scsi: core: Avoid that ATA error handling can trigger a kernel hang or oops
[linux-block.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                         SCSI_SENSE_BUFFERSIZE, 0,
83                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create("scsi_sense_cache",
89                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90                 if (!scsi_sense_cache)
91                         ret = -ENOMEM;
92         }
93
94         mutex_unlock(&scsi_sense_cache_mutex);
95         return ret;
96 }
97
98 /*
99  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100  * not change behaviour from the previous unplug mechanism, experimentation
101  * may prove this needs changing.
102  */
103 #define SCSI_QUEUE_DELAY        3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108         struct Scsi_Host *host = cmd->device->host;
109         struct scsi_device *device = cmd->device;
110         struct scsi_target *starget = scsi_target(device);
111
112         /*
113          * Set the appropriate busy bit for the device/host.
114          *
115          * If the host/device isn't busy, assume that something actually
116          * completed, and that we should be able to queue a command now.
117          *
118          * Note that the prior mid-layer assumption that any host could
119          * always queue at least one command is now broken.  The mid-layer
120          * will implement a user specifiable stall (see
121          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122          * if a command is requeued with no other commands outstanding
123          * either for the device or for the host.
124          */
125         switch (reason) {
126         case SCSI_MLQUEUE_HOST_BUSY:
127                 atomic_set(&host->host_blocked, host->max_host_blocked);
128                 break;
129         case SCSI_MLQUEUE_DEVICE_BUSY:
130         case SCSI_MLQUEUE_EH_RETRY:
131                 atomic_set(&device->device_blocked,
132                            device->max_device_blocked);
133                 break;
134         case SCSI_MLQUEUE_TARGET_BUSY:
135                 atomic_set(&starget->target_blocked,
136                            starget->max_target_blocked);
137                 break;
138         }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143         struct scsi_device *sdev = cmd->device;
144
145         if (cmd->request->rq_flags & RQF_DONTPREP) {
146                 cmd->request->rq_flags &= ~RQF_DONTPREP;
147                 scsi_mq_uninit_cmd(cmd);
148         } else {
149                 WARN_ON_ONCE(true);
150         }
151         blk_mq_requeue_request(cmd->request, true);
152         put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156  * __scsi_queue_insert - private queue insertion
157  * @cmd: The SCSI command being requeued
158  * @reason:  The reason for the requeue
159  * @unbusy: Whether the queue should be unbusied
160  *
161  * This is a private queue insertion.  The public interface
162  * scsi_queue_insert() always assumes the queue should be unbusied
163  * because it's always called before the completion.  This function is
164  * for a requeue after completion, which should only occur in this
165  * file.
166  */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
168 {
169         struct scsi_device *device = cmd->device;
170         struct request_queue *q = device->request_queue;
171         unsigned long flags;
172
173         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174                 "Inserting command %p into mlqueue\n", cmd));
175
176         scsi_set_blocked(cmd, reason);
177
178         /*
179          * Decrement the counters, since these commands are no longer
180          * active on the host/device.
181          */
182         if (unbusy)
183                 scsi_device_unbusy(device);
184
185         /*
186          * Requeue this command.  It will go before all other commands
187          * that are already in the queue. Schedule requeue work under
188          * lock such that the kblockd_schedule_work() call happens
189          * before blk_cleanup_queue() finishes.
190          */
191         cmd->result = 0;
192         if (q->mq_ops) {
193                 scsi_mq_requeue_cmd(cmd);
194                 return;
195         }
196         spin_lock_irqsave(q->queue_lock, flags);
197         blk_requeue_request(q, cmd->request);
198         kblockd_schedule_work(&device->requeue_work);
199         spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203  * Function:    scsi_queue_insert()
204  *
205  * Purpose:     Insert a command in the midlevel queue.
206  *
207  * Arguments:   cmd    - command that we are adding to queue.
208  *              reason - why we are inserting command to queue.
209  *
210  * Lock status: Assumed that lock is not held upon entry.
211  *
212  * Returns:     Nothing.
213  *
214  * Notes:       We do this for one of two cases.  Either the host is busy
215  *              and it cannot accept any more commands for the time being,
216  *              or the device returned QUEUE_FULL and can accept no more
217  *              commands.
218  * Notes:       This could be called either from an interrupt context or a
219  *              normal process context.
220  */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223         __scsi_queue_insert(cmd, reason, true);
224 }
225
226
227 /**
228  * scsi_execute - insert request and wait for the result
229  * @sdev:       scsi device
230  * @cmd:        scsi command
231  * @data_direction: data direction
232  * @buffer:     data buffer
233  * @bufflen:    len of buffer
234  * @sense:      optional sense buffer
235  * @sshdr:      optional decoded sense header
236  * @timeout:    request timeout in seconds
237  * @retries:    number of times to retry request
238  * @flags:      flags for ->cmd_flags
239  * @rq_flags:   flags for ->rq_flags
240  * @resid:      optional residual length
241  *
242  * Returns the scsi_cmnd result field if a command was executed, or a negative
243  * Linux error code if we didn't get that far.
244  */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246                  int data_direction, void *buffer, unsigned bufflen,
247                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
248                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
249                  int *resid)
250 {
251         struct request *req;
252         struct scsi_request *rq;
253         int ret = DRIVER_ERROR << 24;
254
255         req = blk_get_request_flags(sdev->request_queue,
256                         data_direction == DMA_TO_DEVICE ?
257                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258         if (IS_ERR(req))
259                 return ret;
260         rq = scsi_req(req);
261
262         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
263                                         buffer, bufflen, __GFP_RECLAIM))
264                 goto out;
265
266         rq->cmd_len = COMMAND_SIZE(cmd[0]);
267         memcpy(rq->cmd, cmd, rq->cmd_len);
268         rq->retries = retries;
269         req->timeout = timeout;
270         req->cmd_flags |= flags;
271         req->rq_flags |= rq_flags | RQF_QUIET;
272
273         /*
274          * head injection *required* here otherwise quiesce won't work
275          */
276         blk_execute_rq(req->q, NULL, req, 1);
277
278         /*
279          * Some devices (USB mass-storage in particular) may transfer
280          * garbage data together with a residue indicating that the data
281          * is invalid.  Prevent the garbage from being misinterpreted
282          * and prevent security leaks by zeroing out the excess data.
283          */
284         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287         if (resid)
288                 *resid = rq->resid_len;
289         if (sense && rq->sense_len)
290                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291         if (sshdr)
292                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293         ret = rq->result;
294  out:
295         blk_put_request(req);
296
297         return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302  * Function:    scsi_init_cmd_errh()
303  *
304  * Purpose:     Initialize cmd fields related to error handling.
305  *
306  * Arguments:   cmd     - command that is ready to be queued.
307  *
308  * Notes:       This function has the job of initializing a number of
309  *              fields related to error handling.   Typically this will
310  *              be called once for each command, as required.
311  */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314         cmd->serial_number = 0;
315         scsi_set_resid(cmd, 0);
316         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317         if (cmd->cmd_len == 0)
318                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 /*
322  * Decrement the host_busy counter and wake up the error handler if necessary.
323  * Avoid as follows that the error handler is not woken up if shost->host_busy
324  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325  * with an RCU read lock in this function to ensure that this function in its
326  * entirety either finishes before scsi_eh_scmd_add() increases the
327  * host_failed counter or that it notices the shost state change made by
328  * scsi_eh_scmd_add().
329  */
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
331 {
332         unsigned long flags;
333
334         rcu_read_lock();
335         atomic_dec(&shost->host_busy);
336         if (unlikely(scsi_host_in_recovery(shost))) {
337                 spin_lock_irqsave(shost->host_lock, flags);
338                 if (shost->host_failed || shost->host_eh_scheduled)
339                         scsi_eh_wakeup(shost);
340                 spin_unlock_irqrestore(shost->host_lock, flags);
341         }
342         rcu_read_unlock();
343 }
344
345 void scsi_device_unbusy(struct scsi_device *sdev)
346 {
347         struct Scsi_Host *shost = sdev->host;
348         struct scsi_target *starget = scsi_target(sdev);
349
350         scsi_dec_host_busy(shost);
351
352         if (starget->can_queue > 0)
353                 atomic_dec(&starget->target_busy);
354
355         atomic_dec(&sdev->device_busy);
356 }
357
358 static void scsi_kick_queue(struct request_queue *q)
359 {
360         if (q->mq_ops)
361                 blk_mq_start_hw_queues(q);
362         else
363                 blk_run_queue(q);
364 }
365
366 /*
367  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368  * and call blk_run_queue for all the scsi_devices on the target -
369  * including current_sdev first.
370  *
371  * Called with *no* scsi locks held.
372  */
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
374 {
375         struct Scsi_Host *shost = current_sdev->host;
376         struct scsi_device *sdev, *tmp;
377         struct scsi_target *starget = scsi_target(current_sdev);
378         unsigned long flags;
379
380         spin_lock_irqsave(shost->host_lock, flags);
381         starget->starget_sdev_user = NULL;
382         spin_unlock_irqrestore(shost->host_lock, flags);
383
384         /*
385          * Call blk_run_queue for all LUNs on the target, starting with
386          * current_sdev. We race with others (to set starget_sdev_user),
387          * but in most cases, we will be first. Ideally, each LU on the
388          * target would get some limited time or requests on the target.
389          */
390         scsi_kick_queue(current_sdev->request_queue);
391
392         spin_lock_irqsave(shost->host_lock, flags);
393         if (starget->starget_sdev_user)
394                 goto out;
395         list_for_each_entry_safe(sdev, tmp, &starget->devices,
396                         same_target_siblings) {
397                 if (sdev == current_sdev)
398                         continue;
399                 if (scsi_device_get(sdev))
400                         continue;
401
402                 spin_unlock_irqrestore(shost->host_lock, flags);
403                 scsi_kick_queue(sdev->request_queue);
404                 spin_lock_irqsave(shost->host_lock, flags);
405         
406                 scsi_device_put(sdev);
407         }
408  out:
409         spin_unlock_irqrestore(shost->host_lock, flags);
410 }
411
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
413 {
414         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415                 return true;
416         if (atomic_read(&sdev->device_blocked) > 0)
417                 return true;
418         return false;
419 }
420
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
422 {
423         if (starget->can_queue > 0) {
424                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425                         return true;
426                 if (atomic_read(&starget->target_blocked) > 0)
427                         return true;
428         }
429         return false;
430 }
431
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
433 {
434         if (shost->can_queue > 0 &&
435             atomic_read(&shost->host_busy) >= shost->can_queue)
436                 return true;
437         if (atomic_read(&shost->host_blocked) > 0)
438                 return true;
439         if (shost->host_self_blocked)
440                 return true;
441         return false;
442 }
443
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
445 {
446         LIST_HEAD(starved_list);
447         struct scsi_device *sdev;
448         unsigned long flags;
449
450         spin_lock_irqsave(shost->host_lock, flags);
451         list_splice_init(&shost->starved_list, &starved_list);
452
453         while (!list_empty(&starved_list)) {
454                 struct request_queue *slq;
455
456                 /*
457                  * As long as shost is accepting commands and we have
458                  * starved queues, call blk_run_queue. scsi_request_fn
459                  * drops the queue_lock and can add us back to the
460                  * starved_list.
461                  *
462                  * host_lock protects the starved_list and starved_entry.
463                  * scsi_request_fn must get the host_lock before checking
464                  * or modifying starved_list or starved_entry.
465                  */
466                 if (scsi_host_is_busy(shost))
467                         break;
468
469                 sdev = list_entry(starved_list.next,
470                                   struct scsi_device, starved_entry);
471                 list_del_init(&sdev->starved_entry);
472                 if (scsi_target_is_busy(scsi_target(sdev))) {
473                         list_move_tail(&sdev->starved_entry,
474                                        &shost->starved_list);
475                         continue;
476                 }
477
478                 /*
479                  * Once we drop the host lock, a racing scsi_remove_device()
480                  * call may remove the sdev from the starved list and destroy
481                  * it and the queue.  Mitigate by taking a reference to the
482                  * queue and never touching the sdev again after we drop the
483                  * host lock.  Note: if __scsi_remove_device() invokes
484                  * blk_cleanup_queue() before the queue is run from this
485                  * function then blk_run_queue() will return immediately since
486                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
487                  */
488                 slq = sdev->request_queue;
489                 if (!blk_get_queue(slq))
490                         continue;
491                 spin_unlock_irqrestore(shost->host_lock, flags);
492
493                 scsi_kick_queue(slq);
494                 blk_put_queue(slq);
495
496                 spin_lock_irqsave(shost->host_lock, flags);
497         }
498         /* put any unprocessed entries back */
499         list_splice(&starved_list, &shost->starved_list);
500         spin_unlock_irqrestore(shost->host_lock, flags);
501 }
502
503 /*
504  * Function:   scsi_run_queue()
505  *
506  * Purpose:    Select a proper request queue to serve next
507  *
508  * Arguments:  q       - last request's queue
509  *
510  * Returns:     Nothing
511  *
512  * Notes:      The previous command was completely finished, start
513  *             a new one if possible.
514  */
515 static void scsi_run_queue(struct request_queue *q)
516 {
517         struct scsi_device *sdev = q->queuedata;
518
519         if (scsi_target(sdev)->single_lun)
520                 scsi_single_lun_run(sdev);
521         if (!list_empty(&sdev->host->starved_list))
522                 scsi_starved_list_run(sdev->host);
523
524         if (q->mq_ops)
525                 blk_mq_run_hw_queues(q, false);
526         else
527                 blk_run_queue(q);
528 }
529
530 void scsi_requeue_run_queue(struct work_struct *work)
531 {
532         struct scsi_device *sdev;
533         struct request_queue *q;
534
535         sdev = container_of(work, struct scsi_device, requeue_work);
536         q = sdev->request_queue;
537         scsi_run_queue(q);
538 }
539
540 /*
541  * Function:    scsi_requeue_command()
542  *
543  * Purpose:     Handle post-processing of completed commands.
544  *
545  * Arguments:   q       - queue to operate on
546  *              cmd     - command that may need to be requeued.
547  *
548  * Returns:     Nothing
549  *
550  * Notes:       After command completion, there may be blocks left
551  *              over which weren't finished by the previous command
552  *              this can be for a number of reasons - the main one is
553  *              I/O errors in the middle of the request, in which case
554  *              we need to request the blocks that come after the bad
555  *              sector.
556  * Notes:       Upon return, cmd is a stale pointer.
557  */
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
559 {
560         struct scsi_device *sdev = cmd->device;
561         struct request *req = cmd->request;
562         unsigned long flags;
563
564         spin_lock_irqsave(q->queue_lock, flags);
565         blk_unprep_request(req);
566         req->special = NULL;
567         scsi_put_command(cmd);
568         blk_requeue_request(q, req);
569         spin_unlock_irqrestore(q->queue_lock, flags);
570
571         scsi_run_queue(q);
572
573         put_device(&sdev->sdev_gendev);
574 }
575
576 void scsi_run_host_queues(struct Scsi_Host *shost)
577 {
578         struct scsi_device *sdev;
579
580         shost_for_each_device(sdev, shost)
581                 scsi_run_queue(sdev->request_queue);
582 }
583
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586         if (!blk_rq_is_passthrough(cmd->request)) {
587                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
588
589                 if (drv->uninit_command)
590                         drv->uninit_command(cmd);
591         }
592 }
593
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *sdb;
597
598         if (cmd->sdb.table.nents)
599                 sg_free_table_chained(&cmd->sdb.table, true);
600         if (cmd->request->next_rq) {
601                 sdb = cmd->request->next_rq->special;
602                 if (sdb)
603                         sg_free_table_chained(&sdb->table, true);
604         }
605         if (scsi_prot_sg_count(cmd))
606                 sg_free_table_chained(&cmd->prot_sdb->table, true);
607 }
608
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
610 {
611         scsi_mq_free_sgtables(cmd);
612         scsi_uninit_cmd(cmd);
613         scsi_del_cmd_from_list(cmd);
614 }
615
616 /*
617  * Function:    scsi_release_buffers()
618  *
619  * Purpose:     Free resources allocate for a scsi_command.
620  *
621  * Arguments:   cmd     - command that we are bailing.
622  *
623  * Lock status: Assumed that no lock is held upon entry.
624  *
625  * Returns:     Nothing
626  *
627  * Notes:       In the event that an upper level driver rejects a
628  *              command, we must release resources allocated during
629  *              the __init_io() function.  Primarily this would involve
630  *              the scatter-gather table.
631  */
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
633 {
634         if (cmd->sdb.table.nents)
635                 sg_free_table_chained(&cmd->sdb.table, false);
636
637         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638
639         if (scsi_prot_sg_count(cmd))
640                 sg_free_table_chained(&cmd->prot_sdb->table, false);
641 }
642
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
644 {
645         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
646
647         sg_free_table_chained(&bidi_sdb->table, false);
648         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649         cmd->request->next_rq->special = NULL;
650 }
651
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653                 unsigned int bytes, unsigned int bidi_bytes)
654 {
655         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656         struct scsi_device *sdev = cmd->device;
657         struct request_queue *q = sdev->request_queue;
658
659         if (blk_update_request(req, error, bytes))
660                 return true;
661
662         /* Bidi request must be completed as a whole */
663         if (unlikely(bidi_bytes) &&
664             blk_update_request(req->next_rq, error, bidi_bytes))
665                 return true;
666
667         if (blk_queue_add_random(q))
668                 add_disk_randomness(req->rq_disk);
669
670         if (!blk_rq_is_scsi(req)) {
671                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672                 cmd->flags &= ~SCMD_INITIALIZED;
673                 destroy_rcu_head(&cmd->rcu);
674         }
675
676         if (req->mq_ctx) {
677                 /*
678                  * In the MQ case the command gets freed by __blk_mq_end_request,
679                  * so we have to do all cleanup that depends on it earlier.
680                  *
681                  * We also can't kick the queues from irq context, so we
682                  * will have to defer it to a workqueue.
683                  */
684                 scsi_mq_uninit_cmd(cmd);
685
686                 __blk_mq_end_request(req, error);
687
688                 if (scsi_target(sdev)->single_lun ||
689                     !list_empty(&sdev->host->starved_list))
690                         kblockd_schedule_work(&sdev->requeue_work);
691                 else
692                         blk_mq_run_hw_queues(q, true);
693         } else {
694                 unsigned long flags;
695
696                 if (bidi_bytes)
697                         scsi_release_bidi_buffers(cmd);
698                 scsi_release_buffers(cmd);
699                 scsi_put_command(cmd);
700
701                 spin_lock_irqsave(q->queue_lock, flags);
702                 blk_finish_request(req, error);
703                 spin_unlock_irqrestore(q->queue_lock, flags);
704
705                 scsi_run_queue(q);
706         }
707
708         put_device(&sdev->sdev_gendev);
709         return false;
710 }
711
712 /**
713  * __scsi_error_from_host_byte - translate SCSI error code into errno
714  * @cmd:        SCSI command (unused)
715  * @result:     scsi error code
716  *
717  * Translate SCSI error code into block errors.
718  */
719 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
720                 int result)
721 {
722         switch (host_byte(result)) {
723         case DID_TRANSPORT_FAILFAST:
724                 return BLK_STS_TRANSPORT;
725         case DID_TARGET_FAILURE:
726                 set_host_byte(cmd, DID_OK);
727                 return BLK_STS_TARGET;
728         case DID_NEXUS_FAILURE:
729                 return BLK_STS_NEXUS;
730         case DID_ALLOC_FAILURE:
731                 set_host_byte(cmd, DID_OK);
732                 return BLK_STS_NOSPC;
733         case DID_MEDIUM_ERROR:
734                 set_host_byte(cmd, DID_OK);
735                 return BLK_STS_MEDIUM;
736         default:
737                 return BLK_STS_IOERR;
738         }
739 }
740
741 /*
742  * Function:    scsi_io_completion()
743  *
744  * Purpose:     Completion processing for block device I/O requests.
745  *
746  * Arguments:   cmd   - command that is finished.
747  *
748  * Lock status: Assumed that no lock is held upon entry.
749  *
750  * Returns:     Nothing
751  *
752  * Notes:       We will finish off the specified number of sectors.  If we
753  *              are done, the command block will be released and the queue
754  *              function will be goosed.  If we are not done then we have to
755  *              figure out what to do next:
756  *
757  *              a) We can call scsi_requeue_command().  The request
758  *                 will be unprepared and put back on the queue.  Then
759  *                 a new command will be created for it.  This should
760  *                 be used if we made forward progress, or if we want
761  *                 to switch from READ(10) to READ(6) for example.
762  *
763  *              b) We can call __scsi_queue_insert().  The request will
764  *                 be put back on the queue and retried using the same
765  *                 command as before, possibly after a delay.
766  *
767  *              c) We can call scsi_end_request() with -EIO to fail
768  *                 the remainder of the request.
769  */
770 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
771 {
772         int result = cmd->result;
773         struct request_queue *q = cmd->device->request_queue;
774         struct request *req = cmd->request;
775         blk_status_t error = BLK_STS_OK;
776         struct scsi_sense_hdr sshdr;
777         bool sense_valid = false;
778         int sense_deferred = 0, level = 0;
779         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
780               ACTION_DELAYED_RETRY} action;
781         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
782
783         if (result) {
784                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
785                 if (sense_valid)
786                         sense_deferred = scsi_sense_is_deferred(&sshdr);
787         }
788
789         if (blk_rq_is_passthrough(req)) {
790                 if (result) {
791                         if (sense_valid) {
792                                 /*
793                                  * SG_IO wants current and deferred errors
794                                  */
795                                 scsi_req(req)->sense_len =
796                                         min(8 + cmd->sense_buffer[7],
797                                             SCSI_SENSE_BUFFERSIZE);
798                         }
799                         if (!sense_deferred)
800                                 error = __scsi_error_from_host_byte(cmd, result);
801                 }
802                 /*
803                  * __scsi_error_from_host_byte may have reset the host_byte
804                  */
805                 scsi_req(req)->result = cmd->result;
806                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
807
808                 if (scsi_bidi_cmnd(cmd)) {
809                         /*
810                          * Bidi commands Must be complete as a whole,
811                          * both sides at once.
812                          */
813                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
814                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
815                                         blk_rq_bytes(req->next_rq)))
816                                 BUG();
817                         return;
818                 }
819         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
820                 /*
821                  * Flush commands do not transfers any data, and thus cannot use
822                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
823                  * This sets the error explicitly for the problem case.
824                  */
825                 error = __scsi_error_from_host_byte(cmd, result);
826         }
827
828         /* no bidi support for !blk_rq_is_passthrough yet */
829         BUG_ON(blk_bidi_rq(req));
830
831         /*
832          * Next deal with any sectors which we were able to correctly
833          * handle.
834          */
835         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
836                 "%u sectors total, %d bytes done.\n",
837                 blk_rq_sectors(req), good_bytes));
838
839         /*
840          * Recovered errors need reporting, but they're always treated as
841          * success, so fiddle the result code here.  For passthrough requests
842          * we already took a copy of the original into sreq->result which
843          * is what gets returned to the user
844          */
845         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
846                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
847                  * print since caller wants ATA registers. Only occurs on
848                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
849                  */
850                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
851                         ;
852                 else if (!(req->rq_flags & RQF_QUIET))
853                         scsi_print_sense(cmd);
854                 result = 0;
855                 /* for passthrough error may be set */
856                 error = BLK_STS_OK;
857         }
858
859         /*
860          * special case: failed zero length commands always need to
861          * drop down into the retry code. Otherwise, if we finished
862          * all bytes in the request we are done now.
863          */
864         if (!(blk_rq_bytes(req) == 0 && error) &&
865             !scsi_end_request(req, error, good_bytes, 0))
866                 return;
867
868         /*
869          * Kill remainder if no retrys.
870          */
871         if (error && scsi_noretry_cmd(cmd)) {
872                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
873                         BUG();
874                 return;
875         }
876
877         /*
878          * If there had been no error, but we have leftover bytes in the
879          * requeues just queue the command up again.
880          */
881         if (result == 0)
882                 goto requeue;
883
884         error = __scsi_error_from_host_byte(cmd, result);
885
886         if (host_byte(result) == DID_RESET) {
887                 /* Third party bus reset or reset for error recovery
888                  * reasons.  Just retry the command and see what
889                  * happens.
890                  */
891                 action = ACTION_RETRY;
892         } else if (sense_valid && !sense_deferred) {
893                 switch (sshdr.sense_key) {
894                 case UNIT_ATTENTION:
895                         if (cmd->device->removable) {
896                                 /* Detected disc change.  Set a bit
897                                  * and quietly refuse further access.
898                                  */
899                                 cmd->device->changed = 1;
900                                 action = ACTION_FAIL;
901                         } else {
902                                 /* Must have been a power glitch, or a
903                                  * bus reset.  Could not have been a
904                                  * media change, so we just retry the
905                                  * command and see what happens.
906                                  */
907                                 action = ACTION_RETRY;
908                         }
909                         break;
910                 case ILLEGAL_REQUEST:
911                         /* If we had an ILLEGAL REQUEST returned, then
912                          * we may have performed an unsupported
913                          * command.  The only thing this should be
914                          * would be a ten byte read where only a six
915                          * byte read was supported.  Also, on a system
916                          * where READ CAPACITY failed, we may have
917                          * read past the end of the disk.
918                          */
919                         if ((cmd->device->use_10_for_rw &&
920                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
921                             (cmd->cmnd[0] == READ_10 ||
922                              cmd->cmnd[0] == WRITE_10)) {
923                                 /* This will issue a new 6-byte command. */
924                                 cmd->device->use_10_for_rw = 0;
925                                 action = ACTION_REPREP;
926                         } else if (sshdr.asc == 0x10) /* DIX */ {
927                                 action = ACTION_FAIL;
928                                 error = BLK_STS_PROTECTION;
929                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
930                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
931                                 action = ACTION_FAIL;
932                                 error = BLK_STS_TARGET;
933                         } else
934                                 action = ACTION_FAIL;
935                         break;
936                 case ABORTED_COMMAND:
937                         action = ACTION_FAIL;
938                         if (sshdr.asc == 0x10) /* DIF */
939                                 error = BLK_STS_PROTECTION;
940                         break;
941                 case NOT_READY:
942                         /* If the device is in the process of becoming
943                          * ready, or has a temporary blockage, retry.
944                          */
945                         if (sshdr.asc == 0x04) {
946                                 switch (sshdr.ascq) {
947                                 case 0x01: /* becoming ready */
948                                 case 0x04: /* format in progress */
949                                 case 0x05: /* rebuild in progress */
950                                 case 0x06: /* recalculation in progress */
951                                 case 0x07: /* operation in progress */
952                                 case 0x08: /* Long write in progress */
953                                 case 0x09: /* self test in progress */
954                                 case 0x14: /* space allocation in progress */
955                                         action = ACTION_DELAYED_RETRY;
956                                         break;
957                                 default:
958                                         action = ACTION_FAIL;
959                                         break;
960                                 }
961                         } else
962                                 action = ACTION_FAIL;
963                         break;
964                 case VOLUME_OVERFLOW:
965                         /* See SSC3rXX or current. */
966                         action = ACTION_FAIL;
967                         break;
968                 default:
969                         action = ACTION_FAIL;
970                         break;
971                 }
972         } else
973                 action = ACTION_FAIL;
974
975         if (action != ACTION_FAIL &&
976             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
977                 action = ACTION_FAIL;
978
979         switch (action) {
980         case ACTION_FAIL:
981                 /* Give up and fail the remainder of the request */
982                 if (!(req->rq_flags & RQF_QUIET)) {
983                         static DEFINE_RATELIMIT_STATE(_rs,
984                                         DEFAULT_RATELIMIT_INTERVAL,
985                                         DEFAULT_RATELIMIT_BURST);
986
987                         if (unlikely(scsi_logging_level))
988                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
989                                                        SCSI_LOG_MLCOMPLETE_BITS);
990
991                         /*
992                          * if logging is enabled the failure will be printed
993                          * in scsi_log_completion(), so avoid duplicate messages
994                          */
995                         if (!level && __ratelimit(&_rs)) {
996                                 scsi_print_result(cmd, NULL, FAILED);
997                                 if (driver_byte(result) & DRIVER_SENSE)
998                                         scsi_print_sense(cmd);
999                                 scsi_print_command(cmd);
1000                         }
1001                 }
1002                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1003                         return;
1004                 /*FALLTHRU*/
1005         case ACTION_REPREP:
1006         requeue:
1007                 /* Unprep the request and put it back at the head of the queue.
1008                  * A new command will be prepared and issued.
1009                  */
1010                 if (q->mq_ops) {
1011                         scsi_mq_requeue_cmd(cmd);
1012                 } else {
1013                         scsi_release_buffers(cmd);
1014                         scsi_requeue_command(q, cmd);
1015                 }
1016                 break;
1017         case ACTION_RETRY:
1018                 /* Retry the same command immediately */
1019                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1020                 break;
1021         case ACTION_DELAYED_RETRY:
1022                 /* Retry the same command after a delay */
1023                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1024                 break;
1025         }
1026 }
1027
1028 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1029 {
1030         int count;
1031
1032         /*
1033          * If sg table allocation fails, requeue request later.
1034          */
1035         if (unlikely(sg_alloc_table_chained(&sdb->table,
1036                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1037                 return BLKPREP_DEFER;
1038
1039         /* 
1040          * Next, walk the list, and fill in the addresses and sizes of
1041          * each segment.
1042          */
1043         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1044         BUG_ON(count > sdb->table.nents);
1045         sdb->table.nents = count;
1046         sdb->length = blk_rq_payload_bytes(req);
1047         return BLKPREP_OK;
1048 }
1049
1050 /*
1051  * Function:    scsi_init_io()
1052  *
1053  * Purpose:     SCSI I/O initialize function.
1054  *
1055  * Arguments:   cmd   - Command descriptor we wish to initialize
1056  *
1057  * Returns:     0 on success
1058  *              BLKPREP_DEFER if the failure is retryable
1059  *              BLKPREP_KILL if the failure is fatal
1060  */
1061 int scsi_init_io(struct scsi_cmnd *cmd)
1062 {
1063         struct scsi_device *sdev = cmd->device;
1064         struct request *rq = cmd->request;
1065         bool is_mq = (rq->mq_ctx != NULL);
1066         int error = BLKPREP_KILL;
1067
1068         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1069                 goto err_exit;
1070
1071         error = scsi_init_sgtable(rq, &cmd->sdb);
1072         if (error)
1073                 goto err_exit;
1074
1075         if (blk_bidi_rq(rq)) {
1076                 if (!rq->q->mq_ops) {
1077                         struct scsi_data_buffer *bidi_sdb =
1078                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1079                         if (!bidi_sdb) {
1080                                 error = BLKPREP_DEFER;
1081                                 goto err_exit;
1082                         }
1083
1084                         rq->next_rq->special = bidi_sdb;
1085                 }
1086
1087                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1088                 if (error)
1089                         goto err_exit;
1090         }
1091
1092         if (blk_integrity_rq(rq)) {
1093                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1094                 int ivecs, count;
1095
1096                 if (prot_sdb == NULL) {
1097                         /*
1098                          * This can happen if someone (e.g. multipath)
1099                          * queues a command to a device on an adapter
1100                          * that does not support DIX.
1101                          */
1102                         WARN_ON_ONCE(1);
1103                         error = BLKPREP_KILL;
1104                         goto err_exit;
1105                 }
1106
1107                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1108
1109                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1110                                 prot_sdb->table.sgl)) {
1111                         error = BLKPREP_DEFER;
1112                         goto err_exit;
1113                 }
1114
1115                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1116                                                 prot_sdb->table.sgl);
1117                 BUG_ON(unlikely(count > ivecs));
1118                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1119
1120                 cmd->prot_sdb = prot_sdb;
1121                 cmd->prot_sdb->table.nents = count;
1122         }
1123
1124         return BLKPREP_OK;
1125 err_exit:
1126         if (is_mq) {
1127                 scsi_mq_free_sgtables(cmd);
1128         } else {
1129                 scsi_release_buffers(cmd);
1130                 cmd->request->special = NULL;
1131                 scsi_put_command(cmd);
1132                 put_device(&sdev->sdev_gendev);
1133         }
1134         return error;
1135 }
1136 EXPORT_SYMBOL(scsi_init_io);
1137
1138 /**
1139  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1140  * @rq: Request associated with the SCSI command to be initialized.
1141  *
1142  * This function initializes the members of struct scsi_cmnd that must be
1143  * initialized before request processing starts and that won't be
1144  * reinitialized if a SCSI command is requeued.
1145  *
1146  * Called from inside blk_get_request() for pass-through requests and from
1147  * inside scsi_init_command() for filesystem requests.
1148  */
1149 static void scsi_initialize_rq(struct request *rq)
1150 {
1151         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1152
1153         scsi_req_init(&cmd->req);
1154         init_rcu_head(&cmd->rcu);
1155         cmd->jiffies_at_alloc = jiffies;
1156         cmd->retries = 0;
1157 }
1158
1159 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1160 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1161 {
1162         struct scsi_device *sdev = cmd->device;
1163         struct Scsi_Host *shost = sdev->host;
1164         unsigned long flags;
1165
1166         if (shost->use_cmd_list) {
1167                 spin_lock_irqsave(&sdev->list_lock, flags);
1168                 list_add_tail(&cmd->list, &sdev->cmd_list);
1169                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1170         }
1171 }
1172
1173 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1174 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1175 {
1176         struct scsi_device *sdev = cmd->device;
1177         struct Scsi_Host *shost = sdev->host;
1178         unsigned long flags;
1179
1180         if (shost->use_cmd_list) {
1181                 spin_lock_irqsave(&sdev->list_lock, flags);
1182                 BUG_ON(list_empty(&cmd->list));
1183                 list_del_init(&cmd->list);
1184                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1185         }
1186 }
1187
1188 /* Called after a request has been started. */
1189 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1190 {
1191         void *buf = cmd->sense_buffer;
1192         void *prot = cmd->prot_sdb;
1193         struct request *rq = blk_mq_rq_from_pdu(cmd);
1194         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1195         unsigned long jiffies_at_alloc;
1196         int retries;
1197
1198         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1199                 flags |= SCMD_INITIALIZED;
1200                 scsi_initialize_rq(rq);
1201         }
1202
1203         jiffies_at_alloc = cmd->jiffies_at_alloc;
1204         retries = cmd->retries;
1205         /* zero out the cmd, except for the embedded scsi_request */
1206         memset((char *)cmd + sizeof(cmd->req), 0,
1207                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1208
1209         cmd->device = dev;
1210         cmd->sense_buffer = buf;
1211         cmd->prot_sdb = prot;
1212         cmd->flags = flags;
1213         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1214         cmd->jiffies_at_alloc = jiffies_at_alloc;
1215         cmd->retries = retries;
1216
1217         scsi_add_cmd_to_list(cmd);
1218 }
1219
1220 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1221 {
1222         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1223
1224         /*
1225          * Passthrough requests may transfer data, in which case they must
1226          * a bio attached to them.  Or they might contain a SCSI command
1227          * that does not transfer data, in which case they may optionally
1228          * submit a request without an attached bio.
1229          */
1230         if (req->bio) {
1231                 int ret = scsi_init_io(cmd);
1232                 if (unlikely(ret))
1233                         return ret;
1234         } else {
1235                 BUG_ON(blk_rq_bytes(req));
1236
1237                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1238         }
1239
1240         cmd->cmd_len = scsi_req(req)->cmd_len;
1241         cmd->cmnd = scsi_req(req)->cmd;
1242         cmd->transfersize = blk_rq_bytes(req);
1243         cmd->allowed = scsi_req(req)->retries;
1244         return BLKPREP_OK;
1245 }
1246
1247 /*
1248  * Setup a normal block command.  These are simple request from filesystems
1249  * that still need to be translated to SCSI CDBs from the ULD.
1250  */
1251 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1252 {
1253         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1254
1255         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1256                 int ret = sdev->handler->prep_fn(sdev, req);
1257                 if (ret != BLKPREP_OK)
1258                         return ret;
1259         }
1260
1261         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1262         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1263         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1264 }
1265
1266 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1267 {
1268         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1269
1270         if (!blk_rq_bytes(req))
1271                 cmd->sc_data_direction = DMA_NONE;
1272         else if (rq_data_dir(req) == WRITE)
1273                 cmd->sc_data_direction = DMA_TO_DEVICE;
1274         else
1275                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1276
1277         if (blk_rq_is_scsi(req))
1278                 return scsi_setup_scsi_cmnd(sdev, req);
1279         else
1280                 return scsi_setup_fs_cmnd(sdev, req);
1281 }
1282
1283 static int
1284 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285 {
1286         int ret = BLKPREP_OK;
1287
1288         /*
1289          * If the device is not in running state we will reject some
1290          * or all commands.
1291          */
1292         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1293                 switch (sdev->sdev_state) {
1294                 case SDEV_OFFLINE:
1295                 case SDEV_TRANSPORT_OFFLINE:
1296                         /*
1297                          * If the device is offline we refuse to process any
1298                          * commands.  The device must be brought online
1299                          * before trying any recovery commands.
1300                          */
1301                         sdev_printk(KERN_ERR, sdev,
1302                                     "rejecting I/O to offline device\n");
1303                         ret = BLKPREP_KILL;
1304                         break;
1305                 case SDEV_DEL:
1306                         /*
1307                          * If the device is fully deleted, we refuse to
1308                          * process any commands as well.
1309                          */
1310                         sdev_printk(KERN_ERR, sdev,
1311                                     "rejecting I/O to dead device\n");
1312                         ret = BLKPREP_KILL;
1313                         break;
1314                 case SDEV_BLOCK:
1315                 case SDEV_CREATED_BLOCK:
1316                         ret = BLKPREP_DEFER;
1317                         break;
1318                 case SDEV_QUIESCE:
1319                         /*
1320                          * If the devices is blocked we defer normal commands.
1321                          */
1322                         if (req && !(req->rq_flags & RQF_PREEMPT))
1323                                 ret = BLKPREP_DEFER;
1324                         break;
1325                 default:
1326                         /*
1327                          * For any other not fully online state we only allow
1328                          * special commands.  In particular any user initiated
1329                          * command is not allowed.
1330                          */
1331                         if (req && !(req->rq_flags & RQF_PREEMPT))
1332                                 ret = BLKPREP_KILL;
1333                         break;
1334                 }
1335         }
1336         return ret;
1337 }
1338
1339 static int
1340 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341 {
1342         struct scsi_device *sdev = q->queuedata;
1343
1344         switch (ret) {
1345         case BLKPREP_KILL:
1346         case BLKPREP_INVALID:
1347                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1348                 /* release the command and kill it */
1349                 if (req->special) {
1350                         struct scsi_cmnd *cmd = req->special;
1351                         scsi_release_buffers(cmd);
1352                         scsi_put_command(cmd);
1353                         put_device(&sdev->sdev_gendev);
1354                         req->special = NULL;
1355                 }
1356                 break;
1357         case BLKPREP_DEFER:
1358                 /*
1359                  * If we defer, the blk_peek_request() returns NULL, but the
1360                  * queue must be restarted, so we schedule a callback to happen
1361                  * shortly.
1362                  */
1363                 if (atomic_read(&sdev->device_busy) == 0)
1364                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1365                 break;
1366         default:
1367                 req->rq_flags |= RQF_DONTPREP;
1368         }
1369
1370         return ret;
1371 }
1372
1373 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1374 {
1375         struct scsi_device *sdev = q->queuedata;
1376         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1377         int ret;
1378
1379         ret = scsi_prep_state_check(sdev, req);
1380         if (ret != BLKPREP_OK)
1381                 goto out;
1382
1383         if (!req->special) {
1384                 /* Bail if we can't get a reference to the device */
1385                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1386                         ret = BLKPREP_DEFER;
1387                         goto out;
1388                 }
1389
1390                 scsi_init_command(sdev, cmd);
1391                 req->special = cmd;
1392         }
1393
1394         cmd->tag = req->tag;
1395         cmd->request = req;
1396         cmd->prot_op = SCSI_PROT_NORMAL;
1397
1398         ret = scsi_setup_cmnd(sdev, req);
1399 out:
1400         return scsi_prep_return(q, req, ret);
1401 }
1402
1403 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1404 {
1405         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1406 }
1407
1408 /*
1409  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1410  * return 0.
1411  *
1412  * Called with the queue_lock held.
1413  */
1414 static inline int scsi_dev_queue_ready(struct request_queue *q,
1415                                   struct scsi_device *sdev)
1416 {
1417         unsigned int busy;
1418
1419         busy = atomic_inc_return(&sdev->device_busy) - 1;
1420         if (atomic_read(&sdev->device_blocked)) {
1421                 if (busy)
1422                         goto out_dec;
1423
1424                 /*
1425                  * unblock after device_blocked iterates to zero
1426                  */
1427                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1428                         /*
1429                          * For the MQ case we take care of this in the caller.
1430                          */
1431                         if (!q->mq_ops)
1432                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1433                         goto out_dec;
1434                 }
1435                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1436                                    "unblocking device at zero depth\n"));
1437         }
1438
1439         if (busy >= sdev->queue_depth)
1440                 goto out_dec;
1441
1442         return 1;
1443 out_dec:
1444         atomic_dec(&sdev->device_busy);
1445         return 0;
1446 }
1447
1448 /*
1449  * scsi_target_queue_ready: checks if there we can send commands to target
1450  * @sdev: scsi device on starget to check.
1451  */
1452 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1453                                            struct scsi_device *sdev)
1454 {
1455         struct scsi_target *starget = scsi_target(sdev);
1456         unsigned int busy;
1457
1458         if (starget->single_lun) {
1459                 spin_lock_irq(shost->host_lock);
1460                 if (starget->starget_sdev_user &&
1461                     starget->starget_sdev_user != sdev) {
1462                         spin_unlock_irq(shost->host_lock);
1463                         return 0;
1464                 }
1465                 starget->starget_sdev_user = sdev;
1466                 spin_unlock_irq(shost->host_lock);
1467         }
1468
1469         if (starget->can_queue <= 0)
1470                 return 1;
1471
1472         busy = atomic_inc_return(&starget->target_busy) - 1;
1473         if (atomic_read(&starget->target_blocked) > 0) {
1474                 if (busy)
1475                         goto starved;
1476
1477                 /*
1478                  * unblock after target_blocked iterates to zero
1479                  */
1480                 if (atomic_dec_return(&starget->target_blocked) > 0)
1481                         goto out_dec;
1482
1483                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1484                                  "unblocking target at zero depth\n"));
1485         }
1486
1487         if (busy >= starget->can_queue)
1488                 goto starved;
1489
1490         return 1;
1491
1492 starved:
1493         spin_lock_irq(shost->host_lock);
1494         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1495         spin_unlock_irq(shost->host_lock);
1496 out_dec:
1497         if (starget->can_queue > 0)
1498                 atomic_dec(&starget->target_busy);
1499         return 0;
1500 }
1501
1502 /*
1503  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1504  * return 0. We must end up running the queue again whenever 0 is
1505  * returned, else IO can hang.
1506  */
1507 static inline int scsi_host_queue_ready(struct request_queue *q,
1508                                    struct Scsi_Host *shost,
1509                                    struct scsi_device *sdev)
1510 {
1511         unsigned int busy;
1512
1513         if (scsi_host_in_recovery(shost))
1514                 return 0;
1515
1516         busy = atomic_inc_return(&shost->host_busy) - 1;
1517         if (atomic_read(&shost->host_blocked) > 0) {
1518                 if (busy)
1519                         goto starved;
1520
1521                 /*
1522                  * unblock after host_blocked iterates to zero
1523                  */
1524                 if (atomic_dec_return(&shost->host_blocked) > 0)
1525                         goto out_dec;
1526
1527                 SCSI_LOG_MLQUEUE(3,
1528                         shost_printk(KERN_INFO, shost,
1529                                      "unblocking host at zero depth\n"));
1530         }
1531
1532         if (shost->can_queue > 0 && busy >= shost->can_queue)
1533                 goto starved;
1534         if (shost->host_self_blocked)
1535                 goto starved;
1536
1537         /* We're OK to process the command, so we can't be starved */
1538         if (!list_empty(&sdev->starved_entry)) {
1539                 spin_lock_irq(shost->host_lock);
1540                 if (!list_empty(&sdev->starved_entry))
1541                         list_del_init(&sdev->starved_entry);
1542                 spin_unlock_irq(shost->host_lock);
1543         }
1544
1545         return 1;
1546
1547 starved:
1548         spin_lock_irq(shost->host_lock);
1549         if (list_empty(&sdev->starved_entry))
1550                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1551         spin_unlock_irq(shost->host_lock);
1552 out_dec:
1553         scsi_dec_host_busy(shost);
1554         return 0;
1555 }
1556
1557 /*
1558  * Busy state exporting function for request stacking drivers.
1559  *
1560  * For efficiency, no lock is taken to check the busy state of
1561  * shost/starget/sdev, since the returned value is not guaranteed and
1562  * may be changed after request stacking drivers call the function,
1563  * regardless of taking lock or not.
1564  *
1565  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1566  * needs to return 'not busy'. Otherwise, request stacking drivers
1567  * may hold requests forever.
1568  */
1569 static int scsi_lld_busy(struct request_queue *q)
1570 {
1571         struct scsi_device *sdev = q->queuedata;
1572         struct Scsi_Host *shost;
1573
1574         if (blk_queue_dying(q))
1575                 return 0;
1576
1577         shost = sdev->host;
1578
1579         /*
1580          * Ignore host/starget busy state.
1581          * Since block layer does not have a concept of fairness across
1582          * multiple queues, congestion of host/starget needs to be handled
1583          * in SCSI layer.
1584          */
1585         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1586                 return 1;
1587
1588         return 0;
1589 }
1590
1591 /*
1592  * Kill a request for a dead device
1593  */
1594 static void scsi_kill_request(struct request *req, struct request_queue *q)
1595 {
1596         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1597         struct scsi_device *sdev;
1598         struct scsi_target *starget;
1599         struct Scsi_Host *shost;
1600
1601         blk_start_request(req);
1602
1603         scmd_printk(KERN_INFO, cmd, "killing request\n");
1604
1605         sdev = cmd->device;
1606         starget = scsi_target(sdev);
1607         shost = sdev->host;
1608         scsi_init_cmd_errh(cmd);
1609         cmd->result = DID_NO_CONNECT << 16;
1610         atomic_inc(&cmd->device->iorequest_cnt);
1611
1612         /*
1613          * SCSI request completion path will do scsi_device_unbusy(),
1614          * bump busy counts.  To bump the counters, we need to dance
1615          * with the locks as normal issue path does.
1616          */
1617         atomic_inc(&sdev->device_busy);
1618         atomic_inc(&shost->host_busy);
1619         if (starget->can_queue > 0)
1620                 atomic_inc(&starget->target_busy);
1621
1622         blk_complete_request(req);
1623 }
1624
1625 static void scsi_softirq_done(struct request *rq)
1626 {
1627         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1628         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1629         int disposition;
1630
1631         INIT_LIST_HEAD(&cmd->eh_entry);
1632
1633         atomic_inc(&cmd->device->iodone_cnt);
1634         if (cmd->result)
1635                 atomic_inc(&cmd->device->ioerr_cnt);
1636
1637         disposition = scsi_decide_disposition(cmd);
1638         if (disposition != SUCCESS &&
1639             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1640                 sdev_printk(KERN_ERR, cmd->device,
1641                             "timing out command, waited %lus\n",
1642                             wait_for/HZ);
1643                 disposition = SUCCESS;
1644         }
1645
1646         scsi_log_completion(cmd, disposition);
1647
1648         switch (disposition) {
1649                 case SUCCESS:
1650                         scsi_finish_command(cmd);
1651                         break;
1652                 case NEEDS_RETRY:
1653                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1654                         break;
1655                 case ADD_TO_MLQUEUE:
1656                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1657                         break;
1658                 default:
1659                         scsi_eh_scmd_add(cmd);
1660                         break;
1661         }
1662 }
1663
1664 /**
1665  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1666  * @cmd: command block we are dispatching.
1667  *
1668  * Return: nonzero return request was rejected and device's queue needs to be
1669  * plugged.
1670  */
1671 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1672 {
1673         struct Scsi_Host *host = cmd->device->host;
1674         int rtn = 0;
1675
1676         atomic_inc(&cmd->device->iorequest_cnt);
1677
1678         /* check if the device is still usable */
1679         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1680                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1681                  * returns an immediate error upwards, and signals
1682                  * that the device is no longer present */
1683                 cmd->result = DID_NO_CONNECT << 16;
1684                 goto done;
1685         }
1686
1687         /* Check to see if the scsi lld made this device blocked. */
1688         if (unlikely(scsi_device_blocked(cmd->device))) {
1689                 /*
1690                  * in blocked state, the command is just put back on
1691                  * the device queue.  The suspend state has already
1692                  * blocked the queue so future requests should not
1693                  * occur until the device transitions out of the
1694                  * suspend state.
1695                  */
1696                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1697                         "queuecommand : device blocked\n"));
1698                 return SCSI_MLQUEUE_DEVICE_BUSY;
1699         }
1700
1701         /* Store the LUN value in cmnd, if needed. */
1702         if (cmd->device->lun_in_cdb)
1703                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1704                                (cmd->device->lun << 5 & 0xe0);
1705
1706         scsi_log_send(cmd);
1707
1708         /*
1709          * Before we queue this command, check if the command
1710          * length exceeds what the host adapter can handle.
1711          */
1712         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1713                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1714                                "queuecommand : command too long. "
1715                                "cdb_size=%d host->max_cmd_len=%d\n",
1716                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1717                 cmd->result = (DID_ABORT << 16);
1718                 goto done;
1719         }
1720
1721         if (unlikely(host->shost_state == SHOST_DEL)) {
1722                 cmd->result = (DID_NO_CONNECT << 16);
1723                 goto done;
1724
1725         }
1726
1727         trace_scsi_dispatch_cmd_start(cmd);
1728         rtn = host->hostt->queuecommand(host, cmd);
1729         if (rtn) {
1730                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1731                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1732                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1733                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1734
1735                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1736                         "queuecommand : request rejected\n"));
1737         }
1738
1739         return rtn;
1740  done:
1741         cmd->scsi_done(cmd);
1742         return 0;
1743 }
1744
1745 /**
1746  * scsi_done - Invoke completion on finished SCSI command.
1747  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1748  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1749  *
1750  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1751  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1752  * calls blk_complete_request() for further processing.
1753  *
1754  * This function is interrupt context safe.
1755  */
1756 static void scsi_done(struct scsi_cmnd *cmd)
1757 {
1758         trace_scsi_dispatch_cmd_done(cmd);
1759         blk_complete_request(cmd->request);
1760 }
1761
1762 /*
1763  * Function:    scsi_request_fn()
1764  *
1765  * Purpose:     Main strategy routine for SCSI.
1766  *
1767  * Arguments:   q       - Pointer to actual queue.
1768  *
1769  * Returns:     Nothing
1770  *
1771  * Lock status: request queue lock assumed to be held when called.
1772  *
1773  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1774  * protection for ZBC disks.
1775  */
1776 static void scsi_request_fn(struct request_queue *q)
1777         __releases(q->queue_lock)
1778         __acquires(q->queue_lock)
1779 {
1780         struct scsi_device *sdev = q->queuedata;
1781         struct Scsi_Host *shost;
1782         struct scsi_cmnd *cmd;
1783         struct request *req;
1784
1785         /*
1786          * To start with, we keep looping until the queue is empty, or until
1787          * the host is no longer able to accept any more requests.
1788          */
1789         shost = sdev->host;
1790         for (;;) {
1791                 int rtn;
1792                 /*
1793                  * get next queueable request.  We do this early to make sure
1794                  * that the request is fully prepared even if we cannot
1795                  * accept it.
1796                  */
1797                 req = blk_peek_request(q);
1798                 if (!req)
1799                         break;
1800
1801                 if (unlikely(!scsi_device_online(sdev))) {
1802                         sdev_printk(KERN_ERR, sdev,
1803                                     "rejecting I/O to offline device\n");
1804                         scsi_kill_request(req, q);
1805                         continue;
1806                 }
1807
1808                 if (!scsi_dev_queue_ready(q, sdev))
1809                         break;
1810
1811                 /*
1812                  * Remove the request from the request list.
1813                  */
1814                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1815                         blk_start_request(req);
1816
1817                 spin_unlock_irq(q->queue_lock);
1818                 cmd = blk_mq_rq_to_pdu(req);
1819                 if (cmd != req->special) {
1820                         printk(KERN_CRIT "impossible request in %s.\n"
1821                                          "please mail a stack trace to "
1822                                          "linux-scsi@vger.kernel.org\n",
1823                                          __func__);
1824                         blk_dump_rq_flags(req, "foo");
1825                         BUG();
1826                 }
1827
1828                 /*
1829                  * We hit this when the driver is using a host wide
1830                  * tag map. For device level tag maps the queue_depth check
1831                  * in the device ready fn would prevent us from trying
1832                  * to allocate a tag. Since the map is a shared host resource
1833                  * we add the dev to the starved list so it eventually gets
1834                  * a run when a tag is freed.
1835                  */
1836                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1837                         spin_lock_irq(shost->host_lock);
1838                         if (list_empty(&sdev->starved_entry))
1839                                 list_add_tail(&sdev->starved_entry,
1840                                               &shost->starved_list);
1841                         spin_unlock_irq(shost->host_lock);
1842                         goto not_ready;
1843                 }
1844
1845                 if (!scsi_target_queue_ready(shost, sdev))
1846                         goto not_ready;
1847
1848                 if (!scsi_host_queue_ready(q, shost, sdev))
1849                         goto host_not_ready;
1850         
1851                 if (sdev->simple_tags)
1852                         cmd->flags |= SCMD_TAGGED;
1853                 else
1854                         cmd->flags &= ~SCMD_TAGGED;
1855
1856                 /*
1857                  * Finally, initialize any error handling parameters, and set up
1858                  * the timers for timeouts.
1859                  */
1860                 scsi_init_cmd_errh(cmd);
1861
1862                 /*
1863                  * Dispatch the command to the low-level driver.
1864                  */
1865                 cmd->scsi_done = scsi_done;
1866                 rtn = scsi_dispatch_cmd(cmd);
1867                 if (rtn) {
1868                         scsi_queue_insert(cmd, rtn);
1869                         spin_lock_irq(q->queue_lock);
1870                         goto out_delay;
1871                 }
1872                 spin_lock_irq(q->queue_lock);
1873         }
1874
1875         return;
1876
1877  host_not_ready:
1878         if (scsi_target(sdev)->can_queue > 0)
1879                 atomic_dec(&scsi_target(sdev)->target_busy);
1880  not_ready:
1881         /*
1882          * lock q, handle tag, requeue req, and decrement device_busy. We
1883          * must return with queue_lock held.
1884          *
1885          * Decrementing device_busy without checking it is OK, as all such
1886          * cases (host limits or settings) should run the queue at some
1887          * later time.
1888          */
1889         spin_lock_irq(q->queue_lock);
1890         blk_requeue_request(q, req);
1891         atomic_dec(&sdev->device_busy);
1892 out_delay:
1893         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1894                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1895 }
1896
1897 static inline blk_status_t prep_to_mq(int ret)
1898 {
1899         switch (ret) {
1900         case BLKPREP_OK:
1901                 return BLK_STS_OK;
1902         case BLKPREP_DEFER:
1903                 return BLK_STS_RESOURCE;
1904         default:
1905                 return BLK_STS_IOERR;
1906         }
1907 }
1908
1909 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1910 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1911 {
1912         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1913                 sizeof(struct scatterlist);
1914 }
1915
1916 static int scsi_mq_prep_fn(struct request *req)
1917 {
1918         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1919         struct scsi_device *sdev = req->q->queuedata;
1920         struct Scsi_Host *shost = sdev->host;
1921         struct scatterlist *sg;
1922
1923         scsi_init_command(sdev, cmd);
1924
1925         req->special = cmd;
1926
1927         cmd->request = req;
1928
1929         cmd->tag = req->tag;
1930         cmd->prot_op = SCSI_PROT_NORMAL;
1931
1932         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1933         cmd->sdb.table.sgl = sg;
1934
1935         if (scsi_host_get_prot(shost)) {
1936                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1937
1938                 cmd->prot_sdb->table.sgl =
1939                         (struct scatterlist *)(cmd->prot_sdb + 1);
1940         }
1941
1942         if (blk_bidi_rq(req)) {
1943                 struct request *next_rq = req->next_rq;
1944                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1945
1946                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1947                 bidi_sdb->table.sgl =
1948                         (struct scatterlist *)(bidi_sdb + 1);
1949
1950                 next_rq->special = bidi_sdb;
1951         }
1952
1953         blk_mq_start_request(req);
1954
1955         return scsi_setup_cmnd(sdev, req);
1956 }
1957
1958 static void scsi_mq_done(struct scsi_cmnd *cmd)
1959 {
1960         trace_scsi_dispatch_cmd_done(cmd);
1961         blk_mq_complete_request(cmd->request);
1962 }
1963
1964 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1965 {
1966         struct request_queue *q = hctx->queue;
1967         struct scsi_device *sdev = q->queuedata;
1968
1969         atomic_dec(&sdev->device_busy);
1970         put_device(&sdev->sdev_gendev);
1971 }
1972
1973 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1974 {
1975         struct request_queue *q = hctx->queue;
1976         struct scsi_device *sdev = q->queuedata;
1977
1978         if (!get_device(&sdev->sdev_gendev))
1979                 goto out;
1980         if (!scsi_dev_queue_ready(q, sdev))
1981                 goto out_put_device;
1982
1983         return true;
1984
1985 out_put_device:
1986         put_device(&sdev->sdev_gendev);
1987 out:
1988         return false;
1989 }
1990
1991 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1992                          const struct blk_mq_queue_data *bd)
1993 {
1994         struct request *req = bd->rq;
1995         struct request_queue *q = req->q;
1996         struct scsi_device *sdev = q->queuedata;
1997         struct Scsi_Host *shost = sdev->host;
1998         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1999         blk_status_t ret;
2000         int reason;
2001
2002         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2003         if (ret != BLK_STS_OK)
2004                 goto out_put_budget;
2005
2006         ret = BLK_STS_RESOURCE;
2007         if (!scsi_target_queue_ready(shost, sdev))
2008                 goto out_put_budget;
2009         if (!scsi_host_queue_ready(q, shost, sdev))
2010                 goto out_dec_target_busy;
2011
2012         if (!(req->rq_flags & RQF_DONTPREP)) {
2013                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2014                 if (ret != BLK_STS_OK)
2015                         goto out_dec_host_busy;
2016                 req->rq_flags |= RQF_DONTPREP;
2017         } else {
2018                 blk_mq_start_request(req);
2019         }
2020
2021         if (sdev->simple_tags)
2022                 cmd->flags |= SCMD_TAGGED;
2023         else
2024                 cmd->flags &= ~SCMD_TAGGED;
2025
2026         scsi_init_cmd_errh(cmd);
2027         cmd->scsi_done = scsi_mq_done;
2028
2029         reason = scsi_dispatch_cmd(cmd);
2030         if (reason) {
2031                 scsi_set_blocked(cmd, reason);
2032                 ret = BLK_STS_RESOURCE;
2033                 goto out_dec_host_busy;
2034         }
2035
2036         return BLK_STS_OK;
2037
2038 out_dec_host_busy:
2039         scsi_dec_host_busy(shost);
2040 out_dec_target_busy:
2041         if (scsi_target(sdev)->can_queue > 0)
2042                 atomic_dec(&scsi_target(sdev)->target_busy);
2043 out_put_budget:
2044         scsi_mq_put_budget(hctx);
2045         switch (ret) {
2046         case BLK_STS_OK:
2047                 break;
2048         case BLK_STS_RESOURCE:
2049                 if (atomic_read(&sdev->device_busy) == 0 &&
2050                     !scsi_device_blocked(sdev))
2051                         blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2052                 break;
2053         default:
2054                 /*
2055                  * Make sure to release all allocated ressources when
2056                  * we hit an error, as we will never see this command
2057                  * again.
2058                  */
2059                 if (req->rq_flags & RQF_DONTPREP)
2060                         scsi_mq_uninit_cmd(cmd);
2061                 break;
2062         }
2063         return ret;
2064 }
2065
2066 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2067                 bool reserved)
2068 {
2069         if (reserved)
2070                 return BLK_EH_RESET_TIMER;
2071         return scsi_times_out(req);
2072 }
2073
2074 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2075                                 unsigned int hctx_idx, unsigned int numa_node)
2076 {
2077         struct Scsi_Host *shost = set->driver_data;
2078         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2079         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2080         struct scatterlist *sg;
2081
2082         if (unchecked_isa_dma)
2083                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2084         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2085                                                     GFP_KERNEL, numa_node);
2086         if (!cmd->sense_buffer)
2087                 return -ENOMEM;
2088         cmd->req.sense = cmd->sense_buffer;
2089
2090         if (scsi_host_get_prot(shost)) {
2091                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2092                         shost->hostt->cmd_size;
2093                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2094         }
2095
2096         return 0;
2097 }
2098
2099 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2100                                  unsigned int hctx_idx)
2101 {
2102         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2103
2104         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2105                                cmd->sense_buffer);
2106 }
2107
2108 static int scsi_map_queues(struct blk_mq_tag_set *set)
2109 {
2110         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2111
2112         if (shost->hostt->map_queues)
2113                 return shost->hostt->map_queues(shost);
2114         return blk_mq_map_queues(set);
2115 }
2116
2117 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2118 {
2119         struct device *host_dev;
2120         u64 bounce_limit = 0xffffffff;
2121
2122         if (shost->unchecked_isa_dma)
2123                 return BLK_BOUNCE_ISA;
2124         /*
2125          * Platforms with virtual-DMA translation
2126          * hardware have no practical limit.
2127          */
2128         if (!PCI_DMA_BUS_IS_PHYS)
2129                 return BLK_BOUNCE_ANY;
2130
2131         host_dev = scsi_get_device(shost);
2132         if (host_dev && host_dev->dma_mask)
2133                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2134
2135         return bounce_limit;
2136 }
2137
2138 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2139 {
2140         struct device *dev = shost->dma_dev;
2141
2142         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2143
2144         /*
2145          * this limit is imposed by hardware restrictions
2146          */
2147         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2148                                         SG_MAX_SEGMENTS));
2149
2150         if (scsi_host_prot_dma(shost)) {
2151                 shost->sg_prot_tablesize =
2152                         min_not_zero(shost->sg_prot_tablesize,
2153                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2154                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2155                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2156         }
2157
2158         blk_queue_max_hw_sectors(q, shost->max_sectors);
2159         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2160         blk_queue_segment_boundary(q, shost->dma_boundary);
2161         dma_set_seg_boundary(dev, shost->dma_boundary);
2162
2163         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2164
2165         if (!shost->use_clustering)
2166                 q->limits.cluster = 0;
2167
2168         /*
2169          * set a reasonable default alignment on word boundaries: the
2170          * host and device may alter it using
2171          * blk_queue_update_dma_alignment() later.
2172          */
2173         blk_queue_dma_alignment(q, 0x03);
2174 }
2175 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2176
2177 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2178                             gfp_t gfp)
2179 {
2180         struct Scsi_Host *shost = q->rq_alloc_data;
2181         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2182         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2183
2184         memset(cmd, 0, sizeof(*cmd));
2185
2186         if (unchecked_isa_dma)
2187                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2188         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2189                                                     NUMA_NO_NODE);
2190         if (!cmd->sense_buffer)
2191                 goto fail;
2192         cmd->req.sense = cmd->sense_buffer;
2193
2194         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2195                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2196                 if (!cmd->prot_sdb)
2197                         goto fail_free_sense;
2198         }
2199
2200         return 0;
2201
2202 fail_free_sense:
2203         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2204 fail:
2205         return -ENOMEM;
2206 }
2207
2208 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2209 {
2210         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2211
2212         if (cmd->prot_sdb)
2213                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2214         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2215                                cmd->sense_buffer);
2216 }
2217
2218 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2219 {
2220         struct Scsi_Host *shost = sdev->host;
2221         struct request_queue *q;
2222
2223         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2224         if (!q)
2225                 return NULL;
2226         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2227         q->rq_alloc_data = shost;
2228         q->request_fn = scsi_request_fn;
2229         q->init_rq_fn = scsi_old_init_rq;
2230         q->exit_rq_fn = scsi_old_exit_rq;
2231         q->initialize_rq_fn = scsi_initialize_rq;
2232
2233         if (blk_init_allocated_queue(q) < 0) {
2234                 blk_cleanup_queue(q);
2235                 return NULL;
2236         }
2237
2238         __scsi_init_queue(shost, q);
2239         blk_queue_prep_rq(q, scsi_prep_fn);
2240         blk_queue_unprep_rq(q, scsi_unprep_fn);
2241         blk_queue_softirq_done(q, scsi_softirq_done);
2242         blk_queue_rq_timed_out(q, scsi_times_out);
2243         blk_queue_lld_busy(q, scsi_lld_busy);
2244         return q;
2245 }
2246
2247 static const struct blk_mq_ops scsi_mq_ops = {
2248         .get_budget     = scsi_mq_get_budget,
2249         .put_budget     = scsi_mq_put_budget,
2250         .queue_rq       = scsi_queue_rq,
2251         .complete       = scsi_softirq_done,
2252         .timeout        = scsi_timeout,
2253 #ifdef CONFIG_BLK_DEBUG_FS
2254         .show_rq        = scsi_show_rq,
2255 #endif
2256         .init_request   = scsi_mq_init_request,
2257         .exit_request   = scsi_mq_exit_request,
2258         .initialize_rq_fn = scsi_initialize_rq,
2259         .map_queues     = scsi_map_queues,
2260 };
2261
2262 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2263 {
2264         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2265         if (IS_ERR(sdev->request_queue))
2266                 return NULL;
2267
2268         sdev->request_queue->queuedata = sdev;
2269         __scsi_init_queue(sdev->host, sdev->request_queue);
2270         return sdev->request_queue;
2271 }
2272
2273 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2274 {
2275         unsigned int cmd_size, sgl_size;
2276
2277         sgl_size = scsi_mq_sgl_size(shost);
2278         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2279         if (scsi_host_get_prot(shost))
2280                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2281
2282         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2283         shost->tag_set.ops = &scsi_mq_ops;
2284         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2285         shost->tag_set.queue_depth = shost->can_queue;
2286         shost->tag_set.cmd_size = cmd_size;
2287         shost->tag_set.numa_node = NUMA_NO_NODE;
2288         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2289         shost->tag_set.flags |=
2290                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2291         shost->tag_set.driver_data = shost;
2292
2293         return blk_mq_alloc_tag_set(&shost->tag_set);
2294 }
2295
2296 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2297 {
2298         blk_mq_free_tag_set(&shost->tag_set);
2299 }
2300
2301 /**
2302  * scsi_device_from_queue - return sdev associated with a request_queue
2303  * @q: The request queue to return the sdev from
2304  *
2305  * Return the sdev associated with a request queue or NULL if the
2306  * request_queue does not reference a SCSI device.
2307  */
2308 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2309 {
2310         struct scsi_device *sdev = NULL;
2311
2312         if (q->mq_ops) {
2313                 if (q->mq_ops == &scsi_mq_ops)
2314                         sdev = q->queuedata;
2315         } else if (q->request_fn == scsi_request_fn)
2316                 sdev = q->queuedata;
2317         if (!sdev || !get_device(&sdev->sdev_gendev))
2318                 sdev = NULL;
2319
2320         return sdev;
2321 }
2322 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2323
2324 /*
2325  * Function:    scsi_block_requests()
2326  *
2327  * Purpose:     Utility function used by low-level drivers to prevent further
2328  *              commands from being queued to the device.
2329  *
2330  * Arguments:   shost       - Host in question
2331  *
2332  * Returns:     Nothing
2333  *
2334  * Lock status: No locks are assumed held.
2335  *
2336  * Notes:       There is no timer nor any other means by which the requests
2337  *              get unblocked other than the low-level driver calling
2338  *              scsi_unblock_requests().
2339  */
2340 void scsi_block_requests(struct Scsi_Host *shost)
2341 {
2342         shost->host_self_blocked = 1;
2343 }
2344 EXPORT_SYMBOL(scsi_block_requests);
2345
2346 /*
2347  * Function:    scsi_unblock_requests()
2348  *
2349  * Purpose:     Utility function used by low-level drivers to allow further
2350  *              commands from being queued to the device.
2351  *
2352  * Arguments:   shost       - Host in question
2353  *
2354  * Returns:     Nothing
2355  *
2356  * Lock status: No locks are assumed held.
2357  *
2358  * Notes:       There is no timer nor any other means by which the requests
2359  *              get unblocked other than the low-level driver calling
2360  *              scsi_unblock_requests().
2361  *
2362  *              This is done as an API function so that changes to the
2363  *              internals of the scsi mid-layer won't require wholesale
2364  *              changes to drivers that use this feature.
2365  */
2366 void scsi_unblock_requests(struct Scsi_Host *shost)
2367 {
2368         shost->host_self_blocked = 0;
2369         scsi_run_host_queues(shost);
2370 }
2371 EXPORT_SYMBOL(scsi_unblock_requests);
2372
2373 int __init scsi_init_queue(void)
2374 {
2375         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2376                                            sizeof(struct scsi_data_buffer),
2377                                            0, 0, NULL);
2378         if (!scsi_sdb_cache) {
2379                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2380                 return -ENOMEM;
2381         }
2382
2383         return 0;
2384 }
2385
2386 void scsi_exit_queue(void)
2387 {
2388         kmem_cache_destroy(scsi_sense_cache);
2389         kmem_cache_destroy(scsi_sense_isadma_cache);
2390         kmem_cache_destroy(scsi_sdb_cache);
2391 }
2392
2393 /**
2394  *      scsi_mode_select - issue a mode select
2395  *      @sdev:  SCSI device to be queried
2396  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2397  *      @sp:    Save page bit (0 == don't save, 1 == save)
2398  *      @modepage: mode page being requested
2399  *      @buffer: request buffer (may not be smaller than eight bytes)
2400  *      @len:   length of request buffer.
2401  *      @timeout: command timeout
2402  *      @retries: number of retries before failing
2403  *      @data: returns a structure abstracting the mode header data
2404  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2405  *              must be SCSI_SENSE_BUFFERSIZE big.
2406  *
2407  *      Returns zero if successful; negative error number or scsi
2408  *      status on error
2409  *
2410  */
2411 int
2412 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2413                  unsigned char *buffer, int len, int timeout, int retries,
2414                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2415 {
2416         unsigned char cmd[10];
2417         unsigned char *real_buffer;
2418         int ret;
2419
2420         memset(cmd, 0, sizeof(cmd));
2421         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2422
2423         if (sdev->use_10_for_ms) {
2424                 if (len > 65535)
2425                         return -EINVAL;
2426                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2427                 if (!real_buffer)
2428                         return -ENOMEM;
2429                 memcpy(real_buffer + 8, buffer, len);
2430                 len += 8;
2431                 real_buffer[0] = 0;
2432                 real_buffer[1] = 0;
2433                 real_buffer[2] = data->medium_type;
2434                 real_buffer[3] = data->device_specific;
2435                 real_buffer[4] = data->longlba ? 0x01 : 0;
2436                 real_buffer[5] = 0;
2437                 real_buffer[6] = data->block_descriptor_length >> 8;
2438                 real_buffer[7] = data->block_descriptor_length;
2439
2440                 cmd[0] = MODE_SELECT_10;
2441                 cmd[7] = len >> 8;
2442                 cmd[8] = len;
2443         } else {
2444                 if (len > 255 || data->block_descriptor_length > 255 ||
2445                     data->longlba)
2446                         return -EINVAL;
2447
2448                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2449                 if (!real_buffer)
2450                         return -ENOMEM;
2451                 memcpy(real_buffer + 4, buffer, len);
2452                 len += 4;
2453                 real_buffer[0] = 0;
2454                 real_buffer[1] = data->medium_type;
2455                 real_buffer[2] = data->device_specific;
2456                 real_buffer[3] = data->block_descriptor_length;
2457                 
2458
2459                 cmd[0] = MODE_SELECT;
2460                 cmd[4] = len;
2461         }
2462
2463         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2464                                sshdr, timeout, retries, NULL);
2465         kfree(real_buffer);
2466         return ret;
2467 }
2468 EXPORT_SYMBOL_GPL(scsi_mode_select);
2469
2470 /**
2471  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2472  *      @sdev:  SCSI device to be queried
2473  *      @dbd:   set if mode sense will allow block descriptors to be returned
2474  *      @modepage: mode page being requested
2475  *      @buffer: request buffer (may not be smaller than eight bytes)
2476  *      @len:   length of request buffer.
2477  *      @timeout: command timeout
2478  *      @retries: number of retries before failing
2479  *      @data: returns a structure abstracting the mode header data
2480  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2481  *              must be SCSI_SENSE_BUFFERSIZE big.
2482  *
2483  *      Returns zero if unsuccessful, or the header offset (either 4
2484  *      or 8 depending on whether a six or ten byte command was
2485  *      issued) if successful.
2486  */
2487 int
2488 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2489                   unsigned char *buffer, int len, int timeout, int retries,
2490                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2491 {
2492         unsigned char cmd[12];
2493         int use_10_for_ms;
2494         int header_length;
2495         int result, retry_count = retries;
2496         struct scsi_sense_hdr my_sshdr;
2497
2498         memset(data, 0, sizeof(*data));
2499         memset(&cmd[0], 0, 12);
2500         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2501         cmd[2] = modepage;
2502
2503         /* caller might not be interested in sense, but we need it */
2504         if (!sshdr)
2505                 sshdr = &my_sshdr;
2506
2507  retry:
2508         use_10_for_ms = sdev->use_10_for_ms;
2509
2510         if (use_10_for_ms) {
2511                 if (len < 8)
2512                         len = 8;
2513
2514                 cmd[0] = MODE_SENSE_10;
2515                 cmd[8] = len;
2516                 header_length = 8;
2517         } else {
2518                 if (len < 4)
2519                         len = 4;
2520
2521                 cmd[0] = MODE_SENSE;
2522                 cmd[4] = len;
2523                 header_length = 4;
2524         }
2525
2526         memset(buffer, 0, len);
2527
2528         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2529                                   sshdr, timeout, retries, NULL);
2530
2531         /* This code looks awful: what it's doing is making sure an
2532          * ILLEGAL REQUEST sense return identifies the actual command
2533          * byte as the problem.  MODE_SENSE commands can return
2534          * ILLEGAL REQUEST if the code page isn't supported */
2535
2536         if (use_10_for_ms && !scsi_status_is_good(result) &&
2537             (driver_byte(result) & DRIVER_SENSE)) {
2538                 if (scsi_sense_valid(sshdr)) {
2539                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2540                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2541                                 /* 
2542                                  * Invalid command operation code
2543                                  */
2544                                 sdev->use_10_for_ms = 0;
2545                                 goto retry;
2546                         }
2547                 }
2548         }
2549
2550         if(scsi_status_is_good(result)) {
2551                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2552                              (modepage == 6 || modepage == 8))) {
2553                         /* Initio breakage? */
2554                         header_length = 0;
2555                         data->length = 13;
2556                         data->medium_type = 0;
2557                         data->device_specific = 0;
2558                         data->longlba = 0;
2559                         data->block_descriptor_length = 0;
2560                 } else if(use_10_for_ms) {
2561                         data->length = buffer[0]*256 + buffer[1] + 2;
2562                         data->medium_type = buffer[2];
2563                         data->device_specific = buffer[3];
2564                         data->longlba = buffer[4] & 0x01;
2565                         data->block_descriptor_length = buffer[6]*256
2566                                 + buffer[7];
2567                 } else {
2568                         data->length = buffer[0] + 1;
2569                         data->medium_type = buffer[1];
2570                         data->device_specific = buffer[2];
2571                         data->block_descriptor_length = buffer[3];
2572                 }
2573                 data->header_length = header_length;
2574         } else if ((status_byte(result) == CHECK_CONDITION) &&
2575                    scsi_sense_valid(sshdr) &&
2576                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2577                 retry_count--;
2578                 goto retry;
2579         }
2580
2581         return result;
2582 }
2583 EXPORT_SYMBOL(scsi_mode_sense);
2584
2585 /**
2586  *      scsi_test_unit_ready - test if unit is ready
2587  *      @sdev:  scsi device to change the state of.
2588  *      @timeout: command timeout
2589  *      @retries: number of retries before failing
2590  *      @sshdr: outpout pointer for decoded sense information.
2591  *
2592  *      Returns zero if unsuccessful or an error if TUR failed.  For
2593  *      removable media, UNIT_ATTENTION sets ->changed flag.
2594  **/
2595 int
2596 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2597                      struct scsi_sense_hdr *sshdr)
2598 {
2599         char cmd[] = {
2600                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2601         };
2602         int result;
2603
2604         /* try to eat the UNIT_ATTENTION if there are enough retries */
2605         do {
2606                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2607                                           timeout, retries, NULL);
2608                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2609                     sshdr->sense_key == UNIT_ATTENTION)
2610                         sdev->changed = 1;
2611         } while (scsi_sense_valid(sshdr) &&
2612                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2613
2614         return result;
2615 }
2616 EXPORT_SYMBOL(scsi_test_unit_ready);
2617
2618 /**
2619  *      scsi_device_set_state - Take the given device through the device state model.
2620  *      @sdev:  scsi device to change the state of.
2621  *      @state: state to change to.
2622  *
2623  *      Returns zero if successful or an error if the requested
2624  *      transition is illegal.
2625  */
2626 int
2627 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2628 {
2629         enum scsi_device_state oldstate = sdev->sdev_state;
2630
2631         if (state == oldstate)
2632                 return 0;
2633
2634         switch (state) {
2635         case SDEV_CREATED:
2636                 switch (oldstate) {
2637                 case SDEV_CREATED_BLOCK:
2638                         break;
2639                 default:
2640                         goto illegal;
2641                 }
2642                 break;
2643                         
2644         case SDEV_RUNNING:
2645                 switch (oldstate) {
2646                 case SDEV_CREATED:
2647                 case SDEV_OFFLINE:
2648                 case SDEV_TRANSPORT_OFFLINE:
2649                 case SDEV_QUIESCE:
2650                 case SDEV_BLOCK:
2651                         break;
2652                 default:
2653                         goto illegal;
2654                 }
2655                 break;
2656
2657         case SDEV_QUIESCE:
2658                 switch (oldstate) {
2659                 case SDEV_RUNNING:
2660                 case SDEV_OFFLINE:
2661                 case SDEV_TRANSPORT_OFFLINE:
2662                         break;
2663                 default:
2664                         goto illegal;
2665                 }
2666                 break;
2667
2668         case SDEV_OFFLINE:
2669         case SDEV_TRANSPORT_OFFLINE:
2670                 switch (oldstate) {
2671                 case SDEV_CREATED:
2672                 case SDEV_RUNNING:
2673                 case SDEV_QUIESCE:
2674                 case SDEV_BLOCK:
2675                         break;
2676                 default:
2677                         goto illegal;
2678                 }
2679                 break;
2680
2681         case SDEV_BLOCK:
2682                 switch (oldstate) {
2683                 case SDEV_RUNNING:
2684                 case SDEV_CREATED_BLOCK:
2685                         break;
2686                 default:
2687                         goto illegal;
2688                 }
2689                 break;
2690
2691         case SDEV_CREATED_BLOCK:
2692                 switch (oldstate) {
2693                 case SDEV_CREATED:
2694                         break;
2695                 default:
2696                         goto illegal;
2697                 }
2698                 break;
2699
2700         case SDEV_CANCEL:
2701                 switch (oldstate) {
2702                 case SDEV_CREATED:
2703                 case SDEV_RUNNING:
2704                 case SDEV_QUIESCE:
2705                 case SDEV_OFFLINE:
2706                 case SDEV_TRANSPORT_OFFLINE:
2707                         break;
2708                 default:
2709                         goto illegal;
2710                 }
2711                 break;
2712
2713         case SDEV_DEL:
2714                 switch (oldstate) {
2715                 case SDEV_CREATED:
2716                 case SDEV_RUNNING:
2717                 case SDEV_OFFLINE:
2718                 case SDEV_TRANSPORT_OFFLINE:
2719                 case SDEV_CANCEL:
2720                 case SDEV_BLOCK:
2721                 case SDEV_CREATED_BLOCK:
2722                         break;
2723                 default:
2724                         goto illegal;
2725                 }
2726                 break;
2727
2728         }
2729         sdev->sdev_state = state;
2730         return 0;
2731
2732  illegal:
2733         SCSI_LOG_ERROR_RECOVERY(1,
2734                                 sdev_printk(KERN_ERR, sdev,
2735                                             "Illegal state transition %s->%s",
2736                                             scsi_device_state_name(oldstate),
2737                                             scsi_device_state_name(state))
2738                                 );
2739         return -EINVAL;
2740 }
2741 EXPORT_SYMBOL(scsi_device_set_state);
2742
2743 /**
2744  *      sdev_evt_emit - emit a single SCSI device uevent
2745  *      @sdev: associated SCSI device
2746  *      @evt: event to emit
2747  *
2748  *      Send a single uevent (scsi_event) to the associated scsi_device.
2749  */
2750 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2751 {
2752         int idx = 0;
2753         char *envp[3];
2754
2755         switch (evt->evt_type) {
2756         case SDEV_EVT_MEDIA_CHANGE:
2757                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2758                 break;
2759         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2760                 scsi_rescan_device(&sdev->sdev_gendev);
2761                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2762                 break;
2763         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2764                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2765                 break;
2766         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2767                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2768                 break;
2769         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2770                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2771                 break;
2772         case SDEV_EVT_LUN_CHANGE_REPORTED:
2773                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2774                 break;
2775         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2776                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2777                 break;
2778         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2779                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2780                 break;
2781         default:
2782                 /* do nothing */
2783                 break;
2784         }
2785
2786         envp[idx++] = NULL;
2787
2788         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2789 }
2790
2791 /**
2792  *      sdev_evt_thread - send a uevent for each scsi event
2793  *      @work: work struct for scsi_device
2794  *
2795  *      Dispatch queued events to their associated scsi_device kobjects
2796  *      as uevents.
2797  */
2798 void scsi_evt_thread(struct work_struct *work)
2799 {
2800         struct scsi_device *sdev;
2801         enum scsi_device_event evt_type;
2802         LIST_HEAD(event_list);
2803
2804         sdev = container_of(work, struct scsi_device, event_work);
2805
2806         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2807                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2808                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2809
2810         while (1) {
2811                 struct scsi_event *evt;
2812                 struct list_head *this, *tmp;
2813                 unsigned long flags;
2814
2815                 spin_lock_irqsave(&sdev->list_lock, flags);
2816                 list_splice_init(&sdev->event_list, &event_list);
2817                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2818
2819                 if (list_empty(&event_list))
2820                         break;
2821
2822                 list_for_each_safe(this, tmp, &event_list) {
2823                         evt = list_entry(this, struct scsi_event, node);
2824                         list_del(&evt->node);
2825                         scsi_evt_emit(sdev, evt);
2826                         kfree(evt);
2827                 }
2828         }
2829 }
2830
2831 /**
2832  *      sdev_evt_send - send asserted event to uevent thread
2833  *      @sdev: scsi_device event occurred on
2834  *      @evt: event to send
2835  *
2836  *      Assert scsi device event asynchronously.
2837  */
2838 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2839 {
2840         unsigned long flags;
2841
2842 #if 0
2843         /* FIXME: currently this check eliminates all media change events
2844          * for polled devices.  Need to update to discriminate between AN
2845          * and polled events */
2846         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2847                 kfree(evt);
2848                 return;
2849         }
2850 #endif
2851
2852         spin_lock_irqsave(&sdev->list_lock, flags);
2853         list_add_tail(&evt->node, &sdev->event_list);
2854         schedule_work(&sdev->event_work);
2855         spin_unlock_irqrestore(&sdev->list_lock, flags);
2856 }
2857 EXPORT_SYMBOL_GPL(sdev_evt_send);
2858
2859 /**
2860  *      sdev_evt_alloc - allocate a new scsi event
2861  *      @evt_type: type of event to allocate
2862  *      @gfpflags: GFP flags for allocation
2863  *
2864  *      Allocates and returns a new scsi_event.
2865  */
2866 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2867                                   gfp_t gfpflags)
2868 {
2869         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2870         if (!evt)
2871                 return NULL;
2872
2873         evt->evt_type = evt_type;
2874         INIT_LIST_HEAD(&evt->node);
2875
2876         /* evt_type-specific initialization, if any */
2877         switch (evt_type) {
2878         case SDEV_EVT_MEDIA_CHANGE:
2879         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2880         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2881         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2882         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2883         case SDEV_EVT_LUN_CHANGE_REPORTED:
2884         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2885         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2886         default:
2887                 /* do nothing */
2888                 break;
2889         }
2890
2891         return evt;
2892 }
2893 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2894
2895 /**
2896  *      sdev_evt_send_simple - send asserted event to uevent thread
2897  *      @sdev: scsi_device event occurred on
2898  *      @evt_type: type of event to send
2899  *      @gfpflags: GFP flags for allocation
2900  *
2901  *      Assert scsi device event asynchronously, given an event type.
2902  */
2903 void sdev_evt_send_simple(struct scsi_device *sdev,
2904                           enum scsi_device_event evt_type, gfp_t gfpflags)
2905 {
2906         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2907         if (!evt) {
2908                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2909                             evt_type);
2910                 return;
2911         }
2912
2913         sdev_evt_send(sdev, evt);
2914 }
2915 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2916
2917 /**
2918  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2919  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2920  */
2921 static int scsi_request_fn_active(struct scsi_device *sdev)
2922 {
2923         struct request_queue *q = sdev->request_queue;
2924         int request_fn_active;
2925
2926         WARN_ON_ONCE(sdev->host->use_blk_mq);
2927
2928         spin_lock_irq(q->queue_lock);
2929         request_fn_active = q->request_fn_active;
2930         spin_unlock_irq(q->queue_lock);
2931
2932         return request_fn_active;
2933 }
2934
2935 /**
2936  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2937  * @sdev: SCSI device pointer.
2938  *
2939  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2940  * invoked from scsi_request_fn() have finished.
2941  */
2942 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2943 {
2944         WARN_ON_ONCE(sdev->host->use_blk_mq);
2945
2946         while (scsi_request_fn_active(sdev))
2947                 msleep(20);
2948 }
2949
2950 /**
2951  *      scsi_device_quiesce - Block user issued commands.
2952  *      @sdev:  scsi device to quiesce.
2953  *
2954  *      This works by trying to transition to the SDEV_QUIESCE state
2955  *      (which must be a legal transition).  When the device is in this
2956  *      state, only special requests will be accepted, all others will
2957  *      be deferred.  Since special requests may also be requeued requests,
2958  *      a successful return doesn't guarantee the device will be 
2959  *      totally quiescent.
2960  *
2961  *      Must be called with user context, may sleep.
2962  *
2963  *      Returns zero if unsuccessful or an error if not.
2964  */
2965 int
2966 scsi_device_quiesce(struct scsi_device *sdev)
2967 {
2968         struct request_queue *q = sdev->request_queue;
2969         int err;
2970
2971         /*
2972          * It is allowed to call scsi_device_quiesce() multiple times from
2973          * the same context but concurrent scsi_device_quiesce() calls are
2974          * not allowed.
2975          */
2976         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2977
2978         blk_set_preempt_only(q);
2979
2980         blk_mq_freeze_queue(q);
2981         /*
2982          * Ensure that the effect of blk_set_preempt_only() will be visible
2983          * for percpu_ref_tryget() callers that occur after the queue
2984          * unfreeze even if the queue was already frozen before this function
2985          * was called. See also https://lwn.net/Articles/573497/.
2986          */
2987         synchronize_rcu();
2988         blk_mq_unfreeze_queue(q);
2989
2990         mutex_lock(&sdev->state_mutex);
2991         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2992         if (err == 0)
2993                 sdev->quiesced_by = current;
2994         else
2995                 blk_clear_preempt_only(q);
2996         mutex_unlock(&sdev->state_mutex);
2997
2998         return err;
2999 }
3000 EXPORT_SYMBOL(scsi_device_quiesce);
3001
3002 /**
3003  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3004  *      @sdev:  scsi device to resume.
3005  *
3006  *      Moves the device from quiesced back to running and restarts the
3007  *      queues.
3008  *
3009  *      Must be called with user context, may sleep.
3010  */
3011 void scsi_device_resume(struct scsi_device *sdev)
3012 {
3013         /* check if the device state was mutated prior to resume, and if
3014          * so assume the state is being managed elsewhere (for example
3015          * device deleted during suspend)
3016          */
3017         mutex_lock(&sdev->state_mutex);
3018         WARN_ON_ONCE(!sdev->quiesced_by);
3019         sdev->quiesced_by = NULL;
3020         blk_clear_preempt_only(sdev->request_queue);
3021         if (sdev->sdev_state == SDEV_QUIESCE)
3022                 scsi_device_set_state(sdev, SDEV_RUNNING);
3023         mutex_unlock(&sdev->state_mutex);
3024 }
3025 EXPORT_SYMBOL(scsi_device_resume);
3026
3027 static void
3028 device_quiesce_fn(struct scsi_device *sdev, void *data)
3029 {
3030         scsi_device_quiesce(sdev);
3031 }
3032
3033 void
3034 scsi_target_quiesce(struct scsi_target *starget)
3035 {
3036         starget_for_each_device(starget, NULL, device_quiesce_fn);
3037 }
3038 EXPORT_SYMBOL(scsi_target_quiesce);
3039
3040 static void
3041 device_resume_fn(struct scsi_device *sdev, void *data)
3042 {
3043         scsi_device_resume(sdev);
3044 }
3045
3046 void
3047 scsi_target_resume(struct scsi_target *starget)
3048 {
3049         starget_for_each_device(starget, NULL, device_resume_fn);
3050 }
3051 EXPORT_SYMBOL(scsi_target_resume);
3052
3053 /**
3054  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3055  * @sdev: device to block
3056  *
3057  * Pause SCSI command processing on the specified device. Does not sleep.
3058  *
3059  * Returns zero if successful or a negative error code upon failure.
3060  *
3061  * Notes:
3062  * This routine transitions the device to the SDEV_BLOCK state (which must be
3063  * a legal transition). When the device is in this state, command processing
3064  * is paused until the device leaves the SDEV_BLOCK state. See also
3065  * scsi_internal_device_unblock_nowait().
3066  */
3067 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3068 {
3069         struct request_queue *q = sdev->request_queue;
3070         unsigned long flags;
3071         int err = 0;
3072
3073         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3074         if (err) {
3075                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3076
3077                 if (err)
3078                         return err;
3079         }
3080
3081         /* 
3082          * The device has transitioned to SDEV_BLOCK.  Stop the
3083          * block layer from calling the midlayer with this device's
3084          * request queue. 
3085          */
3086         if (q->mq_ops) {
3087                 blk_mq_quiesce_queue_nowait(q);
3088         } else {
3089                 spin_lock_irqsave(q->queue_lock, flags);
3090                 blk_stop_queue(q);
3091                 spin_unlock_irqrestore(q->queue_lock, flags);
3092         }
3093
3094         return 0;
3095 }
3096 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3097
3098 /**
3099  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3100  * @sdev: device to block
3101  *
3102  * Pause SCSI command processing on the specified device and wait until all
3103  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3104  *
3105  * Returns zero if successful or a negative error code upon failure.
3106  *
3107  * Note:
3108  * This routine transitions the device to the SDEV_BLOCK state (which must be
3109  * a legal transition). When the device is in this state, command processing
3110  * is paused until the device leaves the SDEV_BLOCK state. See also
3111  * scsi_internal_device_unblock().
3112  *
3113  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3114  * scsi_internal_device_block() has blocked a SCSI device and also
3115  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3116  */
3117 static int scsi_internal_device_block(struct scsi_device *sdev)
3118 {
3119         struct request_queue *q = sdev->request_queue;
3120         int err;
3121
3122         mutex_lock(&sdev->state_mutex);
3123         err = scsi_internal_device_block_nowait(sdev);
3124         if (err == 0) {
3125                 if (q->mq_ops)
3126                         blk_mq_quiesce_queue(q);
3127                 else
3128                         scsi_wait_for_queuecommand(sdev);
3129         }
3130         mutex_unlock(&sdev->state_mutex);
3131
3132         return err;
3133 }
3134  
3135 void scsi_start_queue(struct scsi_device *sdev)
3136 {
3137         struct request_queue *q = sdev->request_queue;
3138         unsigned long flags;
3139
3140         if (q->mq_ops) {
3141                 blk_mq_unquiesce_queue(q);
3142         } else {
3143                 spin_lock_irqsave(q->queue_lock, flags);
3144                 blk_start_queue(q);
3145                 spin_unlock_irqrestore(q->queue_lock, flags);
3146         }
3147 }
3148
3149 /**
3150  * scsi_internal_device_unblock_nowait - resume a device after a block request
3151  * @sdev:       device to resume
3152  * @new_state:  state to set the device to after unblocking
3153  *
3154  * Restart the device queue for a previously suspended SCSI device. Does not
3155  * sleep.
3156  *
3157  * Returns zero if successful or a negative error code upon failure.
3158  *
3159  * Notes:
3160  * This routine transitions the device to the SDEV_RUNNING state or to one of
3161  * the offline states (which must be a legal transition) allowing the midlayer
3162  * to goose the queue for this device.
3163  */
3164 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3165                                         enum scsi_device_state new_state)
3166 {
3167         /*
3168          * Try to transition the scsi device to SDEV_RUNNING or one of the
3169          * offlined states and goose the device queue if successful.
3170          */
3171         switch (sdev->sdev_state) {
3172         case SDEV_BLOCK:
3173         case SDEV_TRANSPORT_OFFLINE:
3174                 sdev->sdev_state = new_state;
3175                 break;
3176         case SDEV_CREATED_BLOCK:
3177                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3178                     new_state == SDEV_OFFLINE)
3179                         sdev->sdev_state = new_state;
3180                 else
3181                         sdev->sdev_state = SDEV_CREATED;
3182                 break;
3183         case SDEV_CANCEL:
3184         case SDEV_OFFLINE:
3185                 break;
3186         default:
3187                 return -EINVAL;
3188         }
3189         scsi_start_queue(sdev);
3190
3191         return 0;
3192 }
3193 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3194
3195 /**
3196  * scsi_internal_device_unblock - resume a device after a block request
3197  * @sdev:       device to resume
3198  * @new_state:  state to set the device to after unblocking
3199  *
3200  * Restart the device queue for a previously suspended SCSI device. May sleep.
3201  *
3202  * Returns zero if successful or a negative error code upon failure.
3203  *
3204  * Notes:
3205  * This routine transitions the device to the SDEV_RUNNING state or to one of
3206  * the offline states (which must be a legal transition) allowing the midlayer
3207  * to goose the queue for this device.
3208  */
3209 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3210                                         enum scsi_device_state new_state)
3211 {
3212         int ret;
3213
3214         mutex_lock(&sdev->state_mutex);
3215         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3216         mutex_unlock(&sdev->state_mutex);
3217
3218         return ret;
3219 }
3220
3221 static void
3222 device_block(struct scsi_device *sdev, void *data)
3223 {
3224         scsi_internal_device_block(sdev);
3225 }
3226
3227 static int
3228 target_block(struct device *dev, void *data)
3229 {
3230         if (scsi_is_target_device(dev))
3231                 starget_for_each_device(to_scsi_target(dev), NULL,
3232                                         device_block);
3233         return 0;
3234 }
3235
3236 void
3237 scsi_target_block(struct device *dev)
3238 {
3239         if (scsi_is_target_device(dev))
3240                 starget_for_each_device(to_scsi_target(dev), NULL,
3241                                         device_block);
3242         else
3243                 device_for_each_child(dev, NULL, target_block);
3244 }
3245 EXPORT_SYMBOL_GPL(scsi_target_block);
3246
3247 static void
3248 device_unblock(struct scsi_device *sdev, void *data)
3249 {
3250         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3251 }
3252
3253 static int
3254 target_unblock(struct device *dev, void *data)
3255 {
3256         if (scsi_is_target_device(dev))
3257                 starget_for_each_device(to_scsi_target(dev), data,
3258                                         device_unblock);
3259         return 0;
3260 }
3261
3262 void
3263 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3264 {
3265         if (scsi_is_target_device(dev))
3266                 starget_for_each_device(to_scsi_target(dev), &new_state,
3267                                         device_unblock);
3268         else
3269                 device_for_each_child(dev, &new_state, target_unblock);
3270 }
3271 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3272
3273 /**
3274  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3275  * @sgl:        scatter-gather list
3276  * @sg_count:   number of segments in sg
3277  * @offset:     offset in bytes into sg, on return offset into the mapped area
3278  * @len:        bytes to map, on return number of bytes mapped
3279  *
3280  * Returns virtual address of the start of the mapped page
3281  */
3282 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3283                           size_t *offset, size_t *len)
3284 {
3285         int i;
3286         size_t sg_len = 0, len_complete = 0;
3287         struct scatterlist *sg;
3288         struct page *page;
3289
3290         WARN_ON(!irqs_disabled());
3291
3292         for_each_sg(sgl, sg, sg_count, i) {
3293                 len_complete = sg_len; /* Complete sg-entries */
3294                 sg_len += sg->length;
3295                 if (sg_len > *offset)
3296                         break;
3297         }
3298
3299         if (unlikely(i == sg_count)) {
3300                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3301                         "elements %d\n",
3302                        __func__, sg_len, *offset, sg_count);
3303                 WARN_ON(1);
3304                 return NULL;
3305         }
3306
3307         /* Offset starting from the beginning of first page in this sg-entry */
3308         *offset = *offset - len_complete + sg->offset;
3309
3310         /* Assumption: contiguous pages can be accessed as "page + i" */
3311         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3312         *offset &= ~PAGE_MASK;
3313
3314         /* Bytes in this sg-entry from *offset to the end of the page */
3315         sg_len = PAGE_SIZE - *offset;
3316         if (*len > sg_len)
3317                 *len = sg_len;
3318
3319         return kmap_atomic(page);
3320 }
3321 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3322
3323 /**
3324  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3325  * @virt:       virtual address to be unmapped
3326  */
3327 void scsi_kunmap_atomic_sg(void *virt)
3328 {
3329         kunmap_atomic(virt);
3330 }
3331 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3332
3333 void sdev_disable_disk_events(struct scsi_device *sdev)
3334 {
3335         atomic_inc(&sdev->disk_events_disable_depth);
3336 }
3337 EXPORT_SYMBOL(sdev_disable_disk_events);
3338
3339 void sdev_enable_disk_events(struct scsi_device *sdev)
3340 {
3341         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3342                 return;
3343         atomic_dec(&sdev->disk_events_disable_depth);
3344 }
3345 EXPORT_SYMBOL(sdev_enable_disk_events);
3346
3347 /**
3348  * scsi_vpd_lun_id - return a unique device identification
3349  * @sdev: SCSI device
3350  * @id:   buffer for the identification
3351  * @id_len:  length of the buffer
3352  *
3353  * Copies a unique device identification into @id based
3354  * on the information in the VPD page 0x83 of the device.
3355  * The string will be formatted as a SCSI name string.
3356  *
3357  * Returns the length of the identification or error on failure.
3358  * If the identifier is longer than the supplied buffer the actual
3359  * identifier length is returned and the buffer is not zero-padded.
3360  */
3361 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3362 {
3363         u8 cur_id_type = 0xff;
3364         u8 cur_id_size = 0;
3365         const unsigned char *d, *cur_id_str;
3366         const struct scsi_vpd *vpd_pg83;
3367         int id_size = -EINVAL;
3368
3369         rcu_read_lock();
3370         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3371         if (!vpd_pg83) {
3372                 rcu_read_unlock();
3373                 return -ENXIO;
3374         }
3375
3376         /*
3377          * Look for the correct descriptor.
3378          * Order of preference for lun descriptor:
3379          * - SCSI name string
3380          * - NAA IEEE Registered Extended
3381          * - EUI-64 based 16-byte
3382          * - EUI-64 based 12-byte
3383          * - NAA IEEE Registered
3384          * - NAA IEEE Extended
3385          * - T10 Vendor ID
3386          * as longer descriptors reduce the likelyhood
3387          * of identification clashes.
3388          */
3389
3390         /* The id string must be at least 20 bytes + terminating NULL byte */
3391         if (id_len < 21) {
3392                 rcu_read_unlock();
3393                 return -EINVAL;
3394         }
3395
3396         memset(id, 0, id_len);
3397         d = vpd_pg83->data + 4;
3398         while (d < vpd_pg83->data + vpd_pg83->len) {
3399                 /* Skip designators not referring to the LUN */
3400                 if ((d[1] & 0x30) != 0x00)
3401                         goto next_desig;
3402
3403                 switch (d[1] & 0xf) {
3404                 case 0x1:
3405                         /* T10 Vendor ID */
3406                         if (cur_id_size > d[3])
3407                                 break;
3408                         /* Prefer anything */
3409                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3410                                 break;
3411                         cur_id_size = d[3];
3412                         if (cur_id_size + 4 > id_len)
3413                                 cur_id_size = id_len - 4;
3414                         cur_id_str = d + 4;
3415                         cur_id_type = d[1] & 0xf;
3416                         id_size = snprintf(id, id_len, "t10.%*pE",
3417                                            cur_id_size, cur_id_str);
3418                         break;
3419                 case 0x2:
3420                         /* EUI-64 */
3421                         if (cur_id_size > d[3])
3422                                 break;
3423                         /* Prefer NAA IEEE Registered Extended */
3424                         if (cur_id_type == 0x3 &&
3425                             cur_id_size == d[3])
3426                                 break;
3427                         cur_id_size = d[3];
3428                         cur_id_str = d + 4;
3429                         cur_id_type = d[1] & 0xf;
3430                         switch (cur_id_size) {
3431                         case 8:
3432                                 id_size = snprintf(id, id_len,
3433                                                    "eui.%8phN",
3434                                                    cur_id_str);
3435                                 break;
3436                         case 12:
3437                                 id_size = snprintf(id, id_len,
3438                                                    "eui.%12phN",
3439                                                    cur_id_str);
3440                                 break;
3441                         case 16:
3442                                 id_size = snprintf(id, id_len,
3443                                                    "eui.%16phN",
3444                                                    cur_id_str);
3445                                 break;
3446                         default:
3447                                 cur_id_size = 0;
3448                                 break;
3449                         }
3450                         break;
3451                 case 0x3:
3452                         /* NAA */
3453                         if (cur_id_size > d[3])
3454                                 break;
3455                         cur_id_size = d[3];
3456                         cur_id_str = d + 4;
3457                         cur_id_type = d[1] & 0xf;
3458                         switch (cur_id_size) {
3459                         case 8:
3460                                 id_size = snprintf(id, id_len,
3461                                                    "naa.%8phN",
3462                                                    cur_id_str);
3463                                 break;
3464                         case 16:
3465                                 id_size = snprintf(id, id_len,
3466                                                    "naa.%16phN",
3467                                                    cur_id_str);
3468                                 break;
3469                         default:
3470                                 cur_id_size = 0;
3471                                 break;
3472                         }
3473                         break;
3474                 case 0x8:
3475                         /* SCSI name string */
3476                         if (cur_id_size + 4 > d[3])
3477                                 break;
3478                         /* Prefer others for truncated descriptor */
3479                         if (cur_id_size && d[3] > id_len)
3480                                 break;
3481                         cur_id_size = id_size = d[3];
3482                         cur_id_str = d + 4;
3483                         cur_id_type = d[1] & 0xf;
3484                         if (cur_id_size >= id_len)
3485                                 cur_id_size = id_len - 1;
3486                         memcpy(id, cur_id_str, cur_id_size);
3487                         /* Decrease priority for truncated descriptor */
3488                         if (cur_id_size != id_size)
3489                                 cur_id_size = 6;
3490                         break;
3491                 default:
3492                         break;
3493                 }
3494 next_desig:
3495                 d += d[3] + 4;
3496         }
3497         rcu_read_unlock();
3498
3499         return id_size;
3500 }
3501 EXPORT_SYMBOL(scsi_vpd_lun_id);
3502
3503 /*
3504  * scsi_vpd_tpg_id - return a target port group identifier
3505  * @sdev: SCSI device
3506  *
3507  * Returns the Target Port Group identifier from the information
3508  * froom VPD page 0x83 of the device.
3509  *
3510  * Returns the identifier or error on failure.
3511  */
3512 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3513 {
3514         const unsigned char *d;
3515         const struct scsi_vpd *vpd_pg83;
3516         int group_id = -EAGAIN, rel_port = -1;
3517
3518         rcu_read_lock();
3519         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3520         if (!vpd_pg83) {
3521                 rcu_read_unlock();
3522                 return -ENXIO;
3523         }
3524
3525         d = vpd_pg83->data + 4;
3526         while (d < vpd_pg83->data + vpd_pg83->len) {
3527                 switch (d[1] & 0xf) {
3528                 case 0x4:
3529                         /* Relative target port */
3530                         rel_port = get_unaligned_be16(&d[6]);
3531                         break;
3532                 case 0x5:
3533                         /* Target port group */
3534                         group_id = get_unaligned_be16(&d[6]);
3535                         break;
3536                 default:
3537                         break;
3538                 }
3539                 d += d[3] + 4;
3540         }
3541         rcu_read_unlock();
3542
3543         if (group_id >= 0 && rel_id && rel_port != -1)
3544                 *rel_id = rel_port;
3545
3546         return group_id;
3547 }
3548 EXPORT_SYMBOL(scsi_vpd_tpg_id);