Merge branch 'for-linus' into test
[linux-2.6-block.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                         SCSI_SENSE_BUFFERSIZE, 0,
83                         SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create("scsi_sense_cache",
89                         SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90                 if (!scsi_sense_cache)
91                         ret = -ENOMEM;
92         }
93
94         mutex_unlock(&scsi_sense_cache_mutex);
95         return ret;
96 }
97
98 /*
99  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100  * not change behaviour from the previous unplug mechanism, experimentation
101  * may prove this needs changing.
102  */
103 #define SCSI_QUEUE_DELAY        3
104
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
107 {
108         struct Scsi_Host *host = cmd->device->host;
109         struct scsi_device *device = cmd->device;
110         struct scsi_target *starget = scsi_target(device);
111
112         /*
113          * Set the appropriate busy bit for the device/host.
114          *
115          * If the host/device isn't busy, assume that something actually
116          * completed, and that we should be able to queue a command now.
117          *
118          * Note that the prior mid-layer assumption that any host could
119          * always queue at least one command is now broken.  The mid-layer
120          * will implement a user specifiable stall (see
121          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122          * if a command is requeued with no other commands outstanding
123          * either for the device or for the host.
124          */
125         switch (reason) {
126         case SCSI_MLQUEUE_HOST_BUSY:
127                 atomic_set(&host->host_blocked, host->max_host_blocked);
128                 break;
129         case SCSI_MLQUEUE_DEVICE_BUSY:
130         case SCSI_MLQUEUE_EH_RETRY:
131                 atomic_set(&device->device_blocked,
132                            device->max_device_blocked);
133                 break;
134         case SCSI_MLQUEUE_TARGET_BUSY:
135                 atomic_set(&starget->target_blocked,
136                            starget->max_target_blocked);
137                 break;
138         }
139 }
140
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
142 {
143         struct scsi_device *sdev = cmd->device;
144
145         if (cmd->request->rq_flags & RQF_DONTPREP) {
146                 cmd->request->rq_flags &= ~RQF_DONTPREP;
147                 scsi_mq_uninit_cmd(cmd);
148         } else {
149                 WARN_ON_ONCE(true);
150         }
151         blk_mq_requeue_request(cmd->request, true);
152         put_device(&sdev->sdev_gendev);
153 }
154
155 /**
156  * __scsi_queue_insert - private queue insertion
157  * @cmd: The SCSI command being requeued
158  * @reason:  The reason for the requeue
159  * @unbusy: Whether the queue should be unbusied
160  *
161  * This is a private queue insertion.  The public interface
162  * scsi_queue_insert() always assumes the queue should be unbusied
163  * because it's always called before the completion.  This function is
164  * for a requeue after completion, which should only occur in this
165  * file.
166  */
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
168 {
169         struct scsi_device *device = cmd->device;
170         struct request_queue *q = device->request_queue;
171         unsigned long flags;
172
173         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174                 "Inserting command %p into mlqueue\n", cmd));
175
176         scsi_set_blocked(cmd, reason);
177
178         /*
179          * Decrement the counters, since these commands are no longer
180          * active on the host/device.
181          */
182         if (unbusy)
183                 scsi_device_unbusy(device);
184
185         /*
186          * Requeue this command.  It will go before all other commands
187          * that are already in the queue. Schedule requeue work under
188          * lock such that the kblockd_schedule_work() call happens
189          * before blk_cleanup_queue() finishes.
190          */
191         cmd->result = 0;
192         if (q->mq_ops) {
193                 scsi_mq_requeue_cmd(cmd);
194                 return;
195         }
196         spin_lock_irqsave(q->queue_lock, flags);
197         blk_requeue_request(q, cmd->request);
198         kblockd_schedule_work(&device->requeue_work);
199         spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201
202 /*
203  * Function:    scsi_queue_insert()
204  *
205  * Purpose:     Insert a command in the midlevel queue.
206  *
207  * Arguments:   cmd    - command that we are adding to queue.
208  *              reason - why we are inserting command to queue.
209  *
210  * Lock status: Assumed that lock is not held upon entry.
211  *
212  * Returns:     Nothing.
213  *
214  * Notes:       We do this for one of two cases.  Either the host is busy
215  *              and it cannot accept any more commands for the time being,
216  *              or the device returned QUEUE_FULL and can accept no more
217  *              commands.
218  * Notes:       This could be called either from an interrupt context or a
219  *              normal process context.
220  */
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
222 {
223         __scsi_queue_insert(cmd, reason, true);
224 }
225
226
227 /**
228  * scsi_execute - insert request and wait for the result
229  * @sdev:       scsi device
230  * @cmd:        scsi command
231  * @data_direction: data direction
232  * @buffer:     data buffer
233  * @bufflen:    len of buffer
234  * @sense:      optional sense buffer
235  * @sshdr:      optional decoded sense header
236  * @timeout:    request timeout in seconds
237  * @retries:    number of times to retry request
238  * @flags:      flags for ->cmd_flags
239  * @rq_flags:   flags for ->rq_flags
240  * @resid:      optional residual length
241  *
242  * Returns the scsi_cmnd result field if a command was executed, or a negative
243  * Linux error code if we didn't get that far.
244  */
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246                  int data_direction, void *buffer, unsigned bufflen,
247                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
248                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
249                  int *resid)
250 {
251         struct request *req;
252         struct scsi_request *rq;
253         int ret = DRIVER_ERROR << 24;
254
255         req = blk_get_request_flags(sdev->request_queue,
256                         data_direction == DMA_TO_DEVICE ?
257                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258         if (IS_ERR(req))
259                 return ret;
260         rq = scsi_req(req);
261
262         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
263                                         buffer, bufflen, __GFP_RECLAIM))
264                 goto out;
265
266         rq->cmd_len = COMMAND_SIZE(cmd[0]);
267         memcpy(rq->cmd, cmd, rq->cmd_len);
268         rq->retries = retries;
269         req->timeout = timeout;
270         req->cmd_flags |= flags;
271         req->rq_flags |= rq_flags | RQF_QUIET;
272
273         /*
274          * head injection *required* here otherwise quiesce won't work
275          */
276         blk_execute_rq(req->q, NULL, req, 1);
277
278         /*
279          * Some devices (USB mass-storage in particular) may transfer
280          * garbage data together with a residue indicating that the data
281          * is invalid.  Prevent the garbage from being misinterpreted
282          * and prevent security leaks by zeroing out the excess data.
283          */
284         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
286
287         if (resid)
288                 *resid = rq->resid_len;
289         if (sense && rq->sense_len)
290                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291         if (sshdr)
292                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293         ret = rq->result;
294  out:
295         blk_put_request(req);
296
297         return ret;
298 }
299 EXPORT_SYMBOL(scsi_execute);
300
301 /*
302  * Function:    scsi_init_cmd_errh()
303  *
304  * Purpose:     Initialize cmd fields related to error handling.
305  *
306  * Arguments:   cmd     - command that is ready to be queued.
307  *
308  * Notes:       This function has the job of initializing a number of
309  *              fields related to error handling.   Typically this will
310  *              be called once for each command, as required.
311  */
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
313 {
314         cmd->serial_number = 0;
315         scsi_set_resid(cmd, 0);
316         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317         if (cmd->cmd_len == 0)
318                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
319 }
320
321 /*
322  * Decrement the host_busy counter and wake up the error handler if necessary.
323  * Avoid as follows that the error handler is not woken up if shost->host_busy
324  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325  * with an RCU read lock in this function to ensure that this function in its
326  * entirety either finishes before scsi_eh_scmd_add() increases the
327  * host_failed counter or that it notices the shost state change made by
328  * scsi_eh_scmd_add().
329  */
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
331 {
332         unsigned long flags;
333
334         rcu_read_lock();
335         atomic_dec(&shost->host_busy);
336         if (unlikely(scsi_host_in_recovery(shost))) {
337                 spin_lock_irqsave(shost->host_lock, flags);
338                 if (shost->host_failed || shost->host_eh_scheduled)
339                         scsi_eh_wakeup(shost);
340                 spin_unlock_irqrestore(shost->host_lock, flags);
341         }
342         rcu_read_unlock();
343 }
344
345 void scsi_device_unbusy(struct scsi_device *sdev)
346 {
347         struct Scsi_Host *shost = sdev->host;
348         struct scsi_target *starget = scsi_target(sdev);
349
350         scsi_dec_host_busy(shost);
351
352         if (starget->can_queue > 0)
353                 atomic_dec(&starget->target_busy);
354
355         atomic_dec(&sdev->device_busy);
356 }
357
358 static void scsi_kick_queue(struct request_queue *q)
359 {
360         if (q->mq_ops)
361                 blk_mq_start_hw_queues(q);
362         else
363                 blk_run_queue(q);
364 }
365
366 /*
367  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368  * and call blk_run_queue for all the scsi_devices on the target -
369  * including current_sdev first.
370  *
371  * Called with *no* scsi locks held.
372  */
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
374 {
375         struct Scsi_Host *shost = current_sdev->host;
376         struct scsi_device *sdev, *tmp;
377         struct scsi_target *starget = scsi_target(current_sdev);
378         unsigned long flags;
379
380         spin_lock_irqsave(shost->host_lock, flags);
381         starget->starget_sdev_user = NULL;
382         spin_unlock_irqrestore(shost->host_lock, flags);
383
384         /*
385          * Call blk_run_queue for all LUNs on the target, starting with
386          * current_sdev. We race with others (to set starget_sdev_user),
387          * but in most cases, we will be first. Ideally, each LU on the
388          * target would get some limited time or requests on the target.
389          */
390         scsi_kick_queue(current_sdev->request_queue);
391
392         spin_lock_irqsave(shost->host_lock, flags);
393         if (starget->starget_sdev_user)
394                 goto out;
395         list_for_each_entry_safe(sdev, tmp, &starget->devices,
396                         same_target_siblings) {
397                 if (sdev == current_sdev)
398                         continue;
399                 if (scsi_device_get(sdev))
400                         continue;
401
402                 spin_unlock_irqrestore(shost->host_lock, flags);
403                 scsi_kick_queue(sdev->request_queue);
404                 spin_lock_irqsave(shost->host_lock, flags);
405         
406                 scsi_device_put(sdev);
407         }
408  out:
409         spin_unlock_irqrestore(shost->host_lock, flags);
410 }
411
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
413 {
414         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415                 return true;
416         if (atomic_read(&sdev->device_blocked) > 0)
417                 return true;
418         return false;
419 }
420
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
422 {
423         if (starget->can_queue > 0) {
424                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425                         return true;
426                 if (atomic_read(&starget->target_blocked) > 0)
427                         return true;
428         }
429         return false;
430 }
431
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
433 {
434         if (shost->can_queue > 0 &&
435             atomic_read(&shost->host_busy) >= shost->can_queue)
436                 return true;
437         if (atomic_read(&shost->host_blocked) > 0)
438                 return true;
439         if (shost->host_self_blocked)
440                 return true;
441         return false;
442 }
443
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
445 {
446         LIST_HEAD(starved_list);
447         struct scsi_device *sdev;
448         unsigned long flags;
449
450         spin_lock_irqsave(shost->host_lock, flags);
451         list_splice_init(&shost->starved_list, &starved_list);
452
453         while (!list_empty(&starved_list)) {
454                 struct request_queue *slq;
455
456                 /*
457                  * As long as shost is accepting commands and we have
458                  * starved queues, call blk_run_queue. scsi_request_fn
459                  * drops the queue_lock and can add us back to the
460                  * starved_list.
461                  *
462                  * host_lock protects the starved_list and starved_entry.
463                  * scsi_request_fn must get the host_lock before checking
464                  * or modifying starved_list or starved_entry.
465                  */
466                 if (scsi_host_is_busy(shost))
467                         break;
468
469                 sdev = list_entry(starved_list.next,
470                                   struct scsi_device, starved_entry);
471                 list_del_init(&sdev->starved_entry);
472                 if (scsi_target_is_busy(scsi_target(sdev))) {
473                         list_move_tail(&sdev->starved_entry,
474                                        &shost->starved_list);
475                         continue;
476                 }
477
478                 /*
479                  * Once we drop the host lock, a racing scsi_remove_device()
480                  * call may remove the sdev from the starved list and destroy
481                  * it and the queue.  Mitigate by taking a reference to the
482                  * queue and never touching the sdev again after we drop the
483                  * host lock.  Note: if __scsi_remove_device() invokes
484                  * blk_cleanup_queue() before the queue is run from this
485                  * function then blk_run_queue() will return immediately since
486                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
487                  */
488                 slq = sdev->request_queue;
489                 if (!blk_get_queue(slq))
490                         continue;
491                 spin_unlock_irqrestore(shost->host_lock, flags);
492
493                 scsi_kick_queue(slq);
494                 blk_put_queue(slq);
495
496                 spin_lock_irqsave(shost->host_lock, flags);
497         }
498         /* put any unprocessed entries back */
499         list_splice(&starved_list, &shost->starved_list);
500         spin_unlock_irqrestore(shost->host_lock, flags);
501 }
502
503 /*
504  * Function:   scsi_run_queue()
505  *
506  * Purpose:    Select a proper request queue to serve next
507  *
508  * Arguments:  q       - last request's queue
509  *
510  * Returns:     Nothing
511  *
512  * Notes:      The previous command was completely finished, start
513  *             a new one if possible.
514  */
515 static void scsi_run_queue(struct request_queue *q)
516 {
517         struct scsi_device *sdev = q->queuedata;
518
519         if (scsi_target(sdev)->single_lun)
520                 scsi_single_lun_run(sdev);
521         if (!list_empty(&sdev->host->starved_list))
522                 scsi_starved_list_run(sdev->host);
523
524         if (q->mq_ops)
525                 blk_mq_run_hw_queues(q, false);
526         else
527                 blk_run_queue(q);
528 }
529
530 void scsi_requeue_run_queue(struct work_struct *work)
531 {
532         struct scsi_device *sdev;
533         struct request_queue *q;
534
535         sdev = container_of(work, struct scsi_device, requeue_work);
536         q = sdev->request_queue;
537         scsi_run_queue(q);
538 }
539
540 /*
541  * Function:    scsi_requeue_command()
542  *
543  * Purpose:     Handle post-processing of completed commands.
544  *
545  * Arguments:   q       - queue to operate on
546  *              cmd     - command that may need to be requeued.
547  *
548  * Returns:     Nothing
549  *
550  * Notes:       After command completion, there may be blocks left
551  *              over which weren't finished by the previous command
552  *              this can be for a number of reasons - the main one is
553  *              I/O errors in the middle of the request, in which case
554  *              we need to request the blocks that come after the bad
555  *              sector.
556  * Notes:       Upon return, cmd is a stale pointer.
557  */
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
559 {
560         struct scsi_device *sdev = cmd->device;
561         struct request *req = cmd->request;
562         unsigned long flags;
563
564         spin_lock_irqsave(q->queue_lock, flags);
565         blk_unprep_request(req);
566         req->special = NULL;
567         scsi_put_command(cmd);
568         blk_requeue_request(q, req);
569         spin_unlock_irqrestore(q->queue_lock, flags);
570
571         scsi_run_queue(q);
572
573         put_device(&sdev->sdev_gendev);
574 }
575
576 void scsi_run_host_queues(struct Scsi_Host *shost)
577 {
578         struct scsi_device *sdev;
579
580         shost_for_each_device(sdev, shost)
581                 scsi_run_queue(sdev->request_queue);
582 }
583
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586         if (!blk_rq_is_passthrough(cmd->request)) {
587                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
588
589                 if (drv->uninit_command)
590                         drv->uninit_command(cmd);
591         }
592 }
593
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *sdb;
597
598         if (cmd->sdb.table.nents)
599                 sg_free_table_chained(&cmd->sdb.table, true);
600         if (cmd->request->next_rq) {
601                 sdb = cmd->request->next_rq->special;
602                 if (sdb)
603                         sg_free_table_chained(&sdb->table, true);
604         }
605         if (scsi_prot_sg_count(cmd))
606                 sg_free_table_chained(&cmd->prot_sdb->table, true);
607 }
608
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
610 {
611         scsi_mq_free_sgtables(cmd);
612         scsi_uninit_cmd(cmd);
613         scsi_del_cmd_from_list(cmd);
614 }
615
616 /*
617  * Function:    scsi_release_buffers()
618  *
619  * Purpose:     Free resources allocate for a scsi_command.
620  *
621  * Arguments:   cmd     - command that we are bailing.
622  *
623  * Lock status: Assumed that no lock is held upon entry.
624  *
625  * Returns:     Nothing
626  *
627  * Notes:       In the event that an upper level driver rejects a
628  *              command, we must release resources allocated during
629  *              the __init_io() function.  Primarily this would involve
630  *              the scatter-gather table.
631  */
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
633 {
634         if (cmd->sdb.table.nents)
635                 sg_free_table_chained(&cmd->sdb.table, false);
636
637         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
638
639         if (scsi_prot_sg_count(cmd))
640                 sg_free_table_chained(&cmd->prot_sdb->table, false);
641 }
642
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
644 {
645         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
646
647         sg_free_table_chained(&bidi_sdb->table, false);
648         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649         cmd->request->next_rq->special = NULL;
650 }
651
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653                 unsigned int bytes, unsigned int bidi_bytes)
654 {
655         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656         struct scsi_device *sdev = cmd->device;
657         struct request_queue *q = sdev->request_queue;
658
659         if (blk_update_request(req, error, bytes))
660                 return true;
661
662         /* Bidi request must be completed as a whole */
663         if (unlikely(bidi_bytes) &&
664             blk_update_request(req->next_rq, error, bidi_bytes))
665                 return true;
666
667         if (blk_queue_add_random(q))
668                 add_disk_randomness(req->rq_disk);
669
670         if (!blk_rq_is_scsi(req)) {
671                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672                 cmd->flags &= ~SCMD_INITIALIZED;
673         }
674
675         if (req->mq_ctx) {
676                 /*
677                  * In the MQ case the command gets freed by __blk_mq_end_request,
678                  * so we have to do all cleanup that depends on it earlier.
679                  *
680                  * We also can't kick the queues from irq context, so we
681                  * will have to defer it to a workqueue.
682                  */
683                 scsi_mq_uninit_cmd(cmd);
684
685                 __blk_mq_end_request(req, error);
686
687                 if (scsi_target(sdev)->single_lun ||
688                     !list_empty(&sdev->host->starved_list))
689                         kblockd_schedule_work(&sdev->requeue_work);
690                 else
691                         blk_mq_run_hw_queues(q, true);
692         } else {
693                 unsigned long flags;
694
695                 if (bidi_bytes)
696                         scsi_release_bidi_buffers(cmd);
697                 scsi_release_buffers(cmd);
698                 scsi_put_command(cmd);
699
700                 spin_lock_irqsave(q->queue_lock, flags);
701                 blk_finish_request(req, error);
702                 spin_unlock_irqrestore(q->queue_lock, flags);
703
704                 scsi_run_queue(q);
705         }
706
707         put_device(&sdev->sdev_gendev);
708         return false;
709 }
710
711 /**
712  * __scsi_error_from_host_byte - translate SCSI error code into errno
713  * @cmd:        SCSI command (unused)
714  * @result:     scsi error code
715  *
716  * Translate SCSI error code into block errors.
717  */
718 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
719                 int result)
720 {
721         switch (host_byte(result)) {
722         case DID_TRANSPORT_FAILFAST:
723                 return BLK_STS_TRANSPORT;
724         case DID_TARGET_FAILURE:
725                 set_host_byte(cmd, DID_OK);
726                 return BLK_STS_TARGET;
727         case DID_NEXUS_FAILURE:
728                 return BLK_STS_NEXUS;
729         case DID_ALLOC_FAILURE:
730                 set_host_byte(cmd, DID_OK);
731                 return BLK_STS_NOSPC;
732         case DID_MEDIUM_ERROR:
733                 set_host_byte(cmd, DID_OK);
734                 return BLK_STS_MEDIUM;
735         default:
736                 return BLK_STS_IOERR;
737         }
738 }
739
740 /*
741  * Function:    scsi_io_completion()
742  *
743  * Purpose:     Completion processing for block device I/O requests.
744  *
745  * Arguments:   cmd   - command that is finished.
746  *
747  * Lock status: Assumed that no lock is held upon entry.
748  *
749  * Returns:     Nothing
750  *
751  * Notes:       We will finish off the specified number of sectors.  If we
752  *              are done, the command block will be released and the queue
753  *              function will be goosed.  If we are not done then we have to
754  *              figure out what to do next:
755  *
756  *              a) We can call scsi_requeue_command().  The request
757  *                 will be unprepared and put back on the queue.  Then
758  *                 a new command will be created for it.  This should
759  *                 be used if we made forward progress, or if we want
760  *                 to switch from READ(10) to READ(6) for example.
761  *
762  *              b) We can call __scsi_queue_insert().  The request will
763  *                 be put back on the queue and retried using the same
764  *                 command as before, possibly after a delay.
765  *
766  *              c) We can call scsi_end_request() with -EIO to fail
767  *                 the remainder of the request.
768  */
769 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
770 {
771         int result = cmd->result;
772         struct request_queue *q = cmd->device->request_queue;
773         struct request *req = cmd->request;
774         blk_status_t error = BLK_STS_OK;
775         struct scsi_sense_hdr sshdr;
776         bool sense_valid = false;
777         int sense_deferred = 0, level = 0;
778         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
779               ACTION_DELAYED_RETRY} action;
780         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
781
782         if (result) {
783                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
784                 if (sense_valid)
785                         sense_deferred = scsi_sense_is_deferred(&sshdr);
786         }
787
788         if (blk_rq_is_passthrough(req)) {
789                 if (result) {
790                         if (sense_valid) {
791                                 /*
792                                  * SG_IO wants current and deferred errors
793                                  */
794                                 scsi_req(req)->sense_len =
795                                         min(8 + cmd->sense_buffer[7],
796                                             SCSI_SENSE_BUFFERSIZE);
797                         }
798                         if (!sense_deferred)
799                                 error = __scsi_error_from_host_byte(cmd, result);
800                 }
801                 /*
802                  * __scsi_error_from_host_byte may have reset the host_byte
803                  */
804                 scsi_req(req)->result = cmd->result;
805                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
806
807                 if (scsi_bidi_cmnd(cmd)) {
808                         /*
809                          * Bidi commands Must be complete as a whole,
810                          * both sides at once.
811                          */
812                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
813                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
814                                         blk_rq_bytes(req->next_rq)))
815                                 BUG();
816                         return;
817                 }
818         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
819                 /*
820                  * Flush commands do not transfers any data, and thus cannot use
821                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
822                  * This sets the error explicitly for the problem case.
823                  */
824                 error = __scsi_error_from_host_byte(cmd, result);
825         }
826
827         /* no bidi support for !blk_rq_is_passthrough yet */
828         BUG_ON(blk_bidi_rq(req));
829
830         /*
831          * Next deal with any sectors which we were able to correctly
832          * handle.
833          */
834         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
835                 "%u sectors total, %d bytes done.\n",
836                 blk_rq_sectors(req), good_bytes));
837
838         /*
839          * Recovered errors need reporting, but they're always treated as
840          * success, so fiddle the result code here.  For passthrough requests
841          * we already took a copy of the original into sreq->result which
842          * is what gets returned to the user
843          */
844         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
845                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
846                  * print since caller wants ATA registers. Only occurs on
847                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
848                  */
849                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
850                         ;
851                 else if (!(req->rq_flags & RQF_QUIET))
852                         scsi_print_sense(cmd);
853                 result = 0;
854                 /* for passthrough error may be set */
855                 error = BLK_STS_OK;
856         }
857
858         /*
859          * special case: failed zero length commands always need to
860          * drop down into the retry code. Otherwise, if we finished
861          * all bytes in the request we are done now.
862          */
863         if (!(blk_rq_bytes(req) == 0 && error) &&
864             !scsi_end_request(req, error, good_bytes, 0))
865                 return;
866
867         /*
868          * Kill remainder if no retrys.
869          */
870         if (error && scsi_noretry_cmd(cmd)) {
871                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
872                         BUG();
873                 return;
874         }
875
876         /*
877          * If there had been no error, but we have leftover bytes in the
878          * requeues just queue the command up again.
879          */
880         if (result == 0)
881                 goto requeue;
882
883         error = __scsi_error_from_host_byte(cmd, result);
884
885         if (host_byte(result) == DID_RESET) {
886                 /* Third party bus reset or reset for error recovery
887                  * reasons.  Just retry the command and see what
888                  * happens.
889                  */
890                 action = ACTION_RETRY;
891         } else if (sense_valid && !sense_deferred) {
892                 switch (sshdr.sense_key) {
893                 case UNIT_ATTENTION:
894                         if (cmd->device->removable) {
895                                 /* Detected disc change.  Set a bit
896                                  * and quietly refuse further access.
897                                  */
898                                 cmd->device->changed = 1;
899                                 action = ACTION_FAIL;
900                         } else {
901                                 /* Must have been a power glitch, or a
902                                  * bus reset.  Could not have been a
903                                  * media change, so we just retry the
904                                  * command and see what happens.
905                                  */
906                                 action = ACTION_RETRY;
907                         }
908                         break;
909                 case ILLEGAL_REQUEST:
910                         /* If we had an ILLEGAL REQUEST returned, then
911                          * we may have performed an unsupported
912                          * command.  The only thing this should be
913                          * would be a ten byte read where only a six
914                          * byte read was supported.  Also, on a system
915                          * where READ CAPACITY failed, we may have
916                          * read past the end of the disk.
917                          */
918                         if ((cmd->device->use_10_for_rw &&
919                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
920                             (cmd->cmnd[0] == READ_10 ||
921                              cmd->cmnd[0] == WRITE_10)) {
922                                 /* This will issue a new 6-byte command. */
923                                 cmd->device->use_10_for_rw = 0;
924                                 action = ACTION_REPREP;
925                         } else if (sshdr.asc == 0x10) /* DIX */ {
926                                 action = ACTION_FAIL;
927                                 error = BLK_STS_PROTECTION;
928                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
929                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
930                                 action = ACTION_FAIL;
931                                 error = BLK_STS_TARGET;
932                         } else
933                                 action = ACTION_FAIL;
934                         break;
935                 case ABORTED_COMMAND:
936                         action = ACTION_FAIL;
937                         if (sshdr.asc == 0x10) /* DIF */
938                                 error = BLK_STS_PROTECTION;
939                         break;
940                 case NOT_READY:
941                         /* If the device is in the process of becoming
942                          * ready, or has a temporary blockage, retry.
943                          */
944                         if (sshdr.asc == 0x04) {
945                                 switch (sshdr.ascq) {
946                                 case 0x01: /* becoming ready */
947                                 case 0x04: /* format in progress */
948                                 case 0x05: /* rebuild in progress */
949                                 case 0x06: /* recalculation in progress */
950                                 case 0x07: /* operation in progress */
951                                 case 0x08: /* Long write in progress */
952                                 case 0x09: /* self test in progress */
953                                 case 0x14: /* space allocation in progress */
954                                         action = ACTION_DELAYED_RETRY;
955                                         break;
956                                 default:
957                                         action = ACTION_FAIL;
958                                         break;
959                                 }
960                         } else
961                                 action = ACTION_FAIL;
962                         break;
963                 case VOLUME_OVERFLOW:
964                         /* See SSC3rXX or current. */
965                         action = ACTION_FAIL;
966                         break;
967                 default:
968                         action = ACTION_FAIL;
969                         break;
970                 }
971         } else
972                 action = ACTION_FAIL;
973
974         if (action != ACTION_FAIL &&
975             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
976                 action = ACTION_FAIL;
977
978         switch (action) {
979         case ACTION_FAIL:
980                 /* Give up and fail the remainder of the request */
981                 if (!(req->rq_flags & RQF_QUIET)) {
982                         static DEFINE_RATELIMIT_STATE(_rs,
983                                         DEFAULT_RATELIMIT_INTERVAL,
984                                         DEFAULT_RATELIMIT_BURST);
985
986                         if (unlikely(scsi_logging_level))
987                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
988                                                        SCSI_LOG_MLCOMPLETE_BITS);
989
990                         /*
991                          * if logging is enabled the failure will be printed
992                          * in scsi_log_completion(), so avoid duplicate messages
993                          */
994                         if (!level && __ratelimit(&_rs)) {
995                                 scsi_print_result(cmd, NULL, FAILED);
996                                 if (driver_byte(result) & DRIVER_SENSE)
997                                         scsi_print_sense(cmd);
998                                 scsi_print_command(cmd);
999                         }
1000                 }
1001                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1002                         return;
1003                 /*FALLTHRU*/
1004         case ACTION_REPREP:
1005         requeue:
1006                 /* Unprep the request and put it back at the head of the queue.
1007                  * A new command will be prepared and issued.
1008                  */
1009                 if (q->mq_ops) {
1010                         scsi_mq_requeue_cmd(cmd);
1011                 } else {
1012                         scsi_release_buffers(cmd);
1013                         scsi_requeue_command(q, cmd);
1014                 }
1015                 break;
1016         case ACTION_RETRY:
1017                 /* Retry the same command immediately */
1018                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1019                 break;
1020         case ACTION_DELAYED_RETRY:
1021                 /* Retry the same command after a delay */
1022                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1023                 break;
1024         }
1025 }
1026
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1028 {
1029         int count;
1030
1031         /*
1032          * If sg table allocation fails, requeue request later.
1033          */
1034         if (unlikely(sg_alloc_table_chained(&sdb->table,
1035                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036                 return BLKPREP_DEFER;
1037
1038         /* 
1039          * Next, walk the list, and fill in the addresses and sizes of
1040          * each segment.
1041          */
1042         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043         BUG_ON(count > sdb->table.nents);
1044         sdb->table.nents = count;
1045         sdb->length = blk_rq_payload_bytes(req);
1046         return BLKPREP_OK;
1047 }
1048
1049 /*
1050  * Function:    scsi_init_io()
1051  *
1052  * Purpose:     SCSI I/O initialize function.
1053  *
1054  * Arguments:   cmd   - Command descriptor we wish to initialize
1055  *
1056  * Returns:     0 on success
1057  *              BLKPREP_DEFER if the failure is retryable
1058  *              BLKPREP_KILL if the failure is fatal
1059  */
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1061 {
1062         struct scsi_device *sdev = cmd->device;
1063         struct request *rq = cmd->request;
1064         bool is_mq = (rq->mq_ctx != NULL);
1065         int error = BLKPREP_KILL;
1066
1067         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068                 goto err_exit;
1069
1070         error = scsi_init_sgtable(rq, &cmd->sdb);
1071         if (error)
1072                 goto err_exit;
1073
1074         if (blk_bidi_rq(rq)) {
1075                 if (!rq->q->mq_ops) {
1076                         struct scsi_data_buffer *bidi_sdb =
1077                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078                         if (!bidi_sdb) {
1079                                 error = BLKPREP_DEFER;
1080                                 goto err_exit;
1081                         }
1082
1083                         rq->next_rq->special = bidi_sdb;
1084                 }
1085
1086                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087                 if (error)
1088                         goto err_exit;
1089         }
1090
1091         if (blk_integrity_rq(rq)) {
1092                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093                 int ivecs, count;
1094
1095                 if (prot_sdb == NULL) {
1096                         /*
1097                          * This can happen if someone (e.g. multipath)
1098                          * queues a command to a device on an adapter
1099                          * that does not support DIX.
1100                          */
1101                         WARN_ON_ONCE(1);
1102                         error = BLKPREP_KILL;
1103                         goto err_exit;
1104                 }
1105
1106                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1107
1108                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109                                 prot_sdb->table.sgl)) {
1110                         error = BLKPREP_DEFER;
1111                         goto err_exit;
1112                 }
1113
1114                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115                                                 prot_sdb->table.sgl);
1116                 BUG_ON(unlikely(count > ivecs));
1117                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1118
1119                 cmd->prot_sdb = prot_sdb;
1120                 cmd->prot_sdb->table.nents = count;
1121         }
1122
1123         return BLKPREP_OK;
1124 err_exit:
1125         if (is_mq) {
1126                 scsi_mq_free_sgtables(cmd);
1127         } else {
1128                 scsi_release_buffers(cmd);
1129                 cmd->request->special = NULL;
1130                 scsi_put_command(cmd);
1131                 put_device(&sdev->sdev_gendev);
1132         }
1133         return error;
1134 }
1135 EXPORT_SYMBOL(scsi_init_io);
1136
1137 /**
1138  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1139  * @rq: Request associated with the SCSI command to be initialized.
1140  *
1141  * This function initializes the members of struct scsi_cmnd that must be
1142  * initialized before request processing starts and that won't be
1143  * reinitialized if a SCSI command is requeued.
1144  *
1145  * Called from inside blk_get_request() for pass-through requests and from
1146  * inside scsi_init_command() for filesystem requests.
1147  */
1148 static void scsi_initialize_rq(struct request *rq)
1149 {
1150         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1151
1152         scsi_req_init(&cmd->req);
1153         cmd->jiffies_at_alloc = jiffies;
1154         cmd->retries = 0;
1155 }
1156
1157 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1158 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1159 {
1160         struct scsi_device *sdev = cmd->device;
1161         struct Scsi_Host *shost = sdev->host;
1162         unsigned long flags;
1163
1164         if (shost->use_cmd_list) {
1165                 spin_lock_irqsave(&sdev->list_lock, flags);
1166                 list_add_tail(&cmd->list, &sdev->cmd_list);
1167                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1168         }
1169 }
1170
1171 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1172 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1173 {
1174         struct scsi_device *sdev = cmd->device;
1175         struct Scsi_Host *shost = sdev->host;
1176         unsigned long flags;
1177
1178         if (shost->use_cmd_list) {
1179                 spin_lock_irqsave(&sdev->list_lock, flags);
1180                 BUG_ON(list_empty(&cmd->list));
1181                 list_del_init(&cmd->list);
1182                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1183         }
1184 }
1185
1186 /* Called after a request has been started. */
1187 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1188 {
1189         void *buf = cmd->sense_buffer;
1190         void *prot = cmd->prot_sdb;
1191         struct request *rq = blk_mq_rq_from_pdu(cmd);
1192         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1193         unsigned long jiffies_at_alloc;
1194         int retries;
1195
1196         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1197                 flags |= SCMD_INITIALIZED;
1198                 scsi_initialize_rq(rq);
1199         }
1200
1201         jiffies_at_alloc = cmd->jiffies_at_alloc;
1202         retries = cmd->retries;
1203         /* zero out the cmd, except for the embedded scsi_request */
1204         memset((char *)cmd + sizeof(cmd->req), 0,
1205                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1206
1207         cmd->device = dev;
1208         cmd->sense_buffer = buf;
1209         cmd->prot_sdb = prot;
1210         cmd->flags = flags;
1211         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1212         cmd->jiffies_at_alloc = jiffies_at_alloc;
1213         cmd->retries = retries;
1214
1215         scsi_add_cmd_to_list(cmd);
1216 }
1217
1218 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1221
1222         /*
1223          * Passthrough requests may transfer data, in which case they must
1224          * a bio attached to them.  Or they might contain a SCSI command
1225          * that does not transfer data, in which case they may optionally
1226          * submit a request without an attached bio.
1227          */
1228         if (req->bio) {
1229                 int ret = scsi_init_io(cmd);
1230                 if (unlikely(ret))
1231                         return ret;
1232         } else {
1233                 BUG_ON(blk_rq_bytes(req));
1234
1235                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1236         }
1237
1238         cmd->cmd_len = scsi_req(req)->cmd_len;
1239         cmd->cmnd = scsi_req(req)->cmd;
1240         cmd->transfersize = blk_rq_bytes(req);
1241         cmd->allowed = scsi_req(req)->retries;
1242         return BLKPREP_OK;
1243 }
1244
1245 /*
1246  * Setup a normal block command.  These are simple request from filesystems
1247  * that still need to be translated to SCSI CDBs from the ULD.
1248  */
1249 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250 {
1251         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1252
1253         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1254                 int ret = sdev->handler->prep_fn(sdev, req);
1255                 if (ret != BLKPREP_OK)
1256                         return ret;
1257         }
1258
1259         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1260         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1261         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1262 }
1263
1264 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1265 {
1266         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268         if (!blk_rq_bytes(req))
1269                 cmd->sc_data_direction = DMA_NONE;
1270         else if (rq_data_dir(req) == WRITE)
1271                 cmd->sc_data_direction = DMA_TO_DEVICE;
1272         else
1273                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1274
1275         if (blk_rq_is_scsi(req))
1276                 return scsi_setup_scsi_cmnd(sdev, req);
1277         else
1278                 return scsi_setup_fs_cmnd(sdev, req);
1279 }
1280
1281 static int
1282 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1283 {
1284         int ret = BLKPREP_OK;
1285
1286         /*
1287          * If the device is not in running state we will reject some
1288          * or all commands.
1289          */
1290         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1291                 switch (sdev->sdev_state) {
1292                 case SDEV_OFFLINE:
1293                 case SDEV_TRANSPORT_OFFLINE:
1294                         /*
1295                          * If the device is offline we refuse to process any
1296                          * commands.  The device must be brought online
1297                          * before trying any recovery commands.
1298                          */
1299                         sdev_printk(KERN_ERR, sdev,
1300                                     "rejecting I/O to offline device\n");
1301                         ret = BLKPREP_KILL;
1302                         break;
1303                 case SDEV_DEL:
1304                         /*
1305                          * If the device is fully deleted, we refuse to
1306                          * process any commands as well.
1307                          */
1308                         sdev_printk(KERN_ERR, sdev,
1309                                     "rejecting I/O to dead device\n");
1310                         ret = BLKPREP_KILL;
1311                         break;
1312                 case SDEV_BLOCK:
1313                 case SDEV_CREATED_BLOCK:
1314                         ret = BLKPREP_DEFER;
1315                         break;
1316                 case SDEV_QUIESCE:
1317                         /*
1318                          * If the devices is blocked we defer normal commands.
1319                          */
1320                         if (req && !(req->rq_flags & RQF_PREEMPT))
1321                                 ret = BLKPREP_DEFER;
1322                         break;
1323                 default:
1324                         /*
1325                          * For any other not fully online state we only allow
1326                          * special commands.  In particular any user initiated
1327                          * command is not allowed.
1328                          */
1329                         if (req && !(req->rq_flags & RQF_PREEMPT))
1330                                 ret = BLKPREP_KILL;
1331                         break;
1332                 }
1333         }
1334         return ret;
1335 }
1336
1337 static int
1338 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1339 {
1340         struct scsi_device *sdev = q->queuedata;
1341
1342         switch (ret) {
1343         case BLKPREP_KILL:
1344         case BLKPREP_INVALID:
1345                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1346                 /* release the command and kill it */
1347                 if (req->special) {
1348                         struct scsi_cmnd *cmd = req->special;
1349                         scsi_release_buffers(cmd);
1350                         scsi_put_command(cmd);
1351                         put_device(&sdev->sdev_gendev);
1352                         req->special = NULL;
1353                 }
1354                 break;
1355         case BLKPREP_DEFER:
1356                 /*
1357                  * If we defer, the blk_peek_request() returns NULL, but the
1358                  * queue must be restarted, so we schedule a callback to happen
1359                  * shortly.
1360                  */
1361                 if (atomic_read(&sdev->device_busy) == 0)
1362                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1363                 break;
1364         default:
1365                 req->rq_flags |= RQF_DONTPREP;
1366         }
1367
1368         return ret;
1369 }
1370
1371 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1372 {
1373         struct scsi_device *sdev = q->queuedata;
1374         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1375         int ret;
1376
1377         ret = scsi_prep_state_check(sdev, req);
1378         if (ret != BLKPREP_OK)
1379                 goto out;
1380
1381         if (!req->special) {
1382                 /* Bail if we can't get a reference to the device */
1383                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1384                         ret = BLKPREP_DEFER;
1385                         goto out;
1386                 }
1387
1388                 scsi_init_command(sdev, cmd);
1389                 req->special = cmd;
1390         }
1391
1392         cmd->tag = req->tag;
1393         cmd->request = req;
1394         cmd->prot_op = SCSI_PROT_NORMAL;
1395
1396         ret = scsi_setup_cmnd(sdev, req);
1397 out:
1398         return scsi_prep_return(q, req, ret);
1399 }
1400
1401 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1402 {
1403         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1404 }
1405
1406 /*
1407  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1408  * return 0.
1409  *
1410  * Called with the queue_lock held.
1411  */
1412 static inline int scsi_dev_queue_ready(struct request_queue *q,
1413                                   struct scsi_device *sdev)
1414 {
1415         unsigned int busy;
1416
1417         busy = atomic_inc_return(&sdev->device_busy) - 1;
1418         if (atomic_read(&sdev->device_blocked)) {
1419                 if (busy)
1420                         goto out_dec;
1421
1422                 /*
1423                  * unblock after device_blocked iterates to zero
1424                  */
1425                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1426                         /*
1427                          * For the MQ case we take care of this in the caller.
1428                          */
1429                         if (!q->mq_ops)
1430                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1431                         goto out_dec;
1432                 }
1433                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1434                                    "unblocking device at zero depth\n"));
1435         }
1436
1437         if (busy >= sdev->queue_depth)
1438                 goto out_dec;
1439
1440         return 1;
1441 out_dec:
1442         atomic_dec(&sdev->device_busy);
1443         return 0;
1444 }
1445
1446 /*
1447  * scsi_target_queue_ready: checks if there we can send commands to target
1448  * @sdev: scsi device on starget to check.
1449  */
1450 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1451                                            struct scsi_device *sdev)
1452 {
1453         struct scsi_target *starget = scsi_target(sdev);
1454         unsigned int busy;
1455
1456         if (starget->single_lun) {
1457                 spin_lock_irq(shost->host_lock);
1458                 if (starget->starget_sdev_user &&
1459                     starget->starget_sdev_user != sdev) {
1460                         spin_unlock_irq(shost->host_lock);
1461                         return 0;
1462                 }
1463                 starget->starget_sdev_user = sdev;
1464                 spin_unlock_irq(shost->host_lock);
1465         }
1466
1467         if (starget->can_queue <= 0)
1468                 return 1;
1469
1470         busy = atomic_inc_return(&starget->target_busy) - 1;
1471         if (atomic_read(&starget->target_blocked) > 0) {
1472                 if (busy)
1473                         goto starved;
1474
1475                 /*
1476                  * unblock after target_blocked iterates to zero
1477                  */
1478                 if (atomic_dec_return(&starget->target_blocked) > 0)
1479                         goto out_dec;
1480
1481                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1482                                  "unblocking target at zero depth\n"));
1483         }
1484
1485         if (busy >= starget->can_queue)
1486                 goto starved;
1487
1488         return 1;
1489
1490 starved:
1491         spin_lock_irq(shost->host_lock);
1492         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1493         spin_unlock_irq(shost->host_lock);
1494 out_dec:
1495         if (starget->can_queue > 0)
1496                 atomic_dec(&starget->target_busy);
1497         return 0;
1498 }
1499
1500 /*
1501  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1502  * return 0. We must end up running the queue again whenever 0 is
1503  * returned, else IO can hang.
1504  */
1505 static inline int scsi_host_queue_ready(struct request_queue *q,
1506                                    struct Scsi_Host *shost,
1507                                    struct scsi_device *sdev)
1508 {
1509         unsigned int busy;
1510
1511         if (scsi_host_in_recovery(shost))
1512                 return 0;
1513
1514         busy = atomic_inc_return(&shost->host_busy) - 1;
1515         if (atomic_read(&shost->host_blocked) > 0) {
1516                 if (busy)
1517                         goto starved;
1518
1519                 /*
1520                  * unblock after host_blocked iterates to zero
1521                  */
1522                 if (atomic_dec_return(&shost->host_blocked) > 0)
1523                         goto out_dec;
1524
1525                 SCSI_LOG_MLQUEUE(3,
1526                         shost_printk(KERN_INFO, shost,
1527                                      "unblocking host at zero depth\n"));
1528         }
1529
1530         if (shost->can_queue > 0 && busy >= shost->can_queue)
1531                 goto starved;
1532         if (shost->host_self_blocked)
1533                 goto starved;
1534
1535         /* We're OK to process the command, so we can't be starved */
1536         if (!list_empty(&sdev->starved_entry)) {
1537                 spin_lock_irq(shost->host_lock);
1538                 if (!list_empty(&sdev->starved_entry))
1539                         list_del_init(&sdev->starved_entry);
1540                 spin_unlock_irq(shost->host_lock);
1541         }
1542
1543         return 1;
1544
1545 starved:
1546         spin_lock_irq(shost->host_lock);
1547         if (list_empty(&sdev->starved_entry))
1548                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1549         spin_unlock_irq(shost->host_lock);
1550 out_dec:
1551         scsi_dec_host_busy(shost);
1552         return 0;
1553 }
1554
1555 /*
1556  * Busy state exporting function for request stacking drivers.
1557  *
1558  * For efficiency, no lock is taken to check the busy state of
1559  * shost/starget/sdev, since the returned value is not guaranteed and
1560  * may be changed after request stacking drivers call the function,
1561  * regardless of taking lock or not.
1562  *
1563  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1564  * needs to return 'not busy'. Otherwise, request stacking drivers
1565  * may hold requests forever.
1566  */
1567 static int scsi_lld_busy(struct request_queue *q)
1568 {
1569         struct scsi_device *sdev = q->queuedata;
1570         struct Scsi_Host *shost;
1571
1572         if (blk_queue_dying(q))
1573                 return 0;
1574
1575         shost = sdev->host;
1576
1577         /*
1578          * Ignore host/starget busy state.
1579          * Since block layer does not have a concept of fairness across
1580          * multiple queues, congestion of host/starget needs to be handled
1581          * in SCSI layer.
1582          */
1583         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1584                 return 1;
1585
1586         return 0;
1587 }
1588
1589 /*
1590  * Kill a request for a dead device
1591  */
1592 static void scsi_kill_request(struct request *req, struct request_queue *q)
1593 {
1594         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1595         struct scsi_device *sdev;
1596         struct scsi_target *starget;
1597         struct Scsi_Host *shost;
1598
1599         blk_start_request(req);
1600
1601         scmd_printk(KERN_INFO, cmd, "killing request\n");
1602
1603         sdev = cmd->device;
1604         starget = scsi_target(sdev);
1605         shost = sdev->host;
1606         scsi_init_cmd_errh(cmd);
1607         cmd->result = DID_NO_CONNECT << 16;
1608         atomic_inc(&cmd->device->iorequest_cnt);
1609
1610         /*
1611          * SCSI request completion path will do scsi_device_unbusy(),
1612          * bump busy counts.  To bump the counters, we need to dance
1613          * with the locks as normal issue path does.
1614          */
1615         atomic_inc(&sdev->device_busy);
1616         atomic_inc(&shost->host_busy);
1617         if (starget->can_queue > 0)
1618                 atomic_inc(&starget->target_busy);
1619
1620         blk_complete_request(req);
1621 }
1622
1623 static void scsi_softirq_done(struct request *rq)
1624 {
1625         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1626         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1627         int disposition;
1628
1629         INIT_LIST_HEAD(&cmd->eh_entry);
1630
1631         atomic_inc(&cmd->device->iodone_cnt);
1632         if (cmd->result)
1633                 atomic_inc(&cmd->device->ioerr_cnt);
1634
1635         disposition = scsi_decide_disposition(cmd);
1636         if (disposition != SUCCESS &&
1637             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1638                 sdev_printk(KERN_ERR, cmd->device,
1639                             "timing out command, waited %lus\n",
1640                             wait_for/HZ);
1641                 disposition = SUCCESS;
1642         }
1643
1644         scsi_log_completion(cmd, disposition);
1645
1646         switch (disposition) {
1647                 case SUCCESS:
1648                         scsi_finish_command(cmd);
1649                         break;
1650                 case NEEDS_RETRY:
1651                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1652                         break;
1653                 case ADD_TO_MLQUEUE:
1654                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1655                         break;
1656                 default:
1657                         scsi_eh_scmd_add(cmd);
1658                         break;
1659         }
1660 }
1661
1662 /**
1663  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1664  * @cmd: command block we are dispatching.
1665  *
1666  * Return: nonzero return request was rejected and device's queue needs to be
1667  * plugged.
1668  */
1669 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1670 {
1671         struct Scsi_Host *host = cmd->device->host;
1672         int rtn = 0;
1673
1674         atomic_inc(&cmd->device->iorequest_cnt);
1675
1676         /* check if the device is still usable */
1677         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1678                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1679                  * returns an immediate error upwards, and signals
1680                  * that the device is no longer present */
1681                 cmd->result = DID_NO_CONNECT << 16;
1682                 goto done;
1683         }
1684
1685         /* Check to see if the scsi lld made this device blocked. */
1686         if (unlikely(scsi_device_blocked(cmd->device))) {
1687                 /*
1688                  * in blocked state, the command is just put back on
1689                  * the device queue.  The suspend state has already
1690                  * blocked the queue so future requests should not
1691                  * occur until the device transitions out of the
1692                  * suspend state.
1693                  */
1694                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1695                         "queuecommand : device blocked\n"));
1696                 return SCSI_MLQUEUE_DEVICE_BUSY;
1697         }
1698
1699         /* Store the LUN value in cmnd, if needed. */
1700         if (cmd->device->lun_in_cdb)
1701                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1702                                (cmd->device->lun << 5 & 0xe0);
1703
1704         scsi_log_send(cmd);
1705
1706         /*
1707          * Before we queue this command, check if the command
1708          * length exceeds what the host adapter can handle.
1709          */
1710         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1711                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1712                                "queuecommand : command too long. "
1713                                "cdb_size=%d host->max_cmd_len=%d\n",
1714                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1715                 cmd->result = (DID_ABORT << 16);
1716                 goto done;
1717         }
1718
1719         if (unlikely(host->shost_state == SHOST_DEL)) {
1720                 cmd->result = (DID_NO_CONNECT << 16);
1721                 goto done;
1722
1723         }
1724
1725         trace_scsi_dispatch_cmd_start(cmd);
1726         rtn = host->hostt->queuecommand(host, cmd);
1727         if (rtn) {
1728                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1729                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1730                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1731                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1732
1733                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1734                         "queuecommand : request rejected\n"));
1735         }
1736
1737         return rtn;
1738  done:
1739         cmd->scsi_done(cmd);
1740         return 0;
1741 }
1742
1743 /**
1744  * scsi_done - Invoke completion on finished SCSI command.
1745  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1746  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1747  *
1748  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1749  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1750  * calls blk_complete_request() for further processing.
1751  *
1752  * This function is interrupt context safe.
1753  */
1754 static void scsi_done(struct scsi_cmnd *cmd)
1755 {
1756         trace_scsi_dispatch_cmd_done(cmd);
1757         blk_complete_request(cmd->request);
1758 }
1759
1760 /*
1761  * Function:    scsi_request_fn()
1762  *
1763  * Purpose:     Main strategy routine for SCSI.
1764  *
1765  * Arguments:   q       - Pointer to actual queue.
1766  *
1767  * Returns:     Nothing
1768  *
1769  * Lock status: request queue lock assumed to be held when called.
1770  *
1771  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1772  * protection for ZBC disks.
1773  */
1774 static void scsi_request_fn(struct request_queue *q)
1775         __releases(q->queue_lock)
1776         __acquires(q->queue_lock)
1777 {
1778         struct scsi_device *sdev = q->queuedata;
1779         struct Scsi_Host *shost;
1780         struct scsi_cmnd *cmd;
1781         struct request *req;
1782
1783         /*
1784          * To start with, we keep looping until the queue is empty, or until
1785          * the host is no longer able to accept any more requests.
1786          */
1787         shost = sdev->host;
1788         for (;;) {
1789                 int rtn;
1790                 /*
1791                  * get next queueable request.  We do this early to make sure
1792                  * that the request is fully prepared even if we cannot
1793                  * accept it.
1794                  */
1795                 req = blk_peek_request(q);
1796                 if (!req)
1797                         break;
1798
1799                 if (unlikely(!scsi_device_online(sdev))) {
1800                         sdev_printk(KERN_ERR, sdev,
1801                                     "rejecting I/O to offline device\n");
1802                         scsi_kill_request(req, q);
1803                         continue;
1804                 }
1805
1806                 if (!scsi_dev_queue_ready(q, sdev))
1807                         break;
1808
1809                 /*
1810                  * Remove the request from the request list.
1811                  */
1812                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1813                         blk_start_request(req);
1814
1815                 spin_unlock_irq(q->queue_lock);
1816                 cmd = blk_mq_rq_to_pdu(req);
1817                 if (cmd != req->special) {
1818                         printk(KERN_CRIT "impossible request in %s.\n"
1819                                          "please mail a stack trace to "
1820                                          "linux-scsi@vger.kernel.org\n",
1821                                          __func__);
1822                         blk_dump_rq_flags(req, "foo");
1823                         BUG();
1824                 }
1825
1826                 /*
1827                  * We hit this when the driver is using a host wide
1828                  * tag map. For device level tag maps the queue_depth check
1829                  * in the device ready fn would prevent us from trying
1830                  * to allocate a tag. Since the map is a shared host resource
1831                  * we add the dev to the starved list so it eventually gets
1832                  * a run when a tag is freed.
1833                  */
1834                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1835                         spin_lock_irq(shost->host_lock);
1836                         if (list_empty(&sdev->starved_entry))
1837                                 list_add_tail(&sdev->starved_entry,
1838                                               &shost->starved_list);
1839                         spin_unlock_irq(shost->host_lock);
1840                         goto not_ready;
1841                 }
1842
1843                 if (!scsi_target_queue_ready(shost, sdev))
1844                         goto not_ready;
1845
1846                 if (!scsi_host_queue_ready(q, shost, sdev))
1847                         goto host_not_ready;
1848         
1849                 if (sdev->simple_tags)
1850                         cmd->flags |= SCMD_TAGGED;
1851                 else
1852                         cmd->flags &= ~SCMD_TAGGED;
1853
1854                 /*
1855                  * Finally, initialize any error handling parameters, and set up
1856                  * the timers for timeouts.
1857                  */
1858                 scsi_init_cmd_errh(cmd);
1859
1860                 /*
1861                  * Dispatch the command to the low-level driver.
1862                  */
1863                 cmd->scsi_done = scsi_done;
1864                 rtn = scsi_dispatch_cmd(cmd);
1865                 if (rtn) {
1866                         scsi_queue_insert(cmd, rtn);
1867                         spin_lock_irq(q->queue_lock);
1868                         goto out_delay;
1869                 }
1870                 spin_lock_irq(q->queue_lock);
1871         }
1872
1873         return;
1874
1875  host_not_ready:
1876         if (scsi_target(sdev)->can_queue > 0)
1877                 atomic_dec(&scsi_target(sdev)->target_busy);
1878  not_ready:
1879         /*
1880          * lock q, handle tag, requeue req, and decrement device_busy. We
1881          * must return with queue_lock held.
1882          *
1883          * Decrementing device_busy without checking it is OK, as all such
1884          * cases (host limits or settings) should run the queue at some
1885          * later time.
1886          */
1887         spin_lock_irq(q->queue_lock);
1888         blk_requeue_request(q, req);
1889         atomic_dec(&sdev->device_busy);
1890 out_delay:
1891         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1892                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1893 }
1894
1895 static inline blk_status_t prep_to_mq(int ret)
1896 {
1897         switch (ret) {
1898         case BLKPREP_OK:
1899                 return BLK_STS_OK;
1900         case BLKPREP_DEFER:
1901                 return BLK_STS_RESOURCE;
1902         default:
1903                 return BLK_STS_IOERR;
1904         }
1905 }
1906
1907 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1908 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1909 {
1910         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1911                 sizeof(struct scatterlist);
1912 }
1913
1914 static int scsi_mq_prep_fn(struct request *req)
1915 {
1916         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1917         struct scsi_device *sdev = req->q->queuedata;
1918         struct Scsi_Host *shost = sdev->host;
1919         struct scatterlist *sg;
1920
1921         scsi_init_command(sdev, cmd);
1922
1923         req->special = cmd;
1924
1925         cmd->request = req;
1926
1927         cmd->tag = req->tag;
1928         cmd->prot_op = SCSI_PROT_NORMAL;
1929
1930         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1931         cmd->sdb.table.sgl = sg;
1932
1933         if (scsi_host_get_prot(shost)) {
1934                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1935
1936                 cmd->prot_sdb->table.sgl =
1937                         (struct scatterlist *)(cmd->prot_sdb + 1);
1938         }
1939
1940         if (blk_bidi_rq(req)) {
1941                 struct request *next_rq = req->next_rq;
1942                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1943
1944                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1945                 bidi_sdb->table.sgl =
1946                         (struct scatterlist *)(bidi_sdb + 1);
1947
1948                 next_rq->special = bidi_sdb;
1949         }
1950
1951         blk_mq_start_request(req);
1952
1953         return scsi_setup_cmnd(sdev, req);
1954 }
1955
1956 static void scsi_mq_done(struct scsi_cmnd *cmd)
1957 {
1958         trace_scsi_dispatch_cmd_done(cmd);
1959         blk_mq_complete_request(cmd->request);
1960 }
1961
1962 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1963 {
1964         struct request_queue *q = hctx->queue;
1965         struct scsi_device *sdev = q->queuedata;
1966
1967         atomic_dec(&sdev->device_busy);
1968         put_device(&sdev->sdev_gendev);
1969 }
1970
1971 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1972 {
1973         struct request_queue *q = hctx->queue;
1974         struct scsi_device *sdev = q->queuedata;
1975
1976         if (!get_device(&sdev->sdev_gendev))
1977                 goto out;
1978         if (!scsi_dev_queue_ready(q, sdev))
1979                 goto out_put_device;
1980
1981         return true;
1982
1983 out_put_device:
1984         put_device(&sdev->sdev_gendev);
1985 out:
1986         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1987                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1988         return false;
1989 }
1990
1991 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1992                          const struct blk_mq_queue_data *bd)
1993 {
1994         struct request *req = bd->rq;
1995         struct request_queue *q = req->q;
1996         struct scsi_device *sdev = q->queuedata;
1997         struct Scsi_Host *shost = sdev->host;
1998         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1999         blk_status_t ret;
2000         int reason;
2001
2002         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2003         if (ret != BLK_STS_OK)
2004                 goto out_put_budget;
2005
2006         ret = BLK_STS_RESOURCE;
2007         if (!scsi_target_queue_ready(shost, sdev))
2008                 goto out_put_budget;
2009         if (!scsi_host_queue_ready(q, shost, sdev))
2010                 goto out_dec_target_busy;
2011
2012         if (!(req->rq_flags & RQF_DONTPREP)) {
2013                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2014                 if (ret != BLK_STS_OK)
2015                         goto out_dec_host_busy;
2016                 req->rq_flags |= RQF_DONTPREP;
2017         } else {
2018                 blk_mq_start_request(req);
2019         }
2020
2021         if (sdev->simple_tags)
2022                 cmd->flags |= SCMD_TAGGED;
2023         else
2024                 cmd->flags &= ~SCMD_TAGGED;
2025
2026         scsi_init_cmd_errh(cmd);
2027         cmd->scsi_done = scsi_mq_done;
2028
2029         reason = scsi_dispatch_cmd(cmd);
2030         if (reason) {
2031                 scsi_set_blocked(cmd, reason);
2032                 ret = BLK_STS_RESOURCE;
2033                 goto out_dec_host_busy;
2034         }
2035
2036         return BLK_STS_OK;
2037
2038 out_dec_host_busy:
2039         scsi_dec_host_busy(shost);
2040 out_dec_target_busy:
2041         if (scsi_target(sdev)->can_queue > 0)
2042                 atomic_dec(&scsi_target(sdev)->target_busy);
2043 out_put_budget:
2044         scsi_mq_put_budget(hctx);
2045         switch (ret) {
2046         case BLK_STS_OK:
2047                 break;
2048         case BLK_STS_RESOURCE:
2049                 if (atomic_read(&sdev->device_busy) ||
2050                     scsi_device_blocked(sdev))
2051                         ret = BLK_STS_DEV_RESOURCE;
2052                 break;
2053         default:
2054                 /*
2055                  * Make sure to release all allocated ressources when
2056                  * we hit an error, as we will never see this command
2057                  * again.
2058                  */
2059                 if (req->rq_flags & RQF_DONTPREP)
2060                         scsi_mq_uninit_cmd(cmd);
2061                 break;
2062         }
2063         return ret;
2064 }
2065
2066 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2067                 bool reserved)
2068 {
2069         if (reserved)
2070                 return BLK_EH_RESET_TIMER;
2071         return scsi_times_out(req);
2072 }
2073
2074 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2075                                 unsigned int hctx_idx, unsigned int numa_node)
2076 {
2077         struct Scsi_Host *shost = set->driver_data;
2078         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2079         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2080         struct scatterlist *sg;
2081
2082         if (unchecked_isa_dma)
2083                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2084         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2085                                                     GFP_KERNEL, numa_node);
2086         if (!cmd->sense_buffer)
2087                 return -ENOMEM;
2088         cmd->req.sense = cmd->sense_buffer;
2089
2090         if (scsi_host_get_prot(shost)) {
2091                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2092                         shost->hostt->cmd_size;
2093                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2094         }
2095
2096         return 0;
2097 }
2098
2099 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2100                                  unsigned int hctx_idx)
2101 {
2102         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2103
2104         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2105                                cmd->sense_buffer);
2106 }
2107
2108 static int scsi_map_queues(struct blk_mq_tag_set *set)
2109 {
2110         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2111
2112         if (shost->hostt->map_queues)
2113                 return shost->hostt->map_queues(shost);
2114         return blk_mq_map_queues(set);
2115 }
2116
2117 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2118 {
2119         struct device *host_dev;
2120         u64 bounce_limit = 0xffffffff;
2121
2122         if (shost->unchecked_isa_dma)
2123                 return BLK_BOUNCE_ISA;
2124         /*
2125          * Platforms with virtual-DMA translation
2126          * hardware have no practical limit.
2127          */
2128         if (!PCI_DMA_BUS_IS_PHYS)
2129                 return BLK_BOUNCE_ANY;
2130
2131         host_dev = scsi_get_device(shost);
2132         if (host_dev && host_dev->dma_mask)
2133                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2134
2135         return bounce_limit;
2136 }
2137
2138 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2139 {
2140         struct device *dev = shost->dma_dev;
2141
2142         queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2143
2144         /*
2145          * this limit is imposed by hardware restrictions
2146          */
2147         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2148                                         SG_MAX_SEGMENTS));
2149
2150         if (scsi_host_prot_dma(shost)) {
2151                 shost->sg_prot_tablesize =
2152                         min_not_zero(shost->sg_prot_tablesize,
2153                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2154                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2155                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2156         }
2157
2158         blk_queue_max_hw_sectors(q, shost->max_sectors);
2159         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2160         blk_queue_segment_boundary(q, shost->dma_boundary);
2161         dma_set_seg_boundary(dev, shost->dma_boundary);
2162
2163         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2164
2165         if (!shost->use_clustering)
2166                 q->limits.cluster = 0;
2167
2168         /*
2169          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2170          * which is a common minimum for HBAs, and the minimum DMA alignment,
2171          * which is set by the platform.
2172          *
2173          * Devices that require a bigger alignment can increase it later.
2174          */
2175         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2176 }
2177 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2178
2179 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2180                             gfp_t gfp)
2181 {
2182         struct Scsi_Host *shost = q->rq_alloc_data;
2183         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2184         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2185
2186         memset(cmd, 0, sizeof(*cmd));
2187
2188         if (unchecked_isa_dma)
2189                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2190         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2191                                                     NUMA_NO_NODE);
2192         if (!cmd->sense_buffer)
2193                 goto fail;
2194         cmd->req.sense = cmd->sense_buffer;
2195
2196         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2197                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2198                 if (!cmd->prot_sdb)
2199                         goto fail_free_sense;
2200         }
2201
2202         return 0;
2203
2204 fail_free_sense:
2205         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2206 fail:
2207         return -ENOMEM;
2208 }
2209
2210 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2211 {
2212         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2213
2214         if (cmd->prot_sdb)
2215                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2216         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2217                                cmd->sense_buffer);
2218 }
2219
2220 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2221 {
2222         struct Scsi_Host *shost = sdev->host;
2223         struct request_queue *q;
2224
2225         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2226         if (!q)
2227                 return NULL;
2228         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2229         q->rq_alloc_data = shost;
2230         q->request_fn = scsi_request_fn;
2231         q->init_rq_fn = scsi_old_init_rq;
2232         q->exit_rq_fn = scsi_old_exit_rq;
2233         q->initialize_rq_fn = scsi_initialize_rq;
2234
2235         if (blk_init_allocated_queue(q) < 0) {
2236                 blk_cleanup_queue(q);
2237                 return NULL;
2238         }
2239
2240         __scsi_init_queue(shost, q);
2241         blk_queue_prep_rq(q, scsi_prep_fn);
2242         blk_queue_unprep_rq(q, scsi_unprep_fn);
2243         blk_queue_softirq_done(q, scsi_softirq_done);
2244         blk_queue_rq_timed_out(q, scsi_times_out);
2245         blk_queue_lld_busy(q, scsi_lld_busy);
2246         return q;
2247 }
2248
2249 static const struct blk_mq_ops scsi_mq_ops = {
2250         .get_budget     = scsi_mq_get_budget,
2251         .put_budget     = scsi_mq_put_budget,
2252         .queue_rq       = scsi_queue_rq,
2253         .complete       = scsi_softirq_done,
2254         .timeout        = scsi_timeout,
2255 #ifdef CONFIG_BLK_DEBUG_FS
2256         .show_rq        = scsi_show_rq,
2257 #endif
2258         .init_request   = scsi_mq_init_request,
2259         .exit_request   = scsi_mq_exit_request,
2260         .initialize_rq_fn = scsi_initialize_rq,
2261         .map_queues     = scsi_map_queues,
2262 };
2263
2264 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2265 {
2266         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2267         if (IS_ERR(sdev->request_queue))
2268                 return NULL;
2269
2270         sdev->request_queue->queuedata = sdev;
2271         __scsi_init_queue(sdev->host, sdev->request_queue);
2272         return sdev->request_queue;
2273 }
2274
2275 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2276 {
2277         unsigned int cmd_size, sgl_size;
2278
2279         sgl_size = scsi_mq_sgl_size(shost);
2280         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2281         if (scsi_host_get_prot(shost))
2282                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2283
2284         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2285         shost->tag_set.ops = &scsi_mq_ops;
2286         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2287         shost->tag_set.queue_depth = shost->can_queue;
2288         shost->tag_set.cmd_size = cmd_size;
2289         shost->tag_set.numa_node = NUMA_NO_NODE;
2290         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2291         shost->tag_set.flags |=
2292                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2293         shost->tag_set.driver_data = shost;
2294
2295         return blk_mq_alloc_tag_set(&shost->tag_set);
2296 }
2297
2298 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2299 {
2300         blk_mq_free_tag_set(&shost->tag_set);
2301 }
2302
2303 /**
2304  * scsi_device_from_queue - return sdev associated with a request_queue
2305  * @q: The request queue to return the sdev from
2306  *
2307  * Return the sdev associated with a request queue or NULL if the
2308  * request_queue does not reference a SCSI device.
2309  */
2310 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2311 {
2312         struct scsi_device *sdev = NULL;
2313
2314         if (q->mq_ops) {
2315                 if (q->mq_ops == &scsi_mq_ops)
2316                         sdev = q->queuedata;
2317         } else if (q->request_fn == scsi_request_fn)
2318                 sdev = q->queuedata;
2319         if (!sdev || !get_device(&sdev->sdev_gendev))
2320                 sdev = NULL;
2321
2322         return sdev;
2323 }
2324 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2325
2326 /*
2327  * Function:    scsi_block_requests()
2328  *
2329  * Purpose:     Utility function used by low-level drivers to prevent further
2330  *              commands from being queued to the device.
2331  *
2332  * Arguments:   shost       - Host in question
2333  *
2334  * Returns:     Nothing
2335  *
2336  * Lock status: No locks are assumed held.
2337  *
2338  * Notes:       There is no timer nor any other means by which the requests
2339  *              get unblocked other than the low-level driver calling
2340  *              scsi_unblock_requests().
2341  */
2342 void scsi_block_requests(struct Scsi_Host *shost)
2343 {
2344         shost->host_self_blocked = 1;
2345 }
2346 EXPORT_SYMBOL(scsi_block_requests);
2347
2348 /*
2349  * Function:    scsi_unblock_requests()
2350  *
2351  * Purpose:     Utility function used by low-level drivers to allow further
2352  *              commands from being queued to the device.
2353  *
2354  * Arguments:   shost       - Host in question
2355  *
2356  * Returns:     Nothing
2357  *
2358  * Lock status: No locks are assumed held.
2359  *
2360  * Notes:       There is no timer nor any other means by which the requests
2361  *              get unblocked other than the low-level driver calling
2362  *              scsi_unblock_requests().
2363  *
2364  *              This is done as an API function so that changes to the
2365  *              internals of the scsi mid-layer won't require wholesale
2366  *              changes to drivers that use this feature.
2367  */
2368 void scsi_unblock_requests(struct Scsi_Host *shost)
2369 {
2370         shost->host_self_blocked = 0;
2371         scsi_run_host_queues(shost);
2372 }
2373 EXPORT_SYMBOL(scsi_unblock_requests);
2374
2375 int __init scsi_init_queue(void)
2376 {
2377         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2378                                            sizeof(struct scsi_data_buffer),
2379                                            0, 0, NULL);
2380         if (!scsi_sdb_cache) {
2381                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2382                 return -ENOMEM;
2383         }
2384
2385         return 0;
2386 }
2387
2388 void scsi_exit_queue(void)
2389 {
2390         kmem_cache_destroy(scsi_sense_cache);
2391         kmem_cache_destroy(scsi_sense_isadma_cache);
2392         kmem_cache_destroy(scsi_sdb_cache);
2393 }
2394
2395 /**
2396  *      scsi_mode_select - issue a mode select
2397  *      @sdev:  SCSI device to be queried
2398  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2399  *      @sp:    Save page bit (0 == don't save, 1 == save)
2400  *      @modepage: mode page being requested
2401  *      @buffer: request buffer (may not be smaller than eight bytes)
2402  *      @len:   length of request buffer.
2403  *      @timeout: command timeout
2404  *      @retries: number of retries before failing
2405  *      @data: returns a structure abstracting the mode header data
2406  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2407  *              must be SCSI_SENSE_BUFFERSIZE big.
2408  *
2409  *      Returns zero if successful; negative error number or scsi
2410  *      status on error
2411  *
2412  */
2413 int
2414 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2415                  unsigned char *buffer, int len, int timeout, int retries,
2416                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2417 {
2418         unsigned char cmd[10];
2419         unsigned char *real_buffer;
2420         int ret;
2421
2422         memset(cmd, 0, sizeof(cmd));
2423         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2424
2425         if (sdev->use_10_for_ms) {
2426                 if (len > 65535)
2427                         return -EINVAL;
2428                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2429                 if (!real_buffer)
2430                         return -ENOMEM;
2431                 memcpy(real_buffer + 8, buffer, len);
2432                 len += 8;
2433                 real_buffer[0] = 0;
2434                 real_buffer[1] = 0;
2435                 real_buffer[2] = data->medium_type;
2436                 real_buffer[3] = data->device_specific;
2437                 real_buffer[4] = data->longlba ? 0x01 : 0;
2438                 real_buffer[5] = 0;
2439                 real_buffer[6] = data->block_descriptor_length >> 8;
2440                 real_buffer[7] = data->block_descriptor_length;
2441
2442                 cmd[0] = MODE_SELECT_10;
2443                 cmd[7] = len >> 8;
2444                 cmd[8] = len;
2445         } else {
2446                 if (len > 255 || data->block_descriptor_length > 255 ||
2447                     data->longlba)
2448                         return -EINVAL;
2449
2450                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2451                 if (!real_buffer)
2452                         return -ENOMEM;
2453                 memcpy(real_buffer + 4, buffer, len);
2454                 len += 4;
2455                 real_buffer[0] = 0;
2456                 real_buffer[1] = data->medium_type;
2457                 real_buffer[2] = data->device_specific;
2458                 real_buffer[3] = data->block_descriptor_length;
2459                 
2460
2461                 cmd[0] = MODE_SELECT;
2462                 cmd[4] = len;
2463         }
2464
2465         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2466                                sshdr, timeout, retries, NULL);
2467         kfree(real_buffer);
2468         return ret;
2469 }
2470 EXPORT_SYMBOL_GPL(scsi_mode_select);
2471
2472 /**
2473  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2474  *      @sdev:  SCSI device to be queried
2475  *      @dbd:   set if mode sense will allow block descriptors to be returned
2476  *      @modepage: mode page being requested
2477  *      @buffer: request buffer (may not be smaller than eight bytes)
2478  *      @len:   length of request buffer.
2479  *      @timeout: command timeout
2480  *      @retries: number of retries before failing
2481  *      @data: returns a structure abstracting the mode header data
2482  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2483  *              must be SCSI_SENSE_BUFFERSIZE big.
2484  *
2485  *      Returns zero if unsuccessful, or the header offset (either 4
2486  *      or 8 depending on whether a six or ten byte command was
2487  *      issued) if successful.
2488  */
2489 int
2490 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2491                   unsigned char *buffer, int len, int timeout, int retries,
2492                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2493 {
2494         unsigned char cmd[12];
2495         int use_10_for_ms;
2496         int header_length;
2497         int result, retry_count = retries;
2498         struct scsi_sense_hdr my_sshdr;
2499
2500         memset(data, 0, sizeof(*data));
2501         memset(&cmd[0], 0, 12);
2502         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2503         cmd[2] = modepage;
2504
2505         /* caller might not be interested in sense, but we need it */
2506         if (!sshdr)
2507                 sshdr = &my_sshdr;
2508
2509  retry:
2510         use_10_for_ms = sdev->use_10_for_ms;
2511
2512         if (use_10_for_ms) {
2513                 if (len < 8)
2514                         len = 8;
2515
2516                 cmd[0] = MODE_SENSE_10;
2517                 cmd[8] = len;
2518                 header_length = 8;
2519         } else {
2520                 if (len < 4)
2521                         len = 4;
2522
2523                 cmd[0] = MODE_SENSE;
2524                 cmd[4] = len;
2525                 header_length = 4;
2526         }
2527
2528         memset(buffer, 0, len);
2529
2530         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2531                                   sshdr, timeout, retries, NULL);
2532
2533         /* This code looks awful: what it's doing is making sure an
2534          * ILLEGAL REQUEST sense return identifies the actual command
2535          * byte as the problem.  MODE_SENSE commands can return
2536          * ILLEGAL REQUEST if the code page isn't supported */
2537
2538         if (use_10_for_ms && !scsi_status_is_good(result) &&
2539             (driver_byte(result) & DRIVER_SENSE)) {
2540                 if (scsi_sense_valid(sshdr)) {
2541                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2542                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2543                                 /* 
2544                                  * Invalid command operation code
2545                                  */
2546                                 sdev->use_10_for_ms = 0;
2547                                 goto retry;
2548                         }
2549                 }
2550         }
2551
2552         if(scsi_status_is_good(result)) {
2553                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2554                              (modepage == 6 || modepage == 8))) {
2555                         /* Initio breakage? */
2556                         header_length = 0;
2557                         data->length = 13;
2558                         data->medium_type = 0;
2559                         data->device_specific = 0;
2560                         data->longlba = 0;
2561                         data->block_descriptor_length = 0;
2562                 } else if(use_10_for_ms) {
2563                         data->length = buffer[0]*256 + buffer[1] + 2;
2564                         data->medium_type = buffer[2];
2565                         data->device_specific = buffer[3];
2566                         data->longlba = buffer[4] & 0x01;
2567                         data->block_descriptor_length = buffer[6]*256
2568                                 + buffer[7];
2569                 } else {
2570                         data->length = buffer[0] + 1;
2571                         data->medium_type = buffer[1];
2572                         data->device_specific = buffer[2];
2573                         data->block_descriptor_length = buffer[3];
2574                 }
2575                 data->header_length = header_length;
2576         } else if ((status_byte(result) == CHECK_CONDITION) &&
2577                    scsi_sense_valid(sshdr) &&
2578                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2579                 retry_count--;
2580                 goto retry;
2581         }
2582
2583         return result;
2584 }
2585 EXPORT_SYMBOL(scsi_mode_sense);
2586
2587 /**
2588  *      scsi_test_unit_ready - test if unit is ready
2589  *      @sdev:  scsi device to change the state of.
2590  *      @timeout: command timeout
2591  *      @retries: number of retries before failing
2592  *      @sshdr: outpout pointer for decoded sense information.
2593  *
2594  *      Returns zero if unsuccessful or an error if TUR failed.  For
2595  *      removable media, UNIT_ATTENTION sets ->changed flag.
2596  **/
2597 int
2598 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2599                      struct scsi_sense_hdr *sshdr)
2600 {
2601         char cmd[] = {
2602                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2603         };
2604         int result;
2605
2606         /* try to eat the UNIT_ATTENTION if there are enough retries */
2607         do {
2608                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2609                                           timeout, retries, NULL);
2610                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2611                     sshdr->sense_key == UNIT_ATTENTION)
2612                         sdev->changed = 1;
2613         } while (scsi_sense_valid(sshdr) &&
2614                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2615
2616         return result;
2617 }
2618 EXPORT_SYMBOL(scsi_test_unit_ready);
2619
2620 /**
2621  *      scsi_device_set_state - Take the given device through the device state model.
2622  *      @sdev:  scsi device to change the state of.
2623  *      @state: state to change to.
2624  *
2625  *      Returns zero if successful or an error if the requested
2626  *      transition is illegal.
2627  */
2628 int
2629 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2630 {
2631         enum scsi_device_state oldstate = sdev->sdev_state;
2632
2633         if (state == oldstate)
2634                 return 0;
2635
2636         switch (state) {
2637         case SDEV_CREATED:
2638                 switch (oldstate) {
2639                 case SDEV_CREATED_BLOCK:
2640                         break;
2641                 default:
2642                         goto illegal;
2643                 }
2644                 break;
2645                         
2646         case SDEV_RUNNING:
2647                 switch (oldstate) {
2648                 case SDEV_CREATED:
2649                 case SDEV_OFFLINE:
2650                 case SDEV_TRANSPORT_OFFLINE:
2651                 case SDEV_QUIESCE:
2652                 case SDEV_BLOCK:
2653                         break;
2654                 default:
2655                         goto illegal;
2656                 }
2657                 break;
2658
2659         case SDEV_QUIESCE:
2660                 switch (oldstate) {
2661                 case SDEV_RUNNING:
2662                 case SDEV_OFFLINE:
2663                 case SDEV_TRANSPORT_OFFLINE:
2664                         break;
2665                 default:
2666                         goto illegal;
2667                 }
2668                 break;
2669
2670         case SDEV_OFFLINE:
2671         case SDEV_TRANSPORT_OFFLINE:
2672                 switch (oldstate) {
2673                 case SDEV_CREATED:
2674                 case SDEV_RUNNING:
2675                 case SDEV_QUIESCE:
2676                 case SDEV_BLOCK:
2677                         break;
2678                 default:
2679                         goto illegal;
2680                 }
2681                 break;
2682
2683         case SDEV_BLOCK:
2684                 switch (oldstate) {
2685                 case SDEV_RUNNING:
2686                 case SDEV_CREATED_BLOCK:
2687                         break;
2688                 default:
2689                         goto illegal;
2690                 }
2691                 break;
2692
2693         case SDEV_CREATED_BLOCK:
2694                 switch (oldstate) {
2695                 case SDEV_CREATED:
2696                         break;
2697                 default:
2698                         goto illegal;
2699                 }
2700                 break;
2701
2702         case SDEV_CANCEL:
2703                 switch (oldstate) {
2704                 case SDEV_CREATED:
2705                 case SDEV_RUNNING:
2706                 case SDEV_QUIESCE:
2707                 case SDEV_OFFLINE:
2708                 case SDEV_TRANSPORT_OFFLINE:
2709                         break;
2710                 default:
2711                         goto illegal;
2712                 }
2713                 break;
2714
2715         case SDEV_DEL:
2716                 switch (oldstate) {
2717                 case SDEV_CREATED:
2718                 case SDEV_RUNNING:
2719                 case SDEV_OFFLINE:
2720                 case SDEV_TRANSPORT_OFFLINE:
2721                 case SDEV_CANCEL:
2722                 case SDEV_BLOCK:
2723                 case SDEV_CREATED_BLOCK:
2724                         break;
2725                 default:
2726                         goto illegal;
2727                 }
2728                 break;
2729
2730         }
2731         sdev->sdev_state = state;
2732         return 0;
2733
2734  illegal:
2735         SCSI_LOG_ERROR_RECOVERY(1,
2736                                 sdev_printk(KERN_ERR, sdev,
2737                                             "Illegal state transition %s->%s",
2738                                             scsi_device_state_name(oldstate),
2739                                             scsi_device_state_name(state))
2740                                 );
2741         return -EINVAL;
2742 }
2743 EXPORT_SYMBOL(scsi_device_set_state);
2744
2745 /**
2746  *      sdev_evt_emit - emit a single SCSI device uevent
2747  *      @sdev: associated SCSI device
2748  *      @evt: event to emit
2749  *
2750  *      Send a single uevent (scsi_event) to the associated scsi_device.
2751  */
2752 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2753 {
2754         int idx = 0;
2755         char *envp[3];
2756
2757         switch (evt->evt_type) {
2758         case SDEV_EVT_MEDIA_CHANGE:
2759                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2760                 break;
2761         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2762                 scsi_rescan_device(&sdev->sdev_gendev);
2763                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2764                 break;
2765         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2766                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2767                 break;
2768         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2769                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2770                 break;
2771         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2772                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2773                 break;
2774         case SDEV_EVT_LUN_CHANGE_REPORTED:
2775                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2776                 break;
2777         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2778                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2779                 break;
2780         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2781                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2782                 break;
2783         default:
2784                 /* do nothing */
2785                 break;
2786         }
2787
2788         envp[idx++] = NULL;
2789
2790         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2791 }
2792
2793 /**
2794  *      sdev_evt_thread - send a uevent for each scsi event
2795  *      @work: work struct for scsi_device
2796  *
2797  *      Dispatch queued events to their associated scsi_device kobjects
2798  *      as uevents.
2799  */
2800 void scsi_evt_thread(struct work_struct *work)
2801 {
2802         struct scsi_device *sdev;
2803         enum scsi_device_event evt_type;
2804         LIST_HEAD(event_list);
2805
2806         sdev = container_of(work, struct scsi_device, event_work);
2807
2808         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2809                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2810                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2811
2812         while (1) {
2813                 struct scsi_event *evt;
2814                 struct list_head *this, *tmp;
2815                 unsigned long flags;
2816
2817                 spin_lock_irqsave(&sdev->list_lock, flags);
2818                 list_splice_init(&sdev->event_list, &event_list);
2819                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2820
2821                 if (list_empty(&event_list))
2822                         break;
2823
2824                 list_for_each_safe(this, tmp, &event_list) {
2825                         evt = list_entry(this, struct scsi_event, node);
2826                         list_del(&evt->node);
2827                         scsi_evt_emit(sdev, evt);
2828                         kfree(evt);
2829                 }
2830         }
2831 }
2832
2833 /**
2834  *      sdev_evt_send - send asserted event to uevent thread
2835  *      @sdev: scsi_device event occurred on
2836  *      @evt: event to send
2837  *
2838  *      Assert scsi device event asynchronously.
2839  */
2840 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2841 {
2842         unsigned long flags;
2843
2844 #if 0
2845         /* FIXME: currently this check eliminates all media change events
2846          * for polled devices.  Need to update to discriminate between AN
2847          * and polled events */
2848         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2849                 kfree(evt);
2850                 return;
2851         }
2852 #endif
2853
2854         spin_lock_irqsave(&sdev->list_lock, flags);
2855         list_add_tail(&evt->node, &sdev->event_list);
2856         schedule_work(&sdev->event_work);
2857         spin_unlock_irqrestore(&sdev->list_lock, flags);
2858 }
2859 EXPORT_SYMBOL_GPL(sdev_evt_send);
2860
2861 /**
2862  *      sdev_evt_alloc - allocate a new scsi event
2863  *      @evt_type: type of event to allocate
2864  *      @gfpflags: GFP flags for allocation
2865  *
2866  *      Allocates and returns a new scsi_event.
2867  */
2868 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2869                                   gfp_t gfpflags)
2870 {
2871         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2872         if (!evt)
2873                 return NULL;
2874
2875         evt->evt_type = evt_type;
2876         INIT_LIST_HEAD(&evt->node);
2877
2878         /* evt_type-specific initialization, if any */
2879         switch (evt_type) {
2880         case SDEV_EVT_MEDIA_CHANGE:
2881         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2882         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2883         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2884         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2885         case SDEV_EVT_LUN_CHANGE_REPORTED:
2886         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2887         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2888         default:
2889                 /* do nothing */
2890                 break;
2891         }
2892
2893         return evt;
2894 }
2895 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2896
2897 /**
2898  *      sdev_evt_send_simple - send asserted event to uevent thread
2899  *      @sdev: scsi_device event occurred on
2900  *      @evt_type: type of event to send
2901  *      @gfpflags: GFP flags for allocation
2902  *
2903  *      Assert scsi device event asynchronously, given an event type.
2904  */
2905 void sdev_evt_send_simple(struct scsi_device *sdev,
2906                           enum scsi_device_event evt_type, gfp_t gfpflags)
2907 {
2908         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2909         if (!evt) {
2910                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2911                             evt_type);
2912                 return;
2913         }
2914
2915         sdev_evt_send(sdev, evt);
2916 }
2917 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2918
2919 /**
2920  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2921  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2922  */
2923 static int scsi_request_fn_active(struct scsi_device *sdev)
2924 {
2925         struct request_queue *q = sdev->request_queue;
2926         int request_fn_active;
2927
2928         WARN_ON_ONCE(sdev->host->use_blk_mq);
2929
2930         spin_lock_irq(q->queue_lock);
2931         request_fn_active = q->request_fn_active;
2932         spin_unlock_irq(q->queue_lock);
2933
2934         return request_fn_active;
2935 }
2936
2937 /**
2938  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2939  * @sdev: SCSI device pointer.
2940  *
2941  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2942  * invoked from scsi_request_fn() have finished.
2943  */
2944 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2945 {
2946         WARN_ON_ONCE(sdev->host->use_blk_mq);
2947
2948         while (scsi_request_fn_active(sdev))
2949                 msleep(20);
2950 }
2951
2952 /**
2953  *      scsi_device_quiesce - Block user issued commands.
2954  *      @sdev:  scsi device to quiesce.
2955  *
2956  *      This works by trying to transition to the SDEV_QUIESCE state
2957  *      (which must be a legal transition).  When the device is in this
2958  *      state, only special requests will be accepted, all others will
2959  *      be deferred.  Since special requests may also be requeued requests,
2960  *      a successful return doesn't guarantee the device will be 
2961  *      totally quiescent.
2962  *
2963  *      Must be called with user context, may sleep.
2964  *
2965  *      Returns zero if unsuccessful or an error if not.
2966  */
2967 int
2968 scsi_device_quiesce(struct scsi_device *sdev)
2969 {
2970         struct request_queue *q = sdev->request_queue;
2971         int err;
2972
2973         /*
2974          * It is allowed to call scsi_device_quiesce() multiple times from
2975          * the same context but concurrent scsi_device_quiesce() calls are
2976          * not allowed.
2977          */
2978         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2979
2980         blk_set_preempt_only(q);
2981
2982         blk_mq_freeze_queue(q);
2983         /*
2984          * Ensure that the effect of blk_set_preempt_only() will be visible
2985          * for percpu_ref_tryget() callers that occur after the queue
2986          * unfreeze even if the queue was already frozen before this function
2987          * was called. See also https://lwn.net/Articles/573497/.
2988          */
2989         synchronize_rcu();
2990         blk_mq_unfreeze_queue(q);
2991
2992         mutex_lock(&sdev->state_mutex);
2993         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2994         if (err == 0)
2995                 sdev->quiesced_by = current;
2996         else
2997                 blk_clear_preempt_only(q);
2998         mutex_unlock(&sdev->state_mutex);
2999
3000         return err;
3001 }
3002 EXPORT_SYMBOL(scsi_device_quiesce);
3003
3004 /**
3005  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3006  *      @sdev:  scsi device to resume.
3007  *
3008  *      Moves the device from quiesced back to running and restarts the
3009  *      queues.
3010  *
3011  *      Must be called with user context, may sleep.
3012  */
3013 void scsi_device_resume(struct scsi_device *sdev)
3014 {
3015         /* check if the device state was mutated prior to resume, and if
3016          * so assume the state is being managed elsewhere (for example
3017          * device deleted during suspend)
3018          */
3019         mutex_lock(&sdev->state_mutex);
3020         WARN_ON_ONCE(!sdev->quiesced_by);
3021         sdev->quiesced_by = NULL;
3022         blk_clear_preempt_only(sdev->request_queue);
3023         if (sdev->sdev_state == SDEV_QUIESCE)
3024                 scsi_device_set_state(sdev, SDEV_RUNNING);
3025         mutex_unlock(&sdev->state_mutex);
3026 }
3027 EXPORT_SYMBOL(scsi_device_resume);
3028
3029 static void
3030 device_quiesce_fn(struct scsi_device *sdev, void *data)
3031 {
3032         scsi_device_quiesce(sdev);
3033 }
3034
3035 void
3036 scsi_target_quiesce(struct scsi_target *starget)
3037 {
3038         starget_for_each_device(starget, NULL, device_quiesce_fn);
3039 }
3040 EXPORT_SYMBOL(scsi_target_quiesce);
3041
3042 static void
3043 device_resume_fn(struct scsi_device *sdev, void *data)
3044 {
3045         scsi_device_resume(sdev);
3046 }
3047
3048 void
3049 scsi_target_resume(struct scsi_target *starget)
3050 {
3051         starget_for_each_device(starget, NULL, device_resume_fn);
3052 }
3053 EXPORT_SYMBOL(scsi_target_resume);
3054
3055 /**
3056  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3057  * @sdev: device to block
3058  *
3059  * Pause SCSI command processing on the specified device. Does not sleep.
3060  *
3061  * Returns zero if successful or a negative error code upon failure.
3062  *
3063  * Notes:
3064  * This routine transitions the device to the SDEV_BLOCK state (which must be
3065  * a legal transition). When the device is in this state, command processing
3066  * is paused until the device leaves the SDEV_BLOCK state. See also
3067  * scsi_internal_device_unblock_nowait().
3068  */
3069 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3070 {
3071         struct request_queue *q = sdev->request_queue;
3072         unsigned long flags;
3073         int err = 0;
3074
3075         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3076         if (err) {
3077                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3078
3079                 if (err)
3080                         return err;
3081         }
3082
3083         /* 
3084          * The device has transitioned to SDEV_BLOCK.  Stop the
3085          * block layer from calling the midlayer with this device's
3086          * request queue. 
3087          */
3088         if (q->mq_ops) {
3089                 blk_mq_quiesce_queue_nowait(q);
3090         } else {
3091                 spin_lock_irqsave(q->queue_lock, flags);
3092                 blk_stop_queue(q);
3093                 spin_unlock_irqrestore(q->queue_lock, flags);
3094         }
3095
3096         return 0;
3097 }
3098 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3099
3100 /**
3101  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3102  * @sdev: device to block
3103  *
3104  * Pause SCSI command processing on the specified device and wait until all
3105  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3106  *
3107  * Returns zero if successful or a negative error code upon failure.
3108  *
3109  * Note:
3110  * This routine transitions the device to the SDEV_BLOCK state (which must be
3111  * a legal transition). When the device is in this state, command processing
3112  * is paused until the device leaves the SDEV_BLOCK state. See also
3113  * scsi_internal_device_unblock().
3114  *
3115  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3116  * scsi_internal_device_block() has blocked a SCSI device and also
3117  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3118  */
3119 static int scsi_internal_device_block(struct scsi_device *sdev)
3120 {
3121         struct request_queue *q = sdev->request_queue;
3122         int err;
3123
3124         mutex_lock(&sdev->state_mutex);
3125         err = scsi_internal_device_block_nowait(sdev);
3126         if (err == 0) {
3127                 if (q->mq_ops)
3128                         blk_mq_quiesce_queue(q);
3129                 else
3130                         scsi_wait_for_queuecommand(sdev);
3131         }
3132         mutex_unlock(&sdev->state_mutex);
3133
3134         return err;
3135 }
3136  
3137 void scsi_start_queue(struct scsi_device *sdev)
3138 {
3139         struct request_queue *q = sdev->request_queue;
3140         unsigned long flags;
3141
3142         if (q->mq_ops) {
3143                 blk_mq_unquiesce_queue(q);
3144         } else {
3145                 spin_lock_irqsave(q->queue_lock, flags);
3146                 blk_start_queue(q);
3147                 spin_unlock_irqrestore(q->queue_lock, flags);
3148         }
3149 }
3150
3151 /**
3152  * scsi_internal_device_unblock_nowait - resume a device after a block request
3153  * @sdev:       device to resume
3154  * @new_state:  state to set the device to after unblocking
3155  *
3156  * Restart the device queue for a previously suspended SCSI device. Does not
3157  * sleep.
3158  *
3159  * Returns zero if successful or a negative error code upon failure.
3160  *
3161  * Notes:
3162  * This routine transitions the device to the SDEV_RUNNING state or to one of
3163  * the offline states (which must be a legal transition) allowing the midlayer
3164  * to goose the queue for this device.
3165  */
3166 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3167                                         enum scsi_device_state new_state)
3168 {
3169         /*
3170          * Try to transition the scsi device to SDEV_RUNNING or one of the
3171          * offlined states and goose the device queue if successful.
3172          */
3173         switch (sdev->sdev_state) {
3174         case SDEV_BLOCK:
3175         case SDEV_TRANSPORT_OFFLINE:
3176                 sdev->sdev_state = new_state;
3177                 break;
3178         case SDEV_CREATED_BLOCK:
3179                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3180                     new_state == SDEV_OFFLINE)
3181                         sdev->sdev_state = new_state;
3182                 else
3183                         sdev->sdev_state = SDEV_CREATED;
3184                 break;
3185         case SDEV_CANCEL:
3186         case SDEV_OFFLINE:
3187                 break;
3188         default:
3189                 return -EINVAL;
3190         }
3191         scsi_start_queue(sdev);
3192
3193         return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3196
3197 /**
3198  * scsi_internal_device_unblock - resume a device after a block request
3199  * @sdev:       device to resume
3200  * @new_state:  state to set the device to after unblocking
3201  *
3202  * Restart the device queue for a previously suspended SCSI device. May sleep.
3203  *
3204  * Returns zero if successful or a negative error code upon failure.
3205  *
3206  * Notes:
3207  * This routine transitions the device to the SDEV_RUNNING state or to one of
3208  * the offline states (which must be a legal transition) allowing the midlayer
3209  * to goose the queue for this device.
3210  */
3211 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3212                                         enum scsi_device_state new_state)
3213 {
3214         int ret;
3215
3216         mutex_lock(&sdev->state_mutex);
3217         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3218         mutex_unlock(&sdev->state_mutex);
3219
3220         return ret;
3221 }
3222
3223 static void
3224 device_block(struct scsi_device *sdev, void *data)
3225 {
3226         scsi_internal_device_block(sdev);
3227 }
3228
3229 static int
3230 target_block(struct device *dev, void *data)
3231 {
3232         if (scsi_is_target_device(dev))
3233                 starget_for_each_device(to_scsi_target(dev), NULL,
3234                                         device_block);
3235         return 0;
3236 }
3237
3238 void
3239 scsi_target_block(struct device *dev)
3240 {
3241         if (scsi_is_target_device(dev))
3242                 starget_for_each_device(to_scsi_target(dev), NULL,
3243                                         device_block);
3244         else
3245                 device_for_each_child(dev, NULL, target_block);
3246 }
3247 EXPORT_SYMBOL_GPL(scsi_target_block);
3248
3249 static void
3250 device_unblock(struct scsi_device *sdev, void *data)
3251 {
3252         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3253 }
3254
3255 static int
3256 target_unblock(struct device *dev, void *data)
3257 {
3258         if (scsi_is_target_device(dev))
3259                 starget_for_each_device(to_scsi_target(dev), data,
3260                                         device_unblock);
3261         return 0;
3262 }
3263
3264 void
3265 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3266 {
3267         if (scsi_is_target_device(dev))
3268                 starget_for_each_device(to_scsi_target(dev), &new_state,
3269                                         device_unblock);
3270         else
3271                 device_for_each_child(dev, &new_state, target_unblock);
3272 }
3273 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3274
3275 /**
3276  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3277  * @sgl:        scatter-gather list
3278  * @sg_count:   number of segments in sg
3279  * @offset:     offset in bytes into sg, on return offset into the mapped area
3280  * @len:        bytes to map, on return number of bytes mapped
3281  *
3282  * Returns virtual address of the start of the mapped page
3283  */
3284 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3285                           size_t *offset, size_t *len)
3286 {
3287         int i;
3288         size_t sg_len = 0, len_complete = 0;
3289         struct scatterlist *sg;
3290         struct page *page;
3291
3292         WARN_ON(!irqs_disabled());
3293
3294         for_each_sg(sgl, sg, sg_count, i) {
3295                 len_complete = sg_len; /* Complete sg-entries */
3296                 sg_len += sg->length;
3297                 if (sg_len > *offset)
3298                         break;
3299         }
3300
3301         if (unlikely(i == sg_count)) {
3302                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3303                         "elements %d\n",
3304                        __func__, sg_len, *offset, sg_count);
3305                 WARN_ON(1);
3306                 return NULL;
3307         }
3308
3309         /* Offset starting from the beginning of first page in this sg-entry */
3310         *offset = *offset - len_complete + sg->offset;
3311
3312         /* Assumption: contiguous pages can be accessed as "page + i" */
3313         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3314         *offset &= ~PAGE_MASK;
3315
3316         /* Bytes in this sg-entry from *offset to the end of the page */
3317         sg_len = PAGE_SIZE - *offset;
3318         if (*len > sg_len)
3319                 *len = sg_len;
3320
3321         return kmap_atomic(page);
3322 }
3323 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3324
3325 /**
3326  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3327  * @virt:       virtual address to be unmapped
3328  */
3329 void scsi_kunmap_atomic_sg(void *virt)
3330 {
3331         kunmap_atomic(virt);
3332 }
3333 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3334
3335 void sdev_disable_disk_events(struct scsi_device *sdev)
3336 {
3337         atomic_inc(&sdev->disk_events_disable_depth);
3338 }
3339 EXPORT_SYMBOL(sdev_disable_disk_events);
3340
3341 void sdev_enable_disk_events(struct scsi_device *sdev)
3342 {
3343         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3344                 return;
3345         atomic_dec(&sdev->disk_events_disable_depth);
3346 }
3347 EXPORT_SYMBOL(sdev_enable_disk_events);
3348
3349 /**
3350  * scsi_vpd_lun_id - return a unique device identification
3351  * @sdev: SCSI device
3352  * @id:   buffer for the identification
3353  * @id_len:  length of the buffer
3354  *
3355  * Copies a unique device identification into @id based
3356  * on the information in the VPD page 0x83 of the device.
3357  * The string will be formatted as a SCSI name string.
3358  *
3359  * Returns the length of the identification or error on failure.
3360  * If the identifier is longer than the supplied buffer the actual
3361  * identifier length is returned and the buffer is not zero-padded.
3362  */
3363 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3364 {
3365         u8 cur_id_type = 0xff;
3366         u8 cur_id_size = 0;
3367         const unsigned char *d, *cur_id_str;
3368         const struct scsi_vpd *vpd_pg83;
3369         int id_size = -EINVAL;
3370
3371         rcu_read_lock();
3372         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3373         if (!vpd_pg83) {
3374                 rcu_read_unlock();
3375                 return -ENXIO;
3376         }
3377
3378         /*
3379          * Look for the correct descriptor.
3380          * Order of preference for lun descriptor:
3381          * - SCSI name string
3382          * - NAA IEEE Registered Extended
3383          * - EUI-64 based 16-byte
3384          * - EUI-64 based 12-byte
3385          * - NAA IEEE Registered
3386          * - NAA IEEE Extended
3387          * - T10 Vendor ID
3388          * as longer descriptors reduce the likelyhood
3389          * of identification clashes.
3390          */
3391
3392         /* The id string must be at least 20 bytes + terminating NULL byte */
3393         if (id_len < 21) {
3394                 rcu_read_unlock();
3395                 return -EINVAL;
3396         }
3397
3398         memset(id, 0, id_len);
3399         d = vpd_pg83->data + 4;
3400         while (d < vpd_pg83->data + vpd_pg83->len) {
3401                 /* Skip designators not referring to the LUN */
3402                 if ((d[1] & 0x30) != 0x00)
3403                         goto next_desig;
3404
3405                 switch (d[1] & 0xf) {
3406                 case 0x1:
3407                         /* T10 Vendor ID */
3408                         if (cur_id_size > d[3])
3409                                 break;
3410                         /* Prefer anything */
3411                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3412                                 break;
3413                         cur_id_size = d[3];
3414                         if (cur_id_size + 4 > id_len)
3415                                 cur_id_size = id_len - 4;
3416                         cur_id_str = d + 4;
3417                         cur_id_type = d[1] & 0xf;
3418                         id_size = snprintf(id, id_len, "t10.%*pE",
3419                                            cur_id_size, cur_id_str);
3420                         break;
3421                 case 0x2:
3422                         /* EUI-64 */
3423                         if (cur_id_size > d[3])
3424                                 break;
3425                         /* Prefer NAA IEEE Registered Extended */
3426                         if (cur_id_type == 0x3 &&
3427                             cur_id_size == d[3])
3428                                 break;
3429                         cur_id_size = d[3];
3430                         cur_id_str = d + 4;
3431                         cur_id_type = d[1] & 0xf;
3432                         switch (cur_id_size) {
3433                         case 8:
3434                                 id_size = snprintf(id, id_len,
3435                                                    "eui.%8phN",
3436                                                    cur_id_str);
3437                                 break;
3438                         case 12:
3439                                 id_size = snprintf(id, id_len,
3440                                                    "eui.%12phN",
3441                                                    cur_id_str);
3442                                 break;
3443                         case 16:
3444                                 id_size = snprintf(id, id_len,
3445                                                    "eui.%16phN",
3446                                                    cur_id_str);
3447                                 break;
3448                         default:
3449                                 cur_id_size = 0;
3450                                 break;
3451                         }
3452                         break;
3453                 case 0x3:
3454                         /* NAA */
3455                         if (cur_id_size > d[3])
3456                                 break;
3457                         cur_id_size = d[3];
3458                         cur_id_str = d + 4;
3459                         cur_id_type = d[1] & 0xf;
3460                         switch (cur_id_size) {
3461                         case 8:
3462                                 id_size = snprintf(id, id_len,
3463                                                    "naa.%8phN",
3464                                                    cur_id_str);
3465                                 break;
3466                         case 16:
3467                                 id_size = snprintf(id, id_len,
3468                                                    "naa.%16phN",
3469                                                    cur_id_str);
3470                                 break;
3471                         default:
3472                                 cur_id_size = 0;
3473                                 break;
3474                         }
3475                         break;
3476                 case 0x8:
3477                         /* SCSI name string */
3478                         if (cur_id_size + 4 > d[3])
3479                                 break;
3480                         /* Prefer others for truncated descriptor */
3481                         if (cur_id_size && d[3] > id_len)
3482                                 break;
3483                         cur_id_size = id_size = d[3];
3484                         cur_id_str = d + 4;
3485                         cur_id_type = d[1] & 0xf;
3486                         if (cur_id_size >= id_len)
3487                                 cur_id_size = id_len - 1;
3488                         memcpy(id, cur_id_str, cur_id_size);
3489                         /* Decrease priority for truncated descriptor */
3490                         if (cur_id_size != id_size)
3491                                 cur_id_size = 6;
3492                         break;
3493                 default:
3494                         break;
3495                 }
3496 next_desig:
3497                 d += d[3] + 4;
3498         }
3499         rcu_read_unlock();
3500
3501         return id_size;
3502 }
3503 EXPORT_SYMBOL(scsi_vpd_lun_id);
3504
3505 /*
3506  * scsi_vpd_tpg_id - return a target port group identifier
3507  * @sdev: SCSI device
3508  *
3509  * Returns the Target Port Group identifier from the information
3510  * froom VPD page 0x83 of the device.
3511  *
3512  * Returns the identifier or error on failure.
3513  */
3514 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3515 {
3516         const unsigned char *d;
3517         const struct scsi_vpd *vpd_pg83;
3518         int group_id = -EAGAIN, rel_port = -1;
3519
3520         rcu_read_lock();
3521         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3522         if (!vpd_pg83) {
3523                 rcu_read_unlock();
3524                 return -ENXIO;
3525         }
3526
3527         d = vpd_pg83->data + 4;
3528         while (d < vpd_pg83->data + vpd_pg83->len) {
3529                 switch (d[1] & 0xf) {
3530                 case 0x4:
3531                         /* Relative target port */
3532                         rel_port = get_unaligned_be16(&d[6]);
3533                         break;
3534                 case 0x5:
3535                         /* Target port group */
3536                         group_id = get_unaligned_be16(&d[6]);
3537                         break;
3538                 default:
3539                         break;
3540                 }
3541                 d += d[3] + 4;
3542         }
3543         rcu_read_unlock();
3544
3545         if (group_id >= 0 && rel_id && rel_port != -1)
3546                 *rel_id = rel_port;
3547
3548         return group_id;
3549 }
3550 EXPORT_SYMBOL(scsi_vpd_tpg_id);