Merge patch series "lpfc: Update lpfc to revision 14.2.0.15"
[linux-2.6-block.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110
111 static DEFINE_IDA(sd_index_ida);
112
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115
116 static const char *sd_cache_types[] = {
117         "write through", "none", "write back",
118         "write back, no read (daft)"
119 };
120
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123         bool wc = false, fua = false;
124
125         if (sdkp->WCE) {
126                 wc = true;
127                 if (sdkp->DPOFUA)
128                         fua = true;
129         }
130
131         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136                  const char *buf, size_t count)
137 {
138         int ct, rcd, wce, sp;
139         struct scsi_disk *sdkp = to_scsi_disk(dev);
140         struct scsi_device *sdp = sdkp->device;
141         char buffer[64];
142         char *buffer_data;
143         struct scsi_mode_data data;
144         struct scsi_sense_hdr sshdr;
145         static const char temp[] = "temporary ";
146         int len, ret;
147
148         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149                 /* no cache control on RBC devices; theoretically they
150                  * can do it, but there's probably so many exceptions
151                  * it's not worth the risk */
152                 return -EINVAL;
153
154         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155                 buf += sizeof(temp) - 1;
156                 sdkp->cache_override = 1;
157         } else {
158                 sdkp->cache_override = 0;
159         }
160
161         ct = sysfs_match_string(sd_cache_types, buf);
162         if (ct < 0)
163                 return -EINVAL;
164
165         rcd = ct & 0x01 ? 1 : 0;
166         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167
168         if (sdkp->cache_override) {
169                 sdkp->WCE = wce;
170                 sdkp->RCD = rcd;
171                 sd_set_flush_flag(sdkp);
172                 return count;
173         }
174
175         if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176                             sdkp->max_retries, &data, NULL))
177                 return -EINVAL;
178         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179                   data.block_descriptor_length);
180         buffer_data = buffer + data.header_length +
181                 data.block_descriptor_length;
182         buffer_data[2] &= ~0x05;
183         buffer_data[2] |= wce << 2 | rcd;
184         sp = buffer_data[0] & 0x80 ? 1 : 0;
185         buffer_data[0] &= ~0x80;
186
187         /*
188          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189          * received mode parameter buffer before doing MODE SELECT.
190          */
191         data.device_specific = 0;
192
193         ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194                                sdkp->max_retries, &data, &sshdr);
195         if (ret) {
196                 if (ret > 0 && scsi_sense_valid(&sshdr))
197                         sd_print_sense_hdr(sdkp, &sshdr);
198                 return -EINVAL;
199         }
200         sd_revalidate_disk(sdkp->disk);
201         return count;
202 }
203
204 static ssize_t
205 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
206                        char *buf)
207 {
208         struct scsi_disk *sdkp = to_scsi_disk(dev);
209         struct scsi_device *sdp = sdkp->device;
210
211         return sprintf(buf, "%u\n", sdp->manage_start_stop);
212 }
213
214 static ssize_t
215 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
216                         const char *buf, size_t count)
217 {
218         struct scsi_disk *sdkp = to_scsi_disk(dev);
219         struct scsi_device *sdp = sdkp->device;
220         bool v;
221
222         if (!capable(CAP_SYS_ADMIN))
223                 return -EACCES;
224
225         if (kstrtobool(buf, &v))
226                 return -EINVAL;
227
228         sdp->manage_start_stop = v;
229
230         return count;
231 }
232 static DEVICE_ATTR_RW(manage_start_stop);
233
234 static ssize_t
235 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
236 {
237         struct scsi_disk *sdkp = to_scsi_disk(dev);
238
239         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
240 }
241
242 static ssize_t
243 allow_restart_store(struct device *dev, struct device_attribute *attr,
244                     const char *buf, size_t count)
245 {
246         bool v;
247         struct scsi_disk *sdkp = to_scsi_disk(dev);
248         struct scsi_device *sdp = sdkp->device;
249
250         if (!capable(CAP_SYS_ADMIN))
251                 return -EACCES;
252
253         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
254                 return -EINVAL;
255
256         if (kstrtobool(buf, &v))
257                 return -EINVAL;
258
259         sdp->allow_restart = v;
260
261         return count;
262 }
263 static DEVICE_ATTR_RW(allow_restart);
264
265 static ssize_t
266 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
267 {
268         struct scsi_disk *sdkp = to_scsi_disk(dev);
269         int ct = sdkp->RCD + 2*sdkp->WCE;
270
271         return sprintf(buf, "%s\n", sd_cache_types[ct]);
272 }
273 static DEVICE_ATTR_RW(cache_type);
274
275 static ssize_t
276 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278         struct scsi_disk *sdkp = to_scsi_disk(dev);
279
280         return sprintf(buf, "%u\n", sdkp->DPOFUA);
281 }
282 static DEVICE_ATTR_RO(FUA);
283
284 static ssize_t
285 protection_type_show(struct device *dev, struct device_attribute *attr,
286                      char *buf)
287 {
288         struct scsi_disk *sdkp = to_scsi_disk(dev);
289
290         return sprintf(buf, "%u\n", sdkp->protection_type);
291 }
292
293 static ssize_t
294 protection_type_store(struct device *dev, struct device_attribute *attr,
295                       const char *buf, size_t count)
296 {
297         struct scsi_disk *sdkp = to_scsi_disk(dev);
298         unsigned int val;
299         int err;
300
301         if (!capable(CAP_SYS_ADMIN))
302                 return -EACCES;
303
304         err = kstrtouint(buf, 10, &val);
305
306         if (err)
307                 return err;
308
309         if (val <= T10_PI_TYPE3_PROTECTION)
310                 sdkp->protection_type = val;
311
312         return count;
313 }
314 static DEVICE_ATTR_RW(protection_type);
315
316 static ssize_t
317 protection_mode_show(struct device *dev, struct device_attribute *attr,
318                      char *buf)
319 {
320         struct scsi_disk *sdkp = to_scsi_disk(dev);
321         struct scsi_device *sdp = sdkp->device;
322         unsigned int dif, dix;
323
324         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
325         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
326
327         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
328                 dif = 0;
329                 dix = 1;
330         }
331
332         if (!dif && !dix)
333                 return sprintf(buf, "none\n");
334
335         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
336 }
337 static DEVICE_ATTR_RO(protection_mode);
338
339 static ssize_t
340 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
341 {
342         struct scsi_disk *sdkp = to_scsi_disk(dev);
343
344         return sprintf(buf, "%u\n", sdkp->ATO);
345 }
346 static DEVICE_ATTR_RO(app_tag_own);
347
348 static ssize_t
349 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
350                        char *buf)
351 {
352         struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354         return sprintf(buf, "%u\n", sdkp->lbpme);
355 }
356 static DEVICE_ATTR_RO(thin_provisioning);
357
358 /* sysfs_match_string() requires dense arrays */
359 static const char *lbp_mode[] = {
360         [SD_LBP_FULL]           = "full",
361         [SD_LBP_UNMAP]          = "unmap",
362         [SD_LBP_WS16]           = "writesame_16",
363         [SD_LBP_WS10]           = "writesame_10",
364         [SD_LBP_ZERO]           = "writesame_zero",
365         [SD_LBP_DISABLE]        = "disabled",
366 };
367
368 static ssize_t
369 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
370                        char *buf)
371 {
372         struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
375 }
376
377 static ssize_t
378 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
379                         const char *buf, size_t count)
380 {
381         struct scsi_disk *sdkp = to_scsi_disk(dev);
382         struct scsi_device *sdp = sdkp->device;
383         int mode;
384
385         if (!capable(CAP_SYS_ADMIN))
386                 return -EACCES;
387
388         if (sd_is_zoned(sdkp)) {
389                 sd_config_discard(sdkp, SD_LBP_DISABLE);
390                 return count;
391         }
392
393         if (sdp->type != TYPE_DISK)
394                 return -EINVAL;
395
396         mode = sysfs_match_string(lbp_mode, buf);
397         if (mode < 0)
398                 return -EINVAL;
399
400         sd_config_discard(sdkp, mode);
401
402         return count;
403 }
404 static DEVICE_ATTR_RW(provisioning_mode);
405
406 /* sysfs_match_string() requires dense arrays */
407 static const char *zeroing_mode[] = {
408         [SD_ZERO_WRITE]         = "write",
409         [SD_ZERO_WS]            = "writesame",
410         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
411         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
412 };
413
414 static ssize_t
415 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
416                   char *buf)
417 {
418         struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
421 }
422
423 static ssize_t
424 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
425                    const char *buf, size_t count)
426 {
427         struct scsi_disk *sdkp = to_scsi_disk(dev);
428         int mode;
429
430         if (!capable(CAP_SYS_ADMIN))
431                 return -EACCES;
432
433         mode = sysfs_match_string(zeroing_mode, buf);
434         if (mode < 0)
435                 return -EINVAL;
436
437         sdkp->zeroing_mode = mode;
438
439         return count;
440 }
441 static DEVICE_ATTR_RW(zeroing_mode);
442
443 static ssize_t
444 max_medium_access_timeouts_show(struct device *dev,
445                                 struct device_attribute *attr, char *buf)
446 {
447         struct scsi_disk *sdkp = to_scsi_disk(dev);
448
449         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
450 }
451
452 static ssize_t
453 max_medium_access_timeouts_store(struct device *dev,
454                                  struct device_attribute *attr, const char *buf,
455                                  size_t count)
456 {
457         struct scsi_disk *sdkp = to_scsi_disk(dev);
458         int err;
459
460         if (!capable(CAP_SYS_ADMIN))
461                 return -EACCES;
462
463         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
464
465         return err ? err : count;
466 }
467 static DEVICE_ATTR_RW(max_medium_access_timeouts);
468
469 static ssize_t
470 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
471                            char *buf)
472 {
473         struct scsi_disk *sdkp = to_scsi_disk(dev);
474
475         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
476 }
477
478 static ssize_t
479 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
480                             const char *buf, size_t count)
481 {
482         struct scsi_disk *sdkp = to_scsi_disk(dev);
483         struct scsi_device *sdp = sdkp->device;
484         unsigned long max;
485         int err;
486
487         if (!capable(CAP_SYS_ADMIN))
488                 return -EACCES;
489
490         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
491                 return -EINVAL;
492
493         err = kstrtoul(buf, 10, &max);
494
495         if (err)
496                 return err;
497
498         if (max == 0)
499                 sdp->no_write_same = 1;
500         else if (max <= SD_MAX_WS16_BLOCKS) {
501                 sdp->no_write_same = 0;
502                 sdkp->max_ws_blocks = max;
503         }
504
505         sd_config_write_same(sdkp);
506
507         return count;
508 }
509 static DEVICE_ATTR_RW(max_write_same_blocks);
510
511 static ssize_t
512 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
513 {
514         struct scsi_disk *sdkp = to_scsi_disk(dev);
515
516         if (sdkp->device->type == TYPE_ZBC)
517                 return sprintf(buf, "host-managed\n");
518         if (sdkp->zoned == 1)
519                 return sprintf(buf, "host-aware\n");
520         if (sdkp->zoned == 2)
521                 return sprintf(buf, "drive-managed\n");
522         return sprintf(buf, "none\n");
523 }
524 static DEVICE_ATTR_RO(zoned_cap);
525
526 static ssize_t
527 max_retries_store(struct device *dev, struct device_attribute *attr,
528                   const char *buf, size_t count)
529 {
530         struct scsi_disk *sdkp = to_scsi_disk(dev);
531         struct scsi_device *sdev = sdkp->device;
532         int retries, err;
533
534         err = kstrtoint(buf, 10, &retries);
535         if (err)
536                 return err;
537
538         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
539                 sdkp->max_retries = retries;
540                 return count;
541         }
542
543         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
544                     SD_MAX_RETRIES);
545         return -EINVAL;
546 }
547
548 static ssize_t
549 max_retries_show(struct device *dev, struct device_attribute *attr,
550                  char *buf)
551 {
552         struct scsi_disk *sdkp = to_scsi_disk(dev);
553
554         return sprintf(buf, "%d\n", sdkp->max_retries);
555 }
556
557 static DEVICE_ATTR_RW(max_retries);
558
559 static struct attribute *sd_disk_attrs[] = {
560         &dev_attr_cache_type.attr,
561         &dev_attr_FUA.attr,
562         &dev_attr_allow_restart.attr,
563         &dev_attr_manage_start_stop.attr,
564         &dev_attr_protection_type.attr,
565         &dev_attr_protection_mode.attr,
566         &dev_attr_app_tag_own.attr,
567         &dev_attr_thin_provisioning.attr,
568         &dev_attr_provisioning_mode.attr,
569         &dev_attr_zeroing_mode.attr,
570         &dev_attr_max_write_same_blocks.attr,
571         &dev_attr_max_medium_access_timeouts.attr,
572         &dev_attr_zoned_cap.attr,
573         &dev_attr_max_retries.attr,
574         NULL,
575 };
576 ATTRIBUTE_GROUPS(sd_disk);
577
578 static struct class sd_disk_class = {
579         .name           = "scsi_disk",
580         .dev_release    = scsi_disk_release,
581         .dev_groups     = sd_disk_groups,
582 };
583
584 /*
585  * Don't request a new module, as that could deadlock in multipath
586  * environment.
587  */
588 static void sd_default_probe(dev_t devt)
589 {
590 }
591
592 /*
593  * Device no to disk mapping:
594  * 
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  * 
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272 
602  * for major1, ... 
603  * As we stay compatible with our numbering scheme, we can reuse 
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
606 static int sd_major(int major_idx)
607 {
608         switch (major_idx) {
609         case 0:
610                 return SCSI_DISK0_MAJOR;
611         case 1 ... 7:
612                 return SCSI_DISK1_MAJOR + major_idx - 1;
613         case 8 ... 15:
614                 return SCSI_DISK8_MAJOR + major_idx - 8;
615         default:
616                 BUG();
617                 return 0;       /* shut up gcc */
618         }
619 }
620
621 #ifdef CONFIG_BLK_SED_OPAL
622 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
623                 size_t len, bool send)
624 {
625         struct scsi_disk *sdkp = data;
626         struct scsi_device *sdev = sdkp->device;
627         u8 cdb[12] = { 0, };
628         const struct scsi_exec_args exec_args = {
629                 .req_flags = BLK_MQ_REQ_PM,
630         };
631         int ret;
632
633         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
634         cdb[1] = secp;
635         put_unaligned_be16(spsp, &cdb[2]);
636         put_unaligned_be32(len, &cdb[6]);
637
638         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
639                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
640                                &exec_args);
641         return ret <= 0 ? ret : -EIO;
642 }
643 #endif /* CONFIG_BLK_SED_OPAL */
644
645 /*
646  * Look up the DIX operation based on whether the command is read or
647  * write and whether dix and dif are enabled.
648  */
649 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
650 {
651         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
652         static const unsigned int ops[] = {     /* wrt dix dif */
653                 SCSI_PROT_NORMAL,               /*  0   0   0  */
654                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
655                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
656                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
657                 SCSI_PROT_NORMAL,               /*  1   0   0  */
658                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
659                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
660                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
661         };
662
663         return ops[write << 2 | dix << 1 | dif];
664 }
665
666 /*
667  * Returns a mask of the protection flags that are valid for a given DIX
668  * operation.
669  */
670 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
671 {
672         static const unsigned int flag_mask[] = {
673                 [SCSI_PROT_NORMAL]              = 0,
674
675                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
676                                                   SCSI_PROT_GUARD_CHECK |
677                                                   SCSI_PROT_REF_CHECK |
678                                                   SCSI_PROT_REF_INCREMENT,
679
680                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
681                                                   SCSI_PROT_IP_CHECKSUM,
682
683                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
684                                                   SCSI_PROT_GUARD_CHECK |
685                                                   SCSI_PROT_REF_CHECK |
686                                                   SCSI_PROT_REF_INCREMENT |
687                                                   SCSI_PROT_IP_CHECKSUM,
688
689                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
690                                                   SCSI_PROT_REF_INCREMENT,
691
692                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
693                                                   SCSI_PROT_REF_CHECK |
694                                                   SCSI_PROT_REF_INCREMENT |
695                                                   SCSI_PROT_IP_CHECKSUM,
696
697                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
698                                                   SCSI_PROT_GUARD_CHECK |
699                                                   SCSI_PROT_REF_CHECK |
700                                                   SCSI_PROT_REF_INCREMENT |
701                                                   SCSI_PROT_IP_CHECKSUM,
702         };
703
704         return flag_mask[prot_op];
705 }
706
707 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
708                                            unsigned int dix, unsigned int dif)
709 {
710         struct request *rq = scsi_cmd_to_rq(scmd);
711         struct bio *bio = rq->bio;
712         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
713         unsigned int protect = 0;
714
715         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
716                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
717                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
718
719                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
720                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
721         }
722
723         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
724                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
725
726                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
727                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
728         }
729
730         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
731                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
732
733                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
734                         protect = 3 << 5;       /* Disable target PI checking */
735                 else
736                         protect = 1 << 5;       /* Enable target PI checking */
737         }
738
739         scsi_set_prot_op(scmd, prot_op);
740         scsi_set_prot_type(scmd, dif);
741         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
742
743         return protect;
744 }
745
746 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
747 {
748         struct request_queue *q = sdkp->disk->queue;
749         unsigned int logical_block_size = sdkp->device->sector_size;
750         unsigned int max_blocks = 0;
751
752         q->limits.discard_alignment =
753                 sdkp->unmap_alignment * logical_block_size;
754         q->limits.discard_granularity =
755                 max(sdkp->physical_block_size,
756                     sdkp->unmap_granularity * logical_block_size);
757         sdkp->provisioning_mode = mode;
758
759         switch (mode) {
760
761         case SD_LBP_FULL:
762         case SD_LBP_DISABLE:
763                 blk_queue_max_discard_sectors(q, 0);
764                 return;
765
766         case SD_LBP_UNMAP:
767                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
768                                           (u32)SD_MAX_WS16_BLOCKS);
769                 break;
770
771         case SD_LBP_WS16:
772                 if (sdkp->device->unmap_limit_for_ws)
773                         max_blocks = sdkp->max_unmap_blocks;
774                 else
775                         max_blocks = sdkp->max_ws_blocks;
776
777                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
778                 break;
779
780         case SD_LBP_WS10:
781                 if (sdkp->device->unmap_limit_for_ws)
782                         max_blocks = sdkp->max_unmap_blocks;
783                 else
784                         max_blocks = sdkp->max_ws_blocks;
785
786                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
787                 break;
788
789         case SD_LBP_ZERO:
790                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
791                                           (u32)SD_MAX_WS10_BLOCKS);
792                 break;
793         }
794
795         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
796 }
797
798 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
799 {
800         struct page *page;
801
802         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
803         if (!page)
804                 return NULL;
805         clear_highpage(page);
806         bvec_set_page(&rq->special_vec, page, data_len, 0);
807         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
808         return bvec_virt(&rq->special_vec);
809 }
810
811 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
812 {
813         struct scsi_device *sdp = cmd->device;
814         struct request *rq = scsi_cmd_to_rq(cmd);
815         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
816         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
817         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
818         unsigned int data_len = 24;
819         char *buf;
820
821         buf = sd_set_special_bvec(rq, data_len);
822         if (!buf)
823                 return BLK_STS_RESOURCE;
824
825         cmd->cmd_len = 10;
826         cmd->cmnd[0] = UNMAP;
827         cmd->cmnd[8] = 24;
828
829         put_unaligned_be16(6 + 16, &buf[0]);
830         put_unaligned_be16(16, &buf[2]);
831         put_unaligned_be64(lba, &buf[8]);
832         put_unaligned_be32(nr_blocks, &buf[16]);
833
834         cmd->allowed = sdkp->max_retries;
835         cmd->transfersize = data_len;
836         rq->timeout = SD_TIMEOUT;
837
838         return scsi_alloc_sgtables(cmd);
839 }
840
841 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
842                 bool unmap)
843 {
844         struct scsi_device *sdp = cmd->device;
845         struct request *rq = scsi_cmd_to_rq(cmd);
846         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
847         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
848         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
849         u32 data_len = sdp->sector_size;
850
851         if (!sd_set_special_bvec(rq, data_len))
852                 return BLK_STS_RESOURCE;
853
854         cmd->cmd_len = 16;
855         cmd->cmnd[0] = WRITE_SAME_16;
856         if (unmap)
857                 cmd->cmnd[1] = 0x8; /* UNMAP */
858         put_unaligned_be64(lba, &cmd->cmnd[2]);
859         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
860
861         cmd->allowed = sdkp->max_retries;
862         cmd->transfersize = data_len;
863         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
864
865         return scsi_alloc_sgtables(cmd);
866 }
867
868 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
869                 bool unmap)
870 {
871         struct scsi_device *sdp = cmd->device;
872         struct request *rq = scsi_cmd_to_rq(cmd);
873         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
874         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
875         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
876         u32 data_len = sdp->sector_size;
877
878         if (!sd_set_special_bvec(rq, data_len))
879                 return BLK_STS_RESOURCE;
880
881         cmd->cmd_len = 10;
882         cmd->cmnd[0] = WRITE_SAME;
883         if (unmap)
884                 cmd->cmnd[1] = 0x8; /* UNMAP */
885         put_unaligned_be32(lba, &cmd->cmnd[2]);
886         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
887
888         cmd->allowed = sdkp->max_retries;
889         cmd->transfersize = data_len;
890         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
891
892         return scsi_alloc_sgtables(cmd);
893 }
894
895 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
896 {
897         struct request *rq = scsi_cmd_to_rq(cmd);
898         struct scsi_device *sdp = cmd->device;
899         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
900         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
901         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
902
903         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
904                 switch (sdkp->zeroing_mode) {
905                 case SD_ZERO_WS16_UNMAP:
906                         return sd_setup_write_same16_cmnd(cmd, true);
907                 case SD_ZERO_WS10_UNMAP:
908                         return sd_setup_write_same10_cmnd(cmd, true);
909                 }
910         }
911
912         if (sdp->no_write_same) {
913                 rq->rq_flags |= RQF_QUIET;
914                 return BLK_STS_TARGET;
915         }
916
917         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
918                 return sd_setup_write_same16_cmnd(cmd, false);
919
920         return sd_setup_write_same10_cmnd(cmd, false);
921 }
922
923 static void sd_config_write_same(struct scsi_disk *sdkp)
924 {
925         struct request_queue *q = sdkp->disk->queue;
926         unsigned int logical_block_size = sdkp->device->sector_size;
927
928         if (sdkp->device->no_write_same) {
929                 sdkp->max_ws_blocks = 0;
930                 goto out;
931         }
932
933         /* Some devices can not handle block counts above 0xffff despite
934          * supporting WRITE SAME(16). Consequently we default to 64k
935          * blocks per I/O unless the device explicitly advertises a
936          * bigger limit.
937          */
938         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
939                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
940                                                    (u32)SD_MAX_WS16_BLOCKS);
941         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
942                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
943                                                    (u32)SD_MAX_WS10_BLOCKS);
944         else {
945                 sdkp->device->no_write_same = 1;
946                 sdkp->max_ws_blocks = 0;
947         }
948
949         if (sdkp->lbprz && sdkp->lbpws)
950                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
951         else if (sdkp->lbprz && sdkp->lbpws10)
952                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
953         else if (sdkp->max_ws_blocks)
954                 sdkp->zeroing_mode = SD_ZERO_WS;
955         else
956                 sdkp->zeroing_mode = SD_ZERO_WRITE;
957
958         if (sdkp->max_ws_blocks &&
959             sdkp->physical_block_size > logical_block_size) {
960                 /*
961                  * Reporting a maximum number of blocks that is not aligned
962                  * on the device physical size would cause a large write same
963                  * request to be split into physically unaligned chunks by
964                  * __blkdev_issue_write_zeroes() even if the caller of this
965                  * functions took care to align the large request. So make sure
966                  * the maximum reported is aligned to the device physical block
967                  * size. This is only an optional optimization for regular
968                  * disks, but this is mandatory to avoid failure of large write
969                  * same requests directed at sequential write required zones of
970                  * host-managed ZBC disks.
971                  */
972                 sdkp->max_ws_blocks =
973                         round_down(sdkp->max_ws_blocks,
974                                    bytes_to_logical(sdkp->device,
975                                                     sdkp->physical_block_size));
976         }
977
978 out:
979         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
980                                          (logical_block_size >> 9));
981 }
982
983 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
984 {
985         struct request *rq = scsi_cmd_to_rq(cmd);
986         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
987
988         /* flush requests don't perform I/O, zero the S/G table */
989         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
990
991         if (cmd->device->use_16_for_sync) {
992                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
993                 cmd->cmd_len = 16;
994         } else {
995                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
996                 cmd->cmd_len = 10;
997         }
998         cmd->transfersize = 0;
999         cmd->allowed = sdkp->max_retries;
1000
1001         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1002         return BLK_STS_OK;
1003 }
1004
1005 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1006                                        sector_t lba, unsigned int nr_blocks,
1007                                        unsigned char flags, unsigned int dld)
1008 {
1009         cmd->cmd_len = SD_EXT_CDB_SIZE;
1010         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1011         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1012         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1013         cmd->cmnd[10] = flags;
1014         cmd->cmnd[11] = dld & 0x07;
1015         put_unaligned_be64(lba, &cmd->cmnd[12]);
1016         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1017         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1018
1019         return BLK_STS_OK;
1020 }
1021
1022 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1023                                        sector_t lba, unsigned int nr_blocks,
1024                                        unsigned char flags, unsigned int dld)
1025 {
1026         cmd->cmd_len  = 16;
1027         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1028         cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1029         cmd->cmnd[14] = (dld & 0x03) << 6;
1030         cmd->cmnd[15] = 0;
1031         put_unaligned_be64(lba, &cmd->cmnd[2]);
1032         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1033
1034         return BLK_STS_OK;
1035 }
1036
1037 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1038                                        sector_t lba, unsigned int nr_blocks,
1039                                        unsigned char flags)
1040 {
1041         cmd->cmd_len = 10;
1042         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1043         cmd->cmnd[1] = flags;
1044         cmd->cmnd[6] = 0;
1045         cmd->cmnd[9] = 0;
1046         put_unaligned_be32(lba, &cmd->cmnd[2]);
1047         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1048
1049         return BLK_STS_OK;
1050 }
1051
1052 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1053                                       sector_t lba, unsigned int nr_blocks,
1054                                       unsigned char flags)
1055 {
1056         /* Avoid that 0 blocks gets translated into 256 blocks. */
1057         if (WARN_ON_ONCE(nr_blocks == 0))
1058                 return BLK_STS_IOERR;
1059
1060         if (unlikely(flags & 0x8)) {
1061                 /*
1062                  * This happens only if this drive failed 10byte rw
1063                  * command with ILLEGAL_REQUEST during operation and
1064                  * thus turned off use_10_for_rw.
1065                  */
1066                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1067                 return BLK_STS_IOERR;
1068         }
1069
1070         cmd->cmd_len = 6;
1071         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1072         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1073         cmd->cmnd[2] = (lba >> 8) & 0xff;
1074         cmd->cmnd[3] = lba & 0xff;
1075         cmd->cmnd[4] = nr_blocks;
1076         cmd->cmnd[5] = 0;
1077
1078         return BLK_STS_OK;
1079 }
1080
1081 /*
1082  * Check if a command has a duration limit set. If it does, and the target
1083  * device supports CDL and the feature is enabled, return the limit
1084  * descriptor index to use. Return 0 (no limit) otherwise.
1085  */
1086 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1087 {
1088         struct scsi_device *sdp = sdkp->device;
1089         int hint;
1090
1091         if (!sdp->cdl_supported || !sdp->cdl_enable)
1092                 return 0;
1093
1094         /*
1095          * Use "no limit" if the request ioprio does not specify a duration
1096          * limit hint.
1097          */
1098         hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1099         if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1100             hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1101                 return 0;
1102
1103         return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1104 }
1105
1106 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1107 {
1108         struct request *rq = scsi_cmd_to_rq(cmd);
1109         struct scsi_device *sdp = cmd->device;
1110         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1111         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1112         sector_t threshold;
1113         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1114         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1115         bool write = rq_data_dir(rq) == WRITE;
1116         unsigned char protect, fua;
1117         unsigned int dld;
1118         blk_status_t ret;
1119         unsigned int dif;
1120         bool dix;
1121
1122         ret = scsi_alloc_sgtables(cmd);
1123         if (ret != BLK_STS_OK)
1124                 return ret;
1125
1126         ret = BLK_STS_IOERR;
1127         if (!scsi_device_online(sdp) || sdp->changed) {
1128                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1129                 goto fail;
1130         }
1131
1132         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1133                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1134                 goto fail;
1135         }
1136
1137         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1138                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1139                 goto fail;
1140         }
1141
1142         /*
1143          * Some SD card readers can't handle accesses which touch the
1144          * last one or two logical blocks. Split accesses as needed.
1145          */
1146         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1147
1148         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1149                 if (lba < threshold) {
1150                         /* Access up to the threshold but not beyond */
1151                         nr_blocks = threshold - lba;
1152                 } else {
1153                         /* Access only a single logical block */
1154                         nr_blocks = 1;
1155                 }
1156         }
1157
1158         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1159                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1160                 if (ret)
1161                         goto fail;
1162         }
1163
1164         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1165         dix = scsi_prot_sg_count(cmd);
1166         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1167         dld = sd_cdl_dld(sdkp, cmd);
1168
1169         if (dif || dix)
1170                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1171         else
1172                 protect = 0;
1173
1174         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1175                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1176                                          protect | fua, dld);
1177         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1178                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1179                                          protect | fua, dld);
1180         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1181                    sdp->use_10_for_rw || protect) {
1182                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1183                                          protect | fua);
1184         } else {
1185                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1186                                         protect | fua);
1187         }
1188
1189         if (unlikely(ret != BLK_STS_OK))
1190                 goto fail;
1191
1192         /*
1193          * We shouldn't disconnect in the middle of a sector, so with a dumb
1194          * host adapter, it's safe to assume that we can at least transfer
1195          * this many bytes between each connect / disconnect.
1196          */
1197         cmd->transfersize = sdp->sector_size;
1198         cmd->underflow = nr_blocks << 9;
1199         cmd->allowed = sdkp->max_retries;
1200         cmd->sdb.length = nr_blocks * sdp->sector_size;
1201
1202         SCSI_LOG_HLQUEUE(1,
1203                          scmd_printk(KERN_INFO, cmd,
1204                                      "%s: block=%llu, count=%d\n", __func__,
1205                                      (unsigned long long)blk_rq_pos(rq),
1206                                      blk_rq_sectors(rq)));
1207         SCSI_LOG_HLQUEUE(2,
1208                          scmd_printk(KERN_INFO, cmd,
1209                                      "%s %d/%u 512 byte blocks.\n",
1210                                      write ? "writing" : "reading", nr_blocks,
1211                                      blk_rq_sectors(rq)));
1212
1213         /*
1214          * This indicates that the command is ready from our end to be queued.
1215          */
1216         return BLK_STS_OK;
1217 fail:
1218         scsi_free_sgtables(cmd);
1219         return ret;
1220 }
1221
1222 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1223 {
1224         struct request *rq = scsi_cmd_to_rq(cmd);
1225
1226         switch (req_op(rq)) {
1227         case REQ_OP_DISCARD:
1228                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1229                 case SD_LBP_UNMAP:
1230                         return sd_setup_unmap_cmnd(cmd);
1231                 case SD_LBP_WS16:
1232                         return sd_setup_write_same16_cmnd(cmd, true);
1233                 case SD_LBP_WS10:
1234                         return sd_setup_write_same10_cmnd(cmd, true);
1235                 case SD_LBP_ZERO:
1236                         return sd_setup_write_same10_cmnd(cmd, false);
1237                 default:
1238                         return BLK_STS_TARGET;
1239                 }
1240         case REQ_OP_WRITE_ZEROES:
1241                 return sd_setup_write_zeroes_cmnd(cmd);
1242         case REQ_OP_FLUSH:
1243                 return sd_setup_flush_cmnd(cmd);
1244         case REQ_OP_READ:
1245         case REQ_OP_WRITE:
1246         case REQ_OP_ZONE_APPEND:
1247                 return sd_setup_read_write_cmnd(cmd);
1248         case REQ_OP_ZONE_RESET:
1249                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1250                                                    false);
1251         case REQ_OP_ZONE_RESET_ALL:
1252                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1253                                                    true);
1254         case REQ_OP_ZONE_OPEN:
1255                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1256         case REQ_OP_ZONE_CLOSE:
1257                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1258         case REQ_OP_ZONE_FINISH:
1259                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1260         default:
1261                 WARN_ON_ONCE(1);
1262                 return BLK_STS_NOTSUPP;
1263         }
1264 }
1265
1266 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1267 {
1268         struct request *rq = scsi_cmd_to_rq(SCpnt);
1269
1270         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1271                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1272 }
1273
1274 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1275 {
1276         if (sdkp->device->removable || sdkp->write_prot) {
1277                 if (disk_check_media_change(disk))
1278                         return true;
1279         }
1280
1281         /*
1282          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1283          * nothing to do with partitions, BLKRRPART is used to force a full
1284          * revalidate after things like a format for historical reasons.
1285          */
1286         return test_bit(GD_NEED_PART_SCAN, &disk->state);
1287 }
1288
1289 /**
1290  *      sd_open - open a scsi disk device
1291  *      @disk: disk to open
1292  *      @mode: open mode
1293  *
1294  *      Returns 0 if successful. Returns a negated errno value in case 
1295  *      of error.
1296  *
1297  *      Note: This can be called from a user context (e.g. fsck(1) )
1298  *      or from within the kernel (e.g. as a result of a mount(1) ).
1299  *      In the latter case @inode and @filp carry an abridged amount
1300  *      of information as noted above.
1301  *
1302  *      Locking: called with disk->open_mutex held.
1303  **/
1304 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1305 {
1306         struct scsi_disk *sdkp = scsi_disk(disk);
1307         struct scsi_device *sdev = sdkp->device;
1308         int retval;
1309
1310         if (scsi_device_get(sdev))
1311                 return -ENXIO;
1312
1313         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1314
1315         /*
1316          * If the device is in error recovery, wait until it is done.
1317          * If the device is offline, then disallow any access to it.
1318          */
1319         retval = -ENXIO;
1320         if (!scsi_block_when_processing_errors(sdev))
1321                 goto error_out;
1322
1323         if (sd_need_revalidate(disk, sdkp))
1324                 sd_revalidate_disk(disk);
1325
1326         /*
1327          * If the drive is empty, just let the open fail.
1328          */
1329         retval = -ENOMEDIUM;
1330         if (sdev->removable && !sdkp->media_present &&
1331             !(mode & BLK_OPEN_NDELAY))
1332                 goto error_out;
1333
1334         /*
1335          * If the device has the write protect tab set, have the open fail
1336          * if the user expects to be able to write to the thing.
1337          */
1338         retval = -EROFS;
1339         if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1340                 goto error_out;
1341
1342         /*
1343          * It is possible that the disk changing stuff resulted in
1344          * the device being taken offline.  If this is the case,
1345          * report this to the user, and don't pretend that the
1346          * open actually succeeded.
1347          */
1348         retval = -ENXIO;
1349         if (!scsi_device_online(sdev))
1350                 goto error_out;
1351
1352         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1353                 if (scsi_block_when_processing_errors(sdev))
1354                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1355         }
1356
1357         return 0;
1358
1359 error_out:
1360         scsi_device_put(sdev);
1361         return retval;  
1362 }
1363
1364 /**
1365  *      sd_release - invoked when the (last) close(2) is called on this
1366  *      scsi disk.
1367  *      @disk: disk to release
1368  *
1369  *      Returns 0. 
1370  *
1371  *      Note: may block (uninterruptible) if error recovery is underway
1372  *      on this disk.
1373  *
1374  *      Locking: called with disk->open_mutex held.
1375  **/
1376 static void sd_release(struct gendisk *disk)
1377 {
1378         struct scsi_disk *sdkp = scsi_disk(disk);
1379         struct scsi_device *sdev = sdkp->device;
1380
1381         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1382
1383         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1384                 if (scsi_block_when_processing_errors(sdev))
1385                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1386         }
1387
1388         scsi_device_put(sdev);
1389 }
1390
1391 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1392 {
1393         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1394         struct scsi_device *sdp = sdkp->device;
1395         struct Scsi_Host *host = sdp->host;
1396         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1397         int diskinfo[4];
1398
1399         /* default to most commonly used values */
1400         diskinfo[0] = 0x40;     /* 1 << 6 */
1401         diskinfo[1] = 0x20;     /* 1 << 5 */
1402         diskinfo[2] = capacity >> 11;
1403
1404         /* override with calculated, extended default, or driver values */
1405         if (host->hostt->bios_param)
1406                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1407         else
1408                 scsicam_bios_param(bdev, capacity, diskinfo);
1409
1410         geo->heads = diskinfo[0];
1411         geo->sectors = diskinfo[1];
1412         geo->cylinders = diskinfo[2];
1413         return 0;
1414 }
1415
1416 /**
1417  *      sd_ioctl - process an ioctl
1418  *      @bdev: target block device
1419  *      @mode: open mode
1420  *      @cmd: ioctl command number
1421  *      @arg: this is third argument given to ioctl(2) system call.
1422  *      Often contains a pointer.
1423  *
1424  *      Returns 0 if successful (some ioctls return positive numbers on
1425  *      success as well). Returns a negated errno value in case of error.
1426  *
1427  *      Note: most ioctls are forward onto the block subsystem or further
1428  *      down in the scsi subsystem.
1429  **/
1430 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1431                     unsigned int cmd, unsigned long arg)
1432 {
1433         struct gendisk *disk = bdev->bd_disk;
1434         struct scsi_disk *sdkp = scsi_disk(disk);
1435         struct scsi_device *sdp = sdkp->device;
1436         void __user *p = (void __user *)arg;
1437         int error;
1438     
1439         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1440                                     "cmd=0x%x\n", disk->disk_name, cmd));
1441
1442         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1443                 return -ENOIOCTLCMD;
1444
1445         /*
1446          * If we are in the middle of error recovery, don't let anyone
1447          * else try and use this device.  Also, if error recovery fails, it
1448          * may try and take the device offline, in which case all further
1449          * access to the device is prohibited.
1450          */
1451         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1452                         (mode & BLK_OPEN_NDELAY));
1453         if (error)
1454                 return error;
1455
1456         if (is_sed_ioctl(cmd))
1457                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1458         return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1459 }
1460
1461 static void set_media_not_present(struct scsi_disk *sdkp)
1462 {
1463         if (sdkp->media_present)
1464                 sdkp->device->changed = 1;
1465
1466         if (sdkp->device->removable) {
1467                 sdkp->media_present = 0;
1468                 sdkp->capacity = 0;
1469         }
1470 }
1471
1472 static int media_not_present(struct scsi_disk *sdkp,
1473                              struct scsi_sense_hdr *sshdr)
1474 {
1475         if (!scsi_sense_valid(sshdr))
1476                 return 0;
1477
1478         /* not invoked for commands that could return deferred errors */
1479         switch (sshdr->sense_key) {
1480         case UNIT_ATTENTION:
1481         case NOT_READY:
1482                 /* medium not present */
1483                 if (sshdr->asc == 0x3A) {
1484                         set_media_not_present(sdkp);
1485                         return 1;
1486                 }
1487         }
1488         return 0;
1489 }
1490
1491 /**
1492  *      sd_check_events - check media events
1493  *      @disk: kernel device descriptor
1494  *      @clearing: disk events currently being cleared
1495  *
1496  *      Returns mask of DISK_EVENT_*.
1497  *
1498  *      Note: this function is invoked from the block subsystem.
1499  **/
1500 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1501 {
1502         struct scsi_disk *sdkp = disk->private_data;
1503         struct scsi_device *sdp;
1504         int retval;
1505         bool disk_changed;
1506
1507         if (!sdkp)
1508                 return 0;
1509
1510         sdp = sdkp->device;
1511         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1512
1513         /*
1514          * If the device is offline, don't send any commands - just pretend as
1515          * if the command failed.  If the device ever comes back online, we
1516          * can deal with it then.  It is only because of unrecoverable errors
1517          * that we would ever take a device offline in the first place.
1518          */
1519         if (!scsi_device_online(sdp)) {
1520                 set_media_not_present(sdkp);
1521                 goto out;
1522         }
1523
1524         /*
1525          * Using TEST_UNIT_READY enables differentiation between drive with
1526          * no cartridge loaded - NOT READY, drive with changed cartridge -
1527          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1528          *
1529          * Drives that auto spin down. eg iomega jaz 1G, will be started
1530          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1531          * sd_revalidate() is called.
1532          */
1533         if (scsi_block_when_processing_errors(sdp)) {
1534                 struct scsi_sense_hdr sshdr = { 0, };
1535
1536                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1537                                               &sshdr);
1538
1539                 /* failed to execute TUR, assume media not present */
1540                 if (retval < 0 || host_byte(retval)) {
1541                         set_media_not_present(sdkp);
1542                         goto out;
1543                 }
1544
1545                 if (media_not_present(sdkp, &sshdr))
1546                         goto out;
1547         }
1548
1549         /*
1550          * For removable scsi disk we have to recognise the presence
1551          * of a disk in the drive.
1552          */
1553         if (!sdkp->media_present)
1554                 sdp->changed = 1;
1555         sdkp->media_present = 1;
1556 out:
1557         /*
1558          * sdp->changed is set under the following conditions:
1559          *
1560          *      Medium present state has changed in either direction.
1561          *      Device has indicated UNIT_ATTENTION.
1562          */
1563         disk_changed = sdp->changed;
1564         sdp->changed = 0;
1565         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1566 }
1567
1568 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1569 {
1570         int retries, res;
1571         struct scsi_device *sdp = sdkp->device;
1572         const int timeout = sdp->request_queue->rq_timeout
1573                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1574         struct scsi_sense_hdr my_sshdr;
1575         const struct scsi_exec_args exec_args = {
1576                 .req_flags = BLK_MQ_REQ_PM,
1577                 /* caller might not be interested in sense, but we need it */
1578                 .sshdr = sshdr ? : &my_sshdr,
1579         };
1580
1581         if (!scsi_device_online(sdp))
1582                 return -ENODEV;
1583
1584         sshdr = exec_args.sshdr;
1585
1586         for (retries = 3; retries > 0; --retries) {
1587                 unsigned char cmd[16] = { 0 };
1588
1589                 if (sdp->use_16_for_sync)
1590                         cmd[0] = SYNCHRONIZE_CACHE_16;
1591                 else
1592                         cmd[0] = SYNCHRONIZE_CACHE;
1593                 /*
1594                  * Leave the rest of the command zero to indicate
1595                  * flush everything.
1596                  */
1597                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1598                                        timeout, sdkp->max_retries, &exec_args);
1599                 if (res == 0)
1600                         break;
1601         }
1602
1603         if (res) {
1604                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1605
1606                 if (res < 0)
1607                         return res;
1608
1609                 if (scsi_status_is_check_condition(res) &&
1610                     scsi_sense_valid(sshdr)) {
1611                         sd_print_sense_hdr(sdkp, sshdr);
1612
1613                         /* we need to evaluate the error return  */
1614                         if (sshdr->asc == 0x3a ||       /* medium not present */
1615                             sshdr->asc == 0x20 ||       /* invalid command */
1616                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1617                                 /* this is no error here */
1618                                 return 0;
1619                 }
1620
1621                 switch (host_byte(res)) {
1622                 /* ignore errors due to racing a disconnection */
1623                 case DID_BAD_TARGET:
1624                 case DID_NO_CONNECT:
1625                         return 0;
1626                 /* signal the upper layer it might try again */
1627                 case DID_BUS_BUSY:
1628                 case DID_IMM_RETRY:
1629                 case DID_REQUEUE:
1630                 case DID_SOFT_ERROR:
1631                         return -EBUSY;
1632                 default:
1633                         return -EIO;
1634                 }
1635         }
1636         return 0;
1637 }
1638
1639 static void sd_rescan(struct device *dev)
1640 {
1641         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1642
1643         sd_revalidate_disk(sdkp->disk);
1644 }
1645
1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1647                 enum blk_unique_id type)
1648 {
1649         struct scsi_device *sdev = scsi_disk(disk)->device;
1650         const struct scsi_vpd *vpd;
1651         const unsigned char *d;
1652         int ret = -ENXIO, len;
1653
1654         rcu_read_lock();
1655         vpd = rcu_dereference(sdev->vpd_pg83);
1656         if (!vpd)
1657                 goto out_unlock;
1658
1659         ret = -EINVAL;
1660         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1661                 /* we only care about designators with LU association */
1662                 if (((d[1] >> 4) & 0x3) != 0x00)
1663                         continue;
1664                 if ((d[1] & 0xf) != type)
1665                         continue;
1666
1667                 /*
1668                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1669                  * keep looking as one with more entropy might still show up.
1670                  */
1671                 len = d[3];
1672                 if (len != 8 && len != 12 && len != 16)
1673                         continue;
1674                 ret = len;
1675                 memcpy(id, d + 4, len);
1676                 if (len == 16)
1677                         break;
1678         }
1679 out_unlock:
1680         rcu_read_unlock();
1681         return ret;
1682 }
1683
1684 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1685 {
1686         switch (host_byte(result)) {
1687         case DID_TRANSPORT_MARGINAL:
1688         case DID_TRANSPORT_DISRUPTED:
1689         case DID_BUS_BUSY:
1690                 return PR_STS_RETRY_PATH_FAILURE;
1691         case DID_NO_CONNECT:
1692                 return PR_STS_PATH_FAILED;
1693         case DID_TRANSPORT_FAILFAST:
1694                 return PR_STS_PATH_FAST_FAILED;
1695         }
1696
1697         switch (status_byte(result)) {
1698         case SAM_STAT_RESERVATION_CONFLICT:
1699                 return PR_STS_RESERVATION_CONFLICT;
1700         case SAM_STAT_CHECK_CONDITION:
1701                 if (!scsi_sense_valid(sshdr))
1702                         return PR_STS_IOERR;
1703
1704                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1705                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1706                         return -EINVAL;
1707
1708                 fallthrough;
1709         default:
1710                 return PR_STS_IOERR;
1711         }
1712 }
1713
1714 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1715                             unsigned char *data, int data_len)
1716 {
1717         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1718         struct scsi_device *sdev = sdkp->device;
1719         struct scsi_sense_hdr sshdr;
1720         u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1721         const struct scsi_exec_args exec_args = {
1722                 .sshdr = &sshdr,
1723         };
1724         int result;
1725
1726         put_unaligned_be16(data_len, &cmd[7]);
1727
1728         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1729                                   SD_TIMEOUT, sdkp->max_retries, &exec_args);
1730         if (scsi_status_is_check_condition(result) &&
1731             scsi_sense_valid(&sshdr)) {
1732                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1733                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1734         }
1735
1736         if (result <= 0)
1737                 return result;
1738
1739         return sd_scsi_to_pr_err(&sshdr, result);
1740 }
1741
1742 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1743 {
1744         int result, i, data_offset, num_copy_keys;
1745         u32 num_keys = keys_info->num_keys;
1746         int data_len = num_keys * 8 + 8;
1747         u8 *data;
1748
1749         data = kzalloc(data_len, GFP_KERNEL);
1750         if (!data)
1751                 return -ENOMEM;
1752
1753         result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1754         if (result)
1755                 goto free_data;
1756
1757         keys_info->generation = get_unaligned_be32(&data[0]);
1758         keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1759
1760         data_offset = 8;
1761         num_copy_keys = min(num_keys, keys_info->num_keys);
1762
1763         for (i = 0; i < num_copy_keys; i++) {
1764                 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1765                 data_offset += 8;
1766         }
1767
1768 free_data:
1769         kfree(data);
1770         return result;
1771 }
1772
1773 static int sd_pr_read_reservation(struct block_device *bdev,
1774                                   struct pr_held_reservation *rsv)
1775 {
1776         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1777         struct scsi_device *sdev = sdkp->device;
1778         u8 data[24] = { };
1779         int result, len;
1780
1781         result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1782         if (result)
1783                 return result;
1784
1785         len = get_unaligned_be32(&data[4]);
1786         if (!len)
1787                 return 0;
1788
1789         /* Make sure we have at least the key and type */
1790         if (len < 14) {
1791                 sdev_printk(KERN_INFO, sdev,
1792                             "READ RESERVATION failed due to short return buffer of %d bytes\n",
1793                             len);
1794                 return -EINVAL;
1795         }
1796
1797         rsv->generation = get_unaligned_be32(&data[0]);
1798         rsv->key = get_unaligned_be64(&data[8]);
1799         rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1800         return 0;
1801 }
1802
1803 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1804                              u64 sa_key, enum scsi_pr_type type, u8 flags)
1805 {
1806         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1807         struct scsi_device *sdev = sdkp->device;
1808         struct scsi_sense_hdr sshdr;
1809         const struct scsi_exec_args exec_args = {
1810                 .sshdr = &sshdr,
1811         };
1812         int result;
1813         u8 cmd[16] = { 0, };
1814         u8 data[24] = { 0, };
1815
1816         cmd[0] = PERSISTENT_RESERVE_OUT;
1817         cmd[1] = sa;
1818         cmd[2] = type;
1819         put_unaligned_be32(sizeof(data), &cmd[5]);
1820
1821         put_unaligned_be64(key, &data[0]);
1822         put_unaligned_be64(sa_key, &data[8]);
1823         data[20] = flags;
1824
1825         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1826                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1827                                   &exec_args);
1828
1829         if (scsi_status_is_check_condition(result) &&
1830             scsi_sense_valid(&sshdr)) {
1831                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1832                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1833         }
1834
1835         if (result <= 0)
1836                 return result;
1837
1838         return sd_scsi_to_pr_err(&sshdr, result);
1839 }
1840
1841 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1842                 u32 flags)
1843 {
1844         if (flags & ~PR_FL_IGNORE_KEY)
1845                 return -EOPNOTSUPP;
1846         return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1847                         old_key, new_key, 0,
1848                         (1 << 0) /* APTPL */);
1849 }
1850
1851 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1852                 u32 flags)
1853 {
1854         if (flags)
1855                 return -EOPNOTSUPP;
1856         return sd_pr_out_command(bdev, 0x01, key, 0,
1857                                  block_pr_type_to_scsi(type), 0);
1858 }
1859
1860 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1861 {
1862         return sd_pr_out_command(bdev, 0x02, key, 0,
1863                                  block_pr_type_to_scsi(type), 0);
1864 }
1865
1866 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1867                 enum pr_type type, bool abort)
1868 {
1869         return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1870                                  block_pr_type_to_scsi(type), 0);
1871 }
1872
1873 static int sd_pr_clear(struct block_device *bdev, u64 key)
1874 {
1875         return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1876 }
1877
1878 static const struct pr_ops sd_pr_ops = {
1879         .pr_register    = sd_pr_register,
1880         .pr_reserve     = sd_pr_reserve,
1881         .pr_release     = sd_pr_release,
1882         .pr_preempt     = sd_pr_preempt,
1883         .pr_clear       = sd_pr_clear,
1884         .pr_read_keys   = sd_pr_read_keys,
1885         .pr_read_reservation = sd_pr_read_reservation,
1886 };
1887
1888 static void scsi_disk_free_disk(struct gendisk *disk)
1889 {
1890         struct scsi_disk *sdkp = scsi_disk(disk);
1891
1892         put_device(&sdkp->disk_dev);
1893 }
1894
1895 static const struct block_device_operations sd_fops = {
1896         .owner                  = THIS_MODULE,
1897         .open                   = sd_open,
1898         .release                = sd_release,
1899         .ioctl                  = sd_ioctl,
1900         .getgeo                 = sd_getgeo,
1901         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1902         .check_events           = sd_check_events,
1903         .unlock_native_capacity = sd_unlock_native_capacity,
1904         .report_zones           = sd_zbc_report_zones,
1905         .get_unique_id          = sd_get_unique_id,
1906         .free_disk              = scsi_disk_free_disk,
1907         .pr_ops                 = &sd_pr_ops,
1908 };
1909
1910 /**
1911  *      sd_eh_reset - reset error handling callback
1912  *      @scmd:          sd-issued command that has failed
1913  *
1914  *      This function is called by the SCSI midlayer before starting
1915  *      SCSI EH. When counting medium access failures we have to be
1916  *      careful to register it only only once per device and SCSI EH run;
1917  *      there might be several timed out commands which will cause the
1918  *      'max_medium_access_timeouts' counter to trigger after the first
1919  *      SCSI EH run already and set the device to offline.
1920  *      So this function resets the internal counter before starting SCSI EH.
1921  **/
1922 static void sd_eh_reset(struct scsi_cmnd *scmd)
1923 {
1924         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1925
1926         /* New SCSI EH run, reset gate variable */
1927         sdkp->ignore_medium_access_errors = false;
1928 }
1929
1930 /**
1931  *      sd_eh_action - error handling callback
1932  *      @scmd:          sd-issued command that has failed
1933  *      @eh_disp:       The recovery disposition suggested by the midlayer
1934  *
1935  *      This function is called by the SCSI midlayer upon completion of an
1936  *      error test command (currently TEST UNIT READY). The result of sending
1937  *      the eh command is passed in eh_disp.  We're looking for devices that
1938  *      fail medium access commands but are OK with non access commands like
1939  *      test unit ready (so wrongly see the device as having a successful
1940  *      recovery)
1941  **/
1942 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1943 {
1944         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1945         struct scsi_device *sdev = scmd->device;
1946
1947         if (!scsi_device_online(sdev) ||
1948             !scsi_medium_access_command(scmd) ||
1949             host_byte(scmd->result) != DID_TIME_OUT ||
1950             eh_disp != SUCCESS)
1951                 return eh_disp;
1952
1953         /*
1954          * The device has timed out executing a medium access command.
1955          * However, the TEST UNIT READY command sent during error
1956          * handling completed successfully. Either the device is in the
1957          * process of recovering or has it suffered an internal failure
1958          * that prevents access to the storage medium.
1959          */
1960         if (!sdkp->ignore_medium_access_errors) {
1961                 sdkp->medium_access_timed_out++;
1962                 sdkp->ignore_medium_access_errors = true;
1963         }
1964
1965         /*
1966          * If the device keeps failing read/write commands but TEST UNIT
1967          * READY always completes successfully we assume that medium
1968          * access is no longer possible and take the device offline.
1969          */
1970         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1971                 scmd_printk(KERN_ERR, scmd,
1972                             "Medium access timeout failure. Offlining disk!\n");
1973                 mutex_lock(&sdev->state_mutex);
1974                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1975                 mutex_unlock(&sdev->state_mutex);
1976
1977                 return SUCCESS;
1978         }
1979
1980         return eh_disp;
1981 }
1982
1983 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1984 {
1985         struct request *req = scsi_cmd_to_rq(scmd);
1986         struct scsi_device *sdev = scmd->device;
1987         unsigned int transferred, good_bytes;
1988         u64 start_lba, end_lba, bad_lba;
1989
1990         /*
1991          * Some commands have a payload smaller than the device logical
1992          * block size (e.g. INQUIRY on a 4K disk).
1993          */
1994         if (scsi_bufflen(scmd) <= sdev->sector_size)
1995                 return 0;
1996
1997         /* Check if we have a 'bad_lba' information */
1998         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1999                                      SCSI_SENSE_BUFFERSIZE,
2000                                      &bad_lba))
2001                 return 0;
2002
2003         /*
2004          * If the bad lba was reported incorrectly, we have no idea where
2005          * the error is.
2006          */
2007         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2008         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2009         if (bad_lba < start_lba || bad_lba >= end_lba)
2010                 return 0;
2011
2012         /*
2013          * resid is optional but mostly filled in.  When it's unused,
2014          * its value is zero, so we assume the whole buffer transferred
2015          */
2016         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2017
2018         /* This computation should always be done in terms of the
2019          * resolution of the device's medium.
2020          */
2021         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2022
2023         return min(good_bytes, transferred);
2024 }
2025
2026 /**
2027  *      sd_done - bottom half handler: called when the lower level
2028  *      driver has completed (successfully or otherwise) a scsi command.
2029  *      @SCpnt: mid-level's per command structure.
2030  *
2031  *      Note: potentially run from within an ISR. Must not block.
2032  **/
2033 static int sd_done(struct scsi_cmnd *SCpnt)
2034 {
2035         int result = SCpnt->result;
2036         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2037         unsigned int sector_size = SCpnt->device->sector_size;
2038         unsigned int resid;
2039         struct scsi_sense_hdr sshdr;
2040         struct request *req = scsi_cmd_to_rq(SCpnt);
2041         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2042         int sense_valid = 0;
2043         int sense_deferred = 0;
2044
2045         switch (req_op(req)) {
2046         case REQ_OP_DISCARD:
2047         case REQ_OP_WRITE_ZEROES:
2048         case REQ_OP_ZONE_RESET:
2049         case REQ_OP_ZONE_RESET_ALL:
2050         case REQ_OP_ZONE_OPEN:
2051         case REQ_OP_ZONE_CLOSE:
2052         case REQ_OP_ZONE_FINISH:
2053                 if (!result) {
2054                         good_bytes = blk_rq_bytes(req);
2055                         scsi_set_resid(SCpnt, 0);
2056                 } else {
2057                         good_bytes = 0;
2058                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2059                 }
2060                 break;
2061         default:
2062                 /*
2063                  * In case of bogus fw or device, we could end up having
2064                  * an unaligned partial completion. Check this here and force
2065                  * alignment.
2066                  */
2067                 resid = scsi_get_resid(SCpnt);
2068                 if (resid & (sector_size - 1)) {
2069                         sd_printk(KERN_INFO, sdkp,
2070                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2071                                 resid, sector_size);
2072                         scsi_print_command(SCpnt);
2073                         resid = min(scsi_bufflen(SCpnt),
2074                                     round_up(resid, sector_size));
2075                         scsi_set_resid(SCpnt, resid);
2076                 }
2077         }
2078
2079         if (result) {
2080                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2081                 if (sense_valid)
2082                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2083         }
2084         sdkp->medium_access_timed_out = 0;
2085
2086         if (!scsi_status_is_check_condition(result) &&
2087             (!sense_valid || sense_deferred))
2088                 goto out;
2089
2090         switch (sshdr.sense_key) {
2091         case HARDWARE_ERROR:
2092         case MEDIUM_ERROR:
2093                 good_bytes = sd_completed_bytes(SCpnt);
2094                 break;
2095         case RECOVERED_ERROR:
2096                 good_bytes = scsi_bufflen(SCpnt);
2097                 break;
2098         case NO_SENSE:
2099                 /* This indicates a false check condition, so ignore it.  An
2100                  * unknown amount of data was transferred so treat it as an
2101                  * error.
2102                  */
2103                 SCpnt->result = 0;
2104                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2105                 break;
2106         case ABORTED_COMMAND:
2107                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2108                         good_bytes = sd_completed_bytes(SCpnt);
2109                 break;
2110         case ILLEGAL_REQUEST:
2111                 switch (sshdr.asc) {
2112                 case 0x10:      /* DIX: Host detected corruption */
2113                         good_bytes = sd_completed_bytes(SCpnt);
2114                         break;
2115                 case 0x20:      /* INVALID COMMAND OPCODE */
2116                 case 0x24:      /* INVALID FIELD IN CDB */
2117                         switch (SCpnt->cmnd[0]) {
2118                         case UNMAP:
2119                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2120                                 break;
2121                         case WRITE_SAME_16:
2122                         case WRITE_SAME:
2123                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2124                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2125                                 } else {
2126                                         sdkp->device->no_write_same = 1;
2127                                         sd_config_write_same(sdkp);
2128                                         req->rq_flags |= RQF_QUIET;
2129                                 }
2130                                 break;
2131                         }
2132                 }
2133                 break;
2134         default:
2135                 break;
2136         }
2137
2138  out:
2139         if (sd_is_zoned(sdkp))
2140                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2141
2142         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2143                                            "sd_done: completed %d of %d bytes\n",
2144                                            good_bytes, scsi_bufflen(SCpnt)));
2145
2146         return good_bytes;
2147 }
2148
2149 /*
2150  * spinup disk - called only in sd_revalidate_disk()
2151  */
2152 static void
2153 sd_spinup_disk(struct scsi_disk *sdkp)
2154 {
2155         unsigned char cmd[10];
2156         unsigned long spintime_expire = 0;
2157         int retries, spintime;
2158         unsigned int the_result;
2159         struct scsi_sense_hdr sshdr;
2160         const struct scsi_exec_args exec_args = {
2161                 .sshdr = &sshdr,
2162         };
2163         int sense_valid = 0;
2164
2165         spintime = 0;
2166
2167         /* Spin up drives, as required.  Only do this at boot time */
2168         /* Spinup needs to be done for module loads too. */
2169         do {
2170                 retries = 0;
2171
2172                 do {
2173                         bool media_was_present = sdkp->media_present;
2174
2175                         cmd[0] = TEST_UNIT_READY;
2176                         memset((void *) &cmd[1], 0, 9);
2177
2178                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2179                                                       REQ_OP_DRV_IN, NULL, 0,
2180                                                       SD_TIMEOUT,
2181                                                       sdkp->max_retries,
2182                                                       &exec_args);
2183
2184                         if (the_result > 0) {
2185                                 /*
2186                                  * If the drive has indicated to us that it
2187                                  * doesn't have any media in it, don't bother
2188                                  * with any more polling.
2189                                  */
2190                                 if (media_not_present(sdkp, &sshdr)) {
2191                                         if (media_was_present)
2192                                                 sd_printk(KERN_NOTICE, sdkp,
2193                                                           "Media removed, stopped polling\n");
2194                                         return;
2195                                 }
2196
2197                                 sense_valid = scsi_sense_valid(&sshdr);
2198                         }
2199                         retries++;
2200                 } while (retries < 3 &&
2201                          (!scsi_status_is_good(the_result) ||
2202                           (scsi_status_is_check_condition(the_result) &&
2203                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2204
2205                 if (!scsi_status_is_check_condition(the_result)) {
2206                         /* no sense, TUR either succeeded or failed
2207                          * with a status error */
2208                         if(!spintime && !scsi_status_is_good(the_result)) {
2209                                 sd_print_result(sdkp, "Test Unit Ready failed",
2210                                                 the_result);
2211                         }
2212                         break;
2213                 }
2214
2215                 /*
2216                  * The device does not want the automatic start to be issued.
2217                  */
2218                 if (sdkp->device->no_start_on_add)
2219                         break;
2220
2221                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2222                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2223                                 break;  /* manual intervention required */
2224                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2225                                 break;  /* standby */
2226                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2227                                 break;  /* unavailable */
2228                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2229                                 break;  /* sanitize in progress */
2230                         /*
2231                          * Issue command to spin up drive when not ready
2232                          */
2233                         if (!spintime) {
2234                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2235                                 cmd[0] = START_STOP;
2236                                 cmd[1] = 1;     /* Return immediately */
2237                                 memset((void *) &cmd[2], 0, 8);
2238                                 cmd[4] = 1;     /* Start spin cycle */
2239                                 if (sdkp->device->start_stop_pwr_cond)
2240                                         cmd[4] |= 1 << 4;
2241                                 scsi_execute_cmd(sdkp->device, cmd,
2242                                                  REQ_OP_DRV_IN, NULL, 0,
2243                                                  SD_TIMEOUT, sdkp->max_retries,
2244                                                  &exec_args);
2245                                 spintime_expire = jiffies + 100 * HZ;
2246                                 spintime = 1;
2247                         }
2248                         /* Wait 1 second for next try */
2249                         msleep(1000);
2250                         printk(KERN_CONT ".");
2251
2252                 /*
2253                  * Wait for USB flash devices with slow firmware.
2254                  * Yes, this sense key/ASC combination shouldn't
2255                  * occur here.  It's characteristic of these devices.
2256                  */
2257                 } else if (sense_valid &&
2258                                 sshdr.sense_key == UNIT_ATTENTION &&
2259                                 sshdr.asc == 0x28) {
2260                         if (!spintime) {
2261                                 spintime_expire = jiffies + 5 * HZ;
2262                                 spintime = 1;
2263                         }
2264                         /* Wait 1 second for next try */
2265                         msleep(1000);
2266                 } else {
2267                         /* we don't understand the sense code, so it's
2268                          * probably pointless to loop */
2269                         if(!spintime) {
2270                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2271                                 sd_print_sense_hdr(sdkp, &sshdr);
2272                         }
2273                         break;
2274                 }
2275                                 
2276         } while (spintime && time_before_eq(jiffies, spintime_expire));
2277
2278         if (spintime) {
2279                 if (scsi_status_is_good(the_result))
2280                         printk(KERN_CONT "ready\n");
2281                 else
2282                         printk(KERN_CONT "not responding...\n");
2283         }
2284 }
2285
2286 /*
2287  * Determine whether disk supports Data Integrity Field.
2288  */
2289 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2290 {
2291         struct scsi_device *sdp = sdkp->device;
2292         u8 type;
2293
2294         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2295                 sdkp->protection_type = 0;
2296                 return 0;
2297         }
2298
2299         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2300
2301         if (type > T10_PI_TYPE3_PROTECTION) {
2302                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2303                           " protection type %u. Disabling disk!\n",
2304                           type);
2305                 sdkp->protection_type = 0;
2306                 return -ENODEV;
2307         }
2308
2309         sdkp->protection_type = type;
2310
2311         return 0;
2312 }
2313
2314 static void sd_config_protection(struct scsi_disk *sdkp)
2315 {
2316         struct scsi_device *sdp = sdkp->device;
2317
2318         sd_dif_config_host(sdkp);
2319
2320         if (!sdkp->protection_type)
2321                 return;
2322
2323         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2324                 sd_first_printk(KERN_NOTICE, sdkp,
2325                                 "Disabling DIF Type %u protection\n",
2326                                 sdkp->protection_type);
2327                 sdkp->protection_type = 0;
2328         }
2329
2330         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2331                         sdkp->protection_type);
2332 }
2333
2334 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2335                         struct scsi_sense_hdr *sshdr, int sense_valid,
2336                         int the_result)
2337 {
2338         if (sense_valid)
2339                 sd_print_sense_hdr(sdkp, sshdr);
2340         else
2341                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2342
2343         /*
2344          * Set dirty bit for removable devices if not ready -
2345          * sometimes drives will not report this properly.
2346          */
2347         if (sdp->removable &&
2348             sense_valid && sshdr->sense_key == NOT_READY)
2349                 set_media_not_present(sdkp);
2350
2351         /*
2352          * We used to set media_present to 0 here to indicate no media
2353          * in the drive, but some drives fail read capacity even with
2354          * media present, so we can't do that.
2355          */
2356         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2357 }
2358
2359 #define RC16_LEN 32
2360 #if RC16_LEN > SD_BUF_SIZE
2361 #error RC16_LEN must not be more than SD_BUF_SIZE
2362 #endif
2363
2364 #define READ_CAPACITY_RETRIES_ON_RESET  10
2365
2366 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2367                                                 unsigned char *buffer)
2368 {
2369         unsigned char cmd[16];
2370         struct scsi_sense_hdr sshdr;
2371         const struct scsi_exec_args exec_args = {
2372                 .sshdr = &sshdr,
2373         };
2374         int sense_valid = 0;
2375         int the_result;
2376         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2377         unsigned int alignment;
2378         unsigned long long lba;
2379         unsigned sector_size;
2380
2381         if (sdp->no_read_capacity_16)
2382                 return -EINVAL;
2383
2384         do {
2385                 memset(cmd, 0, 16);
2386                 cmd[0] = SERVICE_ACTION_IN_16;
2387                 cmd[1] = SAI_READ_CAPACITY_16;
2388                 cmd[13] = RC16_LEN;
2389                 memset(buffer, 0, RC16_LEN);
2390
2391                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2392                                               buffer, RC16_LEN, SD_TIMEOUT,
2393                                               sdkp->max_retries, &exec_args);
2394                 if (the_result > 0) {
2395                         if (media_not_present(sdkp, &sshdr))
2396                                 return -ENODEV;
2397
2398                         sense_valid = scsi_sense_valid(&sshdr);
2399                         if (sense_valid &&
2400                             sshdr.sense_key == ILLEGAL_REQUEST &&
2401                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2402                             sshdr.ascq == 0x00)
2403                                 /* Invalid Command Operation Code or
2404                                  * Invalid Field in CDB, just retry
2405                                  * silently with RC10 */
2406                                 return -EINVAL;
2407                         if (sense_valid &&
2408                             sshdr.sense_key == UNIT_ATTENTION &&
2409                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2410                                 /* Device reset might occur several times,
2411                                  * give it one more chance */
2412                                 if (--reset_retries > 0)
2413                                         continue;
2414                 }
2415                 retries--;
2416
2417         } while (the_result && retries);
2418
2419         if (the_result) {
2420                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2421                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2422                 return -EINVAL;
2423         }
2424
2425         sector_size = get_unaligned_be32(&buffer[8]);
2426         lba = get_unaligned_be64(&buffer[0]);
2427
2428         if (sd_read_protection_type(sdkp, buffer) < 0) {
2429                 sdkp->capacity = 0;
2430                 return -ENODEV;
2431         }
2432
2433         /* Logical blocks per physical block exponent */
2434         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2435
2436         /* RC basis */
2437         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2438
2439         /* Lowest aligned logical block */
2440         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2441         blk_queue_alignment_offset(sdp->request_queue, alignment);
2442         if (alignment && sdkp->first_scan)
2443                 sd_printk(KERN_NOTICE, sdkp,
2444                           "physical block alignment offset: %u\n", alignment);
2445
2446         if (buffer[14] & 0x80) { /* LBPME */
2447                 sdkp->lbpme = 1;
2448
2449                 if (buffer[14] & 0x40) /* LBPRZ */
2450                         sdkp->lbprz = 1;
2451
2452                 sd_config_discard(sdkp, SD_LBP_WS16);
2453         }
2454
2455         sdkp->capacity = lba + 1;
2456         return sector_size;
2457 }
2458
2459 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2460                                                 unsigned char *buffer)
2461 {
2462         unsigned char cmd[16];
2463         struct scsi_sense_hdr sshdr;
2464         const struct scsi_exec_args exec_args = {
2465                 .sshdr = &sshdr,
2466         };
2467         int sense_valid = 0;
2468         int the_result;
2469         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2470         sector_t lba;
2471         unsigned sector_size;
2472
2473         do {
2474                 cmd[0] = READ_CAPACITY;
2475                 memset(&cmd[1], 0, 9);
2476                 memset(buffer, 0, 8);
2477
2478                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2479                                               8, SD_TIMEOUT, sdkp->max_retries,
2480                                               &exec_args);
2481
2482                 if (media_not_present(sdkp, &sshdr))
2483                         return -ENODEV;
2484
2485                 if (the_result > 0) {
2486                         sense_valid = scsi_sense_valid(&sshdr);
2487                         if (sense_valid &&
2488                             sshdr.sense_key == UNIT_ATTENTION &&
2489                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2490                                 /* Device reset might occur several times,
2491                                  * give it one more chance */
2492                                 if (--reset_retries > 0)
2493                                         continue;
2494                 }
2495                 retries--;
2496
2497         } while (the_result && retries);
2498
2499         if (the_result) {
2500                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2501                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2502                 return -EINVAL;
2503         }
2504
2505         sector_size = get_unaligned_be32(&buffer[4]);
2506         lba = get_unaligned_be32(&buffer[0]);
2507
2508         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2509                 /* Some buggy (usb cardreader) devices return an lba of
2510                    0xffffffff when the want to report a size of 0 (with
2511                    which they really mean no media is present) */
2512                 sdkp->capacity = 0;
2513                 sdkp->physical_block_size = sector_size;
2514                 return sector_size;
2515         }
2516
2517         sdkp->capacity = lba + 1;
2518         sdkp->physical_block_size = sector_size;
2519         return sector_size;
2520 }
2521
2522 static int sd_try_rc16_first(struct scsi_device *sdp)
2523 {
2524         if (sdp->host->max_cmd_len < 16)
2525                 return 0;
2526         if (sdp->try_rc_10_first)
2527                 return 0;
2528         if (sdp->scsi_level > SCSI_SPC_2)
2529                 return 1;
2530         if (scsi_device_protection(sdp))
2531                 return 1;
2532         return 0;
2533 }
2534
2535 /*
2536  * read disk capacity
2537  */
2538 static void
2539 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2540 {
2541         int sector_size;
2542         struct scsi_device *sdp = sdkp->device;
2543
2544         if (sd_try_rc16_first(sdp)) {
2545                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2546                 if (sector_size == -EOVERFLOW)
2547                         goto got_data;
2548                 if (sector_size == -ENODEV)
2549                         return;
2550                 if (sector_size < 0)
2551                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2552                 if (sector_size < 0)
2553                         return;
2554         } else {
2555                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2556                 if (sector_size == -EOVERFLOW)
2557                         goto got_data;
2558                 if (sector_size < 0)
2559                         return;
2560                 if ((sizeof(sdkp->capacity) > 4) &&
2561                     (sdkp->capacity > 0xffffffffULL)) {
2562                         int old_sector_size = sector_size;
2563                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2564                                         "Trying to use READ CAPACITY(16).\n");
2565                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2566                         if (sector_size < 0) {
2567                                 sd_printk(KERN_NOTICE, sdkp,
2568                                         "Using 0xffffffff as device size\n");
2569                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2570                                 sector_size = old_sector_size;
2571                                 goto got_data;
2572                         }
2573                         /* Remember that READ CAPACITY(16) succeeded */
2574                         sdp->try_rc_10_first = 0;
2575                 }
2576         }
2577
2578         /* Some devices are known to return the total number of blocks,
2579          * not the highest block number.  Some devices have versions
2580          * which do this and others which do not.  Some devices we might
2581          * suspect of doing this but we don't know for certain.
2582          *
2583          * If we know the reported capacity is wrong, decrement it.  If
2584          * we can only guess, then assume the number of blocks is even
2585          * (usually true but not always) and err on the side of lowering
2586          * the capacity.
2587          */
2588         if (sdp->fix_capacity ||
2589             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2590                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2591                                 "from its reported value: %llu\n",
2592                                 (unsigned long long) sdkp->capacity);
2593                 --sdkp->capacity;
2594         }
2595
2596 got_data:
2597         if (sector_size == 0) {
2598                 sector_size = 512;
2599                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2600                           "assuming 512.\n");
2601         }
2602
2603         if (sector_size != 512 &&
2604             sector_size != 1024 &&
2605             sector_size != 2048 &&
2606             sector_size != 4096) {
2607                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2608                           sector_size);
2609                 /*
2610                  * The user might want to re-format the drive with
2611                  * a supported sectorsize.  Once this happens, it
2612                  * would be relatively trivial to set the thing up.
2613                  * For this reason, we leave the thing in the table.
2614                  */
2615                 sdkp->capacity = 0;
2616                 /*
2617                  * set a bogus sector size so the normal read/write
2618                  * logic in the block layer will eventually refuse any
2619                  * request on this device without tripping over power
2620                  * of two sector size assumptions
2621                  */
2622                 sector_size = 512;
2623         }
2624         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2625         blk_queue_physical_block_size(sdp->request_queue,
2626                                       sdkp->physical_block_size);
2627         sdkp->device->sector_size = sector_size;
2628
2629         if (sdkp->capacity > 0xffffffff)
2630                 sdp->use_16_for_rw = 1;
2631
2632 }
2633
2634 /*
2635  * Print disk capacity
2636  */
2637 static void
2638 sd_print_capacity(struct scsi_disk *sdkp,
2639                   sector_t old_capacity)
2640 {
2641         int sector_size = sdkp->device->sector_size;
2642         char cap_str_2[10], cap_str_10[10];
2643
2644         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2645                 return;
2646
2647         string_get_size(sdkp->capacity, sector_size,
2648                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2649         string_get_size(sdkp->capacity, sector_size,
2650                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2651
2652         sd_printk(KERN_NOTICE, sdkp,
2653                   "%llu %d-byte logical blocks: (%s/%s)\n",
2654                   (unsigned long long)sdkp->capacity,
2655                   sector_size, cap_str_10, cap_str_2);
2656
2657         if (sdkp->physical_block_size != sector_size)
2658                 sd_printk(KERN_NOTICE, sdkp,
2659                           "%u-byte physical blocks\n",
2660                           sdkp->physical_block_size);
2661 }
2662
2663 /* called with buffer of length 512 */
2664 static inline int
2665 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2666                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2667                  struct scsi_sense_hdr *sshdr)
2668 {
2669         /*
2670          * If we must use MODE SENSE(10), make sure that the buffer length
2671          * is at least 8 bytes so that the mode sense header fits.
2672          */
2673         if (sdkp->device->use_10_for_ms && len < 8)
2674                 len = 8;
2675
2676         return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2677                                SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2678 }
2679
2680 /*
2681  * read write protect setting, if possible - called only in sd_revalidate_disk()
2682  * called with buffer of length SD_BUF_SIZE
2683  */
2684 static void
2685 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2686 {
2687         int res;
2688         struct scsi_device *sdp = sdkp->device;
2689         struct scsi_mode_data data;
2690         int old_wp = sdkp->write_prot;
2691
2692         set_disk_ro(sdkp->disk, 0);
2693         if (sdp->skip_ms_page_3f) {
2694                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2695                 return;
2696         }
2697
2698         if (sdp->use_192_bytes_for_3f) {
2699                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2700         } else {
2701                 /*
2702                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2703                  * We have to start carefully: some devices hang if we ask
2704                  * for more than is available.
2705                  */
2706                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2707
2708                 /*
2709                  * Second attempt: ask for page 0 When only page 0 is
2710                  * implemented, a request for page 3F may return Sense Key
2711                  * 5: Illegal Request, Sense Code 24: Invalid field in
2712                  * CDB.
2713                  */
2714                 if (res < 0)
2715                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2716
2717                 /*
2718                  * Third attempt: ask 255 bytes, as we did earlier.
2719                  */
2720                 if (res < 0)
2721                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2722                                                &data, NULL);
2723         }
2724
2725         if (res < 0) {
2726                 sd_first_printk(KERN_WARNING, sdkp,
2727                           "Test WP failed, assume Write Enabled\n");
2728         } else {
2729                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2730                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2731                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2732                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2733                                   sdkp->write_prot ? "on" : "off");
2734                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2735                 }
2736         }
2737 }
2738
2739 /*
2740  * sd_read_cache_type - called only from sd_revalidate_disk()
2741  * called with buffer of length SD_BUF_SIZE
2742  */
2743 static void
2744 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2745 {
2746         int len = 0, res;
2747         struct scsi_device *sdp = sdkp->device;
2748
2749         int dbd;
2750         int modepage;
2751         int first_len;
2752         struct scsi_mode_data data;
2753         struct scsi_sense_hdr sshdr;
2754         int old_wce = sdkp->WCE;
2755         int old_rcd = sdkp->RCD;
2756         int old_dpofua = sdkp->DPOFUA;
2757
2758
2759         if (sdkp->cache_override)
2760                 return;
2761
2762         first_len = 4;
2763         if (sdp->skip_ms_page_8) {
2764                 if (sdp->type == TYPE_RBC)
2765                         goto defaults;
2766                 else {
2767                         if (sdp->skip_ms_page_3f)
2768                                 goto defaults;
2769                         modepage = 0x3F;
2770                         if (sdp->use_192_bytes_for_3f)
2771                                 first_len = 192;
2772                         dbd = 0;
2773                 }
2774         } else if (sdp->type == TYPE_RBC) {
2775                 modepage = 6;
2776                 dbd = 8;
2777         } else {
2778                 modepage = 8;
2779                 dbd = 0;
2780         }
2781
2782         /* cautiously ask */
2783         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2784                         &data, &sshdr);
2785
2786         if (res < 0)
2787                 goto bad_sense;
2788
2789         if (!data.header_length) {
2790                 modepage = 6;
2791                 first_len = 0;
2792                 sd_first_printk(KERN_ERR, sdkp,
2793                                 "Missing header in MODE_SENSE response\n");
2794         }
2795
2796         /* that went OK, now ask for the proper length */
2797         len = data.length;
2798
2799         /*
2800          * We're only interested in the first three bytes, actually.
2801          * But the data cache page is defined for the first 20.
2802          */
2803         if (len < 3)
2804                 goto bad_sense;
2805         else if (len > SD_BUF_SIZE) {
2806                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2807                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2808                 len = SD_BUF_SIZE;
2809         }
2810         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2811                 len = 192;
2812
2813         /* Get the data */
2814         if (len > first_len)
2815                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2816                                 &data, &sshdr);
2817
2818         if (!res) {
2819                 int offset = data.header_length + data.block_descriptor_length;
2820
2821                 while (offset < len) {
2822                         u8 page_code = buffer[offset] & 0x3F;
2823                         u8 spf       = buffer[offset] & 0x40;
2824
2825                         if (page_code == 8 || page_code == 6) {
2826                                 /* We're interested only in the first 3 bytes.
2827                                  */
2828                                 if (len - offset <= 2) {
2829                                         sd_first_printk(KERN_ERR, sdkp,
2830                                                 "Incomplete mode parameter "
2831                                                         "data\n");
2832                                         goto defaults;
2833                                 } else {
2834                                         modepage = page_code;
2835                                         goto Page_found;
2836                                 }
2837                         } else {
2838                                 /* Go to the next page */
2839                                 if (spf && len - offset > 3)
2840                                         offset += 4 + (buffer[offset+2] << 8) +
2841                                                 buffer[offset+3];
2842                                 else if (!spf && len - offset > 1)
2843                                         offset += 2 + buffer[offset+1];
2844                                 else {
2845                                         sd_first_printk(KERN_ERR, sdkp,
2846                                                         "Incomplete mode "
2847                                                         "parameter data\n");
2848                                         goto defaults;
2849                                 }
2850                         }
2851                 }
2852
2853                 sd_first_printk(KERN_WARNING, sdkp,
2854                                 "No Caching mode page found\n");
2855                 goto defaults;
2856
2857         Page_found:
2858                 if (modepage == 8) {
2859                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2860                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2861                 } else {
2862                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2863                         sdkp->RCD = 0;
2864                 }
2865
2866                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2867                 if (sdp->broken_fua) {
2868                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2869                         sdkp->DPOFUA = 0;
2870                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2871                            !sdkp->device->use_16_for_rw) {
2872                         sd_first_printk(KERN_NOTICE, sdkp,
2873                                   "Uses READ/WRITE(6), disabling FUA\n");
2874                         sdkp->DPOFUA = 0;
2875                 }
2876
2877                 /* No cache flush allowed for write protected devices */
2878                 if (sdkp->WCE && sdkp->write_prot)
2879                         sdkp->WCE = 0;
2880
2881                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2882                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2883                         sd_printk(KERN_NOTICE, sdkp,
2884                                   "Write cache: %s, read cache: %s, %s\n",
2885                                   sdkp->WCE ? "enabled" : "disabled",
2886                                   sdkp->RCD ? "disabled" : "enabled",
2887                                   sdkp->DPOFUA ? "supports DPO and FUA"
2888                                   : "doesn't support DPO or FUA");
2889
2890                 return;
2891         }
2892
2893 bad_sense:
2894         if (res == -EIO && scsi_sense_valid(&sshdr) &&
2895             sshdr.sense_key == ILLEGAL_REQUEST &&
2896             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2897                 /* Invalid field in CDB */
2898                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2899         else
2900                 sd_first_printk(KERN_ERR, sdkp,
2901                                 "Asking for cache data failed\n");
2902
2903 defaults:
2904         if (sdp->wce_default_on) {
2905                 sd_first_printk(KERN_NOTICE, sdkp,
2906                                 "Assuming drive cache: write back\n");
2907                 sdkp->WCE = 1;
2908         } else {
2909                 sd_first_printk(KERN_WARNING, sdkp,
2910                                 "Assuming drive cache: write through\n");
2911                 sdkp->WCE = 0;
2912         }
2913         sdkp->RCD = 0;
2914         sdkp->DPOFUA = 0;
2915 }
2916
2917 /*
2918  * The ATO bit indicates whether the DIF application tag is available
2919  * for use by the operating system.
2920  */
2921 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2922 {
2923         int res, offset;
2924         struct scsi_device *sdp = sdkp->device;
2925         struct scsi_mode_data data;
2926         struct scsi_sense_hdr sshdr;
2927
2928         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2929                 return;
2930
2931         if (sdkp->protection_type == 0)
2932                 return;
2933
2934         res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
2935                               sdkp->max_retries, &data, &sshdr);
2936
2937         if (res < 0 || !data.header_length ||
2938             data.length < 6) {
2939                 sd_first_printk(KERN_WARNING, sdkp,
2940                           "getting Control mode page failed, assume no ATO\n");
2941
2942                 if (res == -EIO && scsi_sense_valid(&sshdr))
2943                         sd_print_sense_hdr(sdkp, &sshdr);
2944
2945                 return;
2946         }
2947
2948         offset = data.header_length + data.block_descriptor_length;
2949
2950         if ((buffer[offset] & 0x3f) != 0x0a) {
2951                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2952                 return;
2953         }
2954
2955         if ((buffer[offset + 5] & 0x80) == 0)
2956                 return;
2957
2958         sdkp->ATO = 1;
2959
2960         return;
2961 }
2962
2963 /**
2964  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2965  * @sdkp: disk to query
2966  */
2967 static void sd_read_block_limits(struct scsi_disk *sdkp)
2968 {
2969         struct scsi_vpd *vpd;
2970
2971         rcu_read_lock();
2972
2973         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2974         if (!vpd || vpd->len < 16)
2975                 goto out;
2976
2977         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2978         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2979         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2980
2981         if (vpd->len >= 64) {
2982                 unsigned int lba_count, desc_count;
2983
2984                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2985
2986                 if (!sdkp->lbpme)
2987                         goto out;
2988
2989                 lba_count = get_unaligned_be32(&vpd->data[20]);
2990                 desc_count = get_unaligned_be32(&vpd->data[24]);
2991
2992                 if (lba_count && desc_count)
2993                         sdkp->max_unmap_blocks = lba_count;
2994
2995                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2996
2997                 if (vpd->data[32] & 0x80)
2998                         sdkp->unmap_alignment =
2999                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3000
3001                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3002
3003                         if (sdkp->max_unmap_blocks)
3004                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3005                         else
3006                                 sd_config_discard(sdkp, SD_LBP_WS16);
3007
3008                 } else {        /* LBP VPD page tells us what to use */
3009                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
3010                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
3011                         else if (sdkp->lbpws)
3012                                 sd_config_discard(sdkp, SD_LBP_WS16);
3013                         else if (sdkp->lbpws10)
3014                                 sd_config_discard(sdkp, SD_LBP_WS10);
3015                         else
3016                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3017                 }
3018         }
3019
3020  out:
3021         rcu_read_unlock();
3022 }
3023
3024 /**
3025  * sd_read_block_characteristics - Query block dev. characteristics
3026  * @sdkp: disk to query
3027  */
3028 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3029 {
3030         struct request_queue *q = sdkp->disk->queue;
3031         struct scsi_vpd *vpd;
3032         u16 rot;
3033         u8 zoned;
3034
3035         rcu_read_lock();
3036         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3037
3038         if (!vpd || vpd->len < 8) {
3039                 rcu_read_unlock();
3040                 return;
3041         }
3042
3043         rot = get_unaligned_be16(&vpd->data[4]);
3044         zoned = (vpd->data[8] >> 4) & 3;
3045         rcu_read_unlock();
3046
3047         if (rot == 1) {
3048                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3049                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3050         }
3051
3052         if (sdkp->device->type == TYPE_ZBC) {
3053                 /*
3054                  * Host-managed: Per ZBC and ZAC specifications, writes in
3055                  * sequential write required zones of host-managed devices must
3056                  * be aligned to the device physical block size.
3057                  */
3058                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3059                 blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3060         } else {
3061                 sdkp->zoned = zoned;
3062                 if (sdkp->zoned == 1) {
3063                         /* Host-aware */
3064                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3065                 } else {
3066                         /* Regular disk or drive managed disk */
3067                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3068                 }
3069         }
3070
3071         if (!sdkp->first_scan)
3072                 return;
3073
3074         if (blk_queue_is_zoned(q)) {
3075                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3076                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3077         } else {
3078                 if (sdkp->zoned == 1)
3079                         sd_printk(KERN_NOTICE, sdkp,
3080                                   "Host-aware SMR disk used as regular disk\n");
3081                 else if (sdkp->zoned == 2)
3082                         sd_printk(KERN_NOTICE, sdkp,
3083                                   "Drive-managed SMR disk\n");
3084         }
3085 }
3086
3087 /**
3088  * sd_read_block_provisioning - Query provisioning VPD page
3089  * @sdkp: disk to query
3090  */
3091 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3092 {
3093         struct scsi_vpd *vpd;
3094
3095         if (sdkp->lbpme == 0)
3096                 return;
3097
3098         rcu_read_lock();
3099         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3100
3101         if (!vpd || vpd->len < 8) {
3102                 rcu_read_unlock();
3103                 return;
3104         }
3105
3106         sdkp->lbpvpd    = 1;
3107         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3108         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3109         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3110         rcu_read_unlock();
3111 }
3112
3113 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3114 {
3115         struct scsi_device *sdev = sdkp->device;
3116
3117         if (sdev->host->no_write_same) {
3118                 sdev->no_write_same = 1;
3119
3120                 return;
3121         }
3122
3123         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3124                 struct scsi_vpd *vpd;
3125
3126                 sdev->no_report_opcodes = 1;
3127
3128                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3129                  * CODES is unsupported and the device has an ATA
3130                  * Information VPD page (SAT).
3131                  */
3132                 rcu_read_lock();
3133                 vpd = rcu_dereference(sdev->vpd_pg89);
3134                 if (vpd)
3135                         sdev->no_write_same = 1;
3136                 rcu_read_unlock();
3137         }
3138
3139         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3140                 sdkp->ws16 = 1;
3141
3142         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3143                 sdkp->ws10 = 1;
3144 }
3145
3146 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3147 {
3148         struct scsi_device *sdev = sdkp->device;
3149
3150         if (!sdev->security_supported)
3151                 return;
3152
3153         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3154                         SECURITY_PROTOCOL_IN, 0) == 1 &&
3155             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3156                         SECURITY_PROTOCOL_OUT, 0) == 1)
3157                 sdkp->security = 1;
3158 }
3159
3160 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3161 {
3162         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3163 }
3164
3165 /**
3166  * sd_read_cpr - Query concurrent positioning ranges
3167  * @sdkp:       disk to query
3168  */
3169 static void sd_read_cpr(struct scsi_disk *sdkp)
3170 {
3171         struct blk_independent_access_ranges *iars = NULL;
3172         unsigned char *buffer = NULL;
3173         unsigned int nr_cpr = 0;
3174         int i, vpd_len, buf_len = SD_BUF_SIZE;
3175         u8 *desc;
3176
3177         /*
3178          * We need to have the capacity set first for the block layer to be
3179          * able to check the ranges.
3180          */
3181         if (sdkp->first_scan)
3182                 return;
3183
3184         if (!sdkp->capacity)
3185                 goto out;
3186
3187         /*
3188          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3189          * leading to a maximum page size of 64 + 256*32 bytes.
3190          */
3191         buf_len = 64 + 256*32;
3192         buffer = kmalloc(buf_len, GFP_KERNEL);
3193         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3194                 goto out;
3195
3196         /* We must have at least a 64B header and one 32B range descriptor */
3197         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3198         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3199                 sd_printk(KERN_ERR, sdkp,
3200                           "Invalid Concurrent Positioning Ranges VPD page\n");
3201                 goto out;
3202         }
3203
3204         nr_cpr = (vpd_len - 64) / 32;
3205         if (nr_cpr == 1) {
3206                 nr_cpr = 0;
3207                 goto out;
3208         }
3209
3210         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3211         if (!iars) {
3212                 nr_cpr = 0;
3213                 goto out;
3214         }
3215
3216         desc = &buffer[64];
3217         for (i = 0; i < nr_cpr; i++, desc += 32) {
3218                 if (desc[0] != i) {
3219                         sd_printk(KERN_ERR, sdkp,
3220                                 "Invalid Concurrent Positioning Range number\n");
3221                         nr_cpr = 0;
3222                         break;
3223                 }
3224
3225                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3226                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3227         }
3228
3229 out:
3230         disk_set_independent_access_ranges(sdkp->disk, iars);
3231         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3232                 sd_printk(KERN_NOTICE, sdkp,
3233                           "%u concurrent positioning ranges\n", nr_cpr);
3234                 sdkp->nr_actuators = nr_cpr;
3235         }
3236
3237         kfree(buffer);
3238 }
3239
3240 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3241 {
3242         struct scsi_device *sdp = sdkp->device;
3243         unsigned int min_xfer_bytes =
3244                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3245
3246         if (sdkp->min_xfer_blocks == 0)
3247                 return false;
3248
3249         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3250                 sd_first_printk(KERN_WARNING, sdkp,
3251                                 "Preferred minimum I/O size %u bytes not a " \
3252                                 "multiple of physical block size (%u bytes)\n",
3253                                 min_xfer_bytes, sdkp->physical_block_size);
3254                 sdkp->min_xfer_blocks = 0;
3255                 return false;
3256         }
3257
3258         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3259                         min_xfer_bytes);
3260         return true;
3261 }
3262
3263 /*
3264  * Determine the device's preferred I/O size for reads and writes
3265  * unless the reported value is unreasonably small, large, not a
3266  * multiple of the physical block size, or simply garbage.
3267  */
3268 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3269                                       unsigned int dev_max)
3270 {
3271         struct scsi_device *sdp = sdkp->device;
3272         unsigned int opt_xfer_bytes =
3273                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3274         unsigned int min_xfer_bytes =
3275                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3276
3277         if (sdkp->opt_xfer_blocks == 0)
3278                 return false;
3279
3280         if (sdkp->opt_xfer_blocks > dev_max) {
3281                 sd_first_printk(KERN_WARNING, sdkp,
3282                                 "Optimal transfer size %u logical blocks " \
3283                                 "> dev_max (%u logical blocks)\n",
3284                                 sdkp->opt_xfer_blocks, dev_max);
3285                 return false;
3286         }
3287
3288         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3289                 sd_first_printk(KERN_WARNING, sdkp,
3290                                 "Optimal transfer size %u logical blocks " \
3291                                 "> sd driver limit (%u logical blocks)\n",
3292                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3293                 return false;
3294         }
3295
3296         if (opt_xfer_bytes < PAGE_SIZE) {
3297                 sd_first_printk(KERN_WARNING, sdkp,
3298                                 "Optimal transfer size %u bytes < " \
3299                                 "PAGE_SIZE (%u bytes)\n",
3300                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3301                 return false;
3302         }
3303
3304         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3305                 sd_first_printk(KERN_WARNING, sdkp,
3306                                 "Optimal transfer size %u bytes not a " \
3307                                 "multiple of preferred minimum block " \
3308                                 "size (%u bytes)\n",
3309                                 opt_xfer_bytes, min_xfer_bytes);
3310                 return false;
3311         }
3312
3313         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3314                 sd_first_printk(KERN_WARNING, sdkp,
3315                                 "Optimal transfer size %u bytes not a " \
3316                                 "multiple of physical block size (%u bytes)\n",
3317                                 opt_xfer_bytes, sdkp->physical_block_size);
3318                 return false;
3319         }
3320
3321         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3322                         opt_xfer_bytes);
3323         return true;
3324 }
3325
3326 /**
3327  *      sd_revalidate_disk - called the first time a new disk is seen,
3328  *      performs disk spin up, read_capacity, etc.
3329  *      @disk: struct gendisk we care about
3330  **/
3331 static int sd_revalidate_disk(struct gendisk *disk)
3332 {
3333         struct scsi_disk *sdkp = scsi_disk(disk);
3334         struct scsi_device *sdp = sdkp->device;
3335         struct request_queue *q = sdkp->disk->queue;
3336         sector_t old_capacity = sdkp->capacity;
3337         unsigned char *buffer;
3338         unsigned int dev_max, rw_max;
3339
3340         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3341                                       "sd_revalidate_disk\n"));
3342
3343         /*
3344          * If the device is offline, don't try and read capacity or any
3345          * of the other niceties.
3346          */
3347         if (!scsi_device_online(sdp))
3348                 goto out;
3349
3350         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3351         if (!buffer) {
3352                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3353                           "allocation failure.\n");
3354                 goto out;
3355         }
3356
3357         sd_spinup_disk(sdkp);
3358
3359         /*
3360          * Without media there is no reason to ask; moreover, some devices
3361          * react badly if we do.
3362          */
3363         if (sdkp->media_present) {
3364                 sd_read_capacity(sdkp, buffer);
3365
3366                 /*
3367                  * set the default to rotational.  All non-rotational devices
3368                  * support the block characteristics VPD page, which will
3369                  * cause this to be updated correctly and any device which
3370                  * doesn't support it should be treated as rotational.
3371                  */
3372                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3373                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3374
3375                 if (scsi_device_supports_vpd(sdp)) {
3376                         sd_read_block_provisioning(sdkp);
3377                         sd_read_block_limits(sdkp);
3378                         sd_read_block_characteristics(sdkp);
3379                         sd_zbc_read_zones(sdkp, buffer);
3380                         sd_read_cpr(sdkp);
3381                 }
3382
3383                 sd_print_capacity(sdkp, old_capacity);
3384
3385                 sd_read_write_protect_flag(sdkp, buffer);
3386                 sd_read_cache_type(sdkp, buffer);
3387                 sd_read_app_tag_own(sdkp, buffer);
3388                 sd_read_write_same(sdkp, buffer);
3389                 sd_read_security(sdkp, buffer);
3390                 sd_config_protection(sdkp);
3391         }
3392
3393         /*
3394          * We now have all cache related info, determine how we deal
3395          * with flush requests.
3396          */
3397         sd_set_flush_flag(sdkp);
3398
3399         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3400         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3401
3402         /* Some devices report a maximum block count for READ/WRITE requests. */
3403         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3404         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3405
3406         if (sd_validate_min_xfer_size(sdkp))
3407                 blk_queue_io_min(sdkp->disk->queue,
3408                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3409         else
3410                 blk_queue_io_min(sdkp->disk->queue, 0);
3411
3412         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3413                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3414                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3415         } else {
3416                 q->limits.io_opt = 0;
3417                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3418                                       (sector_t)BLK_DEF_MAX_SECTORS);
3419         }
3420
3421         /*
3422          * Limit default to SCSI host optimal sector limit if set. There may be
3423          * an impact on performance for when the size of a request exceeds this
3424          * host limit.
3425          */
3426         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3427
3428         /* Do not exceed controller limit */
3429         rw_max = min(rw_max, queue_max_hw_sectors(q));
3430
3431         /*
3432          * Only update max_sectors if previously unset or if the current value
3433          * exceeds the capabilities of the hardware.
3434          */
3435         if (sdkp->first_scan ||
3436             q->limits.max_sectors > q->limits.max_dev_sectors ||
3437             q->limits.max_sectors > q->limits.max_hw_sectors)
3438                 q->limits.max_sectors = rw_max;
3439
3440         sdkp->first_scan = 0;
3441
3442         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3443         sd_config_write_same(sdkp);
3444         kfree(buffer);
3445
3446         /*
3447          * For a zoned drive, revalidating the zones can be done only once
3448          * the gendisk capacity is set. So if this fails, set back the gendisk
3449          * capacity to 0.
3450          */
3451         if (sd_zbc_revalidate_zones(sdkp))
3452                 set_capacity_and_notify(disk, 0);
3453
3454  out:
3455         return 0;
3456 }
3457
3458 /**
3459  *      sd_unlock_native_capacity - unlock native capacity
3460  *      @disk: struct gendisk to set capacity for
3461  *
3462  *      Block layer calls this function if it detects that partitions
3463  *      on @disk reach beyond the end of the device.  If the SCSI host
3464  *      implements ->unlock_native_capacity() method, it's invoked to
3465  *      give it a chance to adjust the device capacity.
3466  *
3467  *      CONTEXT:
3468  *      Defined by block layer.  Might sleep.
3469  */
3470 static void sd_unlock_native_capacity(struct gendisk *disk)
3471 {
3472         struct scsi_device *sdev = scsi_disk(disk)->device;
3473
3474         if (sdev->host->hostt->unlock_native_capacity)
3475                 sdev->host->hostt->unlock_native_capacity(sdev);
3476 }
3477
3478 /**
3479  *      sd_format_disk_name - format disk name
3480  *      @prefix: name prefix - ie. "sd" for SCSI disks
3481  *      @index: index of the disk to format name for
3482  *      @buf: output buffer
3483  *      @buflen: length of the output buffer
3484  *
3485  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3486  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3487  *      which is followed by sdaaa.
3488  *
3489  *      This is basically 26 base counting with one extra 'nil' entry
3490  *      at the beginning from the second digit on and can be
3491  *      determined using similar method as 26 base conversion with the
3492  *      index shifted -1 after each digit is computed.
3493  *
3494  *      CONTEXT:
3495  *      Don't care.
3496  *
3497  *      RETURNS:
3498  *      0 on success, -errno on failure.
3499  */
3500 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3501 {
3502         const int base = 'z' - 'a' + 1;
3503         char *begin = buf + strlen(prefix);
3504         char *end = buf + buflen;
3505         char *p;
3506         int unit;
3507
3508         p = end - 1;
3509         *p = '\0';
3510         unit = base;
3511         do {
3512                 if (p == begin)
3513                         return -EINVAL;
3514                 *--p = 'a' + (index % unit);
3515                 index = (index / unit) - 1;
3516         } while (index >= 0);
3517
3518         memmove(begin, p, end - p);
3519         memcpy(buf, prefix, strlen(prefix));
3520
3521         return 0;
3522 }
3523
3524 /**
3525  *      sd_probe - called during driver initialization and whenever a
3526  *      new scsi device is attached to the system. It is called once
3527  *      for each scsi device (not just disks) present.
3528  *      @dev: pointer to device object
3529  *
3530  *      Returns 0 if successful (or not interested in this scsi device 
3531  *      (e.g. scanner)); 1 when there is an error.
3532  *
3533  *      Note: this function is invoked from the scsi mid-level.
3534  *      This function sets up the mapping between a given 
3535  *      <host,channel,id,lun> (found in sdp) and new device name 
3536  *      (e.g. /dev/sda). More precisely it is the block device major 
3537  *      and minor number that is chosen here.
3538  *
3539  *      Assume sd_probe is not re-entrant (for time being)
3540  *      Also think about sd_probe() and sd_remove() running coincidentally.
3541  **/
3542 static int sd_probe(struct device *dev)
3543 {
3544         struct scsi_device *sdp = to_scsi_device(dev);
3545         struct scsi_disk *sdkp;
3546         struct gendisk *gd;
3547         int index;
3548         int error;
3549
3550         scsi_autopm_get_device(sdp);
3551         error = -ENODEV;
3552         if (sdp->type != TYPE_DISK &&
3553             sdp->type != TYPE_ZBC &&
3554             sdp->type != TYPE_MOD &&
3555             sdp->type != TYPE_RBC)
3556                 goto out;
3557
3558         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3559                 sdev_printk(KERN_WARNING, sdp,
3560                             "Unsupported ZBC host-managed device.\n");
3561                 goto out;
3562         }
3563
3564         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3565                                         "sd_probe\n"));
3566
3567         error = -ENOMEM;
3568         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3569         if (!sdkp)
3570                 goto out;
3571
3572         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3573                                          &sd_bio_compl_lkclass);
3574         if (!gd)
3575                 goto out_free;
3576
3577         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3578         if (index < 0) {
3579                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3580                 goto out_put;
3581         }
3582
3583         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3584         if (error) {
3585                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3586                 goto out_free_index;
3587         }
3588
3589         sdkp->device = sdp;
3590         sdkp->disk = gd;
3591         sdkp->index = index;
3592         sdkp->max_retries = SD_MAX_RETRIES;
3593         atomic_set(&sdkp->openers, 0);
3594         atomic_set(&sdkp->device->ioerr_cnt, 0);
3595
3596         if (!sdp->request_queue->rq_timeout) {
3597                 if (sdp->type != TYPE_MOD)
3598                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3599                 else
3600                         blk_queue_rq_timeout(sdp->request_queue,
3601                                              SD_MOD_TIMEOUT);
3602         }
3603
3604         device_initialize(&sdkp->disk_dev);
3605         sdkp->disk_dev.parent = get_device(dev);
3606         sdkp->disk_dev.class = &sd_disk_class;
3607         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3608
3609         error = device_add(&sdkp->disk_dev);
3610         if (error) {
3611                 put_device(&sdkp->disk_dev);
3612                 goto out;
3613         }
3614
3615         dev_set_drvdata(dev, sdkp);
3616
3617         gd->major = sd_major((index & 0xf0) >> 4);
3618         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3619         gd->minors = SD_MINORS;
3620
3621         gd->fops = &sd_fops;
3622         gd->private_data = sdkp;
3623
3624         /* defaults, until the device tells us otherwise */
3625         sdp->sector_size = 512;
3626         sdkp->capacity = 0;
3627         sdkp->media_present = 1;
3628         sdkp->write_prot = 0;
3629         sdkp->cache_override = 0;
3630         sdkp->WCE = 0;
3631         sdkp->RCD = 0;
3632         sdkp->ATO = 0;
3633         sdkp->first_scan = 1;
3634         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3635
3636         sd_revalidate_disk(gd);
3637
3638         if (sdp->removable) {
3639                 gd->flags |= GENHD_FL_REMOVABLE;
3640                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3641                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3642         }
3643
3644         blk_pm_runtime_init(sdp->request_queue, dev);
3645         if (sdp->rpm_autosuspend) {
3646                 pm_runtime_set_autosuspend_delay(dev,
3647                         sdp->host->hostt->rpm_autosuspend_delay);
3648         }
3649
3650         error = device_add_disk(dev, gd, NULL);
3651         if (error) {
3652                 put_device(&sdkp->disk_dev);
3653                 put_disk(gd);
3654                 goto out;
3655         }
3656
3657         if (sdkp->security) {
3658                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3659                 if (sdkp->opal_dev)
3660                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3661         }
3662
3663         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3664                   sdp->removable ? "removable " : "");
3665         scsi_autopm_put_device(sdp);
3666
3667         return 0;
3668
3669  out_free_index:
3670         ida_free(&sd_index_ida, index);
3671  out_put:
3672         put_disk(gd);
3673  out_free:
3674         kfree(sdkp);
3675  out:
3676         scsi_autopm_put_device(sdp);
3677         return error;
3678 }
3679
3680 /**
3681  *      sd_remove - called whenever a scsi disk (previously recognized by
3682  *      sd_probe) is detached from the system. It is called (potentially
3683  *      multiple times) during sd module unload.
3684  *      @dev: pointer to device object
3685  *
3686  *      Note: this function is invoked from the scsi mid-level.
3687  *      This function potentially frees up a device name (e.g. /dev/sdc)
3688  *      that could be re-used by a subsequent sd_probe().
3689  *      This function is not called when the built-in sd driver is "exit-ed".
3690  **/
3691 static int sd_remove(struct device *dev)
3692 {
3693         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3694
3695         scsi_autopm_get_device(sdkp->device);
3696
3697         device_del(&sdkp->disk_dev);
3698         del_gendisk(sdkp->disk);
3699         sd_shutdown(dev);
3700
3701         put_disk(sdkp->disk);
3702         return 0;
3703 }
3704
3705 static void scsi_disk_release(struct device *dev)
3706 {
3707         struct scsi_disk *sdkp = to_scsi_disk(dev);
3708
3709         ida_free(&sd_index_ida, sdkp->index);
3710         sd_zbc_free_zone_info(sdkp);
3711         put_device(&sdkp->device->sdev_gendev);
3712         free_opal_dev(sdkp->opal_dev);
3713
3714         kfree(sdkp);
3715 }
3716
3717 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3718 {
3719         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3720         struct scsi_sense_hdr sshdr;
3721         const struct scsi_exec_args exec_args = {
3722                 .sshdr = &sshdr,
3723                 .req_flags = BLK_MQ_REQ_PM,
3724         };
3725         struct scsi_device *sdp = sdkp->device;
3726         int res;
3727
3728         if (start)
3729                 cmd[4] |= 1;    /* START */
3730
3731         if (sdp->start_stop_pwr_cond)
3732                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3733
3734         if (!scsi_device_online(sdp))
3735                 return -ENODEV;
3736
3737         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3738                                sdkp->max_retries, &exec_args);
3739         if (res) {
3740                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3741                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3742                         sd_print_sense_hdr(sdkp, &sshdr);
3743                         /* 0x3a is medium not present */
3744                         if (sshdr.asc == 0x3a)
3745                                 res = 0;
3746                 }
3747         }
3748
3749         /* SCSI error codes must not go to the generic layer */
3750         if (res)
3751                 return -EIO;
3752
3753         return 0;
3754 }
3755
3756 /*
3757  * Send a SYNCHRONIZE CACHE instruction down to the device through
3758  * the normal SCSI command structure.  Wait for the command to
3759  * complete.
3760  */
3761 static void sd_shutdown(struct device *dev)
3762 {
3763         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3764
3765         if (!sdkp)
3766                 return;         /* this can happen */
3767
3768         if (pm_runtime_suspended(dev))
3769                 return;
3770
3771         if (sdkp->WCE && sdkp->media_present) {
3772                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3773                 sd_sync_cache(sdkp, NULL);
3774         }
3775
3776         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3777                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3778                 sd_start_stop_device(sdkp, 0);
3779         }
3780 }
3781
3782 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3783 {
3784         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3785         struct scsi_sense_hdr sshdr;
3786         int ret = 0;
3787
3788         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3789                 return 0;
3790
3791         if (sdkp->WCE && sdkp->media_present) {
3792                 if (!sdkp->device->silence_suspend)
3793                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3794                 ret = sd_sync_cache(sdkp, &sshdr);
3795
3796                 if (ret) {
3797                         /* ignore OFFLINE device */
3798                         if (ret == -ENODEV)
3799                                 return 0;
3800
3801                         if (!scsi_sense_valid(&sshdr) ||
3802                             sshdr.sense_key != ILLEGAL_REQUEST)
3803                                 return ret;
3804
3805                         /*
3806                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3807                          * doesn't support sync. There's not much to do and
3808                          * suspend shouldn't fail.
3809                          */
3810                         ret = 0;
3811                 }
3812         }
3813
3814         if (sdkp->device->manage_start_stop) {
3815                 if (!sdkp->device->silence_suspend)
3816                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3817                 /* an error is not worth aborting a system sleep */
3818                 ret = sd_start_stop_device(sdkp, 0);
3819                 if (ignore_stop_errors)
3820                         ret = 0;
3821         }
3822
3823         return ret;
3824 }
3825
3826 static int sd_suspend_system(struct device *dev)
3827 {
3828         if (pm_runtime_suspended(dev))
3829                 return 0;
3830
3831         return sd_suspend_common(dev, true);
3832 }
3833
3834 static int sd_suspend_runtime(struct device *dev)
3835 {
3836         return sd_suspend_common(dev, false);
3837 }
3838
3839 static int sd_resume(struct device *dev)
3840 {
3841         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3842         int ret = 0;
3843
3844         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3845                 return 0;
3846
3847         if (!sdkp->device->manage_start_stop)
3848                 return 0;
3849
3850         if (!sdkp->device->no_start_on_resume) {
3851                 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3852                 ret = sd_start_stop_device(sdkp, 1);
3853         }
3854
3855         if (!ret)
3856                 opal_unlock_from_suspend(sdkp->opal_dev);
3857         return ret;
3858 }
3859
3860 static int sd_resume_system(struct device *dev)
3861 {
3862         if (pm_runtime_suspended(dev))
3863                 return 0;
3864
3865         return sd_resume(dev);
3866 }
3867
3868 static int sd_resume_runtime(struct device *dev)
3869 {
3870         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3871         struct scsi_device *sdp;
3872
3873         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3874                 return 0;
3875
3876         sdp = sdkp->device;
3877
3878         if (sdp->ignore_media_change) {
3879                 /* clear the device's sense data */
3880                 static const u8 cmd[10] = { REQUEST_SENSE };
3881                 const struct scsi_exec_args exec_args = {
3882                         .req_flags = BLK_MQ_REQ_PM,
3883                 };
3884
3885                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3886                                      sdp->request_queue->rq_timeout, 1,
3887                                      &exec_args))
3888                         sd_printk(KERN_NOTICE, sdkp,
3889                                   "Failed to clear sense data\n");
3890         }
3891
3892         return sd_resume(dev);
3893 }
3894
3895 static const struct dev_pm_ops sd_pm_ops = {
3896         .suspend                = sd_suspend_system,
3897         .resume                 = sd_resume_system,
3898         .poweroff               = sd_suspend_system,
3899         .restore                = sd_resume_system,
3900         .runtime_suspend        = sd_suspend_runtime,
3901         .runtime_resume         = sd_resume_runtime,
3902 };
3903
3904 static struct scsi_driver sd_template = {
3905         .gendrv = {
3906                 .name           = "sd",
3907                 .owner          = THIS_MODULE,
3908                 .probe          = sd_probe,
3909                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
3910                 .remove         = sd_remove,
3911                 .shutdown       = sd_shutdown,
3912                 .pm             = &sd_pm_ops,
3913         },
3914         .rescan                 = sd_rescan,
3915         .init_command           = sd_init_command,
3916         .uninit_command         = sd_uninit_command,
3917         .done                   = sd_done,
3918         .eh_action              = sd_eh_action,
3919         .eh_reset               = sd_eh_reset,
3920 };
3921
3922 /**
3923  *      init_sd - entry point for this driver (both when built in or when
3924  *      a module).
3925  *
3926  *      Note: this function registers this driver with the scsi mid-level.
3927  **/
3928 static int __init init_sd(void)
3929 {
3930         int majors = 0, i, err;
3931
3932         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3933
3934         for (i = 0; i < SD_MAJORS; i++) {
3935                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3936                         continue;
3937                 majors++;
3938         }
3939
3940         if (!majors)
3941                 return -ENODEV;
3942
3943         err = class_register(&sd_disk_class);
3944         if (err)
3945                 goto err_out;
3946
3947         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3948         if (!sd_page_pool) {
3949                 printk(KERN_ERR "sd: can't init discard page pool\n");
3950                 err = -ENOMEM;
3951                 goto err_out_class;
3952         }
3953
3954         err = scsi_register_driver(&sd_template.gendrv);
3955         if (err)
3956                 goto err_out_driver;
3957
3958         return 0;
3959
3960 err_out_driver:
3961         mempool_destroy(sd_page_pool);
3962 err_out_class:
3963         class_unregister(&sd_disk_class);
3964 err_out:
3965         for (i = 0; i < SD_MAJORS; i++)
3966                 unregister_blkdev(sd_major(i), "sd");
3967         return err;
3968 }
3969
3970 /**
3971  *      exit_sd - exit point for this driver (when it is a module).
3972  *
3973  *      Note: this function unregisters this driver from the scsi mid-level.
3974  **/
3975 static void __exit exit_sd(void)
3976 {
3977         int i;
3978
3979         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3980
3981         scsi_unregister_driver(&sd_template.gendrv);
3982         mempool_destroy(sd_page_pool);
3983
3984         class_unregister(&sd_disk_class);
3985
3986         for (i = 0; i < SD_MAJORS; i++)
3987                 unregister_blkdev(sd_major(i), "sd");
3988 }
3989
3990 module_init(init_sd);
3991 module_exit(exit_sd);
3992
3993 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3994 {
3995         scsi_print_sense_hdr(sdkp->device,
3996                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3997 }
3998
3999 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4000 {
4001         const char *hb_string = scsi_hostbyte_string(result);
4002
4003         if (hb_string)
4004                 sd_printk(KERN_INFO, sdkp,
4005                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4006                           hb_string ? hb_string : "invalid",
4007                           "DRIVER_OK");
4008         else
4009                 sd_printk(KERN_INFO, sdkp,
4010                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4011                           msg, host_byte(result), "DRIVER_OK");
4012 }