false);
1462         case REQ_OP_ZONE_RESET_ALL:
1463                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1464                                                    true);
1465         case REQ_OP_ZONE_OPEN:
1466                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1467         case REQ_OP_ZONE_CLOSE:
1468                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1469         case REQ_OP_ZONE_FINISH:
1470                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1471         default:
1472                 WARN_ON_ONCE(1);
1473                 return BLK_STS_NOTSUPP;
1474         }
1475 }
1476
1477 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1478 {
1479         struct request *rq = scsi_cmd_to_rq(SCpnt);
1480
1481         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1482                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1483 }
1484
1485 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1486 {
1487         if (sdkp->device->removable || sdkp->write_prot) {
1488                 if (disk_check_media_change(disk))
1489                         return true;
1490         }
1491
1492         /*
1493          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1494          * nothing to do with partitions, BLKRRPART is used to force a full
1495          * revalidate after things like a format for historical reasons.
1496          */
1497         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1498 }
1499
1500 /**
1501  *      sd_open - open a scsi disk device
1502  *      @disk: disk to open
1503  *      @mode: open mode
1504  *
1505  *      Returns 0 if successful. Returns a negated errno value in case 
1506  *      of error.
1507  *
1508  *      Note: This can be called from a user context (e.g. fsck(1) )
1509  *      or from within the kernel (e.g. as a result of a mount(1) ).
1510  *      In the latter case @inode and @filp carry an abridged amount
1511  *      of information as noted above.
1512  *
1513  *      Locking: called with disk->open_mutex held.
1514  **/
1515 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1516 {
1517         struct scsi_disk *sdkp = scsi_disk(disk);
1518         struct scsi_device *sdev = sdkp->device;
1519         int retval;
1520
1521         if (scsi_device_get(sdev))
1522                 return -ENXIO;
1523
1524         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1525
1526         /*
1527          * If the device is in error recovery, wait until it is done.
1528          * If the device is offline, then disallow any access to it.
1529          */
1530         retval = -ENXIO;
1531         if (!scsi_block_when_processing_errors(sdev))
1532                 goto error_out;
1533
1534         if (sd_need_revalidate(disk, sdkp))
1535                 sd_revalidate_disk(disk);
1536
1537         /*
1538          * If the drive is empty, just let the open fail.
1539          */
1540         retval = -ENOMEDIUM;
1541         if (sdev->removable && !sdkp->media_present &&
1542             !(mode & BLK_OPEN_NDELAY))
1543                 goto error_out;
1544
1545         /*
1546          * If the device has the write protect tab set, have the open fail
1547          * if the user expects to be able to write to the thing.
1548          */
1549         retval = -EROFS;
1550         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1551                 goto error_out;
1552
1553         /*
1554          * It is possible that the disk changing stuff resulted in
1555          * the device being taken offline.  If this is the case,
1556          * report this to the user, and don't pretend that the
1557          * open actually succeeded.
1558          */
1559         retval = -ENXIO;
1560         if (!scsi_device_online(sdev))
1561                 goto error_out;
1562
1563         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1564                 if (scsi_block_when_processing_errors(sdev))
1565                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1566         }
1567
1568         return 0;
1569
1570 error_out:
1571         scsi_device_put(sdev);
1572         return retval;  
1573 }
1574
1575 /**
1576  *      sd_release - invoked when the (last) close(2) is called on this
1577  *      scsi disk.
1578  *      @disk: disk to release
1579  *
1580  *      Returns 0. 
1581  *
1582  *      Note: may block (uninterruptible) if error recovery is underway
1583  *      on this disk.
1584  *
1585  *      Locking: called with disk->open_mutex held.
1586  **/
1587 static void sd_release(struct gendisk *disk)
1588 {
1589         struct scsi_disk *sdkp = scsi_disk(disk);
1590         struct scsi_device *sdev = sdkp->device;
1591
1592         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1593
1594         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1595                 if (scsi_block_when_processing_errors(sdev))
1596                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1597         }
1598
1599         scsi_device_put(sdev);
1600 }
1601
1602 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1603 {
1604         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1605         struct scsi_device *sdp = sdkp->device;
1606         struct Scsi_Host *host = sdp->host;
1607         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1608         int diskinfo[4];
1609
1610         /* default to most commonly used values */
1611         diskinfo[0] = 0x40;     /* 1 << 6 */
1612         diskinfo[1] = 0x20;     /* 1 << 5 */
1613         diskinfo[2] = capacity >> 11;
1614
1615         /* override with calculated, extended default, or driver values */
1616         if (host->hostt->bios_param)
1617                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1618         else
1619                 scsicam_bios_param(bdev, capacity, diskinfo);
1620
1621         geo->heads = diskinfo[0];
1622         geo->sectors = diskinfo[1];
1623         geo->cylinders = diskinfo[2];
1624         return 0;
1625 }
1626
1627 /**
1628  *      sd_ioctl - process an ioctl
1629  *      @bdev: target block device
1630  *      @mode: open mode
1631  *      @cmd: ioctl command number
1632  *      @arg: this is third argument given to ioctl(2) system call.
1633  *      Often contains a pointer.
1634  *
1635  *      Returns 0 if successful (some ioctls return positive numbers on
1636  *      success as well). Returns a negated errno value in case of error.
1637  *
1638  *      Note: most ioctls are forward onto the block subsystem or further
1639  *      down in the scsi subsystem.
1640  **/
1641 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1642                     unsigned int cmd, unsigned long arg)
1643 {
1644         struct gendisk *disk = bdev->bd_disk;
1645         struct scsi_disk *sdkp = scsi_disk(disk);
1646         struct scsi_device *sdp = sdkp->device;
1647         void __user *p = (void __user *)arg;
1648         int error;
1649     
1650         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1651                                     "cmd=0x%x\n", disk->disk_name, cmd));
1652
1653         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1654                 return -ENOIOCTLCMD;
1655
1656         /*
1657          * If we are in the middle of error recovery, don't let anyone
1658          * else try and use this device.  Also, if error recovery fails, it
1659          * may try and take the device offline, in which case all further
1660          * access to the device is prohibited.
1661          */
1662         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1663                         (mode & BLK_OPEN_NDELAY));
1664         if (error)
1665                 return error;
1666
1667         if (is_sed_ioctl(cmd))
1668                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1669         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1670 }
1671
1672 static void set_media_not_present(struct scsi_disk *sdkp)
1673 {
1674         if (sdkp->media_present)
1675                 sdkp->device->changed = 1;
1676
1677         if (sdkp->device->removable) {
1678                 sdkp->media_present = 0;
1679                 sdkp->capacity = 0;
1680         }
1681 }
1682
1683 static int media_not_present(struct scsi_disk *sdkp,
1684                              struct scsi_sense_hdr *sshdr)
1685 {
1686         if (!scsi_sense_valid(sshdr))
1687                 return 0;
1688
1689         /* not invoked for commands that could return deferred errors */
1690         switch (sshdr->sense_key) {
1691         case UNIT_ATTENTION:
1692         case NOT_READY:
1693                 /* medium not present */
1694                 if (sshdr->asc == 0x3A) {
1695                         set_media_not_present(sdkp);
1696                         return 1;
1697                 }
1698         }
1699         return 0;
1700 }
1701
1702 /**
1703  *      sd_check_events - check media events
1704  *      @disk: kernel device descriptor
1705  *      @clearing: disk events currently being cleared
1706  *
1707  *      Returns mask of DISK_EVENT_*.
1708  *
1709  *      Note: this function is invoked from the block subsystem.
1710  **/
1711 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1712 {
1713         struct scsi_disk *sdkp = disk->private_data;
1714         struct scsi_device *sdp;
1715         int retval;
1716         bool disk_changed;
1717
1718         if (!sdkp)
1719                 return 0;
1720
1721         sdp = sdkp->device;
1722         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1723
1724         /*
1725          * If the device is offline, don't send any commands - just pretend as
1726          * if the command failed.  If the device ever comes back online, we
1727          * can deal with it then.  It is only because of unrecoverable errors
1728          * that we would ever take a device offline in the first place.
1729          */
1730         if (!scsi_device_online(sdp)) {
1731                 set_media_not_present(sdkp);
1732                 goto out;
1733         }
1734
1735         /*
1736          * Using TEST_UNIT_READY enables differentiation between drive with
1737          * no cartridge loaded - NOT READY, drive with changed cartridge -
1738          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1739          *
1740          * Drives that auto spin down. eg iomega jaz 1G, will be started
1741          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1742          * sd_revalidate() is called.
1743          */
1744         if (scsi_block_when_processing_errors(sdp)) {
1745                 struct scsi_sense_hdr sshdr = { 0, };
1746
1747                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1748                                               &sshdr);
1749
1750                 /* failed to execute TUR, assume media not present */
1751                 if (retval < 0 || host_byte(retval)) {
1752                         set_media_not_present(sdkp);
1753                         goto out;
1754                 }
1755
1756                 if (media_not_present(sdkp, &sshdr))
1757                         goto out;
1758         }
1759
1760         /*
1761          * For removable scsi disk we have to recognise the presence
1762          * of a disk in the drive.
1763          */
1764         if (!sdkp->media_present)
1765                 sdp->changed = 1;
1766         sdkp->media_present = 1;
1767 out:
1768         /*
1769          * sdp->changed is set under the following conditions:
1770          *
1771          *      Medium present state has changed in either direction.
1772          *      Device has indicated UNIT_ATTENTION.
1773          */
1774         disk_changed = sdp->changed;
1775         sdp->changed = 0;
1776         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1777 }
1778
1779 static int sd_sync_cache(struct scsi_disk *sdkp)
1780 {
1781         int res;
1782         struct scsi_device *sdp = sdkp->device;
1783         const int timeout = sdp->request_queue->rq_timeout
1784                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1785         /* Leave the rest of the command zero to indicate flush everything. */
1786         const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1787                                 SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1788         struct scsi_sense_hdr sshdr;
1789         struct scsi_failure failure_defs[] = {
1790                 {
1791                         .allowed = 3,
1792                         .result = SCMD_FAILURE_RESULT_ANY,
1793                 },
1794                 {}
1795         };
1796         struct scsi_failures failures = {
1797                 .failure_definitions = failure_defs,
1798         };
1799         const struct scsi_exec_args exec_args = {
1800                 .req_flags = BLK_MQ_REQ_PM,
1801                 .sshdr = &sshdr,
1802                 .failures = &failures,
1803         };
1804
1805         if (!scsi_device_online(sdp))
1806                 return -ENODEV;
1807
1808         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1809                                sdkp->max_retries, &exec_args);
1810         if (res) {
1811                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1812
1813                 if (res < 0)
1814                         return res;
1815
1816                 if (scsi_status_is_check_condition(res) &&
1817                     scsi_sense_valid(&sshdr)) {
1818                         sd_print_sense_hdr(sdkp, &sshdr);
1819
1820                         /* we need to evaluate the error return  */
1821                         if (sshdr.asc == 0x3a ||        /* medium not present */
1822                             sshdr.asc == 0x20 ||        /* invalid command */
1823                             (sshdr.asc == 0x74 && sshdr.ascq == 0x71))  /* drive is password locked */
1824                                 /* this is no error here */
1825                                 return 0;
1826
1827                         /*
1828                          * If a format is in progress or if the drive does not
1829                          * support sync, there is not much we can do because
1830                          * this is called during shutdown or suspend so just
1831                          * return success so those operations can proceed.
1832                          */
1833                         if ((sshdr.asc == 0x04 && sshdr.ascq == 0x04) ||
1834                             sshdr.sense_key == ILLEGAL_REQUEST)
1835                                 return 0;
1836                 }
1837
1838                 switch (host_byte(res)) {
1839                 /* ignore errors due to racing a disconnection */
1840                 case DID_BAD_TARGET:
1841                 case DID_NO_CONNECT:
1842                         return 0;
1843                 /* signal the upper layer it might try again */
1844                 case DID_BUS_BUSY:
1845                 case DID_IMM_RETRY:
1846                 case DID_REQUEUE:
1847                 case DID_SOFT_ERROR:
1848                         return -EBUSY;
1849                 default:
1850                         return -EIO;
1851                 }
1852         }
1853         return 0;
1854 }
1855
1856 static void sd_rescan(struct device *dev)
1857 {
1858         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1859
1860         sd_revalidate_disk(sdkp->disk);
1861 }
1862
1863 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1864                 enum blk_unique_id type)
1865 {
1866         struct scsi_device *sdev = scsi_disk(disk)->device;
1867         const struct scsi_vpd *vpd;
1868         const unsigned char *d;
1869         int ret = -ENXIO, len;
1870
1871         rcu_read_lock();
1872         vpd = rcu_dereference(sdev->vpd_pg83);
1873         if (!vpd)
1874                 goto out_unlock;
1875
1876         ret = -EINVAL;
1877         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1878                 /* we only care about designators with LU association */
1879                 if (((d[1] >> 4) & 0x3) != 0x00)
1880                         continue;
1881                 if ((d[1] & 0xf) != type)
1882                         continue;
1883
1884                 /*
1885                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1886                  * keep looking as one with more entropy might still show up.
1887                  */
1888                 len = d[3];
1889                 if (len != 8 && len != 12 && len != 16)
1890                         continue;
1891                 ret = len;
1892                 memcpy(id, d + 4, len);
1893                 if (len == 16)
1894                         break;
1895         }
1896 out_unlock:
1897         rcu_read_unlock();
1898         return ret;
1899 }
1900
1901 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1902 {
1903         switch (host_byte(result)) {
1904         case DID_TRANSPORT_MARGINAL:
1905         case DID_TRANSPORT_DISRUPTED:
1906         case DID_BUS_BUSY:
1907                 return PR_STS_RETRY_PATH_FAILURE;
1908         case DID_NO_CONNECT:
1909                 return PR_STS_PATH_FAILED;
1910         case DID_TRANSPORT_FAILFAST:
1911                 return PR_STS_PATH_FAST_FAILED;
1912         }
1913
1914         switch (status_byte(result)) {
1915         case SAM_STAT_RESERVATION_CONFLICT:
1916                 return PR_STS_RESERVATION_CONFLICT;
1917         case SAM_STAT_CHECK_CONDITION:
1918                 if (!scsi_sense_valid(sshdr))
1919                         return PR_STS_IOERR;
1920
1921                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1922                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1923                         return -EINVAL;
1924
1925                 fallthrough;
1926         default:
1927                 return PR_STS_IOERR;
1928         }
1929 }
1930
1931 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1932                             unsigned char *data, int data_len)
1933 {
1934         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1935         struct scsi_device *sdev = sdkp->device;
1936         struct scsi_sense_hdr sshdr;
1937         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1938         struct scsi_failure failure_defs[] = {
1939                 {
1940                         .sense = UNIT_ATTENTION,
1941                         .asc = SCMD_FAILURE_ASC_ANY,
1942                         .ascq = SCMD_FAILURE_ASCQ_ANY,
1943                         .allowed = 5,
1944                         .result = SAM_STAT_CHECK_CONDITION,
1945                 },
1946                 {}
1947         };
1948         struct scsi_failures failures = {
1949                 .failure_definitions = failure_defs,
1950         };
1951         const struct scsi_exec_args exec_args = {
1952                 .sshdr = &sshdr,
1953                 .failures = &failures,
1954         };
1955         int result;
1956
1957         put_unaligned_be16(data_len, &cmd[7]);
1958
1959         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1960                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1961         if (scsi_status_is_check_condition(result) &&
1962             scsi_sense_valid(&sshdr)) {
1963                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1964                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1965         }
1966
1967         if (result <= 0)
1968                 return result;
1969
1970         return sd_scsi_to_pr_err(&sshdr, result);
1971 }
1972
1973 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1974 {
1975         int result, i, data_offset, num_copy_keys;
1976         u32 num_keys = keys_info->num_keys;
1977         int data_len = num_keys * 8 + 8;
1978         u8 *data;
1979
1980         data = kzalloc(data_len, GFP_KERNEL);
1981         if (!data)
1982                 return -ENOMEM;
1983
1984         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1985         if (result)
1986                 goto free_data;
1987
1988         keys_info->generation = get_unaligned_be32(&data[0]);
1989         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1990
1991         data_offset = 8;
1992         num_copy_keys = min(num_keys, keys_info->num_keys);
1993
1994         for (i = 0; i < num_copy_keys; i++) {
1995                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1996                 data_offset += 8;
1997         }
1998
1999 free_data:
2000         kfree(data);
2001         return result;
2002 }
2003
2004 static int sd_pr_read_reservation(struct block_device *bdev,
2005                                   struct pr_held_reservation *rsv)
2006 {
2007         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2008         struct scsi_device *sdev = sdkp->device;
2009         u8 data[24] = { };
2010         int result, len;
2011
2012         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
2013         if (result)
2014                 return result;
2015
2016         len = get_unaligned_be32(&data[4]);
2017         if (!len)
2018                 return 0;
2019
2020         /* Make sure we have at least the key and type */
2021         if (len < 14) {
2022                 sdev_printk(KERN_INFO, sdev,
2023                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
2024                             len);
2025                 return -EINVAL;
2026         }
2027
2028         rsv->generation = get_unaligned_be32(&data[0]);
2029         rsv->key = get_unaligned_be64(&data[8]);
2030         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
2031         return 0;
2032 }
2033
2034 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
2035                              u64 sa_key, enum scsi_pr_type type, u8 flags)
2036 {
2037         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
2038         struct scsi_device *sdev = sdkp->device;
2039         struct scsi_sense_hdr sshdr;
2040         struct scsi_failure failure_defs[] = {
2041                 {
2042                         .sense = UNIT_ATTENTION,
2043                         .asc = SCMD_FAILURE_ASC_ANY,
2044                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2045                         .allowed = 5,
2046                         .result = SAM_STAT_CHECK_CONDITION,
2047                 },
2048                 {}
2049         };
2050         struct scsi_failures failures = {
2051                 .failure_definitions = failure_defs,
2052         };
2053         const struct scsi_exec_args exec_args = {
2054                 .sshdr = &sshdr,
2055                 .failures = &failures,
2056         };
2057         int result;
2058         u8 cmd[16] = { 0, };
2059         u8 data[24] = { 0, };
2060
2061         cmd[0] = PERSISTENT_RESERVE_OUT;
2062         cmd[1] = sa;
2063         cmd[2] = type;
2064         put_unaligned_be32(sizeof(data), &cmd[5]);
2065
2066         put_unaligned_be64(key, &data[0]);
2067         put_unaligned_be64(sa_key, &data[8]);
2068         data[20] = flags;
2069
2070         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
2071                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
2072                                   &exec_args);
2073
2074         if (scsi_status_is_check_condition(result) &&
2075             scsi_sense_valid(&sshdr)) {
2076                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
2077                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
2078         }
2079
2080         if (result <= 0)
2081                 return result;
2082
2083         return sd_scsi_to_pr_err(&sshdr, result);
2084 }
2085
2086 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2087                 u32 flags)
2088 {
2089         if (flags & ~PR_FL_IGNORE_KEY)
2090                 return -EOPNOTSUPP;
2091         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
2092                         old_key, new_key, 0,
2093                         (1 << 0) /* APTPL */);
2094 }
2095
2096 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2097                 u32 flags)
2098 {
2099         if (flags)
2100                 return -EOPNOTSUPP;
2101         return sd_pr_out_command(bdev, 0x01, key, 0,
2102                                  block_pr_type_to_scsi(type), 0);
2103 }
2104
2105 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2106 {
2107         return sd_pr_out_command(bdev, 0x02, key, 0,
2108                                  block_pr_type_to_scsi(type), 0);
2109 }
2110
2111 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2112                 enum pr_type type, bool abort)
2113 {
2114         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2115                                  block_pr_type_to_scsi(type), 0);
2116 }
2117
2118 static int sd_pr_clear(struct block_device *bdev, u64 key)
2119 {
2120         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2121 }
2122
2123 static const struct pr_ops sd_pr_ops = {
2124         .pr_register    = sd_pr_register,
2125         .pr_reserve     = sd_pr_reserve,
2126         .pr_release     = sd_pr_release,
2127         .pr_preempt     = sd_pr_preempt,
2128         .pr_clear       = sd_pr_clear,
2129         .pr_read_keys   = sd_pr_read_keys,
2130         .pr_read_reservation = sd_pr_read_reservation,
2131 };
2132
2133 static void scsi_disk_free_disk(struct gendisk *disk)
2134 {
2135         struct scsi_disk *sdkp = scsi_disk(disk);
2136
2137         put_device(&sdkp->disk_dev);
2138 }
2139
2140 static const struct block_device_operations sd_fops = {
2141         .owner                  = THIS_MODULE,
2142         .open                   = sd_open,
2143         .release                = sd_release,
2144         .ioctl                  = sd_ioctl,
2145         .getgeo                 = sd_getgeo,
2146         .compat_ioctl           = blkdev_compat_ptr_ioctl,
2147         .check_events           = sd_check_events,
2148         .unlock_native_capacity = sd_unlock_native_capacity,
2149         .report_zones           = sd_zbc_report_zones,
2150         .get_unique_id          = sd_get_unique_id,
2151         .free_disk              = scsi_disk_free_disk,
2152         .pr_ops                 = &sd_pr_ops,
2153 };
2154
2155 /**
2156  *      sd_eh_reset - reset error handling callback
2157  *      @scmd:          sd-issued command that has failed
2158  *
2159  *      This function is called by the SCSI midlayer before starting
2160  *      SCSI EH. When counting medium access failures we have to be
2161  *      careful to register it only only once per device and SCSI EH run;
2162  *      there might be several timed out commands which will cause the
2163  *      'max_medium_access_timeouts' counter to trigger after the first
2164  *      SCSI EH run already and set the device to offline.
2165  *      So this function resets the internal counter before starting SCSI EH.
2166  **/
2167 static void sd_eh_reset(struct scsi_cmnd *scmd)
2168 {
2169         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2170
2171         /* New SCSI EH run, reset gate variable */
2172         sdkp->ignore_medium_access_errors = false;
2173 }
2174
2175 /**
2176  *      sd_eh_action - error handling callback
2177  *      @scmd:          sd-issued command that has failed
2178  *      @eh_disp:       The recovery disposition suggested by the midlayer
2179  *
2180  *      This function is called by the SCSI midlayer upon completion of an
2181  *      error test command (currently TEST UNIT READY). The result of sending
2182  *      the eh command is passed in eh_disp.  We're looking for devices that
2183  *      fail medium access commands but are OK with non access commands like
2184  *      test unit ready (so wrongly see the device as having a successful
2185  *      recovery)
2186  **/
2187 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2188 {
2189         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2190         struct scsi_device *sdev = scmd->device;
2191
2192         if (!scsi_device_online(sdev) ||
2193             !scsi_medium_access_command(scmd) ||
2194             host_byte(scmd->result) != DID_TIME_OUT ||
2195             eh_disp != SUCCESS)
2196                 return eh_disp;
2197
2198         /*
2199          * The device has timed out executing a medium access command.
2200          * However, the TEST UNIT READY command sent during error
2201          * handling completed successfully. Either the device is in the
2202          * process of recovering or has it suffered an internal failure
2203          * that prevents access to the storage medium.
2204          */
2205         if (!sdkp->ignore_medium_access_errors) {
2206                 sdkp->medium_access_timed_out++;
2207                 sdkp->ignore_medium_access_errors = true;
2208         }
2209
2210         /*
2211          * If the device keeps failing read/write commands but TEST UNIT
2212          * READY always completes successfully we assume that medium
2213          * access is no longer possible and take the device offline.
2214          */
2215         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2216                 scmd_printk(KERN_ERR, scmd,
2217                             "Medium access timeout failure. Offlining disk!\n");
2218                 mutex_lock(&sdev->state_mutex);
2219                 scsi_device_set_state(sdev, SDEV_OFFLINE);
2220                 mutex_unlock(&sdev->state_mutex);
2221
2222                 return SUCCESS;
2223         }
2224
2225         return eh_disp;
2226 }
2227
2228 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2229 {
2230         struct request *req = scsi_cmd_to_rq(scmd);
2231         struct scsi_device *sdev = scmd->device;
2232         unsigned int transferred, good_bytes;
2233         u64 start_lba, end_lba, bad_lba;
2234
2235         /*
2236          * Some commands have a payload smaller than the device logical
2237          * block size (e.g. INQUIRY on a 4K disk).
2238          */
2239         if (scsi_bufflen(scmd) <= sdev->sector_size)
2240                 return 0;
2241
2242         /* Check if we have a 'bad_lba' information */
2243         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2244                                      SCSI_SENSE_BUFFERSIZE,
2245                                      &bad_lba))
2246                 return 0;
2247
2248         /*
2249          * If the bad lba was reported incorrectly, we have no idea where
2250          * the error is.
2251          */
2252         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2253         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2254         if (bad_lba < start_lba || bad_lba >= end_lba)
2255                 return 0;
2256
2257         /*
2258          * resid is optional but mostly filled in.  When it's unused,
2259          * its value is zero, so we assume the whole buffer transferred
2260          */
2261         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2262
2263         /* This computation should always be done in terms of the
2264          * resolution of the device's medium.
2265          */
2266         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2267
2268         return min(good_bytes, transferred);
2269 }
2270
2271 /**
2272  *      sd_done - bottom half handler: called when the lower level
2273  *      driver has completed (successfully or otherwise) a scsi command.
2274  *      @SCpnt: mid-level's per command structure.
2275  *
2276  *      Note: potentially run from within an ISR. Must not block.
2277  **/
2278 static int sd_done(struct scsi_cmnd *SCpnt)
2279 {
2280         int result = SCpnt->result;
2281         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2282         unsigned int sector_size = SCpnt->device->sector_size;
2283         unsigned int resid;
2284         struct scsi_sense_hdr sshdr;
2285         struct request *req = scsi_cmd_to_rq(SCpnt);
2286         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2287         int sense_valid = 0;
2288         int sense_deferred = 0;
2289
2290         switch (req_op(req)) {
2291         case REQ_OP_DISCARD:
2292         case REQ_OP_WRITE_ZEROES:
2293         case REQ_OP_ZONE_RESET:
2294         case REQ_OP_ZONE_RESET_ALL:
2295         case REQ_OP_ZONE_OPEN:
2296         case REQ_OP_ZONE_CLOSE:
2297         case REQ_OP_ZONE_FINISH:
2298                 if (!result) {
2299                         good_bytes = blk_rq_bytes(req);
2300                         scsi_set_resid(SCpnt, 0);
2301                 } else {
2302                         good_bytes = 0;
2303                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2304                 }
2305                 break;
2306         default:
2307                 /*
2308                  * In case of bogus fw or device, we could end up having
2309                  * an unaligned partial completion. Check this here and force
2310                  * alignment.
2311                  */
2312                 resid = scsi_get_resid(SCpnt);
2313                 if (resid & (sector_size - 1)) {
2314                         sd_printk(KERN_INFO, sdkp,
2315                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2316                                 resid, sector_size);
2317                         scsi_print_command(SCpnt);
2318                         resid = min(scsi_bufflen(SCpnt),
2319                                     round_up(resid, sector_size));
2320                         scsi_set_resid(SCpnt, resid);
2321                 }
2322         }
2323
2324         if (result) {
2325                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2326                 if (sense_valid)
2327                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2328         }
2329         sdkp->medium_access_timed_out = 0;
2330
2331         if (!scsi_status_is_check_condition(result) &&
2332             (!sense_valid || sense_deferred))
2333                 goto out;
2334
2335         switch (sshdr.sense_key) {
2336         case HARDWARE_ERROR:
2337         case MEDIUM_ERROR:
2338                 good_bytes = sd_completed_bytes(SCpnt);
2339                 break;
2340         case RECOVERED_ERROR:
2341                 good_bytes = scsi_bufflen(SCpnt);
2342                 break;
2343         case NO_SENSE:
2344                 /* This indicates a false check condition, so ignore it.  An
2345                  * unknown amount of data was transferred so treat it as an
2346                  * error.
2347                  */
2348                 SCpnt->result = 0;
2349                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2350                 break;
2351         case ABORTED_COMMAND:
2352                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2353                         good_bytes = sd_completed_bytes(SCpnt);
2354                 break;
2355         case ILLEGAL_REQUEST:
2356                 switch (sshdr.asc) {
2357                 case 0x10:      /* DIX: Host detected corruption */
2358                         good_bytes = sd_completed_bytes(SCpnt);
2359                         break;
2360                 case 0x20:      /* INVALID COMMAND OPCODE */
2361                 case 0x24:      /* INVALID FIELD IN CDB */
2362                         switch (SCpnt->cmnd[0]) {
2363                         case UNMAP:
2364                                 sd_disable_discard(sdkp);
2365                                 break;
2366                         case WRITE_SAME_16:
2367                         case WRITE_SAME:
2368                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2369                                         sd_disable_discard(sdkp);
2370                                 } else {
2371                                         sd_disable_write_same(sdkp);
2372                                         req->rq_flags |= RQF_QUIET;
2373                                 }
2374                                 break;
2375                         }
2376                 }
2377                 break;
2378         default:
2379                 break;
2380         }
2381
2382  out:
2383         if (sdkp->device->type == TYPE_ZBC)
2384                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2385
2386         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2387                                            "sd_done: completed %d of %d bytes\n",
2388                                            good_bytes, scsi_bufflen(SCpnt)));
2389
2390         return good_bytes;
2391 }
2392
2393 /*
2394  * spinup disk - called only in sd_revalidate_disk()
2395  */
2396 static void
2397 sd_spinup_disk(struct scsi_disk *sdkp)
2398 {
2399         static const u8 cmd[10] = { TEST_UNIT_READY };
2400         unsigned long spintime_expire = 0;
2401         int spintime, sense_valid = 0;
2402         unsigned int the_result;
2403         struct scsi_sense_hdr sshdr;
2404         struct scsi_failure failure_defs[] = {
2405                 /* Do not retry Medium Not Present */
2406                 {
2407                         .sense = UNIT_ATTENTION,
2408                         .asc = 0x3A,
2409                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2410                         .result = SAM_STAT_CHECK_CONDITION,
2411                 },
2412                 {
2413                         .sense = NOT_READY,
2414                         .asc = 0x3A,
2415                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2416                         .result = SAM_STAT_CHECK_CONDITION,
2417                 },
2418                 /* Retry when scsi_status_is_good would return false 3 times */
2419                 {
2420                         .result = SCMD_FAILURE_STAT_ANY,
2421                         .allowed = 3,
2422                 },
2423                 {}
2424         };
2425         struct scsi_failures failures = {
2426                 .failure_definitions = failure_defs,
2427         };
2428         const struct scsi_exec_args exec_args = {
2429                 .sshdr = &sshdr,
2430                 .failures = &failures,
2431         };
2432
2433         spintime = 0;
2434
2435         /* Spin up drives, as required.  Only do this at boot time */
2436         /* Spinup needs to be done for module loads too. */
2437         do {
2438                 bool media_was_present = sdkp->media_present;
2439
2440                 scsi_failures_reset_retries(&failures);
2441
2442                 the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2443                                               NULL, 0, SD_TIMEOUT,
2444                                               sdkp->max_retries, &exec_args);
2445
2446
2447                 if (the_result > 0) {
2448                         /*
2449                          * If the drive has indicated to us that it doesn't
2450                          * have any media in it, don't bother with any more
2451                          * polling.
2452                          */
2453                         if (media_not_present(sdkp, &sshdr)) {
2454                                 if (media_was_present)
2455                                         sd_printk(KERN_NOTICE, sdkp,
2456                                                   "Media removed, stopped polling\n");
2457                                 return;
2458                         }
2459                         sense_valid = scsi_sense_valid(&sshdr);
2460                 }
2461
2462                 if (!scsi_status_is_check_condition(the_result)) {
2463                         /* no sense, TUR either succeeded or failed
2464                          * with a status error */
2465                         if(!spintime && !scsi_status_is_good(the_result)) {
2466                                 sd_print_result(sdkp, "Test Unit Ready failed",
2467                                                 the_result);
2468                         }
2469                         break;
2470                 }
2471
2472                 /*
2473                  * The device does not want the automatic start to be issued.
2474                  */
2475                 if (sdkp->device->no_start_on_add)
2476                         break;
2477
2478                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2479                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2480                                 break;  /* manual intervention required */
2481                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2482                                 break;  /* standby */
2483                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2484                                 break;  /* unavailable */
2485                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2486                                 break;  /* sanitize in progress */
2487                         if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2488                                 break;  /* depopulation in progress */
2489                         if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2490                                 break;  /* depopulation restoration in progress */
2491                         /*
2492                          * Issue command to spin up drive when not ready
2493                          */
2494                         if (!spintime) {
2495                                 /* Return immediately and start spin cycle */
2496                                 const u8 start_cmd[10] = {
2497                                         [0] = START_STOP,
2498                                         [1] = 1,
2499                                         [4] = sdkp->device->start_stop_pwr_cond ?
2500                                                 0x11 : 1,
2501                                 };
2502
2503                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2504                                 scsi_execute_cmd(sdkp->device, start_cmd,
2505                                                  REQ_OP_DRV_IN, NULL, 0,
2506                                                  SD_TIMEOUT, sdkp->max_retries,
2507                                                  &exec_args);
2508                                 spintime_expire = jiffies + 100 * HZ;
2509                                 spintime = 1;
2510                         }
2511                         /* Wait 1 second for next try */
2512                         msleep(1000);
2513                         printk(KERN_CONT ".");
2514
2515                 /*
2516                  * Wait for USB flash devices with slow firmware.
2517                  * Yes, this sense key/ASC combination shouldn't
2518                  * occur here.  It's characteristic of these devices.
2519                  */
2520                 } else if (sense_valid &&
2521                                 sshdr.sense_key == UNIT_ATTENTION &&
2522                                 sshdr.asc == 0x28) {
2523                         if (!spintime) {
2524                                 spintime_expire = jiffies + 5 * HZ;
2525                                 spintime = 1;
2526                         }
2527                         /* Wait 1 second for next try */
2528                         msleep(1000);
2529                 } else {
2530                         /* we don't understand the sense code, so it's
2531                          * probably pointless to loop */
2532                         if(!spintime) {
2533                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2534                                 sd_print_sense_hdr(sdkp, &sshdr);
2535                         }
2536                         break;
2537                 }
2538                                 
2539         } while (spintime && time_before_eq(jiffies, spintime_expire));
2540
2541         if (spintime) {
2542                 if (scsi_status_is_good(the_result))
2543                         printk(KERN_CONT "ready\n");
2544                 else
2545                         printk(KERN_CONT "not responding...\n");
2546         }
2547 }
2548
2549 /*
2550  * Determine whether disk supports Data Integrity Field.
2551  */
2552 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2553 {
2554         struct scsi_device *sdp = sdkp->device;
2555         u8 type;
2556
2557         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2558                 sdkp->protection_type = 0;
2559                 return 0;
2560         }
2561
2562         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2563
2564         if (type > T10_PI_TYPE3_PROTECTION) {
2565                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2566                           " protection type %u. Disabling disk!\n",
2567                           type);
2568                 sdkp->protection_type = 0;
2569                 return -ENODEV;
2570         }
2571
2572         sdkp->protection_type = type;
2573
2574         return 0;
2575 }
2576
2577 static void sd_config_protection(struct scsi_disk *sdkp,
2578                 struct queue_limits *lim)
2579 {
2580         struct scsi_device *sdp = sdkp->device;
2581
2582         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
2583                 sd_dif_config_host(sdkp, lim);
2584
2585         if (!sdkp->protection_type)
2586                 return;
2587
2588         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2589                 sd_first_printk(KERN_NOTICE, sdkp,
2590                                 "Disabling DIF Type %u protection\n",
2591                                 sdkp->protection_type);
2592                 sdkp->protection_type = 0;
2593         }
2594
2595         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2596                         sdkp->protection_type);
2597 }
2598
2599 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2600                         struct scsi_sense_hdr *sshdr, int sense_valid,
2601                         int the_result)
2602 {
2603         if (sense_valid)
2604                 sd_print_sense_hdr(sdkp, sshdr);
2605         else
2606                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2607
2608         /*
2609          * Set dirty bit for removable devices if not ready -
2610          * sometimes drives will not report this properly.
2611          */
2612         if (sdp->removable &&
2613             sense_valid && sshdr->sense_key == NOT_READY)
2614                 set_media_not_present(sdkp);
2615
2616         /*
2617          * We used to set media_present to 0 here to indicate no media
2618          * in the drive, but some drives fail read capacity even with
2619          * media present, so we can't do that.
2620          */
2621         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2622 }
2623
2624 #define RC16_LEN 32
2625 #if RC16_LEN > SD_BUF_SIZE
2626 #error RC16_LEN must not be more than SD_BUF_SIZE
2627 #endif
2628
2629 #define READ_CAPACITY_RETRIES_ON_RESET  10
2630
2631 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2632                 struct queue_limits *lim, unsigned char *buffer)
2633 {
2634         unsigned char cmd[16];
2635         struct scsi_sense_hdr sshdr;
2636         const struct scsi_exec_args exec_args = {
2637                 .sshdr = &sshdr,
2638         };
2639         int sense_valid = 0;
2640         int the_result;
2641         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2642         unsigned int alignment;
2643         unsigned long long lba;
2644         unsigned sector_size;
2645
2646         if (sdp->no_read_capacity_16)
2647                 return -EINVAL;
2648
2649         do {
2650                 memset(cmd, 0, 16);
2651                 cmd[0] = SERVICE_ACTION_IN_16;
2652                 cmd[1] = SAI_READ_CAPACITY_16;
2653                 cmd[13] = RC16_LEN;
2654                 memset(buffer, 0, RC16_LEN);
2655
2656                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2657                                               buffer, RC16_LEN, SD_TIMEOUT,
2658                                               sdkp->max_retries, &exec_args);
2659                 if (the_result > 0) {
2660                         if (media_not_present(sdkp, &sshdr))
2661                                 return -ENODEV;
2662
2663                         sense_valid = scsi_sense_valid(&sshdr);
2664                         if (sense_valid &&
2665                             sshdr.sense_key == ILLEGAL_REQUEST &&
2666                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2667                             sshdr.ascq == 0x00)
2668                                 /* Invalid Command Operation Code or
2669                                  * Invalid Field in CDB, just retry
2670                                  * silently with RC10 */
2671                                 return -EINVAL;
2672                         if (sense_valid &&
2673                             sshdr.sense_key == UNIT_ATTENTION &&
2674                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2675                                 /* Device reset might occur several times,
2676                                  * give it one more chance */
2677                                 if (--reset_retries > 0)
2678                                         continue;
2679                 }
2680                 retries--;
2681
2682         } while (the_result && retries);
2683
2684         if (the_result) {
2685                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2686                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2687                 return -EINVAL;
2688         }
2689
2690         sector_size = get_unaligned_be32(&buffer[8]);
2691         lba = get_unaligned_be64(&buffer[0]);
2692
2693         if (sd_read_protection_type(sdkp, buffer) < 0) {
2694                 sdkp->capacity = 0;
2695                 return -ENODEV;
2696         }
2697
2698         /* Logical blocks per physical block exponent */
2699         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2700
2701         /* RC basis */
2702         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2703
2704         /* Lowest aligned logical block */
2705         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2706         lim->alignment_offset = alignment;
2707         if (alignment && sdkp->first_scan)
2708                 sd_printk(KERN_NOTICE, sdkp,
2709                           "physical block alignment offset: %u\n", alignment);
2710
2711         if (buffer[14] & 0x80) { /* LBPME */
2712                 sdkp->lbpme = 1;
2713
2714                 if (buffer[14] & 0x40) /* LBPRZ */
2715                         sdkp->lbprz = 1;
2716         }
2717
2718         sdkp->capacity = lba + 1;
2719         return sector_size;
2720 }
2721
2722 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2723                                                 unsigned char *buffer)
2724 {
2725         static const u8 cmd[10] = { READ_CAPACITY };
2726         struct scsi_sense_hdr sshdr;
2727         struct scsi_failure failure_defs[] = {
2728                 /* Do not retry Medium Not Present */
2729                 {
2730                         .sense = UNIT_ATTENTION,
2731                         .asc = 0x3A,
2732                         .result = SAM_STAT_CHECK_CONDITION,
2733                 },
2734                 {
2735                         .sense = NOT_READY,
2736                         .asc = 0x3A,
2737                         .result = SAM_STAT_CHECK_CONDITION,
2738                 },
2739                  /* Device reset might occur several times so retry a lot */
2740                 {
2741                         .sense = UNIT_ATTENTION,
2742                         .asc = 0x29,
2743                         .allowed = READ_CAPACITY_RETRIES_ON_RESET,
2744                         .result = SAM_STAT_CHECK_CONDITION,
2745                 },
2746                 /* Any other error not listed above retry 3 times */
2747                 {
2748                         .result = SCMD_FAILURE_RESULT_ANY,
2749                         .allowed = 3,
2750                 },
2751                 {}
2752         };
2753         struct scsi_failures failures = {
2754                 .failure_definitions = failure_defs,
2755         };
2756         const struct scsi_exec_args exec_args = {
2757                 .sshdr = &sshdr,
2758                 .failures = &failures,
2759         };
2760         int sense_valid = 0;
2761         int the_result;
2762         sector_t lba;
2763         unsigned sector_size;
2764
2765         memset(buffer, 0, 8);
2766
2767         the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2768                                       8, SD_TIMEOUT, sdkp->max_retries,
2769                                       &exec_args);
2770
2771         if (the_result > 0) {
2772                 sense_valid = scsi_sense_valid(&sshdr);
2773
2774                 if (media_not_present(sdkp, &sshdr))
2775                         return -ENODEV;
2776         }
2777
2778         if (the_result) {
2779                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2780                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2781                 return -EINVAL;
2782         }
2783
2784         sector_size = get_unaligned_be32(&buffer[4]);
2785         lba = get_unaligned_be32(&buffer[0]);
2786
2787         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2788                 /* Some buggy (usb cardreader) devices return an lba of
2789                    0xffffffff when the want to report a size of 0 (with
2790                    which they really mean no media is present) */
2791                 sdkp->capacity = 0;
2792                 sdkp->physical_block_size = sector_size;
2793                 return sector_size;
2794         }
2795
2796         sdkp->capacity = lba + 1;
2797         sdkp->physical_block_size = sector_size;
2798         return sector_size;
2799 }
2800
2801 static int sd_try_rc16_first(struct scsi_device *sdp)
2802 {
2803         if (sdp->host->max_cmd_len < 16)
2804                 return 0;
2805         if (sdp->try_rc_10_first)
2806                 return 0;
2807         if (sdp->scsi_level > SCSI_SPC_2)
2808                 return 1;
2809         if (scsi_device_protection(sdp))
2810                 return 1;
2811         return 0;
2812 }
2813
2814 /*
2815  * read disk capacity
2816  */
2817 static void
2818 sd_read_capacity(struct scsi_disk *sdkp, struct queue_limits *lim,
2819                 unsigned char *buffer)
2820 {
2821         int sector_size;
2822         struct scsi_device *sdp = sdkp->device;
2823
2824         if (sd_try_rc16_first(sdp)) {
2825                 sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2826                 if (sector_size == -EOVERFLOW)
2827                         goto got_data;
2828                 if (sector_size == -ENODEV)
2829                         return;
2830                 if (sector_size < 0)
2831                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2832                 if (sector_size < 0)
2833                         return;
2834         } else {
2835                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2836                 if (sector_size == -EOVERFLOW)
2837                         goto got_data;
2838                 if (sector_size < 0)
2839                         return;
2840                 if ((sizeof(sdkp->capacity) > 4) &&
2841                     (sdkp->capacity > 0xffffffffULL)) {
2842                         int old_sector_size = sector_size;
2843                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2844                                         "Trying to use READ CAPACITY(16).\n");
2845                         sector_size = read_capacity_16(sdkp, sdp, lim, buffer);
2846                         if (sector_size < 0) {
2847                                 sd_printk(KERN_NOTICE, sdkp,
2848                                         "Using 0xffffffff as device size\n");
2849                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2850                                 sector_size = old_sector_size;
2851                                 goto got_data;
2852                         }
2853                         /* Remember that READ CAPACITY(16) succeeded */
2854                         sdp->try_rc_10_first = 0;
2855                 }
2856         }
2857
2858         /* Some devices are known to return the total number of blocks,
2859          * not the highest block number.  Some devices have versions
2860          * which do this and others which do not.  Some devices we might
2861          * suspect of doing this but we don't know for certain.
2862          *
2863          * If we know the reported capacity is wrong, decrement it.  If
2864          * we can only guess, then assume the number of blocks is even
2865          * (usually true but not always) and err on the side of lowering
2866          * the capacity.
2867          */
2868         if (sdp->fix_capacity ||
2869             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2870                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2871                                 "from its reported value: %llu\n",
2872                                 (unsigned long long) sdkp->capacity);
2873                 --sdkp->capacity;
2874         }
2875
2876 got_data:
2877         if (sector_size == 0) {
2878                 sector_size = 512;
2879                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2880                           "assuming 512.\n");
2881         }
2882
2883         if (sector_size != 512 &&
2884             sector_size != 1024 &&
2885             sector_size != 2048 &&
2886             sector_size != 4096) {
2887                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2888                           sector_size);
2889                 /*
2890                  * The user might want to re-format the drive with
2891                  * a supported sectorsize.  Once this happens, it
2892                  * would be relatively trivial to set the thing up.
2893                  * For this reason, we leave the thing in the table.
2894                  */
2895                 sdkp->capacity = 0;
2896                 /*
2897                  * set a bogus sector size so the normal read/write
2898                  * logic in the block layer will eventually refuse any
2899                  * request on this device without tripping over power
2900                  * of two sector size assumptions
2901                  */
2902                 sector_size = 512;
2903         }
2904         lim->logical_block_size = sector_size;
2905         lim->physical_block_size = sdkp->physical_block_size;
2906         sdkp->device->sector_size = sector_size;
2907
2908         if (sdkp->capacity > 0xffffffff)
2909                 sdp->use_16_for_rw = 1;
2910
2911 }
2912
2913 /*
2914  * Print disk capacity
2915  */
2916 static void
2917 sd_print_capacity(struct scsi_disk *sdkp,
2918                   sector_t old_capacity)
2919 {
2920         int sector_size = sdkp->device->sector_size;
2921         char cap_str_2[10], cap_str_10[10];
2922
2923         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2924                 return;
2925
2926         string_get_size(sdkp->capacity, sector_size,
2927                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2928         string_get_size(sdkp->capacity, sector_size,
2929                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2930
2931         sd_printk(KERN_NOTICE, sdkp,
2932                   "%llu %d-byte logical blocks: (%s/%s)\n",
2933                   (unsigned long long)sdkp->capacity,
2934                   sector_size, cap_str_10, cap_str_2);
2935
2936         if (sdkp->physical_block_size != sector_size)
2937                 sd_printk(KERN_NOTICE, sdkp,
2938                           "%u-byte physical blocks\n",
2939                           sdkp->physical_block_size);
2940 }
2941
2942 /* called with buffer of length 512 */
2943 static inline int
2944 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2945                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2946                  struct scsi_sense_hdr *sshdr)
2947 {
2948         /*
2949          * If we must use MODE SENSE(10), make sure that the buffer length
2950          * is at least 8 bytes so that the mode sense header fits.
2951          */
2952         if (sdkp->device->use_10_for_ms && len < 8)
2953                 len = 8;
2954
2955         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2956                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2957 }
2958
2959 /*
2960  * read write protect setting, if possible - called only in sd_revalidate_disk()
2961  * called with buffer of length SD_BUF_SIZE
2962  */
2963 static void
2964 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2965 {
2966         int res;
2967         struct scsi_device *sdp = sdkp->device;
2968         struct scsi_mode_data data;
2969         int old_wp = sdkp->write_prot;
2970
2971         set_disk_ro(sdkp->disk, 0);
2972         if (sdp->skip_ms_page_3f) {
2973                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2974                 return;
2975         }
2976
2977         if (sdp->use_192_bytes_for_3f) {
2978                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2979         } else {
2980                 /*
2981                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2982                  * We have to start carefully: some devices hang if we ask
2983                  * for more than is available.
2984                  */
2985                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2986
2987                 /*
2988                  * Second attempt: ask for page 0 When only page 0 is
2989                  * implemented, a request for page 3F may return Sense Key
2990                  * 5: Illegal Request, Sense Code 24: Invalid field in
2991                  * CDB.
2992                  */
2993                 if (res < 0)
2994                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2995
2996                 /*
2997                  * Third attempt: ask 255 bytes, as we did earlier.
2998                  */
2999                 if (res < 0)
3000                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
3001                                                &data, NULL);
3002         }
3003
3004         if (res < 0) {
3005                 sd_first_printk(KERN_WARNING, sdkp,
3006                           "Test WP failed, assume Write Enabled\n");
3007         } else {
3008                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
3009                 set_disk_ro(sdkp->disk, sdkp->write_prot);
3010                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
3011                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
3012                                   sdkp->write_prot ? "on" : "off");
3013                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
3014                 }
3015         }
3016 }
3017
3018 /*
3019  * sd_read_cache_type - called only from sd_revalidate_disk()
3020  * called with buffer of length SD_BUF_SIZE
3021  */
3022 static void
3023 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
3024 {
3025         int len = 0, res;
3026         struct scsi_device *sdp = sdkp->device;
3027
3028         int dbd;
3029         int modepage;
3030         int first_len;
3031         struct scsi_mode_data data;
3032         struct scsi_sense_hdr sshdr;
3033         int old_wce = sdkp->WCE;
3034         int old_rcd = sdkp->RCD;
3035         int old_dpofua = sdkp->DPOFUA;
3036
3037
3038         if (sdkp->cache_override)
3039                 return;
3040
3041         first_len = 4;
3042         if (sdp->skip_ms_page_8) {
3043                 if (sdp->type == TYPE_RBC)
3044                         goto defaults;
3045                 else {
3046                         if (sdp->skip_ms_page_3f)
3047                                 goto defaults;
3048                         modepage = 0x3F;
3049                         if (sdp->use_192_bytes_for_3f)
3050                                 first_len = 192;
3051                         dbd = 0;
3052                 }
3053         } else if (sdp->type == TYPE_RBC) {
3054                 modepage = 6;
3055                 dbd = 8;
3056         } else {
3057                 modepage = 8;
3058                 dbd = 0;
3059         }
3060
3061         /* cautiously ask */
3062         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
3063                         &data, &sshdr);
3064
3065         if (res < 0)
3066                 goto bad_sense;
3067
3068         if (!data.header_length) {
3069                 modepage = 6;
3070                 first_len = 0;
3071                 sd_first_printk(KERN_ERR, sdkp,
3072                                 "Missing header in MODE_SENSE response\n");
3073         }
3074
3075         /* that went OK, now ask for the proper length */
3076         len = data.length;
3077
3078         /*
3079          * We're only interested in the first three bytes, actually.
3080          * But the data cache page is defined for the first 20.
3081          */
3082         if (len < 3)
3083                 goto bad_sense;
3084         else if (len > SD_BUF_SIZE) {
3085                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
3086                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
3087                 len = SD_BUF_SIZE;
3088         }
3089         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
3090                 len = 192;
3091
3092         /* Get the data */
3093         if (len > first_len)
3094                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
3095                                 &data, &sshdr);
3096
3097         if (!res) {
3098                 int offset = data.header_length + data.block_descriptor_length;
3099
3100                 while (offset < len) {
3101                         u8 page_code = buffer[offset] & 0x3F;
3102                         u8 spf       = buffer[offset] & 0x40;
3103
3104                         if (page_code == 8 || page_code == 6) {
3105                                 /* We're interested only in the first 3 bytes.
3106                                  */
3107                                 if (len - offset <= 2) {
3108                                         sd_first_printk(KERN_ERR, sdkp,
3109                                                 "Incomplete mode parameter "
3110                                                         "data\n");
3111                                         goto defaults;
3112                                 } else {
3113                                         modepage = page_code;
3114                                         goto Page_found;
3115                                 }
3116                         } else {
3117                                 /* Go to the next page */
3118                                 if (spf && len - offset > 3)
3119                                         offset += 4 + (buffer[offset+2] << 8) +
3120                                                 buffer[offset+3];
3121                                 else if (!spf && len - offset > 1)
3122                                         offset += 2 + buffer[offset+1];
3123                                 else {
3124                                         sd_first_printk(KERN_ERR, sdkp,
3125                                                         "Incomplete mode "
3126                                                         "parameter data\n");
3127                                         goto defaults;
3128                                 }
3129                         }
3130                 }
3131
3132                 sd_first_printk(KERN_WARNING, sdkp,
3133                                 "No Caching mode page found\n");
3134                 goto defaults;
3135
3136         Page_found:
3137                 if (modepage == 8) {
3138                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3139                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3140                 } else {
3141                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3142                         sdkp->RCD = 0;
3143                 }
3144
3145                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3146                 if (sdp->broken_fua) {
3147                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3148                         sdkp->DPOFUA = 0;
3149                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3150                            !sdkp->device->use_16_for_rw) {
3151                         sd_first_printk(KERN_NOTICE, sdkp,
3152                                   "Uses READ/WRITE(6), disabling FUA\n");
3153                         sdkp->DPOFUA = 0;
3154                 }
3155
3156                 /* No cache flush allowed for write protected devices */
3157                 if (sdkp->WCE && sdkp->write_prot)
3158                         sdkp->WCE = 0;
3159
3160                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
3161                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3162                         sd_printk(KERN_NOTICE, sdkp,
3163                                   "Write cache: %s, read cache: %s, %s\n",
3164                                   sdkp->WCE ? "enabled" : "disabled",
3165                                   sdkp->RCD ? "disabled" : "enabled",
3166                                   sdkp->DPOFUA ? "supports DPO and FUA"
3167                                   : "doesn't support DPO or FUA");
3168
3169                 return;
3170         }
3171
3172 bad_sense:
3173         if (res == -EIO && scsi_sense_valid(&sshdr) &&
3174             sshdr.sense_key == ILLEGAL_REQUEST &&
3175             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3176                 /* Invalid field in CDB */
3177                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3178         else
3179                 sd_first_printk(KERN_ERR, sdkp,
3180                                 "Asking for cache data failed\n");
3181
3182 defaults:
3183         if (sdp->wce_default_on) {
3184                 sd_first_printk(KERN_NOTICE, sdkp,
3185                                 "Assuming drive cache: write back\n");
3186                 sdkp->WCE = 1;
3187         } else {
3188                 sd_first_printk(KERN_WARNING, sdkp,
3189                                 "Assuming drive cache: write through\n");
3190                 sdkp->WCE = 0;
3191         }
3192         sdkp->RCD = 0;
3193         sdkp->DPOFUA = 0;
3194 }
3195
3196 static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3197 {
3198         u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3199         struct {
3200                 struct scsi_stream_status_header h;
3201                 struct scsi_stream_status s;
3202         } buf;
3203         struct scsi_device *sdev = sdkp->device;
3204         struct scsi_sense_hdr sshdr;
3205         const struct scsi_exec_args exec_args = {
3206                 .sshdr = &sshdr,
3207         };
3208         int res;
3209
3210         put_unaligned_be16(stream_id, &cdb[4]);
3211         put_unaligned_be32(sizeof(buf), &cdb[10]);
3212
3213         res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3214                                SD_TIMEOUT, sdkp->max_retries, &exec_args);
3215         if (res < 0)
3216                 return false;
3217         if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3218                 sd_print_sense_hdr(sdkp, &sshdr);
3219         if (res)
3220                 return false;
3221         if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3222                 return false;
3223         return buf.h.stream_status[0].perm;
3224 }
3225
3226 static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3227 {
3228         struct scsi_device *sdp = sdkp->device;
3229         const struct scsi_io_group_descriptor *desc, *start, *end;
3230         u16 permanent_stream_count_old;
3231         struct scsi_sense_hdr sshdr;
3232         struct scsi_mode_data data;
3233         int res;
3234
3235         if (sdp->sdev_bflags & BLIST_SKIP_IO_HINTS)
3236                 return;
3237
3238         res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3239                               /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3240                               sdkp->max_retries, &data, &sshdr);
3241         if (res < 0)
3242                 return;
3243         start = (void *)buffer + data.header_length + 16;
3244         end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3245                                           sizeof(*end));
3246         /*
3247          * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3248          * should assign the lowest numbered stream identifiers to permanent
3249          * streams.
3250          */
3251         for (desc = start; desc < end; desc++)
3252                 if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3253                         break;
3254         permanent_stream_count_old = sdkp->permanent_stream_count;
3255         sdkp->permanent_stream_count = desc - start;
3256         if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3257                 sd_printk(KERN_INFO, sdkp,
3258                           "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3259                           sdkp->permanent_stream_count);
3260         else if (sdkp->permanent_stream_count != permanent_stream_count_old)
3261                 sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3262                           sdkp->permanent_stream_count);
3263 }
3264
3265 /*
3266  * The ATO bit indicates whether the DIF application tag is available
3267  * for use by the operating system.
3268  */
3269 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3270 {
3271         int res, offset;
3272         struct scsi_device *sdp = sdkp->device;
3273         struct scsi_mode_data data;
3274         struct scsi_sense_hdr sshdr;
3275
3276         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3277                 return;
3278
3279         if (sdkp->protection_type == 0)
3280                 return;
3281
3282         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3283                               sdkp->max_retries, &data, &sshdr);
3284
3285         if (res < 0 || !data.header_length ||
3286             data.length < 6) {
3287                 sd_first_printk(KERN_WARNING, sdkp,
3288                           "getting Control mode page failed, assume no ATO\n");
3289
3290                 if (res == -EIO && scsi_sense_valid(&sshdr))
3291                         sd_print_sense_hdr(sdkp, &sshdr);
3292
3293                 return;
3294         }
3295
3296         offset = data.header_length + data.block_descriptor_length;
3297
3298         if ((buffer[offset] & 0x3f) != 0x0a) {
3299                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3300                 return;
3301         }
3302
3303         if ((buffer[offset + 5] & 0x80) == 0)
3304                 return;
3305
3306         sdkp->ATO = 1;
3307
3308         return;
3309 }
3310
3311 static unsigned int sd_discard_mode(struct scsi_disk *sdkp)
3312 {
3313         if (!sdkp->lbpme)
3314                 return SD_LBP_FULL;
3315
3316         if (!sdkp->lbpvpd) {
3317                 /* LBP VPD page not provided */
3318                 if (sdkp->max_unmap_blocks)
3319                         return SD_LBP_UNMAP;
3320                 return SD_LBP_WS16;
3321         }
3322
3323         /* LBP VPD page tells us what to use */
3324         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3325                 return SD_LBP_UNMAP;
3326         if (sdkp->lbpws)
3327                 return SD_LBP_WS16;
3328         if (sdkp->lbpws10)
3329                 return SD_LBP_WS10;
3330         return SD_LBP_DISABLE;
3331 }
3332
3333 /*
3334  * Query disk device for preferred I/O sizes.
3335  */
3336 static void sd_read_block_limits(struct scsi_disk *sdkp,
3337                 struct queue_limits *lim)
3338 {
3339         struct scsi_vpd *vpd;
3340
3341         rcu_read_lock();
3342
3343         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3344         if (!vpd || vpd->len < 16)
3345                 goto out;
3346
3347         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3348         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3349         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3350
3351         if (vpd->len >= 64) {
3352                 unsigned int lba_count, desc_count;
3353
3354                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3355
3356                 if (!sdkp->lbpme)
3357                         goto config_atomic;
3358
3359                 lba_count = get_unaligned_be32(&vpd->data[20]);
3360                 desc_count = get_unaligned_be32(&vpd->data[24]);
3361
3362                 if (lba_count && desc_count)
3363                         sdkp->max_unmap_blocks = lba_count;
3364
3365                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3366
3367                 if (vpd->data[32] & 0x80)
3368                         sdkp->unmap_alignment =
3369                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3370
3371 config_atomic:
3372                 sdkp->max_atomic = get_unaligned_be32(&vpd->data[44]);
3373                 sdkp->atomic_alignment = get_unaligned_be32(&vpd->data[48]);
3374                 sdkp->atomic_granularity = get_unaligned_be32(&vpd->data[52]);
3375                 sdkp->max_atomic_with_boundary = get_unaligned_be32(&vpd->data[56]);
3376                 sdkp->max_atomic_boundary = get_unaligned_be32(&vpd->data[60]);
3377
3378                 sd_config_atomic(sdkp, lim);
3379         }
3380
3381  out:
3382         rcu_read_unlock();
3383 }
3384
3385 /* Parse the Block Limits Extension VPD page (0xb7) */
3386 static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3387 {
3388         struct scsi_vpd *vpd;
3389
3390         rcu_read_lock();
3391         vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3392         if (vpd && vpd->len >= 2)
3393                 sdkp->rscs = vpd->data[5] & 1;
3394         rcu_read_unlock();
3395 }
3396
3397 /* Query block device characteristics */
3398 static void sd_read_block_characteristics(struct scsi_disk *sdkp,
3399                 struct queue_limits *lim)
3400 {
3401         struct scsi_vpd *vpd;
3402         u16 rot;
3403
3404         rcu_read_lock();
3405         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3406
3407         if (!vpd || vpd->len < 8) {
3408                 rcu_read_unlock();
3409                 return;
3410         }
3411
3412         rot = get_unaligned_be16(&vpd->data[4]);
3413         sdkp->zoned = (vpd->data[8] >> 4) & 3;
3414         rcu_read_unlock();
3415
3416         if (rot == 1)
3417                 lim->features &= ~(BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3418
3419         if (!sdkp->first_scan)
3420                 return;
3421
3422         if (sdkp->device->type == TYPE_ZBC)
3423                 sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3424         else if (sdkp->zoned == 1)
3425                 sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3426         else if (sdkp->zoned == 2)
3427                 sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3428 }
3429
3430 /**
3431  * sd_read_block_provisioning - Query provisioning VPD page
3432  * @sdkp: disk to query
3433  */
3434 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3435 {
3436         struct scsi_vpd *vpd;
3437
3438         if (sdkp->lbpme == 0)
3439                 return;
3440
3441         rcu_read_lock();
3442         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3443
3444         if (!vpd || vpd->len < 8) {
3445                 rcu_read_unlock();
3446                 return;
3447         }
3448
3449         sdkp->lbpvpd    = 1;
3450         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3451         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3452         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3453         rcu_read_unlock();
3454 }
3455
3456 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3457 {
3458         struct scsi_device *sdev = sdkp->device;
3459
3460         if (sdev->host->no_write_same) {
3461                 sdev->no_write_same = 1;
3462
3463                 return;
3464         }
3465
3466         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3467                 struct scsi_vpd *vpd;
3468
3469                 sdev->no_report_opcodes = 1;
3470
3471                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3472                  * CODES is unsupported and the device has an ATA
3473                  * Information VPD page (SAT).
3474                  */
3475                 rcu_read_lock();
3476                 vpd = rcu_dereference(sdev->vpd_pg89);
3477                 if (vpd)
3478                         sdev->no_write_same = 1;
3479                 rcu_read_unlock();
3480         }
3481
3482         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3483                 sdkp->ws16 = 1;
3484
3485         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3486                 sdkp->ws10 = 1;
3487 }
3488
3489 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3490 {
3491         struct scsi_device *sdev = sdkp->device;
3492
3493         if (!sdev->security_supported)
3494                 return;
3495
3496         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3497                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3498             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3499                         SECURITY_PROTOCOL_OUT, 0) == 1)
3500                 sdkp->security = 1;
3501 }
3502
3503 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3504 {
3505         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3506 }
3507
3508 /**
3509  * sd_read_cpr - Query concurrent positioning ranges
3510  * @sdkp:       disk to query
3511  */
3512 static void sd_read_cpr(struct scsi_disk *sdkp)
3513 {
3514         struct blk_independent_access_ranges *iars = NULL;
3515         unsigned char *buffer = NULL;
3516         unsigned int nr_cpr = 0;
3517         int i, vpd_len, buf_len = SD_BUF_SIZE;
3518         u8 *desc;
3519
3520         /*
3521          * We need to have the capacity set first for the block layer to be
3522          * able to check the ranges.
3523          */
3524         if (sdkp->first_scan)
3525                 return;
3526
3527         if (!sdkp->capacity)
3528                 goto out;
3529
3530         /*
3531          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3532          * leading to a maximum page size of 64 + 256*32 bytes.
3533          */
3534         buf_len = 64 + 256*32;
3535         buffer = kmalloc(buf_len, GFP_KERNEL);
3536         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3537                 goto out;
3538
3539         /* We must have at least a 64B header and one 32B range descriptor */
3540         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3541         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3542                 sd_printk(KERN_ERR, sdkp,
3543                           "Invalid Concurrent Positioning Ranges VPD page\n");
3544                 goto out;
3545         }
3546
3547         nr_cpr = (vpd_len - 64) / 32;
3548         if (nr_cpr == 1) {
3549                 nr_cpr = 0;
3550                 goto out;
3551         }
3552
3553         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3554         if (!iars) {
3555                 nr_cpr = 0;
3556                 goto out;
3557         }
3558
3559         desc = &buffer[64];
3560         for (i = 0; i < nr_cpr; i++, desc += 32) {
3561                 if (desc[0] != i) {
3562                         sd_printk(KERN_ERR, sdkp,
3563                                 "Invalid Concurrent Positioning Range number\n");
3564                         nr_cpr = 0;
3565                         break;
3566                 }
3567
3568                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3569                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3570         }
3571
3572 out:
3573         disk_set_independent_access_ranges(sdkp->disk, iars);
3574         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3575                 sd_printk(KERN_NOTICE, sdkp,
3576                           "%u concurrent positioning ranges\n", nr_cpr);
3577                 sdkp->nr_actuators = nr_cpr;
3578         }
3579
3580         kfree(buffer);
3581 }
3582
3583 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3584 {
3585         struct scsi_device *sdp = sdkp->device;
3586         unsigned int min_xfer_bytes =
3587                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3588
3589         if (sdkp->min_xfer_blocks == 0)
3590                 return false;
3591
3592         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3593                 sd_first_printk(KERN_WARNING, sdkp,
3594                                 "Preferred minimum I/O size %u bytes not a " \
3595                                 "multiple of physical block size (%u bytes)\n",
3596                                 min_xfer_bytes, sdkp->physical_block_size);
3597                 sdkp->min_xfer_blocks = 0;
3598                 return false;
3599         }
3600
3601         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3602                         min_xfer_bytes);
3603         return true;
3604 }
3605
3606 /*
3607  * Determine the device's preferred I/O size for reads and writes
3608  * unless the reported value is unreasonably small, large, not a
3609  * multiple of the physical block size, or simply garbage.
3610  */
3611 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3612                                       unsigned int dev_max)
3613 {
3614         struct scsi_device *sdp = sdkp->device;
3615         unsigned int opt_xfer_bytes =
3616                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3617         unsigned int min_xfer_bytes =
3618                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3619
3620         if (sdkp->opt_xfer_blocks == 0)
3621                 return false;
3622
3623         if (sdkp->opt_xfer_blocks > dev_max) {
3624                 sd_first_printk(KERN_WARNING, sdkp,
3625                                 "Optimal transfer size %u logical blocks " \
3626                                 "> dev_max (%u logical blocks)\n",
3627                                 sdkp->opt_xfer_blocks, dev_max);
3628                 return false;
3629         }
3630
3631         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3632                 sd_first_printk(KERN_WARNING, sdkp,
3633                                 "Optimal transfer size %u logical blocks " \
3634                                 "> sd driver limit (%u logical blocks)\n",
3635                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3636                 return false;
3637         }
3638
3639         if (opt_xfer_bytes < PAGE_SIZE) {
3640                 sd_first_printk(KERN_WARNING, sdkp,
3641                                 "Optimal transfer size %u bytes < " \
3642                                 "PAGE_SIZE (%u bytes)\n",
3643                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3644                 return false;
3645         }
3646
3647         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3648                 sd_first_printk(KERN_WARNING, sdkp,
3649                                 "Optimal transfer size %u bytes not a " \
3650                                 "multiple of preferred minimum block " \
3651                                 "size (%u bytes)\n",
3652                                 opt_xfer_bytes, min_xfer_bytes);
3653                 return false;
3654         }
3655
3656         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3657                 sd_first_printk(KERN_WARNING, sdkp,
3658                                 "Optimal transfer size %u bytes not a " \
3659                                 "multiple of physical block size (%u bytes)\n",
3660                                 opt_xfer_bytes, sdkp->physical_block_size);
3661                 return false;
3662         }
3663
3664         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3665                         opt_xfer_bytes);
3666         return true;
3667 }
3668
3669 static void sd_read_block_zero(struct scsi_disk *sdkp)
3670 {
3671         struct scsi_device *sdev = sdkp->device;
3672         unsigned int buf_len = sdev->sector_size;
3673         u8 *buffer, cmd[16] = { };
3674
3675         buffer = kmalloc(buf_len, GFP_KERNEL);
3676         if (!buffer)
3677                 return;
3678
3679         if (sdev->use_16_for_rw) {
3680                 cmd[0] = READ_16;
3681                 put_unaligned_be64(0, &cmd[2]); /* Logical block address 0 */
3682                 put_unaligned_be32(1, &cmd[10]);/* Transfer 1 logical block */
3683         } else {
3684                 cmd[0] = READ_10;
3685                 put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3686                 put_unaligned_be16(1, &cmd[7]); /* Transfer 1 logical block */
3687         }
3688
3689         scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3690                          SD_TIMEOUT, sdkp->max_retries, NULL);
3691         kfree(buffer);
3692 }
3693
3694 /**
3695  *      sd_revalidate_disk - called the first time a new disk is seen,
3696  *      performs disk spin up, read_capacity, etc.
3697  *      @disk: struct gendisk we care about
3698  **/
3699 static int sd_revalidate_disk(struct gendisk *disk)
3700 {
3701         struct scsi_disk *sdkp = scsi_disk(disk);
3702         struct scsi_device *sdp = sdkp->device;
3703         sector_t old_capacity = sdkp->capacity;
3704         struct queue_limits lim;
3705         unsigned char *buffer;
3706         unsigned int dev_max;
3707         int err;
3708
3709         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3710                                       "sd_revalidate_disk\n"));
3711
3712         /*
3713          * If the device is offline, don't try and read capacity or any
3714          * of the other niceties.
3715          */
3716         if (!scsi_device_online(sdp))
3717                 goto out;
3718
3719         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3720         if (!buffer) {
3721                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3722                           "allocation failure.\n");
3723                 goto out;
3724         }
3725
3726         sd_spinup_disk(sdkp);
3727
3728         lim = queue_limits_start_update(sdkp->disk->queue);
3729
3730         /*
3731          * Without media there is no reason to ask; moreover, some devices
3732          * react badly if we do.
3733          */
3734         if (sdkp->media_present) {
3735                 sd_read_capacity(sdkp, &lim, buffer);
3736                 /*
3737                  * Some USB/UAS devices return generic values for mode pages
3738                  * until the media has been accessed. Trigger a READ operation
3739                  * to force the device to populate mode pages.
3740                  */
3741                 if (sdp->read_before_ms)
3742                         sd_read_block_zero(sdkp);
3743                 /*
3744                  * set the default to rotational.  All non-rotational devices
3745                  * support the block characteristics VPD page, which will
3746                  * cause this to be updated correctly and any device which
3747                  * doesn't support it should be treated as rotational.
3748                  */
3749                 lim.features |= (BLK_FEAT_ROTATIONAL | BLK_FEAT_ADD_RANDOM);
3750
3751                 if (scsi_device_supports_vpd(sdp)) {
3752                         sd_read_block_provisioning(sdkp);
3753                         sd_read_block_limits(sdkp, &lim);
3754                         sd_read_block_limits_ext(sdkp);
3755                         sd_read_block_characteristics(sdkp, &lim);
3756                         sd_zbc_read_zones(sdkp, &lim, buffer);
3757                 }
3758
3759                 sd_config_discard(sdkp, &lim, sd_discard_mode(sdkp));
3760
3761                 sd_print_capacity(sdkp, old_capacity);
3762
3763                 sd_read_write_protect_flag(sdkp, buffer);
3764                 sd_read_cache_type(sdkp, buffer);
3765                 sd_read_io_hints(sdkp, buffer);
3766                 sd_read_app_tag_own(sdkp, buffer);
3767                 sd_read_write_same(sdkp, buffer);
3768                 sd_read_security(sdkp, buffer);
3769                 sd_config_protection(sdkp, &lim);
3770         }
3771
3772         /*
3773          * We now have all cache related info, determine how we deal
3774          * with flush requests.
3775          */
3776         sd_set_flush_flag(sdkp, &lim);
3777
3778         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3779         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3780
3781         /* Some devices report a maximum block count for READ/WRITE requests. */
3782         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3783         lim.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3784
3785         if (sd_validate_min_xfer_size(sdkp))
3786                 lim.io_min = logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3787         else
3788                 lim.io_min = 0;
3789
3790         /*
3791          * Limit default to SCSI host optimal sector limit if set. There may be
3792          * an impact on performance for when the size of a request exceeds this
3793          * host limit.
3794          */
3795         lim.io_opt = sdp->host->opt_sectors << SECTOR_SHIFT;
3796         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3797                 lim.io_opt = min_not_zero(lim.io_opt,
3798                                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks));
3799         }
3800
3801         sdkp->first_scan = 0;
3802
3803         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3804         sd_config_write_same(sdkp, &lim);
3805         kfree(buffer);
3806
3807         blk_mq_freeze_queue(sdkp->disk->queue);
3808         err = queue_limits_commit_update(sdkp->disk->queue, &lim);
3809         blk_mq_unfreeze_queue(sdkp->disk->queue);
3810         if (err)
3811                 return err;
3812
3813         /*
3814          * Query concurrent positioning ranges after
3815          * queue_limits_commit_update() unlocked q->limits_lock to avoid
3816          * deadlock with q->sysfs_dir_lock and q->sysfs_lock.
3817          */
3818         if (sdkp->media_present && scsi_device_supports_vpd(sdp))
3819                 sd_read_cpr(sdkp);
3820
3821         /*
3822          * For a zoned drive, revalidating the zones can be done only once
3823          * the gendisk capacity is set. So if this fails, set back the gendisk
3824          * capacity to 0.
3825          */
3826         if (sd_zbc_revalidate_zones(sdkp))
3827                 set_capacity_and_notify(disk, 0);
3828
3829  out:
3830         return 0;
3831 }
3832
3833 /**
3834  *      sd_unlock_native_capacity - unlock native capacity
3835  *      @disk: struct gendisk to set capacity for
3836  *
3837  *      Block layer calls this function if it detects that partitions
3838  *      on @disk reach beyond the end of the device.  If the SCSI host
3839  *      implements ->unlock_native_capacity() method, it's invoked to
3840  *      give it a chance to adjust the device capacity.
3841  *
3842  *      CONTEXT:
3843  *      Defined by block layer.  Might sleep.
3844  */
3845 static void sd_unlock_native_capacity(struct gendisk *disk)
3846 {
3847         struct scsi_device *sdev = scsi_disk(disk)->device;
3848
3849         if (sdev->host->hostt->unlock_native_capacity)
3850                 sdev->host->hostt->unlock_native_capacity(sdev);
3851 }
3852
3853 /**
3854  *      sd_format_disk_name - format disk name
3855  *      @prefix: name prefix - ie. "sd" for SCSI disks
3856  *      @index: index of the disk to format name for
3857  *      @buf: output buffer
3858  *      @buflen: length of the output buffer
3859  *
3860  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3861  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3862  *      which is followed by sdaaa.
3863  *
3864  *      This is basically 26 base counting with one extra 'nil' entry
3865  *      at the beginning from the second digit on and can be
3866  *      determined using similar method as 26 base conversion with the
3867  *      index shifted -1 after each digit is computed.
3868  *
3869  *      CONTEXT:
3870  *      Don't care.
3871  *
3872  *      RETURNS:
3873  *      0 on success, -errno on failure.
3874  */
3875 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3876 {
3877         const int base = 'z' - 'a' + 1;
3878         char *begin = buf + strlen(prefix);
3879         char *end = buf + buflen;
3880         char *p;
3881         int unit;
3882
3883         p = end - 1;
3884         *p = '\0';
3885         unit = base;
3886         do {
3887                 if (p == begin)
3888                         return -EINVAL;
3889                 *--p = 'a' + (index % unit);
3890                 index = (index / unit) - 1;
3891         } while (index >= 0);
3892
3893         memmove(begin, p, end - p);
3894         memcpy(buf, prefix, strlen(prefix));
3895
3896         return 0;
3897 }
3898
3899 /**
3900  *      sd_probe - called during driver initialization and whenever a
3901  *      new scsi device is attached to the system. It is called once
3902  *      for each scsi device (not just disks) present.
3903  *      @dev: pointer to device object
3904  *
3905  *      Returns 0 if successful (or not interested in this scsi device 
3906  *      (e.g. scanner)); 1 when there is an error.
3907  *
3908  *      Note: this function is invoked from the scsi mid-level.
3909  *      This function sets up the mapping between a given 
3910  *      <host,channel,id,lun> (found in sdp) and new device name 
3911  *      (e.g. /dev/sda). More precisely it is the block device major 
3912  *      and minor number that is chosen here.
3913  *
3914  *      Assume sd_probe is not re-entrant (for time being)
3915  *      Also think about sd_probe() and sd_remove() running coincidentally.
3916  **/
3917 static int sd_probe(struct device *dev)
3918 {
3919         struct scsi_device *sdp = to_scsi_device(dev);
3920         struct scsi_disk *sdkp;
3921         struct gendisk *gd;
3922         int index;
3923         int error;
3924
3925         scsi_autopm_get_device(sdp);
3926         error = -ENODEV;
3927         if (sdp->type != TYPE_DISK &&
3928             sdp->type != TYPE_ZBC &&
3929             sdp->type != TYPE_MOD &&
3930             sdp->type != TYPE_RBC)
3931                 goto out;
3932
3933         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3934                 sdev_printk(KERN_WARNING, sdp,
3935                             "Unsupported ZBC host-managed device.\n");
3936                 goto out;
3937         }
3938
3939         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3940                                         "sd_probe\n"));
3941
3942         error = -ENOMEM;
3943         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3944         if (!sdkp)
3945                 goto out;
3946
3947         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3948                                          &sd_bio_compl_lkclass);
3949         if (!gd)
3950                 goto out_free;
3951
3952         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3953         if (index < 0) {
3954                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3955                 goto out_put;
3956         }
3957
3958         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3959         if (error) {
3960                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3961                 goto out_free_index;
3962         }
3963
3964         sdkp->device = sdp;
3965         sdkp->disk = gd;
3966         sdkp->index = index;
3967         sdkp->max_retries = SD_MAX_RETRIES;
3968         atomic_set(&sdkp->openers, 0);
3969         atomic_set(&sdkp->device->ioerr_cnt, 0);
3970
3971         if (!sdp->request_queue->rq_timeout) {
3972                 if (sdp->type != TYPE_MOD)
3973                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3974                 else
3975                         blk_queue_rq_timeout(sdp->request_queue,
3976                                              SD_MOD_TIMEOUT);
3977         }
3978
3979         device_initialize(&sdkp->disk_dev);
3980         sdkp->disk_dev.parent = get_device(dev);
3981         sdkp->disk_dev.class = &sd_disk_class;
3982         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3983
3984         error = device_add(&sdkp->disk_dev);
3985         if (error) {
3986                 put_device(&sdkp->disk_dev);
3987                 goto out;
3988         }
3989
3990         dev_set_drvdata(dev, sdkp);
3991
3992         gd->major = sd_major((index & 0xf0) >> 4);
3993         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3994         gd->minors = SD_MINORS;
3995
3996         gd->fops = &sd_fops;
3997         gd->private_data = sdkp;
3998
3999         /* defaults, until the device tells us otherwise */
4000         sdp->sector_size = 512;
4001         sdkp->capacity = 0;
4002         sdkp->media_present = 1;
4003         sdkp->write_prot = 0;
4004         sdkp->cache_override = 0;
4005         sdkp->WCE = 0;
4006         sdkp->RCD = 0;
4007         sdkp->ATO = 0;
4008         sdkp->first_scan = 1;
4009         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
4010
4011         sd_revalidate_disk(gd);
4012
4013         if (sdp->removable) {
4014                 gd->flags |= GENHD_FL_REMOVABLE;
4015                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
4016                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
4017         }
4018
4019         blk_pm_runtime_init(sdp->request_queue, dev);
4020         if (sdp->rpm_autosuspend) {
4021                 pm_runtime_set_autosuspend_delay(dev,
4022                         sdp->host->rpm_autosuspend_delay);
4023         }
4024
4025         error = device_add_disk(dev, gd, NULL);
4026         if (error) {
4027                 device_unregister(&sdkp->disk_dev);
4028                 put_disk(gd);
4029                 goto out;
4030         }
4031
4032         if (sdkp->security) {
4033                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
4034                 if (sdkp->opal_dev)
4035                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
4036         }
4037
4038         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
4039                   sdp->removable ? "removable " : "");
4040         scsi_autopm_put_device(sdp);
4041
4042         return 0;
4043
4044  out_free_index:
4045         ida_free(&sd_index_ida, index);
4046  out_put:
4047         put_disk(gd);
4048  out_free:
4049         kfree(sdkp);
4050  out:
4051         scsi_autopm_put_device(sdp);
4052         return error;
4053 }
4054
4055 /**
4056  *      sd_remove - called whenever a scsi disk (previously recognized by
4057  *      sd_probe) is detached from the system. It is called (potentially
4058  *      multiple times) during sd module unload.
4059  *      @dev: pointer to device object
4060  *
4061  *      Note: this function is invoked from the scsi mid-level.
4062  *      This function potentially frees up a device name (e.g. /dev/sdc)
4063  *      that could be re-used by a subsequent sd_probe().
4064  *      This function is not called when the built-in sd driver is "exit-ed".
4065  **/
4066 static int sd_remove(struct device *dev)
4067 {
4068         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4069
4070         scsi_autopm_get_device(sdkp->device);
4071
4072         device_del(&sdkp->disk_dev);
4073         del_gendisk(sdkp->disk);
4074         if (!sdkp->suspended)
4075                 sd_shutdown(dev);
4076
4077         put_disk(sdkp->disk);
4078         return 0;
4079 }
4080
4081 static void scsi_disk_release(struct device *dev)
4082 {
4083         struct scsi_disk *sdkp = to_scsi_disk(dev);
4084
4085         ida_free(&sd_index_ida, sdkp->index);
4086         put_device(&sdkp->device->sdev_gendev);
4087         free_opal_dev(sdkp->opal_dev);
4088
4089         kfree(sdkp);
4090 }
4091
4092 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
4093 {
4094         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
4095         struct scsi_sense_hdr sshdr;
4096         const struct scsi_exec_args exec_args = {
4097                 .sshdr = &sshdr,
4098                 .req_flags = BLK_MQ_REQ_PM,
4099         };
4100         struct scsi_device *sdp = sdkp->device;
4101         int res;
4102
4103         if (start)
4104                 cmd[4] |= 1;    /* START */
4105
4106         if (sdp->start_stop_pwr_cond)
4107                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
4108
4109         if (!scsi_device_online(sdp))
4110                 return -ENODEV;
4111
4112         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4113                                sdkp->max_retries, &exec_args);
4114         if (res) {
4115                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
4116                 if (res > 0 && scsi_sense_valid(&sshdr)) {
4117                         sd_print_sense_hdr(sdkp, &sshdr);
4118                         /* 0x3a is medium not present */
4119                         if (sshdr.asc == 0x3a)
4120                                 res = 0;
4121                 }
4122         }
4123
4124         /* SCSI error codes must not go to the generic layer */
4125         if (res)
4126                 return -EIO;
4127
4128         return 0;
4129 }
4130
4131 /*
4132  * Send a SYNCHRONIZE CACHE instruction down to the device through
4133  * the normal SCSI command structure.  Wait for the command to
4134  * complete.
4135  */
4136 static void sd_shutdown(struct device *dev)
4137 {
4138         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4139
4140         if (!sdkp)
4141                 return;         /* this can happen */
4142
4143         if (pm_runtime_suspended(dev))
4144                 return;
4145
4146         if (sdkp->WCE && sdkp->media_present) {
4147                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4148                 sd_sync_cache(sdkp);
4149         }
4150
4151         if ((system_state != SYSTEM_RESTART &&
4152              sdkp->device->manage_system_start_stop) ||
4153             (system_state == SYSTEM_POWER_OFF &&
4154              sdkp->device->manage_shutdown)) {
4155                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4156                 sd_start_stop_device(sdkp, 0);
4157         }
4158 }
4159
4160 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4161 {
4162         return (sdev->manage_system_start_stop && !runtime) ||
4163                 (sdev->manage_runtime_start_stop && runtime);
4164 }
4165
4166 static int sd_suspend_common(struct device *dev, bool runtime)
4167 {
4168         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4169         int ret = 0;
4170
4171         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
4172                 return 0;
4173
4174         if (sdkp->WCE && sdkp->media_present) {
4175                 if (!sdkp->device->silence_suspend)
4176                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4177                 ret = sd_sync_cache(sdkp);
4178                 /* ignore OFFLINE device */
4179                 if (ret == -ENODEV)
4180                         return 0;
4181
4182                 if (ret)
4183                         return ret;
4184         }
4185
4186         if (sd_do_start_stop(sdkp->device, runtime)) {
4187                 if (!sdkp->device->silence_suspend)
4188                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4189                 /* an error is not worth aborting a system sleep */
4190                 ret = sd_start_stop_device(sdkp, 0);
4191                 if (!runtime)
4192                         ret = 0;
4193         }
4194
4195         if (!ret)
4196                 sdkp->suspended = true;
4197
4198         return ret;
4199 }
4200
4201 static int sd_suspend_system(struct device *dev)
4202 {
4203         if (pm_runtime_suspended(dev))
4204                 return 0;
4205
4206         return sd_suspend_common(dev, false);
4207 }
4208
4209 static int sd_suspend_runtime(struct device *dev)
4210 {
4211         return sd_suspend_common(dev, true);
4212 }
4213
4214 static int sd_resume(struct device *dev)
4215 {
4216         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4217
4218         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4219
4220         if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4221                 sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4222                 return -EIO;
4223         }
4224
4225         return 0;
4226 }
4227
4228 static int sd_resume_common(struct device *dev, bool runtime)
4229 {
4230         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4231         int ret;
4232
4233         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4234                 return 0;
4235
4236         if (!sd_do_start_stop(sdkp->device, runtime)) {
4237                 sdkp->suspended = false;
4238                 return 0;
4239         }
4240
4241         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4242         ret = sd_start_stop_device(sdkp, 1);
4243         if (!ret) {
4244                 sd_resume(dev);
4245                 sdkp->suspended = false;
4246         }
4247
4248         return ret;
4249 }
4250
4251 static int sd_resume_system(struct device *dev)
4252 {
4253         if (pm_runtime_suspended(dev)) {
4254                 struct scsi_disk *sdkp = dev_get_drvdata(dev);
4255                 struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4256
4257                 if (sdp && sdp->force_runtime_start_on_system_start)
4258                         pm_request_resume(dev);
4259
4260                 return 0;
4261         }
4262
4263         return sd_resume_common(dev, false);
4264 }
4265
4266 static int sd_resume_runtime(struct device *dev)
4267 {
4268         struct scsi_disk *sdkp = dev_get_drvdata(dev);
4269         struct scsi_device *sdp;
4270
4271         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
4272                 return 0;
4273
4274         sdp = sdkp->device;
4275
4276         if (sdp->ignore_media_change) {
4277                 /* clear the device's sense data */
4278                 static const u8 cmd[10] = { REQUEST_SENSE };
4279                 const struct scsi_exec_args exec_args = {
4280                         .req_flags = BLK_MQ_REQ_PM,
4281                 };
4282
4283                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4284                                      sdp->request_queue->rq_timeout, 1,
4285                                      &exec_args))
4286                         sd_printk(KERN_NOTICE, sdkp,
4287                                   "Failed to clear sense data\n");
4288         }
4289
4290         return sd_resume_common(dev, true);
4291 }
4292
4293 static const struct dev_pm_ops sd_pm_ops = {
4294         .suspend                = sd_suspend_system,
4295         .resume                 = sd_resume_system,
4296         .poweroff               = sd_suspend_system,
4297         .restore                = sd_resume_system,
4298         .runtime_suspend        = sd_suspend_runtime,
4299         .runtime_resume         = sd_resume_runtime,
4300 };
4301
4302 static struct scsi_driver sd_template = {
4303         .gendrv = {
4304                 .name           = "sd",
4305                 .probe          = sd_probe,
4306                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
4307                 .remove         = sd_remove,
4308                 .shutdown       = sd_shutdown,
4309                 .pm             = &sd_pm_ops,
4310         },
4311         .rescan                 = sd_rescan,
4312         .resume                 = sd_resume,
4313         .init_command           = sd_init_command,
4314         .uninit_command         = sd_uninit_command,
4315         .done                   = sd_done,
4316         .eh_action              = sd_eh_action,
4317         .eh_reset               = sd_eh_reset,
4318 };
4319
4320 /**
4321  *      init_sd - entry point for this driver (both when built in or when
4322  *      a module).
4323  *
4324  *      Note: this function registers this driver with the scsi mid-level.
4325  **/
4326 static int __init init_sd(void)
4327 {
4328         int majors = 0, i, err;
4329
4330         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4331
4332         for (i = 0; i < SD_MAJORS; i++) {
4333                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4334                         continue;
4335                 majors++;
4336         }
4337
4338         if (!majors)
4339                 return -ENODEV;
4340
4341         err = class_register(&sd_disk_class);
4342         if (err)
4343                 goto err_out;
4344
4345         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4346         if (!sd_page_pool) {
4347                 printk(KERN_ERR "sd: can't init discard page pool\n");
4348                 err = -ENOMEM;
4349                 goto err_out_class;
4350         }
4351
4352         err = scsi_register_driver(&sd_template.gendrv);
4353         if (err)
4354                 goto err_out_driver;
4355
4356         return 0;
4357
4358 err_out_driver:
4359         mempool_destroy(sd_page_pool);
4360 err_out_class:
4361         class_unregister(&sd_disk_class);
4362 err_out:
4363         for (i = 0; i < SD_MAJORS; i++)
4364                 unregister_blkdev(sd_major(i), "sd");
4365         return err;
4366 }
4367
4368 /**
4369  *      exit_sd - exit point for this driver (when it is a module).
4370  *
4371  *      Note: this function unregisters this driver from the scsi mid-level.
4372  **/
4373 static void __exit exit_sd(void)
4374 {
4375         int i;
4376
4377         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4378
4379         scsi_unregister_driver(&sd_template.gendrv);
4380         mempool_destroy(sd_page_pool);
4381
4382         class_unregister(&sd_disk_class);
4383
4384         for (i = 0; i < SD_MAJORS; i++)
4385                 unregister_blkdev(sd_major(i), "sd");
4386 }
4387
4388 module_init(init_sd);
4389 module_exit(exit_sd);
4390
4391 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4392 {
4393         scsi_print_sense_hdr(sdkp->device,
4394                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4395 }
4396
4397 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4398 {
4399         const char *hb_string = scsi_hostbyte_string(result);
4400
4401         if (hb_string)
4402                 sd_printk(KERN_INFO, sdkp,
4403                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4404                           hb_string ? hb_string : "invalid",
4405                           "DRIVER_OK");
4406         else
4407                 sd_printk(KERN_INFO, sdkp,
4408                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4409                           msg, host_byte(result), "DRIVER_OK");
4410 }