[SCSI] Support devices with protection information
[linux-block.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115         struct Scsi_Host *host = cmd->device->host;
116         struct scsi_device *device = cmd->device;
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         if (reason == SCSI_MLQUEUE_HOST_BUSY)
137                 host->host_blocked = host->max_host_blocked;
138         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139                 device->device_blocked = device->max_device_blocked;
140
141         /*
142          * Decrement the counters, since these commands are no longer
143          * active on the host/device.
144          */
145         scsi_device_unbusy(device);
146
147         /*
148          * Requeue this command.  It will go before all other commands
149          * that are already in the queue.
150          *
151          * NOTE: there is magic here about the way the queue is plugged if
152          * we have no outstanding commands.
153          * 
154          * Although we *don't* plug the queue, we call the request
155          * function.  The SCSI request function detects the blocked condition
156          * and plugs the queue appropriately.
157          */
158         spin_lock_irqsave(q->queue_lock, flags);
159         blk_requeue_request(q, cmd->request);
160         spin_unlock_irqrestore(q->queue_lock, flags);
161
162         scsi_run_queue(q);
163
164         return 0;
165 }
166
167 /**
168  * scsi_execute - insert request and wait for the result
169  * @sdev:       scsi device
170  * @cmd:        scsi command
171  * @data_direction: data direction
172  * @buffer:     data buffer
173  * @bufflen:    len of buffer
174  * @sense:      optional sense buffer
175  * @timeout:    request timeout in seconds
176  * @retries:    number of times to retry request
177  * @flags:      or into request flags;
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183                  int data_direction, void *buffer, unsigned bufflen,
184                  unsigned char *sense, int timeout, int retries, int flags)
185 {
186         struct request *req;
187         int write = (data_direction == DMA_TO_DEVICE);
188         int ret = DRIVER_ERROR << 24;
189
190         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
193                                         buffer, bufflen, __GFP_WAIT))
194                 goto out;
195
196         req->cmd_len = COMMAND_SIZE(cmd[0]);
197         memcpy(req->cmd, cmd, req->cmd_len);
198         req->sense = sense;
199         req->sense_len = 0;
200         req->retries = retries;
201         req->timeout = timeout;
202         req->cmd_type = REQ_TYPE_BLOCK_PC;
203         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205         /*
206          * head injection *required* here otherwise quiesce won't work
207          */
208         blk_execute_rq(req->q, NULL, req, 1);
209
210         /*
211          * Some devices (USB mass-storage in particular) may transfer
212          * garbage data together with a residue indicating that the data
213          * is invalid.  Prevent the garbage from being misinterpreted
214          * and prevent security leaks by zeroing out the excess data.
215          */
216         if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
217                 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
218
219         ret = req->errors;
220  out:
221         blk_put_request(req);
222
223         return ret;
224 }
225 EXPORT_SYMBOL(scsi_execute);
226
227
228 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
229                      int data_direction, void *buffer, unsigned bufflen,
230                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
231 {
232         char *sense = NULL;
233         int result;
234         
235         if (sshdr) {
236                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
237                 if (!sense)
238                         return DRIVER_ERROR << 24;
239         }
240         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
241                               sense, timeout, retries, 0);
242         if (sshdr)
243                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
244
245         kfree(sense);
246         return result;
247 }
248 EXPORT_SYMBOL(scsi_execute_req);
249
250 struct scsi_io_context {
251         void *data;
252         void (*done)(void *data, char *sense, int result, int resid);
253         char sense[SCSI_SENSE_BUFFERSIZE];
254 };
255
256 static struct kmem_cache *scsi_io_context_cache;
257
258 static void scsi_end_async(struct request *req, int uptodate)
259 {
260         struct scsi_io_context *sioc = req->end_io_data;
261
262         if (sioc->done)
263                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
264
265         kmem_cache_free(scsi_io_context_cache, sioc);
266         __blk_put_request(req->q, req);
267 }
268
269 static int scsi_merge_bio(struct request *rq, struct bio *bio)
270 {
271         struct request_queue *q = rq->q;
272
273         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
274         if (rq_data_dir(rq) == WRITE)
275                 bio->bi_rw |= (1 << BIO_RW);
276         blk_queue_bounce(q, &bio);
277
278         return blk_rq_append_bio(q, rq, bio);
279 }
280
281 static void scsi_bi_endio(struct bio *bio, int error)
282 {
283         bio_put(bio);
284 }
285
286 /**
287  * scsi_req_map_sg - map a scatterlist into a request
288  * @rq:         request to fill
289  * @sgl:        scatterlist
290  * @nsegs:      number of elements
291  * @bufflen:    len of buffer
292  * @gfp:        memory allocation flags
293  *
294  * scsi_req_map_sg maps a scatterlist into a request so that the
295  * request can be sent to the block layer. We do not trust the scatterlist
296  * sent to use, as some ULDs use that struct to only organize the pages.
297  */
298 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
299                            int nsegs, unsigned bufflen, gfp_t gfp)
300 {
301         struct request_queue *q = rq->q;
302         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
303         unsigned int data_len = bufflen, len, bytes, off;
304         struct scatterlist *sg;
305         struct page *page;
306         struct bio *bio = NULL;
307         int i, err, nr_vecs = 0;
308
309         for_each_sg(sgl, sg, nsegs, i) {
310                 page = sg_page(sg);
311                 off = sg->offset;
312                 len = sg->length;
313
314                 while (len > 0 && data_len > 0) {
315                         /*
316                          * sg sends a scatterlist that is larger than
317                          * the data_len it wants transferred for certain
318                          * IO sizes
319                          */
320                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321                         bytes = min(bytes, data_len);
322
323                         if (!bio) {
324                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325                                 nr_pages -= nr_vecs;
326
327                                 bio = bio_alloc(gfp, nr_vecs);
328                                 if (!bio) {
329                                         err = -ENOMEM;
330                                         goto free_bios;
331                                 }
332                                 bio->bi_end_io = scsi_bi_endio;
333                         }
334
335                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
336                             bytes) {
337                                 bio_put(bio);
338                                 err = -EINVAL;
339                                 goto free_bios;
340                         }
341
342                         if (bio->bi_vcnt >= nr_vecs) {
343                                 err = scsi_merge_bio(rq, bio);
344                                 if (err) {
345                                         bio_endio(bio, 0);
346                                         goto free_bios;
347                                 }
348                                 bio = NULL;
349                         }
350
351                         page++;
352                         len -= bytes;
353                         data_len -=bytes;
354                         off = 0;
355                 }
356         }
357
358         rq->buffer = rq->data = NULL;
359         rq->data_len = bufflen;
360         return 0;
361
362 free_bios:
363         while ((bio = rq->bio) != NULL) {
364                 rq->bio = bio->bi_next;
365                 /*
366                  * call endio instead of bio_put incase it was bounced
367                  */
368                 bio_endio(bio, 0);
369         }
370
371         return err;
372 }
373
374 /**
375  * scsi_execute_async - insert request
376  * @sdev:       scsi device
377  * @cmd:        scsi command
378  * @cmd_len:    length of scsi cdb
379  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
380  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
381  * @bufflen:    len of buffer
382  * @use_sg:     if buffer is a scatterlist this is the number of elements
383  * @timeout:    request timeout in seconds
384  * @retries:    number of times to retry request
385  * @privdata:   data passed to done()
386  * @done:       callback function when done
387  * @gfp:        memory allocation flags
388  */
389 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
390                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
391                        int use_sg, int timeout, int retries, void *privdata,
392                        void (*done)(void *, char *, int, int), gfp_t gfp)
393 {
394         struct request *req;
395         struct scsi_io_context *sioc;
396         int err = 0;
397         int write = (data_direction == DMA_TO_DEVICE);
398
399         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
400         if (!sioc)
401                 return DRIVER_ERROR << 24;
402
403         req = blk_get_request(sdev->request_queue, write, gfp);
404         if (!req)
405                 goto free_sense;
406         req->cmd_type = REQ_TYPE_BLOCK_PC;
407         req->cmd_flags |= REQ_QUIET;
408
409         if (use_sg)
410                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
411         else if (bufflen)
412                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
413
414         if (err)
415                 goto free_req;
416
417         req->cmd_len = cmd_len;
418         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
419         memcpy(req->cmd, cmd, req->cmd_len);
420         req->sense = sioc->sense;
421         req->sense_len = 0;
422         req->timeout = timeout;
423         req->retries = retries;
424         req->end_io_data = sioc;
425
426         sioc->data = privdata;
427         sioc->done = done;
428
429         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
430         return 0;
431
432 free_req:
433         blk_put_request(req);
434 free_sense:
435         kmem_cache_free(scsi_io_context_cache, sioc);
436         return DRIVER_ERROR << 24;
437 }
438 EXPORT_SYMBOL_GPL(scsi_execute_async);
439
440 /*
441  * Function:    scsi_init_cmd_errh()
442  *
443  * Purpose:     Initialize cmd fields related to error handling.
444  *
445  * Arguments:   cmd     - command that is ready to be queued.
446  *
447  * Notes:       This function has the job of initializing a number of
448  *              fields related to error handling.   Typically this will
449  *              be called once for each command, as required.
450  */
451 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
452 {
453         cmd->serial_number = 0;
454         scsi_set_resid(cmd, 0);
455         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
456         if (cmd->cmd_len == 0)
457                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
458 }
459
460 void scsi_device_unbusy(struct scsi_device *sdev)
461 {
462         struct Scsi_Host *shost = sdev->host;
463         unsigned long flags;
464
465         spin_lock_irqsave(shost->host_lock, flags);
466         shost->host_busy--;
467         if (unlikely(scsi_host_in_recovery(shost) &&
468                      (shost->host_failed || shost->host_eh_scheduled)))
469                 scsi_eh_wakeup(shost);
470         spin_unlock(shost->host_lock);
471         spin_lock(sdev->request_queue->queue_lock);
472         sdev->device_busy--;
473         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
474 }
475
476 /*
477  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
478  * and call blk_run_queue for all the scsi_devices on the target -
479  * including current_sdev first.
480  *
481  * Called with *no* scsi locks held.
482  */
483 static void scsi_single_lun_run(struct scsi_device *current_sdev)
484 {
485         struct Scsi_Host *shost = current_sdev->host;
486         struct scsi_device *sdev, *tmp;
487         struct scsi_target *starget = scsi_target(current_sdev);
488         unsigned long flags;
489
490         spin_lock_irqsave(shost->host_lock, flags);
491         starget->starget_sdev_user = NULL;
492         spin_unlock_irqrestore(shost->host_lock, flags);
493
494         /*
495          * Call blk_run_queue for all LUNs on the target, starting with
496          * current_sdev. We race with others (to set starget_sdev_user),
497          * but in most cases, we will be first. Ideally, each LU on the
498          * target would get some limited time or requests on the target.
499          */
500         blk_run_queue(current_sdev->request_queue);
501
502         spin_lock_irqsave(shost->host_lock, flags);
503         if (starget->starget_sdev_user)
504                 goto out;
505         list_for_each_entry_safe(sdev, tmp, &starget->devices,
506                         same_target_siblings) {
507                 if (sdev == current_sdev)
508                         continue;
509                 if (scsi_device_get(sdev))
510                         continue;
511
512                 spin_unlock_irqrestore(shost->host_lock, flags);
513                 blk_run_queue(sdev->request_queue);
514                 spin_lock_irqsave(shost->host_lock, flags);
515         
516                 scsi_device_put(sdev);
517         }
518  out:
519         spin_unlock_irqrestore(shost->host_lock, flags);
520 }
521
522 /*
523  * Function:    scsi_run_queue()
524  *
525  * Purpose:     Select a proper request queue to serve next
526  *
527  * Arguments:   q       - last request's queue
528  *
529  * Returns:     Nothing
530  *
531  * Notes:       The previous command was completely finished, start
532  *              a new one if possible.
533  */
534 static void scsi_run_queue(struct request_queue *q)
535 {
536         struct scsi_device *sdev = q->queuedata;
537         struct Scsi_Host *shost = sdev->host;
538         unsigned long flags;
539
540         if (scsi_target(sdev)->single_lun)
541                 scsi_single_lun_run(sdev);
542
543         spin_lock_irqsave(shost->host_lock, flags);
544         while (!list_empty(&shost->starved_list) &&
545                !shost->host_blocked && !shost->host_self_blocked &&
546                 !((shost->can_queue > 0) &&
547                   (shost->host_busy >= shost->can_queue))) {
548
549                 int flagset;
550
551                 /*
552                  * As long as shost is accepting commands and we have
553                  * starved queues, call blk_run_queue. scsi_request_fn
554                  * drops the queue_lock and can add us back to the
555                  * starved_list.
556                  *
557                  * host_lock protects the starved_list and starved_entry.
558                  * scsi_request_fn must get the host_lock before checking
559                  * or modifying starved_list or starved_entry.
560                  */
561                 sdev = list_entry(shost->starved_list.next,
562                                           struct scsi_device, starved_entry);
563                 list_del_init(&sdev->starved_entry);
564                 spin_unlock(shost->host_lock);
565
566                 spin_lock(sdev->request_queue->queue_lock);
567                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
568                                 !test_bit(QUEUE_FLAG_REENTER,
569                                         &sdev->request_queue->queue_flags);
570                 if (flagset)
571                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
572                 __blk_run_queue(sdev->request_queue);
573                 if (flagset)
574                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
575                 spin_unlock(sdev->request_queue->queue_lock);
576
577                 spin_lock(shost->host_lock);
578                 if (unlikely(!list_empty(&sdev->starved_entry)))
579                         /*
580                          * sdev lost a race, and was put back on the
581                          * starved list. This is unlikely but without this
582                          * in theory we could loop forever.
583                          */
584                         break;
585         }
586         spin_unlock_irqrestore(shost->host_lock, flags);
587
588         blk_run_queue(q);
589 }
590
591 /*
592  * Function:    scsi_requeue_command()
593  *
594  * Purpose:     Handle post-processing of completed commands.
595  *
596  * Arguments:   q       - queue to operate on
597  *              cmd     - command that may need to be requeued.
598  *
599  * Returns:     Nothing
600  *
601  * Notes:       After command completion, there may be blocks left
602  *              over which weren't finished by the previous command
603  *              this can be for a number of reasons - the main one is
604  *              I/O errors in the middle of the request, in which case
605  *              we need to request the blocks that come after the bad
606  *              sector.
607  * Notes:       Upon return, cmd is a stale pointer.
608  */
609 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
610 {
611         struct request *req = cmd->request;
612         unsigned long flags;
613
614         scsi_unprep_request(req);
615         spin_lock_irqsave(q->queue_lock, flags);
616         blk_requeue_request(q, req);
617         spin_unlock_irqrestore(q->queue_lock, flags);
618
619         scsi_run_queue(q);
620 }
621
622 void scsi_next_command(struct scsi_cmnd *cmd)
623 {
624         struct scsi_device *sdev = cmd->device;
625         struct request_queue *q = sdev->request_queue;
626
627         /* need to hold a reference on the device before we let go of the cmd */
628         get_device(&sdev->sdev_gendev);
629
630         scsi_put_command(cmd);
631         scsi_run_queue(q);
632
633         /* ok to remove device now */
634         put_device(&sdev->sdev_gendev);
635 }
636
637 void scsi_run_host_queues(struct Scsi_Host *shost)
638 {
639         struct scsi_device *sdev;
640
641         shost_for_each_device(sdev, shost)
642                 scsi_run_queue(sdev->request_queue);
643 }
644
645 /*
646  * Function:    scsi_end_request()
647  *
648  * Purpose:     Post-processing of completed commands (usually invoked at end
649  *              of upper level post-processing and scsi_io_completion).
650  *
651  * Arguments:   cmd      - command that is complete.
652  *              error    - 0 if I/O indicates success, < 0 for I/O error.
653  *              bytes    - number of bytes of completed I/O
654  *              requeue  - indicates whether we should requeue leftovers.
655  *
656  * Lock status: Assumed that lock is not held upon entry.
657  *
658  * Returns:     cmd if requeue required, NULL otherwise.
659  *
660  * Notes:       This is called for block device requests in order to
661  *              mark some number of sectors as complete.
662  * 
663  *              We are guaranteeing that the request queue will be goosed
664  *              at some point during this call.
665  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
666  */
667 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
668                                           int bytes, int requeue)
669 {
670         struct request_queue *q = cmd->device->request_queue;
671         struct request *req = cmd->request;
672
673         /*
674          * If there are blocks left over at the end, set up the command
675          * to queue the remainder of them.
676          */
677         if (blk_end_request(req, error, bytes)) {
678                 int leftover = (req->hard_nr_sectors << 9);
679
680                 if (blk_pc_request(req))
681                         leftover = req->data_len;
682
683                 /* kill remainder if no retrys */
684                 if (error && blk_noretry_request(req))
685                         blk_end_request(req, error, leftover);
686                 else {
687                         if (requeue) {
688                                 /*
689                                  * Bleah.  Leftovers again.  Stick the
690                                  * leftovers in the front of the
691                                  * queue, and goose the queue again.
692                                  */
693                                 scsi_requeue_command(q, cmd);
694                                 cmd = NULL;
695                         }
696                         return cmd;
697                 }
698         }
699
700         /*
701          * This will goose the queue request function at the end, so we don't
702          * need to worry about launching another command.
703          */
704         scsi_next_command(cmd);
705         return NULL;
706 }
707
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710         unsigned int index;
711
712         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
713
714         if (nents <= 8)
715                 index = 0;
716         else
717                 index = get_count_order(nents) - 3;
718
719         return index;
720 }
721
722 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
723 {
724         struct scsi_host_sg_pool *sgp;
725
726         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
727         mempool_free(sgl, sgp->pool);
728 }
729
730 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
731 {
732         struct scsi_host_sg_pool *sgp;
733
734         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
735         return mempool_alloc(sgp->pool, gfp_mask);
736 }
737
738 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
739                               gfp_t gfp_mask)
740 {
741         int ret;
742
743         BUG_ON(!nents);
744
745         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
746                                gfp_mask, scsi_sg_alloc);
747         if (unlikely(ret))
748                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
749                                 scsi_sg_free);
750
751         return ret;
752 }
753
754 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
755 {
756         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
757 }
758
759 /*
760  * Function:    scsi_release_buffers()
761  *
762  * Purpose:     Completion processing for block device I/O requests.
763  *
764  * Arguments:   cmd     - command that we are bailing.
765  *
766  * Lock status: Assumed that no lock is held upon entry.
767  *
768  * Returns:     Nothing
769  *
770  * Notes:       In the event that an upper level driver rejects a
771  *              command, we must release resources allocated during
772  *              the __init_io() function.  Primarily this would involve
773  *              the scatter-gather table, and potentially any bounce
774  *              buffers.
775  */
776 void scsi_release_buffers(struct scsi_cmnd *cmd)
777 {
778         if (cmd->sdb.table.nents)
779                 scsi_free_sgtable(&cmd->sdb);
780
781         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
782
783         if (scsi_bidi_cmnd(cmd)) {
784                 struct scsi_data_buffer *bidi_sdb =
785                         cmd->request->next_rq->special;
786                 scsi_free_sgtable(bidi_sdb);
787                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
788                 cmd->request->next_rq->special = NULL;
789         }
790
791         if (scsi_prot_sg_count(cmd))
792                 scsi_free_sgtable(cmd->prot_sdb);
793 }
794 EXPORT_SYMBOL(scsi_release_buffers);
795
796 /*
797  * Bidi commands Must be complete as a whole, both sides at once.
798  * If part of the bytes were written and lld returned
799  * scsi_in()->resid and/or scsi_out()->resid this information will be left
800  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
801  * decide what to do with this information.
802  */
803 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
804 {
805         struct request *req = cmd->request;
806         unsigned int dlen = req->data_len;
807         unsigned int next_dlen = req->next_rq->data_len;
808
809         req->data_len = scsi_out(cmd)->resid;
810         req->next_rq->data_len = scsi_in(cmd)->resid;
811
812         /* The req and req->next_rq have not been completed */
813         BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
814
815         scsi_release_buffers(cmd);
816
817         /*
818          * This will goose the queue request function at the end, so we don't
819          * need to worry about launching another command.
820          */
821         scsi_next_command(cmd);
822 }
823
824 /*
825  * Function:    scsi_io_completion()
826  *
827  * Purpose:     Completion processing for block device I/O requests.
828  *
829  * Arguments:   cmd   - command that is finished.
830  *
831  * Lock status: Assumed that no lock is held upon entry.
832  *
833  * Returns:     Nothing
834  *
835  * Notes:       This function is matched in terms of capabilities to
836  *              the function that created the scatter-gather list.
837  *              In other words, if there are no bounce buffers
838  *              (the normal case for most drivers), we don't need
839  *              the logic to deal with cleaning up afterwards.
840  *
841  *              We must do one of several things here:
842  *
843  *              a) Call scsi_end_request.  This will finish off the
844  *                 specified number of sectors.  If we are done, the
845  *                 command block will be released, and the queue
846  *                 function will be goosed.  If we are not done, then
847  *                 scsi_end_request will directly goose the queue.
848  *
849  *              b) We can just use scsi_requeue_command() here.  This would
850  *                 be used if we just wanted to retry, for example.
851  */
852 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
853 {
854         int result = cmd->result;
855         int this_count = scsi_bufflen(cmd);
856         struct request_queue *q = cmd->device->request_queue;
857         struct request *req = cmd->request;
858         int error = 0;
859         struct scsi_sense_hdr sshdr;
860         int sense_valid = 0;
861         int sense_deferred = 0;
862
863         if (result) {
864                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
865                 if (sense_valid)
866                         sense_deferred = scsi_sense_is_deferred(&sshdr);
867         }
868
869         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
870                 req->errors = result;
871                 if (result) {
872                         if (sense_valid && req->sense) {
873                                 /*
874                                  * SG_IO wants current and deferred errors
875                                  */
876                                 int len = 8 + cmd->sense_buffer[7];
877
878                                 if (len > SCSI_SENSE_BUFFERSIZE)
879                                         len = SCSI_SENSE_BUFFERSIZE;
880                                 memcpy(req->sense, cmd->sense_buffer,  len);
881                                 req->sense_len = len;
882                         }
883                         if (!sense_deferred)
884                                 error = -EIO;
885                 }
886                 if (scsi_bidi_cmnd(cmd)) {
887                         /* will also release_buffers */
888                         scsi_end_bidi_request(cmd);
889                         return;
890                 }
891                 req->data_len = scsi_get_resid(cmd);
892         }
893
894         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
895         scsi_release_buffers(cmd);
896
897         /*
898          * Next deal with any sectors which we were able to correctly
899          * handle.
900          */
901         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
902                                       "%d bytes done.\n",
903                                       req->nr_sectors, good_bytes));
904
905         /* A number of bytes were successfully read.  If there
906          * are leftovers and there is some kind of error
907          * (result != 0), retry the rest.
908          */
909         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
910                 return;
911
912         /* good_bytes = 0, or (inclusive) there were leftovers and
913          * result = 0, so scsi_end_request couldn't retry.
914          */
915         if (sense_valid && !sense_deferred) {
916                 switch (sshdr.sense_key) {
917                 case UNIT_ATTENTION:
918                         if (cmd->device->removable) {
919                                 /* Detected disc change.  Set a bit
920                                  * and quietly refuse further access.
921                                  */
922                                 cmd->device->changed = 1;
923                                 scsi_end_request(cmd, -EIO, this_count, 1);
924                                 return;
925                         } else {
926                                 /* Must have been a power glitch, or a
927                                  * bus reset.  Could not have been a
928                                  * media change, so we just retry the
929                                  * request and see what happens.
930                                  */
931                                 scsi_requeue_command(q, cmd);
932                                 return;
933                         }
934                         break;
935                 case ILLEGAL_REQUEST:
936                         /* If we had an ILLEGAL REQUEST returned, then
937                          * we may have performed an unsupported
938                          * command.  The only thing this should be
939                          * would be a ten byte read where only a six
940                          * byte read was supported.  Also, on a system
941                          * where READ CAPACITY failed, we may have
942                          * read past the end of the disk.
943                          */
944                         if ((cmd->device->use_10_for_rw &&
945                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
946                             (cmd->cmnd[0] == READ_10 ||
947                              cmd->cmnd[0] == WRITE_10)) {
948                                 cmd->device->use_10_for_rw = 0;
949                                 /* This will cause a retry with a
950                                  * 6-byte command.
951                                  */
952                                 scsi_requeue_command(q, cmd);
953                                 return;
954                         } else {
955                                 scsi_end_request(cmd, -EIO, this_count, 1);
956                                 return;
957                         }
958                         break;
959                 case NOT_READY:
960                         /* If the device is in the process of becoming
961                          * ready, or has a temporary blockage, retry.
962                          */
963                         if (sshdr.asc == 0x04) {
964                                 switch (sshdr.ascq) {
965                                 case 0x01: /* becoming ready */
966                                 case 0x04: /* format in progress */
967                                 case 0x05: /* rebuild in progress */
968                                 case 0x06: /* recalculation in progress */
969                                 case 0x07: /* operation in progress */
970                                 case 0x08: /* Long write in progress */
971                                 case 0x09: /* self test in progress */
972                                         scsi_requeue_command(q, cmd);
973                                         return;
974                                 default:
975                                         break;
976                                 }
977                         }
978                         if (!(req->cmd_flags & REQ_QUIET))
979                                 scsi_cmd_print_sense_hdr(cmd,
980                                                          "Device not ready",
981                                                          &sshdr);
982
983                         scsi_end_request(cmd, -EIO, this_count, 1);
984                         return;
985                 case VOLUME_OVERFLOW:
986                         if (!(req->cmd_flags & REQ_QUIET)) {
987                                 scmd_printk(KERN_INFO, cmd,
988                                             "Volume overflow, CDB: ");
989                                 __scsi_print_command(cmd->cmnd);
990                                 scsi_print_sense("", cmd);
991                         }
992                         /* See SSC3rXX or current. */
993                         scsi_end_request(cmd, -EIO, this_count, 1);
994                         return;
995                 default:
996                         break;
997                 }
998         }
999         if (host_byte(result) == DID_RESET) {
1000                 /* Third party bus reset or reset for error recovery
1001                  * reasons.  Just retry the request and see what
1002                  * happens.
1003                  */
1004                 scsi_requeue_command(q, cmd);
1005                 return;
1006         }
1007         if (result) {
1008                 if (!(req->cmd_flags & REQ_QUIET)) {
1009                         scsi_print_result(cmd);
1010                         if (driver_byte(result) & DRIVER_SENSE)
1011                                 scsi_print_sense("", cmd);
1012                 }
1013         }
1014         scsi_end_request(cmd, -EIO, this_count, !result);
1015 }
1016
1017 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1018                              gfp_t gfp_mask)
1019 {
1020         int count;
1021
1022         /*
1023          * If sg table allocation fails, requeue request later.
1024          */
1025         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1026                                         gfp_mask))) {
1027                 return BLKPREP_DEFER;
1028         }
1029
1030         req->buffer = NULL;
1031
1032         /* 
1033          * Next, walk the list, and fill in the addresses and sizes of
1034          * each segment.
1035          */
1036         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1037         BUG_ON(count > sdb->table.nents);
1038         sdb->table.nents = count;
1039         if (blk_pc_request(req))
1040                 sdb->length = req->data_len;
1041         else
1042                 sdb->length = req->nr_sectors << 9;
1043         return BLKPREP_OK;
1044 }
1045
1046 /*
1047  * Function:    scsi_init_io()
1048  *
1049  * Purpose:     SCSI I/O initialize function.
1050  *
1051  * Arguments:   cmd   - Command descriptor we wish to initialize
1052  *
1053  * Returns:     0 on success
1054  *              BLKPREP_DEFER if the failure is retryable
1055  *              BLKPREP_KILL if the failure is fatal
1056  */
1057 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1058 {
1059         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1060         if (error)
1061                 goto err_exit;
1062
1063         if (blk_bidi_rq(cmd->request)) {
1064                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1065                         scsi_sdb_cache, GFP_ATOMIC);
1066                 if (!bidi_sdb) {
1067                         error = BLKPREP_DEFER;
1068                         goto err_exit;
1069                 }
1070
1071                 cmd->request->next_rq->special = bidi_sdb;
1072                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1073                                                                     GFP_ATOMIC);
1074                 if (error)
1075                         goto err_exit;
1076         }
1077
1078         if (blk_integrity_rq(cmd->request)) {
1079                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1080                 int ivecs, count;
1081
1082                 BUG_ON(prot_sdb == NULL);
1083                 ivecs = blk_rq_count_integrity_sg(cmd->request);
1084
1085                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1086                         error = BLKPREP_DEFER;
1087                         goto err_exit;
1088                 }
1089
1090                 count = blk_rq_map_integrity_sg(cmd->request,
1091                                                 prot_sdb->table.sgl);
1092                 BUG_ON(unlikely(count > ivecs));
1093
1094                 cmd->prot_sdb = prot_sdb;
1095                 cmd->prot_sdb->table.nents = count;
1096         }
1097
1098         return BLKPREP_OK ;
1099
1100 err_exit:
1101         scsi_release_buffers(cmd);
1102         if (error == BLKPREP_KILL)
1103                 scsi_put_command(cmd);
1104         else /* BLKPREP_DEFER */
1105                 scsi_unprep_request(cmd->request);
1106
1107         return error;
1108 }
1109 EXPORT_SYMBOL(scsi_init_io);
1110
1111 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1112                 struct request *req)
1113 {
1114         struct scsi_cmnd *cmd;
1115
1116         if (!req->special) {
1117                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1118                 if (unlikely(!cmd))
1119                         return NULL;
1120                 req->special = cmd;
1121         } else {
1122                 cmd = req->special;
1123         }
1124
1125         /* pull a tag out of the request if we have one */
1126         cmd->tag = req->tag;
1127         cmd->request = req;
1128
1129         cmd->cmnd = req->cmd;
1130
1131         return cmd;
1132 }
1133
1134 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1135 {
1136         struct scsi_cmnd *cmd;
1137         int ret = scsi_prep_state_check(sdev, req);
1138
1139         if (ret != BLKPREP_OK)
1140                 return ret;
1141
1142         cmd = scsi_get_cmd_from_req(sdev, req);
1143         if (unlikely(!cmd))
1144                 return BLKPREP_DEFER;
1145
1146         /*
1147          * BLOCK_PC requests may transfer data, in which case they must
1148          * a bio attached to them.  Or they might contain a SCSI command
1149          * that does not transfer data, in which case they may optionally
1150          * submit a request without an attached bio.
1151          */
1152         if (req->bio) {
1153                 int ret;
1154
1155                 BUG_ON(!req->nr_phys_segments);
1156
1157                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1158                 if (unlikely(ret))
1159                         return ret;
1160         } else {
1161                 BUG_ON(req->data_len);
1162                 BUG_ON(req->data);
1163
1164                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1165                 req->buffer = NULL;
1166         }
1167
1168         cmd->cmd_len = req->cmd_len;
1169         if (!req->data_len)
1170                 cmd->sc_data_direction = DMA_NONE;
1171         else if (rq_data_dir(req) == WRITE)
1172                 cmd->sc_data_direction = DMA_TO_DEVICE;
1173         else
1174                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1175         
1176         cmd->transfersize = req->data_len;
1177         cmd->allowed = req->retries;
1178         cmd->timeout_per_command = req->timeout;
1179         return BLKPREP_OK;
1180 }
1181 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1182
1183 /*
1184  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1185  * from filesystems that still need to be translated to SCSI CDBs from
1186  * the ULD.
1187  */
1188 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1189 {
1190         struct scsi_cmnd *cmd;
1191         int ret = scsi_prep_state_check(sdev, req);
1192
1193         if (ret != BLKPREP_OK)
1194                 return ret;
1195
1196         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1197                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1198                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1199                 if (ret != BLKPREP_OK)
1200                         return ret;
1201         }
1202
1203         /*
1204          * Filesystem requests must transfer data.
1205          */
1206         BUG_ON(!req->nr_phys_segments);
1207
1208         cmd = scsi_get_cmd_from_req(sdev, req);
1209         if (unlikely(!cmd))
1210                 return BLKPREP_DEFER;
1211
1212         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1213         return scsi_init_io(cmd, GFP_ATOMIC);
1214 }
1215 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1216
1217 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1218 {
1219         int ret = BLKPREP_OK;
1220
1221         /*
1222          * If the device is not in running state we will reject some
1223          * or all commands.
1224          */
1225         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1226                 switch (sdev->sdev_state) {
1227                 case SDEV_OFFLINE:
1228                         /*
1229                          * If the device is offline we refuse to process any
1230                          * commands.  The device must be brought online
1231                          * before trying any recovery commands.
1232                          */
1233                         sdev_printk(KERN_ERR, sdev,
1234                                     "rejecting I/O to offline device\n");
1235                         ret = BLKPREP_KILL;
1236                         break;
1237                 case SDEV_DEL:
1238                         /*
1239                          * If the device is fully deleted, we refuse to
1240                          * process any commands as well.
1241                          */
1242                         sdev_printk(KERN_ERR, sdev,
1243                                     "rejecting I/O to dead device\n");
1244                         ret = BLKPREP_KILL;
1245                         break;
1246                 case SDEV_QUIESCE:
1247                 case SDEV_BLOCK:
1248                         /*
1249                          * If the devices is blocked we defer normal commands.
1250                          */
1251                         if (!(req->cmd_flags & REQ_PREEMPT))
1252                                 ret = BLKPREP_DEFER;
1253                         break;
1254                 default:
1255                         /*
1256                          * For any other not fully online state we only allow
1257                          * special commands.  In particular any user initiated
1258                          * command is not allowed.
1259                          */
1260                         if (!(req->cmd_flags & REQ_PREEMPT))
1261                                 ret = BLKPREP_KILL;
1262                         break;
1263                 }
1264         }
1265         return ret;
1266 }
1267 EXPORT_SYMBOL(scsi_prep_state_check);
1268
1269 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1270 {
1271         struct scsi_device *sdev = q->queuedata;
1272
1273         switch (ret) {
1274         case BLKPREP_KILL:
1275                 req->errors = DID_NO_CONNECT << 16;
1276                 /* release the command and kill it */
1277                 if (req->special) {
1278                         struct scsi_cmnd *cmd = req->special;
1279                         scsi_release_buffers(cmd);
1280                         scsi_put_command(cmd);
1281                         req->special = NULL;
1282                 }
1283                 break;
1284         case BLKPREP_DEFER:
1285                 /*
1286                  * If we defer, the elv_next_request() returns NULL, but the
1287                  * queue must be restarted, so we plug here if no returning
1288                  * command will automatically do that.
1289                  */
1290                 if (sdev->device_busy == 0)
1291                         blk_plug_device(q);
1292                 break;
1293         default:
1294                 req->cmd_flags |= REQ_DONTPREP;
1295         }
1296
1297         return ret;
1298 }
1299 EXPORT_SYMBOL(scsi_prep_return);
1300
1301 int scsi_prep_fn(struct request_queue *q, struct request *req)
1302 {
1303         struct scsi_device *sdev = q->queuedata;
1304         int ret = BLKPREP_KILL;
1305
1306         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1307                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1308         return scsi_prep_return(q, req, ret);
1309 }
1310
1311 /*
1312  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1313  * return 0.
1314  *
1315  * Called with the queue_lock held.
1316  */
1317 static inline int scsi_dev_queue_ready(struct request_queue *q,
1318                                   struct scsi_device *sdev)
1319 {
1320         if (sdev->device_busy >= sdev->queue_depth)
1321                 return 0;
1322         if (sdev->device_busy == 0 && sdev->device_blocked) {
1323                 /*
1324                  * unblock after device_blocked iterates to zero
1325                  */
1326                 if (--sdev->device_blocked == 0) {
1327                         SCSI_LOG_MLQUEUE(3,
1328                                    sdev_printk(KERN_INFO, sdev,
1329                                    "unblocking device at zero depth\n"));
1330                 } else {
1331                         blk_plug_device(q);
1332                         return 0;
1333                 }
1334         }
1335         if (sdev->device_blocked)
1336                 return 0;
1337
1338         return 1;
1339 }
1340
1341 /*
1342  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1343  * return 0. We must end up running the queue again whenever 0 is
1344  * returned, else IO can hang.
1345  *
1346  * Called with host_lock held.
1347  */
1348 static inline int scsi_host_queue_ready(struct request_queue *q,
1349                                    struct Scsi_Host *shost,
1350                                    struct scsi_device *sdev)
1351 {
1352         if (scsi_host_in_recovery(shost))
1353                 return 0;
1354         if (shost->host_busy == 0 && shost->host_blocked) {
1355                 /*
1356                  * unblock after host_blocked iterates to zero
1357                  */
1358                 if (--shost->host_blocked == 0) {
1359                         SCSI_LOG_MLQUEUE(3,
1360                                 printk("scsi%d unblocking host at zero depth\n",
1361                                         shost->host_no));
1362                 } else {
1363                         return 0;
1364                 }
1365         }
1366         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1367             shost->host_blocked || shost->host_self_blocked) {
1368                 if (list_empty(&sdev->starved_entry))
1369                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1370                 return 0;
1371         }
1372
1373         /* We're OK to process the command, so we can't be starved */
1374         if (!list_empty(&sdev->starved_entry))
1375                 list_del_init(&sdev->starved_entry);
1376
1377         return 1;
1378 }
1379
1380 /*
1381  * Kill a request for a dead device
1382  */
1383 static void scsi_kill_request(struct request *req, struct request_queue *q)
1384 {
1385         struct scsi_cmnd *cmd = req->special;
1386         struct scsi_device *sdev = cmd->device;
1387         struct Scsi_Host *shost = sdev->host;
1388
1389         blkdev_dequeue_request(req);
1390
1391         if (unlikely(cmd == NULL)) {
1392                 printk(KERN_CRIT "impossible request in %s.\n",
1393                                  __FUNCTION__);
1394                 BUG();
1395         }
1396
1397         scsi_init_cmd_errh(cmd);
1398         cmd->result = DID_NO_CONNECT << 16;
1399         atomic_inc(&cmd->device->iorequest_cnt);
1400
1401         /*
1402          * SCSI request completion path will do scsi_device_unbusy(),
1403          * bump busy counts.  To bump the counters, we need to dance
1404          * with the locks as normal issue path does.
1405          */
1406         sdev->device_busy++;
1407         spin_unlock(sdev->request_queue->queue_lock);
1408         spin_lock(shost->host_lock);
1409         shost->host_busy++;
1410         spin_unlock(shost->host_lock);
1411         spin_lock(sdev->request_queue->queue_lock);
1412
1413         __scsi_done(cmd);
1414 }
1415
1416 static void scsi_softirq_done(struct request *rq)
1417 {
1418         struct scsi_cmnd *cmd = rq->completion_data;
1419         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1420         int disposition;
1421
1422         INIT_LIST_HEAD(&cmd->eh_entry);
1423
1424         disposition = scsi_decide_disposition(cmd);
1425         if (disposition != SUCCESS &&
1426             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1427                 sdev_printk(KERN_ERR, cmd->device,
1428                             "timing out command, waited %lus\n",
1429                             wait_for/HZ);
1430                 disposition = SUCCESS;
1431         }
1432                         
1433         scsi_log_completion(cmd, disposition);
1434
1435         switch (disposition) {
1436                 case SUCCESS:
1437                         scsi_finish_command(cmd);
1438                         break;
1439                 case NEEDS_RETRY:
1440                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1441                         break;
1442                 case ADD_TO_MLQUEUE:
1443                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1444                         break;
1445                 default:
1446                         if (!scsi_eh_scmd_add(cmd, 0))
1447                                 scsi_finish_command(cmd);
1448         }
1449 }
1450
1451 /*
1452  * Function:    scsi_request_fn()
1453  *
1454  * Purpose:     Main strategy routine for SCSI.
1455  *
1456  * Arguments:   q       - Pointer to actual queue.
1457  *
1458  * Returns:     Nothing
1459  *
1460  * Lock status: IO request lock assumed to be held when called.
1461  */
1462 static void scsi_request_fn(struct request_queue *q)
1463 {
1464         struct scsi_device *sdev = q->queuedata;
1465         struct Scsi_Host *shost;
1466         struct scsi_cmnd *cmd;
1467         struct request *req;
1468
1469         if (!sdev) {
1470                 printk("scsi: killing requests for dead queue\n");
1471                 while ((req = elv_next_request(q)) != NULL)
1472                         scsi_kill_request(req, q);
1473                 return;
1474         }
1475
1476         if(!get_device(&sdev->sdev_gendev))
1477                 /* We must be tearing the block queue down already */
1478                 return;
1479
1480         /*
1481          * To start with, we keep looping until the queue is empty, or until
1482          * the host is no longer able to accept any more requests.
1483          */
1484         shost = sdev->host;
1485         while (!blk_queue_plugged(q)) {
1486                 int rtn;
1487                 /*
1488                  * get next queueable request.  We do this early to make sure
1489                  * that the request is fully prepared even if we cannot 
1490                  * accept it.
1491                  */
1492                 req = elv_next_request(q);
1493                 if (!req || !scsi_dev_queue_ready(q, sdev))
1494                         break;
1495
1496                 if (unlikely(!scsi_device_online(sdev))) {
1497                         sdev_printk(KERN_ERR, sdev,
1498                                     "rejecting I/O to offline device\n");
1499                         scsi_kill_request(req, q);
1500                         continue;
1501                 }
1502
1503
1504                 /*
1505                  * Remove the request from the request list.
1506                  */
1507                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1508                         blkdev_dequeue_request(req);
1509                 sdev->device_busy++;
1510
1511                 spin_unlock(q->queue_lock);
1512                 cmd = req->special;
1513                 if (unlikely(cmd == NULL)) {
1514                         printk(KERN_CRIT "impossible request in %s.\n"
1515                                          "please mail a stack trace to "
1516                                          "linux-scsi@vger.kernel.org\n",
1517                                          __FUNCTION__);
1518                         blk_dump_rq_flags(req, "foo");
1519                         BUG();
1520                 }
1521                 spin_lock(shost->host_lock);
1522
1523                 /*
1524                  * We hit this when the driver is using a host wide
1525                  * tag map. For device level tag maps the queue_depth check
1526                  * in the device ready fn would prevent us from trying
1527                  * to allocate a tag. Since the map is a shared host resource
1528                  * we add the dev to the starved list so it eventually gets
1529                  * a run when a tag is freed.
1530                  */
1531                 if (blk_queue_tagged(q) && (req->tag == -1)) {
1532                         if (list_empty(&sdev->starved_entry))
1533                                 list_add_tail(&sdev->starved_entry,
1534                                               &shost->starved_list);
1535                         goto not_ready;
1536                 }
1537
1538                 if (!scsi_host_queue_ready(q, shost, sdev))
1539                         goto not_ready;
1540                 if (scsi_target(sdev)->single_lun) {
1541                         if (scsi_target(sdev)->starget_sdev_user &&
1542                             scsi_target(sdev)->starget_sdev_user != sdev)
1543                                 goto not_ready;
1544                         scsi_target(sdev)->starget_sdev_user = sdev;
1545                 }
1546                 shost->host_busy++;
1547
1548                 /*
1549                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1550                  *              take the lock again.
1551                  */
1552                 spin_unlock_irq(shost->host_lock);
1553
1554                 /*
1555                  * Finally, initialize any error handling parameters, and set up
1556                  * the timers for timeouts.
1557                  */
1558                 scsi_init_cmd_errh(cmd);
1559
1560                 /*
1561                  * Dispatch the command to the low-level driver.
1562                  */
1563                 rtn = scsi_dispatch_cmd(cmd);
1564                 spin_lock_irq(q->queue_lock);
1565                 if(rtn) {
1566                         /* we're refusing the command; because of
1567                          * the way locks get dropped, we need to 
1568                          * check here if plugging is required */
1569                         if(sdev->device_busy == 0)
1570                                 blk_plug_device(q);
1571
1572                         break;
1573                 }
1574         }
1575
1576         goto out;
1577
1578  not_ready:
1579         spin_unlock_irq(shost->host_lock);
1580
1581         /*
1582          * lock q, handle tag, requeue req, and decrement device_busy. We
1583          * must return with queue_lock held.
1584          *
1585          * Decrementing device_busy without checking it is OK, as all such
1586          * cases (host limits or settings) should run the queue at some
1587          * later time.
1588          */
1589         spin_lock_irq(q->queue_lock);
1590         blk_requeue_request(q, req);
1591         sdev->device_busy--;
1592         if(sdev->device_busy == 0)
1593                 blk_plug_device(q);
1594  out:
1595         /* must be careful here...if we trigger the ->remove() function
1596          * we cannot be holding the q lock */
1597         spin_unlock_irq(q->queue_lock);
1598         put_device(&sdev->sdev_gendev);
1599         spin_lock_irq(q->queue_lock);
1600 }
1601
1602 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1603 {
1604         struct device *host_dev;
1605         u64 bounce_limit = 0xffffffff;
1606
1607         if (shost->unchecked_isa_dma)
1608                 return BLK_BOUNCE_ISA;
1609         /*
1610          * Platforms with virtual-DMA translation
1611          * hardware have no practical limit.
1612          */
1613         if (!PCI_DMA_BUS_IS_PHYS)
1614                 return BLK_BOUNCE_ANY;
1615
1616         host_dev = scsi_get_device(shost);
1617         if (host_dev && host_dev->dma_mask)
1618                 bounce_limit = *host_dev->dma_mask;
1619
1620         return bounce_limit;
1621 }
1622 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1623
1624 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1625                                          request_fn_proc *request_fn)
1626 {
1627         struct request_queue *q;
1628         struct device *dev = shost->shost_gendev.parent;
1629
1630         q = blk_init_queue(request_fn, NULL);
1631         if (!q)
1632                 return NULL;
1633
1634         /*
1635          * this limit is imposed by hardware restrictions
1636          */
1637         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1638         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1639
1640         blk_queue_max_sectors(q, shost->max_sectors);
1641         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1642         blk_queue_segment_boundary(q, shost->dma_boundary);
1643         dma_set_seg_boundary(dev, shost->dma_boundary);
1644
1645         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1646
1647         /* New queue, no concurrency on queue_flags */
1648         if (!shost->use_clustering)
1649                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1650
1651         /*
1652          * set a reasonable default alignment on word boundaries: the
1653          * host and device may alter it using
1654          * blk_queue_update_dma_alignment() later.
1655          */
1656         blk_queue_dma_alignment(q, 0x03);
1657
1658         return q;
1659 }
1660 EXPORT_SYMBOL(__scsi_alloc_queue);
1661
1662 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1663 {
1664         struct request_queue *q;
1665
1666         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1667         if (!q)
1668                 return NULL;
1669
1670         blk_queue_prep_rq(q, scsi_prep_fn);
1671         blk_queue_softirq_done(q, scsi_softirq_done);
1672         return q;
1673 }
1674
1675 void scsi_free_queue(struct request_queue *q)
1676 {
1677         blk_cleanup_queue(q);
1678 }
1679
1680 /*
1681  * Function:    scsi_block_requests()
1682  *
1683  * Purpose:     Utility function used by low-level drivers to prevent further
1684  *              commands from being queued to the device.
1685  *
1686  * Arguments:   shost       - Host in question
1687  *
1688  * Returns:     Nothing
1689  *
1690  * Lock status: No locks are assumed held.
1691  *
1692  * Notes:       There is no timer nor any other means by which the requests
1693  *              get unblocked other than the low-level driver calling
1694  *              scsi_unblock_requests().
1695  */
1696 void scsi_block_requests(struct Scsi_Host *shost)
1697 {
1698         shost->host_self_blocked = 1;
1699 }
1700 EXPORT_SYMBOL(scsi_block_requests);
1701
1702 /*
1703  * Function:    scsi_unblock_requests()
1704  *
1705  * Purpose:     Utility function used by low-level drivers to allow further
1706  *              commands from being queued to the device.
1707  *
1708  * Arguments:   shost       - Host in question
1709  *
1710  * Returns:     Nothing
1711  *
1712  * Lock status: No locks are assumed held.
1713  *
1714  * Notes:       There is no timer nor any other means by which the requests
1715  *              get unblocked other than the low-level driver calling
1716  *              scsi_unblock_requests().
1717  *
1718  *              This is done as an API function so that changes to the
1719  *              internals of the scsi mid-layer won't require wholesale
1720  *              changes to drivers that use this feature.
1721  */
1722 void scsi_unblock_requests(struct Scsi_Host *shost)
1723 {
1724         shost->host_self_blocked = 0;
1725         scsi_run_host_queues(shost);
1726 }
1727 EXPORT_SYMBOL(scsi_unblock_requests);
1728
1729 int __init scsi_init_queue(void)
1730 {
1731         int i;
1732
1733         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1734                                         sizeof(struct scsi_io_context),
1735                                         0, 0, NULL);
1736         if (!scsi_io_context_cache) {
1737                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1738                 return -ENOMEM;
1739         }
1740
1741         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1742                                            sizeof(struct scsi_data_buffer),
1743                                            0, 0, NULL);
1744         if (!scsi_sdb_cache) {
1745                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1746                 goto cleanup_io_context;
1747         }
1748
1749         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1750                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1751                 int size = sgp->size * sizeof(struct scatterlist);
1752
1753                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1754                                 SLAB_HWCACHE_ALIGN, NULL);
1755                 if (!sgp->slab) {
1756                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1757                                         sgp->name);
1758                         goto cleanup_sdb;
1759                 }
1760
1761                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1762                                                      sgp->slab);
1763                 if (!sgp->pool) {
1764                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1765                                         sgp->name);
1766                         goto cleanup_sdb;
1767                 }
1768         }
1769
1770         return 0;
1771
1772 cleanup_sdb:
1773         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1774                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1775                 if (sgp->pool)
1776                         mempool_destroy(sgp->pool);
1777                 if (sgp->slab)
1778                         kmem_cache_destroy(sgp->slab);
1779         }
1780         kmem_cache_destroy(scsi_sdb_cache);
1781 cleanup_io_context:
1782         kmem_cache_destroy(scsi_io_context_cache);
1783
1784         return -ENOMEM;
1785 }
1786
1787 void scsi_exit_queue(void)
1788 {
1789         int i;
1790
1791         kmem_cache_destroy(scsi_io_context_cache);
1792         kmem_cache_destroy(scsi_sdb_cache);
1793
1794         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796                 mempool_destroy(sgp->pool);
1797                 kmem_cache_destroy(sgp->slab);
1798         }
1799 }
1800
1801 /**
1802  *      scsi_mode_select - issue a mode select
1803  *      @sdev:  SCSI device to be queried
1804  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1805  *      @sp:    Save page bit (0 == don't save, 1 == save)
1806  *      @modepage: mode page being requested
1807  *      @buffer: request buffer (may not be smaller than eight bytes)
1808  *      @len:   length of request buffer.
1809  *      @timeout: command timeout
1810  *      @retries: number of retries before failing
1811  *      @data: returns a structure abstracting the mode header data
1812  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1813  *              must be SCSI_SENSE_BUFFERSIZE big.
1814  *
1815  *      Returns zero if successful; negative error number or scsi
1816  *      status on error
1817  *
1818  */
1819 int
1820 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1821                  unsigned char *buffer, int len, int timeout, int retries,
1822                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1823 {
1824         unsigned char cmd[10];
1825         unsigned char *real_buffer;
1826         int ret;
1827
1828         memset(cmd, 0, sizeof(cmd));
1829         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1830
1831         if (sdev->use_10_for_ms) {
1832                 if (len > 65535)
1833                         return -EINVAL;
1834                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1835                 if (!real_buffer)
1836                         return -ENOMEM;
1837                 memcpy(real_buffer + 8, buffer, len);
1838                 len += 8;
1839                 real_buffer[0] = 0;
1840                 real_buffer[1] = 0;
1841                 real_buffer[2] = data->medium_type;
1842                 real_buffer[3] = data->device_specific;
1843                 real_buffer[4] = data->longlba ? 0x01 : 0;
1844                 real_buffer[5] = 0;
1845                 real_buffer[6] = data->block_descriptor_length >> 8;
1846                 real_buffer[7] = data->block_descriptor_length;
1847
1848                 cmd[0] = MODE_SELECT_10;
1849                 cmd[7] = len >> 8;
1850                 cmd[8] = len;
1851         } else {
1852                 if (len > 255 || data->block_descriptor_length > 255 ||
1853                     data->longlba)
1854                         return -EINVAL;
1855
1856                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1857                 if (!real_buffer)
1858                         return -ENOMEM;
1859                 memcpy(real_buffer + 4, buffer, len);
1860                 len += 4;
1861                 real_buffer[0] = 0;
1862                 real_buffer[1] = data->medium_type;
1863                 real_buffer[2] = data->device_specific;
1864                 real_buffer[3] = data->block_descriptor_length;
1865                 
1866
1867                 cmd[0] = MODE_SELECT;
1868                 cmd[4] = len;
1869         }
1870
1871         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1872                                sshdr, timeout, retries);
1873         kfree(real_buffer);
1874         return ret;
1875 }
1876 EXPORT_SYMBOL_GPL(scsi_mode_select);
1877
1878 /**
1879  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1880  *      @sdev:  SCSI device to be queried
1881  *      @dbd:   set if mode sense will allow block descriptors to be returned
1882  *      @modepage: mode page being requested
1883  *      @buffer: request buffer (may not be smaller than eight bytes)
1884  *      @len:   length of request buffer.
1885  *      @timeout: command timeout
1886  *      @retries: number of retries before failing
1887  *      @data: returns a structure abstracting the mode header data
1888  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1889  *              must be SCSI_SENSE_BUFFERSIZE big.
1890  *
1891  *      Returns zero if unsuccessful, or the header offset (either 4
1892  *      or 8 depending on whether a six or ten byte command was
1893  *      issued) if successful.
1894  */
1895 int
1896 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1897                   unsigned char *buffer, int len, int timeout, int retries,
1898                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1899 {
1900         unsigned char cmd[12];
1901         int use_10_for_ms;
1902         int header_length;
1903         int result;
1904         struct scsi_sense_hdr my_sshdr;
1905
1906         memset(data, 0, sizeof(*data));
1907         memset(&cmd[0], 0, 12);
1908         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1909         cmd[2] = modepage;
1910
1911         /* caller might not be interested in sense, but we need it */
1912         if (!sshdr)
1913                 sshdr = &my_sshdr;
1914
1915  retry:
1916         use_10_for_ms = sdev->use_10_for_ms;
1917
1918         if (use_10_for_ms) {
1919                 if (len < 8)
1920                         len = 8;
1921
1922                 cmd[0] = MODE_SENSE_10;
1923                 cmd[8] = len;
1924                 header_length = 8;
1925         } else {
1926                 if (len < 4)
1927                         len = 4;
1928
1929                 cmd[0] = MODE_SENSE;
1930                 cmd[4] = len;
1931                 header_length = 4;
1932         }
1933
1934         memset(buffer, 0, len);
1935
1936         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1937                                   sshdr, timeout, retries);
1938
1939         /* This code looks awful: what it's doing is making sure an
1940          * ILLEGAL REQUEST sense return identifies the actual command
1941          * byte as the problem.  MODE_SENSE commands can return
1942          * ILLEGAL REQUEST if the code page isn't supported */
1943
1944         if (use_10_for_ms && !scsi_status_is_good(result) &&
1945             (driver_byte(result) & DRIVER_SENSE)) {
1946                 if (scsi_sense_valid(sshdr)) {
1947                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1948                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1949                                 /* 
1950                                  * Invalid command operation code
1951                                  */
1952                                 sdev->use_10_for_ms = 0;
1953                                 goto retry;
1954                         }
1955                 }
1956         }
1957
1958         if(scsi_status_is_good(result)) {
1959                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1960                              (modepage == 6 || modepage == 8))) {
1961                         /* Initio breakage? */
1962                         header_length = 0;
1963                         data->length = 13;
1964                         data->medium_type = 0;
1965                         data->device_specific = 0;
1966                         data->longlba = 0;
1967                         data->block_descriptor_length = 0;
1968                 } else if(use_10_for_ms) {
1969                         data->length = buffer[0]*256 + buffer[1] + 2;
1970                         data->medium_type = buffer[2];
1971                         data->device_specific = buffer[3];
1972                         data->longlba = buffer[4] & 0x01;
1973                         data->block_descriptor_length = buffer[6]*256
1974                                 + buffer[7];
1975                 } else {
1976                         data->length = buffer[0] + 1;
1977                         data->medium_type = buffer[1];
1978                         data->device_specific = buffer[2];
1979                         data->block_descriptor_length = buffer[3];
1980                 }
1981                 data->header_length = header_length;
1982         }
1983
1984         return result;
1985 }
1986 EXPORT_SYMBOL(scsi_mode_sense);
1987
1988 /**
1989  *      scsi_test_unit_ready - test if unit is ready
1990  *      @sdev:  scsi device to change the state of.
1991  *      @timeout: command timeout
1992  *      @retries: number of retries before failing
1993  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1994  *              returning sense. Make sure that this is cleared before passing
1995  *              in.
1996  *
1997  *      Returns zero if unsuccessful or an error if TUR failed.  For
1998  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1999  *      translated to success, with the ->changed flag updated.
2000  **/
2001 int
2002 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2003                      struct scsi_sense_hdr *sshdr_external)
2004 {
2005         char cmd[] = {
2006                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2007         };
2008         struct scsi_sense_hdr *sshdr;
2009         int result;
2010
2011         if (!sshdr_external)
2012                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2013         else
2014                 sshdr = sshdr_external;
2015
2016         /* try to eat the UNIT_ATTENTION if there are enough retries */
2017         do {
2018                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2019                                           timeout, retries);
2020         } while ((driver_byte(result) & DRIVER_SENSE) &&
2021                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2022                  --retries);
2023
2024         if (!sshdr)
2025                 /* could not allocate sense buffer, so can't process it */
2026                 return result;
2027
2028         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2029
2030                 if ((scsi_sense_valid(sshdr)) &&
2031                     ((sshdr->sense_key == UNIT_ATTENTION) ||
2032                      (sshdr->sense_key == NOT_READY))) {
2033                         sdev->changed = 1;
2034                         result = 0;
2035                 }
2036         }
2037         if (!sshdr_external)
2038                 kfree(sshdr);
2039         return result;
2040 }
2041 EXPORT_SYMBOL(scsi_test_unit_ready);
2042
2043 /**
2044  *      scsi_device_set_state - Take the given device through the device state model.
2045  *      @sdev:  scsi device to change the state of.
2046  *      @state: state to change to.
2047  *
2048  *      Returns zero if unsuccessful or an error if the requested 
2049  *      transition is illegal.
2050  */
2051 int
2052 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2053 {
2054         enum scsi_device_state oldstate = sdev->sdev_state;
2055
2056         if (state == oldstate)
2057                 return 0;
2058
2059         switch (state) {
2060         case SDEV_CREATED:
2061                 /* There are no legal states that come back to
2062                  * created.  This is the manually initialised start
2063                  * state */
2064                 goto illegal;
2065                         
2066         case SDEV_RUNNING:
2067                 switch (oldstate) {
2068                 case SDEV_CREATED:
2069                 case SDEV_OFFLINE:
2070                 case SDEV_QUIESCE:
2071                 case SDEV_BLOCK:
2072                         break;
2073                 default:
2074                         goto illegal;
2075                 }
2076                 break;
2077
2078         case SDEV_QUIESCE:
2079                 switch (oldstate) {
2080                 case SDEV_RUNNING:
2081                 case SDEV_OFFLINE:
2082                         break;
2083                 default:
2084                         goto illegal;
2085                 }
2086                 break;
2087
2088         case SDEV_OFFLINE:
2089                 switch (oldstate) {
2090                 case SDEV_CREATED:
2091                 case SDEV_RUNNING:
2092                 case SDEV_QUIESCE:
2093                 case SDEV_BLOCK:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_BLOCK:
2101                 switch (oldstate) {
2102                 case SDEV_CREATED:
2103                 case SDEV_RUNNING:
2104                         break;
2105                 default:
2106                         goto illegal;
2107                 }
2108                 break;
2109
2110         case SDEV_CANCEL:
2111                 switch (oldstate) {
2112                 case SDEV_CREATED:
2113                 case SDEV_RUNNING:
2114                 case SDEV_QUIESCE:
2115                 case SDEV_OFFLINE:
2116                 case SDEV_BLOCK:
2117                         break;
2118                 default:
2119                         goto illegal;
2120                 }
2121                 break;
2122
2123         case SDEV_DEL:
2124                 switch (oldstate) {
2125                 case SDEV_CREATED:
2126                 case SDEV_RUNNING:
2127                 case SDEV_OFFLINE:
2128                 case SDEV_CANCEL:
2129                         break;
2130                 default:
2131                         goto illegal;
2132                 }
2133                 break;
2134
2135         }
2136         sdev->sdev_state = state;
2137         return 0;
2138
2139  illegal:
2140         SCSI_LOG_ERROR_RECOVERY(1, 
2141                                 sdev_printk(KERN_ERR, sdev,
2142                                             "Illegal state transition %s->%s\n",
2143                                             scsi_device_state_name(oldstate),
2144                                             scsi_device_state_name(state))
2145                                 );
2146         return -EINVAL;
2147 }
2148 EXPORT_SYMBOL(scsi_device_set_state);
2149
2150 /**
2151  *      sdev_evt_emit - emit a single SCSI device uevent
2152  *      @sdev: associated SCSI device
2153  *      @evt: event to emit
2154  *
2155  *      Send a single uevent (scsi_event) to the associated scsi_device.
2156  */
2157 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2158 {
2159         int idx = 0;
2160         char *envp[3];
2161
2162         switch (evt->evt_type) {
2163         case SDEV_EVT_MEDIA_CHANGE:
2164                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2165                 break;
2166
2167         default:
2168                 /* do nothing */
2169                 break;
2170         }
2171
2172         envp[idx++] = NULL;
2173
2174         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2175 }
2176
2177 /**
2178  *      sdev_evt_thread - send a uevent for each scsi event
2179  *      @work: work struct for scsi_device
2180  *
2181  *      Dispatch queued events to their associated scsi_device kobjects
2182  *      as uevents.
2183  */
2184 void scsi_evt_thread(struct work_struct *work)
2185 {
2186         struct scsi_device *sdev;
2187         LIST_HEAD(event_list);
2188
2189         sdev = container_of(work, struct scsi_device, event_work);
2190
2191         while (1) {
2192                 struct scsi_event *evt;
2193                 struct list_head *this, *tmp;
2194                 unsigned long flags;
2195
2196                 spin_lock_irqsave(&sdev->list_lock, flags);
2197                 list_splice_init(&sdev->event_list, &event_list);
2198                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2199
2200                 if (list_empty(&event_list))
2201                         break;
2202
2203                 list_for_each_safe(this, tmp, &event_list) {
2204                         evt = list_entry(this, struct scsi_event, node);
2205                         list_del(&evt->node);
2206                         scsi_evt_emit(sdev, evt);
2207                         kfree(evt);
2208                 }
2209         }
2210 }
2211
2212 /**
2213  *      sdev_evt_send - send asserted event to uevent thread
2214  *      @sdev: scsi_device event occurred on
2215  *      @evt: event to send
2216  *
2217  *      Assert scsi device event asynchronously.
2218  */
2219 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2220 {
2221         unsigned long flags;
2222
2223 #if 0
2224         /* FIXME: currently this check eliminates all media change events
2225          * for polled devices.  Need to update to discriminate between AN
2226          * and polled events */
2227         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2228                 kfree(evt);
2229                 return;
2230         }
2231 #endif
2232
2233         spin_lock_irqsave(&sdev->list_lock, flags);
2234         list_add_tail(&evt->node, &sdev->event_list);
2235         schedule_work(&sdev->event_work);
2236         spin_unlock_irqrestore(&sdev->list_lock, flags);
2237 }
2238 EXPORT_SYMBOL_GPL(sdev_evt_send);
2239
2240 /**
2241  *      sdev_evt_alloc - allocate a new scsi event
2242  *      @evt_type: type of event to allocate
2243  *      @gfpflags: GFP flags for allocation
2244  *
2245  *      Allocates and returns a new scsi_event.
2246  */
2247 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2248                                   gfp_t gfpflags)
2249 {
2250         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2251         if (!evt)
2252                 return NULL;
2253
2254         evt->evt_type = evt_type;
2255         INIT_LIST_HEAD(&evt->node);
2256
2257         /* evt_type-specific initialization, if any */
2258         switch (evt_type) {
2259         case SDEV_EVT_MEDIA_CHANGE:
2260         default:
2261                 /* do nothing */
2262                 break;
2263         }
2264
2265         return evt;
2266 }
2267 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2268
2269 /**
2270  *      sdev_evt_send_simple - send asserted event to uevent thread
2271  *      @sdev: scsi_device event occurred on
2272  *      @evt_type: type of event to send
2273  *      @gfpflags: GFP flags for allocation
2274  *
2275  *      Assert scsi device event asynchronously, given an event type.
2276  */
2277 void sdev_evt_send_simple(struct scsi_device *sdev,
2278                           enum scsi_device_event evt_type, gfp_t gfpflags)
2279 {
2280         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2281         if (!evt) {
2282                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2283                             evt_type);
2284                 return;
2285         }
2286
2287         sdev_evt_send(sdev, evt);
2288 }
2289 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2290
2291 /**
2292  *      scsi_device_quiesce - Block user issued commands.
2293  *      @sdev:  scsi device to quiesce.
2294  *
2295  *      This works by trying to transition to the SDEV_QUIESCE state
2296  *      (which must be a legal transition).  When the device is in this
2297  *      state, only special requests will be accepted, all others will
2298  *      be deferred.  Since special requests may also be requeued requests,
2299  *      a successful return doesn't guarantee the device will be 
2300  *      totally quiescent.
2301  *
2302  *      Must be called with user context, may sleep.
2303  *
2304  *      Returns zero if unsuccessful or an error if not.
2305  */
2306 int
2307 scsi_device_quiesce(struct scsi_device *sdev)
2308 {
2309         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2310         if (err)
2311                 return err;
2312
2313         scsi_run_queue(sdev->request_queue);
2314         while (sdev->device_busy) {
2315                 msleep_interruptible(200);
2316                 scsi_run_queue(sdev->request_queue);
2317         }
2318         return 0;
2319 }
2320 EXPORT_SYMBOL(scsi_device_quiesce);
2321
2322 /**
2323  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2324  *      @sdev:  scsi device to resume.
2325  *
2326  *      Moves the device from quiesced back to running and restarts the
2327  *      queues.
2328  *
2329  *      Must be called with user context, may sleep.
2330  */
2331 void
2332 scsi_device_resume(struct scsi_device *sdev)
2333 {
2334         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2335                 return;
2336         scsi_run_queue(sdev->request_queue);
2337 }
2338 EXPORT_SYMBOL(scsi_device_resume);
2339
2340 static void
2341 device_quiesce_fn(struct scsi_device *sdev, void *data)
2342 {
2343         scsi_device_quiesce(sdev);
2344 }
2345
2346 void
2347 scsi_target_quiesce(struct scsi_target *starget)
2348 {
2349         starget_for_each_device(starget, NULL, device_quiesce_fn);
2350 }
2351 EXPORT_SYMBOL(scsi_target_quiesce);
2352
2353 static void
2354 device_resume_fn(struct scsi_device *sdev, void *data)
2355 {
2356         scsi_device_resume(sdev);
2357 }
2358
2359 void
2360 scsi_target_resume(struct scsi_target *starget)
2361 {
2362         starget_for_each_device(starget, NULL, device_resume_fn);
2363 }
2364 EXPORT_SYMBOL(scsi_target_resume);
2365
2366 /**
2367  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2368  * @sdev:       device to block
2369  *
2370  * Block request made by scsi lld's to temporarily stop all
2371  * scsi commands on the specified device.  Called from interrupt
2372  * or normal process context.
2373  *
2374  * Returns zero if successful or error if not
2375  *
2376  * Notes:       
2377  *      This routine transitions the device to the SDEV_BLOCK state
2378  *      (which must be a legal transition).  When the device is in this
2379  *      state, all commands are deferred until the scsi lld reenables
2380  *      the device with scsi_device_unblock or device_block_tmo fires.
2381  *      This routine assumes the host_lock is held on entry.
2382  */
2383 int
2384 scsi_internal_device_block(struct scsi_device *sdev)
2385 {
2386         struct request_queue *q = sdev->request_queue;
2387         unsigned long flags;
2388         int err = 0;
2389
2390         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2391         if (err)
2392                 return err;
2393
2394         /* 
2395          * The device has transitioned to SDEV_BLOCK.  Stop the
2396          * block layer from calling the midlayer with this device's
2397          * request queue. 
2398          */
2399         spin_lock_irqsave(q->queue_lock, flags);
2400         blk_stop_queue(q);
2401         spin_unlock_irqrestore(q->queue_lock, flags);
2402
2403         return 0;
2404 }
2405 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2406  
2407 /**
2408  * scsi_internal_device_unblock - resume a device after a block request
2409  * @sdev:       device to resume
2410  *
2411  * Called by scsi lld's or the midlayer to restart the device queue
2412  * for the previously suspended scsi device.  Called from interrupt or
2413  * normal process context.
2414  *
2415  * Returns zero if successful or error if not.
2416  *
2417  * Notes:       
2418  *      This routine transitions the device to the SDEV_RUNNING state
2419  *      (which must be a legal transition) allowing the midlayer to
2420  *      goose the queue for this device.  This routine assumes the 
2421  *      host_lock is held upon entry.
2422  */
2423 int
2424 scsi_internal_device_unblock(struct scsi_device *sdev)
2425 {
2426         struct request_queue *q = sdev->request_queue; 
2427         int err;
2428         unsigned long flags;
2429         
2430         /* 
2431          * Try to transition the scsi device to SDEV_RUNNING
2432          * and goose the device queue if successful.  
2433          */
2434         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2435         if (err)
2436                 return err;
2437
2438         spin_lock_irqsave(q->queue_lock, flags);
2439         blk_start_queue(q);
2440         spin_unlock_irqrestore(q->queue_lock, flags);
2441
2442         return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2445
2446 static void
2447 device_block(struct scsi_device *sdev, void *data)
2448 {
2449         scsi_internal_device_block(sdev);
2450 }
2451
2452 static int
2453 target_block(struct device *dev, void *data)
2454 {
2455         if (scsi_is_target_device(dev))
2456                 starget_for_each_device(to_scsi_target(dev), NULL,
2457                                         device_block);
2458         return 0;
2459 }
2460
2461 void
2462 scsi_target_block(struct device *dev)
2463 {
2464         if (scsi_is_target_device(dev))
2465                 starget_for_each_device(to_scsi_target(dev), NULL,
2466                                         device_block);
2467         else
2468                 device_for_each_child(dev, NULL, target_block);
2469 }
2470 EXPORT_SYMBOL_GPL(scsi_target_block);
2471
2472 static void
2473 device_unblock(struct scsi_device *sdev, void *data)
2474 {
2475         scsi_internal_device_unblock(sdev);
2476 }
2477
2478 static int
2479 target_unblock(struct device *dev, void *data)
2480 {
2481         if (scsi_is_target_device(dev))
2482                 starget_for_each_device(to_scsi_target(dev), NULL,
2483                                         device_unblock);
2484         return 0;
2485 }
2486
2487 void
2488 scsi_target_unblock(struct device *dev)
2489 {
2490         if (scsi_is_target_device(dev))
2491                 starget_for_each_device(to_scsi_target(dev), NULL,
2492                                         device_unblock);
2493         else
2494                 device_for_each_child(dev, NULL, target_unblock);
2495 }
2496 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2497
2498 /**
2499  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2500  * @sgl:        scatter-gather list
2501  * @sg_count:   number of segments in sg
2502  * @offset:     offset in bytes into sg, on return offset into the mapped area
2503  * @len:        bytes to map, on return number of bytes mapped
2504  *
2505  * Returns virtual address of the start of the mapped page
2506  */
2507 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2508                           size_t *offset, size_t *len)
2509 {
2510         int i;
2511         size_t sg_len = 0, len_complete = 0;
2512         struct scatterlist *sg;
2513         struct page *page;
2514
2515         WARN_ON(!irqs_disabled());
2516
2517         for_each_sg(sgl, sg, sg_count, i) {
2518                 len_complete = sg_len; /* Complete sg-entries */
2519                 sg_len += sg->length;
2520                 if (sg_len > *offset)
2521                         break;
2522         }
2523
2524         if (unlikely(i == sg_count)) {
2525                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2526                         "elements %d\n",
2527                        __FUNCTION__, sg_len, *offset, sg_count);
2528                 WARN_ON(1);
2529                 return NULL;
2530         }
2531
2532         /* Offset starting from the beginning of first page in this sg-entry */
2533         *offset = *offset - len_complete + sg->offset;
2534
2535         /* Assumption: contiguous pages can be accessed as "page + i" */
2536         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2537         *offset &= ~PAGE_MASK;
2538
2539         /* Bytes in this sg-entry from *offset to the end of the page */
2540         sg_len = PAGE_SIZE - *offset;
2541         if (*len > sg_len)
2542                 *len = sg_len;
2543
2544         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2545 }
2546 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2547
2548 /**
2549  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2550  * @virt:       virtual address to be unmapped
2551  */
2552 void scsi_kunmap_atomic_sg(void *virt)
2553 {
2554         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2555 }
2556 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);