VFS: Convert file->f_dentry->d_inode to file_inode()
[linux-2.6-block.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE         2
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56         SP(8),
57         SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59         SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61         SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63         SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70         SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73
74 struct kmem_cache *scsi_sdb_cache;
75
76 /*
77  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78  * not change behaviour from the previous unplug mechanism, experimentation
79  * may prove this needs changing.
80  */
81 #define SCSI_QUEUE_DELAY        3
82
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86         struct Scsi_Host *host = cmd->device->host;
87         struct scsi_device *device = cmd->device;
88         struct scsi_target *starget = scsi_target(device);
89
90         /*
91          * Set the appropriate busy bit for the device/host.
92          *
93          * If the host/device isn't busy, assume that something actually
94          * completed, and that we should be able to queue a command now.
95          *
96          * Note that the prior mid-layer assumption that any host could
97          * always queue at least one command is now broken.  The mid-layer
98          * will implement a user specifiable stall (see
99          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100          * if a command is requeued with no other commands outstanding
101          * either for the device or for the host.
102          */
103         switch (reason) {
104         case SCSI_MLQUEUE_HOST_BUSY:
105                 atomic_set(&host->host_blocked, host->max_host_blocked);
106                 break;
107         case SCSI_MLQUEUE_DEVICE_BUSY:
108         case SCSI_MLQUEUE_EH_RETRY:
109                 atomic_set(&device->device_blocked,
110                            device->max_device_blocked);
111                 break;
112         case SCSI_MLQUEUE_TARGET_BUSY:
113                 atomic_set(&starget->target_blocked,
114                            starget->max_target_blocked);
115                 break;
116         }
117 }
118
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121         struct scsi_device *sdev = cmd->device;
122         struct request_queue *q = cmd->request->q;
123
124         blk_mq_requeue_request(cmd->request);
125         blk_mq_kick_requeue_list(q);
126         put_device(&sdev->sdev_gendev);
127 }
128
129 /**
130  * __scsi_queue_insert - private queue insertion
131  * @cmd: The SCSI command being requeued
132  * @reason:  The reason for the requeue
133  * @unbusy: Whether the queue should be unbusied
134  *
135  * This is a private queue insertion.  The public interface
136  * scsi_queue_insert() always assumes the queue should be unbusied
137  * because it's always called before the completion.  This function is
138  * for a requeue after completion, which should only occur in this
139  * file.
140  */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143         struct scsi_device *device = cmd->device;
144         struct request_queue *q = device->request_queue;
145         unsigned long flags;
146
147         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148                 "Inserting command %p into mlqueue\n", cmd));
149
150         scsi_set_blocked(cmd, reason);
151
152         /*
153          * Decrement the counters, since these commands are no longer
154          * active on the host/device.
155          */
156         if (unbusy)
157                 scsi_device_unbusy(device);
158
159         /*
160          * Requeue this command.  It will go before all other commands
161          * that are already in the queue. Schedule requeue work under
162          * lock such that the kblockd_schedule_work() call happens
163          * before blk_cleanup_queue() finishes.
164          */
165         cmd->result = 0;
166         if (q->mq_ops) {
167                 scsi_mq_requeue_cmd(cmd);
168                 return;
169         }
170         spin_lock_irqsave(q->queue_lock, flags);
171         blk_requeue_request(q, cmd->request);
172         kblockd_schedule_work(&device->requeue_work);
173         spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175
176 /*
177  * Function:    scsi_queue_insert()
178  *
179  * Purpose:     Insert a command in the midlevel queue.
180  *
181  * Arguments:   cmd    - command that we are adding to queue.
182  *              reason - why we are inserting command to queue.
183  *
184  * Lock status: Assumed that lock is not held upon entry.
185  *
186  * Returns:     Nothing.
187  *
188  * Notes:       We do this for one of two cases.  Either the host is busy
189  *              and it cannot accept any more commands for the time being,
190  *              or the device returned QUEUE_FULL and can accept no more
191  *              commands.
192  * Notes:       This could be called either from an interrupt context or a
193  *              normal process context.
194  */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197         __scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200  * scsi_execute - insert request and wait for the result
201  * @sdev:       scsi device
202  * @cmd:        scsi command
203  * @data_direction: data direction
204  * @buffer:     data buffer
205  * @bufflen:    len of buffer
206  * @sense:      optional sense buffer
207  * @timeout:    request timeout in seconds
208  * @retries:    number of times to retry request
209  * @flags:      or into request flags;
210  * @resid:      optional residual length
211  *
212  * returns the req->errors value which is the scsi_cmnd result
213  * field.
214  */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216                  int data_direction, void *buffer, unsigned bufflen,
217                  unsigned char *sense, int timeout, int retries, u64 flags,
218                  int *resid)
219 {
220         struct request *req;
221         int write = (data_direction == DMA_TO_DEVICE);
222         int ret = DRIVER_ERROR << 24;
223
224         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225         if (IS_ERR(req))
226                 return ret;
227         blk_rq_set_block_pc(req);
228
229         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
230                                         buffer, bufflen, __GFP_WAIT))
231                 goto out;
232
233         req->cmd_len = COMMAND_SIZE(cmd[0]);
234         memcpy(req->cmd, cmd, req->cmd_len);
235         req->sense = sense;
236         req->sense_len = 0;
237         req->retries = retries;
238         req->timeout = timeout;
239         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241         /*
242          * head injection *required* here otherwise quiesce won't work
243          */
244         blk_execute_rq(req->q, NULL, req, 1);
245
246         /*
247          * Some devices (USB mass-storage in particular) may transfer
248          * garbage data together with a residue indicating that the data
249          * is invalid.  Prevent the garbage from being misinterpreted
250          * and prevent security leaks by zeroing out the excess data.
251          */
252         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255         if (resid)
256                 *resid = req->resid_len;
257         ret = req->errors;
258  out:
259         blk_put_request(req);
260
261         return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266                      int data_direction, void *buffer, unsigned bufflen,
267                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
268                      int *resid, u64 flags)
269 {
270         char *sense = NULL;
271         int result;
272         
273         if (sshdr) {
274                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275                 if (!sense)
276                         return DRIVER_ERROR << 24;
277         }
278         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279                               sense, timeout, retries, flags, resid);
280         if (sshdr)
281                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283         kfree(sense);
284         return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287
288 /*
289  * Function:    scsi_init_cmd_errh()
290  *
291  * Purpose:     Initialize cmd fields related to error handling.
292  *
293  * Arguments:   cmd     - command that is ready to be queued.
294  *
295  * Notes:       This function has the job of initializing a number of
296  *              fields related to error handling.   Typically this will
297  *              be called once for each command, as required.
298  */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301         cmd->serial_number = 0;
302         scsi_set_resid(cmd, 0);
303         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304         if (cmd->cmd_len == 0)
305                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310         struct Scsi_Host *shost = sdev->host;
311         struct scsi_target *starget = scsi_target(sdev);
312         unsigned long flags;
313
314         atomic_dec(&shost->host_busy);
315         if (starget->can_queue > 0)
316                 atomic_dec(&starget->target_busy);
317
318         if (unlikely(scsi_host_in_recovery(shost) &&
319                      (shost->host_failed || shost->host_eh_scheduled))) {
320                 spin_lock_irqsave(shost->host_lock, flags);
321                 scsi_eh_wakeup(shost);
322                 spin_unlock_irqrestore(shost->host_lock, flags);
323         }
324
325         atomic_dec(&sdev->device_busy);
326 }
327
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330         if (q->mq_ops)
331                 blk_mq_start_hw_queues(q);
332         else
333                 blk_run_queue(q);
334 }
335
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345         struct Scsi_Host *shost = current_sdev->host;
346         struct scsi_device *sdev, *tmp;
347         struct scsi_target *starget = scsi_target(current_sdev);
348         unsigned long flags;
349
350         spin_lock_irqsave(shost->host_lock, flags);
351         starget->starget_sdev_user = NULL;
352         spin_unlock_irqrestore(shost->host_lock, flags);
353
354         /*
355          * Call blk_run_queue for all LUNs on the target, starting with
356          * current_sdev. We race with others (to set starget_sdev_user),
357          * but in most cases, we will be first. Ideally, each LU on the
358          * target would get some limited time or requests on the target.
359          */
360         scsi_kick_queue(current_sdev->request_queue);
361
362         spin_lock_irqsave(shost->host_lock, flags);
363         if (starget->starget_sdev_user)
364                 goto out;
365         list_for_each_entry_safe(sdev, tmp, &starget->devices,
366                         same_target_siblings) {
367                 if (sdev == current_sdev)
368                         continue;
369                 if (scsi_device_get(sdev))
370                         continue;
371
372                 spin_unlock_irqrestore(shost->host_lock, flags);
373                 scsi_kick_queue(sdev->request_queue);
374                 spin_lock_irqsave(shost->host_lock, flags);
375         
376                 scsi_device_put(sdev);
377         }
378  out:
379         spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385                 return true;
386         if (atomic_read(&sdev->device_blocked) > 0)
387                 return true;
388         return false;
389 }
390
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393         if (starget->can_queue > 0) {
394                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395                         return true;
396                 if (atomic_read(&starget->target_blocked) > 0)
397                         return true;
398         }
399         return false;
400 }
401
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404         if (shost->can_queue > 0 &&
405             atomic_read(&shost->host_busy) >= shost->can_queue)
406                 return true;
407         if (atomic_read(&shost->host_blocked) > 0)
408                 return true;
409         if (shost->host_self_blocked)
410                 return true;
411         return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416         LIST_HEAD(starved_list);
417         struct scsi_device *sdev;
418         unsigned long flags;
419
420         spin_lock_irqsave(shost->host_lock, flags);
421         list_splice_init(&shost->starved_list, &starved_list);
422
423         while (!list_empty(&starved_list)) {
424                 struct request_queue *slq;
425
426                 /*
427                  * As long as shost is accepting commands and we have
428                  * starved queues, call blk_run_queue. scsi_request_fn
429                  * drops the queue_lock and can add us back to the
430                  * starved_list.
431                  *
432                  * host_lock protects the starved_list and starved_entry.
433                  * scsi_request_fn must get the host_lock before checking
434                  * or modifying starved_list or starved_entry.
435                  */
436                 if (scsi_host_is_busy(shost))
437                         break;
438
439                 sdev = list_entry(starved_list.next,
440                                   struct scsi_device, starved_entry);
441                 list_del_init(&sdev->starved_entry);
442                 if (scsi_target_is_busy(scsi_target(sdev))) {
443                         list_move_tail(&sdev->starved_entry,
444                                        &shost->starved_list);
445                         continue;
446                 }
447
448                 /*
449                  * Once we drop the host lock, a racing scsi_remove_device()
450                  * call may remove the sdev from the starved list and destroy
451                  * it and the queue.  Mitigate by taking a reference to the
452                  * queue and never touching the sdev again after we drop the
453                  * host lock.  Note: if __scsi_remove_device() invokes
454                  * blk_cleanup_queue() before the queue is run from this
455                  * function then blk_run_queue() will return immediately since
456                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457                  */
458                 slq = sdev->request_queue;
459                 if (!blk_get_queue(slq))
460                         continue;
461                 spin_unlock_irqrestore(shost->host_lock, flags);
462
463                 scsi_kick_queue(slq);
464                 blk_put_queue(slq);
465
466                 spin_lock_irqsave(shost->host_lock, flags);
467         }
468         /* put any unprocessed entries back */
469         list_splice(&starved_list, &shost->starved_list);
470         spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /*
474  * Function:   scsi_run_queue()
475  *
476  * Purpose:    Select a proper request queue to serve next
477  *
478  * Arguments:  q       - last request's queue
479  *
480  * Returns:     Nothing
481  *
482  * Notes:      The previous command was completely finished, start
483  *             a new one if possible.
484  */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487         struct scsi_device *sdev = q->queuedata;
488
489         if (scsi_target(sdev)->single_lun)
490                 scsi_single_lun_run(sdev);
491         if (!list_empty(&sdev->host->starved_list))
492                 scsi_starved_list_run(sdev->host);
493
494         if (q->mq_ops)
495                 blk_mq_start_stopped_hw_queues(q, false);
496         else
497                 blk_run_queue(q);
498 }
499
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502         struct scsi_device *sdev;
503         struct request_queue *q;
504
505         sdev = container_of(work, struct scsi_device, requeue_work);
506         q = sdev->request_queue;
507         scsi_run_queue(q);
508 }
509
510 /*
511  * Function:    scsi_requeue_command()
512  *
513  * Purpose:     Handle post-processing of completed commands.
514  *
515  * Arguments:   q       - queue to operate on
516  *              cmd     - command that may need to be requeued.
517  *
518  * Returns:     Nothing
519  *
520  * Notes:       After command completion, there may be blocks left
521  *              over which weren't finished by the previous command
522  *              this can be for a number of reasons - the main one is
523  *              I/O errors in the middle of the request, in which case
524  *              we need to request the blocks that come after the bad
525  *              sector.
526  * Notes:       Upon return, cmd is a stale pointer.
527  */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530         struct scsi_device *sdev = cmd->device;
531         struct request *req = cmd->request;
532         unsigned long flags;
533
534         spin_lock_irqsave(q->queue_lock, flags);
535         blk_unprep_request(req);
536         req->special = NULL;
537         scsi_put_command(cmd);
538         blk_requeue_request(q, req);
539         spin_unlock_irqrestore(q->queue_lock, flags);
540
541         scsi_run_queue(q);
542
543         put_device(&sdev->sdev_gendev);
544 }
545
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548         struct scsi_device *sdev;
549
550         shost_for_each_device(sdev, shost)
551                 scsi_run_queue(sdev->request_queue);
552 }
553
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556         unsigned int index;
557
558         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560         if (nents <= 8)
561                 index = 0;
562         else
563                 index = get_count_order(nents) - 3;
564
565         return index;
566 }
567
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570         struct scsi_host_sg_pool *sgp;
571
572         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573         mempool_free(sgl, sgp->pool);
574 }
575
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578         struct scsi_host_sg_pool *sgp;
579
580         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581         return mempool_alloc(sgp->pool, gfp_mask);
582 }
583
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586         if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587                 return;
588         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592 {
593         struct scatterlist *first_chunk = NULL;
594         int ret;
595
596         BUG_ON(!nents);
597
598         if (mq) {
599                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
600                         sdb->table.nents = nents;
601                         sg_init_table(sdb->table.sgl, sdb->table.nents);
602                         return 0;
603                 }
604                 first_chunk = sdb->table.sgl;
605         }
606
607         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
608                                first_chunk, GFP_ATOMIC, scsi_sg_alloc);
609         if (unlikely(ret))
610                 scsi_free_sgtable(sdb, mq);
611         return ret;
612 }
613
614 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
615 {
616         if (cmd->request->cmd_type == REQ_TYPE_FS) {
617                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
618
619                 if (drv->uninit_command)
620                         drv->uninit_command(cmd);
621         }
622 }
623
624 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
625 {
626         if (cmd->sdb.table.nents)
627                 scsi_free_sgtable(&cmd->sdb, true);
628         if (cmd->request->next_rq && cmd->request->next_rq->special)
629                 scsi_free_sgtable(cmd->request->next_rq->special, true);
630         if (scsi_prot_sg_count(cmd))
631                 scsi_free_sgtable(cmd->prot_sdb, true);
632 }
633
634 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
635 {
636         struct scsi_device *sdev = cmd->device;
637         struct Scsi_Host *shost = sdev->host;
638         unsigned long flags;
639
640         scsi_mq_free_sgtables(cmd);
641         scsi_uninit_cmd(cmd);
642
643         if (shost->use_cmd_list) {
644                 BUG_ON(list_empty(&cmd->list));
645                 spin_lock_irqsave(&sdev->list_lock, flags);
646                 list_del_init(&cmd->list);
647                 spin_unlock_irqrestore(&sdev->list_lock, flags);
648         }
649 }
650
651 /*
652  * Function:    scsi_release_buffers()
653  *
654  * Purpose:     Free resources allocate for a scsi_command.
655  *
656  * Arguments:   cmd     - command that we are bailing.
657  *
658  * Lock status: Assumed that no lock is held upon entry.
659  *
660  * Returns:     Nothing
661  *
662  * Notes:       In the event that an upper level driver rejects a
663  *              command, we must release resources allocated during
664  *              the __init_io() function.  Primarily this would involve
665  *              the scatter-gather table.
666  */
667 static void scsi_release_buffers(struct scsi_cmnd *cmd)
668 {
669         if (cmd->sdb.table.nents)
670                 scsi_free_sgtable(&cmd->sdb, false);
671
672         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
673
674         if (scsi_prot_sg_count(cmd))
675                 scsi_free_sgtable(cmd->prot_sdb, false);
676 }
677
678 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
679 {
680         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
681
682         scsi_free_sgtable(bidi_sdb, false);
683         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
684         cmd->request->next_rq->special = NULL;
685 }
686
687 static bool scsi_end_request(struct request *req, int error,
688                 unsigned int bytes, unsigned int bidi_bytes)
689 {
690         struct scsi_cmnd *cmd = req->special;
691         struct scsi_device *sdev = cmd->device;
692         struct request_queue *q = sdev->request_queue;
693
694         if (blk_update_request(req, error, bytes))
695                 return true;
696
697         /* Bidi request must be completed as a whole */
698         if (unlikely(bidi_bytes) &&
699             blk_update_request(req->next_rq, error, bidi_bytes))
700                 return true;
701
702         if (blk_queue_add_random(q))
703                 add_disk_randomness(req->rq_disk);
704
705         if (req->mq_ctx) {
706                 /*
707                  * In the MQ case the command gets freed by __blk_mq_end_request,
708                  * so we have to do all cleanup that depends on it earlier.
709                  *
710                  * We also can't kick the queues from irq context, so we
711                  * will have to defer it to a workqueue.
712                  */
713                 scsi_mq_uninit_cmd(cmd);
714
715                 __blk_mq_end_request(req, error);
716
717                 if (scsi_target(sdev)->single_lun ||
718                     !list_empty(&sdev->host->starved_list))
719                         kblockd_schedule_work(&sdev->requeue_work);
720                 else
721                         blk_mq_start_stopped_hw_queues(q, true);
722         } else {
723                 unsigned long flags;
724
725                 if (bidi_bytes)
726                         scsi_release_bidi_buffers(cmd);
727
728                 spin_lock_irqsave(q->queue_lock, flags);
729                 blk_finish_request(req, error);
730                 spin_unlock_irqrestore(q->queue_lock, flags);
731
732                 scsi_release_buffers(cmd);
733
734                 scsi_put_command(cmd);
735                 scsi_run_queue(q);
736         }
737
738         put_device(&sdev->sdev_gendev);
739         return false;
740 }
741
742 /**
743  * __scsi_error_from_host_byte - translate SCSI error code into errno
744  * @cmd:        SCSI command (unused)
745  * @result:     scsi error code
746  *
747  * Translate SCSI error code into standard UNIX errno.
748  * Return values:
749  * -ENOLINK     temporary transport failure
750  * -EREMOTEIO   permanent target failure, do not retry
751  * -EBADE       permanent nexus failure, retry on other path
752  * -ENOSPC      No write space available
753  * -ENODATA     Medium error
754  * -EIO         unspecified I/O error
755  */
756 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
757 {
758         int error = 0;
759
760         switch(host_byte(result)) {
761         case DID_TRANSPORT_FAILFAST:
762                 error = -ENOLINK;
763                 break;
764         case DID_TARGET_FAILURE:
765                 set_host_byte(cmd, DID_OK);
766                 error = -EREMOTEIO;
767                 break;
768         case DID_NEXUS_FAILURE:
769                 set_host_byte(cmd, DID_OK);
770                 error = -EBADE;
771                 break;
772         case DID_ALLOC_FAILURE:
773                 set_host_byte(cmd, DID_OK);
774                 error = -ENOSPC;
775                 break;
776         case DID_MEDIUM_ERROR:
777                 set_host_byte(cmd, DID_OK);
778                 error = -ENODATA;
779                 break;
780         default:
781                 error = -EIO;
782                 break;
783         }
784
785         return error;
786 }
787
788 /*
789  * Function:    scsi_io_completion()
790  *
791  * Purpose:     Completion processing for block device I/O requests.
792  *
793  * Arguments:   cmd   - command that is finished.
794  *
795  * Lock status: Assumed that no lock is held upon entry.
796  *
797  * Returns:     Nothing
798  *
799  * Notes:       We will finish off the specified number of sectors.  If we
800  *              are done, the command block will be released and the queue
801  *              function will be goosed.  If we are not done then we have to
802  *              figure out what to do next:
803  *
804  *              a) We can call scsi_requeue_command().  The request
805  *                 will be unprepared and put back on the queue.  Then
806  *                 a new command will be created for it.  This should
807  *                 be used if we made forward progress, or if we want
808  *                 to switch from READ(10) to READ(6) for example.
809  *
810  *              b) We can call __scsi_queue_insert().  The request will
811  *                 be put back on the queue and retried using the same
812  *                 command as before, possibly after a delay.
813  *
814  *              c) We can call scsi_end_request() with -EIO to fail
815  *                 the remainder of the request.
816  */
817 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818 {
819         int result = cmd->result;
820         struct request_queue *q = cmd->device->request_queue;
821         struct request *req = cmd->request;
822         int error = 0;
823         struct scsi_sense_hdr sshdr;
824         bool sense_valid = false;
825         int sense_deferred = 0, level = 0;
826         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
827               ACTION_DELAYED_RETRY} action;
828         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
829
830         if (result) {
831                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832                 if (sense_valid)
833                         sense_deferred = scsi_sense_is_deferred(&sshdr);
834         }
835
836         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
837                 if (result) {
838                         if (sense_valid && req->sense) {
839                                 /*
840                                  * SG_IO wants current and deferred errors
841                                  */
842                                 int len = 8 + cmd->sense_buffer[7];
843
844                                 if (len > SCSI_SENSE_BUFFERSIZE)
845                                         len = SCSI_SENSE_BUFFERSIZE;
846                                 memcpy(req->sense, cmd->sense_buffer,  len);
847                                 req->sense_len = len;
848                         }
849                         if (!sense_deferred)
850                                 error = __scsi_error_from_host_byte(cmd, result);
851                 }
852                 /*
853                  * __scsi_error_from_host_byte may have reset the host_byte
854                  */
855                 req->errors = cmd->result;
856
857                 req->resid_len = scsi_get_resid(cmd);
858
859                 if (scsi_bidi_cmnd(cmd)) {
860                         /*
861                          * Bidi commands Must be complete as a whole,
862                          * both sides at once.
863                          */
864                         req->next_rq->resid_len = scsi_in(cmd)->resid;
865                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
866                                         blk_rq_bytes(req->next_rq)))
867                                 BUG();
868                         return;
869                 }
870         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
871                 /*
872                  * Certain non BLOCK_PC requests are commands that don't
873                  * actually transfer anything (FLUSH), so cannot use
874                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
875                  * This sets the error explicitly for the problem case.
876                  */
877                 error = __scsi_error_from_host_byte(cmd, result);
878         }
879
880         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
881         BUG_ON(blk_bidi_rq(req));
882
883         /*
884          * Next deal with any sectors which we were able to correctly
885          * handle.
886          */
887         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
888                 "%u sectors total, %d bytes done.\n",
889                 blk_rq_sectors(req), good_bytes));
890
891         /*
892          * Recovered errors need reporting, but they're always treated
893          * as success, so fiddle the result code here.  For BLOCK_PC
894          * we already took a copy of the original into rq->errors which
895          * is what gets returned to the user
896          */
897         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
898                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
899                  * print since caller wants ATA registers. Only occurs on
900                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
901                  */
902                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
903                         ;
904                 else if (!(req->cmd_flags & REQ_QUIET))
905                         scsi_print_sense(cmd);
906                 result = 0;
907                 /* BLOCK_PC may have set error */
908                 error = 0;
909         }
910
911         /*
912          * If we finished all bytes in the request we are done now.
913          */
914         if (!scsi_end_request(req, error, good_bytes, 0))
915                 return;
916
917         /*
918          * Kill remainder if no retrys.
919          */
920         if (error && scsi_noretry_cmd(cmd)) {
921                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
922                         BUG();
923                 return;
924         }
925
926         /*
927          * If there had been no error, but we have leftover bytes in the
928          * requeues just queue the command up again.
929          */
930         if (result == 0)
931                 goto requeue;
932
933         error = __scsi_error_from_host_byte(cmd, result);
934
935         if (host_byte(result) == DID_RESET) {
936                 /* Third party bus reset or reset for error recovery
937                  * reasons.  Just retry the command and see what
938                  * happens.
939                  */
940                 action = ACTION_RETRY;
941         } else if (sense_valid && !sense_deferred) {
942                 switch (sshdr.sense_key) {
943                 case UNIT_ATTENTION:
944                         if (cmd->device->removable) {
945                                 /* Detected disc change.  Set a bit
946                                  * and quietly refuse further access.
947                                  */
948                                 cmd->device->changed = 1;
949                                 action = ACTION_FAIL;
950                         } else {
951                                 /* Must have been a power glitch, or a
952                                  * bus reset.  Could not have been a
953                                  * media change, so we just retry the
954                                  * command and see what happens.
955                                  */
956                                 action = ACTION_RETRY;
957                         }
958                         break;
959                 case ILLEGAL_REQUEST:
960                         /* If we had an ILLEGAL REQUEST returned, then
961                          * we may have performed an unsupported
962                          * command.  The only thing this should be
963                          * would be a ten byte read where only a six
964                          * byte read was supported.  Also, on a system
965                          * where READ CAPACITY failed, we may have
966                          * read past the end of the disk.
967                          */
968                         if ((cmd->device->use_10_for_rw &&
969                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
970                             (cmd->cmnd[0] == READ_10 ||
971                              cmd->cmnd[0] == WRITE_10)) {
972                                 /* This will issue a new 6-byte command. */
973                                 cmd->device->use_10_for_rw = 0;
974                                 action = ACTION_REPREP;
975                         } else if (sshdr.asc == 0x10) /* DIX */ {
976                                 action = ACTION_FAIL;
977                                 error = -EILSEQ;
978                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
979                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
980                                 action = ACTION_FAIL;
981                                 error = -EREMOTEIO;
982                         } else
983                                 action = ACTION_FAIL;
984                         break;
985                 case ABORTED_COMMAND:
986                         action = ACTION_FAIL;
987                         if (sshdr.asc == 0x10) /* DIF */
988                                 error = -EILSEQ;
989                         break;
990                 case NOT_READY:
991                         /* If the device is in the process of becoming
992                          * ready, or has a temporary blockage, retry.
993                          */
994                         if (sshdr.asc == 0x04) {
995                                 switch (sshdr.ascq) {
996                                 case 0x01: /* becoming ready */
997                                 case 0x04: /* format in progress */
998                                 case 0x05: /* rebuild in progress */
999                                 case 0x06: /* recalculation in progress */
1000                                 case 0x07: /* operation in progress */
1001                                 case 0x08: /* Long write in progress */
1002                                 case 0x09: /* self test in progress */
1003                                 case 0x14: /* space allocation in progress */
1004                                         action = ACTION_DELAYED_RETRY;
1005                                         break;
1006                                 default:
1007                                         action = ACTION_FAIL;
1008                                         break;
1009                                 }
1010                         } else
1011                                 action = ACTION_FAIL;
1012                         break;
1013                 case VOLUME_OVERFLOW:
1014                         /* See SSC3rXX or current. */
1015                         action = ACTION_FAIL;
1016                         break;
1017                 default:
1018                         action = ACTION_FAIL;
1019                         break;
1020                 }
1021         } else
1022                 action = ACTION_FAIL;
1023
1024         if (action != ACTION_FAIL &&
1025             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1026                 action = ACTION_FAIL;
1027
1028         switch (action) {
1029         case ACTION_FAIL:
1030                 /* Give up and fail the remainder of the request */
1031                 if (!(req->cmd_flags & REQ_QUIET)) {
1032                         static DEFINE_RATELIMIT_STATE(_rs,
1033                                         DEFAULT_RATELIMIT_INTERVAL,
1034                                         DEFAULT_RATELIMIT_BURST);
1035
1036                         if (unlikely(scsi_logging_level))
1037                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1038                                                        SCSI_LOG_MLCOMPLETE_BITS);
1039
1040                         /*
1041                          * if logging is enabled the failure will be printed
1042                          * in scsi_log_completion(), so avoid duplicate messages
1043                          */
1044                         if (!level && __ratelimit(&_rs)) {
1045                                 scsi_print_result(cmd, NULL, FAILED);
1046                                 if (driver_byte(result) & DRIVER_SENSE)
1047                                         scsi_print_sense(cmd);
1048                                 scsi_print_command(cmd);
1049                         }
1050                 }
1051                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1052                         return;
1053                 /*FALLTHRU*/
1054         case ACTION_REPREP:
1055         requeue:
1056                 /* Unprep the request and put it back at the head of the queue.
1057                  * A new command will be prepared and issued.
1058                  */
1059                 if (q->mq_ops) {
1060                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1061                         scsi_mq_uninit_cmd(cmd);
1062                         scsi_mq_requeue_cmd(cmd);
1063                 } else {
1064                         scsi_release_buffers(cmd);
1065                         scsi_requeue_command(q, cmd);
1066                 }
1067                 break;
1068         case ACTION_RETRY:
1069                 /* Retry the same command immediately */
1070                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1071                 break;
1072         case ACTION_DELAYED_RETRY:
1073                 /* Retry the same command after a delay */
1074                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1075                 break;
1076         }
1077 }
1078
1079 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1080 {
1081         int count;
1082
1083         /*
1084          * If sg table allocation fails, requeue request later.
1085          */
1086         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087                                         req->mq_ctx != NULL)))
1088                 return BLKPREP_DEFER;
1089
1090         /* 
1091          * Next, walk the list, and fill in the addresses and sizes of
1092          * each segment.
1093          */
1094         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1095         BUG_ON(count > sdb->table.nents);
1096         sdb->table.nents = count;
1097         sdb->length = blk_rq_bytes(req);
1098         return BLKPREP_OK;
1099 }
1100
1101 /*
1102  * Function:    scsi_init_io()
1103  *
1104  * Purpose:     SCSI I/O initialize function.
1105  *
1106  * Arguments:   cmd   - Command descriptor we wish to initialize
1107  *
1108  * Returns:     0 on success
1109  *              BLKPREP_DEFER if the failure is retryable
1110  *              BLKPREP_KILL if the failure is fatal
1111  */
1112 int scsi_init_io(struct scsi_cmnd *cmd)
1113 {
1114         struct scsi_device *sdev = cmd->device;
1115         struct request *rq = cmd->request;
1116         bool is_mq = (rq->mq_ctx != NULL);
1117         int error;
1118
1119         BUG_ON(!rq->nr_phys_segments);
1120
1121         error = scsi_init_sgtable(rq, &cmd->sdb);
1122         if (error)
1123                 goto err_exit;
1124
1125         if (blk_bidi_rq(rq)) {
1126                 if (!rq->q->mq_ops) {
1127                         struct scsi_data_buffer *bidi_sdb =
1128                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1129                         if (!bidi_sdb) {
1130                                 error = BLKPREP_DEFER;
1131                                 goto err_exit;
1132                         }
1133
1134                         rq->next_rq->special = bidi_sdb;
1135                 }
1136
1137                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1138                 if (error)
1139                         goto err_exit;
1140         }
1141
1142         if (blk_integrity_rq(rq)) {
1143                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1144                 int ivecs, count;
1145
1146                 BUG_ON(prot_sdb == NULL);
1147                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1148
1149                 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1150                         error = BLKPREP_DEFER;
1151                         goto err_exit;
1152                 }
1153
1154                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1155                                                 prot_sdb->table.sgl);
1156                 BUG_ON(unlikely(count > ivecs));
1157                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1158
1159                 cmd->prot_sdb = prot_sdb;
1160                 cmd->prot_sdb->table.nents = count;
1161         }
1162
1163         return BLKPREP_OK;
1164 err_exit:
1165         if (is_mq) {
1166                 scsi_mq_free_sgtables(cmd);
1167         } else {
1168                 scsi_release_buffers(cmd);
1169                 cmd->request->special = NULL;
1170                 scsi_put_command(cmd);
1171                 put_device(&sdev->sdev_gendev);
1172         }
1173         return error;
1174 }
1175 EXPORT_SYMBOL(scsi_init_io);
1176
1177 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1178                 struct request *req)
1179 {
1180         struct scsi_cmnd *cmd;
1181
1182         if (!req->special) {
1183                 /* Bail if we can't get a reference to the device */
1184                 if (!get_device(&sdev->sdev_gendev))
1185                         return NULL;
1186
1187                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1188                 if (unlikely(!cmd)) {
1189                         put_device(&sdev->sdev_gendev);
1190                         return NULL;
1191                 }
1192                 req->special = cmd;
1193         } else {
1194                 cmd = req->special;
1195         }
1196
1197         /* pull a tag out of the request if we have one */
1198         cmd->tag = req->tag;
1199         cmd->request = req;
1200
1201         cmd->cmnd = req->cmd;
1202         cmd->prot_op = SCSI_PROT_NORMAL;
1203
1204         return cmd;
1205 }
1206
1207 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1208 {
1209         struct scsi_cmnd *cmd = req->special;
1210
1211         /*
1212          * BLOCK_PC requests may transfer data, in which case they must
1213          * a bio attached to them.  Or they might contain a SCSI command
1214          * that does not transfer data, in which case they may optionally
1215          * submit a request without an attached bio.
1216          */
1217         if (req->bio) {
1218                 int ret = scsi_init_io(cmd);
1219                 if (unlikely(ret))
1220                         return ret;
1221         } else {
1222                 BUG_ON(blk_rq_bytes(req));
1223
1224                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1225         }
1226
1227         cmd->cmd_len = req->cmd_len;
1228         cmd->transfersize = blk_rq_bytes(req);
1229         cmd->allowed = req->retries;
1230         return BLKPREP_OK;
1231 }
1232
1233 /*
1234  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1235  * that still need to be translated to SCSI CDBs from the ULD.
1236  */
1237 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1238 {
1239         struct scsi_cmnd *cmd = req->special;
1240
1241         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1242                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1243                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1244                 if (ret != BLKPREP_OK)
1245                         return ret;
1246         }
1247
1248         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1249         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1250 }
1251
1252 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1253 {
1254         struct scsi_cmnd *cmd = req->special;
1255
1256         if (!blk_rq_bytes(req))
1257                 cmd->sc_data_direction = DMA_NONE;
1258         else if (rq_data_dir(req) == WRITE)
1259                 cmd->sc_data_direction = DMA_TO_DEVICE;
1260         else
1261                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1262
1263         switch (req->cmd_type) {
1264         case REQ_TYPE_FS:
1265                 return scsi_setup_fs_cmnd(sdev, req);
1266         case REQ_TYPE_BLOCK_PC:
1267                 return scsi_setup_blk_pc_cmnd(sdev, req);
1268         default:
1269                 return BLKPREP_KILL;
1270         }
1271 }
1272
1273 static int
1274 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1275 {
1276         int ret = BLKPREP_OK;
1277
1278         /*
1279          * If the device is not in running state we will reject some
1280          * or all commands.
1281          */
1282         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1283                 switch (sdev->sdev_state) {
1284                 case SDEV_OFFLINE:
1285                 case SDEV_TRANSPORT_OFFLINE:
1286                         /*
1287                          * If the device is offline we refuse to process any
1288                          * commands.  The device must be brought online
1289                          * before trying any recovery commands.
1290                          */
1291                         sdev_printk(KERN_ERR, sdev,
1292                                     "rejecting I/O to offline device\n");
1293                         ret = BLKPREP_KILL;
1294                         break;
1295                 case SDEV_DEL:
1296                         /*
1297                          * If the device is fully deleted, we refuse to
1298                          * process any commands as well.
1299                          */
1300                         sdev_printk(KERN_ERR, sdev,
1301                                     "rejecting I/O to dead device\n");
1302                         ret = BLKPREP_KILL;
1303                         break;
1304                 case SDEV_QUIESCE:
1305                 case SDEV_BLOCK:
1306                 case SDEV_CREATED_BLOCK:
1307                         /*
1308                          * If the devices is blocked we defer normal commands.
1309                          */
1310                         if (!(req->cmd_flags & REQ_PREEMPT))
1311                                 ret = BLKPREP_DEFER;
1312                         break;
1313                 default:
1314                         /*
1315                          * For any other not fully online state we only allow
1316                          * special commands.  In particular any user initiated
1317                          * command is not allowed.
1318                          */
1319                         if (!(req->cmd_flags & REQ_PREEMPT))
1320                                 ret = BLKPREP_KILL;
1321                         break;
1322                 }
1323         }
1324         return ret;
1325 }
1326
1327 static int
1328 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1329 {
1330         struct scsi_device *sdev = q->queuedata;
1331
1332         switch (ret) {
1333         case BLKPREP_KILL:
1334                 req->errors = DID_NO_CONNECT << 16;
1335                 /* release the command and kill it */
1336                 if (req->special) {
1337                         struct scsi_cmnd *cmd = req->special;
1338                         scsi_release_buffers(cmd);
1339                         scsi_put_command(cmd);
1340                         put_device(&sdev->sdev_gendev);
1341                         req->special = NULL;
1342                 }
1343                 break;
1344         case BLKPREP_DEFER:
1345                 /*
1346                  * If we defer, the blk_peek_request() returns NULL, but the
1347                  * queue must be restarted, so we schedule a callback to happen
1348                  * shortly.
1349                  */
1350                 if (atomic_read(&sdev->device_busy) == 0)
1351                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1352                 break;
1353         default:
1354                 req->cmd_flags |= REQ_DONTPREP;
1355         }
1356
1357         return ret;
1358 }
1359
1360 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1361 {
1362         struct scsi_device *sdev = q->queuedata;
1363         struct scsi_cmnd *cmd;
1364         int ret;
1365
1366         ret = scsi_prep_state_check(sdev, req);
1367         if (ret != BLKPREP_OK)
1368                 goto out;
1369
1370         cmd = scsi_get_cmd_from_req(sdev, req);
1371         if (unlikely(!cmd)) {
1372                 ret = BLKPREP_DEFER;
1373                 goto out;
1374         }
1375
1376         ret = scsi_setup_cmnd(sdev, req);
1377 out:
1378         return scsi_prep_return(q, req, ret);
1379 }
1380
1381 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1382 {
1383         scsi_uninit_cmd(req->special);
1384 }
1385
1386 /*
1387  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1388  * return 0.
1389  *
1390  * Called with the queue_lock held.
1391  */
1392 static inline int scsi_dev_queue_ready(struct request_queue *q,
1393                                   struct scsi_device *sdev)
1394 {
1395         unsigned int busy;
1396
1397         busy = atomic_inc_return(&sdev->device_busy) - 1;
1398         if (atomic_read(&sdev->device_blocked)) {
1399                 if (busy)
1400                         goto out_dec;
1401
1402                 /*
1403                  * unblock after device_blocked iterates to zero
1404                  */
1405                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1406                         /*
1407                          * For the MQ case we take care of this in the caller.
1408                          */
1409                         if (!q->mq_ops)
1410                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1411                         goto out_dec;
1412                 }
1413                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1414                                    "unblocking device at zero depth\n"));
1415         }
1416
1417         if (busy >= sdev->queue_depth)
1418                 goto out_dec;
1419
1420         return 1;
1421 out_dec:
1422         atomic_dec(&sdev->device_busy);
1423         return 0;
1424 }
1425
1426 /*
1427  * scsi_target_queue_ready: checks if there we can send commands to target
1428  * @sdev: scsi device on starget to check.
1429  */
1430 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1431                                            struct scsi_device *sdev)
1432 {
1433         struct scsi_target *starget = scsi_target(sdev);
1434         unsigned int busy;
1435
1436         if (starget->single_lun) {
1437                 spin_lock_irq(shost->host_lock);
1438                 if (starget->starget_sdev_user &&
1439                     starget->starget_sdev_user != sdev) {
1440                         spin_unlock_irq(shost->host_lock);
1441                         return 0;
1442                 }
1443                 starget->starget_sdev_user = sdev;
1444                 spin_unlock_irq(shost->host_lock);
1445         }
1446
1447         if (starget->can_queue <= 0)
1448                 return 1;
1449
1450         busy = atomic_inc_return(&starget->target_busy) - 1;
1451         if (atomic_read(&starget->target_blocked) > 0) {
1452                 if (busy)
1453                         goto starved;
1454
1455                 /*
1456                  * unblock after target_blocked iterates to zero
1457                  */
1458                 if (atomic_dec_return(&starget->target_blocked) > 0)
1459                         goto out_dec;
1460
1461                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1462                                  "unblocking target at zero depth\n"));
1463         }
1464
1465         if (busy >= starget->can_queue)
1466                 goto starved;
1467
1468         return 1;
1469
1470 starved:
1471         spin_lock_irq(shost->host_lock);
1472         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1473         spin_unlock_irq(shost->host_lock);
1474 out_dec:
1475         if (starget->can_queue > 0)
1476                 atomic_dec(&starget->target_busy);
1477         return 0;
1478 }
1479
1480 /*
1481  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1482  * return 0. We must end up running the queue again whenever 0 is
1483  * returned, else IO can hang.
1484  */
1485 static inline int scsi_host_queue_ready(struct request_queue *q,
1486                                    struct Scsi_Host *shost,
1487                                    struct scsi_device *sdev)
1488 {
1489         unsigned int busy;
1490
1491         if (scsi_host_in_recovery(shost))
1492                 return 0;
1493
1494         busy = atomic_inc_return(&shost->host_busy) - 1;
1495         if (atomic_read(&shost->host_blocked) > 0) {
1496                 if (busy)
1497                         goto starved;
1498
1499                 /*
1500                  * unblock after host_blocked iterates to zero
1501                  */
1502                 if (atomic_dec_return(&shost->host_blocked) > 0)
1503                         goto out_dec;
1504
1505                 SCSI_LOG_MLQUEUE(3,
1506                         shost_printk(KERN_INFO, shost,
1507                                      "unblocking host at zero depth\n"));
1508         }
1509
1510         if (shost->can_queue > 0 && busy >= shost->can_queue)
1511                 goto starved;
1512         if (shost->host_self_blocked)
1513                 goto starved;
1514
1515         /* We're OK to process the command, so we can't be starved */
1516         if (!list_empty(&sdev->starved_entry)) {
1517                 spin_lock_irq(shost->host_lock);
1518                 if (!list_empty(&sdev->starved_entry))
1519                         list_del_init(&sdev->starved_entry);
1520                 spin_unlock_irq(shost->host_lock);
1521         }
1522
1523         return 1;
1524
1525 starved:
1526         spin_lock_irq(shost->host_lock);
1527         if (list_empty(&sdev->starved_entry))
1528                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1529         spin_unlock_irq(shost->host_lock);
1530 out_dec:
1531         atomic_dec(&shost->host_busy);
1532         return 0;
1533 }
1534
1535 /*
1536  * Busy state exporting function for request stacking drivers.
1537  *
1538  * For efficiency, no lock is taken to check the busy state of
1539  * shost/starget/sdev, since the returned value is not guaranteed and
1540  * may be changed after request stacking drivers call the function,
1541  * regardless of taking lock or not.
1542  *
1543  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1544  * needs to return 'not busy'. Otherwise, request stacking drivers
1545  * may hold requests forever.
1546  */
1547 static int scsi_lld_busy(struct request_queue *q)
1548 {
1549         struct scsi_device *sdev = q->queuedata;
1550         struct Scsi_Host *shost;
1551
1552         if (blk_queue_dying(q))
1553                 return 0;
1554
1555         shost = sdev->host;
1556
1557         /*
1558          * Ignore host/starget busy state.
1559          * Since block layer does not have a concept of fairness across
1560          * multiple queues, congestion of host/starget needs to be handled
1561          * in SCSI layer.
1562          */
1563         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1564                 return 1;
1565
1566         return 0;
1567 }
1568
1569 /*
1570  * Kill a request for a dead device
1571  */
1572 static void scsi_kill_request(struct request *req, struct request_queue *q)
1573 {
1574         struct scsi_cmnd *cmd = req->special;
1575         struct scsi_device *sdev;
1576         struct scsi_target *starget;
1577         struct Scsi_Host *shost;
1578
1579         blk_start_request(req);
1580
1581         scmd_printk(KERN_INFO, cmd, "killing request\n");
1582
1583         sdev = cmd->device;
1584         starget = scsi_target(sdev);
1585         shost = sdev->host;
1586         scsi_init_cmd_errh(cmd);
1587         cmd->result = DID_NO_CONNECT << 16;
1588         atomic_inc(&cmd->device->iorequest_cnt);
1589
1590         /*
1591          * SCSI request completion path will do scsi_device_unbusy(),
1592          * bump busy counts.  To bump the counters, we need to dance
1593          * with the locks as normal issue path does.
1594          */
1595         atomic_inc(&sdev->device_busy);
1596         atomic_inc(&shost->host_busy);
1597         if (starget->can_queue > 0)
1598                 atomic_inc(&starget->target_busy);
1599
1600         blk_complete_request(req);
1601 }
1602
1603 static void scsi_softirq_done(struct request *rq)
1604 {
1605         struct scsi_cmnd *cmd = rq->special;
1606         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1607         int disposition;
1608
1609         INIT_LIST_HEAD(&cmd->eh_entry);
1610
1611         atomic_inc(&cmd->device->iodone_cnt);
1612         if (cmd->result)
1613                 atomic_inc(&cmd->device->ioerr_cnt);
1614
1615         disposition = scsi_decide_disposition(cmd);
1616         if (disposition != SUCCESS &&
1617             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1618                 sdev_printk(KERN_ERR, cmd->device,
1619                             "timing out command, waited %lus\n",
1620                             wait_for/HZ);
1621                 disposition = SUCCESS;
1622         }
1623
1624         scsi_log_completion(cmd, disposition);
1625
1626         switch (disposition) {
1627                 case SUCCESS:
1628                         scsi_finish_command(cmd);
1629                         break;
1630                 case NEEDS_RETRY:
1631                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1632                         break;
1633                 case ADD_TO_MLQUEUE:
1634                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1635                         break;
1636                 default:
1637                         if (!scsi_eh_scmd_add(cmd, 0))
1638                                 scsi_finish_command(cmd);
1639         }
1640 }
1641
1642 /**
1643  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1644  * @cmd: command block we are dispatching.
1645  *
1646  * Return: nonzero return request was rejected and device's queue needs to be
1647  * plugged.
1648  */
1649 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1650 {
1651         struct Scsi_Host *host = cmd->device->host;
1652         int rtn = 0;
1653
1654         atomic_inc(&cmd->device->iorequest_cnt);
1655
1656         /* check if the device is still usable */
1657         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1658                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1659                  * returns an immediate error upwards, and signals
1660                  * that the device is no longer present */
1661                 cmd->result = DID_NO_CONNECT << 16;
1662                 goto done;
1663         }
1664
1665         /* Check to see if the scsi lld made this device blocked. */
1666         if (unlikely(scsi_device_blocked(cmd->device))) {
1667                 /*
1668                  * in blocked state, the command is just put back on
1669                  * the device queue.  The suspend state has already
1670                  * blocked the queue so future requests should not
1671                  * occur until the device transitions out of the
1672                  * suspend state.
1673                  */
1674                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1675                         "queuecommand : device blocked\n"));
1676                 return SCSI_MLQUEUE_DEVICE_BUSY;
1677         }
1678
1679         /* Store the LUN value in cmnd, if needed. */
1680         if (cmd->device->lun_in_cdb)
1681                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1682                                (cmd->device->lun << 5 & 0xe0);
1683
1684         scsi_log_send(cmd);
1685
1686         /*
1687          * Before we queue this command, check if the command
1688          * length exceeds what the host adapter can handle.
1689          */
1690         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1691                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1692                                "queuecommand : command too long. "
1693                                "cdb_size=%d host->max_cmd_len=%d\n",
1694                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1695                 cmd->result = (DID_ABORT << 16);
1696                 goto done;
1697         }
1698
1699         if (unlikely(host->shost_state == SHOST_DEL)) {
1700                 cmd->result = (DID_NO_CONNECT << 16);
1701                 goto done;
1702
1703         }
1704
1705         trace_scsi_dispatch_cmd_start(cmd);
1706         rtn = host->hostt->queuecommand(host, cmd);
1707         if (rtn) {
1708                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1709                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1710                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1711                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1712
1713                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1714                         "queuecommand : request rejected\n"));
1715         }
1716
1717         return rtn;
1718  done:
1719         cmd->scsi_done(cmd);
1720         return 0;
1721 }
1722
1723 /**
1724  * scsi_done - Invoke completion on finished SCSI command.
1725  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1726  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1727  *
1728  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1729  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1730  * calls blk_complete_request() for further processing.
1731  *
1732  * This function is interrupt context safe.
1733  */
1734 static void scsi_done(struct scsi_cmnd *cmd)
1735 {
1736         trace_scsi_dispatch_cmd_done(cmd);
1737         blk_complete_request(cmd->request);
1738 }
1739
1740 /*
1741  * Function:    scsi_request_fn()
1742  *
1743  * Purpose:     Main strategy routine for SCSI.
1744  *
1745  * Arguments:   q       - Pointer to actual queue.
1746  *
1747  * Returns:     Nothing
1748  *
1749  * Lock status: IO request lock assumed to be held when called.
1750  */
1751 static void scsi_request_fn(struct request_queue *q)
1752         __releases(q->queue_lock)
1753         __acquires(q->queue_lock)
1754 {
1755         struct scsi_device *sdev = q->queuedata;
1756         struct Scsi_Host *shost;
1757         struct scsi_cmnd *cmd;
1758         struct request *req;
1759
1760         /*
1761          * To start with, we keep looping until the queue is empty, or until
1762          * the host is no longer able to accept any more requests.
1763          */
1764         shost = sdev->host;
1765         for (;;) {
1766                 int rtn;
1767                 /*
1768                  * get next queueable request.  We do this early to make sure
1769                  * that the request is fully prepared even if we cannot
1770                  * accept it.
1771                  */
1772                 req = blk_peek_request(q);
1773                 if (!req)
1774                         break;
1775
1776                 if (unlikely(!scsi_device_online(sdev))) {
1777                         sdev_printk(KERN_ERR, sdev,
1778                                     "rejecting I/O to offline device\n");
1779                         scsi_kill_request(req, q);
1780                         continue;
1781                 }
1782
1783                 if (!scsi_dev_queue_ready(q, sdev))
1784                         break;
1785
1786                 /*
1787                  * Remove the request from the request list.
1788                  */
1789                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1790                         blk_start_request(req);
1791
1792                 spin_unlock_irq(q->queue_lock);
1793                 cmd = req->special;
1794                 if (unlikely(cmd == NULL)) {
1795                         printk(KERN_CRIT "impossible request in %s.\n"
1796                                          "please mail a stack trace to "
1797                                          "linux-scsi@vger.kernel.org\n",
1798                                          __func__);
1799                         blk_dump_rq_flags(req, "foo");
1800                         BUG();
1801                 }
1802
1803                 /*
1804                  * We hit this when the driver is using a host wide
1805                  * tag map. For device level tag maps the queue_depth check
1806                  * in the device ready fn would prevent us from trying
1807                  * to allocate a tag. Since the map is a shared host resource
1808                  * we add the dev to the starved list so it eventually gets
1809                  * a run when a tag is freed.
1810                  */
1811                 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1812                         spin_lock_irq(shost->host_lock);
1813                         if (list_empty(&sdev->starved_entry))
1814                                 list_add_tail(&sdev->starved_entry,
1815                                               &shost->starved_list);
1816                         spin_unlock_irq(shost->host_lock);
1817                         goto not_ready;
1818                 }
1819
1820                 if (!scsi_target_queue_ready(shost, sdev))
1821                         goto not_ready;
1822
1823                 if (!scsi_host_queue_ready(q, shost, sdev))
1824                         goto host_not_ready;
1825         
1826                 if (sdev->simple_tags)
1827                         cmd->flags |= SCMD_TAGGED;
1828                 else
1829                         cmd->flags &= ~SCMD_TAGGED;
1830
1831                 /*
1832                  * Finally, initialize any error handling parameters, and set up
1833                  * the timers for timeouts.
1834                  */
1835                 scsi_init_cmd_errh(cmd);
1836
1837                 /*
1838                  * Dispatch the command to the low-level driver.
1839                  */
1840                 cmd->scsi_done = scsi_done;
1841                 rtn = scsi_dispatch_cmd(cmd);
1842                 if (rtn) {
1843                         scsi_queue_insert(cmd, rtn);
1844                         spin_lock_irq(q->queue_lock);
1845                         goto out_delay;
1846                 }
1847                 spin_lock_irq(q->queue_lock);
1848         }
1849
1850         return;
1851
1852  host_not_ready:
1853         if (scsi_target(sdev)->can_queue > 0)
1854                 atomic_dec(&scsi_target(sdev)->target_busy);
1855  not_ready:
1856         /*
1857          * lock q, handle tag, requeue req, and decrement device_busy. We
1858          * must return with queue_lock held.
1859          *
1860          * Decrementing device_busy without checking it is OK, as all such
1861          * cases (host limits or settings) should run the queue at some
1862          * later time.
1863          */
1864         spin_lock_irq(q->queue_lock);
1865         blk_requeue_request(q, req);
1866         atomic_dec(&sdev->device_busy);
1867 out_delay:
1868         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1869                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1870 }
1871
1872 static inline int prep_to_mq(int ret)
1873 {
1874         switch (ret) {
1875         case BLKPREP_OK:
1876                 return 0;
1877         case BLKPREP_DEFER:
1878                 return BLK_MQ_RQ_QUEUE_BUSY;
1879         default:
1880                 return BLK_MQ_RQ_QUEUE_ERROR;
1881         }
1882 }
1883
1884 static int scsi_mq_prep_fn(struct request *req)
1885 {
1886         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1887         struct scsi_device *sdev = req->q->queuedata;
1888         struct Scsi_Host *shost = sdev->host;
1889         unsigned char *sense_buf = cmd->sense_buffer;
1890         struct scatterlist *sg;
1891
1892         memset(cmd, 0, sizeof(struct scsi_cmnd));
1893
1894         req->special = cmd;
1895
1896         cmd->request = req;
1897         cmd->device = sdev;
1898         cmd->sense_buffer = sense_buf;
1899
1900         cmd->tag = req->tag;
1901
1902         cmd->cmnd = req->cmd;
1903         cmd->prot_op = SCSI_PROT_NORMAL;
1904
1905         INIT_LIST_HEAD(&cmd->list);
1906         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1907         cmd->jiffies_at_alloc = jiffies;
1908
1909         if (shost->use_cmd_list) {
1910                 spin_lock_irq(&sdev->list_lock);
1911                 list_add_tail(&cmd->list, &sdev->cmd_list);
1912                 spin_unlock_irq(&sdev->list_lock);
1913         }
1914
1915         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1916         cmd->sdb.table.sgl = sg;
1917
1918         if (scsi_host_get_prot(shost)) {
1919                 cmd->prot_sdb = (void *)sg +
1920                         min_t(unsigned int,
1921                               shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1922                         sizeof(struct scatterlist);
1923                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1924
1925                 cmd->prot_sdb->table.sgl =
1926                         (struct scatterlist *)(cmd->prot_sdb + 1);
1927         }
1928
1929         if (blk_bidi_rq(req)) {
1930                 struct request *next_rq = req->next_rq;
1931                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1932
1933                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1934                 bidi_sdb->table.sgl =
1935                         (struct scatterlist *)(bidi_sdb + 1);
1936
1937                 next_rq->special = bidi_sdb;
1938         }
1939
1940         blk_mq_start_request(req);
1941
1942         return scsi_setup_cmnd(sdev, req);
1943 }
1944
1945 static void scsi_mq_done(struct scsi_cmnd *cmd)
1946 {
1947         trace_scsi_dispatch_cmd_done(cmd);
1948         blk_mq_complete_request(cmd->request);
1949 }
1950
1951 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1952                          const struct blk_mq_queue_data *bd)
1953 {
1954         struct request *req = bd->rq;
1955         struct request_queue *q = req->q;
1956         struct scsi_device *sdev = q->queuedata;
1957         struct Scsi_Host *shost = sdev->host;
1958         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1959         int ret;
1960         int reason;
1961
1962         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1963         if (ret)
1964                 goto out;
1965
1966         ret = BLK_MQ_RQ_QUEUE_BUSY;
1967         if (!get_device(&sdev->sdev_gendev))
1968                 goto out;
1969
1970         if (!scsi_dev_queue_ready(q, sdev))
1971                 goto out_put_device;
1972         if (!scsi_target_queue_ready(shost, sdev))
1973                 goto out_dec_device_busy;
1974         if (!scsi_host_queue_ready(q, shost, sdev))
1975                 goto out_dec_target_busy;
1976
1977
1978         if (!(req->cmd_flags & REQ_DONTPREP)) {
1979                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1980                 if (ret)
1981                         goto out_dec_host_busy;
1982                 req->cmd_flags |= REQ_DONTPREP;
1983         } else {
1984                 blk_mq_start_request(req);
1985         }
1986
1987         if (sdev->simple_tags)
1988                 cmd->flags |= SCMD_TAGGED;
1989         else
1990                 cmd->flags &= ~SCMD_TAGGED;
1991
1992         scsi_init_cmd_errh(cmd);
1993         cmd->scsi_done = scsi_mq_done;
1994
1995         reason = scsi_dispatch_cmd(cmd);
1996         if (reason) {
1997                 scsi_set_blocked(cmd, reason);
1998                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1999                 goto out_dec_host_busy;
2000         }
2001
2002         return BLK_MQ_RQ_QUEUE_OK;
2003
2004 out_dec_host_busy:
2005         atomic_dec(&shost->host_busy);
2006 out_dec_target_busy:
2007         if (scsi_target(sdev)->can_queue > 0)
2008                 atomic_dec(&scsi_target(sdev)->target_busy);
2009 out_dec_device_busy:
2010         atomic_dec(&sdev->device_busy);
2011 out_put_device:
2012         put_device(&sdev->sdev_gendev);
2013 out:
2014         switch (ret) {
2015         case BLK_MQ_RQ_QUEUE_BUSY:
2016                 blk_mq_stop_hw_queue(hctx);
2017                 if (atomic_read(&sdev->device_busy) == 0 &&
2018                     !scsi_device_blocked(sdev))
2019                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2020                 break;
2021         case BLK_MQ_RQ_QUEUE_ERROR:
2022                 /*
2023                  * Make sure to release all allocated ressources when
2024                  * we hit an error, as we will never see this command
2025                  * again.
2026                  */
2027                 if (req->cmd_flags & REQ_DONTPREP)
2028                         scsi_mq_uninit_cmd(cmd);
2029                 break;
2030         default:
2031                 break;
2032         }
2033         return ret;
2034 }
2035
2036 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2037                 bool reserved)
2038 {
2039         if (reserved)
2040                 return BLK_EH_RESET_TIMER;
2041         return scsi_times_out(req);
2042 }
2043
2044 static int scsi_init_request(void *data, struct request *rq,
2045                 unsigned int hctx_idx, unsigned int request_idx,
2046                 unsigned int numa_node)
2047 {
2048         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2049
2050         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2051                         numa_node);
2052         if (!cmd->sense_buffer)
2053                 return -ENOMEM;
2054         return 0;
2055 }
2056
2057 static void scsi_exit_request(void *data, struct request *rq,
2058                 unsigned int hctx_idx, unsigned int request_idx)
2059 {
2060         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2061
2062         kfree(cmd->sense_buffer);
2063 }
2064
2065 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2066 {
2067         struct device *host_dev;
2068         u64 bounce_limit = 0xffffffff;
2069
2070         if (shost->unchecked_isa_dma)
2071                 return BLK_BOUNCE_ISA;
2072         /*
2073          * Platforms with virtual-DMA translation
2074          * hardware have no practical limit.
2075          */
2076         if (!PCI_DMA_BUS_IS_PHYS)
2077                 return BLK_BOUNCE_ANY;
2078
2079         host_dev = scsi_get_device(shost);
2080         if (host_dev && host_dev->dma_mask)
2081                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2082
2083         return bounce_limit;
2084 }
2085
2086 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2087 {
2088         struct device *dev = shost->dma_dev;
2089
2090         /*
2091          * this limit is imposed by hardware restrictions
2092          */
2093         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2094                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2095
2096         if (scsi_host_prot_dma(shost)) {
2097                 shost->sg_prot_tablesize =
2098                         min_not_zero(shost->sg_prot_tablesize,
2099                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2100                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2101                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2102         }
2103
2104         blk_queue_max_hw_sectors(q, shost->max_sectors);
2105         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2106         blk_queue_segment_boundary(q, shost->dma_boundary);
2107         dma_set_seg_boundary(dev, shost->dma_boundary);
2108
2109         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2110
2111         if (!shost->use_clustering)
2112                 q->limits.cluster = 0;
2113
2114         /*
2115          * set a reasonable default alignment on word boundaries: the
2116          * host and device may alter it using
2117          * blk_queue_update_dma_alignment() later.
2118          */
2119         blk_queue_dma_alignment(q, 0x03);
2120 }
2121
2122 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2123                                          request_fn_proc *request_fn)
2124 {
2125         struct request_queue *q;
2126
2127         q = blk_init_queue(request_fn, NULL);
2128         if (!q)
2129                 return NULL;
2130         __scsi_init_queue(shost, q);
2131         return q;
2132 }
2133 EXPORT_SYMBOL(__scsi_alloc_queue);
2134
2135 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2136 {
2137         struct request_queue *q;
2138
2139         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2140         if (!q)
2141                 return NULL;
2142
2143         blk_queue_prep_rq(q, scsi_prep_fn);
2144         blk_queue_unprep_rq(q, scsi_unprep_fn);
2145         blk_queue_softirq_done(q, scsi_softirq_done);
2146         blk_queue_rq_timed_out(q, scsi_times_out);
2147         blk_queue_lld_busy(q, scsi_lld_busy);
2148         return q;
2149 }
2150
2151 static struct blk_mq_ops scsi_mq_ops = {
2152         .map_queue      = blk_mq_map_queue,
2153         .queue_rq       = scsi_queue_rq,
2154         .complete       = scsi_softirq_done,
2155         .timeout        = scsi_timeout,
2156         .init_request   = scsi_init_request,
2157         .exit_request   = scsi_exit_request,
2158 };
2159
2160 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2161 {
2162         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2163         if (IS_ERR(sdev->request_queue))
2164                 return NULL;
2165
2166         sdev->request_queue->queuedata = sdev;
2167         __scsi_init_queue(sdev->host, sdev->request_queue);
2168         return sdev->request_queue;
2169 }
2170
2171 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2172 {
2173         unsigned int cmd_size, sgl_size, tbl_size;
2174
2175         tbl_size = shost->sg_tablesize;
2176         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2177                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2178         sgl_size = tbl_size * sizeof(struct scatterlist);
2179         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2180         if (scsi_host_get_prot(shost))
2181                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2182
2183         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2184         shost->tag_set.ops = &scsi_mq_ops;
2185         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2186         shost->tag_set.queue_depth = shost->can_queue;
2187         shost->tag_set.cmd_size = cmd_size;
2188         shost->tag_set.numa_node = NUMA_NO_NODE;
2189         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2190         shost->tag_set.driver_data = shost;
2191
2192         return blk_mq_alloc_tag_set(&shost->tag_set);
2193 }
2194
2195 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2196 {
2197         blk_mq_free_tag_set(&shost->tag_set);
2198 }
2199
2200 /*
2201  * Function:    scsi_block_requests()
2202  *
2203  * Purpose:     Utility function used by low-level drivers to prevent further
2204  *              commands from being queued to the device.
2205  *
2206  * Arguments:   shost       - Host in question
2207  *
2208  * Returns:     Nothing
2209  *
2210  * Lock status: No locks are assumed held.
2211  *
2212  * Notes:       There is no timer nor any other means by which the requests
2213  *              get unblocked other than the low-level driver calling
2214  *              scsi_unblock_requests().
2215  */
2216 void scsi_block_requests(struct Scsi_Host *shost)
2217 {
2218         shost->host_self_blocked = 1;
2219 }
2220 EXPORT_SYMBOL(scsi_block_requests);
2221
2222 /*
2223  * Function:    scsi_unblock_requests()
2224  *
2225  * Purpose:     Utility function used by low-level drivers to allow further
2226  *              commands from being queued to the device.
2227  *
2228  * Arguments:   shost       - Host in question
2229  *
2230  * Returns:     Nothing
2231  *
2232  * Lock status: No locks are assumed held.
2233  *
2234  * Notes:       There is no timer nor any other means by which the requests
2235  *              get unblocked other than the low-level driver calling
2236  *              scsi_unblock_requests().
2237  *
2238  *              This is done as an API function so that changes to the
2239  *              internals of the scsi mid-layer won't require wholesale
2240  *              changes to drivers that use this feature.
2241  */
2242 void scsi_unblock_requests(struct Scsi_Host *shost)
2243 {
2244         shost->host_self_blocked = 0;
2245         scsi_run_host_queues(shost);
2246 }
2247 EXPORT_SYMBOL(scsi_unblock_requests);
2248
2249 int __init scsi_init_queue(void)
2250 {
2251         int i;
2252
2253         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2254                                            sizeof(struct scsi_data_buffer),
2255                                            0, 0, NULL);
2256         if (!scsi_sdb_cache) {
2257                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2258                 return -ENOMEM;
2259         }
2260
2261         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2262                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2263                 int size = sgp->size * sizeof(struct scatterlist);
2264
2265                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2266                                 SLAB_HWCACHE_ALIGN, NULL);
2267                 if (!sgp->slab) {
2268                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2269                                         sgp->name);
2270                         goto cleanup_sdb;
2271                 }
2272
2273                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2274                                                      sgp->slab);
2275                 if (!sgp->pool) {
2276                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2277                                         sgp->name);
2278                         goto cleanup_sdb;
2279                 }
2280         }
2281
2282         return 0;
2283
2284 cleanup_sdb:
2285         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2286                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2287                 if (sgp->pool)
2288                         mempool_destroy(sgp->pool);
2289                 if (sgp->slab)
2290                         kmem_cache_destroy(sgp->slab);
2291         }
2292         kmem_cache_destroy(scsi_sdb_cache);
2293
2294         return -ENOMEM;
2295 }
2296
2297 void scsi_exit_queue(void)
2298 {
2299         int i;
2300
2301         kmem_cache_destroy(scsi_sdb_cache);
2302
2303         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2304                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2305                 mempool_destroy(sgp->pool);
2306                 kmem_cache_destroy(sgp->slab);
2307         }
2308 }
2309
2310 /**
2311  *      scsi_mode_select - issue a mode select
2312  *      @sdev:  SCSI device to be queried
2313  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2314  *      @sp:    Save page bit (0 == don't save, 1 == save)
2315  *      @modepage: mode page being requested
2316  *      @buffer: request buffer (may not be smaller than eight bytes)
2317  *      @len:   length of request buffer.
2318  *      @timeout: command timeout
2319  *      @retries: number of retries before failing
2320  *      @data: returns a structure abstracting the mode header data
2321  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2322  *              must be SCSI_SENSE_BUFFERSIZE big.
2323  *
2324  *      Returns zero if successful; negative error number or scsi
2325  *      status on error
2326  *
2327  */
2328 int
2329 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2330                  unsigned char *buffer, int len, int timeout, int retries,
2331                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2332 {
2333         unsigned char cmd[10];
2334         unsigned char *real_buffer;
2335         int ret;
2336
2337         memset(cmd, 0, sizeof(cmd));
2338         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2339
2340         if (sdev->use_10_for_ms) {
2341                 if (len > 65535)
2342                         return -EINVAL;
2343                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2344                 if (!real_buffer)
2345                         return -ENOMEM;
2346                 memcpy(real_buffer + 8, buffer, len);
2347                 len += 8;
2348                 real_buffer[0] = 0;
2349                 real_buffer[1] = 0;
2350                 real_buffer[2] = data->medium_type;
2351                 real_buffer[3] = data->device_specific;
2352                 real_buffer[4] = data->longlba ? 0x01 : 0;
2353                 real_buffer[5] = 0;
2354                 real_buffer[6] = data->block_descriptor_length >> 8;
2355                 real_buffer[7] = data->block_descriptor_length;
2356
2357                 cmd[0] = MODE_SELECT_10;
2358                 cmd[7] = len >> 8;
2359                 cmd[8] = len;
2360         } else {
2361                 if (len > 255 || data->block_descriptor_length > 255 ||
2362                     data->longlba)
2363                         return -EINVAL;
2364
2365                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2366                 if (!real_buffer)
2367                         return -ENOMEM;
2368                 memcpy(real_buffer + 4, buffer, len);
2369                 len += 4;
2370                 real_buffer[0] = 0;
2371                 real_buffer[1] = data->medium_type;
2372                 real_buffer[2] = data->device_specific;
2373                 real_buffer[3] = data->block_descriptor_length;
2374                 
2375
2376                 cmd[0] = MODE_SELECT;
2377                 cmd[4] = len;
2378         }
2379
2380         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2381                                sshdr, timeout, retries, NULL);
2382         kfree(real_buffer);
2383         return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(scsi_mode_select);
2386
2387 /**
2388  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2389  *      @sdev:  SCSI device to be queried
2390  *      @dbd:   set if mode sense will allow block descriptors to be returned
2391  *      @modepage: mode page being requested
2392  *      @buffer: request buffer (may not be smaller than eight bytes)
2393  *      @len:   length of request buffer.
2394  *      @timeout: command timeout
2395  *      @retries: number of retries before failing
2396  *      @data: returns a structure abstracting the mode header data
2397  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2398  *              must be SCSI_SENSE_BUFFERSIZE big.
2399  *
2400  *      Returns zero if unsuccessful, or the header offset (either 4
2401  *      or 8 depending on whether a six or ten byte command was
2402  *      issued) if successful.
2403  */
2404 int
2405 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2406                   unsigned char *buffer, int len, int timeout, int retries,
2407                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2408 {
2409         unsigned char cmd[12];
2410         int use_10_for_ms;
2411         int header_length;
2412         int result;
2413         struct scsi_sense_hdr my_sshdr;
2414
2415         memset(data, 0, sizeof(*data));
2416         memset(&cmd[0], 0, 12);
2417         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2418         cmd[2] = modepage;
2419
2420         /* caller might not be interested in sense, but we need it */
2421         if (!sshdr)
2422                 sshdr = &my_sshdr;
2423
2424  retry:
2425         use_10_for_ms = sdev->use_10_for_ms;
2426
2427         if (use_10_for_ms) {
2428                 if (len < 8)
2429                         len = 8;
2430
2431                 cmd[0] = MODE_SENSE_10;
2432                 cmd[8] = len;
2433                 header_length = 8;
2434         } else {
2435                 if (len < 4)
2436                         len = 4;
2437
2438                 cmd[0] = MODE_SENSE;
2439                 cmd[4] = len;
2440                 header_length = 4;
2441         }
2442
2443         memset(buffer, 0, len);
2444
2445         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2446                                   sshdr, timeout, retries, NULL);
2447
2448         /* This code looks awful: what it's doing is making sure an
2449          * ILLEGAL REQUEST sense return identifies the actual command
2450          * byte as the problem.  MODE_SENSE commands can return
2451          * ILLEGAL REQUEST if the code page isn't supported */
2452
2453         if (use_10_for_ms && !scsi_status_is_good(result) &&
2454             (driver_byte(result) & DRIVER_SENSE)) {
2455                 if (scsi_sense_valid(sshdr)) {
2456                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2457                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2458                                 /* 
2459                                  * Invalid command operation code
2460                                  */
2461                                 sdev->use_10_for_ms = 0;
2462                                 goto retry;
2463                         }
2464                 }
2465         }
2466
2467         if(scsi_status_is_good(result)) {
2468                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2469                              (modepage == 6 || modepage == 8))) {
2470                         /* Initio breakage? */
2471                         header_length = 0;
2472                         data->length = 13;
2473                         data->medium_type = 0;
2474                         data->device_specific = 0;
2475                         data->longlba = 0;
2476                         data->block_descriptor_length = 0;
2477                 } else if(use_10_for_ms) {
2478                         data->length = buffer[0]*256 + buffer[1] + 2;
2479                         data->medium_type = buffer[2];
2480                         data->device_specific = buffer[3];
2481                         data->longlba = buffer[4] & 0x01;
2482                         data->block_descriptor_length = buffer[6]*256
2483                                 + buffer[7];
2484                 } else {
2485                         data->length = buffer[0] + 1;
2486                         data->medium_type = buffer[1];
2487                         data->device_specific = buffer[2];
2488                         data->block_descriptor_length = buffer[3];
2489                 }
2490                 data->header_length = header_length;
2491         }
2492
2493         return result;
2494 }
2495 EXPORT_SYMBOL(scsi_mode_sense);
2496
2497 /**
2498  *      scsi_test_unit_ready - test if unit is ready
2499  *      @sdev:  scsi device to change the state of.
2500  *      @timeout: command timeout
2501  *      @retries: number of retries before failing
2502  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2503  *              returning sense. Make sure that this is cleared before passing
2504  *              in.
2505  *
2506  *      Returns zero if unsuccessful or an error if TUR failed.  For
2507  *      removable media, UNIT_ATTENTION sets ->changed flag.
2508  **/
2509 int
2510 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2511                      struct scsi_sense_hdr *sshdr_external)
2512 {
2513         char cmd[] = {
2514                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2515         };
2516         struct scsi_sense_hdr *sshdr;
2517         int result;
2518
2519         if (!sshdr_external)
2520                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2521         else
2522                 sshdr = sshdr_external;
2523
2524         /* try to eat the UNIT_ATTENTION if there are enough retries */
2525         do {
2526                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2527                                           timeout, retries, NULL);
2528                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2529                     sshdr->sense_key == UNIT_ATTENTION)
2530                         sdev->changed = 1;
2531         } while (scsi_sense_valid(sshdr) &&
2532                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2533
2534         if (!sshdr_external)
2535                 kfree(sshdr);
2536         return result;
2537 }
2538 EXPORT_SYMBOL(scsi_test_unit_ready);
2539
2540 /**
2541  *      scsi_device_set_state - Take the given device through the device state model.
2542  *      @sdev:  scsi device to change the state of.
2543  *      @state: state to change to.
2544  *
2545  *      Returns zero if unsuccessful or an error if the requested 
2546  *      transition is illegal.
2547  */
2548 int
2549 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2550 {
2551         enum scsi_device_state oldstate = sdev->sdev_state;
2552
2553         if (state == oldstate)
2554                 return 0;
2555
2556         switch (state) {
2557         case SDEV_CREATED:
2558                 switch (oldstate) {
2559                 case SDEV_CREATED_BLOCK:
2560                         break;
2561                 default:
2562                         goto illegal;
2563                 }
2564                 break;
2565                         
2566         case SDEV_RUNNING:
2567                 switch (oldstate) {
2568                 case SDEV_CREATED:
2569                 case SDEV_OFFLINE:
2570                 case SDEV_TRANSPORT_OFFLINE:
2571                 case SDEV_QUIESCE:
2572                 case SDEV_BLOCK:
2573                         break;
2574                 default:
2575                         goto illegal;
2576                 }
2577                 break;
2578
2579         case SDEV_QUIESCE:
2580                 switch (oldstate) {
2581                 case SDEV_RUNNING:
2582                 case SDEV_OFFLINE:
2583                 case SDEV_TRANSPORT_OFFLINE:
2584                         break;
2585                 default:
2586                         goto illegal;
2587                 }
2588                 break;
2589
2590         case SDEV_OFFLINE:
2591         case SDEV_TRANSPORT_OFFLINE:
2592                 switch (oldstate) {
2593                 case SDEV_CREATED:
2594                 case SDEV_RUNNING:
2595                 case SDEV_QUIESCE:
2596                 case SDEV_BLOCK:
2597                         break;
2598                 default:
2599                         goto illegal;
2600                 }
2601                 break;
2602
2603         case SDEV_BLOCK:
2604                 switch (oldstate) {
2605                 case SDEV_RUNNING:
2606                 case SDEV_CREATED_BLOCK:
2607                         break;
2608                 default:
2609                         goto illegal;
2610                 }
2611                 break;
2612
2613         case SDEV_CREATED_BLOCK:
2614                 switch (oldstate) {
2615                 case SDEV_CREATED:
2616                         break;
2617                 default:
2618                         goto illegal;
2619                 }
2620                 break;
2621
2622         case SDEV_CANCEL:
2623                 switch (oldstate) {
2624                 case SDEV_CREATED:
2625                 case SDEV_RUNNING:
2626                 case SDEV_QUIESCE:
2627                 case SDEV_OFFLINE:
2628                 case SDEV_TRANSPORT_OFFLINE:
2629                 case SDEV_BLOCK:
2630                         break;
2631                 default:
2632                         goto illegal;
2633                 }
2634                 break;
2635
2636         case SDEV_DEL:
2637                 switch (oldstate) {
2638                 case SDEV_CREATED:
2639                 case SDEV_RUNNING:
2640                 case SDEV_OFFLINE:
2641                 case SDEV_TRANSPORT_OFFLINE:
2642                 case SDEV_CANCEL:
2643                 case SDEV_CREATED_BLOCK:
2644                         break;
2645                 default:
2646                         goto illegal;
2647                 }
2648                 break;
2649
2650         }
2651         sdev->sdev_state = state;
2652         return 0;
2653
2654  illegal:
2655         SCSI_LOG_ERROR_RECOVERY(1,
2656                                 sdev_printk(KERN_ERR, sdev,
2657                                             "Illegal state transition %s->%s",
2658                                             scsi_device_state_name(oldstate),
2659                                             scsi_device_state_name(state))
2660                                 );
2661         return -EINVAL;
2662 }
2663 EXPORT_SYMBOL(scsi_device_set_state);
2664
2665 /**
2666  *      sdev_evt_emit - emit a single SCSI device uevent
2667  *      @sdev: associated SCSI device
2668  *      @evt: event to emit
2669  *
2670  *      Send a single uevent (scsi_event) to the associated scsi_device.
2671  */
2672 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2673 {
2674         int idx = 0;
2675         char *envp[3];
2676
2677         switch (evt->evt_type) {
2678         case SDEV_EVT_MEDIA_CHANGE:
2679                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2680                 break;
2681         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2682                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2683                 break;
2684         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2685                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2686                 break;
2687         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2688                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2689                 break;
2690         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2691                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2692                 break;
2693         case SDEV_EVT_LUN_CHANGE_REPORTED:
2694                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2695                 break;
2696         default:
2697                 /* do nothing */
2698                 break;
2699         }
2700
2701         envp[idx++] = NULL;
2702
2703         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2704 }
2705
2706 /**
2707  *      sdev_evt_thread - send a uevent for each scsi event
2708  *      @work: work struct for scsi_device
2709  *
2710  *      Dispatch queued events to their associated scsi_device kobjects
2711  *      as uevents.
2712  */
2713 void scsi_evt_thread(struct work_struct *work)
2714 {
2715         struct scsi_device *sdev;
2716         enum scsi_device_event evt_type;
2717         LIST_HEAD(event_list);
2718
2719         sdev = container_of(work, struct scsi_device, event_work);
2720
2721         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2722                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2723                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2724
2725         while (1) {
2726                 struct scsi_event *evt;
2727                 struct list_head *this, *tmp;
2728                 unsigned long flags;
2729
2730                 spin_lock_irqsave(&sdev->list_lock, flags);
2731                 list_splice_init(&sdev->event_list, &event_list);
2732                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2733
2734                 if (list_empty(&event_list))
2735                         break;
2736
2737                 list_for_each_safe(this, tmp, &event_list) {
2738                         evt = list_entry(this, struct scsi_event, node);
2739                         list_del(&evt->node);
2740                         scsi_evt_emit(sdev, evt);
2741                         kfree(evt);
2742                 }
2743         }
2744 }
2745
2746 /**
2747  *      sdev_evt_send - send asserted event to uevent thread
2748  *      @sdev: scsi_device event occurred on
2749  *      @evt: event to send
2750  *
2751  *      Assert scsi device event asynchronously.
2752  */
2753 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2754 {
2755         unsigned long flags;
2756
2757 #if 0
2758         /* FIXME: currently this check eliminates all media change events
2759          * for polled devices.  Need to update to discriminate between AN
2760          * and polled events */
2761         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2762                 kfree(evt);
2763                 return;
2764         }
2765 #endif
2766
2767         spin_lock_irqsave(&sdev->list_lock, flags);
2768         list_add_tail(&evt->node, &sdev->event_list);
2769         schedule_work(&sdev->event_work);
2770         spin_unlock_irqrestore(&sdev->list_lock, flags);
2771 }
2772 EXPORT_SYMBOL_GPL(sdev_evt_send);
2773
2774 /**
2775  *      sdev_evt_alloc - allocate a new scsi event
2776  *      @evt_type: type of event to allocate
2777  *      @gfpflags: GFP flags for allocation
2778  *
2779  *      Allocates and returns a new scsi_event.
2780  */
2781 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2782                                   gfp_t gfpflags)
2783 {
2784         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2785         if (!evt)
2786                 return NULL;
2787
2788         evt->evt_type = evt_type;
2789         INIT_LIST_HEAD(&evt->node);
2790
2791         /* evt_type-specific initialization, if any */
2792         switch (evt_type) {
2793         case SDEV_EVT_MEDIA_CHANGE:
2794         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2795         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2796         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2797         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2798         case SDEV_EVT_LUN_CHANGE_REPORTED:
2799         default:
2800                 /* do nothing */
2801                 break;
2802         }
2803
2804         return evt;
2805 }
2806 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2807
2808 /**
2809  *      sdev_evt_send_simple - send asserted event to uevent thread
2810  *      @sdev: scsi_device event occurred on
2811  *      @evt_type: type of event to send
2812  *      @gfpflags: GFP flags for allocation
2813  *
2814  *      Assert scsi device event asynchronously, given an event type.
2815  */
2816 void sdev_evt_send_simple(struct scsi_device *sdev,
2817                           enum scsi_device_event evt_type, gfp_t gfpflags)
2818 {
2819         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2820         if (!evt) {
2821                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2822                             evt_type);
2823                 return;
2824         }
2825
2826         sdev_evt_send(sdev, evt);
2827 }
2828 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2829
2830 /**
2831  *      scsi_device_quiesce - Block user issued commands.
2832  *      @sdev:  scsi device to quiesce.
2833  *
2834  *      This works by trying to transition to the SDEV_QUIESCE state
2835  *      (which must be a legal transition).  When the device is in this
2836  *      state, only special requests will be accepted, all others will
2837  *      be deferred.  Since special requests may also be requeued requests,
2838  *      a successful return doesn't guarantee the device will be 
2839  *      totally quiescent.
2840  *
2841  *      Must be called with user context, may sleep.
2842  *
2843  *      Returns zero if unsuccessful or an error if not.
2844  */
2845 int
2846 scsi_device_quiesce(struct scsi_device *sdev)
2847 {
2848         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2849         if (err)
2850                 return err;
2851
2852         scsi_run_queue(sdev->request_queue);
2853         while (atomic_read(&sdev->device_busy)) {
2854                 msleep_interruptible(200);
2855                 scsi_run_queue(sdev->request_queue);
2856         }
2857         return 0;
2858 }
2859 EXPORT_SYMBOL(scsi_device_quiesce);
2860
2861 /**
2862  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2863  *      @sdev:  scsi device to resume.
2864  *
2865  *      Moves the device from quiesced back to running and restarts the
2866  *      queues.
2867  *
2868  *      Must be called with user context, may sleep.
2869  */
2870 void scsi_device_resume(struct scsi_device *sdev)
2871 {
2872         /* check if the device state was mutated prior to resume, and if
2873          * so assume the state is being managed elsewhere (for example
2874          * device deleted during suspend)
2875          */
2876         if (sdev->sdev_state != SDEV_QUIESCE ||
2877             scsi_device_set_state(sdev, SDEV_RUNNING))
2878                 return;
2879         scsi_run_queue(sdev->request_queue);
2880 }
2881 EXPORT_SYMBOL(scsi_device_resume);
2882
2883 static void
2884 device_quiesce_fn(struct scsi_device *sdev, void *data)
2885 {
2886         scsi_device_quiesce(sdev);
2887 }
2888
2889 void
2890 scsi_target_quiesce(struct scsi_target *starget)
2891 {
2892         starget_for_each_device(starget, NULL, device_quiesce_fn);
2893 }
2894 EXPORT_SYMBOL(scsi_target_quiesce);
2895
2896 static void
2897 device_resume_fn(struct scsi_device *sdev, void *data)
2898 {
2899         scsi_device_resume(sdev);
2900 }
2901
2902 void
2903 scsi_target_resume(struct scsi_target *starget)
2904 {
2905         starget_for_each_device(starget, NULL, device_resume_fn);
2906 }
2907 EXPORT_SYMBOL(scsi_target_resume);
2908
2909 /**
2910  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2911  * @sdev:       device to block
2912  *
2913  * Block request made by scsi lld's to temporarily stop all
2914  * scsi commands on the specified device.  Called from interrupt
2915  * or normal process context.
2916  *
2917  * Returns zero if successful or error if not
2918  *
2919  * Notes:       
2920  *      This routine transitions the device to the SDEV_BLOCK state
2921  *      (which must be a legal transition).  When the device is in this
2922  *      state, all commands are deferred until the scsi lld reenables
2923  *      the device with scsi_device_unblock or device_block_tmo fires.
2924  */
2925 int
2926 scsi_internal_device_block(struct scsi_device *sdev)
2927 {
2928         struct request_queue *q = sdev->request_queue;
2929         unsigned long flags;
2930         int err = 0;
2931
2932         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2933         if (err) {
2934                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2935
2936                 if (err)
2937                         return err;
2938         }
2939
2940         /* 
2941          * The device has transitioned to SDEV_BLOCK.  Stop the
2942          * block layer from calling the midlayer with this device's
2943          * request queue. 
2944          */
2945         if (q->mq_ops) {
2946                 blk_mq_stop_hw_queues(q);
2947         } else {
2948                 spin_lock_irqsave(q->queue_lock, flags);
2949                 blk_stop_queue(q);
2950                 spin_unlock_irqrestore(q->queue_lock, flags);
2951         }
2952
2953         return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2956  
2957 /**
2958  * scsi_internal_device_unblock - resume a device after a block request
2959  * @sdev:       device to resume
2960  * @new_state:  state to set devices to after unblocking
2961  *
2962  * Called by scsi lld's or the midlayer to restart the device queue
2963  * for the previously suspended scsi device.  Called from interrupt or
2964  * normal process context.
2965  *
2966  * Returns zero if successful or error if not.
2967  *
2968  * Notes:       
2969  *      This routine transitions the device to the SDEV_RUNNING state
2970  *      or to one of the offline states (which must be a legal transition)
2971  *      allowing the midlayer to goose the queue for this device.
2972  */
2973 int
2974 scsi_internal_device_unblock(struct scsi_device *sdev,
2975                              enum scsi_device_state new_state)
2976 {
2977         struct request_queue *q = sdev->request_queue; 
2978         unsigned long flags;
2979
2980         /*
2981          * Try to transition the scsi device to SDEV_RUNNING or one of the
2982          * offlined states and goose the device queue if successful.
2983          */
2984         if ((sdev->sdev_state == SDEV_BLOCK) ||
2985             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2986                 sdev->sdev_state = new_state;
2987         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2988                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2989                     new_state == SDEV_OFFLINE)
2990                         sdev->sdev_state = new_state;
2991                 else
2992                         sdev->sdev_state = SDEV_CREATED;
2993         } else if (sdev->sdev_state != SDEV_CANCEL &&
2994                  sdev->sdev_state != SDEV_OFFLINE)
2995                 return -EINVAL;
2996
2997         if (q->mq_ops) {
2998                 blk_mq_start_stopped_hw_queues(q, false);
2999         } else {
3000                 spin_lock_irqsave(q->queue_lock, flags);
3001                 blk_start_queue(q);
3002                 spin_unlock_irqrestore(q->queue_lock, flags);
3003         }
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3008
3009 static void
3010 device_block(struct scsi_device *sdev, void *data)
3011 {
3012         scsi_internal_device_block(sdev);
3013 }
3014
3015 static int
3016 target_block(struct device *dev, void *data)
3017 {
3018         if (scsi_is_target_device(dev))
3019                 starget_for_each_device(to_scsi_target(dev), NULL,
3020                                         device_block);
3021         return 0;
3022 }
3023
3024 void
3025 scsi_target_block(struct device *dev)
3026 {
3027         if (scsi_is_target_device(dev))
3028                 starget_for_each_device(to_scsi_target(dev), NULL,
3029                                         device_block);
3030         else
3031                 device_for_each_child(dev, NULL, target_block);
3032 }
3033 EXPORT_SYMBOL_GPL(scsi_target_block);
3034
3035 static void
3036 device_unblock(struct scsi_device *sdev, void *data)
3037 {
3038         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3039 }
3040
3041 static int
3042 target_unblock(struct device *dev, void *data)
3043 {
3044         if (scsi_is_target_device(dev))
3045                 starget_for_each_device(to_scsi_target(dev), data,
3046                                         device_unblock);
3047         return 0;
3048 }
3049
3050 void
3051 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3052 {
3053         if (scsi_is_target_device(dev))
3054                 starget_for_each_device(to_scsi_target(dev), &new_state,
3055                                         device_unblock);
3056         else
3057                 device_for_each_child(dev, &new_state, target_unblock);
3058 }
3059 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3060
3061 /**
3062  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3063  * @sgl:        scatter-gather list
3064  * @sg_count:   number of segments in sg
3065  * @offset:     offset in bytes into sg, on return offset into the mapped area
3066  * @len:        bytes to map, on return number of bytes mapped
3067  *
3068  * Returns virtual address of the start of the mapped page
3069  */
3070 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3071                           size_t *offset, size_t *len)
3072 {
3073         int i;
3074         size_t sg_len = 0, len_complete = 0;
3075         struct scatterlist *sg;
3076         struct page *page;
3077
3078         WARN_ON(!irqs_disabled());
3079
3080         for_each_sg(sgl, sg, sg_count, i) {
3081                 len_complete = sg_len; /* Complete sg-entries */
3082                 sg_len += sg->length;
3083                 if (sg_len > *offset)
3084                         break;
3085         }
3086
3087         if (unlikely(i == sg_count)) {
3088                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3089                         "elements %d\n",
3090                        __func__, sg_len, *offset, sg_count);
3091                 WARN_ON(1);
3092                 return NULL;
3093         }
3094
3095         /* Offset starting from the beginning of first page in this sg-entry */
3096         *offset = *offset - len_complete + sg->offset;
3097
3098         /* Assumption: contiguous pages can be accessed as "page + i" */
3099         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3100         *offset &= ~PAGE_MASK;
3101
3102         /* Bytes in this sg-entry from *offset to the end of the page */
3103         sg_len = PAGE_SIZE - *offset;
3104         if (*len > sg_len)
3105                 *len = sg_len;
3106
3107         return kmap_atomic(page);
3108 }
3109 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3110
3111 /**
3112  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3113  * @virt:       virtual address to be unmapped
3114  */
3115 void scsi_kunmap_atomic_sg(void *virt)
3116 {
3117         kunmap_atomic(virt);
3118 }
3119 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3120
3121 void sdev_disable_disk_events(struct scsi_device *sdev)
3122 {
3123         atomic_inc(&sdev->disk_events_disable_depth);
3124 }
3125 EXPORT_SYMBOL(sdev_disable_disk_events);
3126
3127 void sdev_enable_disk_events(struct scsi_device *sdev)
3128 {
3129         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3130                 return;
3131         atomic_dec(&sdev->disk_events_disable_depth);
3132 }
3133 EXPORT_SYMBOL(sdev_enable_disk_events);