Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         blk_mq_requeue_request(rq, false);
126         if (!scsi_host_in_recovery(cmd->device->host))
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device, cmd);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_mq_destroy_queue() finishes.
163          */
164         cmd->result = 0;
165
166         blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167                                !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189         struct scsi_failure *failure;
190
191         failures->total_retries = 0;
192
193         for (failure = failures->failure_definitions; failure->result;
194              failure++)
195                 failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198
199 /**
200  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201  * @scmd: scsi_cmnd to check.
202  * @failures: scsi_failures struct that lists failures to check for.
203  *
204  * Returns -EAGAIN if the caller should retry else 0.
205  */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207                                   struct scsi_failures *failures)
208 {
209         struct scsi_failure *failure;
210         struct scsi_sense_hdr sshdr;
211         enum sam_status status;
212
213         if (!failures)
214                 return 0;
215
216         for (failure = failures->failure_definitions; failure->result;
217              failure++) {
218                 if (failure->result == SCMD_FAILURE_RESULT_ANY)
219                         goto maybe_retry;
220
221                 if (host_byte(scmd->result) &&
222                     host_byte(scmd->result) == host_byte(failure->result))
223                         goto maybe_retry;
224
225                 status = status_byte(scmd->result);
226                 if (!status)
227                         continue;
228
229                 if (failure->result == SCMD_FAILURE_STAT_ANY &&
230                     !scsi_status_is_good(scmd->result))
231                         goto maybe_retry;
232
233                 if (status != status_byte(failure->result))
234                         continue;
235
236                 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237                     failure->sense == SCMD_FAILURE_SENSE_ANY)
238                         goto maybe_retry;
239
240                 if (!scsi_command_normalize_sense(scmd, &sshdr))
241                         return 0;
242
243                 if (failure->sense != sshdr.sense_key)
244                         continue;
245
246                 if (failure->asc == SCMD_FAILURE_ASC_ANY)
247                         goto maybe_retry;
248
249                 if (failure->asc != sshdr.asc)
250                         continue;
251
252                 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253                     failure->ascq == sshdr.ascq)
254                         goto maybe_retry;
255         }
256
257         return 0;
258
259 maybe_retry:
260         if (failure->allowed) {
261                 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262                     ++failure->retries <= failure->allowed)
263                         return -EAGAIN;
264         } else {
265                 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266                     ++failures->total_retries <= failures->total_allowed)
267                         return -EAGAIN;
268         }
269
270         return 0;
271 }
272
273 /**
274  * scsi_execute_cmd - insert request and wait for the result
275  * @sdev:       scsi_device
276  * @cmd:        scsi command
277  * @opf:        block layer request cmd_flags
278  * @buffer:     data buffer
279  * @bufflen:    len of buffer
280  * @timeout:    request timeout in HZ
281  * @ml_retries: number of times SCSI midlayer will retry request
282  * @args:       Optional args. See struct definition for field descriptions
283  *
284  * Returns the scsi_cmnd result field if a command was executed, or a negative
285  * Linux error code if we didn't get that far.
286  */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288                      blk_opf_t opf, void *buffer, unsigned int bufflen,
289                      int timeout, int ml_retries,
290                      const struct scsi_exec_args *args)
291 {
292         static const struct scsi_exec_args default_args;
293         struct request *req;
294         struct scsi_cmnd *scmd;
295         int ret;
296
297         if (!args)
298                 args = &default_args;
299         else if (WARN_ON_ONCE(args->sense &&
300                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
301                 return -EINVAL;
302
303 retry:
304         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305         if (IS_ERR(req))
306                 return PTR_ERR(req);
307
308         if (bufflen) {
309                 ret = blk_rq_map_kern(sdev->request_queue, req,
310                                       buffer, bufflen, GFP_NOIO);
311                 if (ret)
312                         goto out;
313         }
314         scmd = blk_mq_rq_to_pdu(req);
315         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317         scmd->allowed = ml_retries;
318         scmd->flags |= args->scmd_flags;
319         req->timeout = timeout;
320         req->rq_flags |= RQF_QUIET;
321
322         /*
323          * head injection *required* here otherwise quiesce won't work
324          */
325         blk_execute_rq(req, true);
326
327         if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328                 blk_mq_free_request(req);
329                 goto retry;
330         }
331
332         /*
333          * Some devices (USB mass-storage in particular) may transfer
334          * garbage data together with a residue indicating that the data
335          * is invalid.  Prevent the garbage from being misinterpreted
336          * and prevent security leaks by zeroing out the excess data.
337          */
338         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340
341         if (args->resid)
342                 *args->resid = scmd->resid_len;
343         if (args->sense)
344                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345         if (args->sshdr)
346                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347                                      args->sshdr);
348
349         ret = scmd->result;
350  out:
351         blk_mq_free_request(req);
352
353         return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356
357 /*
358  * Wake up the error handler if necessary. Avoid as follows that the error
359  * handler is not woken up if host in-flight requests number ==
360  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361  * with an RCU read lock in this function to ensure that this function in
362  * its entirety either finishes before scsi_eh_scmd_add() increases the
363  * host_failed counter or that it notices the shost state change made by
364  * scsi_eh_scmd_add().
365  */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368         unsigned long flags;
369
370         rcu_read_lock();
371         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372         if (unlikely(scsi_host_in_recovery(shost))) {
373                 unsigned int busy = scsi_host_busy(shost);
374
375                 spin_lock_irqsave(shost->host_lock, flags);
376                 if (shost->host_failed || shost->host_eh_scheduled)
377                         scsi_eh_wakeup(shost, busy);
378                 spin_unlock_irqrestore(shost->host_lock, flags);
379         }
380         rcu_read_unlock();
381 }
382
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385         struct Scsi_Host *shost = sdev->host;
386         struct scsi_target *starget = scsi_target(sdev);
387
388         scsi_dec_host_busy(shost, cmd);
389
390         if (starget->can_queue > 0)
391                 atomic_dec(&starget->target_busy);
392
393         sbitmap_put(&sdev->budget_map, cmd->budget_token);
394         cmd->budget_token = -1;
395 }
396
397 /*
398  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399  * interrupts disabled.
400  */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403         struct scsi_device *current_sdev = data;
404
405         if (sdev != current_sdev)
406                 blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408
409 /*
410  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411  * and call blk_run_queue for all the scsi_devices on the target -
412  * including current_sdev first.
413  *
414  * Called with *no* scsi locks held.
415  */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418         struct Scsi_Host *shost = current_sdev->host;
419         struct scsi_target *starget = scsi_target(current_sdev);
420         unsigned long flags;
421
422         spin_lock_irqsave(shost->host_lock, flags);
423         starget->starget_sdev_user = NULL;
424         spin_unlock_irqrestore(shost->host_lock, flags);
425
426         /*
427          * Call blk_run_queue for all LUNs on the target, starting with
428          * current_sdev. We race with others (to set starget_sdev_user),
429          * but in most cases, we will be first. Ideally, each LU on the
430          * target would get some limited time or requests on the target.
431          */
432         blk_mq_run_hw_queues(current_sdev->request_queue,
433                              shost->queuecommand_may_block);
434
435         spin_lock_irqsave(shost->host_lock, flags);
436         if (!starget->starget_sdev_user)
437                 __starget_for_each_device(starget, current_sdev,
438                                           scsi_kick_sdev_queue);
439         spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444         if (scsi_device_busy(sdev) >= sdev->queue_depth)
445                 return true;
446         if (atomic_read(&sdev->device_blocked) > 0)
447                 return true;
448         return false;
449 }
450
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453         if (starget->can_queue > 0) {
454                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
455                         return true;
456                 if (atomic_read(&starget->target_blocked) > 0)
457                         return true;
458         }
459         return false;
460 }
461
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464         if (atomic_read(&shost->host_blocked) > 0)
465                 return true;
466         if (shost->host_self_blocked)
467                 return true;
468         return false;
469 }
470
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473         LIST_HEAD(starved_list);
474         struct scsi_device *sdev;
475         unsigned long flags;
476
477         spin_lock_irqsave(shost->host_lock, flags);
478         list_splice_init(&shost->starved_list, &starved_list);
479
480         while (!list_empty(&starved_list)) {
481                 struct request_queue *slq;
482
483                 /*
484                  * As long as shost is accepting commands and we have
485                  * starved queues, call blk_run_queue. scsi_request_fn
486                  * drops the queue_lock and can add us back to the
487                  * starved_list.
488                  *
489                  * host_lock protects the starved_list and starved_entry.
490                  * scsi_request_fn must get the host_lock before checking
491                  * or modifying starved_list or starved_entry.
492                  */
493                 if (scsi_host_is_busy(shost))
494                         break;
495
496                 sdev = list_entry(starved_list.next,
497                                   struct scsi_device, starved_entry);
498                 list_del_init(&sdev->starved_entry);
499                 if (scsi_target_is_busy(scsi_target(sdev))) {
500                         list_move_tail(&sdev->starved_entry,
501                                        &shost->starved_list);
502                         continue;
503                 }
504
505                 /*
506                  * Once we drop the host lock, a racing scsi_remove_device()
507                  * call may remove the sdev from the starved list and destroy
508                  * it and the queue.  Mitigate by taking a reference to the
509                  * queue and never touching the sdev again after we drop the
510                  * host lock.  Note: if __scsi_remove_device() invokes
511                  * blk_mq_destroy_queue() before the queue is run from this
512                  * function then blk_run_queue() will return immediately since
513                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514                  */
515                 slq = sdev->request_queue;
516                 if (!blk_get_queue(slq))
517                         continue;
518                 spin_unlock_irqrestore(shost->host_lock, flags);
519
520                 blk_mq_run_hw_queues(slq, false);
521                 blk_put_queue(slq);
522
523                 spin_lock_irqsave(shost->host_lock, flags);
524         }
525         /* put any unprocessed entries back */
526         list_splice(&starved_list, &shost->starved_list);
527         spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529
530 /**
531  * scsi_run_queue - Select a proper request queue to serve next.
532  * @q:  last request's queue
533  *
534  * The previous command was completely finished, start a new one if possible.
535  */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538         struct scsi_device *sdev = q->queuedata;
539
540         if (scsi_target(sdev)->single_lun)
541                 scsi_single_lun_run(sdev);
542         if (!list_empty(&sdev->host->starved_list))
543                 scsi_starved_list_run(sdev->host);
544
545         /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546         blk_mq_kick_requeue_list(q);
547 }
548
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551         struct scsi_device *sdev;
552         struct request_queue *q;
553
554         sdev = container_of(work, struct scsi_device, requeue_work);
555         q = sdev->request_queue;
556         scsi_run_queue(q);
557 }
558
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561         struct scsi_device *sdev;
562
563         shost_for_each_device(sdev, shost)
564                 scsi_run_queue(sdev->request_queue);
565 }
566
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572                 if (drv->uninit_command)
573                         drv->uninit_command(cmd);
574         }
575 }
576
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579         if (cmd->sdb.table.nents)
580                 sg_free_table_chained(&cmd->sdb.table,
581                                 SCSI_INLINE_SG_CNT);
582         if (scsi_prot_sg_count(cmd))
583                 sg_free_table_chained(&cmd->prot_sdb->table,
584                                 SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590         scsi_free_sgtables(cmd);
591         scsi_uninit_cmd(cmd);
592 }
593
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596         if (scsi_host_in_recovery(sdev->host))
597                 return;
598
599         if (scsi_target(sdev)->single_lun ||
600             !list_empty(&sdev->host->starved_list)) {
601                 kblockd_schedule_work(&sdev->requeue_work);
602         } else {
603                 /*
604                  * smp_mb() present in sbitmap_queue_clear() or implied in
605                  * .end_io is for ordering writing .device_busy in
606                  * scsi_device_unbusy() and reading sdev->restarts.
607                  */
608                 int old = atomic_read(&sdev->restarts);
609
610                 /*
611                  * ->restarts has to be kept as non-zero if new budget
612                  *  contention occurs.
613                  *
614                  *  No need to run queue when either another re-run
615                  *  queue wins in updating ->restarts or a new budget
616                  *  contention occurs.
617                  */
618                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619                         blk_mq_run_hw_queues(sdev->request_queue, true);
620         }
621 }
622
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625                 unsigned int bytes)
626 {
627         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628         struct scsi_device *sdev = cmd->device;
629         struct request_queue *q = sdev->request_queue;
630
631         if (blk_update_request(req, error, bytes))
632                 return true;
633
634         // XXX:
635         if (blk_queue_add_random(q))
636                 add_disk_randomness(req->q->disk);
637
638         if (!blk_rq_is_passthrough(req)) {
639                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
640                 cmd->flags &= ~SCMD_INITIALIZED;
641         }
642
643         /*
644          * Calling rcu_barrier() is not necessary here because the
645          * SCSI error handler guarantees that the function called by
646          * call_rcu() has been called before scsi_end_request() is
647          * called.
648          */
649         destroy_rcu_head(&cmd->rcu);
650
651         /*
652          * In the MQ case the command gets freed by __blk_mq_end_request,
653          * so we have to do all cleanup that depends on it earlier.
654          *
655          * We also can't kick the queues from irq context, so we
656          * will have to defer it to a workqueue.
657          */
658         scsi_mq_uninit_cmd(cmd);
659
660         /*
661          * queue is still alive, so grab the ref for preventing it
662          * from being cleaned up during running queue.
663          */
664         percpu_ref_get(&q->q_usage_counter);
665
666         __blk_mq_end_request(req, error);
667
668         scsi_run_queue_async(sdev);
669
670         percpu_ref_put(&q->q_usage_counter);
671         return false;
672 }
673
674 /**
675  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
676  * @result:     scsi error code
677  *
678  * Translate a SCSI result code into a blk_status_t value.
679  */
680 static blk_status_t scsi_result_to_blk_status(int result)
681 {
682         /*
683          * Check the scsi-ml byte first in case we converted a host or status
684          * byte.
685          */
686         switch (scsi_ml_byte(result)) {
687         case SCSIML_STAT_OK:
688                 break;
689         case SCSIML_STAT_RESV_CONFLICT:
690                 return BLK_STS_RESV_CONFLICT;
691         case SCSIML_STAT_NOSPC:
692                 return BLK_STS_NOSPC;
693         case SCSIML_STAT_MED_ERROR:
694                 return BLK_STS_MEDIUM;
695         case SCSIML_STAT_TGT_FAILURE:
696                 return BLK_STS_TARGET;
697         case SCSIML_STAT_DL_TIMEOUT:
698                 return BLK_STS_DURATION_LIMIT;
699         }
700
701         switch (host_byte(result)) {
702         case DID_OK:
703                 if (scsi_status_is_good(result))
704                         return BLK_STS_OK;
705                 return BLK_STS_IOERR;
706         case DID_TRANSPORT_FAILFAST:
707         case DID_TRANSPORT_MARGINAL:
708                 return BLK_STS_TRANSPORT;
709         default:
710                 return BLK_STS_IOERR;
711         }
712 }
713
714 /**
715  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
716  * @rq: request to examine
717  *
718  * Description:
719  *     A request could be merge of IOs which require different failure
720  *     handling.  This function determines the number of bytes which
721  *     can be failed from the beginning of the request without
722  *     crossing into area which need to be retried further.
723  *
724  * Return:
725  *     The number of bytes to fail.
726  */
727 static unsigned int scsi_rq_err_bytes(const struct request *rq)
728 {
729         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
730         unsigned int bytes = 0;
731         struct bio *bio;
732
733         if (!(rq->rq_flags & RQF_MIXED_MERGE))
734                 return blk_rq_bytes(rq);
735
736         /*
737          * Currently the only 'mixing' which can happen is between
738          * different fastfail types.  We can safely fail portions
739          * which have all the failfast bits that the first one has -
740          * the ones which are at least as eager to fail as the first
741          * one.
742          */
743         for (bio = rq->bio; bio; bio = bio->bi_next) {
744                 if ((bio->bi_opf & ff) != ff)
745                         break;
746                 bytes += bio->bi_iter.bi_size;
747         }
748
749         /* this could lead to infinite loop */
750         BUG_ON(blk_rq_bytes(rq) && !bytes);
751         return bytes;
752 }
753
754 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
755 {
756         struct request *req = scsi_cmd_to_rq(cmd);
757         unsigned long wait_for;
758
759         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
760                 return false;
761
762         wait_for = (cmd->allowed + 1) * req->timeout;
763         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
764                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
765                             wait_for/HZ);
766                 return true;
767         }
768         return false;
769 }
770
771 /*
772  * When ALUA transition state is returned, reprep the cmd to
773  * use the ALUA handler's transition timeout. Delay the reprep
774  * 1 sec to avoid aggressive retries of the target in that
775  * state.
776  */
777 #define ALUA_TRANSITION_REPREP_DELAY    1000
778
779 /* Helper for scsi_io_completion() when special action required. */
780 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
781 {
782         struct request *req = scsi_cmd_to_rq(cmd);
783         int level = 0;
784         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
785               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
786         struct scsi_sense_hdr sshdr;
787         bool sense_valid;
788         bool sense_current = true;      /* false implies "deferred sense" */
789         blk_status_t blk_stat;
790
791         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
792         if (sense_valid)
793                 sense_current = !scsi_sense_is_deferred(&sshdr);
794
795         blk_stat = scsi_result_to_blk_status(result);
796
797         if (host_byte(result) == DID_RESET) {
798                 /* Third party bus reset or reset for error recovery
799                  * reasons.  Just retry the command and see what
800                  * happens.
801                  */
802                 action = ACTION_RETRY;
803         } else if (sense_valid && sense_current) {
804                 switch (sshdr.sense_key) {
805                 case UNIT_ATTENTION:
806                         if (cmd->device->removable) {
807                                 /* Detected disc change.  Set a bit
808                                  * and quietly refuse further access.
809                                  */
810                                 cmd->device->changed = 1;
811                                 action = ACTION_FAIL;
812                         } else {
813                                 /* Must have been a power glitch, or a
814                                  * bus reset.  Could not have been a
815                                  * media change, so we just retry the
816                                  * command and see what happens.
817                                  */
818                                 action = ACTION_RETRY;
819                         }
820                         break;
821                 case ILLEGAL_REQUEST:
822                         /* If we had an ILLEGAL REQUEST returned, then
823                          * we may have performed an unsupported
824                          * command.  The only thing this should be
825                          * would be a ten byte read where only a six
826                          * byte read was supported.  Also, on a system
827                          * where READ CAPACITY failed, we may have
828                          * read past the end of the disk.
829                          */
830                         if ((cmd->device->use_10_for_rw &&
831                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
832                             (cmd->cmnd[0] == READ_10 ||
833                              cmd->cmnd[0] == WRITE_10)) {
834                                 /* This will issue a new 6-byte command. */
835                                 cmd->device->use_10_for_rw = 0;
836                                 action = ACTION_REPREP;
837                         } else if (sshdr.asc == 0x10) /* DIX */ {
838                                 action = ACTION_FAIL;
839                                 blk_stat = BLK_STS_PROTECTION;
840                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
841                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
842                                 action = ACTION_FAIL;
843                                 blk_stat = BLK_STS_TARGET;
844                         } else
845                                 action = ACTION_FAIL;
846                         break;
847                 case ABORTED_COMMAND:
848                         action = ACTION_FAIL;
849                         if (sshdr.asc == 0x10) /* DIF */
850                                 blk_stat = BLK_STS_PROTECTION;
851                         break;
852                 case NOT_READY:
853                         /* If the device is in the process of becoming
854                          * ready, or has a temporary blockage, retry.
855                          */
856                         if (sshdr.asc == 0x04) {
857                                 switch (sshdr.ascq) {
858                                 case 0x01: /* becoming ready */
859                                 case 0x04: /* format in progress */
860                                 case 0x05: /* rebuild in progress */
861                                 case 0x06: /* recalculation in progress */
862                                 case 0x07: /* operation in progress */
863                                 case 0x08: /* Long write in progress */
864                                 case 0x09: /* self test in progress */
865                                 case 0x11: /* notify (enable spinup) required */
866                                 case 0x14: /* space allocation in progress */
867                                 case 0x1a: /* start stop unit in progress */
868                                 case 0x1b: /* sanitize in progress */
869                                 case 0x1d: /* configuration in progress */
870                                 case 0x24: /* depopulation in progress */
871                                 case 0x25: /* depopulation restore in progress */
872                                         action = ACTION_DELAYED_RETRY;
873                                         break;
874                                 case 0x0a: /* ALUA state transition */
875                                         action = ACTION_DELAYED_REPREP;
876                                         break;
877                                 default:
878                                         action = ACTION_FAIL;
879                                         break;
880                                 }
881                         } else
882                                 action = ACTION_FAIL;
883                         break;
884                 case VOLUME_OVERFLOW:
885                         /* See SSC3rXX or current. */
886                         action = ACTION_FAIL;
887                         break;
888                 case DATA_PROTECT:
889                         action = ACTION_FAIL;
890                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
891                             (sshdr.asc == 0x55 &&
892                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
893                                 /* Insufficient zone resources */
894                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
895                         }
896                         break;
897                 case COMPLETED:
898                         fallthrough;
899                 default:
900                         action = ACTION_FAIL;
901                         break;
902                 }
903         } else
904                 action = ACTION_FAIL;
905
906         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
907                 action = ACTION_FAIL;
908
909         switch (action) {
910         case ACTION_FAIL:
911                 /* Give up and fail the remainder of the request */
912                 if (!(req->rq_flags & RQF_QUIET)) {
913                         static DEFINE_RATELIMIT_STATE(_rs,
914                                         DEFAULT_RATELIMIT_INTERVAL,
915                                         DEFAULT_RATELIMIT_BURST);
916
917                         if (unlikely(scsi_logging_level))
918                                 level =
919                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
920                                                     SCSI_LOG_MLCOMPLETE_BITS);
921
922                         /*
923                          * if logging is enabled the failure will be printed
924                          * in scsi_log_completion(), so avoid duplicate messages
925                          */
926                         if (!level && __ratelimit(&_rs)) {
927                                 scsi_print_result(cmd, NULL, FAILED);
928                                 if (sense_valid)
929                                         scsi_print_sense(cmd);
930                                 scsi_print_command(cmd);
931                         }
932                 }
933                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
934                         return;
935                 fallthrough;
936         case ACTION_REPREP:
937                 scsi_mq_requeue_cmd(cmd, 0);
938                 break;
939         case ACTION_DELAYED_REPREP:
940                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
941                 break;
942         case ACTION_RETRY:
943                 /* Retry the same command immediately */
944                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
945                 break;
946         case ACTION_DELAYED_RETRY:
947                 /* Retry the same command after a delay */
948                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
949                 break;
950         }
951 }
952
953 /*
954  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
955  * new result that may suppress further error checking. Also modifies
956  * *blk_statp in some cases.
957  */
958 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
959                                         blk_status_t *blk_statp)
960 {
961         bool sense_valid;
962         bool sense_current = true;      /* false implies "deferred sense" */
963         struct request *req = scsi_cmd_to_rq(cmd);
964         struct scsi_sense_hdr sshdr;
965
966         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
967         if (sense_valid)
968                 sense_current = !scsi_sense_is_deferred(&sshdr);
969
970         if (blk_rq_is_passthrough(req)) {
971                 if (sense_valid) {
972                         /*
973                          * SG_IO wants current and deferred errors
974                          */
975                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
976                                              SCSI_SENSE_BUFFERSIZE);
977                 }
978                 if (sense_current)
979                         *blk_statp = scsi_result_to_blk_status(result);
980         } else if (blk_rq_bytes(req) == 0 && sense_current) {
981                 /*
982                  * Flush commands do not transfers any data, and thus cannot use
983                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
984                  * This sets *blk_statp explicitly for the problem case.
985                  */
986                 *blk_statp = scsi_result_to_blk_status(result);
987         }
988         /*
989          * Recovered errors need reporting, but they're always treated as
990          * success, so fiddle the result code here.  For passthrough requests
991          * we already took a copy of the original into sreq->result which
992          * is what gets returned to the user
993          */
994         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
995                 bool do_print = true;
996                 /*
997                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
998                  * skip print since caller wants ATA registers. Only occurs
999                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1000                  */
1001                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1002                         do_print = false;
1003                 else if (req->rq_flags & RQF_QUIET)
1004                         do_print = false;
1005                 if (do_print)
1006                         scsi_print_sense(cmd);
1007                 result = 0;
1008                 /* for passthrough, *blk_statp may be set */
1009                 *blk_statp = BLK_STS_OK;
1010         }
1011         /*
1012          * Another corner case: the SCSI status byte is non-zero but 'good'.
1013          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1014          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1015          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1016          * intermediate statuses (both obsolete in SAM-4) as good.
1017          */
1018         if ((result & 0xff) && scsi_status_is_good(result)) {
1019                 result = 0;
1020                 *blk_statp = BLK_STS_OK;
1021         }
1022         return result;
1023 }
1024
1025 /**
1026  * scsi_io_completion - Completion processing for SCSI commands.
1027  * @cmd:        command that is finished.
1028  * @good_bytes: number of processed bytes.
1029  *
1030  * We will finish off the specified number of sectors. If we are done, the
1031  * command block will be released and the queue function will be goosed. If we
1032  * are not done then we have to figure out what to do next:
1033  *
1034  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1035  *      unprepared and put back on the queue.  Then a new command will
1036  *      be created for it.  This should be used if we made forward
1037  *      progress, or if we want to switch from READ(10) to READ(6) for
1038  *      example.
1039  *
1040  *   b) We can call scsi_io_completion_action().  The request will be
1041  *      put back on the queue and retried using the same command as
1042  *      before, possibly after a delay.
1043  *
1044  *   c) We can call scsi_end_request() with blk_stat other than
1045  *      BLK_STS_OK, to fail the remainder of the request.
1046  */
1047 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1048 {
1049         int result = cmd->result;
1050         struct request *req = scsi_cmd_to_rq(cmd);
1051         blk_status_t blk_stat = BLK_STS_OK;
1052
1053         if (unlikely(result))   /* a nz result may or may not be an error */
1054                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1055
1056         /*
1057          * Next deal with any sectors which we were able to correctly
1058          * handle.
1059          */
1060         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1061                 "%u sectors total, %d bytes done.\n",
1062                 blk_rq_sectors(req), good_bytes));
1063
1064         /*
1065          * Failed, zero length commands always need to drop down
1066          * to retry code. Fast path should return in this block.
1067          */
1068         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1069                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1070                         return; /* no bytes remaining */
1071         }
1072
1073         /* Kill remainder if no retries. */
1074         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1075                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1076                         WARN_ONCE(true,
1077                             "Bytes remaining after failed, no-retry command");
1078                 return;
1079         }
1080
1081         /*
1082          * If there had been no error, but we have leftover bytes in the
1083          * request just queue the command up again.
1084          */
1085         if (likely(result == 0))
1086                 scsi_mq_requeue_cmd(cmd, 0);
1087         else
1088                 scsi_io_completion_action(cmd, result);
1089 }
1090
1091 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1092                 struct request *rq)
1093 {
1094         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1095                !op_is_write(req_op(rq)) &&
1096                sdev->host->hostt->dma_need_drain(rq);
1097 }
1098
1099 /**
1100  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1101  * @cmd: SCSI command data structure to initialize.
1102  *
1103  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1104  * for @cmd.
1105  *
1106  * Returns:
1107  * * BLK_STS_OK       - on success
1108  * * BLK_STS_RESOURCE - if the failure is retryable
1109  * * BLK_STS_IOERR    - if the failure is fatal
1110  */
1111 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1112 {
1113         struct scsi_device *sdev = cmd->device;
1114         struct request *rq = scsi_cmd_to_rq(cmd);
1115         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1116         struct scatterlist *last_sg = NULL;
1117         blk_status_t ret;
1118         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1119         int count;
1120
1121         if (WARN_ON_ONCE(!nr_segs))
1122                 return BLK_STS_IOERR;
1123
1124         /*
1125          * Make sure there is space for the drain.  The driver must adjust
1126          * max_hw_segments to be prepared for this.
1127          */
1128         if (need_drain)
1129                 nr_segs++;
1130
1131         /*
1132          * If sg table allocation fails, requeue request later.
1133          */
1134         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1135                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1136                 return BLK_STS_RESOURCE;
1137
1138         /*
1139          * Next, walk the list, and fill in the addresses and sizes of
1140          * each segment.
1141          */
1142         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1143
1144         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1145                 unsigned int pad_len =
1146                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1147
1148                 last_sg->length += pad_len;
1149                 cmd->extra_len += pad_len;
1150         }
1151
1152         if (need_drain) {
1153                 sg_unmark_end(last_sg);
1154                 last_sg = sg_next(last_sg);
1155                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1156                 sg_mark_end(last_sg);
1157
1158                 cmd->extra_len += sdev->dma_drain_len;
1159                 count++;
1160         }
1161
1162         BUG_ON(count > cmd->sdb.table.nents);
1163         cmd->sdb.table.nents = count;
1164         cmd->sdb.length = blk_rq_payload_bytes(rq);
1165
1166         if (blk_integrity_rq(rq)) {
1167                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1168                 int ivecs;
1169
1170                 if (WARN_ON_ONCE(!prot_sdb)) {
1171                         /*
1172                          * This can happen if someone (e.g. multipath)
1173                          * queues a command to a device on an adapter
1174                          * that does not support DIX.
1175                          */
1176                         ret = BLK_STS_IOERR;
1177                         goto out_free_sgtables;
1178                 }
1179
1180                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1181
1182                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1183                                 prot_sdb->table.sgl,
1184                                 SCSI_INLINE_PROT_SG_CNT)) {
1185                         ret = BLK_STS_RESOURCE;
1186                         goto out_free_sgtables;
1187                 }
1188
1189                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1190                                                 prot_sdb->table.sgl);
1191                 BUG_ON(count > ivecs);
1192                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1193
1194                 cmd->prot_sdb = prot_sdb;
1195                 cmd->prot_sdb->table.nents = count;
1196         }
1197
1198         return BLK_STS_OK;
1199 out_free_sgtables:
1200         scsi_free_sgtables(cmd);
1201         return ret;
1202 }
1203 EXPORT_SYMBOL(scsi_alloc_sgtables);
1204
1205 /**
1206  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1207  * @rq: Request associated with the SCSI command to be initialized.
1208  *
1209  * This function initializes the members of struct scsi_cmnd that must be
1210  * initialized before request processing starts and that won't be
1211  * reinitialized if a SCSI command is requeued.
1212  */
1213 static void scsi_initialize_rq(struct request *rq)
1214 {
1215         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1216
1217         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1218         cmd->cmd_len = MAX_COMMAND_SIZE;
1219         cmd->sense_len = 0;
1220         init_rcu_head(&cmd->rcu);
1221         cmd->jiffies_at_alloc = jiffies;
1222         cmd->retries = 0;
1223 }
1224
1225 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1226                                    blk_mq_req_flags_t flags)
1227 {
1228         struct request *rq;
1229
1230         rq = blk_mq_alloc_request(q, opf, flags);
1231         if (!IS_ERR(rq))
1232                 scsi_initialize_rq(rq);
1233         return rq;
1234 }
1235 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1236
1237 /*
1238  * Only called when the request isn't completed by SCSI, and not freed by
1239  * SCSI
1240  */
1241 static void scsi_cleanup_rq(struct request *rq)
1242 {
1243         if (rq->rq_flags & RQF_DONTPREP) {
1244                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1245                 rq->rq_flags &= ~RQF_DONTPREP;
1246         }
1247 }
1248
1249 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1250 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1251 {
1252         struct request *rq = scsi_cmd_to_rq(cmd);
1253
1254         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1255                 cmd->flags |= SCMD_INITIALIZED;
1256                 scsi_initialize_rq(rq);
1257         }
1258
1259         cmd->device = dev;
1260         INIT_LIST_HEAD(&cmd->eh_entry);
1261         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1262 }
1263
1264 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1265                 struct request *req)
1266 {
1267         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1268
1269         /*
1270          * Passthrough requests may transfer data, in which case they must
1271          * a bio attached to them.  Or they might contain a SCSI command
1272          * that does not transfer data, in which case they may optionally
1273          * submit a request without an attached bio.
1274          */
1275         if (req->bio) {
1276                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1277                 if (unlikely(ret != BLK_STS_OK))
1278                         return ret;
1279         } else {
1280                 BUG_ON(blk_rq_bytes(req));
1281
1282                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1283         }
1284
1285         cmd->transfersize = blk_rq_bytes(req);
1286         return BLK_STS_OK;
1287 }
1288
1289 static blk_status_t
1290 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1291 {
1292         switch (sdev->sdev_state) {
1293         case SDEV_CREATED:
1294                 return BLK_STS_OK;
1295         case SDEV_OFFLINE:
1296         case SDEV_TRANSPORT_OFFLINE:
1297                 /*
1298                  * If the device is offline we refuse to process any
1299                  * commands.  The device must be brought online
1300                  * before trying any recovery commands.
1301                  */
1302                 if (!sdev->offline_already) {
1303                         sdev->offline_already = true;
1304                         sdev_printk(KERN_ERR, sdev,
1305                                     "rejecting I/O to offline device\n");
1306                 }
1307                 return BLK_STS_IOERR;
1308         case SDEV_DEL:
1309                 /*
1310                  * If the device is fully deleted, we refuse to
1311                  * process any commands as well.
1312                  */
1313                 sdev_printk(KERN_ERR, sdev,
1314                             "rejecting I/O to dead device\n");
1315                 return BLK_STS_IOERR;
1316         case SDEV_BLOCK:
1317         case SDEV_CREATED_BLOCK:
1318                 return BLK_STS_RESOURCE;
1319         case SDEV_QUIESCE:
1320                 /*
1321                  * If the device is blocked we only accept power management
1322                  * commands.
1323                  */
1324                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1325                         return BLK_STS_RESOURCE;
1326                 return BLK_STS_OK;
1327         default:
1328                 /*
1329                  * For any other not fully online state we only allow
1330                  * power management commands.
1331                  */
1332                 if (req && !(req->rq_flags & RQF_PM))
1333                         return BLK_STS_OFFLINE;
1334                 return BLK_STS_OK;
1335         }
1336 }
1337
1338 /*
1339  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1340  * and return the token else return -1.
1341  */
1342 static inline int scsi_dev_queue_ready(struct request_queue *q,
1343                                   struct scsi_device *sdev)
1344 {
1345         int token;
1346
1347         token = sbitmap_get(&sdev->budget_map);
1348         if (token < 0)
1349                 return -1;
1350
1351         if (!atomic_read(&sdev->device_blocked))
1352                 return token;
1353
1354         /*
1355          * Only unblock if no other commands are pending and
1356          * if device_blocked has decreased to zero
1357          */
1358         if (scsi_device_busy(sdev) > 1 ||
1359             atomic_dec_return(&sdev->device_blocked) > 0) {
1360                 sbitmap_put(&sdev->budget_map, token);
1361                 return -1;
1362         }
1363
1364         SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1365                          "unblocking device at zero depth\n"));
1366
1367         return token;
1368 }
1369
1370 /*
1371  * scsi_target_queue_ready: checks if there we can send commands to target
1372  * @sdev: scsi device on starget to check.
1373  */
1374 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1375                                            struct scsi_device *sdev)
1376 {
1377         struct scsi_target *starget = scsi_target(sdev);
1378         unsigned int busy;
1379
1380         if (starget->single_lun) {
1381                 spin_lock_irq(shost->host_lock);
1382                 if (starget->starget_sdev_user &&
1383                     starget->starget_sdev_user != sdev) {
1384                         spin_unlock_irq(shost->host_lock);
1385                         return 0;
1386                 }
1387                 starget->starget_sdev_user = sdev;
1388                 spin_unlock_irq(shost->host_lock);
1389         }
1390
1391         if (starget->can_queue <= 0)
1392                 return 1;
1393
1394         busy = atomic_inc_return(&starget->target_busy) - 1;
1395         if (atomic_read(&starget->target_blocked) > 0) {
1396                 if (busy)
1397                         goto starved;
1398
1399                 /*
1400                  * unblock after target_blocked iterates to zero
1401                  */
1402                 if (atomic_dec_return(&starget->target_blocked) > 0)
1403                         goto out_dec;
1404
1405                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1406                                  "unblocking target at zero depth\n"));
1407         }
1408
1409         if (busy >= starget->can_queue)
1410                 goto starved;
1411
1412         return 1;
1413
1414 starved:
1415         spin_lock_irq(shost->host_lock);
1416         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1417         spin_unlock_irq(shost->host_lock);
1418 out_dec:
1419         if (starget->can_queue > 0)
1420                 atomic_dec(&starget->target_busy);
1421         return 0;
1422 }
1423
1424 /*
1425  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1426  * return 0. We must end up running the queue again whenever 0 is
1427  * returned, else IO can hang.
1428  */
1429 static inline int scsi_host_queue_ready(struct request_queue *q,
1430                                    struct Scsi_Host *shost,
1431                                    struct scsi_device *sdev,
1432                                    struct scsi_cmnd *cmd)
1433 {
1434         if (atomic_read(&shost->host_blocked) > 0) {
1435                 if (scsi_host_busy(shost) > 0)
1436                         goto starved;
1437
1438                 /*
1439                  * unblock after host_blocked iterates to zero
1440                  */
1441                 if (atomic_dec_return(&shost->host_blocked) > 0)
1442                         goto out_dec;
1443
1444                 SCSI_LOG_MLQUEUE(3,
1445                         shost_printk(KERN_INFO, shost,
1446                                      "unblocking host at zero depth\n"));
1447         }
1448
1449         if (shost->host_self_blocked)
1450                 goto starved;
1451
1452         /* We're OK to process the command, so we can't be starved */
1453         if (!list_empty(&sdev->starved_entry)) {
1454                 spin_lock_irq(shost->host_lock);
1455                 if (!list_empty(&sdev->starved_entry))
1456                         list_del_init(&sdev->starved_entry);
1457                 spin_unlock_irq(shost->host_lock);
1458         }
1459
1460         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1461
1462         return 1;
1463
1464 starved:
1465         spin_lock_irq(shost->host_lock);
1466         if (list_empty(&sdev->starved_entry))
1467                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1468         spin_unlock_irq(shost->host_lock);
1469 out_dec:
1470         scsi_dec_host_busy(shost, cmd);
1471         return 0;
1472 }
1473
1474 /*
1475  * Busy state exporting function for request stacking drivers.
1476  *
1477  * For efficiency, no lock is taken to check the busy state of
1478  * shost/starget/sdev, since the returned value is not guaranteed and
1479  * may be changed after request stacking drivers call the function,
1480  * regardless of taking lock or not.
1481  *
1482  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1483  * needs to return 'not busy'. Otherwise, request stacking drivers
1484  * may hold requests forever.
1485  */
1486 static bool scsi_mq_lld_busy(struct request_queue *q)
1487 {
1488         struct scsi_device *sdev = q->queuedata;
1489         struct Scsi_Host *shost;
1490
1491         if (blk_queue_dying(q))
1492                 return false;
1493
1494         shost = sdev->host;
1495
1496         /*
1497          * Ignore host/starget busy state.
1498          * Since block layer does not have a concept of fairness across
1499          * multiple queues, congestion of host/starget needs to be handled
1500          * in SCSI layer.
1501          */
1502         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1503                 return true;
1504
1505         return false;
1506 }
1507
1508 /*
1509  * Block layer request completion callback. May be called from interrupt
1510  * context.
1511  */
1512 static void scsi_complete(struct request *rq)
1513 {
1514         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1515         enum scsi_disposition disposition;
1516
1517         INIT_LIST_HEAD(&cmd->eh_entry);
1518
1519         atomic_inc(&cmd->device->iodone_cnt);
1520         if (cmd->result)
1521                 atomic_inc(&cmd->device->ioerr_cnt);
1522
1523         disposition = scsi_decide_disposition(cmd);
1524         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1525                 disposition = SUCCESS;
1526
1527         scsi_log_completion(cmd, disposition);
1528
1529         switch (disposition) {
1530         case SUCCESS:
1531                 scsi_finish_command(cmd);
1532                 break;
1533         case NEEDS_RETRY:
1534                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1535                 break;
1536         case ADD_TO_MLQUEUE:
1537                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1538                 break;
1539         default:
1540                 scsi_eh_scmd_add(cmd);
1541                 break;
1542         }
1543 }
1544
1545 /**
1546  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1547  * @cmd: command block we are dispatching.
1548  *
1549  * Return: nonzero return request was rejected and device's queue needs to be
1550  * plugged.
1551  */
1552 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1553 {
1554         struct Scsi_Host *host = cmd->device->host;
1555         int rtn = 0;
1556
1557         atomic_inc(&cmd->device->iorequest_cnt);
1558
1559         /* check if the device is still usable */
1560         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1561                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1562                  * returns an immediate error upwards, and signals
1563                  * that the device is no longer present */
1564                 cmd->result = DID_NO_CONNECT << 16;
1565                 goto done;
1566         }
1567
1568         /* Check to see if the scsi lld made this device blocked. */
1569         if (unlikely(scsi_device_blocked(cmd->device))) {
1570                 /*
1571                  * in blocked state, the command is just put back on
1572                  * the device queue.  The suspend state has already
1573                  * blocked the queue so future requests should not
1574                  * occur until the device transitions out of the
1575                  * suspend state.
1576                  */
1577                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1578                         "queuecommand : device blocked\n"));
1579                 atomic_dec(&cmd->device->iorequest_cnt);
1580                 return SCSI_MLQUEUE_DEVICE_BUSY;
1581         }
1582
1583         /* Store the LUN value in cmnd, if needed. */
1584         if (cmd->device->lun_in_cdb)
1585                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1586                                (cmd->device->lun << 5 & 0xe0);
1587
1588         scsi_log_send(cmd);
1589
1590         /*
1591          * Before we queue this command, check if the command
1592          * length exceeds what the host adapter can handle.
1593          */
1594         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1595                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1596                                "queuecommand : command too long. "
1597                                "cdb_size=%d host->max_cmd_len=%d\n",
1598                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1599                 cmd->result = (DID_ABORT << 16);
1600                 goto done;
1601         }
1602
1603         if (unlikely(host->shost_state == SHOST_DEL)) {
1604                 cmd->result = (DID_NO_CONNECT << 16);
1605                 goto done;
1606
1607         }
1608
1609         trace_scsi_dispatch_cmd_start(cmd);
1610         rtn = host->hostt->queuecommand(host, cmd);
1611         if (rtn) {
1612                 atomic_dec(&cmd->device->iorequest_cnt);
1613                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1614                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1615                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1616                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1617
1618                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1619                         "queuecommand : request rejected\n"));
1620         }
1621
1622         return rtn;
1623  done:
1624         scsi_done(cmd);
1625         return 0;
1626 }
1627
1628 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1629 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1630 {
1631         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1632                 sizeof(struct scatterlist);
1633 }
1634
1635 static blk_status_t scsi_prepare_cmd(struct request *req)
1636 {
1637         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1638         struct scsi_device *sdev = req->q->queuedata;
1639         struct Scsi_Host *shost = sdev->host;
1640         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1641         struct scatterlist *sg;
1642
1643         scsi_init_command(sdev, cmd);
1644
1645         cmd->eh_eflags = 0;
1646         cmd->prot_type = 0;
1647         cmd->prot_flags = 0;
1648         cmd->submitter = 0;
1649         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1650         cmd->underflow = 0;
1651         cmd->transfersize = 0;
1652         cmd->host_scribble = NULL;
1653         cmd->result = 0;
1654         cmd->extra_len = 0;
1655         cmd->state = 0;
1656         if (in_flight)
1657                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1658
1659         /*
1660          * Only clear the driver-private command data if the LLD does not supply
1661          * a function to initialize that data.
1662          */
1663         if (!shost->hostt->init_cmd_priv)
1664                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1665
1666         cmd->prot_op = SCSI_PROT_NORMAL;
1667         if (blk_rq_bytes(req))
1668                 cmd->sc_data_direction = rq_dma_dir(req);
1669         else
1670                 cmd->sc_data_direction = DMA_NONE;
1671
1672         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1673         cmd->sdb.table.sgl = sg;
1674
1675         if (scsi_host_get_prot(shost)) {
1676                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1677
1678                 cmd->prot_sdb->table.sgl =
1679                         (struct scatterlist *)(cmd->prot_sdb + 1);
1680         }
1681
1682         /*
1683          * Special handling for passthrough commands, which don't go to the ULP
1684          * at all:
1685          */
1686         if (blk_rq_is_passthrough(req))
1687                 return scsi_setup_scsi_cmnd(sdev, req);
1688
1689         if (sdev->handler && sdev->handler->prep_fn) {
1690                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1691
1692                 if (ret != BLK_STS_OK)
1693                         return ret;
1694         }
1695
1696         /* Usually overridden by the ULP */
1697         cmd->allowed = 0;
1698         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1699         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1700 }
1701
1702 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1703 {
1704         struct request *req = scsi_cmd_to_rq(cmd);
1705
1706         switch (cmd->submitter) {
1707         case SUBMITTED_BY_BLOCK_LAYER:
1708                 break;
1709         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1710                 return scsi_eh_done(cmd);
1711         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1712                 return;
1713         }
1714
1715         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1716                 return;
1717         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1718                 return;
1719         trace_scsi_dispatch_cmd_done(cmd);
1720
1721         if (complete_directly)
1722                 blk_mq_complete_request_direct(req, scsi_complete);
1723         else
1724                 blk_mq_complete_request(req);
1725 }
1726
1727 void scsi_done(struct scsi_cmnd *cmd)
1728 {
1729         scsi_done_internal(cmd, false);
1730 }
1731 EXPORT_SYMBOL(scsi_done);
1732
1733 void scsi_done_direct(struct scsi_cmnd *cmd)
1734 {
1735         scsi_done_internal(cmd, true);
1736 }
1737 EXPORT_SYMBOL(scsi_done_direct);
1738
1739 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1740 {
1741         struct scsi_device *sdev = q->queuedata;
1742
1743         sbitmap_put(&sdev->budget_map, budget_token);
1744 }
1745
1746 /*
1747  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1748  * not change behaviour from the previous unplug mechanism, experimentation
1749  * may prove this needs changing.
1750  */
1751 #define SCSI_QUEUE_DELAY 3
1752
1753 static int scsi_mq_get_budget(struct request_queue *q)
1754 {
1755         struct scsi_device *sdev = q->queuedata;
1756         int token = scsi_dev_queue_ready(q, sdev);
1757
1758         if (token >= 0)
1759                 return token;
1760
1761         atomic_inc(&sdev->restarts);
1762
1763         /*
1764          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1765          * .restarts must be incremented before .device_busy is read because the
1766          * code in scsi_run_queue_async() depends on the order of these operations.
1767          */
1768         smp_mb__after_atomic();
1769
1770         /*
1771          * If all in-flight requests originated from this LUN are completed
1772          * before reading .device_busy, sdev->device_busy will be observed as
1773          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1774          * soon. Otherwise, completion of one of these requests will observe
1775          * the .restarts flag, and the request queue will be run for handling
1776          * this request, see scsi_end_request().
1777          */
1778         if (unlikely(scsi_device_busy(sdev) == 0 &&
1779                                 !scsi_device_blocked(sdev)))
1780                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1781         return -1;
1782 }
1783
1784 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1785 {
1786         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1787
1788         cmd->budget_token = token;
1789 }
1790
1791 static int scsi_mq_get_rq_budget_token(struct request *req)
1792 {
1793         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1794
1795         return cmd->budget_token;
1796 }
1797
1798 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1799                          const struct blk_mq_queue_data *bd)
1800 {
1801         struct request *req = bd->rq;
1802         struct request_queue *q = req->q;
1803         struct scsi_device *sdev = q->queuedata;
1804         struct Scsi_Host *shost = sdev->host;
1805         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1806         blk_status_t ret;
1807         int reason;
1808
1809         WARN_ON_ONCE(cmd->budget_token < 0);
1810
1811         /*
1812          * If the device is not in running state we will reject some or all
1813          * commands.
1814          */
1815         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1816                 ret = scsi_device_state_check(sdev, req);
1817                 if (ret != BLK_STS_OK)
1818                         goto out_put_budget;
1819         }
1820
1821         ret = BLK_STS_RESOURCE;
1822         if (!scsi_target_queue_ready(shost, sdev))
1823                 goto out_put_budget;
1824         if (unlikely(scsi_host_in_recovery(shost))) {
1825                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1826                         ret = BLK_STS_OFFLINE;
1827                 goto out_dec_target_busy;
1828         }
1829         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1830                 goto out_dec_target_busy;
1831
1832         if (!(req->rq_flags & RQF_DONTPREP)) {
1833                 ret = scsi_prepare_cmd(req);
1834                 if (ret != BLK_STS_OK)
1835                         goto out_dec_host_busy;
1836                 req->rq_flags |= RQF_DONTPREP;
1837         } else {
1838                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1839         }
1840
1841         cmd->flags &= SCMD_PRESERVED_FLAGS;
1842         if (sdev->simple_tags)
1843                 cmd->flags |= SCMD_TAGGED;
1844         if (bd->last)
1845                 cmd->flags |= SCMD_LAST;
1846
1847         scsi_set_resid(cmd, 0);
1848         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1849         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1850
1851         blk_mq_start_request(req);
1852         reason = scsi_dispatch_cmd(cmd);
1853         if (reason) {
1854                 scsi_set_blocked(cmd, reason);
1855                 ret = BLK_STS_RESOURCE;
1856                 goto out_dec_host_busy;
1857         }
1858
1859         return BLK_STS_OK;
1860
1861 out_dec_host_busy:
1862         scsi_dec_host_busy(shost, cmd);
1863 out_dec_target_busy:
1864         if (scsi_target(sdev)->can_queue > 0)
1865                 atomic_dec(&scsi_target(sdev)->target_busy);
1866 out_put_budget:
1867         scsi_mq_put_budget(q, cmd->budget_token);
1868         cmd->budget_token = -1;
1869         switch (ret) {
1870         case BLK_STS_OK:
1871                 break;
1872         case BLK_STS_RESOURCE:
1873         case BLK_STS_ZONE_RESOURCE:
1874                 if (scsi_device_blocked(sdev))
1875                         ret = BLK_STS_DEV_RESOURCE;
1876                 break;
1877         case BLK_STS_AGAIN:
1878                 cmd->result = DID_BUS_BUSY << 16;
1879                 if (req->rq_flags & RQF_DONTPREP)
1880                         scsi_mq_uninit_cmd(cmd);
1881                 break;
1882         default:
1883                 if (unlikely(!scsi_device_online(sdev)))
1884                         cmd->result = DID_NO_CONNECT << 16;
1885                 else
1886                         cmd->result = DID_ERROR << 16;
1887                 /*
1888                  * Make sure to release all allocated resources when
1889                  * we hit an error, as we will never see this command
1890                  * again.
1891                  */
1892                 if (req->rq_flags & RQF_DONTPREP)
1893                         scsi_mq_uninit_cmd(cmd);
1894                 scsi_run_queue_async(sdev);
1895                 break;
1896         }
1897         return ret;
1898 }
1899
1900 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1901                                 unsigned int hctx_idx, unsigned int numa_node)
1902 {
1903         struct Scsi_Host *shost = set->driver_data;
1904         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1905         struct scatterlist *sg;
1906         int ret = 0;
1907
1908         cmd->sense_buffer =
1909                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1910         if (!cmd->sense_buffer)
1911                 return -ENOMEM;
1912
1913         if (scsi_host_get_prot(shost)) {
1914                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1915                         shost->hostt->cmd_size;
1916                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1917         }
1918
1919         if (shost->hostt->init_cmd_priv) {
1920                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1921                 if (ret < 0)
1922                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1923         }
1924
1925         return ret;
1926 }
1927
1928 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1929                                  unsigned int hctx_idx)
1930 {
1931         struct Scsi_Host *shost = set->driver_data;
1932         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1933
1934         if (shost->hostt->exit_cmd_priv)
1935                 shost->hostt->exit_cmd_priv(shost, cmd);
1936         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1937 }
1938
1939
1940 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1941 {
1942         struct Scsi_Host *shost = hctx->driver_data;
1943
1944         if (shost->hostt->mq_poll)
1945                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1946
1947         return 0;
1948 }
1949
1950 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1951                           unsigned int hctx_idx)
1952 {
1953         struct Scsi_Host *shost = data;
1954
1955         hctx->driver_data = shost;
1956         return 0;
1957 }
1958
1959 static void scsi_map_queues(struct blk_mq_tag_set *set)
1960 {
1961         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1962
1963         if (shost->hostt->map_queues)
1964                 return shost->hostt->map_queues(shost);
1965         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1966 }
1967
1968 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1969 {
1970         struct device *dev = shost->dma_dev;
1971
1972         /*
1973          * this limit is imposed by hardware restrictions
1974          */
1975         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1976                                         SG_MAX_SEGMENTS));
1977
1978         if (scsi_host_prot_dma(shost)) {
1979                 shost->sg_prot_tablesize =
1980                         min_not_zero(shost->sg_prot_tablesize,
1981                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1982                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1983                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1984         }
1985
1986         blk_queue_max_hw_sectors(q, shost->max_sectors);
1987         blk_queue_segment_boundary(q, shost->dma_boundary);
1988         dma_set_seg_boundary(dev, shost->dma_boundary);
1989
1990         blk_queue_max_segment_size(q, shost->max_segment_size);
1991         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1992         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1993
1994         /*
1995          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1996          * which is a common minimum for HBAs, and the minimum DMA alignment,
1997          * which is set by the platform.
1998          *
1999          * Devices that require a bigger alignment can increase it later.
2000          */
2001         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2002 }
2003 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2004
2005 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2006         .get_budget     = scsi_mq_get_budget,
2007         .put_budget     = scsi_mq_put_budget,
2008         .queue_rq       = scsi_queue_rq,
2009         .complete       = scsi_complete,
2010         .timeout        = scsi_timeout,
2011 #ifdef CONFIG_BLK_DEBUG_FS
2012         .show_rq        = scsi_show_rq,
2013 #endif
2014         .init_request   = scsi_mq_init_request,
2015         .exit_request   = scsi_mq_exit_request,
2016         .cleanup_rq     = scsi_cleanup_rq,
2017         .busy           = scsi_mq_lld_busy,
2018         .map_queues     = scsi_map_queues,
2019         .init_hctx      = scsi_init_hctx,
2020         .poll           = scsi_mq_poll,
2021         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2022         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2023 };
2024
2025
2026 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2027 {
2028         struct Scsi_Host *shost = hctx->driver_data;
2029
2030         shost->hostt->commit_rqs(shost, hctx->queue_num);
2031 }
2032
2033 static const struct blk_mq_ops scsi_mq_ops = {
2034         .get_budget     = scsi_mq_get_budget,
2035         .put_budget     = scsi_mq_put_budget,
2036         .queue_rq       = scsi_queue_rq,
2037         .commit_rqs     = scsi_commit_rqs,
2038         .complete       = scsi_complete,
2039         .timeout        = scsi_timeout,
2040 #ifdef CONFIG_BLK_DEBUG_FS
2041         .show_rq        = scsi_show_rq,
2042 #endif
2043         .init_request   = scsi_mq_init_request,
2044         .exit_request   = scsi_mq_exit_request,
2045         .cleanup_rq     = scsi_cleanup_rq,
2046         .busy           = scsi_mq_lld_busy,
2047         .map_queues     = scsi_map_queues,
2048         .init_hctx      = scsi_init_hctx,
2049         .poll           = scsi_mq_poll,
2050         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2051         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2052 };
2053
2054 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2055 {
2056         unsigned int cmd_size, sgl_size;
2057         struct blk_mq_tag_set *tag_set = &shost->tag_set;
2058
2059         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2060                                 scsi_mq_inline_sgl_size(shost));
2061         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2062         if (scsi_host_get_prot(shost))
2063                 cmd_size += sizeof(struct scsi_data_buffer) +
2064                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2065
2066         memset(tag_set, 0, sizeof(*tag_set));
2067         if (shost->hostt->commit_rqs)
2068                 tag_set->ops = &scsi_mq_ops;
2069         else
2070                 tag_set->ops = &scsi_mq_ops_no_commit;
2071         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2072         tag_set->nr_maps = shost->nr_maps ? : 1;
2073         tag_set->queue_depth = shost->can_queue;
2074         tag_set->cmd_size = cmd_size;
2075         tag_set->numa_node = dev_to_node(shost->dma_dev);
2076         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2077         tag_set->flags |=
2078                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2079         if (shost->queuecommand_may_block)
2080                 tag_set->flags |= BLK_MQ_F_BLOCKING;
2081         tag_set->driver_data = shost;
2082         if (shost->host_tagset)
2083                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2084
2085         return blk_mq_alloc_tag_set(tag_set);
2086 }
2087
2088 void scsi_mq_free_tags(struct kref *kref)
2089 {
2090         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2091                                                tagset_refcnt);
2092
2093         blk_mq_free_tag_set(&shost->tag_set);
2094         complete(&shost->tagset_freed);
2095 }
2096
2097 /**
2098  * scsi_device_from_queue - return sdev associated with a request_queue
2099  * @q: The request queue to return the sdev from
2100  *
2101  * Return the sdev associated with a request queue or NULL if the
2102  * request_queue does not reference a SCSI device.
2103  */
2104 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2105 {
2106         struct scsi_device *sdev = NULL;
2107
2108         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2109             q->mq_ops == &scsi_mq_ops)
2110                 sdev = q->queuedata;
2111         if (!sdev || !get_device(&sdev->sdev_gendev))
2112                 sdev = NULL;
2113
2114         return sdev;
2115 }
2116 /*
2117  * pktcdvd should have been integrated into the SCSI layers, but for historical
2118  * reasons like the old IDE driver it isn't.  This export allows it to safely
2119  * probe if a given device is a SCSI one and only attach to that.
2120  */
2121 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2122 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2123 #endif
2124
2125 /**
2126  * scsi_block_requests - Utility function used by low-level drivers to prevent
2127  * further commands from being queued to the device.
2128  * @shost:  host in question
2129  *
2130  * There is no timer nor any other means by which the requests get unblocked
2131  * other than the low-level driver calling scsi_unblock_requests().
2132  */
2133 void scsi_block_requests(struct Scsi_Host *shost)
2134 {
2135         shost->host_self_blocked = 1;
2136 }
2137 EXPORT_SYMBOL(scsi_block_requests);
2138
2139 /**
2140  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2141  * further commands to be queued to the device.
2142  * @shost:  host in question
2143  *
2144  * There is no timer nor any other means by which the requests get unblocked
2145  * other than the low-level driver calling scsi_unblock_requests(). This is done
2146  * as an API function so that changes to the internals of the scsi mid-layer
2147  * won't require wholesale changes to drivers that use this feature.
2148  */
2149 void scsi_unblock_requests(struct Scsi_Host *shost)
2150 {
2151         shost->host_self_blocked = 0;
2152         scsi_run_host_queues(shost);
2153 }
2154 EXPORT_SYMBOL(scsi_unblock_requests);
2155
2156 void scsi_exit_queue(void)
2157 {
2158         kmem_cache_destroy(scsi_sense_cache);
2159 }
2160
2161 /**
2162  *      scsi_mode_select - issue a mode select
2163  *      @sdev:  SCSI device to be queried
2164  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2165  *      @sp:    Save page bit (0 == don't save, 1 == save)
2166  *      @buffer: request buffer (may not be smaller than eight bytes)
2167  *      @len:   length of request buffer.
2168  *      @timeout: command timeout
2169  *      @retries: number of retries before failing
2170  *      @data: returns a structure abstracting the mode header data
2171  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2172  *              must be SCSI_SENSE_BUFFERSIZE big.
2173  *
2174  *      Returns zero if successful; negative error number or scsi
2175  *      status on error
2176  *
2177  */
2178 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2179                      unsigned char *buffer, int len, int timeout, int retries,
2180                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2181 {
2182         unsigned char cmd[10];
2183         unsigned char *real_buffer;
2184         const struct scsi_exec_args exec_args = {
2185                 .sshdr = sshdr,
2186         };
2187         int ret;
2188
2189         memset(cmd, 0, sizeof(cmd));
2190         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2191
2192         /*
2193          * Use MODE SELECT(10) if the device asked for it or if the mode page
2194          * and the mode select header cannot fit within the maximumm 255 bytes
2195          * of the MODE SELECT(6) command.
2196          */
2197         if (sdev->use_10_for_ms ||
2198             len + 4 > 255 ||
2199             data->block_descriptor_length > 255) {
2200                 if (len > 65535 - 8)
2201                         return -EINVAL;
2202                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2203                 if (!real_buffer)
2204                         return -ENOMEM;
2205                 memcpy(real_buffer + 8, buffer, len);
2206                 len += 8;
2207                 real_buffer[0] = 0;
2208                 real_buffer[1] = 0;
2209                 real_buffer[2] = data->medium_type;
2210                 real_buffer[3] = data->device_specific;
2211                 real_buffer[4] = data->longlba ? 0x01 : 0;
2212                 real_buffer[5] = 0;
2213                 put_unaligned_be16(data->block_descriptor_length,
2214                                    &real_buffer[6]);
2215
2216                 cmd[0] = MODE_SELECT_10;
2217                 put_unaligned_be16(len, &cmd[7]);
2218         } else {
2219                 if (data->longlba)
2220                         return -EINVAL;
2221
2222                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2223                 if (!real_buffer)
2224                         return -ENOMEM;
2225                 memcpy(real_buffer + 4, buffer, len);
2226                 len += 4;
2227                 real_buffer[0] = 0;
2228                 real_buffer[1] = data->medium_type;
2229                 real_buffer[2] = data->device_specific;
2230                 real_buffer[3] = data->block_descriptor_length;
2231
2232                 cmd[0] = MODE_SELECT;
2233                 cmd[4] = len;
2234         }
2235
2236         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2237                                timeout, retries, &exec_args);
2238         kfree(real_buffer);
2239         return ret;
2240 }
2241 EXPORT_SYMBOL_GPL(scsi_mode_select);
2242
2243 /**
2244  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2245  *      @sdev:  SCSI device to be queried
2246  *      @dbd:   set to prevent mode sense from returning block descriptors
2247  *      @modepage: mode page being requested
2248  *      @subpage: sub-page of the mode page being requested
2249  *      @buffer: request buffer (may not be smaller than eight bytes)
2250  *      @len:   length of request buffer.
2251  *      @timeout: command timeout
2252  *      @retries: number of retries before failing
2253  *      @data: returns a structure abstracting the mode header data
2254  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2255  *              must be SCSI_SENSE_BUFFERSIZE big.
2256  *
2257  *      Returns zero if successful, or a negative error number on failure
2258  */
2259 int
2260 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2261                   unsigned char *buffer, int len, int timeout, int retries,
2262                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2263 {
2264         unsigned char cmd[12];
2265         int use_10_for_ms;
2266         int header_length;
2267         int result;
2268         struct scsi_sense_hdr my_sshdr;
2269         struct scsi_failure failure_defs[] = {
2270                 {
2271                         .sense = UNIT_ATTENTION,
2272                         .asc = SCMD_FAILURE_ASC_ANY,
2273                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2274                         .allowed = retries,
2275                         .result = SAM_STAT_CHECK_CONDITION,
2276                 },
2277                 {}
2278         };
2279         struct scsi_failures failures = {
2280                 .failure_definitions = failure_defs,
2281         };
2282         const struct scsi_exec_args exec_args = {
2283                 /* caller might not be interested in sense, but we need it */
2284                 .sshdr = sshdr ? : &my_sshdr,
2285                 .failures = &failures,
2286         };
2287
2288         memset(data, 0, sizeof(*data));
2289         memset(&cmd[0], 0, 12);
2290
2291         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2292         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2293         cmd[2] = modepage;
2294         cmd[3] = subpage;
2295
2296         sshdr = exec_args.sshdr;
2297
2298  retry:
2299         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2300
2301         if (use_10_for_ms) {
2302                 if (len < 8 || len > 65535)
2303                         return -EINVAL;
2304
2305                 cmd[0] = MODE_SENSE_10;
2306                 put_unaligned_be16(len, &cmd[7]);
2307                 header_length = 8;
2308         } else {
2309                 if (len < 4)
2310                         return -EINVAL;
2311
2312                 cmd[0] = MODE_SENSE;
2313                 cmd[4] = len;
2314                 header_length = 4;
2315         }
2316
2317         memset(buffer, 0, len);
2318
2319         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2320                                   timeout, retries, &exec_args);
2321         if (result < 0)
2322                 return result;
2323
2324         /* This code looks awful: what it's doing is making sure an
2325          * ILLEGAL REQUEST sense return identifies the actual command
2326          * byte as the problem.  MODE_SENSE commands can return
2327          * ILLEGAL REQUEST if the code page isn't supported */
2328
2329         if (!scsi_status_is_good(result)) {
2330                 if (scsi_sense_valid(sshdr)) {
2331                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2332                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2333                                 /*
2334                                  * Invalid command operation code: retry using
2335                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2336                                  * request, except if the request mode page is
2337                                  * too large for MODE SENSE single byte
2338                                  * allocation length field.
2339                                  */
2340                                 if (use_10_for_ms) {
2341                                         if (len > 255)
2342                                                 return -EIO;
2343                                         sdev->use_10_for_ms = 0;
2344                                         goto retry;
2345                                 }
2346                         }
2347                 }
2348                 return -EIO;
2349         }
2350         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2351                      (modepage == 6 || modepage == 8))) {
2352                 /* Initio breakage? */
2353                 header_length = 0;
2354                 data->length = 13;
2355                 data->medium_type = 0;
2356                 data->device_specific = 0;
2357                 data->longlba = 0;
2358                 data->block_descriptor_length = 0;
2359         } else if (use_10_for_ms) {
2360                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2361                 data->medium_type = buffer[2];
2362                 data->device_specific = buffer[3];
2363                 data->longlba = buffer[4] & 0x01;
2364                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2365         } else {
2366                 data->length = buffer[0] + 1;
2367                 data->medium_type = buffer[1];
2368                 data->device_specific = buffer[2];
2369                 data->block_descriptor_length = buffer[3];
2370         }
2371         data->header_length = header_length;
2372
2373         return 0;
2374 }
2375 EXPORT_SYMBOL(scsi_mode_sense);
2376
2377 /**
2378  *      scsi_test_unit_ready - test if unit is ready
2379  *      @sdev:  scsi device to change the state of.
2380  *      @timeout: command timeout
2381  *      @retries: number of retries before failing
2382  *      @sshdr: outpout pointer for decoded sense information.
2383  *
2384  *      Returns zero if unsuccessful or an error if TUR failed.  For
2385  *      removable media, UNIT_ATTENTION sets ->changed flag.
2386  **/
2387 int
2388 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2389                      struct scsi_sense_hdr *sshdr)
2390 {
2391         char cmd[] = {
2392                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2393         };
2394         const struct scsi_exec_args exec_args = {
2395                 .sshdr = sshdr,
2396         };
2397         int result;
2398
2399         /* try to eat the UNIT_ATTENTION if there are enough retries */
2400         do {
2401                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2402                                           timeout, 1, &exec_args);
2403                 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2404                     sshdr->sense_key == UNIT_ATTENTION)
2405                         sdev->changed = 1;
2406         } while (result > 0 && scsi_sense_valid(sshdr) &&
2407                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2408
2409         return result;
2410 }
2411 EXPORT_SYMBOL(scsi_test_unit_ready);
2412
2413 /**
2414  *      scsi_device_set_state - Take the given device through the device state model.
2415  *      @sdev:  scsi device to change the state of.
2416  *      @state: state to change to.
2417  *
2418  *      Returns zero if successful or an error if the requested
2419  *      transition is illegal.
2420  */
2421 int
2422 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2423 {
2424         enum scsi_device_state oldstate = sdev->sdev_state;
2425
2426         if (state == oldstate)
2427                 return 0;
2428
2429         switch (state) {
2430         case SDEV_CREATED:
2431                 switch (oldstate) {
2432                 case SDEV_CREATED_BLOCK:
2433                         break;
2434                 default:
2435                         goto illegal;
2436                 }
2437                 break;
2438
2439         case SDEV_RUNNING:
2440                 switch (oldstate) {
2441                 case SDEV_CREATED:
2442                 case SDEV_OFFLINE:
2443                 case SDEV_TRANSPORT_OFFLINE:
2444                 case SDEV_QUIESCE:
2445                 case SDEV_BLOCK:
2446                         break;
2447                 default:
2448                         goto illegal;
2449                 }
2450                 break;
2451
2452         case SDEV_QUIESCE:
2453                 switch (oldstate) {
2454                 case SDEV_RUNNING:
2455                 case SDEV_OFFLINE:
2456                 case SDEV_TRANSPORT_OFFLINE:
2457                         break;
2458                 default:
2459                         goto illegal;
2460                 }
2461                 break;
2462
2463         case SDEV_OFFLINE:
2464         case SDEV_TRANSPORT_OFFLINE:
2465                 switch (oldstate) {
2466                 case SDEV_CREATED:
2467                 case SDEV_RUNNING:
2468                 case SDEV_QUIESCE:
2469                 case SDEV_BLOCK:
2470                         break;
2471                 default:
2472                         goto illegal;
2473                 }
2474                 break;
2475
2476         case SDEV_BLOCK:
2477                 switch (oldstate) {
2478                 case SDEV_RUNNING:
2479                 case SDEV_CREATED_BLOCK:
2480                 case SDEV_QUIESCE:
2481                 case SDEV_OFFLINE:
2482                         break;
2483                 default:
2484                         goto illegal;
2485                 }
2486                 break;
2487
2488         case SDEV_CREATED_BLOCK:
2489                 switch (oldstate) {
2490                 case SDEV_CREATED:
2491                         break;
2492                 default:
2493                         goto illegal;
2494                 }
2495                 break;
2496
2497         case SDEV_CANCEL:
2498                 switch (oldstate) {
2499                 case SDEV_CREATED:
2500                 case SDEV_RUNNING:
2501                 case SDEV_QUIESCE:
2502                 case SDEV_OFFLINE:
2503                 case SDEV_TRANSPORT_OFFLINE:
2504                         break;
2505                 default:
2506                         goto illegal;
2507                 }
2508                 break;
2509
2510         case SDEV_DEL:
2511                 switch (oldstate) {
2512                 case SDEV_CREATED:
2513                 case SDEV_RUNNING:
2514                 case SDEV_OFFLINE:
2515                 case SDEV_TRANSPORT_OFFLINE:
2516                 case SDEV_CANCEL:
2517                 case SDEV_BLOCK:
2518                 case SDEV_CREATED_BLOCK:
2519                         break;
2520                 default:
2521                         goto illegal;
2522                 }
2523                 break;
2524
2525         }
2526         sdev->offline_already = false;
2527         sdev->sdev_state = state;
2528         return 0;
2529
2530  illegal:
2531         SCSI_LOG_ERROR_RECOVERY(1,
2532                                 sdev_printk(KERN_ERR, sdev,
2533                                             "Illegal state transition %s->%s",
2534                                             scsi_device_state_name(oldstate),
2535                                             scsi_device_state_name(state))
2536                                 );
2537         return -EINVAL;
2538 }
2539 EXPORT_SYMBOL(scsi_device_set_state);
2540
2541 /**
2542  *      scsi_evt_emit - emit a single SCSI device uevent
2543  *      @sdev: associated SCSI device
2544  *      @evt: event to emit
2545  *
2546  *      Send a single uevent (scsi_event) to the associated scsi_device.
2547  */
2548 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2549 {
2550         int idx = 0;
2551         char *envp[3];
2552
2553         switch (evt->evt_type) {
2554         case SDEV_EVT_MEDIA_CHANGE:
2555                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2556                 break;
2557         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2558                 scsi_rescan_device(sdev);
2559                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2560                 break;
2561         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2562                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2563                 break;
2564         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2565                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2566                 break;
2567         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2569                 break;
2570         case SDEV_EVT_LUN_CHANGE_REPORTED:
2571                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2572                 break;
2573         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2574                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2575                 break;
2576         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2577                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2578                 break;
2579         default:
2580                 /* do nothing */
2581                 break;
2582         }
2583
2584         envp[idx++] = NULL;
2585
2586         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2587 }
2588
2589 /**
2590  *      scsi_evt_thread - send a uevent for each scsi event
2591  *      @work: work struct for scsi_device
2592  *
2593  *      Dispatch queued events to their associated scsi_device kobjects
2594  *      as uevents.
2595  */
2596 void scsi_evt_thread(struct work_struct *work)
2597 {
2598         struct scsi_device *sdev;
2599         enum scsi_device_event evt_type;
2600         LIST_HEAD(event_list);
2601
2602         sdev = container_of(work, struct scsi_device, event_work);
2603
2604         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2605                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2606                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2607
2608         while (1) {
2609                 struct scsi_event *evt;
2610                 struct list_head *this, *tmp;
2611                 unsigned long flags;
2612
2613                 spin_lock_irqsave(&sdev->list_lock, flags);
2614                 list_splice_init(&sdev->event_list, &event_list);
2615                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2616
2617                 if (list_empty(&event_list))
2618                         break;
2619
2620                 list_for_each_safe(this, tmp, &event_list) {
2621                         evt = list_entry(this, struct scsi_event, node);
2622                         list_del(&evt->node);
2623                         scsi_evt_emit(sdev, evt);
2624                         kfree(evt);
2625                 }
2626         }
2627 }
2628
2629 /**
2630  *      sdev_evt_send - send asserted event to uevent thread
2631  *      @sdev: scsi_device event occurred on
2632  *      @evt: event to send
2633  *
2634  *      Assert scsi device event asynchronously.
2635  */
2636 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2637 {
2638         unsigned long flags;
2639
2640 #if 0
2641         /* FIXME: currently this check eliminates all media change events
2642          * for polled devices.  Need to update to discriminate between AN
2643          * and polled events */
2644         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2645                 kfree(evt);
2646                 return;
2647         }
2648 #endif
2649
2650         spin_lock_irqsave(&sdev->list_lock, flags);
2651         list_add_tail(&evt->node, &sdev->event_list);
2652         schedule_work(&sdev->event_work);
2653         spin_unlock_irqrestore(&sdev->list_lock, flags);
2654 }
2655 EXPORT_SYMBOL_GPL(sdev_evt_send);
2656
2657 /**
2658  *      sdev_evt_alloc - allocate a new scsi event
2659  *      @evt_type: type of event to allocate
2660  *      @gfpflags: GFP flags for allocation
2661  *
2662  *      Allocates and returns a new scsi_event.
2663  */
2664 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2665                                   gfp_t gfpflags)
2666 {
2667         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2668         if (!evt)
2669                 return NULL;
2670
2671         evt->evt_type = evt_type;
2672         INIT_LIST_HEAD(&evt->node);
2673
2674         /* evt_type-specific initialization, if any */
2675         switch (evt_type) {
2676         case SDEV_EVT_MEDIA_CHANGE:
2677         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2678         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2679         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2680         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2681         case SDEV_EVT_LUN_CHANGE_REPORTED:
2682         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2683         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2684         default:
2685                 /* do nothing */
2686                 break;
2687         }
2688
2689         return evt;
2690 }
2691 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2692
2693 /**
2694  *      sdev_evt_send_simple - send asserted event to uevent thread
2695  *      @sdev: scsi_device event occurred on
2696  *      @evt_type: type of event to send
2697  *      @gfpflags: GFP flags for allocation
2698  *
2699  *      Assert scsi device event asynchronously, given an event type.
2700  */
2701 void sdev_evt_send_simple(struct scsi_device *sdev,
2702                           enum scsi_device_event evt_type, gfp_t gfpflags)
2703 {
2704         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2705         if (!evt) {
2706                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2707                             evt_type);
2708                 return;
2709         }
2710
2711         sdev_evt_send(sdev, evt);
2712 }
2713 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2714
2715 /**
2716  *      scsi_device_quiesce - Block all commands except power management.
2717  *      @sdev:  scsi device to quiesce.
2718  *
2719  *      This works by trying to transition to the SDEV_QUIESCE state
2720  *      (which must be a legal transition).  When the device is in this
2721  *      state, only power management requests will be accepted, all others will
2722  *      be deferred.
2723  *
2724  *      Must be called with user context, may sleep.
2725  *
2726  *      Returns zero if unsuccessful or an error if not.
2727  */
2728 int
2729 scsi_device_quiesce(struct scsi_device *sdev)
2730 {
2731         struct request_queue *q = sdev->request_queue;
2732         int err;
2733
2734         /*
2735          * It is allowed to call scsi_device_quiesce() multiple times from
2736          * the same context but concurrent scsi_device_quiesce() calls are
2737          * not allowed.
2738          */
2739         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2740
2741         if (sdev->quiesced_by == current)
2742                 return 0;
2743
2744         blk_set_pm_only(q);
2745
2746         blk_mq_freeze_queue(q);
2747         /*
2748          * Ensure that the effect of blk_set_pm_only() will be visible
2749          * for percpu_ref_tryget() callers that occur after the queue
2750          * unfreeze even if the queue was already frozen before this function
2751          * was called. See also https://lwn.net/Articles/573497/.
2752          */
2753         synchronize_rcu();
2754         blk_mq_unfreeze_queue(q);
2755
2756         mutex_lock(&sdev->state_mutex);
2757         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2758         if (err == 0)
2759                 sdev->quiesced_by = current;
2760         else
2761                 blk_clear_pm_only(q);
2762         mutex_unlock(&sdev->state_mutex);
2763
2764         return err;
2765 }
2766 EXPORT_SYMBOL(scsi_device_quiesce);
2767
2768 /**
2769  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2770  *      @sdev:  scsi device to resume.
2771  *
2772  *      Moves the device from quiesced back to running and restarts the
2773  *      queues.
2774  *
2775  *      Must be called with user context, may sleep.
2776  */
2777 void scsi_device_resume(struct scsi_device *sdev)
2778 {
2779         /* check if the device state was mutated prior to resume, and if
2780          * so assume the state is being managed elsewhere (for example
2781          * device deleted during suspend)
2782          */
2783         mutex_lock(&sdev->state_mutex);
2784         if (sdev->sdev_state == SDEV_QUIESCE)
2785                 scsi_device_set_state(sdev, SDEV_RUNNING);
2786         if (sdev->quiesced_by) {
2787                 sdev->quiesced_by = NULL;
2788                 blk_clear_pm_only(sdev->request_queue);
2789         }
2790         mutex_unlock(&sdev->state_mutex);
2791 }
2792 EXPORT_SYMBOL(scsi_device_resume);
2793
2794 static void
2795 device_quiesce_fn(struct scsi_device *sdev, void *data)
2796 {
2797         scsi_device_quiesce(sdev);
2798 }
2799
2800 void
2801 scsi_target_quiesce(struct scsi_target *starget)
2802 {
2803         starget_for_each_device(starget, NULL, device_quiesce_fn);
2804 }
2805 EXPORT_SYMBOL(scsi_target_quiesce);
2806
2807 static void
2808 device_resume_fn(struct scsi_device *sdev, void *data)
2809 {
2810         scsi_device_resume(sdev);
2811 }
2812
2813 void
2814 scsi_target_resume(struct scsi_target *starget)
2815 {
2816         starget_for_each_device(starget, NULL, device_resume_fn);
2817 }
2818 EXPORT_SYMBOL(scsi_target_resume);
2819
2820 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2821 {
2822         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2823                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825         return 0;
2826 }
2827
2828 void scsi_start_queue(struct scsi_device *sdev)
2829 {
2830         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2831                 blk_mq_unquiesce_queue(sdev->request_queue);
2832 }
2833
2834 static void scsi_stop_queue(struct scsi_device *sdev)
2835 {
2836         /*
2837          * The atomic variable of ->queue_stopped covers that
2838          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2839          *
2840          * The caller needs to wait until quiesce is done.
2841          */
2842         if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2843                 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2844 }
2845
2846 /**
2847  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2848  * @sdev: device to block
2849  *
2850  * Pause SCSI command processing on the specified device. Does not sleep.
2851  *
2852  * Returns zero if successful or a negative error code upon failure.
2853  *
2854  * Notes:
2855  * This routine transitions the device to the SDEV_BLOCK state (which must be
2856  * a legal transition). When the device is in this state, command processing
2857  * is paused until the device leaves the SDEV_BLOCK state. See also
2858  * scsi_internal_device_unblock_nowait().
2859  */
2860 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2861 {
2862         int ret = __scsi_internal_device_block_nowait(sdev);
2863
2864         /*
2865          * The device has transitioned to SDEV_BLOCK.  Stop the
2866          * block layer from calling the midlayer with this device's
2867          * request queue.
2868          */
2869         if (!ret)
2870                 scsi_stop_queue(sdev);
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2874
2875 /**
2876  * scsi_device_block - try to transition to the SDEV_BLOCK state
2877  * @sdev: device to block
2878  * @data: dummy argument, ignored
2879  *
2880  * Pause SCSI command processing on the specified device. Callers must wait
2881  * until all ongoing scsi_queue_rq() calls have finished after this function
2882  * returns.
2883  *
2884  * Note:
2885  * This routine transitions the device to the SDEV_BLOCK state (which must be
2886  * a legal transition). When the device is in this state, command processing
2887  * is paused until the device leaves the SDEV_BLOCK state. See also
2888  * scsi_internal_device_unblock().
2889  */
2890 static void scsi_device_block(struct scsi_device *sdev, void *data)
2891 {
2892         int err;
2893         enum scsi_device_state state;
2894
2895         mutex_lock(&sdev->state_mutex);
2896         err = __scsi_internal_device_block_nowait(sdev);
2897         state = sdev->sdev_state;
2898         if (err == 0)
2899                 /*
2900                  * scsi_stop_queue() must be called with the state_mutex
2901                  * held. Otherwise a simultaneous scsi_start_queue() call
2902                  * might unquiesce the queue before we quiesce it.
2903                  */
2904                 scsi_stop_queue(sdev);
2905
2906         mutex_unlock(&sdev->state_mutex);
2907
2908         WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2909                   __func__, dev_name(&sdev->sdev_gendev), state);
2910 }
2911
2912 /**
2913  * scsi_internal_device_unblock_nowait - resume a device after a block request
2914  * @sdev:       device to resume
2915  * @new_state:  state to set the device to after unblocking
2916  *
2917  * Restart the device queue for a previously suspended SCSI device. Does not
2918  * sleep.
2919  *
2920  * Returns zero if successful or a negative error code upon failure.
2921  *
2922  * Notes:
2923  * This routine transitions the device to the SDEV_RUNNING state or to one of
2924  * the offline states (which must be a legal transition) allowing the midlayer
2925  * to goose the queue for this device.
2926  */
2927 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2928                                         enum scsi_device_state new_state)
2929 {
2930         switch (new_state) {
2931         case SDEV_RUNNING:
2932         case SDEV_TRANSPORT_OFFLINE:
2933                 break;
2934         default:
2935                 return -EINVAL;
2936         }
2937
2938         /*
2939          * Try to transition the scsi device to SDEV_RUNNING or one of the
2940          * offlined states and goose the device queue if successful.
2941          */
2942         switch (sdev->sdev_state) {
2943         case SDEV_BLOCK:
2944         case SDEV_TRANSPORT_OFFLINE:
2945                 sdev->sdev_state = new_state;
2946                 break;
2947         case SDEV_CREATED_BLOCK:
2948                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2949                     new_state == SDEV_OFFLINE)
2950                         sdev->sdev_state = new_state;
2951                 else
2952                         sdev->sdev_state = SDEV_CREATED;
2953                 break;
2954         case SDEV_CANCEL:
2955         case SDEV_OFFLINE:
2956                 break;
2957         default:
2958                 return -EINVAL;
2959         }
2960         scsi_start_queue(sdev);
2961
2962         return 0;
2963 }
2964 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2965
2966 /**
2967  * scsi_internal_device_unblock - resume a device after a block request
2968  * @sdev:       device to resume
2969  * @new_state:  state to set the device to after unblocking
2970  *
2971  * Restart the device queue for a previously suspended SCSI device. May sleep.
2972  *
2973  * Returns zero if successful or a negative error code upon failure.
2974  *
2975  * Notes:
2976  * This routine transitions the device to the SDEV_RUNNING state or to one of
2977  * the offline states (which must be a legal transition) allowing the midlayer
2978  * to goose the queue for this device.
2979  */
2980 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2981                                         enum scsi_device_state new_state)
2982 {
2983         int ret;
2984
2985         mutex_lock(&sdev->state_mutex);
2986         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2987         mutex_unlock(&sdev->state_mutex);
2988
2989         return ret;
2990 }
2991
2992 static int
2993 target_block(struct device *dev, void *data)
2994 {
2995         if (scsi_is_target_device(dev))
2996                 starget_for_each_device(to_scsi_target(dev), NULL,
2997                                         scsi_device_block);
2998         return 0;
2999 }
3000
3001 /**
3002  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3003  * @dev: a parent device of one or more scsi_target devices
3004  * @shost: the Scsi_Host to which this device belongs
3005  *
3006  * Iterate over all children of @dev, which should be scsi_target devices,
3007  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3008  * ongoing scsi_queue_rq() calls to finish. May sleep.
3009  *
3010  * Note:
3011  * @dev must not itself be a scsi_target device.
3012  */
3013 void
3014 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3015 {
3016         WARN_ON_ONCE(scsi_is_target_device(dev));
3017         device_for_each_child(dev, NULL, target_block);
3018         blk_mq_wait_quiesce_done(&shost->tag_set);
3019 }
3020 EXPORT_SYMBOL_GPL(scsi_block_targets);
3021
3022 static void
3023 device_unblock(struct scsi_device *sdev, void *data)
3024 {
3025         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3026 }
3027
3028 static int
3029 target_unblock(struct device *dev, void *data)
3030 {
3031         if (scsi_is_target_device(dev))
3032                 starget_for_each_device(to_scsi_target(dev), data,
3033                                         device_unblock);
3034         return 0;
3035 }
3036
3037 void
3038 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3039 {
3040         if (scsi_is_target_device(dev))
3041                 starget_for_each_device(to_scsi_target(dev), &new_state,
3042                                         device_unblock);
3043         else
3044                 device_for_each_child(dev, &new_state, target_unblock);
3045 }
3046 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3047
3048 /**
3049  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3050  * @shost: device to block
3051  *
3052  * Pause SCSI command processing for all logical units associated with the SCSI
3053  * host and wait until pending scsi_queue_rq() calls have finished.
3054  *
3055  * Returns zero if successful or a negative error code upon failure.
3056  */
3057 int
3058 scsi_host_block(struct Scsi_Host *shost)
3059 {
3060         struct scsi_device *sdev;
3061         int ret;
3062
3063         /*
3064          * Call scsi_internal_device_block_nowait so we can avoid
3065          * calling synchronize_rcu() for each LUN.
3066          */
3067         shost_for_each_device(sdev, shost) {
3068                 mutex_lock(&sdev->state_mutex);
3069                 ret = scsi_internal_device_block_nowait(sdev);
3070                 mutex_unlock(&sdev->state_mutex);
3071                 if (ret) {
3072                         scsi_device_put(sdev);
3073                         return ret;
3074                 }
3075         }
3076
3077         /* Wait for ongoing scsi_queue_rq() calls to finish. */
3078         blk_mq_wait_quiesce_done(&shost->tag_set);
3079
3080         return 0;
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_host_block);
3083
3084 int
3085 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3086 {
3087         struct scsi_device *sdev;
3088         int ret = 0;
3089
3090         shost_for_each_device(sdev, shost) {
3091                 ret = scsi_internal_device_unblock(sdev, new_state);
3092                 if (ret) {
3093                         scsi_device_put(sdev);
3094                         break;
3095                 }
3096         }
3097         return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3100
3101 /**
3102  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3103  * @sgl:        scatter-gather list
3104  * @sg_count:   number of segments in sg
3105  * @offset:     offset in bytes into sg, on return offset into the mapped area
3106  * @len:        bytes to map, on return number of bytes mapped
3107  *
3108  * Returns virtual address of the start of the mapped page
3109  */
3110 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3111                           size_t *offset, size_t *len)
3112 {
3113         int i;
3114         size_t sg_len = 0, len_complete = 0;
3115         struct scatterlist *sg;
3116         struct page *page;
3117
3118         WARN_ON(!irqs_disabled());
3119
3120         for_each_sg(sgl, sg, sg_count, i) {
3121                 len_complete = sg_len; /* Complete sg-entries */
3122                 sg_len += sg->length;
3123                 if (sg_len > *offset)
3124                         break;
3125         }
3126
3127         if (unlikely(i == sg_count)) {
3128                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3129                         "elements %d\n",
3130                        __func__, sg_len, *offset, sg_count);
3131                 WARN_ON(1);
3132                 return NULL;
3133         }
3134
3135         /* Offset starting from the beginning of first page in this sg-entry */
3136         *offset = *offset - len_complete + sg->offset;
3137
3138         /* Assumption: contiguous pages can be accessed as "page + i" */
3139         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3140         *offset &= ~PAGE_MASK;
3141
3142         /* Bytes in this sg-entry from *offset to the end of the page */
3143         sg_len = PAGE_SIZE - *offset;
3144         if (*len > sg_len)
3145                 *len = sg_len;
3146
3147         return kmap_atomic(page);
3148 }
3149 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3150
3151 /**
3152  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3153  * @virt:       virtual address to be unmapped
3154  */
3155 void scsi_kunmap_atomic_sg(void *virt)
3156 {
3157         kunmap_atomic(virt);
3158 }
3159 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3160
3161 void sdev_disable_disk_events(struct scsi_device *sdev)
3162 {
3163         atomic_inc(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_disable_disk_events);
3166
3167 void sdev_enable_disk_events(struct scsi_device *sdev)
3168 {
3169         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3170                 return;
3171         atomic_dec(&sdev->disk_events_disable_depth);
3172 }
3173 EXPORT_SYMBOL(sdev_enable_disk_events);
3174
3175 static unsigned char designator_prio(const unsigned char *d)
3176 {
3177         if (d[1] & 0x30)
3178                 /* not associated with LUN */
3179                 return 0;
3180
3181         if (d[3] == 0)
3182                 /* invalid length */
3183                 return 0;
3184
3185         /*
3186          * Order of preference for lun descriptor:
3187          * - SCSI name string
3188          * - NAA IEEE Registered Extended
3189          * - EUI-64 based 16-byte
3190          * - EUI-64 based 12-byte
3191          * - NAA IEEE Registered
3192          * - NAA IEEE Extended
3193          * - EUI-64 based 8-byte
3194          * - SCSI name string (truncated)
3195          * - T10 Vendor ID
3196          * as longer descriptors reduce the likelyhood
3197          * of identification clashes.
3198          */
3199
3200         switch (d[1] & 0xf) {
3201         case 8:
3202                 /* SCSI name string, variable-length UTF-8 */
3203                 return 9;
3204         case 3:
3205                 switch (d[4] >> 4) {
3206                 case 6:
3207                         /* NAA registered extended */
3208                         return 8;
3209                 case 5:
3210                         /* NAA registered */
3211                         return 5;
3212                 case 4:
3213                         /* NAA extended */
3214                         return 4;
3215                 case 3:
3216                         /* NAA locally assigned */
3217                         return 1;
3218                 default:
3219                         break;
3220                 }
3221                 break;
3222         case 2:
3223                 switch (d[3]) {
3224                 case 16:
3225                         /* EUI64-based, 16 byte */
3226                         return 7;
3227                 case 12:
3228                         /* EUI64-based, 12 byte */
3229                         return 6;
3230                 case 8:
3231                         /* EUI64-based, 8 byte */
3232                         return 3;
3233                 default:
3234                         break;
3235                 }
3236                 break;
3237         case 1:
3238                 /* T10 vendor ID */
3239                 return 1;
3240         default:
3241                 break;
3242         }
3243
3244         return 0;
3245 }
3246
3247 /**
3248  * scsi_vpd_lun_id - return a unique device identification
3249  * @sdev: SCSI device
3250  * @id:   buffer for the identification
3251  * @id_len:  length of the buffer
3252  *
3253  * Copies a unique device identification into @id based
3254  * on the information in the VPD page 0x83 of the device.
3255  * The string will be formatted as a SCSI name string.
3256  *
3257  * Returns the length of the identification or error on failure.
3258  * If the identifier is longer than the supplied buffer the actual
3259  * identifier length is returned and the buffer is not zero-padded.
3260  */
3261 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3262 {
3263         u8 cur_id_prio = 0;
3264         u8 cur_id_size = 0;
3265         const unsigned char *d, *cur_id_str;
3266         const struct scsi_vpd *vpd_pg83;
3267         int id_size = -EINVAL;
3268
3269         rcu_read_lock();
3270         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271         if (!vpd_pg83) {
3272                 rcu_read_unlock();
3273                 return -ENXIO;
3274         }
3275
3276         /* The id string must be at least 20 bytes + terminating NULL byte */
3277         if (id_len < 21) {
3278                 rcu_read_unlock();
3279                 return -EINVAL;
3280         }
3281
3282         memset(id, 0, id_len);
3283         for (d = vpd_pg83->data + 4;
3284              d < vpd_pg83->data + vpd_pg83->len;
3285              d += d[3] + 4) {
3286                 u8 prio = designator_prio(d);
3287
3288                 if (prio == 0 || cur_id_prio > prio)
3289                         continue;
3290
3291                 switch (d[1] & 0xf) {
3292                 case 0x1:
3293                         /* T10 Vendor ID */
3294                         if (cur_id_size > d[3])
3295                                 break;
3296                         cur_id_prio = prio;
3297                         cur_id_size = d[3];
3298                         if (cur_id_size + 4 > id_len)
3299                                 cur_id_size = id_len - 4;
3300                         cur_id_str = d + 4;
3301                         id_size = snprintf(id, id_len, "t10.%*pE",
3302                                            cur_id_size, cur_id_str);
3303                         break;
3304                 case 0x2:
3305                         /* EUI-64 */
3306                         cur_id_prio = prio;
3307                         cur_id_size = d[3];
3308                         cur_id_str = d + 4;
3309                         switch (cur_id_size) {
3310                         case 8:
3311                                 id_size = snprintf(id, id_len,
3312                                                    "eui.%8phN",
3313                                                    cur_id_str);
3314                                 break;
3315                         case 12:
3316                                 id_size = snprintf(id, id_len,
3317                                                    "eui.%12phN",
3318                                                    cur_id_str);
3319                                 break;
3320                         case 16:
3321                                 id_size = snprintf(id, id_len,
3322                                                    "eui.%16phN",
3323                                                    cur_id_str);
3324                                 break;
3325                         default:
3326                                 break;
3327                         }
3328                         break;
3329                 case 0x3:
3330                         /* NAA */
3331                         cur_id_prio = prio;
3332                         cur_id_size = d[3];
3333                         cur_id_str = d + 4;
3334                         switch (cur_id_size) {
3335                         case 8:
3336                                 id_size = snprintf(id, id_len,
3337                                                    "naa.%8phN",
3338                                                    cur_id_str);
3339                                 break;
3340                         case 16:
3341                                 id_size = snprintf(id, id_len,
3342                                                    "naa.%16phN",
3343                                                    cur_id_str);
3344                                 break;
3345                         default:
3346                                 break;
3347                         }
3348                         break;
3349                 case 0x8:
3350                         /* SCSI name string */
3351                         if (cur_id_size > d[3])
3352                                 break;
3353                         /* Prefer others for truncated descriptor */
3354                         if (d[3] > id_len) {
3355                                 prio = 2;
3356                                 if (cur_id_prio > prio)
3357                                         break;
3358                         }
3359                         cur_id_prio = prio;
3360                         cur_id_size = id_size = d[3];
3361                         cur_id_str = d + 4;
3362                         if (cur_id_size >= id_len)
3363                                 cur_id_size = id_len - 1;
3364                         memcpy(id, cur_id_str, cur_id_size);
3365                         break;
3366                 default:
3367                         break;
3368                 }
3369         }
3370         rcu_read_unlock();
3371
3372         return id_size;
3373 }
3374 EXPORT_SYMBOL(scsi_vpd_lun_id);
3375
3376 /*
3377  * scsi_vpd_tpg_id - return a target port group identifier
3378  * @sdev: SCSI device
3379  *
3380  * Returns the Target Port Group identifier from the information
3381  * froom VPD page 0x83 of the device.
3382  *
3383  * Returns the identifier or error on failure.
3384  */
3385 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3386 {
3387         const unsigned char *d;
3388         const struct scsi_vpd *vpd_pg83;
3389         int group_id = -EAGAIN, rel_port = -1;
3390
3391         rcu_read_lock();
3392         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3393         if (!vpd_pg83) {
3394                 rcu_read_unlock();
3395                 return -ENXIO;
3396         }
3397
3398         d = vpd_pg83->data + 4;
3399         while (d < vpd_pg83->data + vpd_pg83->len) {
3400                 switch (d[1] & 0xf) {
3401                 case 0x4:
3402                         /* Relative target port */
3403                         rel_port = get_unaligned_be16(&d[6]);
3404                         break;
3405                 case 0x5:
3406                         /* Target port group */
3407                         group_id = get_unaligned_be16(&d[6]);
3408                         break;
3409                 default:
3410                         break;
3411                 }
3412                 d += d[3] + 4;
3413         }
3414         rcu_read_unlock();
3415
3416         if (group_id >= 0 && rel_id && rel_port != -1)
3417                 *rel_id = rel_port;
3418
3419         return group_id;
3420 }
3421 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3422
3423 /**
3424  * scsi_build_sense - build sense data for a command
3425  * @scmd:       scsi command for which the sense should be formatted
3426  * @desc:       Sense format (non-zero == descriptor format,
3427  *              0 == fixed format)
3428  * @key:        Sense key
3429  * @asc:        Additional sense code
3430  * @ascq:       Additional sense code qualifier
3431  *
3432  **/
3433 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3434 {
3435         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3436         scmd->result = SAM_STAT_CHECK_CONDITION;
3437 }
3438 EXPORT_SYMBOL_GPL(scsi_build_sense);
3439
3440 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3441 #include "scsi_lib_test.c"
3442 #endif