Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-2.6-block.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99         " enable detection of firmware fault and halt firmware - (default=0)");
100
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103
104 /**
105  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
106  *
107  */
108 static int
109 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
110 {
111         int ret = param_set_int(val, kp);
112         struct MPT3SAS_ADAPTER *ioc;
113
114         if (ret)
115                 return ret;
116
117         /* global ioc spinlock to protect controller list on list operations */
118         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119         spin_lock(&gioc_lock);
120         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
122         spin_unlock(&gioc_lock);
123         return 0;
124 }
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126         param_get_int, &mpt3sas_fwfault_debug, 0644);
127
128 /**
129  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
130  *                                in BAR0 space.
131  *
132  * @ioc: per adapter object
133  * @reply: reply message frame(lower 32bit addr)
134  * @index: System request message index.
135  *
136  * @Returns - Nothing
137  */
138 static void
139 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
140                 u32 index)
141 {
142         /*
143          * 256 is offset within sys register.
144          * 256 offset MPI frame starts. Max MPI frame supported is 32.
145          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
146          */
147         u16 cmd_credit = ioc->facts.RequestCredit + 1;
148         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
149                         MPI_FRAME_START_OFFSET +
150                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
151
152         writel(reply, reply_free_iomem);
153 }
154
155 /**
156  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
157  *                              to system/BAR0 region.
158  *
159  * @dst_iomem: Pointer to the destinaltion location in BAR0 space.
160  * @src: Pointer to the Source data.
161  * @size: Size of data to be copied.
162  */
163 static void
164 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
165 {
166         int i;
167         u32 *src_virt_mem = (u32 *)src;
168
169         for (i = 0; i < size/4; i++)
170                 writel((u32)src_virt_mem[i],
171                                 (void __iomem *)dst_iomem + (i * 4));
172 }
173
174 /**
175  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
176  *
177  * @dst_iomem: Pointer to the destination location in BAR0 space.
178  * @src: Pointer to the Source data.
179  * @size: Size of data to be copied.
180  */
181 static void
182 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
183 {
184         int i;
185         u32 *src_virt_mem = (u32 *)(src);
186
187         for (i = 0; i < size/4; i++)
188                 writel((u32)src_virt_mem[i],
189                         (void __iomem *)dst_iomem + (i * 4));
190 }
191
192 /**
193  * _base_get_chain - Calculates and Returns virtual chain address
194  *                       for the provided smid in BAR0 space.
195  *
196  * @ioc: per adapter object
197  * @smid: system request message index
198  * @sge_chain_count: Scatter gather chain count.
199  *
200  * @Return: chain address.
201  */
202 static inline void __iomem*
203 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
204                 u8 sge_chain_count)
205 {
206         void __iomem *base_chain, *chain_virt;
207         u16 cmd_credit = ioc->facts.RequestCredit + 1;
208
209         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
210                 (cmd_credit * ioc->request_sz) +
211                 REPLY_FREE_POOL_SIZE;
212         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
213                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
214         return chain_virt;
215 }
216
217 /**
218  * _base_get_chain_phys - Calculates and Returns physical address
219  *                      in BAR0 for scatter gather chains, for
220  *                      the provided smid.
221  *
222  * @ioc: per adapter object
223  * @smid: system request message index
224  * @sge_chain_count: Scatter gather chain count.
225  *
226  * @Return - Physical chain address.
227  */
228 static inline phys_addr_t
229 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
230                 u8 sge_chain_count)
231 {
232         phys_addr_t base_chain_phys, chain_phys;
233         u16 cmd_credit = ioc->facts.RequestCredit + 1;
234
235         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
236                 (cmd_credit * ioc->request_sz) +
237                 REPLY_FREE_POOL_SIZE;
238         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
239                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
240         return chain_phys;
241 }
242
243 /**
244  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
245  *                      buffer address for the provided smid.
246  *                      (Each smid can have 64K starts from 17024)
247  *
248  * @ioc: per adapter object
249  * @smid: system request message index
250  *
251  * @Returns - Pointer to buffer location in BAR0.
252  */
253
254 static void __iomem *
255 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
256 {
257         u16 cmd_credit = ioc->facts.RequestCredit + 1;
258         // Added extra 1 to reach end of chain.
259         void __iomem *chain_end = _base_get_chain(ioc,
260                         cmd_credit + 1,
261                         ioc->facts.MaxChainDepth);
262         return chain_end + (smid * 64 * 1024);
263 }
264
265 /**
266  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
267  *              Host buffer Physical address for the provided smid.
268  *              (Each smid can have 64K starts from 17024)
269  *
270  * @ioc: per adapter object
271  * @smid: system request message index
272  *
273  * @Returns - Pointer to buffer location in BAR0.
274  */
275 static phys_addr_t
276 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
277 {
278         u16 cmd_credit = ioc->facts.RequestCredit + 1;
279         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
280                         cmd_credit + 1,
281                         ioc->facts.MaxChainDepth);
282         return chain_end_phys + (smid * 64 * 1024);
283 }
284
285 /**
286  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
287  *                      lookup list and Provides chain_buffer
288  *                      address for the matching dma address.
289  *                      (Each smid can have 64K starts from 17024)
290  *
291  * @ioc: per adapter object
292  * @chain_buffer_dma: Chain buffer dma address.
293  *
294  * @Returns - Pointer to chain buffer. Or Null on Failure.
295  */
296 static void *
297 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
298                 dma_addr_t chain_buffer_dma)
299 {
300         u16 index;
301
302         for (index = 0; index < ioc->chain_depth; index++) {
303                 if (ioc->chain_lookup[index].chain_buffer_dma ==
304                                 chain_buffer_dma)
305                         return ioc->chain_lookup[index].chain_buffer;
306         }
307         pr_info(MPT3SAS_FMT
308             "Provided chain_buffer_dma address is not in the lookup list\n",
309             ioc->name);
310         return NULL;
311 }
312
313 /**
314  * _clone_sg_entries -  MPI EP's scsiio and config requests
315  *                      are handled here. Base function for
316  *                      double buffering, before submitting
317  *                      the requests.
318  *
319  * @ioc: per adapter object.
320  * @mpi_request: mf request pointer.
321  * @smid: system request message index.
322  *
323  * @Returns: Nothing.
324  */
325 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
326                 void *mpi_request, u16 smid)
327 {
328         Mpi2SGESimple32_t *sgel, *sgel_next;
329         u32  sgl_flags, sge_chain_count = 0;
330         bool is_write = 0;
331         u16 i = 0;
332         void __iomem *buffer_iomem;
333         phys_addr_t buffer_iomem_phys;
334         void __iomem *buff_ptr;
335         phys_addr_t buff_ptr_phys;
336         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
337         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
338         phys_addr_t dst_addr_phys;
339         MPI2RequestHeader_t *request_hdr;
340         struct scsi_cmnd *scmd;
341         struct scatterlist *sg_scmd = NULL;
342         int is_scsiio_req = 0;
343
344         request_hdr = (MPI2RequestHeader_t *) mpi_request;
345
346         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
347                 Mpi25SCSIIORequest_t *scsiio_request =
348                         (Mpi25SCSIIORequest_t *)mpi_request;
349                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
350                 is_scsiio_req = 1;
351         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
352                 Mpi2ConfigRequest_t  *config_req =
353                         (Mpi2ConfigRequest_t *)mpi_request;
354                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
355         } else
356                 return;
357
358         /* From smid we can get scsi_cmd, once we have sg_scmd,
359          * we just need to get sg_virt and sg_next to get virual
360          * address associated with sgel->Address.
361          */
362
363         if (is_scsiio_req) {
364                 /* Get scsi_cmd using smid */
365                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
366                 if (scmd == NULL) {
367                         pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
368                         return;
369                 }
370
371                 /* Get sg_scmd from scmd provided */
372                 sg_scmd = scsi_sglist(scmd);
373         }
374
375         /*
376          * 0 - 255      System register
377          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
378          * 4352 - 4864  Reply_free pool (512 byte is reserved
379          *              considering maxCredit 32. Reply need extra
380          *              room, for mCPU case kept four times of
381          *              maxCredit).
382          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
383          *              128 byte size = 12288)
384          * 17152 - x    Host buffer mapped with smid.
385          *              (Each smid can have 64K Max IO.)
386          * BAR0+Last 1K MSIX Addr and Data
387          * Total size in use 2113664 bytes of 4MB BAR0
388          */
389
390         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
391         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
392
393         buff_ptr = buffer_iomem;
394         buff_ptr_phys = buffer_iomem_phys;
395         WARN_ON(buff_ptr_phys > U32_MAX);
396
397         if (sgel->FlagsLength &
398                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
399                 is_write = 1;
400
401         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
402
403                 sgl_flags = (sgel->FlagsLength >> MPI2_SGE_FLAGS_SHIFT);
404
405                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
406                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
407                         /*
408                          * Helper function which on passing
409                          * chain_buffer_dma returns chain_buffer. Get
410                          * the virtual address for sgel->Address
411                          */
412                         sgel_next =
413                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
414                                                 sgel->Address);
415                         if (sgel_next == NULL)
416                                 return;
417                         /*
418                          * This is coping 128 byte chain
419                          * frame (not a host buffer)
420                          */
421                         dst_chain_addr[sge_chain_count] =
422                                 _base_get_chain(ioc,
423                                         smid, sge_chain_count);
424                         src_chain_addr[sge_chain_count] =
425                                                 (void *) sgel_next;
426                         dst_addr_phys = _base_get_chain_phys(ioc,
427                                                 smid, sge_chain_count);
428                         WARN_ON(dst_addr_phys > U32_MAX);
429                         sgel->Address = (u32)dst_addr_phys;
430                         sgel = sgel_next;
431                         sge_chain_count++;
432                         break;
433                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
434                         if (is_write) {
435                                 if (is_scsiio_req) {
436                                         _base_clone_to_sys_mem(buff_ptr,
437                                             sg_virt(sg_scmd),
438                                             (sgel->FlagsLength & 0x00ffffff));
439                                         /*
440                                          * FIXME: this relies on a a zero
441                                          * PCI mem_offset.
442                                          */
443                                         sgel->Address = (u32)buff_ptr_phys;
444                                 } else {
445                                         _base_clone_to_sys_mem(buff_ptr,
446                                             ioc->config_vaddr,
447                                             (sgel->FlagsLength & 0x00ffffff));
448                                         sgel->Address = (u32)buff_ptr_phys;
449                                 }
450                         }
451                         buff_ptr += (sgel->FlagsLength & 0x00ffffff);
452                         buff_ptr_phys += (sgel->FlagsLength & 0x00ffffff);
453                         if ((sgel->FlagsLength &
454                             (MPI2_SGE_FLAGS_END_OF_BUFFER
455                                         << MPI2_SGE_FLAGS_SHIFT)))
456                                 goto eob_clone_chain;
457                         else {
458                                 /*
459                                  * Every single element in MPT will have
460                                  * associated sg_next. Better to sanity that
461                                  * sg_next is not NULL, but it will be a bug
462                                  * if it is null.
463                                  */
464                                 if (is_scsiio_req) {
465                                         sg_scmd = sg_next(sg_scmd);
466                                         if (sg_scmd)
467                                                 sgel++;
468                                         else
469                                                 goto eob_clone_chain;
470                                 }
471                         }
472                         break;
473                 }
474         }
475
476 eob_clone_chain:
477         for (i = 0; i < sge_chain_count; i++) {
478                 if (is_scsiio_req)
479                         _base_clone_to_sys_mem(dst_chain_addr[i],
480                                 src_chain_addr[i], ioc->request_sz);
481         }
482 }
483
484 /**
485  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
486  * @arg: input argument, used to derive ioc
487  *
488  * Return 0 if controller is removed from pci subsystem.
489  * Return -1 for other case.
490  */
491 static int mpt3sas_remove_dead_ioc_func(void *arg)
492 {
493         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
494         struct pci_dev *pdev;
495
496         if ((ioc == NULL))
497                 return -1;
498
499         pdev = ioc->pdev;
500         if ((pdev == NULL))
501                 return -1;
502         pci_stop_and_remove_bus_device_locked(pdev);
503         return 0;
504 }
505
506 /**
507  * _base_fault_reset_work - workq handling ioc fault conditions
508  * @work: input argument, used to derive ioc
509  * Context: sleep.
510  *
511  * Return nothing.
512  */
513 static void
514 _base_fault_reset_work(struct work_struct *work)
515 {
516         struct MPT3SAS_ADAPTER *ioc =
517             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
518         unsigned long    flags;
519         u32 doorbell;
520         int rc;
521         struct task_struct *p;
522
523
524         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
525         if (ioc->shost_recovery || ioc->pci_error_recovery)
526                 goto rearm_timer;
527         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
528
529         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
530         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
531                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
532                     ioc->name);
533
534                 /* It may be possible that EEH recovery can resolve some of
535                  * pci bus failure issues rather removing the dead ioc function
536                  * by considering controller is in a non-operational state. So
537                  * here priority is given to the EEH recovery. If it doesn't
538                  * not resolve this issue, mpt3sas driver will consider this
539                  * controller to non-operational state and remove the dead ioc
540                  * function.
541                  */
542                 if (ioc->non_operational_loop++ < 5) {
543                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
544                                                          flags);
545                         goto rearm_timer;
546                 }
547
548                 /*
549                  * Call _scsih_flush_pending_cmds callback so that we flush all
550                  * pending commands back to OS. This call is required to aovid
551                  * deadlock at block layer. Dead IOC will fail to do diag reset,
552                  * and this call is safe since dead ioc will never return any
553                  * command back from HW.
554                  */
555                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
556                 /*
557                  * Set remove_host flag early since kernel thread will
558                  * take some time to execute.
559                  */
560                 ioc->remove_host = 1;
561                 /*Remove the Dead Host */
562                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
563                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
564                 if (IS_ERR(p))
565                         pr_err(MPT3SAS_FMT
566                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
567                         ioc->name, __func__);
568                 else
569                         pr_err(MPT3SAS_FMT
570                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
571                         ioc->name, __func__);
572                 return; /* don't rearm timer */
573         }
574
575         ioc->non_operational_loop = 0;
576
577         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
578                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
579                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
580                     __func__, (rc == 0) ? "success" : "failed");
581                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
582                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
583                         mpt3sas_base_fault_info(ioc, doorbell &
584                             MPI2_DOORBELL_DATA_MASK);
585                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
586                     MPI2_IOC_STATE_OPERATIONAL)
587                         return; /* don't rearm timer */
588         }
589
590         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
591  rearm_timer:
592         if (ioc->fault_reset_work_q)
593                 queue_delayed_work(ioc->fault_reset_work_q,
594                     &ioc->fault_reset_work,
595                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
596         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
597 }
598
599 /**
600  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
601  * @ioc: per adapter object
602  * Context: sleep.
603  *
604  * Return nothing.
605  */
606 void
607 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
608 {
609         unsigned long    flags;
610
611         if (ioc->fault_reset_work_q)
612                 return;
613
614         /* initialize fault polling */
615
616         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
617         snprintf(ioc->fault_reset_work_q_name,
618             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
619             ioc->driver_name, ioc->id);
620         ioc->fault_reset_work_q =
621                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
622         if (!ioc->fault_reset_work_q) {
623                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
624                     ioc->name, __func__, __LINE__);
625                         return;
626         }
627         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
628         if (ioc->fault_reset_work_q)
629                 queue_delayed_work(ioc->fault_reset_work_q,
630                     &ioc->fault_reset_work,
631                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
632         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
633 }
634
635 /**
636  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
637  * @ioc: per adapter object
638  * Context: sleep.
639  *
640  * Return nothing.
641  */
642 void
643 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
644 {
645         unsigned long flags;
646         struct workqueue_struct *wq;
647
648         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
649         wq = ioc->fault_reset_work_q;
650         ioc->fault_reset_work_q = NULL;
651         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
652         if (wq) {
653                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
654                         flush_workqueue(wq);
655                 destroy_workqueue(wq);
656         }
657 }
658
659 /**
660  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
661  * @ioc: per adapter object
662  * @fault_code: fault code
663  *
664  * Return nothing.
665  */
666 void
667 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
668 {
669         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
670             ioc->name, fault_code);
671 }
672
673 /**
674  * mpt3sas_halt_firmware - halt's mpt controller firmware
675  * @ioc: per adapter object
676  *
677  * For debugging timeout related issues.  Writing 0xCOFFEE00
678  * to the doorbell register will halt controller firmware. With
679  * the purpose to stop both driver and firmware, the enduser can
680  * obtain a ring buffer from controller UART.
681  */
682 void
683 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
684 {
685         u32 doorbell;
686
687         if (!ioc->fwfault_debug)
688                 return;
689
690         dump_stack();
691
692         doorbell = readl(&ioc->chip->Doorbell);
693         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
694                 mpt3sas_base_fault_info(ioc , doorbell);
695         else {
696                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
697                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
698                         ioc->name);
699         }
700
701         if (ioc->fwfault_debug == 2)
702                 for (;;)
703                         ;
704         else
705                 panic("panic in %s\n", __func__);
706 }
707
708 /**
709  * _base_sas_ioc_info - verbose translation of the ioc status
710  * @ioc: per adapter object
711  * @mpi_reply: reply mf payload returned from firmware
712  * @request_hdr: request mf
713  *
714  * Return nothing.
715  */
716 static void
717 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
718         MPI2RequestHeader_t *request_hdr)
719 {
720         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
721             MPI2_IOCSTATUS_MASK;
722         char *desc = NULL;
723         u16 frame_sz;
724         char *func_str = NULL;
725
726         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
727         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
728             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
729             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
730                 return;
731
732         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
733                 return;
734
735         switch (ioc_status) {
736
737 /****************************************************************************
738 *  Common IOCStatus values for all replies
739 ****************************************************************************/
740
741         case MPI2_IOCSTATUS_INVALID_FUNCTION:
742                 desc = "invalid function";
743                 break;
744         case MPI2_IOCSTATUS_BUSY:
745                 desc = "busy";
746                 break;
747         case MPI2_IOCSTATUS_INVALID_SGL:
748                 desc = "invalid sgl";
749                 break;
750         case MPI2_IOCSTATUS_INTERNAL_ERROR:
751                 desc = "internal error";
752                 break;
753         case MPI2_IOCSTATUS_INVALID_VPID:
754                 desc = "invalid vpid";
755                 break;
756         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
757                 desc = "insufficient resources";
758                 break;
759         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
760                 desc = "insufficient power";
761                 break;
762         case MPI2_IOCSTATUS_INVALID_FIELD:
763                 desc = "invalid field";
764                 break;
765         case MPI2_IOCSTATUS_INVALID_STATE:
766                 desc = "invalid state";
767                 break;
768         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
769                 desc = "op state not supported";
770                 break;
771
772 /****************************************************************************
773 *  Config IOCStatus values
774 ****************************************************************************/
775
776         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
777                 desc = "config invalid action";
778                 break;
779         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
780                 desc = "config invalid type";
781                 break;
782         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
783                 desc = "config invalid page";
784                 break;
785         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
786                 desc = "config invalid data";
787                 break;
788         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
789                 desc = "config no defaults";
790                 break;
791         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
792                 desc = "config cant commit";
793                 break;
794
795 /****************************************************************************
796 *  SCSI IO Reply
797 ****************************************************************************/
798
799         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
800         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
801         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
802         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
803         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
804         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
805         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
806         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
807         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
808         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
809         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
810         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
811                 break;
812
813 /****************************************************************************
814 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
815 ****************************************************************************/
816
817         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
818                 desc = "eedp guard error";
819                 break;
820         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
821                 desc = "eedp ref tag error";
822                 break;
823         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
824                 desc = "eedp app tag error";
825                 break;
826
827 /****************************************************************************
828 *  SCSI Target values
829 ****************************************************************************/
830
831         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
832                 desc = "target invalid io index";
833                 break;
834         case MPI2_IOCSTATUS_TARGET_ABORTED:
835                 desc = "target aborted";
836                 break;
837         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
838                 desc = "target no conn retryable";
839                 break;
840         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
841                 desc = "target no connection";
842                 break;
843         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
844                 desc = "target xfer count mismatch";
845                 break;
846         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
847                 desc = "target data offset error";
848                 break;
849         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
850                 desc = "target too much write data";
851                 break;
852         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
853                 desc = "target iu too short";
854                 break;
855         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
856                 desc = "target ack nak timeout";
857                 break;
858         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
859                 desc = "target nak received";
860                 break;
861
862 /****************************************************************************
863 *  Serial Attached SCSI values
864 ****************************************************************************/
865
866         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
867                 desc = "smp request failed";
868                 break;
869         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
870                 desc = "smp data overrun";
871                 break;
872
873 /****************************************************************************
874 *  Diagnostic Buffer Post / Diagnostic Release values
875 ****************************************************************************/
876
877         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
878                 desc = "diagnostic released";
879                 break;
880         default:
881                 break;
882         }
883
884         if (!desc)
885                 return;
886
887         switch (request_hdr->Function) {
888         case MPI2_FUNCTION_CONFIG:
889                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
890                 func_str = "config_page";
891                 break;
892         case MPI2_FUNCTION_SCSI_TASK_MGMT:
893                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
894                 func_str = "task_mgmt";
895                 break;
896         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
897                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
898                 func_str = "sas_iounit_ctl";
899                 break;
900         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
901                 frame_sz = sizeof(Mpi2SepRequest_t);
902                 func_str = "enclosure";
903                 break;
904         case MPI2_FUNCTION_IOC_INIT:
905                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
906                 func_str = "ioc_init";
907                 break;
908         case MPI2_FUNCTION_PORT_ENABLE:
909                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
910                 func_str = "port_enable";
911                 break;
912         case MPI2_FUNCTION_SMP_PASSTHROUGH:
913                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
914                 func_str = "smp_passthru";
915                 break;
916         case MPI2_FUNCTION_NVME_ENCAPSULATED:
917                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
918                     ioc->sge_size;
919                 func_str = "nvme_encapsulated";
920                 break;
921         default:
922                 frame_sz = 32;
923                 func_str = "unknown";
924                 break;
925         }
926
927         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
928                 ioc->name, desc, ioc_status, request_hdr, func_str);
929
930         _debug_dump_mf(request_hdr, frame_sz/4);
931 }
932
933 /**
934  * _base_display_event_data - verbose translation of firmware asyn events
935  * @ioc: per adapter object
936  * @mpi_reply: reply mf payload returned from firmware
937  *
938  * Return nothing.
939  */
940 static void
941 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
942         Mpi2EventNotificationReply_t *mpi_reply)
943 {
944         char *desc = NULL;
945         u16 event;
946
947         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
948                 return;
949
950         event = le16_to_cpu(mpi_reply->Event);
951
952         switch (event) {
953         case MPI2_EVENT_LOG_DATA:
954                 desc = "Log Data";
955                 break;
956         case MPI2_EVENT_STATE_CHANGE:
957                 desc = "Status Change";
958                 break;
959         case MPI2_EVENT_HARD_RESET_RECEIVED:
960                 desc = "Hard Reset Received";
961                 break;
962         case MPI2_EVENT_EVENT_CHANGE:
963                 desc = "Event Change";
964                 break;
965         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
966                 desc = "Device Status Change";
967                 break;
968         case MPI2_EVENT_IR_OPERATION_STATUS:
969                 if (!ioc->hide_ir_msg)
970                         desc = "IR Operation Status";
971                 break;
972         case MPI2_EVENT_SAS_DISCOVERY:
973         {
974                 Mpi2EventDataSasDiscovery_t *event_data =
975                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
976                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
977                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
978                     "start" : "stop");
979                 if (event_data->DiscoveryStatus)
980                         pr_cont(" discovery_status(0x%08x)",
981                             le32_to_cpu(event_data->DiscoveryStatus));
982                 pr_cont("\n");
983                 return;
984         }
985         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
986                 desc = "SAS Broadcast Primitive";
987                 break;
988         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
989                 desc = "SAS Init Device Status Change";
990                 break;
991         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
992                 desc = "SAS Init Table Overflow";
993                 break;
994         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
995                 desc = "SAS Topology Change List";
996                 break;
997         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
998                 desc = "SAS Enclosure Device Status Change";
999                 break;
1000         case MPI2_EVENT_IR_VOLUME:
1001                 if (!ioc->hide_ir_msg)
1002                         desc = "IR Volume";
1003                 break;
1004         case MPI2_EVENT_IR_PHYSICAL_DISK:
1005                 if (!ioc->hide_ir_msg)
1006                         desc = "IR Physical Disk";
1007                 break;
1008         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1009                 if (!ioc->hide_ir_msg)
1010                         desc = "IR Configuration Change List";
1011                 break;
1012         case MPI2_EVENT_LOG_ENTRY_ADDED:
1013                 if (!ioc->hide_ir_msg)
1014                         desc = "Log Entry Added";
1015                 break;
1016         case MPI2_EVENT_TEMP_THRESHOLD:
1017                 desc = "Temperature Threshold";
1018                 break;
1019         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1020                 desc = "Cable Event";
1021                 break;
1022         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1023                 desc = "PCIE Device Status Change";
1024                 break;
1025         case MPI2_EVENT_PCIE_ENUMERATION:
1026         {
1027                 Mpi26EventDataPCIeEnumeration_t *event_data =
1028                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1029                 pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1030                            (event_data->ReasonCode ==
1031                                 MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1032                                 "start" : "stop");
1033                 if (event_data->EnumerationStatus)
1034                         pr_info("enumeration_status(0x%08x)",
1035                                    le32_to_cpu(event_data->EnumerationStatus));
1036                 pr_info("\n");
1037                 return;
1038         }
1039         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1040                 desc = "PCIE Topology Change List";
1041                 break;
1042         }
1043
1044         if (!desc)
1045                 return;
1046
1047         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1048 }
1049
1050 /**
1051  * _base_sas_log_info - verbose translation of firmware log info
1052  * @ioc: per adapter object
1053  * @log_info: log info
1054  *
1055  * Return nothing.
1056  */
1057 static void
1058 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1059 {
1060         union loginfo_type {
1061                 u32     loginfo;
1062                 struct {
1063                         u32     subcode:16;
1064                         u32     code:8;
1065                         u32     originator:4;
1066                         u32     bus_type:4;
1067                 } dw;
1068         };
1069         union loginfo_type sas_loginfo;
1070         char *originator_str = NULL;
1071
1072         sas_loginfo.loginfo = log_info;
1073         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1074                 return;
1075
1076         /* each nexus loss loginfo */
1077         if (log_info == 0x31170000)
1078                 return;
1079
1080         /* eat the loginfos associated with task aborts */
1081         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1082             0x31140000 || log_info == 0x31130000))
1083                 return;
1084
1085         switch (sas_loginfo.dw.originator) {
1086         case 0:
1087                 originator_str = "IOP";
1088                 break;
1089         case 1:
1090                 originator_str = "PL";
1091                 break;
1092         case 2:
1093                 if (!ioc->hide_ir_msg)
1094                         originator_str = "IR";
1095                 else
1096                         originator_str = "WarpDrive";
1097                 break;
1098         }
1099
1100         pr_warn(MPT3SAS_FMT
1101                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1102                 ioc->name, log_info,
1103              originator_str, sas_loginfo.dw.code,
1104              sas_loginfo.dw.subcode);
1105 }
1106
1107 /**
1108  * _base_display_reply_info -
1109  * @ioc: per adapter object
1110  * @smid: system request message index
1111  * @msix_index: MSIX table index supplied by the OS
1112  * @reply: reply message frame(lower 32bit addr)
1113  *
1114  * Return nothing.
1115  */
1116 static void
1117 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1118         u32 reply)
1119 {
1120         MPI2DefaultReply_t *mpi_reply;
1121         u16 ioc_status;
1122         u32 loginfo = 0;
1123
1124         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1125         if (unlikely(!mpi_reply)) {
1126                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1127                     ioc->name, __FILE__, __LINE__, __func__);
1128                 return;
1129         }
1130         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1131
1132         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1133             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1134                 _base_sas_ioc_info(ioc , mpi_reply,
1135                    mpt3sas_base_get_msg_frame(ioc, smid));
1136         }
1137
1138         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1139                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1140                 _base_sas_log_info(ioc, loginfo);
1141         }
1142
1143         if (ioc_status || loginfo) {
1144                 ioc_status &= MPI2_IOCSTATUS_MASK;
1145                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1146         }
1147 }
1148
1149 /**
1150  * mpt3sas_base_done - base internal command completion routine
1151  * @ioc: per adapter object
1152  * @smid: system request message index
1153  * @msix_index: MSIX table index supplied by the OS
1154  * @reply: reply message frame(lower 32bit addr)
1155  *
1156  * Return 1 meaning mf should be freed from _base_interrupt
1157  *        0 means the mf is freed from this function.
1158  */
1159 u8
1160 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1161         u32 reply)
1162 {
1163         MPI2DefaultReply_t *mpi_reply;
1164
1165         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1166         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1167                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1168
1169         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1170                 return 1;
1171
1172         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1173         if (mpi_reply) {
1174                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1175                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1176         }
1177         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1178
1179         complete(&ioc->base_cmds.done);
1180         return 1;
1181 }
1182
1183 /**
1184  * _base_async_event - main callback handler for firmware asyn events
1185  * @ioc: per adapter object
1186  * @msix_index: MSIX table index supplied by the OS
1187  * @reply: reply message frame(lower 32bit addr)
1188  *
1189  * Return 1 meaning mf should be freed from _base_interrupt
1190  *        0 means the mf is freed from this function.
1191  */
1192 static u8
1193 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1194 {
1195         Mpi2EventNotificationReply_t *mpi_reply;
1196         Mpi2EventAckRequest_t *ack_request;
1197         u16 smid;
1198         struct _event_ack_list *delayed_event_ack;
1199
1200         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1201         if (!mpi_reply)
1202                 return 1;
1203         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1204                 return 1;
1205
1206         _base_display_event_data(ioc, mpi_reply);
1207
1208         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1209                 goto out;
1210         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1211         if (!smid) {
1212                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1213                                         GFP_ATOMIC);
1214                 if (!delayed_event_ack)
1215                         goto out;
1216                 INIT_LIST_HEAD(&delayed_event_ack->list);
1217                 delayed_event_ack->Event = mpi_reply->Event;
1218                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1219                 list_add_tail(&delayed_event_ack->list,
1220                                 &ioc->delayed_event_ack_list);
1221                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
1222                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
1223                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
1224                 goto out;
1225         }
1226
1227         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1228         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1229         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1230         ack_request->Event = mpi_reply->Event;
1231         ack_request->EventContext = mpi_reply->EventContext;
1232         ack_request->VF_ID = 0;  /* TODO */
1233         ack_request->VP_ID = 0;
1234         mpt3sas_base_put_smid_default(ioc, smid);
1235
1236  out:
1237
1238         /* scsih callback handler */
1239         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1240
1241         /* ctl callback handler */
1242         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1243
1244         return 1;
1245 }
1246
1247 static struct scsiio_tracker *
1248 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1249 {
1250         struct scsi_cmnd *cmd;
1251
1252         if (WARN_ON(!smid) ||
1253             WARN_ON(smid >= ioc->hi_priority_smid))
1254                 return NULL;
1255
1256         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1257         if (cmd)
1258                 return scsi_cmd_priv(cmd);
1259
1260         return NULL;
1261 }
1262
1263 /**
1264  * _base_get_cb_idx - obtain the callback index
1265  * @ioc: per adapter object
1266  * @smid: system request message index
1267  *
1268  * Return callback index.
1269  */
1270 static u8
1271 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1272 {
1273         int i;
1274         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1275         u8 cb_idx = 0xFF;
1276
1277         if (smid < ioc->hi_priority_smid) {
1278                 struct scsiio_tracker *st;
1279
1280                 if (smid < ctl_smid) {
1281                         st = _get_st_from_smid(ioc, smid);
1282                         if (st)
1283                                 cb_idx = st->cb_idx;
1284                 } else if (smid == ctl_smid)
1285                         cb_idx = ioc->ctl_cb_idx;
1286         } else if (smid < ioc->internal_smid) {
1287                 i = smid - ioc->hi_priority_smid;
1288                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1289         } else if (smid <= ioc->hba_queue_depth) {
1290                 i = smid - ioc->internal_smid;
1291                 cb_idx = ioc->internal_lookup[i].cb_idx;
1292         }
1293         return cb_idx;
1294 }
1295
1296 /**
1297  * _base_mask_interrupts - disable interrupts
1298  * @ioc: per adapter object
1299  *
1300  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1301  *
1302  * Return nothing.
1303  */
1304 static void
1305 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1306 {
1307         u32 him_register;
1308
1309         ioc->mask_interrupts = 1;
1310         him_register = readl(&ioc->chip->HostInterruptMask);
1311         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1312         writel(him_register, &ioc->chip->HostInterruptMask);
1313         readl(&ioc->chip->HostInterruptMask);
1314 }
1315
1316 /**
1317  * _base_unmask_interrupts - enable interrupts
1318  * @ioc: per adapter object
1319  *
1320  * Enabling only Reply Interrupts
1321  *
1322  * Return nothing.
1323  */
1324 static void
1325 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1326 {
1327         u32 him_register;
1328
1329         him_register = readl(&ioc->chip->HostInterruptMask);
1330         him_register &= ~MPI2_HIM_RIM;
1331         writel(him_register, &ioc->chip->HostInterruptMask);
1332         ioc->mask_interrupts = 0;
1333 }
1334
1335 union reply_descriptor {
1336         u64 word;
1337         struct {
1338                 u32 low;
1339                 u32 high;
1340         } u;
1341 };
1342
1343 /**
1344  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1345  * @irq: irq number (not used)
1346  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1347  * @r: pt_regs pointer (not used)
1348  *
1349  * Return IRQ_HANDLE if processed, else IRQ_NONE.
1350  */
1351 static irqreturn_t
1352 _base_interrupt(int irq, void *bus_id)
1353 {
1354         struct adapter_reply_queue *reply_q = bus_id;
1355         union reply_descriptor rd;
1356         u32 completed_cmds;
1357         u8 request_desript_type;
1358         u16 smid;
1359         u8 cb_idx;
1360         u32 reply;
1361         u8 msix_index = reply_q->msix_index;
1362         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1363         Mpi2ReplyDescriptorsUnion_t *rpf;
1364         u8 rc;
1365
1366         if (ioc->mask_interrupts)
1367                 return IRQ_NONE;
1368
1369         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1370                 return IRQ_NONE;
1371
1372         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1373         request_desript_type = rpf->Default.ReplyFlags
1374              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1375         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1376                 atomic_dec(&reply_q->busy);
1377                 return IRQ_NONE;
1378         }
1379
1380         completed_cmds = 0;
1381         cb_idx = 0xFF;
1382         do {
1383                 rd.word = le64_to_cpu(rpf->Words);
1384                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1385                         goto out;
1386                 reply = 0;
1387                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1388                 if (request_desript_type ==
1389                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1390                     request_desript_type ==
1391                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1392                     request_desript_type ==
1393                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1394                         cb_idx = _base_get_cb_idx(ioc, smid);
1395                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1396                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1397                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1398                                     msix_index, 0);
1399                                 if (rc)
1400                                         mpt3sas_base_free_smid(ioc, smid);
1401                         }
1402                 } else if (request_desript_type ==
1403                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1404                         reply = le32_to_cpu(
1405                             rpf->AddressReply.ReplyFrameAddress);
1406                         if (reply > ioc->reply_dma_max_address ||
1407                             reply < ioc->reply_dma_min_address)
1408                                 reply = 0;
1409                         if (smid) {
1410                                 cb_idx = _base_get_cb_idx(ioc, smid);
1411                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1412                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1413                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1414                                             msix_index, reply);
1415                                         if (reply)
1416                                                 _base_display_reply_info(ioc,
1417                                                     smid, msix_index, reply);
1418                                         if (rc)
1419                                                 mpt3sas_base_free_smid(ioc,
1420                                                     smid);
1421                                 }
1422                         } else {
1423                                 _base_async_event(ioc, msix_index, reply);
1424                         }
1425
1426                         /* reply free queue handling */
1427                         if (reply) {
1428                                 ioc->reply_free_host_index =
1429                                     (ioc->reply_free_host_index ==
1430                                     (ioc->reply_free_queue_depth - 1)) ?
1431                                     0 : ioc->reply_free_host_index + 1;
1432                                 ioc->reply_free[ioc->reply_free_host_index] =
1433                                     cpu_to_le32(reply);
1434                                 if (ioc->is_mcpu_endpoint)
1435                                         _base_clone_reply_to_sys_mem(ioc,
1436                                                 cpu_to_le32(reply),
1437                                                 ioc->reply_free_host_index);
1438                                 writel(ioc->reply_free_host_index,
1439                                     &ioc->chip->ReplyFreeHostIndex);
1440                         }
1441                 }
1442
1443                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1444                 reply_q->reply_post_host_index =
1445                     (reply_q->reply_post_host_index ==
1446                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1447                     reply_q->reply_post_host_index + 1;
1448                 request_desript_type =
1449                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1450                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1451                 completed_cmds++;
1452                 /* Update the reply post host index after continuously
1453                  * processing the threshold number of Reply Descriptors.
1454                  * So that FW can find enough entries to post the Reply
1455                  * Descriptors in the reply descriptor post queue.
1456                  */
1457                 if (completed_cmds > ioc->hba_queue_depth/3) {
1458                         if (ioc->combined_reply_queue) {
1459                                 writel(reply_q->reply_post_host_index |
1460                                                 ((msix_index  & 7) <<
1461                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1462                                     ioc->replyPostRegisterIndex[msix_index/8]);
1463                         } else {
1464                                 writel(reply_q->reply_post_host_index |
1465                                                 (msix_index <<
1466                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1467                                                 &ioc->chip->ReplyPostHostIndex);
1468                         }
1469                         completed_cmds = 1;
1470                 }
1471                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1472                         goto out;
1473                 if (!reply_q->reply_post_host_index)
1474                         rpf = reply_q->reply_post_free;
1475                 else
1476                         rpf++;
1477         } while (1);
1478
1479  out:
1480
1481         if (!completed_cmds) {
1482                 atomic_dec(&reply_q->busy);
1483                 return IRQ_NONE;
1484         }
1485
1486         if (ioc->is_warpdrive) {
1487                 writel(reply_q->reply_post_host_index,
1488                 ioc->reply_post_host_index[msix_index]);
1489                 atomic_dec(&reply_q->busy);
1490                 return IRQ_HANDLED;
1491         }
1492
1493         /* Update Reply Post Host Index.
1494          * For those HBA's which support combined reply queue feature
1495          * 1. Get the correct Supplemental Reply Post Host Index Register.
1496          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1497          *    Index Register address bank i.e replyPostRegisterIndex[],
1498          * 2. Then update this register with new reply host index value
1499          *    in ReplyPostIndex field and the MSIxIndex field with
1500          *    msix_index value reduced to a value between 0 and 7,
1501          *    using a modulo 8 operation. Since each Supplemental Reply Post
1502          *    Host Index Register supports 8 MSI-X vectors.
1503          *
1504          * For other HBA's just update the Reply Post Host Index register with
1505          * new reply host index value in ReplyPostIndex Field and msix_index
1506          * value in MSIxIndex field.
1507          */
1508         if (ioc->combined_reply_queue)
1509                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1510                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1511                         ioc->replyPostRegisterIndex[msix_index/8]);
1512         else
1513                 writel(reply_q->reply_post_host_index | (msix_index <<
1514                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1515                         &ioc->chip->ReplyPostHostIndex);
1516         atomic_dec(&reply_q->busy);
1517         return IRQ_HANDLED;
1518 }
1519
1520 /**
1521  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1522  * @ioc: per adapter object
1523  *
1524  */
1525 static inline int
1526 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1527 {
1528         return (ioc->facts.IOCCapabilities &
1529             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1530 }
1531
1532 /**
1533  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1534  * @ioc: per adapter object
1535  * Context: non ISR conext
1536  *
1537  * Called when a Task Management request has completed.
1538  *
1539  * Return nothing.
1540  */
1541 void
1542 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1543 {
1544         struct adapter_reply_queue *reply_q;
1545
1546         /* If MSIX capability is turned off
1547          * then multi-queues are not enabled
1548          */
1549         if (!_base_is_controller_msix_enabled(ioc))
1550                 return;
1551
1552         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1553                 if (ioc->shost_recovery || ioc->remove_host ||
1554                                 ioc->pci_error_recovery)
1555                         return;
1556                 /* TMs are on msix_index == 0 */
1557                 if (reply_q->msix_index == 0)
1558                         continue;
1559                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1560         }
1561 }
1562
1563 /**
1564  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1565  * @cb_idx: callback index
1566  *
1567  * Return nothing.
1568  */
1569 void
1570 mpt3sas_base_release_callback_handler(u8 cb_idx)
1571 {
1572         mpt_callbacks[cb_idx] = NULL;
1573 }
1574
1575 /**
1576  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1577  * @cb_func: callback function
1578  *
1579  * Returns cb_func.
1580  */
1581 u8
1582 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1583 {
1584         u8 cb_idx;
1585
1586         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1587                 if (mpt_callbacks[cb_idx] == NULL)
1588                         break;
1589
1590         mpt_callbacks[cb_idx] = cb_func;
1591         return cb_idx;
1592 }
1593
1594 /**
1595  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1596  *
1597  * Return nothing.
1598  */
1599 void
1600 mpt3sas_base_initialize_callback_handler(void)
1601 {
1602         u8 cb_idx;
1603
1604         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1605                 mpt3sas_base_release_callback_handler(cb_idx);
1606 }
1607
1608
1609 /**
1610  * _base_build_zero_len_sge - build zero length sg entry
1611  * @ioc: per adapter object
1612  * @paddr: virtual address for SGE
1613  *
1614  * Create a zero length scatter gather entry to insure the IOCs hardware has
1615  * something to use if the target device goes brain dead and tries
1616  * to send data even when none is asked for.
1617  *
1618  * Return nothing.
1619  */
1620 static void
1621 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1622 {
1623         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1624             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1625             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1626             MPI2_SGE_FLAGS_SHIFT);
1627         ioc->base_add_sg_single(paddr, flags_length, -1);
1628 }
1629
1630 /**
1631  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1632  * @paddr: virtual address for SGE
1633  * @flags_length: SGE flags and data transfer length
1634  * @dma_addr: Physical address
1635  *
1636  * Return nothing.
1637  */
1638 static void
1639 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1640 {
1641         Mpi2SGESimple32_t *sgel = paddr;
1642
1643         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1644             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1645         sgel->FlagsLength = cpu_to_le32(flags_length);
1646         sgel->Address = cpu_to_le32(dma_addr);
1647 }
1648
1649
1650 /**
1651  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1652  * @paddr: virtual address for SGE
1653  * @flags_length: SGE flags and data transfer length
1654  * @dma_addr: Physical address
1655  *
1656  * Return nothing.
1657  */
1658 static void
1659 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1660 {
1661         Mpi2SGESimple64_t *sgel = paddr;
1662
1663         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1664             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1665         sgel->FlagsLength = cpu_to_le32(flags_length);
1666         sgel->Address = cpu_to_le64(dma_addr);
1667 }
1668
1669 /**
1670  * _base_get_chain_buffer_tracker - obtain chain tracker
1671  * @ioc: per adapter object
1672  * @scmd: SCSI commands of the IO request
1673  *
1674  * Returns chain tracker(from ioc->free_chain_list)
1675  */
1676 static struct chain_tracker *
1677 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1678                                struct scsi_cmnd *scmd)
1679 {
1680         struct chain_tracker *chain_req;
1681         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1682         unsigned long flags;
1683
1684         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1685         if (list_empty(&ioc->free_chain_list)) {
1686                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1687                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1688                         "chain buffers not available\n", ioc->name));
1689                 return NULL;
1690         }
1691         chain_req = list_entry(ioc->free_chain_list.next,
1692             struct chain_tracker, tracker_list);
1693         list_del_init(&chain_req->tracker_list);
1694         list_add_tail(&chain_req->tracker_list, &st->chain_list);
1695         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1696         return chain_req;
1697 }
1698
1699
1700 /**
1701  * _base_build_sg - build generic sg
1702  * @ioc: per adapter object
1703  * @psge: virtual address for SGE
1704  * @data_out_dma: physical address for WRITES
1705  * @data_out_sz: data xfer size for WRITES
1706  * @data_in_dma: physical address for READS
1707  * @data_in_sz: data xfer size for READS
1708  *
1709  * Return nothing.
1710  */
1711 static void
1712 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1713         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1714         size_t data_in_sz)
1715 {
1716         u32 sgl_flags;
1717
1718         if (!data_out_sz && !data_in_sz) {
1719                 _base_build_zero_len_sge(ioc, psge);
1720                 return;
1721         }
1722
1723         if (data_out_sz && data_in_sz) {
1724                 /* WRITE sgel first */
1725                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1726                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1727                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1728                 ioc->base_add_sg_single(psge, sgl_flags |
1729                     data_out_sz, data_out_dma);
1730
1731                 /* incr sgel */
1732                 psge += ioc->sge_size;
1733
1734                 /* READ sgel last */
1735                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1736                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1737                     MPI2_SGE_FLAGS_END_OF_LIST);
1738                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1739                 ioc->base_add_sg_single(psge, sgl_flags |
1740                     data_in_sz, data_in_dma);
1741         } else if (data_out_sz) /* WRITE */ {
1742                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1743                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1744                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1745                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1746                 ioc->base_add_sg_single(psge, sgl_flags |
1747                     data_out_sz, data_out_dma);
1748         } else if (data_in_sz) /* READ */ {
1749                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1750                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1751                     MPI2_SGE_FLAGS_END_OF_LIST);
1752                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1753                 ioc->base_add_sg_single(psge, sgl_flags |
1754                     data_in_sz, data_in_dma);
1755         }
1756 }
1757
1758 /* IEEE format sgls */
1759
1760 /**
1761  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1762  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1763  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1764  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1765  * used to describe a larger data buffer.  If the data buffer is too large to
1766  * describe using the two PRP entriess inside the NVMe message, then PRP1
1767  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1768  * list located elsewhere in memory to describe the remaining data memory
1769  * segments.  The PRP list will be contiguous.
1770
1771  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1772  * consists of a list of PRP entries to describe a number of noncontigous
1773  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1774  * however, that this function is only used by the IOCTL call, so the memory
1775  * given will be guaranteed to be contiguous.  There is no need to translate
1776  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1777  * contiguous space that is one page size each.
1778  *
1779  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1780  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1781  * contains the second PRP element if the memory being described fits within 2
1782  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1783  *
1784  * A PRP list pointer contains the address of a PRP list, structured as a linear
1785  * array of PRP entries.  Each PRP entry in this list describes a segment of
1786  * physical memory.
1787  *
1788  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1789  * always points at the beginning of a 4KB physical memory page, and the offset
1790  * describes where within that 4KB page the memory segment begins.  Only the
1791  * first element in a PRP list may contain a non-zero offest, implying that all
1792  * memory segments following the first begin at the start of a 4KB page.
1793  *
1794  * Each PRP element normally describes 4KB of physical memory, with exceptions
1795  * for the first and last elements in the list.  If the memory being described
1796  * by the list begins at a non-zero offset within the first 4KB page, then the
1797  * first PRP element will contain a non-zero offset indicating where the region
1798  * begins within the 4KB page.  The last memory segment may end before the end
1799  * of the 4KB segment, depending upon the overall size of the memory being
1800  * described by the PRP list.
1801  *
1802  * Since PRP entries lack any indication of size, the overall data buffer length
1803  * is used to determine where the end of the data memory buffer is located, and
1804  * how many PRP entries are required to describe it.
1805  *
1806  * @ioc: per adapter object
1807  * @smid: system request message index for getting asscociated SGL
1808  * @nvme_encap_request: the NVMe request msg frame pointer
1809  * @data_out_dma: physical address for WRITES
1810  * @data_out_sz: data xfer size for WRITES
1811  * @data_in_dma: physical address for READS
1812  * @data_in_sz: data xfer size for READS
1813  *
1814  * Returns nothing.
1815  */
1816 static void
1817 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1818         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1819         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1820         size_t data_in_sz)
1821 {
1822         int             prp_size = NVME_PRP_SIZE;
1823         __le64          *prp_entry, *prp1_entry, *prp2_entry;
1824         __le64          *prp_page;
1825         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
1826         u32             offset, entry_len;
1827         u32             page_mask_result, page_mask;
1828         size_t          length;
1829
1830         /*
1831          * Not all commands require a data transfer. If no data, just return
1832          * without constructing any PRP.
1833          */
1834         if (!data_in_sz && !data_out_sz)
1835                 return;
1836         /*
1837          * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1838          * PRP1 is located at a 24 byte offset from the start of the NVMe
1839          * command.  Then set the current PRP entry pointer to PRP1.
1840          */
1841         prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1842             NVME_CMD_PRP1_OFFSET);
1843         prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1844             NVME_CMD_PRP2_OFFSET);
1845         prp_entry = prp1_entry;
1846         /*
1847          * For the PRP entries, use the specially allocated buffer of
1848          * contiguous memory.
1849          */
1850         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1851         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1852
1853         /*
1854          * Check if we are within 1 entry of a page boundary we don't
1855          * want our first entry to be a PRP List entry.
1856          */
1857         page_mask = ioc->page_size - 1;
1858         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1859         if (!page_mask_result) {
1860                 /* Bump up to next page boundary. */
1861                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1862                 prp_page_dma = prp_page_dma + prp_size;
1863         }
1864
1865         /*
1866          * Set PRP physical pointer, which initially points to the current PRP
1867          * DMA memory page.
1868          */
1869         prp_entry_dma = prp_page_dma;
1870
1871         /* Get physical address and length of the data buffer. */
1872         if (data_in_sz) {
1873                 dma_addr = data_in_dma;
1874                 length = data_in_sz;
1875         } else {
1876                 dma_addr = data_out_dma;
1877                 length = data_out_sz;
1878         }
1879
1880         /* Loop while the length is not zero. */
1881         while (length) {
1882                 /*
1883                  * Check if we need to put a list pointer here if we are at
1884                  * page boundary - prp_size (8 bytes).
1885                  */
1886                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1887                 if (!page_mask_result) {
1888                         /*
1889                          * This is the last entry in a PRP List, so we need to
1890                          * put a PRP list pointer here.  What this does is:
1891                          *   - bump the current memory pointer to the next
1892                          *     address, which will be the next full page.
1893                          *   - set the PRP Entry to point to that page.  This
1894                          *     is now the PRP List pointer.
1895                          *   - bump the PRP Entry pointer the start of the
1896                          *     next page.  Since all of this PRP memory is
1897                          *     contiguous, no need to get a new page - it's
1898                          *     just the next address.
1899                          */
1900                         prp_entry_dma++;
1901                         *prp_entry = cpu_to_le64(prp_entry_dma);
1902                         prp_entry++;
1903                 }
1904
1905                 /* Need to handle if entry will be part of a page. */
1906                 offset = dma_addr & page_mask;
1907                 entry_len = ioc->page_size - offset;
1908
1909                 if (prp_entry == prp1_entry) {
1910                         /*
1911                          * Must fill in the first PRP pointer (PRP1) before
1912                          * moving on.
1913                          */
1914                         *prp1_entry = cpu_to_le64(dma_addr);
1915
1916                         /*
1917                          * Now point to the second PRP entry within the
1918                          * command (PRP2).
1919                          */
1920                         prp_entry = prp2_entry;
1921                 } else if (prp_entry == prp2_entry) {
1922                         /*
1923                          * Should the PRP2 entry be a PRP List pointer or just
1924                          * a regular PRP pointer?  If there is more than one
1925                          * more page of data, must use a PRP List pointer.
1926                          */
1927                         if (length > ioc->page_size) {
1928                                 /*
1929                                  * PRP2 will contain a PRP List pointer because
1930                                  * more PRP's are needed with this command. The
1931                                  * list will start at the beginning of the
1932                                  * contiguous buffer.
1933                                  */
1934                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1935
1936                                 /*
1937                                  * The next PRP Entry will be the start of the
1938                                  * first PRP List.
1939                                  */
1940                                 prp_entry = prp_page;
1941                         } else {
1942                                 /*
1943                                  * After this, the PRP Entries are complete.
1944                                  * This command uses 2 PRP's and no PRP list.
1945                                  */
1946                                 *prp2_entry = cpu_to_le64(dma_addr);
1947                         }
1948                 } else {
1949                         /*
1950                          * Put entry in list and bump the addresses.
1951                          *
1952                          * After PRP1 and PRP2 are filled in, this will fill in
1953                          * all remaining PRP entries in a PRP List, one per
1954                          * each time through the loop.
1955                          */
1956                         *prp_entry = cpu_to_le64(dma_addr);
1957                         prp_entry++;
1958                         prp_entry_dma++;
1959                 }
1960
1961                 /*
1962                  * Bump the phys address of the command's data buffer by the
1963                  * entry_len.
1964                  */
1965                 dma_addr += entry_len;
1966
1967                 /* Decrement length accounting for last partial page. */
1968                 if (entry_len > length)
1969                         length = 0;
1970                 else
1971                         length -= entry_len;
1972         }
1973 }
1974
1975 /**
1976  * base_make_prp_nvme -
1977  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1978  *
1979  * @ioc:                per adapter object
1980  * @scmd:               SCSI command from the mid-layer
1981  * @mpi_request:        mpi request
1982  * @smid:               msg Index
1983  * @sge_count:          scatter gather element count.
1984  *
1985  * Returns:             true: PRPs are built
1986  *                      false: IEEE SGLs needs to be built
1987  */
1988 static void
1989 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1990                 struct scsi_cmnd *scmd,
1991                 Mpi25SCSIIORequest_t *mpi_request,
1992                 u16 smid, int sge_count)
1993 {
1994         int sge_len, num_prp_in_chain = 0;
1995         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1996         __le64 *curr_buff;
1997         dma_addr_t msg_dma, sge_addr, offset;
1998         u32 page_mask, page_mask_result;
1999         struct scatterlist *sg_scmd;
2000         u32 first_prp_len;
2001         int data_len = scsi_bufflen(scmd);
2002         u32 nvme_pg_size;
2003
2004         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2005         /*
2006          * Nvme has a very convoluted prp format.  One prp is required
2007          * for each page or partial page. Driver need to split up OS sg_list
2008          * entries if it is longer than one page or cross a page
2009          * boundary.  Driver also have to insert a PRP list pointer entry as
2010          * the last entry in each physical page of the PRP list.
2011          *
2012          * NOTE: The first PRP "entry" is actually placed in the first
2013          * SGL entry in the main message as IEEE 64 format.  The 2nd
2014          * entry in the main message is the chain element, and the rest
2015          * of the PRP entries are built in the contiguous pcie buffer.
2016          */
2017         page_mask = nvme_pg_size - 1;
2018
2019         /*
2020          * Native SGL is needed.
2021          * Put a chain element in main message frame that points to the first
2022          * chain buffer.
2023          *
2024          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2025          *        a native SGL.
2026          */
2027
2028         /* Set main message chain element pointer */
2029         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2030         /*
2031          * For NVMe the chain element needs to be the 2nd SG entry in the main
2032          * message.
2033          */
2034         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2035                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2036
2037         /*
2038          * For the PRP entries, use the specially allocated buffer of
2039          * contiguous memory.  Normal chain buffers can't be used
2040          * because each chain buffer would need to be the size of an OS
2041          * page (4k).
2042          */
2043         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2044         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2045
2046         main_chain_element->Address = cpu_to_le64(msg_dma);
2047         main_chain_element->NextChainOffset = 0;
2048         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2049                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2050                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2051
2052         /* Build first prp, sge need not to be page aligned*/
2053         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2054         sg_scmd = scsi_sglist(scmd);
2055         sge_addr = sg_dma_address(sg_scmd);
2056         sge_len = sg_dma_len(sg_scmd);
2057
2058         offset = sge_addr & page_mask;
2059         first_prp_len = nvme_pg_size - offset;
2060
2061         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2062         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2063
2064         data_len -= first_prp_len;
2065
2066         if (sge_len > first_prp_len) {
2067                 sge_addr += first_prp_len;
2068                 sge_len -= first_prp_len;
2069         } else if (data_len && (sge_len == first_prp_len)) {
2070                 sg_scmd = sg_next(sg_scmd);
2071                 sge_addr = sg_dma_address(sg_scmd);
2072                 sge_len = sg_dma_len(sg_scmd);
2073         }
2074
2075         for (;;) {
2076                 offset = sge_addr & page_mask;
2077
2078                 /* Put PRP pointer due to page boundary*/
2079                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2080                 if (unlikely(!page_mask_result)) {
2081                         scmd_printk(KERN_NOTICE,
2082                                 scmd, "page boundary curr_buff: 0x%p\n",
2083                                 curr_buff);
2084                         msg_dma += 8;
2085                         *curr_buff = cpu_to_le64(msg_dma);
2086                         curr_buff++;
2087                         num_prp_in_chain++;
2088                 }
2089
2090                 *curr_buff = cpu_to_le64(sge_addr);
2091                 curr_buff++;
2092                 msg_dma += 8;
2093                 num_prp_in_chain++;
2094
2095                 sge_addr += nvme_pg_size;
2096                 sge_len -= nvme_pg_size;
2097                 data_len -= nvme_pg_size;
2098
2099                 if (data_len <= 0)
2100                         break;
2101
2102                 if (sge_len > 0)
2103                         continue;
2104
2105                 sg_scmd = sg_next(sg_scmd);
2106                 sge_addr = sg_dma_address(sg_scmd);
2107                 sge_len = sg_dma_len(sg_scmd);
2108         }
2109
2110         main_chain_element->Length =
2111                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2112         return;
2113 }
2114
2115 static bool
2116 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2117         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2118 {
2119         u32 data_length = 0;
2120         struct scatterlist *sg_scmd;
2121         bool build_prp = true;
2122
2123         data_length = scsi_bufflen(scmd);
2124         sg_scmd = scsi_sglist(scmd);
2125
2126         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2127          * we built IEEE SGL
2128          */
2129         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2130                 build_prp = false;
2131
2132         return build_prp;
2133 }
2134
2135 /**
2136  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2137  * determine if the driver needs to build a native SGL.  If so, that native
2138  * SGL is built in the special contiguous buffers allocated especially for
2139  * PCIe SGL creation.  If the driver will not build a native SGL, return
2140  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2141  * supports NVMe.
2142  * @ioc: per adapter object
2143  * @mpi_request: mf request pointer
2144  * @smid: system request message index
2145  * @scmd: scsi command
2146  * @pcie_device: points to the PCIe device's info
2147  *
2148  * Returns 0 if native SGL was built, 1 if no SGL was built
2149  */
2150 static int
2151 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2152         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2153         struct _pcie_device *pcie_device)
2154 {
2155         struct scatterlist *sg_scmd;
2156         int sges_left;
2157
2158         /* Get the SG list pointer and info. */
2159         sg_scmd = scsi_sglist(scmd);
2160         sges_left = scsi_dma_map(scmd);
2161         if (sges_left < 0) {
2162                 sdev_printk(KERN_ERR, scmd->device,
2163                         "scsi_dma_map failed: request for %d bytes!\n",
2164                         scsi_bufflen(scmd));
2165                 return 1;
2166         }
2167
2168         /* Check if we need to build a native SG list. */
2169         if (base_is_prp_possible(ioc, pcie_device,
2170                                 scmd, sges_left) == 0) {
2171                 /* We built a native SG list, just return. */
2172                 goto out;
2173         }
2174
2175         /*
2176          * Build native NVMe PRP.
2177          */
2178         base_make_prp_nvme(ioc, scmd, mpi_request,
2179                         smid, sges_left);
2180
2181         return 0;
2182 out:
2183         scsi_dma_unmap(scmd);
2184         return 1;
2185 }
2186
2187 /**
2188  * _base_add_sg_single_ieee - add sg element for IEEE format
2189  * @paddr: virtual address for SGE
2190  * @flags: SGE flags
2191  * @chain_offset: number of 128 byte elements from start of segment
2192  * @length: data transfer length
2193  * @dma_addr: Physical address
2194  *
2195  * Return nothing.
2196  */
2197 static void
2198 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2199         dma_addr_t dma_addr)
2200 {
2201         Mpi25IeeeSgeChain64_t *sgel = paddr;
2202
2203         sgel->Flags = flags;
2204         sgel->NextChainOffset = chain_offset;
2205         sgel->Length = cpu_to_le32(length);
2206         sgel->Address = cpu_to_le64(dma_addr);
2207 }
2208
2209 /**
2210  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2211  * @ioc: per adapter object
2212  * @paddr: virtual address for SGE
2213  *
2214  * Create a zero length scatter gather entry to insure the IOCs hardware has
2215  * something to use if the target device goes brain dead and tries
2216  * to send data even when none is asked for.
2217  *
2218  * Return nothing.
2219  */
2220 static void
2221 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2222 {
2223         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2224                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2225                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2226
2227         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2228 }
2229
2230 /**
2231  * _base_build_sg_scmd - main sg creation routine
2232  *              pcie_device is unused here!
2233  * @ioc: per adapter object
2234  * @scmd: scsi command
2235  * @smid: system request message index
2236  * @unused: unused pcie_device pointer
2237  * Context: none.
2238  *
2239  * The main routine that builds scatter gather table from a given
2240  * scsi request sent via the .queuecommand main handler.
2241  *
2242  * Returns 0 success, anything else error
2243  */
2244 static int
2245 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2246         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2247 {
2248         Mpi2SCSIIORequest_t *mpi_request;
2249         dma_addr_t chain_dma;
2250         struct scatterlist *sg_scmd;
2251         void *sg_local, *chain;
2252         u32 chain_offset;
2253         u32 chain_length;
2254         u32 chain_flags;
2255         int sges_left;
2256         u32 sges_in_segment;
2257         u32 sgl_flags;
2258         u32 sgl_flags_last_element;
2259         u32 sgl_flags_end_buffer;
2260         struct chain_tracker *chain_req;
2261
2262         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2263
2264         /* init scatter gather flags */
2265         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2266         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2267                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2268         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2269             << MPI2_SGE_FLAGS_SHIFT;
2270         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2271             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2272             << MPI2_SGE_FLAGS_SHIFT;
2273         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2274
2275         sg_scmd = scsi_sglist(scmd);
2276         sges_left = scsi_dma_map(scmd);
2277         if (sges_left < 0) {
2278                 sdev_printk(KERN_ERR, scmd->device,
2279                  "pci_map_sg failed: request for %d bytes!\n",
2280                  scsi_bufflen(scmd));
2281                 return -ENOMEM;
2282         }
2283
2284         sg_local = &mpi_request->SGL;
2285         sges_in_segment = ioc->max_sges_in_main_message;
2286         if (sges_left <= sges_in_segment)
2287                 goto fill_in_last_segment;
2288
2289         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2290             (sges_in_segment * ioc->sge_size))/4;
2291
2292         /* fill in main message segment when there is a chain following */
2293         while (sges_in_segment) {
2294                 if (sges_in_segment == 1)
2295                         ioc->base_add_sg_single(sg_local,
2296                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2297                             sg_dma_address(sg_scmd));
2298                 else
2299                         ioc->base_add_sg_single(sg_local, sgl_flags |
2300                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2301                 sg_scmd = sg_next(sg_scmd);
2302                 sg_local += ioc->sge_size;
2303                 sges_left--;
2304                 sges_in_segment--;
2305         }
2306
2307         /* initializing the chain flags and pointers */
2308         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2309         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2310         if (!chain_req)
2311                 return -1;
2312         chain = chain_req->chain_buffer;
2313         chain_dma = chain_req->chain_buffer_dma;
2314         do {
2315                 sges_in_segment = (sges_left <=
2316                     ioc->max_sges_in_chain_message) ? sges_left :
2317                     ioc->max_sges_in_chain_message;
2318                 chain_offset = (sges_left == sges_in_segment) ?
2319                     0 : (sges_in_segment * ioc->sge_size)/4;
2320                 chain_length = sges_in_segment * ioc->sge_size;
2321                 if (chain_offset) {
2322                         chain_offset = chain_offset <<
2323                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2324                         chain_length += ioc->sge_size;
2325                 }
2326                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2327                     chain_length, chain_dma);
2328                 sg_local = chain;
2329                 if (!chain_offset)
2330                         goto fill_in_last_segment;
2331
2332                 /* fill in chain segments */
2333                 while (sges_in_segment) {
2334                         if (sges_in_segment == 1)
2335                                 ioc->base_add_sg_single(sg_local,
2336                                     sgl_flags_last_element |
2337                                     sg_dma_len(sg_scmd),
2338                                     sg_dma_address(sg_scmd));
2339                         else
2340                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2341                                     sg_dma_len(sg_scmd),
2342                                     sg_dma_address(sg_scmd));
2343                         sg_scmd = sg_next(sg_scmd);
2344                         sg_local += ioc->sge_size;
2345                         sges_left--;
2346                         sges_in_segment--;
2347                 }
2348
2349                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2350                 if (!chain_req)
2351                         return -1;
2352                 chain = chain_req->chain_buffer;
2353                 chain_dma = chain_req->chain_buffer_dma;
2354         } while (1);
2355
2356
2357  fill_in_last_segment:
2358
2359         /* fill the last segment */
2360         while (sges_left) {
2361                 if (sges_left == 1)
2362                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2363                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2364                 else
2365                         ioc->base_add_sg_single(sg_local, sgl_flags |
2366                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2367                 sg_scmd = sg_next(sg_scmd);
2368                 sg_local += ioc->sge_size;
2369                 sges_left--;
2370         }
2371
2372         return 0;
2373 }
2374
2375 /**
2376  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2377  * @ioc: per adapter object
2378  * @scmd: scsi command
2379  * @smid: system request message index
2380  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2381  * constructed on need.
2382  * Context: none.
2383  *
2384  * The main routine that builds scatter gather table from a given
2385  * scsi request sent via the .queuecommand main handler.
2386  *
2387  * Returns 0 success, anything else error
2388  */
2389 static int
2390 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2391         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2392 {
2393         Mpi25SCSIIORequest_t *mpi_request;
2394         dma_addr_t chain_dma;
2395         struct scatterlist *sg_scmd;
2396         void *sg_local, *chain;
2397         u32 chain_offset;
2398         u32 chain_length;
2399         int sges_left;
2400         u32 sges_in_segment;
2401         u8 simple_sgl_flags;
2402         u8 simple_sgl_flags_last;
2403         u8 chain_sgl_flags;
2404         struct chain_tracker *chain_req;
2405
2406         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2407
2408         /* init scatter gather flags */
2409         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2410             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2411         simple_sgl_flags_last = simple_sgl_flags |
2412             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2413         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2414             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2415
2416         /* Check if we need to build a native SG list. */
2417         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2418                         smid, scmd, pcie_device) == 0)) {
2419                 /* We built a native SG list, just return. */
2420                 return 0;
2421         }
2422
2423         sg_scmd = scsi_sglist(scmd);
2424         sges_left = scsi_dma_map(scmd);
2425         if (sges_left < 0) {
2426                 sdev_printk(KERN_ERR, scmd->device,
2427                         "pci_map_sg failed: request for %d bytes!\n",
2428                         scsi_bufflen(scmd));
2429                 return -ENOMEM;
2430         }
2431
2432         sg_local = &mpi_request->SGL;
2433         sges_in_segment = (ioc->request_sz -
2434                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2435         if (sges_left <= sges_in_segment)
2436                 goto fill_in_last_segment;
2437
2438         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2439             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2440
2441         /* fill in main message segment when there is a chain following */
2442         while (sges_in_segment > 1) {
2443                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2444                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2445                 sg_scmd = sg_next(sg_scmd);
2446                 sg_local += ioc->sge_size_ieee;
2447                 sges_left--;
2448                 sges_in_segment--;
2449         }
2450
2451         /* initializing the pointers */
2452         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2453         if (!chain_req)
2454                 return -1;
2455         chain = chain_req->chain_buffer;
2456         chain_dma = chain_req->chain_buffer_dma;
2457         do {
2458                 sges_in_segment = (sges_left <=
2459                     ioc->max_sges_in_chain_message) ? sges_left :
2460                     ioc->max_sges_in_chain_message;
2461                 chain_offset = (sges_left == sges_in_segment) ?
2462                     0 : sges_in_segment;
2463                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2464                 if (chain_offset)
2465                         chain_length += ioc->sge_size_ieee;
2466                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2467                     chain_offset, chain_length, chain_dma);
2468
2469                 sg_local = chain;
2470                 if (!chain_offset)
2471                         goto fill_in_last_segment;
2472
2473                 /* fill in chain segments */
2474                 while (sges_in_segment) {
2475                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2476                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2477                         sg_scmd = sg_next(sg_scmd);
2478                         sg_local += ioc->sge_size_ieee;
2479                         sges_left--;
2480                         sges_in_segment--;
2481                 }
2482
2483                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2484                 if (!chain_req)
2485                         return -1;
2486                 chain = chain_req->chain_buffer;
2487                 chain_dma = chain_req->chain_buffer_dma;
2488         } while (1);
2489
2490
2491  fill_in_last_segment:
2492
2493         /* fill the last segment */
2494         while (sges_left > 0) {
2495                 if (sges_left == 1)
2496                         _base_add_sg_single_ieee(sg_local,
2497                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2498                             sg_dma_address(sg_scmd));
2499                 else
2500                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2501                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2502                 sg_scmd = sg_next(sg_scmd);
2503                 sg_local += ioc->sge_size_ieee;
2504                 sges_left--;
2505         }
2506
2507         return 0;
2508 }
2509
2510 /**
2511  * _base_build_sg_ieee - build generic sg for IEEE format
2512  * @ioc: per adapter object
2513  * @psge: virtual address for SGE
2514  * @data_out_dma: physical address for WRITES
2515  * @data_out_sz: data xfer size for WRITES
2516  * @data_in_dma: physical address for READS
2517  * @data_in_sz: data xfer size for READS
2518  *
2519  * Return nothing.
2520  */
2521 static void
2522 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2523         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2524         size_t data_in_sz)
2525 {
2526         u8 sgl_flags;
2527
2528         if (!data_out_sz && !data_in_sz) {
2529                 _base_build_zero_len_sge_ieee(ioc, psge);
2530                 return;
2531         }
2532
2533         if (data_out_sz && data_in_sz) {
2534                 /* WRITE sgel first */
2535                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2536                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2537                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2538                     data_out_dma);
2539
2540                 /* incr sgel */
2541                 psge += ioc->sge_size_ieee;
2542
2543                 /* READ sgel last */
2544                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2545                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2546                     data_in_dma);
2547         } else if (data_out_sz) /* WRITE */ {
2548                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2549                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2550                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2551                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2552                     data_out_dma);
2553         } else if (data_in_sz) /* READ */ {
2554                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2555                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2556                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2557                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2558                     data_in_dma);
2559         }
2560 }
2561
2562 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2563
2564 /**
2565  * _base_config_dma_addressing - set dma addressing
2566  * @ioc: per adapter object
2567  * @pdev: PCI device struct
2568  *
2569  * Returns 0 for success, non-zero for failure.
2570  */
2571 static int
2572 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2573 {
2574         struct sysinfo s;
2575         u64 consistent_dma_mask;
2576
2577         if (ioc->is_mcpu_endpoint)
2578                 goto try_32bit;
2579
2580         if (ioc->dma_mask)
2581                 consistent_dma_mask = DMA_BIT_MASK(64);
2582         else
2583                 consistent_dma_mask = DMA_BIT_MASK(32);
2584
2585         if (sizeof(dma_addr_t) > 4) {
2586                 const uint64_t required_mask =
2587                     dma_get_required_mask(&pdev->dev);
2588                 if ((required_mask > DMA_BIT_MASK(32)) &&
2589                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2590                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2591                         ioc->base_add_sg_single = &_base_add_sg_single_64;
2592                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2593                         ioc->dma_mask = 64;
2594                         goto out;
2595                 }
2596         }
2597
2598  try_32bit:
2599         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2600             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2601                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2602                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2603                 ioc->dma_mask = 32;
2604         } else
2605                 return -ENODEV;
2606
2607  out:
2608         si_meminfo(&s);
2609         pr_info(MPT3SAS_FMT
2610                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2611                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2612
2613         return 0;
2614 }
2615
2616 static int
2617 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2618                                       struct pci_dev *pdev)
2619 {
2620         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2621                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2622                         return -ENODEV;
2623         }
2624         return 0;
2625 }
2626
2627 /**
2628  * _base_check_enable_msix - checks MSIX capabable.
2629  * @ioc: per adapter object
2630  *
2631  * Check to see if card is capable of MSIX, and set number
2632  * of available msix vectors
2633  */
2634 static int
2635 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2636 {
2637         int base;
2638         u16 message_control;
2639
2640         /* Check whether controller SAS2008 B0 controller,
2641          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2642          */
2643         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2644             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2645                 return -EINVAL;
2646         }
2647
2648         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2649         if (!base) {
2650                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2651                         ioc->name));
2652                 return -EINVAL;
2653         }
2654
2655         /* get msix vector count */
2656         /* NUMA_IO not supported for older controllers */
2657         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2658             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2659             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2660             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2661             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2662             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2663             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2664                 ioc->msix_vector_count = 1;
2665         else {
2666                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2667                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2668         }
2669         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2670                 "msix is supported, vector_count(%d)\n",
2671                 ioc->name, ioc->msix_vector_count));
2672         return 0;
2673 }
2674
2675 /**
2676  * _base_free_irq - free irq
2677  * @ioc: per adapter object
2678  *
2679  * Freeing respective reply_queue from the list.
2680  */
2681 static void
2682 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2683 {
2684         struct adapter_reply_queue *reply_q, *next;
2685
2686         if (list_empty(&ioc->reply_queue_list))
2687                 return;
2688
2689         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2690                 list_del(&reply_q->list);
2691                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2692                          reply_q);
2693                 kfree(reply_q);
2694         }
2695 }
2696
2697 /**
2698  * _base_request_irq - request irq
2699  * @ioc: per adapter object
2700  * @index: msix index into vector table
2701  *
2702  * Inserting respective reply_queue into the list.
2703  */
2704 static int
2705 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2706 {
2707         struct pci_dev *pdev = ioc->pdev;
2708         struct adapter_reply_queue *reply_q;
2709         int r;
2710
2711         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2712         if (!reply_q) {
2713                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2714                     ioc->name, (int)sizeof(struct adapter_reply_queue));
2715                 return -ENOMEM;
2716         }
2717         reply_q->ioc = ioc;
2718         reply_q->msix_index = index;
2719
2720         atomic_set(&reply_q->busy, 0);
2721         if (ioc->msix_enable)
2722                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2723                     ioc->driver_name, ioc->id, index);
2724         else
2725                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2726                     ioc->driver_name, ioc->id);
2727         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2728                         IRQF_SHARED, reply_q->name, reply_q);
2729         if (r) {
2730                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2731                        reply_q->name, pci_irq_vector(pdev, index));
2732                 kfree(reply_q);
2733                 return -EBUSY;
2734         }
2735
2736         INIT_LIST_HEAD(&reply_q->list);
2737         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2738         return 0;
2739 }
2740
2741 /**
2742  * _base_assign_reply_queues - assigning msix index for each cpu
2743  * @ioc: per adapter object
2744  *
2745  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2746  *
2747  * It would nice if we could call irq_set_affinity, however it is not
2748  * an exported symbol
2749  */
2750 static void
2751 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2752 {
2753         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2754         struct adapter_reply_queue *reply_q;
2755
2756         if (!_base_is_controller_msix_enabled(ioc))
2757                 return;
2758
2759         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2760
2761         nr_cpus = num_online_cpus();
2762         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2763                                                ioc->facts.MaxMSIxVectors);
2764         if (!nr_msix)
2765                 return;
2766
2767         if (smp_affinity_enable) {
2768                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2769                         const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2770                                                         reply_q->msix_index);
2771                         if (!mask) {
2772                                 pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2773                                         ioc->name, reply_q->msix_index);
2774                                 continue;
2775                         }
2776
2777                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
2778                                 if (cpu >= ioc->cpu_msix_table_sz)
2779                                         break;
2780                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2781                         }
2782                 }
2783                 return;
2784         }
2785         cpu = cpumask_first(cpu_online_mask);
2786
2787         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2788
2789                 unsigned int i, group = nr_cpus / nr_msix;
2790
2791                 if (cpu >= nr_cpus)
2792                         break;
2793
2794                 if (index < nr_cpus % nr_msix)
2795                         group++;
2796
2797                 for (i = 0 ; i < group ; i++) {
2798                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2799                         cpu = cpumask_next(cpu, cpu_online_mask);
2800                 }
2801                 index++;
2802         }
2803 }
2804
2805 /**
2806  * _base_disable_msix - disables msix
2807  * @ioc: per adapter object
2808  *
2809  */
2810 static void
2811 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2812 {
2813         if (!ioc->msix_enable)
2814                 return;
2815         pci_disable_msix(ioc->pdev);
2816         ioc->msix_enable = 0;
2817 }
2818
2819 /**
2820  * _base_enable_msix - enables msix, failback to io_apic
2821  * @ioc: per adapter object
2822  *
2823  */
2824 static int
2825 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2826 {
2827         int r;
2828         int i, local_max_msix_vectors;
2829         u8 try_msix = 0;
2830         unsigned int irq_flags = PCI_IRQ_MSIX;
2831
2832         if (msix_disable == -1 || msix_disable == 0)
2833                 try_msix = 1;
2834
2835         if (!try_msix)
2836                 goto try_ioapic;
2837
2838         if (_base_check_enable_msix(ioc) != 0)
2839                 goto try_ioapic;
2840
2841         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2842                 ioc->msix_vector_count);
2843
2844         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2845           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2846           ioc->cpu_count, max_msix_vectors);
2847
2848         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2849                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
2850         else
2851                 local_max_msix_vectors = max_msix_vectors;
2852
2853         if (local_max_msix_vectors > 0)
2854                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2855                         ioc->reply_queue_count);
2856         else if (local_max_msix_vectors == 0)
2857                 goto try_ioapic;
2858
2859         if (ioc->msix_vector_count < ioc->cpu_count)
2860                 smp_affinity_enable = 0;
2861
2862         if (smp_affinity_enable)
2863                 irq_flags |= PCI_IRQ_AFFINITY;
2864
2865         r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2866                                   irq_flags);
2867         if (r < 0) {
2868                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2869                         "pci_alloc_irq_vectors failed (r=%d) !!!\n",
2870                         ioc->name, r));
2871                 goto try_ioapic;
2872         }
2873
2874         ioc->msix_enable = 1;
2875         ioc->reply_queue_count = r;
2876         for (i = 0; i < ioc->reply_queue_count; i++) {
2877                 r = _base_request_irq(ioc, i);
2878                 if (r) {
2879                         _base_free_irq(ioc);
2880                         _base_disable_msix(ioc);
2881                         goto try_ioapic;
2882                 }
2883         }
2884
2885         return 0;
2886
2887 /* failback to io_apic interrupt routing */
2888  try_ioapic:
2889
2890         ioc->reply_queue_count = 1;
2891         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2892         if (r < 0) {
2893                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2894                         "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2895                         ioc->name, r));
2896         } else
2897                 r = _base_request_irq(ioc, 0);
2898
2899         return r;
2900 }
2901
2902 /**
2903  * mpt3sas_base_unmap_resources - free controller resources
2904  * @ioc: per adapter object
2905  */
2906 static void
2907 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2908 {
2909         struct pci_dev *pdev = ioc->pdev;
2910
2911         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2912                 ioc->name, __func__));
2913
2914         _base_free_irq(ioc);
2915         _base_disable_msix(ioc);
2916
2917         if (ioc->combined_reply_queue) {
2918                 kfree(ioc->replyPostRegisterIndex);
2919                 ioc->replyPostRegisterIndex = NULL;
2920         }
2921
2922         if (ioc->chip_phys) {
2923                 iounmap(ioc->chip);
2924                 ioc->chip_phys = 0;
2925         }
2926
2927         if (pci_is_enabled(pdev)) {
2928                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2929                 pci_disable_pcie_error_reporting(pdev);
2930                 pci_disable_device(pdev);
2931         }
2932 }
2933
2934 /**
2935  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2936  * @ioc: per adapter object
2937  *
2938  * Returns 0 for success, non-zero for failure.
2939  */
2940 int
2941 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2942 {
2943         struct pci_dev *pdev = ioc->pdev;
2944         u32 memap_sz;
2945         u32 pio_sz;
2946         int i, r = 0;
2947         u64 pio_chip = 0;
2948         phys_addr_t chip_phys = 0;
2949         struct adapter_reply_queue *reply_q;
2950
2951         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2952             ioc->name, __func__));
2953
2954         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2955         if (pci_enable_device_mem(pdev)) {
2956                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2957                         ioc->name);
2958                 ioc->bars = 0;
2959                 return -ENODEV;
2960         }
2961
2962
2963         if (pci_request_selected_regions(pdev, ioc->bars,
2964             ioc->driver_name)) {
2965                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2966                         ioc->name);
2967                 ioc->bars = 0;
2968                 r = -ENODEV;
2969                 goto out_fail;
2970         }
2971
2972 /* AER (Advanced Error Reporting) hooks */
2973         pci_enable_pcie_error_reporting(pdev);
2974
2975         pci_set_master(pdev);
2976
2977
2978         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2979                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2980                     ioc->name, pci_name(pdev));
2981                 r = -ENODEV;
2982                 goto out_fail;
2983         }
2984
2985         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2986              (!memap_sz || !pio_sz); i++) {
2987                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2988                         if (pio_sz)
2989                                 continue;
2990                         pio_chip = (u64)pci_resource_start(pdev, i);
2991                         pio_sz = pci_resource_len(pdev, i);
2992                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2993                         if (memap_sz)
2994                                 continue;
2995                         ioc->chip_phys = pci_resource_start(pdev, i);
2996                         chip_phys = ioc->chip_phys;
2997                         memap_sz = pci_resource_len(pdev, i);
2998                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2999                 }
3000         }
3001
3002         if (ioc->chip == NULL) {
3003                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
3004                         " or resource not found\n", ioc->name);
3005                 r = -EINVAL;
3006                 goto out_fail;
3007         }
3008
3009         _base_mask_interrupts(ioc);
3010
3011         r = _base_get_ioc_facts(ioc);
3012         if (r)
3013                 goto out_fail;
3014
3015         if (!ioc->rdpq_array_enable_assigned) {
3016                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3017                 ioc->rdpq_array_enable_assigned = 1;
3018         }
3019
3020         r = _base_enable_msix(ioc);
3021         if (r)
3022                 goto out_fail;
3023
3024         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3025          * revision HBAs and also only when reply queue count is greater than 8
3026          */
3027         if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
3028                 /* Determine the Supplemental Reply Post Host Index Registers
3029                  * Addresse. Supplemental Reply Post Host Index Registers
3030                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3031                  * each register is at offset bytes of
3032                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3033                  */
3034                 ioc->replyPostRegisterIndex = kcalloc(
3035                      ioc->combined_reply_index_count,
3036                      sizeof(resource_size_t *), GFP_KERNEL);
3037                 if (!ioc->replyPostRegisterIndex) {
3038                         dfailprintk(ioc, printk(MPT3SAS_FMT
3039                         "allocation for reply Post Register Index failed!!!\n",
3040                                                                    ioc->name));
3041                         r = -ENOMEM;
3042                         goto out_fail;
3043                 }
3044
3045                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3046                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3047                              ((u8 *)&ioc->chip->Doorbell +
3048                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3049                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3050                 }
3051         } else
3052                 ioc->combined_reply_queue = 0;
3053
3054         if (ioc->is_warpdrive) {
3055                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3056                     &ioc->chip->ReplyPostHostIndex;
3057
3058                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3059                         ioc->reply_post_host_index[i] =
3060                         (resource_size_t __iomem *)
3061                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3062                         * 4)));
3063         }
3064
3065         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3066                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3067                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3068                     "IO-APIC enabled"),
3069                     pci_irq_vector(ioc->pdev, reply_q->msix_index));
3070
3071         pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3072             ioc->name, &chip_phys, ioc->chip, memap_sz);
3073         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3074             ioc->name, (unsigned long long)pio_chip, pio_sz);
3075
3076         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3077         pci_save_state(pdev);
3078         return 0;
3079
3080  out_fail:
3081         mpt3sas_base_unmap_resources(ioc);
3082         return r;
3083 }
3084
3085 /**
3086  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3087  * @ioc: per adapter object
3088  * @smid: system request message index(smid zero is invalid)
3089  *
3090  * Returns virt pointer to message frame.
3091  */
3092 void *
3093 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3094 {
3095         return (void *)(ioc->request + (smid * ioc->request_sz));
3096 }
3097
3098 /**
3099  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3100  * @ioc: per adapter object
3101  * @smid: system request message index
3102  *
3103  * Returns virt pointer to sense buffer.
3104  */
3105 void *
3106 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3107 {
3108         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3109 }
3110
3111 /**
3112  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3113  * @ioc: per adapter object
3114  * @smid: system request message index
3115  *
3116  * Returns phys pointer to the low 32bit address of the sense buffer.
3117  */
3118 __le32
3119 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3120 {
3121         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3122             SCSI_SENSE_BUFFERSIZE));
3123 }
3124
3125 /**
3126  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3127  * @ioc: per adapter object
3128  * @smid: system request message index
3129  *
3130  * Returns virt pointer to a PCIe SGL.
3131  */
3132 void *
3133 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3134 {
3135         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3136 }
3137
3138 /**
3139  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3140  * @ioc: per adapter object
3141  * @smid: system request message index
3142  *
3143  * Returns phys pointer to the address of the PCIe buffer.
3144  */
3145 dma_addr_t
3146 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3147 {
3148         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3149 }
3150
3151 /**
3152  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3153  * @ioc: per adapter object
3154  * @phys_addr: lower 32 physical addr of the reply
3155  *
3156  * Converts 32bit lower physical addr into a virt address.
3157  */
3158 void *
3159 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3160 {
3161         if (!phys_addr)
3162                 return NULL;
3163         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3164 }
3165
3166 static inline u8
3167 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3168 {
3169         return ioc->cpu_msix_table[raw_smp_processor_id()];
3170 }
3171
3172 /**
3173  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3174  * @ioc: per adapter object
3175  * @cb_idx: callback index
3176  *
3177  * Returns smid (zero is invalid)
3178  */
3179 u16
3180 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3181 {
3182         unsigned long flags;
3183         struct request_tracker *request;
3184         u16 smid;
3185
3186         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3187         if (list_empty(&ioc->internal_free_list)) {
3188                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3189                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
3190                     ioc->name, __func__);
3191                 return 0;
3192         }
3193
3194         request = list_entry(ioc->internal_free_list.next,
3195             struct request_tracker, tracker_list);
3196         request->cb_idx = cb_idx;
3197         smid = request->smid;
3198         list_del(&request->tracker_list);
3199         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3200         return smid;
3201 }
3202
3203 /**
3204  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3205  * @ioc: per adapter object
3206  * @cb_idx: callback index
3207  * @scmd: pointer to scsi command object
3208  *
3209  * Returns smid (zero is invalid)
3210  */
3211 u16
3212 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3213         struct scsi_cmnd *scmd)
3214 {
3215         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3216         unsigned int tag = scmd->request->tag;
3217         u16 smid;
3218
3219         smid = tag + 1;
3220         request->cb_idx = cb_idx;
3221         request->msix_io = _base_get_msix_index(ioc);
3222         request->smid = smid;
3223         INIT_LIST_HEAD(&request->chain_list);
3224         return smid;
3225 }
3226
3227 /**
3228  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3229  * @ioc: per adapter object
3230  * @cb_idx: callback index
3231  *
3232  * Returns smid (zero is invalid)
3233  */
3234 u16
3235 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3236 {
3237         unsigned long flags;
3238         struct request_tracker *request;
3239         u16 smid;
3240
3241         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3242         if (list_empty(&ioc->hpr_free_list)) {
3243                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3244                 return 0;
3245         }
3246
3247         request = list_entry(ioc->hpr_free_list.next,
3248             struct request_tracker, tracker_list);
3249         request->cb_idx = cb_idx;
3250         smid = request->smid;
3251         list_del(&request->tracker_list);
3252         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3253         return smid;
3254 }
3255
3256 static void
3257 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3258 {
3259         /*
3260          * See _wait_for_commands_to_complete() call with regards to this code.
3261          */
3262         if (ioc->shost_recovery && ioc->pending_io_count) {
3263                 ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
3264                 if (ioc->pending_io_count == 0)
3265                         wake_up(&ioc->reset_wq);
3266         }
3267 }
3268
3269 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3270                            struct scsiio_tracker *st)
3271 {
3272         if (WARN_ON(st->smid == 0))
3273                 return;
3274         st->cb_idx = 0xFF;
3275         st->direct_io = 0;
3276         if (!list_empty(&st->chain_list)) {
3277                 unsigned long flags;
3278
3279                 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3280                 list_splice_init(&st->chain_list, &ioc->free_chain_list);
3281                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3282         }
3283 }
3284
3285 /**
3286  * mpt3sas_base_free_smid - put smid back on free_list
3287  * @ioc: per adapter object
3288  * @smid: system request message index
3289  *
3290  * Return nothing.
3291  */
3292 void
3293 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3294 {
3295         unsigned long flags;
3296         int i;
3297
3298         if (smid < ioc->hi_priority_smid) {
3299                 struct scsiio_tracker *st;
3300
3301                 st = _get_st_from_smid(ioc, smid);
3302                 if (!st) {
3303                         _base_recovery_check(ioc);
3304                         return;
3305                 }
3306                 mpt3sas_base_clear_st(ioc, st);
3307                 _base_recovery_check(ioc);
3308                 return;
3309         }
3310
3311         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3312         if (smid < ioc->internal_smid) {
3313                 /* hi-priority */
3314                 i = smid - ioc->hi_priority_smid;
3315                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3316                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3317         } else if (smid <= ioc->hba_queue_depth) {
3318                 /* internal queue */
3319                 i = smid - ioc->internal_smid;
3320                 ioc->internal_lookup[i].cb_idx = 0xFF;
3321                 list_add(&ioc->internal_lookup[i].tracker_list,
3322                     &ioc->internal_free_list);
3323         }
3324         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3325 }
3326
3327 /**
3328  * _base_mpi_ep_writeq - 32 bit write to MMIO
3329  * @b: data payload
3330  * @addr: address in MMIO space
3331  * @writeq_lock: spin lock
3332  *
3333  * This special handling for MPI EP to take care of 32 bit
3334  * environment where its not quarenteed to send the entire word
3335  * in one transfer.
3336  */
3337 static inline void
3338 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3339                                         spinlock_t *writeq_lock)
3340 {
3341         unsigned long flags;
3342         __u64 data_out = cpu_to_le64(b);
3343
3344         spin_lock_irqsave(writeq_lock, flags);
3345         writel((u32)(data_out), addr);
3346         writel((u32)(data_out >> 32), (addr + 4));
3347         spin_unlock_irqrestore(writeq_lock, flags);
3348 }
3349
3350 /**
3351  * _base_writeq - 64 bit write to MMIO
3352  * @ioc: per adapter object
3353  * @b: data payload
3354  * @addr: address in MMIO space
3355  * @writeq_lock: spin lock
3356  *
3357  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3358  * care of 32 bit environment where its not quarenteed to send the entire word
3359  * in one transfer.
3360  */
3361 #if defined(writeq) && defined(CONFIG_64BIT)
3362 static inline void
3363 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3364 {
3365         writeq(cpu_to_le64(b), addr);
3366 }
3367 #else
3368 static inline void
3369 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3370 {
3371         _base_mpi_ep_writeq(b, addr, writeq_lock);
3372 }
3373 #endif
3374
3375 /**
3376  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3377  * @ioc: per adapter object
3378  * @smid: system request message index
3379  * @handle: device handle
3380  *
3381  * Return nothing.
3382  */
3383 static void
3384 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3385 {
3386         Mpi2RequestDescriptorUnion_t descriptor;
3387         u64 *request = (u64 *)&descriptor;
3388         void *mpi_req_iomem;
3389         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3390
3391         _clone_sg_entries(ioc, (void *) mfp, smid);
3392         mpi_req_iomem = (void *)ioc->chip +
3393                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3394         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3395                                         ioc->request_sz);
3396         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3397         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3398         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3399         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3400         descriptor.SCSIIO.LMID = 0;
3401         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3402             &ioc->scsi_lookup_lock);
3403 }
3404
3405 /**
3406  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3407  * @ioc: per adapter object
3408  * @smid: system request message index
3409  * @handle: device handle
3410  *
3411  * Return nothing.
3412  */
3413 static void
3414 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3415 {
3416         Mpi2RequestDescriptorUnion_t descriptor;
3417         u64 *request = (u64 *)&descriptor;
3418
3419
3420         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3421         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3422         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3423         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3424         descriptor.SCSIIO.LMID = 0;
3425         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3426             &ioc->scsi_lookup_lock);
3427 }
3428
3429 /**
3430  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3431  * @ioc: per adapter object
3432  * @smid: system request message index
3433  * @handle: device handle
3434  *
3435  * Return nothing.
3436  */
3437 void
3438 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3439         u16 handle)
3440 {
3441         Mpi2RequestDescriptorUnion_t descriptor;
3442         u64 *request = (u64 *)&descriptor;
3443
3444         descriptor.SCSIIO.RequestFlags =
3445             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3446         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3447         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3448         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3449         descriptor.SCSIIO.LMID = 0;
3450         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3451             &ioc->scsi_lookup_lock);
3452 }
3453
3454 /**
3455  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3456  * @ioc: per adapter object
3457  * @smid: system request message index
3458  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3459  * Return nothing.
3460  */
3461 void
3462 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3463         u16 msix_task)
3464 {
3465         Mpi2RequestDescriptorUnion_t descriptor;
3466         void *mpi_req_iomem;
3467         u64 *request;
3468
3469         if (ioc->is_mcpu_endpoint) {
3470                 MPI2RequestHeader_t *request_hdr;
3471
3472                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3473
3474                 request_hdr = (MPI2RequestHeader_t *)mfp;
3475                 /* TBD 256 is offset within sys register. */
3476                 mpi_req_iomem = (void *)ioc->chip + MPI_FRAME_START_OFFSET
3477                                         + (smid * ioc->request_sz);
3478                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3479                                                         ioc->request_sz);
3480         }
3481
3482         request = (u64 *)&descriptor;
3483
3484         descriptor.HighPriority.RequestFlags =
3485             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3486         descriptor.HighPriority.MSIxIndex =  msix_task;
3487         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3488         descriptor.HighPriority.LMID = 0;
3489         descriptor.HighPriority.Reserved1 = 0;
3490         if (ioc->is_mcpu_endpoint)
3491                 _base_mpi_ep_writeq(*request,
3492                                 &ioc->chip->RequestDescriptorPostLow,
3493                                 &ioc->scsi_lookup_lock);
3494         else
3495                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3496                     &ioc->scsi_lookup_lock);
3497 }
3498
3499 /**
3500  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3501  *  firmware
3502  * @ioc: per adapter object
3503  * @smid: system request message index
3504  *
3505  * Return nothing.
3506  */
3507 void
3508 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3509 {
3510         Mpi2RequestDescriptorUnion_t descriptor;
3511         u64 *request = (u64 *)&descriptor;
3512
3513         descriptor.Default.RequestFlags =
3514                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3515         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3516         descriptor.Default.SMID = cpu_to_le16(smid);
3517         descriptor.Default.LMID = 0;
3518         descriptor.Default.DescriptorTypeDependent = 0;
3519         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3520             &ioc->scsi_lookup_lock);
3521 }
3522
3523 /**
3524  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3525  * @ioc: per adapter object
3526  * @smid: system request message index
3527  *
3528  * Return nothing.
3529  */
3530 void
3531 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3532 {
3533         Mpi2RequestDescriptorUnion_t descriptor;
3534         void *mpi_req_iomem;
3535         u64 *request;
3536         MPI2RequestHeader_t *request_hdr;
3537
3538         if (ioc->is_mcpu_endpoint) {
3539                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3540
3541                 request_hdr = (MPI2RequestHeader_t *)mfp;
3542
3543                 _clone_sg_entries(ioc, (void *) mfp, smid);
3544                 /* TBD 256 is offset within sys register */
3545                 mpi_req_iomem = (void *)ioc->chip +
3546                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3547                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3548                                                         ioc->request_sz);
3549         }
3550         request = (u64 *)&descriptor;
3551         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3552         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3553         descriptor.Default.SMID = cpu_to_le16(smid);
3554         descriptor.Default.LMID = 0;
3555         descriptor.Default.DescriptorTypeDependent = 0;
3556         if (ioc->is_mcpu_endpoint)
3557                 _base_mpi_ep_writeq(*request,
3558                                 &ioc->chip->RequestDescriptorPostLow,
3559                                 &ioc->scsi_lookup_lock);
3560         else
3561                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3562                                 &ioc->scsi_lookup_lock);
3563 }
3564
3565 /**
3566  * _base_display_OEMs_branding - Display branding string
3567  * @ioc: per adapter object
3568  *
3569  * Return nothing.
3570  */
3571 static void
3572 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3573 {
3574         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3575                 return;
3576
3577         switch (ioc->pdev->subsystem_vendor) {
3578         case PCI_VENDOR_ID_INTEL:
3579                 switch (ioc->pdev->device) {
3580                 case MPI2_MFGPAGE_DEVID_SAS2008:
3581                         switch (ioc->pdev->subsystem_device) {
3582                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
3583                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3584                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
3585                                 break;
3586                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
3587                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3588                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
3589                                 break;
3590                         case MPT2SAS_INTEL_SSD910_SSDID:
3591                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3592                                     MPT2SAS_INTEL_SSD910_BRANDING);
3593                                 break;
3594                         default:
3595                                 pr_info(MPT3SAS_FMT
3596                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3597                                  ioc->name, ioc->pdev->subsystem_device);
3598                                 break;
3599                         }
3600                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3601                         switch (ioc->pdev->subsystem_device) {
3602                         case MPT2SAS_INTEL_RS25GB008_SSDID:
3603                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3604                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
3605                                 break;
3606                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
3607                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3608                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
3609                                 break;
3610                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
3611                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3612                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
3613                                 break;
3614                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
3615                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3616                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
3617                                 break;
3618                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
3619                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3620                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
3621                                 break;
3622                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
3623                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3624                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
3625                                 break;
3626                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
3627                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3628                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
3629                                 break;
3630                         default:
3631                                 pr_info(MPT3SAS_FMT
3632                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3633                                  ioc->name, ioc->pdev->subsystem_device);
3634                                 break;
3635                         }
3636                 case MPI25_MFGPAGE_DEVID_SAS3008:
3637                         switch (ioc->pdev->subsystem_device) {
3638                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
3639                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3640                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
3641                                 break;
3642
3643                         case MPT3SAS_INTEL_RS3GC008_SSDID:
3644                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3645                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
3646                                 break;
3647                         case MPT3SAS_INTEL_RS3FC044_SSDID:
3648                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3649                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
3650                                 break;
3651                         case MPT3SAS_INTEL_RS3UC080_SSDID:
3652                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3653                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
3654                                 break;
3655                         default:
3656                                 pr_info(MPT3SAS_FMT
3657                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
3658                                  ioc->name, ioc->pdev->subsystem_device);
3659                                 break;
3660                         }
3661                         break;
3662                 default:
3663                         pr_info(MPT3SAS_FMT
3664                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
3665                          ioc->name, ioc->pdev->subsystem_device);
3666                         break;
3667                 }
3668                 break;
3669         case PCI_VENDOR_ID_DELL:
3670                 switch (ioc->pdev->device) {
3671                 case MPI2_MFGPAGE_DEVID_SAS2008:
3672                         switch (ioc->pdev->subsystem_device) {
3673                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3674                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3675                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3676                                 break;
3677                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3678                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3679                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3680                                 break;
3681                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3682                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3683                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3684                                 break;
3685                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3686                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3687                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3688                                 break;
3689                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3690                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3691                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3692                                 break;
3693                         case MPT2SAS_DELL_PERC_H200_SSDID:
3694                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3695                                  MPT2SAS_DELL_PERC_H200_BRANDING);
3696                                 break;
3697                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3698                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3699                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3700                                 break;
3701                         default:
3702                                 pr_info(MPT3SAS_FMT
3703                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3704                                    ioc->name, ioc->pdev->subsystem_device);
3705                                 break;
3706                         }
3707                         break;
3708                 case MPI25_MFGPAGE_DEVID_SAS3008:
3709                         switch (ioc->pdev->subsystem_device) {
3710                         case MPT3SAS_DELL_12G_HBA_SSDID:
3711                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3712                                         MPT3SAS_DELL_12G_HBA_BRANDING);
3713                                 break;
3714                         default:
3715                                 pr_info(MPT3SAS_FMT
3716                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3717                                    ioc->name, ioc->pdev->subsystem_device);
3718                                 break;
3719                         }
3720                         break;
3721                 default:
3722                         pr_info(MPT3SAS_FMT
3723                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3724                            ioc->pdev->subsystem_device);
3725                         break;
3726                 }
3727                 break;
3728         case PCI_VENDOR_ID_CISCO:
3729                 switch (ioc->pdev->device) {
3730                 case MPI25_MFGPAGE_DEVID_SAS3008:
3731                         switch (ioc->pdev->subsystem_device) {
3732                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3733                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3734                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3735                                 break;
3736                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3737                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3738                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3739                                 break;
3740                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3741                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3742                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3743                                 break;
3744                         default:
3745                                 pr_info(MPT3SAS_FMT
3746                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3747                                   ioc->name, ioc->pdev->subsystem_device);
3748                                 break;
3749                         }
3750                         break;
3751                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
3752                         switch (ioc->pdev->subsystem_device) {
3753                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3754                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3755                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3756                                 break;
3757                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3758                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3759                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3760                                 );
3761                                 break;
3762                         default:
3763                                 pr_info(MPT3SAS_FMT
3764                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3765                                  ioc->name, ioc->pdev->subsystem_device);
3766                                 break;
3767                         }
3768                         break;
3769                 default:
3770                         pr_info(MPT3SAS_FMT
3771                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3772                            ioc->name, ioc->pdev->subsystem_device);
3773                         break;
3774                 }
3775                 break;
3776         case MPT2SAS_HP_3PAR_SSVID:
3777                 switch (ioc->pdev->device) {
3778                 case MPI2_MFGPAGE_DEVID_SAS2004:
3779                         switch (ioc->pdev->subsystem_device) {
3780                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3781                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3782                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3783                                 break;
3784                         default:
3785                                 pr_info(MPT3SAS_FMT
3786                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3787                                    ioc->name, ioc->pdev->subsystem_device);
3788                                 break;
3789                         }
3790                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3791                         switch (ioc->pdev->subsystem_device) {
3792                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3793                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3794                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3795                                 break;
3796                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3797                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3798                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3799                                 break;
3800                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3801                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3802                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3803                                 break;
3804                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3805                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3806                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3807                                 break;
3808                         default:
3809                                 pr_info(MPT3SAS_FMT
3810                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3811                                    ioc->name, ioc->pdev->subsystem_device);
3812                                 break;
3813                         }
3814                 default:
3815                         pr_info(MPT3SAS_FMT
3816                            "HP SAS HBA: Subsystem ID: 0x%X\n",
3817                            ioc->name, ioc->pdev->subsystem_device);
3818                         break;
3819                 }
3820         default:
3821                 break;
3822         }
3823 }
3824
3825 /**
3826  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3827  * @ioc: per adapter object
3828  *
3829  * Return nothing.
3830  */
3831 static void
3832 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3833 {
3834         int i = 0;
3835         char desc[16];
3836         u32 iounit_pg1_flags;
3837         u32 bios_version;
3838
3839         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3840         strncpy(desc, ioc->manu_pg0.ChipName, 16);
3841         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3842            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3843             ioc->name, desc,
3844            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3845            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3846            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3847            ioc->facts.FWVersion.Word & 0x000000FF,
3848            ioc->pdev->revision,
3849            (bios_version & 0xFF000000) >> 24,
3850            (bios_version & 0x00FF0000) >> 16,
3851            (bios_version & 0x0000FF00) >> 8,
3852             bios_version & 0x000000FF);
3853
3854         _base_display_OEMs_branding(ioc);
3855
3856         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3857                 pr_info("%sNVMe", i ? "," : "");
3858                 i++;
3859         }
3860
3861         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3862
3863         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3864                 pr_info("Initiator");
3865                 i++;
3866         }
3867
3868         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3869                 pr_info("%sTarget", i ? "," : "");
3870                 i++;
3871         }
3872
3873         i = 0;
3874         pr_info("), ");
3875         pr_info("Capabilities=(");
3876
3877         if (!ioc->hide_ir_msg) {
3878                 if (ioc->facts.IOCCapabilities &
3879                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3880                         pr_info("Raid");
3881                         i++;
3882                 }
3883         }
3884
3885         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3886                 pr_info("%sTLR", i ? "," : "");
3887                 i++;
3888         }
3889
3890         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3891                 pr_info("%sMulticast", i ? "," : "");
3892                 i++;
3893         }
3894
3895         if (ioc->facts.IOCCapabilities &
3896             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3897                 pr_info("%sBIDI Target", i ? "," : "");
3898                 i++;
3899         }
3900
3901         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3902                 pr_info("%sEEDP", i ? "," : "");
3903                 i++;
3904         }
3905
3906         if (ioc->facts.IOCCapabilities &
3907             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3908                 pr_info("%sSnapshot Buffer", i ? "," : "");
3909                 i++;
3910         }
3911
3912         if (ioc->facts.IOCCapabilities &
3913             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3914                 pr_info("%sDiag Trace Buffer", i ? "," : "");
3915                 i++;
3916         }
3917
3918         if (ioc->facts.IOCCapabilities &
3919             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3920                 pr_info("%sDiag Extended Buffer", i ? "," : "");
3921                 i++;
3922         }
3923
3924         if (ioc->facts.IOCCapabilities &
3925             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3926                 pr_info("%sTask Set Full", i ? "," : "");
3927                 i++;
3928         }
3929
3930         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3931         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3932                 pr_info("%sNCQ", i ? "," : "");
3933                 i++;
3934         }
3935
3936         pr_info(")\n");
3937 }
3938
3939 /**
3940  * mpt3sas_base_update_missing_delay - change the missing delay timers
3941  * @ioc: per adapter object
3942  * @device_missing_delay: amount of time till device is reported missing
3943  * @io_missing_delay: interval IO is returned when there is a missing device
3944  *
3945  * Return nothing.
3946  *
3947  * Passed on the command line, this function will modify the device missing
3948  * delay, as well as the io missing delay. This should be called at driver
3949  * load time.
3950  */
3951 void
3952 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3953         u16 device_missing_delay, u8 io_missing_delay)
3954 {
3955         u16 dmd, dmd_new, dmd_orignal;
3956         u8 io_missing_delay_original;
3957         u16 sz;
3958         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3959         Mpi2ConfigReply_t mpi_reply;
3960         u8 num_phys = 0;
3961         u16 ioc_status;
3962
3963         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3964         if (!num_phys)
3965                 return;
3966
3967         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3968             sizeof(Mpi2SasIOUnit1PhyData_t));
3969         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3970         if (!sas_iounit_pg1) {
3971                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3972                     ioc->name, __FILE__, __LINE__, __func__);
3973                 goto out;
3974         }
3975         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3976             sas_iounit_pg1, sz))) {
3977                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3978                     ioc->name, __FILE__, __LINE__, __func__);
3979                 goto out;
3980         }
3981         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3982             MPI2_IOCSTATUS_MASK;
3983         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3984                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3985                     ioc->name, __FILE__, __LINE__, __func__);
3986                 goto out;
3987         }
3988
3989         /* device missing delay */
3990         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3991         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3992                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3993         else
3994                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3995         dmd_orignal = dmd;
3996         if (device_missing_delay > 0x7F) {
3997                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3998                     device_missing_delay;
3999                 dmd = dmd / 16;
4000                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4001         } else
4002                 dmd = device_missing_delay;
4003         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4004
4005         /* io missing delay */
4006         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4007         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4008
4009         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4010             sz)) {
4011                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4012                         dmd_new = (dmd &
4013                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4014                 else
4015                         dmd_new =
4016                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4017                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4018                         ioc->name, dmd_orignal, dmd_new);
4019                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4020                         ioc->name, io_missing_delay_original,
4021                     io_missing_delay);
4022                 ioc->device_missing_delay = dmd_new;
4023                 ioc->io_missing_delay = io_missing_delay;
4024         }
4025
4026 out:
4027         kfree(sas_iounit_pg1);
4028 }
4029 /**
4030  * _base_static_config_pages - static start of day config pages
4031  * @ioc: per adapter object
4032  *
4033  * Return nothing.
4034  */
4035 static void
4036 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4037 {
4038         Mpi2ConfigReply_t mpi_reply;
4039         u32 iounit_pg1_flags;
4040
4041         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4042         if (ioc->ir_firmware)
4043                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4044                     &ioc->manu_pg10);
4045
4046         /*
4047          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4048          * flag unset in NVDATA.
4049          */
4050         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4051         if (ioc->manu_pg11.EEDPTagMode == 0) {
4052                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4053                     ioc->name);
4054                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4055                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4056                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4057                     &ioc->manu_pg11);
4058         }
4059
4060         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4061         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4062         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4063         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4064         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4065         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4066         _base_display_ioc_capabilities(ioc);
4067
4068         /*
4069          * Enable task_set_full handling in iounit_pg1 when the
4070          * facts capabilities indicate that its supported.
4071          */
4072         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4073         if ((ioc->facts.IOCCapabilities &
4074             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4075                 iounit_pg1_flags &=
4076                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4077         else
4078                 iounit_pg1_flags |=
4079                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4080         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4081         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4082
4083         if (ioc->iounit_pg8.NumSensors)
4084                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4085 }
4086
4087 /**
4088  * _base_release_memory_pools - release memory
4089  * @ioc: per adapter object
4090  *
4091  * Free memory allocated from _base_allocate_memory_pools.
4092  *
4093  * Return nothing.
4094  */
4095 static void
4096 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4097 {
4098         int i = 0;
4099         struct reply_post_struct *rps;
4100
4101         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4102             __func__));
4103
4104         if (ioc->request) {
4105                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4106                     ioc->request,  ioc->request_dma);
4107                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4108                         "request_pool(0x%p): free\n",
4109                         ioc->name, ioc->request));
4110                 ioc->request = NULL;
4111         }
4112
4113         if (ioc->sense) {
4114                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4115                 dma_pool_destroy(ioc->sense_dma_pool);
4116                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4117                         "sense_pool(0x%p): free\n",
4118                         ioc->name, ioc->sense));
4119                 ioc->sense = NULL;
4120         }
4121
4122         if (ioc->reply) {
4123                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4124                 dma_pool_destroy(ioc->reply_dma_pool);
4125                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4126                         "reply_pool(0x%p): free\n",
4127                         ioc->name, ioc->reply));
4128                 ioc->reply = NULL;
4129         }
4130
4131         if (ioc->reply_free) {
4132                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4133                     ioc->reply_free_dma);
4134                 dma_pool_destroy(ioc->reply_free_dma_pool);
4135                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4136                         "reply_free_pool(0x%p): free\n",
4137                         ioc->name, ioc->reply_free));
4138                 ioc->reply_free = NULL;
4139         }
4140
4141         if (ioc->reply_post) {
4142                 do {
4143                         rps = &ioc->reply_post[i];
4144                         if (rps->reply_post_free) {
4145                                 dma_pool_free(
4146                                     ioc->reply_post_free_dma_pool,
4147                                     rps->reply_post_free,
4148                                     rps->reply_post_free_dma);
4149                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4150                                     "reply_post_free_pool(0x%p): free\n",
4151                                     ioc->name, rps->reply_post_free));
4152                                 rps->reply_post_free = NULL;
4153                         }
4154                 } while (ioc->rdpq_array_enable &&
4155                            (++i < ioc->reply_queue_count));
4156
4157                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4158                 kfree(ioc->reply_post);
4159         }
4160
4161         if (ioc->pcie_sgl_dma_pool) {
4162                 for (i = 0; i < ioc->scsiio_depth; i++) {
4163                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4164                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4165                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4166                 }
4167                 if (ioc->pcie_sgl_dma_pool)
4168                         dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4169         }
4170
4171         if (ioc->config_page) {
4172                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
4173                     "config_page(0x%p): free\n", ioc->name,
4174                     ioc->config_page));
4175                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4176                     ioc->config_page, ioc->config_page_dma);
4177         }
4178
4179         kfree(ioc->hpr_lookup);
4180         kfree(ioc->internal_lookup);
4181         if (ioc->chain_lookup) {
4182                 for (i = 0; i < ioc->chain_depth; i++) {
4183                         if (ioc->chain_lookup[i].chain_buffer)
4184                                 dma_pool_free(ioc->chain_dma_pool,
4185                                     ioc->chain_lookup[i].chain_buffer,
4186                                     ioc->chain_lookup[i].chain_buffer_dma);
4187                 }
4188                 dma_pool_destroy(ioc->chain_dma_pool);
4189                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
4190                 ioc->chain_lookup = NULL;
4191         }
4192 }
4193
4194 /**
4195  * _base_allocate_memory_pools - allocate start of day memory pools
4196  * @ioc: per adapter object
4197  *
4198  * Returns 0 success, anything else error
4199  */
4200 static int
4201 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4202 {
4203         struct mpt3sas_facts *facts;
4204         u16 max_sge_elements;
4205         u16 chains_needed_per_io;
4206         u32 sz, total_sz, reply_post_free_sz;
4207         u32 retry_sz;
4208         u16 max_request_credit, nvme_blocks_needed;
4209         unsigned short sg_tablesize;
4210         u16 sge_size;
4211         int i;
4212
4213         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4214             __func__));
4215
4216
4217         retry_sz = 0;
4218         facts = &ioc->facts;
4219
4220         /* command line tunables for max sgl entries */
4221         if (max_sgl_entries != -1)
4222                 sg_tablesize = max_sgl_entries;
4223         else {
4224                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4225                         sg_tablesize = MPT2SAS_SG_DEPTH;
4226                 else
4227                         sg_tablesize = MPT3SAS_SG_DEPTH;
4228         }
4229
4230         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4231         if (reset_devices)
4232                 sg_tablesize = min_t(unsigned short, sg_tablesize,
4233                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
4234
4235         if (ioc->is_mcpu_endpoint)
4236                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4237         else {
4238                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4239                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4240                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4241                         sg_tablesize = min_t(unsigned short, sg_tablesize,
4242                                         SG_MAX_SEGMENTS);
4243                         pr_warn(MPT3SAS_FMT
4244                                 "sg_tablesize(%u) is bigger than kernel "
4245                                 "defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4246                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4247                 }
4248                 ioc->shost->sg_tablesize = sg_tablesize;
4249         }
4250
4251         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4252                 (facts->RequestCredit / 4));
4253         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4254                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4255                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
4256                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4257                             Credits, it has just %d number of credits\n",
4258                             ioc->name, facts->RequestCredit);
4259                         return -ENOMEM;
4260                 }
4261                 ioc->internal_depth = 10;
4262         }
4263
4264         ioc->hi_priority_depth = ioc->internal_depth - (5);
4265         /* command line tunables  for max controller queue depth */
4266         if (max_queue_depth != -1 && max_queue_depth != 0) {
4267                 max_request_credit = min_t(u16, max_queue_depth +
4268                         ioc->internal_depth, facts->RequestCredit);
4269                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4270                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4271         } else if (reset_devices)
4272                 max_request_credit = min_t(u16, facts->RequestCredit,
4273                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4274         else
4275                 max_request_credit = min_t(u16, facts->RequestCredit,
4276                     MAX_HBA_QUEUE_DEPTH);
4277
4278         /* Firmware maintains additional facts->HighPriorityCredit number of
4279          * credits for HiPriprity Request messages, so hba queue depth will be
4280          * sum of max_request_credit and high priority queue depth.
4281          */
4282         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4283
4284         /* request frame size */
4285         ioc->request_sz = facts->IOCRequestFrameSize * 4;
4286
4287         /* reply frame size */
4288         ioc->reply_sz = facts->ReplyFrameSize * 4;
4289
4290         /* chain segment size */
4291         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4292                 if (facts->IOCMaxChainSegmentSize)
4293                         ioc->chain_segment_sz =
4294                                         facts->IOCMaxChainSegmentSize *
4295                                         MAX_CHAIN_ELEMT_SZ;
4296                 else
4297                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4298                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4299                                                     MAX_CHAIN_ELEMT_SZ;
4300         } else
4301                 ioc->chain_segment_sz = ioc->request_sz;
4302
4303         /* calculate the max scatter element size */
4304         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4305
4306  retry_allocation:
4307         total_sz = 0;
4308         /* calculate number of sg elements left over in the 1st frame */
4309         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4310             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4311         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4312
4313         /* now do the same for a chain buffer */
4314         max_sge_elements = ioc->chain_segment_sz - sge_size;
4315         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4316
4317         /*
4318          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4319          */
4320         chains_needed_per_io = ((ioc->shost->sg_tablesize -
4321            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4322             + 1;
4323         if (chains_needed_per_io > facts->MaxChainDepth) {
4324                 chains_needed_per_io = facts->MaxChainDepth;
4325                 ioc->shost->sg_tablesize = min_t(u16,
4326                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4327                 * chains_needed_per_io), ioc->shost->sg_tablesize);
4328         }
4329         ioc->chains_needed_per_io = chains_needed_per_io;
4330
4331         /* reply free queue sizing - taking into account for 64 FW events */
4332         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4333
4334         /* mCPU manage single counters for simplicity */
4335         if (ioc->is_mcpu_endpoint)
4336                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4337         else {
4338                 /* calculate reply descriptor post queue depth */
4339                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4340                         ioc->reply_free_queue_depth +  1;
4341                 /* align the reply post queue on the next 16 count boundary */
4342                 if (ioc->reply_post_queue_depth % 16)
4343                         ioc->reply_post_queue_depth += 16 -
4344                                 (ioc->reply_post_queue_depth % 16);
4345         }
4346
4347         if (ioc->reply_post_queue_depth >
4348             facts->MaxReplyDescriptorPostQueueDepth) {
4349                 ioc->reply_post_queue_depth =
4350                                 facts->MaxReplyDescriptorPostQueueDepth -
4351                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
4352                 ioc->hba_queue_depth =
4353                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4354                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4355         }
4356
4357         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4358             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4359             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4360             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4361             ioc->chains_needed_per_io));
4362
4363         /* reply post queue, 16 byte align */
4364         reply_post_free_sz = ioc->reply_post_queue_depth *
4365             sizeof(Mpi2DefaultReplyDescriptor_t);
4366
4367         sz = reply_post_free_sz;
4368         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4369                 sz *= ioc->reply_queue_count;
4370
4371         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4372             (ioc->reply_queue_count):1,
4373             sizeof(struct reply_post_struct), GFP_KERNEL);
4374
4375         if (!ioc->reply_post) {
4376                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4377                         ioc->name);
4378                 goto out;
4379         }
4380         ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4381             &ioc->pdev->dev, sz, 16, 0);
4382         if (!ioc->reply_post_free_dma_pool) {
4383                 pr_err(MPT3SAS_FMT
4384                  "reply_post_free pool: dma_pool_create failed\n",
4385                  ioc->name);
4386                 goto out;
4387         }
4388         i = 0;
4389         do {
4390                 ioc->reply_post[i].reply_post_free =
4391                     dma_pool_alloc(ioc->reply_post_free_dma_pool,
4392                     GFP_KERNEL,
4393                     &ioc->reply_post[i].reply_post_free_dma);
4394                 if (!ioc->reply_post[i].reply_post_free) {
4395                         pr_err(MPT3SAS_FMT
4396                         "reply_post_free pool: dma_pool_alloc failed\n",
4397                         ioc->name);
4398                         goto out;
4399                 }
4400                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
4401                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4402                     "reply post free pool (0x%p): depth(%d),"
4403                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
4404                     ioc->reply_post[i].reply_post_free,
4405                     ioc->reply_post_queue_depth, 8, sz/1024));
4406                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4407                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
4408                     (unsigned long long)
4409                     ioc->reply_post[i].reply_post_free_dma));
4410                 total_sz += sz;
4411         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4412
4413         if (ioc->dma_mask == 64) {
4414                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4415                         pr_warn(MPT3SAS_FMT
4416                             "no suitable consistent DMA mask for %s\n",
4417                             ioc->name, pci_name(ioc->pdev));
4418                         goto out;
4419                 }
4420         }
4421
4422         ioc->scsiio_depth = ioc->hba_queue_depth -
4423             ioc->hi_priority_depth - ioc->internal_depth;
4424
4425         /* set the scsi host can_queue depth
4426          * with some internal commands that could be outstanding
4427          */
4428         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4429         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4430                 "scsi host: can_queue depth (%d)\n",
4431                 ioc->name, ioc->shost->can_queue));
4432
4433
4434         /* contiguous pool for request and chains, 16 byte align, one extra "
4435          * "frame for smid=0
4436          */
4437         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4438         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4439
4440         /* hi-priority queue */
4441         sz += (ioc->hi_priority_depth * ioc->request_sz);
4442
4443         /* internal queue */
4444         sz += (ioc->internal_depth * ioc->request_sz);
4445
4446         ioc->request_dma_sz = sz;
4447         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4448         if (!ioc->request) {
4449                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4450                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4451                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4452                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4453                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4454                         goto out;
4455                 retry_sz = 64;
4456                 ioc->hba_queue_depth -= retry_sz;
4457                 _base_release_memory_pools(ioc);
4458                 goto retry_allocation;
4459         }
4460
4461         if (retry_sz)
4462                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4463                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4464                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4465                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4466
4467         /* hi-priority queue */
4468         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4469             ioc->request_sz);
4470         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4471             ioc->request_sz);
4472
4473         /* internal queue */
4474         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4475             ioc->request_sz);
4476         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4477             ioc->request_sz);
4478
4479         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4480                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4481                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4482             (ioc->hba_queue_depth * ioc->request_sz)/1024));
4483
4484         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4485             ioc->name, (unsigned long long) ioc->request_dma));
4486         total_sz += sz;
4487
4488         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4489                 ioc->name, ioc->request, ioc->scsiio_depth));
4490
4491         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4492         sz = ioc->chain_depth * sizeof(struct chain_tracker);
4493         ioc->chain_pages = get_order(sz);
4494         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
4495             GFP_KERNEL, ioc->chain_pages);
4496         if (!ioc->chain_lookup) {
4497                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
4498                         ioc->name);
4499                 goto out;
4500         }
4501         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4502             ioc->chain_segment_sz, 16, 0);
4503         if (!ioc->chain_dma_pool) {
4504                 pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4505                         ioc->name);
4506                 goto out;
4507         }
4508         for (i = 0; i < ioc->chain_depth; i++) {
4509                 ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
4510                     ioc->chain_dma_pool , GFP_KERNEL,
4511                     &ioc->chain_lookup[i].chain_buffer_dma);
4512                 if (!ioc->chain_lookup[i].chain_buffer) {
4513                         ioc->chain_depth = i;
4514                         goto chain_done;
4515                 }
4516                 total_sz += ioc->chain_segment_sz;
4517         }
4518  chain_done:
4519         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4520                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4521                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4522                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4523
4524         /* initialize hi-priority queue smid's */
4525         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4526             sizeof(struct request_tracker), GFP_KERNEL);
4527         if (!ioc->hpr_lookup) {
4528                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4529                     ioc->name);
4530                 goto out;
4531         }
4532         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4533         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4534                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
4535                 ioc->name, ioc->hi_priority,
4536             ioc->hi_priority_depth, ioc->hi_priority_smid));
4537
4538         /* initialize internal queue smid's */
4539         ioc->internal_lookup = kcalloc(ioc->internal_depth,
4540             sizeof(struct request_tracker), GFP_KERNEL);
4541         if (!ioc->internal_lookup) {
4542                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4543                     ioc->name);
4544                 goto out;
4545         }
4546         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4547         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4548                 "internal(0x%p): depth(%d), start smid(%d)\n",
4549                 ioc->name, ioc->internal,
4550             ioc->internal_depth, ioc->internal_smid));
4551         /*
4552          * The number of NVMe page sized blocks needed is:
4553          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4554          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4555          * that is placed in the main message frame.  8 is the size of each PRP
4556          * entry or PRP list pointer entry.  8 is subtracted from page_size
4557          * because of the PRP list pointer entry at the end of a page, so this
4558          * is not counted as a PRP entry.  The 1 added page is a round up.
4559          *
4560          * To avoid allocation failures due to the amount of memory that could
4561          * be required for NVMe PRP's, only each set of NVMe blocks will be
4562          * contiguous, so a new set is allocated for each possible I/O.
4563          */
4564         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4565                 nvme_blocks_needed =
4566                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4567                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4568                 nvme_blocks_needed++;
4569
4570                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4571                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4572                 if (!ioc->pcie_sg_lookup) {
4573                         pr_info(MPT3SAS_FMT
4574                             "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4575                         goto out;
4576                 }
4577                 sz = nvme_blocks_needed * ioc->page_size;
4578                 ioc->pcie_sgl_dma_pool =
4579                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4580                 if (!ioc->pcie_sgl_dma_pool) {
4581                         pr_info(MPT3SAS_FMT
4582                             "PCIe SGL pool: dma_pool_create failed\n",
4583                             ioc->name);
4584                         goto out;
4585                 }
4586                 for (i = 0; i < ioc->scsiio_depth; i++) {
4587                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4588                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4589                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4590                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4591                                 pr_info(MPT3SAS_FMT
4592                                     "PCIe SGL pool: dma_pool_alloc failed\n",
4593                                     ioc->name);
4594                                 goto out;
4595                         }
4596                 }
4597
4598                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4599                         "element_size(%d), pool_size(%d kB)\n", ioc->name,
4600                         ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4601                 total_sz += sz * ioc->scsiio_depth;
4602         }
4603         /* sense buffers, 4 byte align */
4604         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4605         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4606                                               4, 0);
4607         if (!ioc->sense_dma_pool) {
4608                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4609                     ioc->name);
4610                 goto out;
4611         }
4612         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4613             &ioc->sense_dma);
4614         if (!ioc->sense) {
4615                 pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4616                     ioc->name);
4617                 goto out;
4618         }
4619         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4620             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4621             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4622             SCSI_SENSE_BUFFERSIZE, sz/1024));
4623         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4624             ioc->name, (unsigned long long)ioc->sense_dma));
4625         total_sz += sz;
4626
4627         /* reply pool, 4 byte align */
4628         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4629         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4630                                               4, 0);
4631         if (!ioc->reply_dma_pool) {
4632                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4633                     ioc->name);
4634                 goto out;
4635         }
4636         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4637             &ioc->reply_dma);
4638         if (!ioc->reply) {
4639                 pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4640                     ioc->name);
4641                 goto out;
4642         }
4643         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4644         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4645         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4646                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4647                 ioc->name, ioc->reply,
4648             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4649         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4650             ioc->name, (unsigned long long)ioc->reply_dma));
4651         total_sz += sz;
4652
4653         /* reply free queue, 16 byte align */
4654         sz = ioc->reply_free_queue_depth * 4;
4655         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4656             &ioc->pdev->dev, sz, 16, 0);
4657         if (!ioc->reply_free_dma_pool) {
4658                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4659                         ioc->name);
4660                 goto out;
4661         }
4662         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4663             &ioc->reply_free_dma);
4664         if (!ioc->reply_free) {
4665                 pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4666                         ioc->name);
4667                 goto out;
4668         }
4669         memset(ioc->reply_free, 0, sz);
4670         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4671             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4672             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4673         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4674                 "reply_free_dma (0x%llx)\n",
4675                 ioc->name, (unsigned long long)ioc->reply_free_dma));
4676         total_sz += sz;
4677
4678         ioc->config_page_sz = 512;
4679         ioc->config_page = pci_alloc_consistent(ioc->pdev,
4680             ioc->config_page_sz, &ioc->config_page_dma);
4681         if (!ioc->config_page) {
4682                 pr_err(MPT3SAS_FMT
4683                         "config page: dma_pool_alloc failed\n",
4684                         ioc->name);
4685                 goto out;
4686         }
4687         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4688                 "config page(0x%p): size(%d)\n",
4689                 ioc->name, ioc->config_page, ioc->config_page_sz));
4690         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4691                 ioc->name, (unsigned long long)ioc->config_page_dma));
4692         total_sz += ioc->config_page_sz;
4693
4694         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4695             ioc->name, total_sz/1024);
4696         pr_info(MPT3SAS_FMT
4697                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4698             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4699         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4700             ioc->name, ioc->shost->sg_tablesize);
4701         return 0;
4702
4703  out:
4704         return -ENOMEM;
4705 }
4706
4707 /**
4708  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4709  * @ioc: Pointer to MPT_ADAPTER structure
4710  * @cooked: Request raw or cooked IOC state
4711  *
4712  * Returns all IOC Doorbell register bits if cooked==0, else just the
4713  * Doorbell bits in MPI_IOC_STATE_MASK.
4714  */
4715 u32
4716 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4717 {
4718         u32 s, sc;
4719
4720         s = readl(&ioc->chip->Doorbell);
4721         sc = s & MPI2_IOC_STATE_MASK;
4722         return cooked ? sc : s;
4723 }
4724
4725 /**
4726  * _base_wait_on_iocstate - waiting on a particular ioc state
4727  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4728  * @timeout: timeout in second
4729  *
4730  * Returns 0 for success, non-zero for failure.
4731  */
4732 static int
4733 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4734 {
4735         u32 count, cntdn;
4736         u32 current_state;
4737
4738         count = 0;
4739         cntdn = 1000 * timeout;
4740         do {
4741                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
4742                 if (current_state == ioc_state)
4743                         return 0;
4744                 if (count && current_state == MPI2_IOC_STATE_FAULT)
4745                         break;
4746
4747                 usleep_range(1000, 1500);
4748                 count++;
4749         } while (--cntdn);
4750
4751         return current_state;
4752 }
4753
4754 /**
4755  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4756  * a write to the doorbell)
4757  * @ioc: per adapter object
4758  * @timeout: timeout in second
4759  *
4760  * Returns 0 for success, non-zero for failure.
4761  *
4762  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4763  */
4764 static int
4765 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4766
4767 static int
4768 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4769 {
4770         u32 cntdn, count;
4771         u32 int_status;
4772
4773         count = 0;
4774         cntdn = 1000 * timeout;
4775         do {
4776                 int_status = readl(&ioc->chip->HostInterruptStatus);
4777                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4778                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
4779                                 "%s: successful count(%d), timeout(%d)\n",
4780                                 ioc->name, __func__, count, timeout));
4781                         return 0;
4782                 }
4783
4784                 usleep_range(1000, 1500);
4785                 count++;
4786         } while (--cntdn);
4787
4788         pr_err(MPT3SAS_FMT
4789                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4790                 ioc->name, __func__, count, int_status);
4791         return -EFAULT;
4792 }
4793
4794 static int
4795 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4796 {
4797         u32 cntdn, count;
4798         u32 int_status;
4799
4800         count = 0;
4801         cntdn = 2000 * timeout;
4802         do {
4803                 int_status = readl(&ioc->chip->HostInterruptStatus);
4804                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4805                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
4806                                 "%s: successful count(%d), timeout(%d)\n",
4807                                 ioc->name, __func__, count, timeout));
4808                         return 0;
4809                 }
4810
4811                 udelay(500);
4812                 count++;
4813         } while (--cntdn);
4814
4815         pr_err(MPT3SAS_FMT
4816                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4817                 ioc->name, __func__, count, int_status);
4818         return -EFAULT;
4819
4820 }
4821
4822 /**
4823  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4824  * @ioc: per adapter object
4825  * @timeout: timeout in second
4826  *
4827  * Returns 0 for success, non-zero for failure.
4828  *
4829  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
4830  * doorbell.
4831  */
4832 static int
4833 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
4834 {
4835         u32 cntdn, count;
4836         u32 int_status;
4837         u32 doorbell;
4838
4839         count = 0;
4840         cntdn = 1000 * timeout;
4841         do {
4842                 int_status = readl(&ioc->chip->HostInterruptStatus);
4843                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
4844                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
4845                                 "%s: successful count(%d), timeout(%d)\n",
4846                                 ioc->name, __func__, count, timeout));
4847                         return 0;
4848                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4849                         doorbell = readl(&ioc->chip->Doorbell);
4850                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
4851                             MPI2_IOC_STATE_FAULT) {
4852                                 mpt3sas_base_fault_info(ioc , doorbell);
4853                                 return -EFAULT;
4854                         }
4855                 } else if (int_status == 0xFFFFFFFF)
4856                         goto out;
4857
4858                 usleep_range(1000, 1500);
4859                 count++;
4860         } while (--cntdn);
4861
4862  out:
4863         pr_err(MPT3SAS_FMT
4864          "%s: failed due to timeout count(%d), int_status(%x)!\n",
4865          ioc->name, __func__, count, int_status);
4866         return -EFAULT;
4867 }
4868
4869 /**
4870  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
4871  * @ioc: per adapter object
4872  * @timeout: timeout in second
4873  *
4874  * Returns 0 for success, non-zero for failure.
4875  *
4876  */
4877 static int
4878 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
4879 {
4880         u32 cntdn, count;
4881         u32 doorbell_reg;
4882
4883         count = 0;
4884         cntdn = 1000 * timeout;
4885         do {
4886                 doorbell_reg = readl(&ioc->chip->Doorbell);
4887                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
4888                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
4889                                 "%s: successful count(%d), timeout(%d)\n",
4890                                 ioc->name, __func__, count, timeout));
4891                         return 0;
4892                 }
4893
4894                 usleep_range(1000, 1500);
4895                 count++;
4896         } while (--cntdn);
4897
4898         pr_err(MPT3SAS_FMT
4899                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
4900                 ioc->name, __func__, count, doorbell_reg);
4901         return -EFAULT;
4902 }
4903
4904 /**
4905  * _base_send_ioc_reset - send doorbell reset
4906  * @ioc: per adapter object
4907  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
4908  * @timeout: timeout in second
4909  *
4910  * Returns 0 for success, non-zero for failure.
4911  */
4912 static int
4913 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
4914 {
4915         u32 ioc_state;
4916         int r = 0;
4917
4918         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
4919                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
4920                     ioc->name, __func__);
4921                 return -EFAULT;
4922         }
4923
4924         if (!(ioc->facts.IOCCapabilities &
4925            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
4926                 return -EFAULT;
4927
4928         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
4929
4930         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
4931             &ioc->chip->Doorbell);
4932         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
4933                 r = -EFAULT;
4934                 goto out;
4935         }
4936         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4937         if (ioc_state) {
4938                 pr_err(MPT3SAS_FMT
4939                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4940                         ioc->name, __func__, ioc_state);
4941                 r = -EFAULT;
4942                 goto out;
4943         }
4944  out:
4945         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
4946             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
4947         return r;
4948 }
4949
4950 /**
4951  * _base_handshake_req_reply_wait - send request thru doorbell interface
4952  * @ioc: per adapter object
4953  * @request_bytes: request length
4954  * @request: pointer having request payload
4955  * @reply_bytes: reply length
4956  * @reply: pointer to reply payload
4957  * @timeout: timeout in second
4958  *
4959  * Returns 0 for success, non-zero for failure.
4960  */
4961 static int
4962 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
4963         u32 *request, int reply_bytes, u16 *reply, int timeout)
4964 {
4965         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
4966         int i;
4967         u8 failed;
4968         __le32 *mfp;
4969
4970         /* make sure doorbell is not in use */
4971         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4972                 pr_err(MPT3SAS_FMT
4973                         "doorbell is in use (line=%d)\n",
4974                         ioc->name, __LINE__);
4975                 return -EFAULT;
4976         }
4977
4978         /* clear pending doorbell interrupts from previous state changes */
4979         if (readl(&ioc->chip->HostInterruptStatus) &
4980             MPI2_HIS_IOC2SYS_DB_STATUS)
4981                 writel(0, &ioc->chip->HostInterruptStatus);
4982
4983         /* send message to ioc */
4984         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4985             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4986             &ioc->chip->Doorbell);
4987
4988         if ((_base_spin_on_doorbell_int(ioc, 5))) {
4989                 pr_err(MPT3SAS_FMT
4990                         "doorbell handshake int failed (line=%d)\n",
4991                         ioc->name, __LINE__);
4992                 return -EFAULT;
4993         }
4994         writel(0, &ioc->chip->HostInterruptStatus);
4995
4996         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4997                 pr_err(MPT3SAS_FMT
4998                         "doorbell handshake ack failed (line=%d)\n",
4999                         ioc->name, __LINE__);
5000                 return -EFAULT;
5001         }
5002
5003         /* send message 32-bits at a time */
5004         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5005                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5006                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5007                         failed = 1;
5008         }
5009
5010         if (failed) {
5011                 pr_err(MPT3SAS_FMT
5012                         "doorbell handshake sending request failed (line=%d)\n",
5013                         ioc->name, __LINE__);
5014                 return -EFAULT;
5015         }
5016
5017         /* now wait for the reply */
5018         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5019                 pr_err(MPT3SAS_FMT
5020                         "doorbell handshake int failed (line=%d)\n",
5021                         ioc->name, __LINE__);
5022                 return -EFAULT;
5023         }
5024
5025         /* read the first two 16-bits, it gives the total length of the reply */
5026         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5027             & MPI2_DOORBELL_DATA_MASK);
5028         writel(0, &ioc->chip->HostInterruptStatus);
5029         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5030                 pr_err(MPT3SAS_FMT
5031                         "doorbell handshake int failed (line=%d)\n",
5032                         ioc->name, __LINE__);
5033                 return -EFAULT;
5034         }
5035         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5036             & MPI2_DOORBELL_DATA_MASK);
5037         writel(0, &ioc->chip->HostInterruptStatus);
5038
5039         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5040                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5041                         pr_err(MPT3SAS_FMT
5042                                 "doorbell handshake int failed (line=%d)\n",
5043                                 ioc->name, __LINE__);
5044                         return -EFAULT;
5045                 }
5046                 if (i >=  reply_bytes/2) /* overflow case */
5047                         readl(&ioc->chip->Doorbell);
5048                 else
5049                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5050                             & MPI2_DOORBELL_DATA_MASK);
5051                 writel(0, &ioc->chip->HostInterruptStatus);
5052         }
5053
5054         _base_wait_for_doorbell_int(ioc, 5);
5055         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5056                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5057                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5058         }
5059         writel(0, &ioc->chip->HostInterruptStatus);
5060
5061         if (ioc->logging_level & MPT_DEBUG_INIT) {
5062                 mfp = (__le32 *)reply;
5063                 pr_info("\toffset:data\n");
5064                 for (i = 0; i < reply_bytes/4; i++)
5065                         pr_info("\t[0x%02x]:%08x\n", i*4,
5066                             le32_to_cpu(mfp[i]));
5067         }
5068         return 0;
5069 }
5070
5071 /**
5072  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5073  * @ioc: per adapter object
5074  * @mpi_reply: the reply payload from FW
5075  * @mpi_request: the request payload sent to FW
5076  *
5077  * The SAS IO Unit Control Request message allows the host to perform low-level
5078  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5079  * to obtain the IOC assigned device handles for a device if it has other
5080  * identifying information about the device, in addition allows the host to
5081  * remove IOC resources associated with the device.
5082  *
5083  * Returns 0 for success, non-zero for failure.
5084  */
5085 int
5086 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5087         Mpi2SasIoUnitControlReply_t *mpi_reply,
5088         Mpi2SasIoUnitControlRequest_t *mpi_request)
5089 {
5090         u16 smid;
5091         u32 ioc_state;
5092         bool issue_reset = false;
5093         int rc;
5094         void *request;
5095         u16 wait_state_count;
5096
5097         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5098             __func__));
5099
5100         mutex_lock(&ioc->base_cmds.mutex);
5101
5102         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5103                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5104                     ioc->name, __func__);
5105                 rc = -EAGAIN;
5106                 goto out;
5107         }
5108
5109         wait_state_count = 0;
5110         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5111         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5112                 if (wait_state_count++ == 10) {
5113                         pr_err(MPT3SAS_FMT
5114                             "%s: failed due to ioc not operational\n",
5115                             ioc->name, __func__);
5116                         rc = -EFAULT;
5117                         goto out;
5118                 }
5119                 ssleep(1);
5120                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5121                 pr_info(MPT3SAS_FMT
5122                         "%s: waiting for operational state(count=%d)\n",
5123                         ioc->name, __func__, wait_state_count);
5124         }
5125
5126         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5127         if (!smid) {
5128                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5129                     ioc->name, __func__);
5130                 rc = -EAGAIN;
5131                 goto out;
5132         }
5133
5134         rc = 0;
5135         ioc->base_cmds.status = MPT3_CMD_PENDING;
5136         request = mpt3sas_base_get_msg_frame(ioc, smid);
5137         ioc->base_cmds.smid = smid;
5138         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5139         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5140             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5141                 ioc->ioc_link_reset_in_progress = 1;
5142         init_completion(&ioc->base_cmds.done);
5143         mpt3sas_base_put_smid_default(ioc, smid);
5144         wait_for_completion_timeout(&ioc->base_cmds.done,
5145             msecs_to_jiffies(10000));
5146         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5147             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5148             ioc->ioc_link_reset_in_progress)
5149                 ioc->ioc_link_reset_in_progress = 0;
5150         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5151                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5152                     ioc->name, __func__);
5153                 _debug_dump_mf(mpi_request,
5154                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5155                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5156                         issue_reset = true;
5157                 goto issue_host_reset;
5158         }
5159         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5160                 memcpy(mpi_reply, ioc->base_cmds.reply,
5161                     sizeof(Mpi2SasIoUnitControlReply_t));
5162         else
5163                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5164         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5165         goto out;
5166
5167  issue_host_reset:
5168         if (issue_reset)
5169                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5170         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5171         rc = -EFAULT;
5172  out:
5173         mutex_unlock(&ioc->base_cmds.mutex);
5174         return rc;
5175 }
5176
5177 /**
5178  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5179  * @ioc: per adapter object
5180  * @mpi_reply: the reply payload from FW
5181  * @mpi_request: the request payload sent to FW
5182  *
5183  * The SCSI Enclosure Processor request message causes the IOC to
5184  * communicate with SES devices to control LED status signals.
5185  *
5186  * Returns 0 for success, non-zero for failure.
5187  */
5188 int
5189 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5190         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5191 {
5192         u16 smid;
5193         u32 ioc_state;
5194         bool issue_reset = false;
5195         int rc;
5196         void *request;
5197         u16 wait_state_count;
5198
5199         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5200             __func__));
5201
5202         mutex_lock(&ioc->base_cmds.mutex);
5203
5204         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5205                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5206                     ioc->name, __func__);
5207                 rc = -EAGAIN;
5208                 goto out;
5209         }
5210
5211         wait_state_count = 0;
5212         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5213         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5214                 if (wait_state_count++ == 10) {
5215                         pr_err(MPT3SAS_FMT
5216                             "%s: failed due to ioc not operational\n",
5217                             ioc->name, __func__);
5218                         rc = -EFAULT;
5219                         goto out;
5220                 }
5221                 ssleep(1);
5222                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5223                 pr_info(MPT3SAS_FMT
5224                         "%s: waiting for operational state(count=%d)\n",
5225                         ioc->name,
5226                     __func__, wait_state_count);
5227         }
5228
5229         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5230         if (!smid) {
5231                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5232                     ioc->name, __func__);
5233                 rc = -EAGAIN;
5234                 goto out;
5235         }
5236
5237         rc = 0;
5238         ioc->base_cmds.status = MPT3_CMD_PENDING;
5239         request = mpt3sas_base_get_msg_frame(ioc, smid);
5240         ioc->base_cmds.smid = smid;
5241         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5242         init_completion(&ioc->base_cmds.done);
5243         mpt3sas_base_put_smid_default(ioc, smid);
5244         wait_for_completion_timeout(&ioc->base_cmds.done,
5245             msecs_to_jiffies(10000));
5246         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5247                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5248                     ioc->name, __func__);
5249                 _debug_dump_mf(mpi_request,
5250                     sizeof(Mpi2SepRequest_t)/4);
5251                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
5252                         issue_reset = false;
5253                 goto issue_host_reset;
5254         }
5255         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5256                 memcpy(mpi_reply, ioc->base_cmds.reply,
5257                     sizeof(Mpi2SepReply_t));
5258         else
5259                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5260         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5261         goto out;
5262
5263  issue_host_reset:
5264         if (issue_reset)
5265                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5266         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5267         rc = -EFAULT;
5268  out:
5269         mutex_unlock(&ioc->base_cmds.mutex);
5270         return rc;
5271 }
5272
5273 /**
5274  * _base_get_port_facts - obtain port facts reply and save in ioc
5275  * @ioc: per adapter object
5276  *
5277  * Returns 0 for success, non-zero for failure.
5278  */
5279 static int
5280 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5281 {
5282         Mpi2PortFactsRequest_t mpi_request;
5283         Mpi2PortFactsReply_t mpi_reply;
5284         struct mpt3sas_port_facts *pfacts;
5285         int mpi_reply_sz, mpi_request_sz, r;
5286
5287         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5288             __func__));
5289
5290         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5291         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5292         memset(&mpi_request, 0, mpi_request_sz);
5293         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5294         mpi_request.PortNumber = port;
5295         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5296             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5297
5298         if (r != 0) {
5299                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5300                     ioc->name, __func__, r);
5301                 return r;
5302         }
5303
5304         pfacts = &ioc->pfacts[port];
5305         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5306         pfacts->PortNumber = mpi_reply.PortNumber;
5307         pfacts->VP_ID = mpi_reply.VP_ID;
5308         pfacts->VF_ID = mpi_reply.VF_ID;
5309         pfacts->MaxPostedCmdBuffers =
5310             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5311
5312         return 0;
5313 }
5314
5315 /**
5316  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5317  * @ioc: per adapter object
5318  * @timeout:
5319  *
5320  * Returns 0 for success, non-zero for failure.
5321  */
5322 static int
5323 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5324 {
5325         u32 ioc_state;
5326         int rc;
5327
5328         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5329             __func__));
5330
5331         if (ioc->pci_error_recovery) {
5332                 dfailprintk(ioc, printk(MPT3SAS_FMT
5333                     "%s: host in pci error recovery\n", ioc->name, __func__));
5334                 return -EFAULT;
5335         }
5336
5337         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5338         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5339             ioc->name, __func__, ioc_state));
5340
5341         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5342             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5343                 return 0;
5344
5345         if (ioc_state & MPI2_DOORBELL_USED) {
5346                 dhsprintk(ioc, printk(MPT3SAS_FMT
5347                     "unexpected doorbell active!\n", ioc->name));
5348                 goto issue_diag_reset;
5349         }
5350
5351         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5352                 mpt3sas_base_fault_info(ioc, ioc_state &
5353                     MPI2_DOORBELL_DATA_MASK);
5354                 goto issue_diag_reset;
5355         }
5356
5357         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5358         if (ioc_state) {
5359                 dfailprintk(ioc, printk(MPT3SAS_FMT
5360                     "%s: failed going to ready state (ioc_state=0x%x)\n",
5361                     ioc->name, __func__, ioc_state));
5362                 return -EFAULT;
5363         }
5364
5365  issue_diag_reset:
5366         rc = _base_diag_reset(ioc);
5367         return rc;
5368 }
5369
5370 /**
5371  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5372  * @ioc: per adapter object
5373  *
5374  * Returns 0 for success, non-zero for failure.
5375  */
5376 static int
5377 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5378 {
5379         Mpi2IOCFactsRequest_t mpi_request;
5380         Mpi2IOCFactsReply_t mpi_reply;
5381         struct mpt3sas_facts *facts;
5382         int mpi_reply_sz, mpi_request_sz, r;
5383
5384         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5385             __func__));
5386
5387         r = _base_wait_for_iocstate(ioc, 10);
5388         if (r) {
5389                 dfailprintk(ioc, printk(MPT3SAS_FMT
5390                     "%s: failed getting to correct state\n",
5391                     ioc->name, __func__));
5392                 return r;
5393         }
5394         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5395         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5396         memset(&mpi_request, 0, mpi_request_sz);
5397         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5398         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5399             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5400
5401         if (r != 0) {
5402                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5403                     ioc->name, __func__, r);
5404                 return r;
5405         }
5406
5407         facts = &ioc->facts;
5408         memset(facts, 0, sizeof(struct mpt3sas_facts));
5409         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5410         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5411         facts->VP_ID = mpi_reply.VP_ID;
5412         facts->VF_ID = mpi_reply.VF_ID;
5413         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5414         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5415         facts->WhoInit = mpi_reply.WhoInit;
5416         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5417         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5418         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5419         facts->MaxReplyDescriptorPostQueueDepth =
5420             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5421         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5422         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5423         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5424                 ioc->ir_firmware = 1;
5425         if ((facts->IOCCapabilities &
5426               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5427                 ioc->rdpq_array_capable = 1;
5428         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5429         facts->IOCRequestFrameSize =
5430             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5431         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5432                 facts->IOCMaxChainSegmentSize =
5433                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5434         }
5435         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5436         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5437         ioc->shost->max_id = -1;
5438         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5439         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5440         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5441         facts->HighPriorityCredit =
5442             le16_to_cpu(mpi_reply.HighPriorityCredit);
5443         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5444         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5445         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5446
5447         /*
5448          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5449          */
5450         ioc->page_size = 1 << facts->CurrentHostPageSize;
5451         if (ioc->page_size == 1) {
5452                 pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5453                         "default host page size to 4k\n", ioc->name);
5454                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5455         }
5456         dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5457                 ioc->name, facts->CurrentHostPageSize));
5458
5459         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5460                 "hba queue depth(%d), max chains per io(%d)\n",
5461                 ioc->name, facts->RequestCredit,
5462             facts->MaxChainDepth));
5463         dinitprintk(ioc, pr_info(MPT3SAS_FMT
5464                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
5465             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5466         return 0;
5467 }
5468
5469 /**
5470  * _base_send_ioc_init - send ioc_init to firmware
5471  * @ioc: per adapter object
5472  *
5473  * Returns 0 for success, non-zero for failure.
5474  */
5475 static int
5476 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5477 {
5478         Mpi2IOCInitRequest_t mpi_request;
5479         Mpi2IOCInitReply_t mpi_reply;
5480         int i, r = 0;
5481         ktime_t current_time;
5482         u16 ioc_status;
5483         u32 reply_post_free_array_sz = 0;
5484         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
5485         dma_addr_t reply_post_free_array_dma;
5486
5487         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5488             __func__));
5489
5490         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5491         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5492         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5493         mpi_request.VF_ID = 0; /* TODO */
5494         mpi_request.VP_ID = 0;
5495         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5496         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5497         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5498
5499         if (_base_is_controller_msix_enabled(ioc))
5500                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5501         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5502         mpi_request.ReplyDescriptorPostQueueDepth =
5503             cpu_to_le16(ioc->reply_post_queue_depth);
5504         mpi_request.ReplyFreeQueueDepth =
5505             cpu_to_le16(ioc->reply_free_queue_depth);
5506
5507         mpi_request.SenseBufferAddressHigh =
5508             cpu_to_le32((u64)ioc->sense_dma >> 32);
5509         mpi_request.SystemReplyAddressHigh =
5510             cpu_to_le32((u64)ioc->reply_dma >> 32);
5511         mpi_request.SystemRequestFrameBaseAddress =
5512             cpu_to_le64((u64)ioc->request_dma);
5513         mpi_request.ReplyFreeQueueAddress =
5514             cpu_to_le64((u64)ioc->reply_free_dma);
5515
5516         if (ioc->rdpq_array_enable) {
5517                 reply_post_free_array_sz = ioc->reply_queue_count *
5518                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5519                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
5520                         reply_post_free_array_sz, &reply_post_free_array_dma);
5521                 if (!reply_post_free_array) {
5522                         pr_err(MPT3SAS_FMT
5523                         "reply_post_free_array: pci_alloc_consistent failed\n",
5524                         ioc->name);
5525                         r = -ENOMEM;
5526                         goto out;
5527                 }
5528                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
5529                 for (i = 0; i < ioc->reply_queue_count; i++)
5530                         reply_post_free_array[i].RDPQBaseAddress =
5531                             cpu_to_le64(
5532                                 (u64)ioc->reply_post[i].reply_post_free_dma);
5533                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5534                 mpi_request.ReplyDescriptorPostQueueAddress =
5535                     cpu_to_le64((u64)reply_post_free_array_dma);
5536         } else {
5537                 mpi_request.ReplyDescriptorPostQueueAddress =
5538                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5539         }
5540
5541         /* This time stamp specifies number of milliseconds
5542          * since epoch ~ midnight January 1, 1970.
5543          */
5544         current_time = ktime_get_real();
5545         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5546
5547         if (ioc->logging_level & MPT_DEBUG_INIT) {
5548                 __le32 *mfp;
5549                 int i;
5550
5551                 mfp = (__le32 *)&mpi_request;
5552                 pr_info("\toffset:data\n");
5553                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5554                         pr_info("\t[0x%02x]:%08x\n", i*4,
5555                             le32_to_cpu(mfp[i]));
5556         }
5557
5558         r = _base_handshake_req_reply_wait(ioc,
5559             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5560             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5561
5562         if (r != 0) {
5563                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5564                     ioc->name, __func__, r);
5565                 goto out;
5566         }
5567
5568         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5569         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5570             mpi_reply.IOCLogInfo) {
5571                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5572                 r = -EIO;
5573         }
5574
5575 out:
5576         if (reply_post_free_array)
5577                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
5578                                     reply_post_free_array,
5579                                     reply_post_free_array_dma);
5580         return r;
5581 }
5582
5583 /**
5584  * mpt3sas_port_enable_done - command completion routine for port enable
5585  * @ioc: per adapter object
5586  * @smid: system request message index
5587  * @msix_index: MSIX table index supplied by the OS
5588  * @reply: reply message frame(lower 32bit addr)
5589  *
5590  * Return 1 meaning mf should be freed from _base_interrupt
5591  *        0 means the mf is freed from this function.
5592  */
5593 u8
5594 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5595         u32 reply)
5596 {
5597         MPI2DefaultReply_t *mpi_reply;
5598         u16 ioc_status;
5599
5600         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5601                 return 1;
5602
5603         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5604         if (!mpi_reply)
5605                 return 1;
5606
5607         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5608                 return 1;
5609
5610         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5611         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5612         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5613         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5614         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5615         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5616                 ioc->port_enable_failed = 1;
5617
5618         if (ioc->is_driver_loading) {
5619                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5620                         mpt3sas_port_enable_complete(ioc);
5621                         return 1;
5622                 } else {
5623                         ioc->start_scan_failed = ioc_status;
5624                         ioc->start_scan = 0;
5625                         return 1;
5626                 }
5627         }
5628         complete(&ioc->port_enable_cmds.done);
5629         return 1;
5630 }
5631
5632 /**
5633  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5634  * @ioc: per adapter object
5635  *
5636  * Returns 0 for success, non-zero for failure.
5637  */
5638 static int
5639 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5640 {
5641         Mpi2PortEnableRequest_t *mpi_request;
5642         Mpi2PortEnableReply_t *mpi_reply;
5643         int r = 0;
5644         u16 smid;
5645         u16 ioc_status;
5646
5647         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5648
5649         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5650                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5651                     ioc->name, __func__);
5652                 return -EAGAIN;
5653         }
5654
5655         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5656         if (!smid) {
5657                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5658                     ioc->name, __func__);
5659                 return -EAGAIN;
5660         }
5661
5662         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5663         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5664         ioc->port_enable_cmds.smid = smid;
5665         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5666         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5667
5668         init_completion(&ioc->port_enable_cmds.done);
5669         mpt3sas_base_put_smid_default(ioc, smid);
5670         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5671         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5672                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5673                     ioc->name, __func__);
5674                 _debug_dump_mf(mpi_request,
5675                     sizeof(Mpi2PortEnableRequest_t)/4);
5676                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5677                         r = -EFAULT;
5678                 else
5679                         r = -ETIME;
5680                 goto out;
5681         }
5682
5683         mpi_reply = ioc->port_enable_cmds.reply;
5684         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5685         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5686                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5687                     ioc->name, __func__, ioc_status);
5688                 r = -EFAULT;
5689                 goto out;
5690         }
5691
5692  out:
5693         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5694         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5695             "SUCCESS" : "FAILED"));
5696         return r;
5697 }
5698
5699 /**
5700  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5701  * @ioc: per adapter object
5702  *
5703  * Returns 0 for success, non-zero for failure.
5704  */
5705 int
5706 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5707 {
5708         Mpi2PortEnableRequest_t *mpi_request;
5709         u16 smid;
5710
5711         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5712
5713         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5714                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5715                     ioc->name, __func__);
5716                 return -EAGAIN;
5717         }
5718
5719         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5720         if (!smid) {
5721                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5722                     ioc->name, __func__);
5723                 return -EAGAIN;
5724         }
5725
5726         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5727         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5728         ioc->port_enable_cmds.smid = smid;
5729         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5730         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5731
5732         mpt3sas_base_put_smid_default(ioc, smid);
5733         return 0;
5734 }
5735
5736 /**
5737  * _base_determine_wait_on_discovery - desposition
5738  * @ioc: per adapter object
5739  *
5740  * Decide whether to wait on discovery to complete. Used to either
5741  * locate boot device, or report volumes ahead of physical devices.
5742  *
5743  * Returns 1 for wait, 0 for don't wait
5744  */
5745 static int
5746 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5747 {
5748         /* We wait for discovery to complete if IR firmware is loaded.
5749          * The sas topology events arrive before PD events, so we need time to
5750          * turn on the bit in ioc->pd_handles to indicate PD
5751          * Also, it maybe required to report Volumes ahead of physical
5752          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5753          */
5754         if (ioc->ir_firmware)
5755                 return 1;
5756
5757         /* if no Bios, then we don't need to wait */
5758         if (!ioc->bios_pg3.BiosVersion)
5759                 return 0;
5760
5761         /* Bios is present, then we drop down here.
5762          *
5763          * If there any entries in the Bios Page 2, then we wait
5764          * for discovery to complete.
5765          */
5766
5767         /* Current Boot Device */
5768         if ((ioc->bios_pg2.CurrentBootDeviceForm &
5769             MPI2_BIOSPAGE2_FORM_MASK) ==
5770             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5771         /* Request Boot Device */
5772            (ioc->bios_pg2.ReqBootDeviceForm &
5773             MPI2_BIOSPAGE2_FORM_MASK) ==
5774             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5775         /* Alternate Request Boot Device */
5776            (ioc->bios_pg2.ReqAltBootDeviceForm &
5777             MPI2_BIOSPAGE2_FORM_MASK) ==
5778             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5779                 return 0;
5780
5781         return 1;
5782 }
5783
5784 /**
5785  * _base_unmask_events - turn on notification for this event
5786  * @ioc: per adapter object
5787  * @event: firmware event
5788  *
5789  * The mask is stored in ioc->event_masks.
5790  */
5791 static void
5792 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5793 {
5794         u32 desired_event;
5795
5796         if (event >= 128)
5797                 return;
5798
5799         desired_event = (1 << (event % 32));
5800
5801         if (event < 32)
5802                 ioc->event_masks[0] &= ~desired_event;
5803         else if (event < 64)
5804                 ioc->event_masks[1] &= ~desired_event;
5805         else if (event < 96)
5806                 ioc->event_masks[2] &= ~desired_event;
5807         else if (event < 128)
5808                 ioc->event_masks[3] &= ~desired_event;
5809 }
5810
5811 /**
5812  * _base_event_notification - send event notification
5813  * @ioc: per adapter object
5814  *
5815  * Returns 0 for success, non-zero for failure.
5816  */
5817 static int
5818 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
5819 {
5820         Mpi2EventNotificationRequest_t *mpi_request;
5821         u16 smid;
5822         int r = 0;
5823         int i;
5824
5825         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5826             __func__));
5827
5828         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5829                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5830                     ioc->name, __func__);
5831                 return -EAGAIN;
5832         }
5833
5834         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5835         if (!smid) {
5836                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5837                     ioc->name, __func__);
5838                 return -EAGAIN;
5839         }
5840         ioc->base_cmds.status = MPT3_CMD_PENDING;
5841         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5842         ioc->base_cmds.smid = smid;
5843         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
5844         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
5845         mpi_request->VF_ID = 0; /* TODO */
5846         mpi_request->VP_ID = 0;
5847         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5848                 mpi_request->EventMasks[i] =
5849                     cpu_to_le32(ioc->event_masks[i]);
5850         init_completion(&ioc->base_cmds.done);
5851         mpt3sas_base_put_smid_default(ioc, smid);
5852         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
5853         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5854                 pr_err(MPT3SAS_FMT "%s: timeout\n",
5855                     ioc->name, __func__);
5856                 _debug_dump_mf(mpi_request,
5857                     sizeof(Mpi2EventNotificationRequest_t)/4);
5858                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
5859                         r = -EFAULT;
5860                 else
5861                         r = -ETIME;
5862         } else
5863                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
5864                     ioc->name, __func__));
5865         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5866         return r;
5867 }
5868
5869 /**
5870  * mpt3sas_base_validate_event_type - validating event types
5871  * @ioc: per adapter object
5872  * @event: firmware event
5873  *
5874  * This will turn on firmware event notification when application
5875  * ask for that event. We don't mask events that are already enabled.
5876  */
5877 void
5878 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
5879 {
5880         int i, j;
5881         u32 event_mask, desired_event;
5882         u8 send_update_to_fw;
5883
5884         for (i = 0, send_update_to_fw = 0; i <
5885             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
5886                 event_mask = ~event_type[i];
5887                 desired_event = 1;
5888                 for (j = 0; j < 32; j++) {
5889                         if (!(event_mask & desired_event) &&
5890                             (ioc->event_masks[i] & desired_event)) {
5891                                 ioc->event_masks[i] &= ~desired_event;
5892                                 send_update_to_fw = 1;
5893                         }
5894                         desired_event = (desired_event << 1);
5895                 }
5896         }
5897
5898         if (!send_update_to_fw)
5899                 return;
5900
5901         mutex_lock(&ioc->base_cmds.mutex);
5902         _base_event_notification(ioc);
5903         mutex_unlock(&ioc->base_cmds.mutex);
5904 }
5905
5906 /**
5907  * _base_diag_reset - the "big hammer" start of day reset
5908  * @ioc: per adapter object
5909  *
5910  * Returns 0 for success, non-zero for failure.
5911  */
5912 static int
5913 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
5914 {
5915         u32 host_diagnostic;
5916         u32 ioc_state;
5917         u32 count;
5918         u32 hcb_size;
5919
5920         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
5921
5922         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
5923             ioc->name));
5924
5925         count = 0;
5926         do {
5927                 /* Write magic sequence to WriteSequence register
5928                  * Loop until in diagnostic mode
5929                  */
5930                 drsprintk(ioc, pr_info(MPT3SAS_FMT
5931                         "write magic sequence\n", ioc->name));
5932                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5933                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
5934                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
5935                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
5936                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
5937                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
5938                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
5939
5940                 /* wait 100 msec */
5941                 msleep(100);
5942
5943                 if (count++ > 20)
5944                         goto out;
5945
5946                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5947                 drsprintk(ioc, pr_info(MPT3SAS_FMT
5948                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
5949                     ioc->name, count, host_diagnostic));
5950
5951         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
5952
5953         hcb_size = readl(&ioc->chip->HCBSize);
5954
5955         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
5956             ioc->name));
5957         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
5958              &ioc->chip->HostDiagnostic);
5959
5960         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
5961         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
5962
5963         /* Approximately 300 second max wait */
5964         for (count = 0; count < (300000000 /
5965                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
5966
5967                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5968
5969                 if (host_diagnostic == 0xFFFFFFFF)
5970                         goto out;
5971                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
5972                         break;
5973
5974                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
5975         }
5976
5977         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
5978
5979                 drsprintk(ioc, pr_info(MPT3SAS_FMT
5980                 "restart the adapter assuming the HCB Address points to good F/W\n",
5981                     ioc->name));
5982                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5983                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5984                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5985
5986                 drsprintk(ioc, pr_info(MPT3SAS_FMT
5987                     "re-enable the HCDW\n", ioc->name));
5988                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5989                     &ioc->chip->HCBSize);
5990         }
5991
5992         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5993             ioc->name));
5994         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5995             &ioc->chip->HostDiagnostic);
5996
5997         drsprintk(ioc, pr_info(MPT3SAS_FMT
5998                 "disable writes to the diagnostic register\n", ioc->name));
5999         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6000
6001         drsprintk(ioc, pr_info(MPT3SAS_FMT
6002                 "Wait for FW to go to the READY state\n", ioc->name));
6003         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6004         if (ioc_state) {
6005                 pr_err(MPT3SAS_FMT
6006                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6007                         ioc->name, __func__, ioc_state);
6008                 goto out;
6009         }
6010
6011         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6012         return 0;
6013
6014  out:
6015         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6016         return -EFAULT;
6017 }
6018
6019 /**
6020  * _base_make_ioc_ready - put controller in READY state
6021  * @ioc: per adapter object
6022  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6023  *
6024  * Returns 0 for success, non-zero for failure.
6025  */
6026 static int
6027 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6028 {
6029         u32 ioc_state;
6030         int rc;
6031         int count;
6032
6033         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6034             __func__));
6035
6036         if (ioc->pci_error_recovery)
6037                 return 0;
6038
6039         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6040         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6041             ioc->name, __func__, ioc_state));
6042
6043         /* if in RESET state, it should move to READY state shortly */
6044         count = 0;
6045         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6046                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6047                     MPI2_IOC_STATE_READY) {
6048                         if (count++ == 10) {
6049                                 pr_err(MPT3SAS_FMT
6050                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
6051                                     ioc->name, __func__, ioc_state);
6052                                 return -EFAULT;
6053                         }
6054                         ssleep(1);
6055                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6056                 }
6057         }
6058
6059         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6060                 return 0;
6061
6062         if (ioc_state & MPI2_DOORBELL_USED) {
6063                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
6064                         "unexpected doorbell active!\n",
6065                         ioc->name));
6066                 goto issue_diag_reset;
6067         }
6068
6069         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6070                 mpt3sas_base_fault_info(ioc, ioc_state &
6071                     MPI2_DOORBELL_DATA_MASK);
6072                 goto issue_diag_reset;
6073         }
6074
6075         if (type == FORCE_BIG_HAMMER)
6076                 goto issue_diag_reset;
6077
6078         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6079                 if (!(_base_send_ioc_reset(ioc,
6080                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6081                         return 0;
6082         }
6083
6084  issue_diag_reset:
6085         rc = _base_diag_reset(ioc);
6086         return rc;
6087 }
6088
6089 /**
6090  * _base_make_ioc_operational - put controller in OPERATIONAL state
6091  * @ioc: per adapter object
6092  *
6093  * Returns 0 for success, non-zero for failure.
6094  */
6095 static int
6096 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6097 {
6098         int r, i, index;
6099         unsigned long   flags;
6100         u32 reply_address;
6101         u16 smid;
6102         struct _tr_list *delayed_tr, *delayed_tr_next;
6103         struct _sc_list *delayed_sc, *delayed_sc_next;
6104         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6105         u8 hide_flag;
6106         struct adapter_reply_queue *reply_q;
6107         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6108
6109         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6110             __func__));
6111
6112         /* clean the delayed target reset list */
6113         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6114             &ioc->delayed_tr_list, list) {
6115                 list_del(&delayed_tr->list);
6116                 kfree(delayed_tr);
6117         }
6118
6119
6120         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6121             &ioc->delayed_tr_volume_list, list) {
6122                 list_del(&delayed_tr->list);
6123                 kfree(delayed_tr);
6124         }
6125
6126         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6127             &ioc->delayed_sc_list, list) {
6128                 list_del(&delayed_sc->list);
6129                 kfree(delayed_sc);
6130         }
6131
6132         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6133             &ioc->delayed_event_ack_list, list) {
6134                 list_del(&delayed_event_ack->list);
6135                 kfree(delayed_event_ack);
6136         }
6137
6138         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6139
6140         /* hi-priority queue */
6141         INIT_LIST_HEAD(&ioc->hpr_free_list);
6142         smid = ioc->hi_priority_smid;
6143         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6144                 ioc->hpr_lookup[i].cb_idx = 0xFF;
6145                 ioc->hpr_lookup[i].smid = smid;
6146                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6147                     &ioc->hpr_free_list);
6148         }
6149
6150         /* internal queue */
6151         INIT_LIST_HEAD(&ioc->internal_free_list);
6152         smid = ioc->internal_smid;
6153         for (i = 0; i < ioc->internal_depth; i++, smid++) {
6154                 ioc->internal_lookup[i].cb_idx = 0xFF;
6155                 ioc->internal_lookup[i].smid = smid;
6156                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6157                     &ioc->internal_free_list);
6158         }
6159
6160         /* chain pool */
6161         INIT_LIST_HEAD(&ioc->free_chain_list);
6162         for (i = 0; i < ioc->chain_depth; i++)
6163                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
6164                     &ioc->free_chain_list);
6165
6166         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6167
6168         /* initialize Reply Free Queue */
6169         for (i = 0, reply_address = (u32)ioc->reply_dma ;
6170             i < ioc->reply_free_queue_depth ; i++, reply_address +=
6171             ioc->reply_sz) {
6172                 ioc->reply_free[i] = cpu_to_le32(reply_address);
6173                 if (ioc->is_mcpu_endpoint)
6174                         _base_clone_reply_to_sys_mem(ioc,
6175                                         (__le32)reply_address, i);
6176         }
6177
6178         /* initialize reply queues */
6179         if (ioc->is_driver_loading)
6180                 _base_assign_reply_queues(ioc);
6181
6182         /* initialize Reply Post Free Queue */
6183         index = 0;
6184         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6185         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6186                 /*
6187                  * If RDPQ is enabled, switch to the next allocation.
6188                  * Otherwise advance within the contiguous region.
6189                  */
6190                 if (ioc->rdpq_array_enable) {
6191                         reply_q->reply_post_free =
6192                                 ioc->reply_post[index++].reply_post_free;
6193                 } else {
6194                         reply_q->reply_post_free = reply_post_free_contig;
6195                         reply_post_free_contig += ioc->reply_post_queue_depth;
6196                 }
6197
6198                 reply_q->reply_post_host_index = 0;
6199                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6200                         reply_q->reply_post_free[i].Words =
6201                             cpu_to_le64(ULLONG_MAX);
6202                 if (!_base_is_controller_msix_enabled(ioc))
6203                         goto skip_init_reply_post_free_queue;
6204         }
6205  skip_init_reply_post_free_queue:
6206
6207         r = _base_send_ioc_init(ioc);
6208         if (r)
6209                 return r;
6210
6211         /* initialize reply free host index */
6212         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6213         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6214
6215         /* initialize reply post host index */
6216         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6217                 if (ioc->combined_reply_queue)
6218                         writel((reply_q->msix_index & 7)<<
6219                            MPI2_RPHI_MSIX_INDEX_SHIFT,
6220                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6221                 else
6222                         writel(reply_q->msix_index <<
6223                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
6224                                 &ioc->chip->ReplyPostHostIndex);
6225
6226                 if (!_base_is_controller_msix_enabled(ioc))
6227                         goto skip_init_reply_post_host_index;
6228         }
6229
6230  skip_init_reply_post_host_index:
6231
6232         _base_unmask_interrupts(ioc);
6233         r = _base_event_notification(ioc);
6234         if (r)
6235                 return r;
6236
6237         _base_static_config_pages(ioc);
6238
6239         if (ioc->is_driver_loading) {
6240
6241                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6242                     == 0x80) {
6243                         hide_flag = (u8) (
6244                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6245                             MFG_PAGE10_HIDE_SSDS_MASK);
6246                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6247                                 ioc->mfg_pg10_hide_flag = hide_flag;
6248                 }
6249
6250                 ioc->wait_for_discovery_to_complete =
6251                     _base_determine_wait_on_discovery(ioc);
6252
6253                 return r; /* scan_start and scan_finished support */
6254         }
6255
6256         r = _base_send_port_enable(ioc);
6257         if (r)
6258                 return r;
6259
6260         return r;
6261 }
6262
6263 /**
6264  * mpt3sas_base_free_resources - free resources controller resources
6265  * @ioc: per adapter object
6266  *
6267  * Return nothing.
6268  */
6269 void
6270 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6271 {
6272         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6273             __func__));
6274
6275         /* synchronizing freeing resource with pci_access_mutex lock */
6276         mutex_lock(&ioc->pci_access_mutex);
6277         if (ioc->chip_phys && ioc->chip) {
6278                 _base_mask_interrupts(ioc);
6279                 ioc->shost_recovery = 1;
6280                 _base_make_ioc_ready(ioc, SOFT_RESET);
6281                 ioc->shost_recovery = 0;
6282         }
6283
6284         mpt3sas_base_unmap_resources(ioc);
6285         mutex_unlock(&ioc->pci_access_mutex);
6286         return;
6287 }
6288
6289 /**
6290  * mpt3sas_base_attach - attach controller instance
6291  * @ioc: per adapter object
6292  *
6293  * Returns 0 for success, non-zero for failure.
6294  */
6295 int
6296 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6297 {
6298         int r, i;
6299         int cpu_id, last_cpu_id = 0;
6300
6301         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6302             __func__));
6303
6304         /* setup cpu_msix_table */
6305         ioc->cpu_count = num_online_cpus();
6306         for_each_online_cpu(cpu_id)
6307                 last_cpu_id = cpu_id;
6308         ioc->cpu_msix_table_sz = last_cpu_id + 1;
6309         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6310         ioc->reply_queue_count = 1;
6311         if (!ioc->cpu_msix_table) {
6312                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6313                         "allocation for cpu_msix_table failed!!!\n",
6314                         ioc->name));
6315                 r = -ENOMEM;
6316                 goto out_free_resources;
6317         }
6318
6319         if (ioc->is_warpdrive) {
6320                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6321                     sizeof(resource_size_t *), GFP_KERNEL);
6322                 if (!ioc->reply_post_host_index) {
6323                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6324                                 "for reply_post_host_index failed!!!\n",
6325                                 ioc->name));
6326                         r = -ENOMEM;
6327                         goto out_free_resources;
6328                 }
6329         }
6330
6331         ioc->rdpq_array_enable_assigned = 0;
6332         ioc->dma_mask = 0;
6333         r = mpt3sas_base_map_resources(ioc);
6334         if (r)
6335                 goto out_free_resources;
6336
6337         pci_set_drvdata(ioc->pdev, ioc->shost);
6338         r = _base_get_ioc_facts(ioc);
6339         if (r)
6340                 goto out_free_resources;
6341
6342         switch (ioc->hba_mpi_version_belonged) {
6343         case MPI2_VERSION:
6344                 ioc->build_sg_scmd = &_base_build_sg_scmd;
6345                 ioc->build_sg = &_base_build_sg;
6346                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6347                 break;
6348         case MPI25_VERSION:
6349         case MPI26_VERSION:
6350                 /*
6351                  * In SAS3.0,
6352                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6353                  * Target Status - all require the IEEE formated scatter gather
6354                  * elements.
6355                  */
6356                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6357                 ioc->build_sg = &_base_build_sg_ieee;
6358                 ioc->build_nvme_prp = &_base_build_nvme_prp;
6359                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6360                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6361
6362                 break;
6363         }
6364
6365         if (ioc->is_mcpu_endpoint)
6366                 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6367         else
6368                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6369
6370         /*
6371          * These function pointers for other requests that don't
6372          * the require IEEE scatter gather elements.
6373          *
6374          * For example Configuration Pages and SAS IOUNIT Control don't.
6375          */
6376         ioc->build_sg_mpi = &_base_build_sg;
6377         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6378
6379         r = _base_make_ioc_ready(ioc, SOFT_RESET);
6380         if (r)
6381                 goto out_free_resources;
6382
6383         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6384             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6385         if (!ioc->pfacts) {
6386                 r = -ENOMEM;
6387                 goto out_free_resources;
6388         }
6389
6390         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6391                 r = _base_get_port_facts(ioc, i);
6392                 if (r)
6393                         goto out_free_resources;
6394         }
6395
6396         r = _base_allocate_memory_pools(ioc);
6397         if (r)
6398                 goto out_free_resources;
6399
6400         init_waitqueue_head(&ioc->reset_wq);
6401
6402         /* allocate memory pd handle bitmask list */
6403         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6404         if (ioc->facts.MaxDevHandle % 8)
6405                 ioc->pd_handles_sz++;
6406         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6407             GFP_KERNEL);
6408         if (!ioc->pd_handles) {
6409                 r = -ENOMEM;
6410                 goto out_free_resources;
6411         }
6412         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6413             GFP_KERNEL);
6414         if (!ioc->blocking_handles) {
6415                 r = -ENOMEM;
6416                 goto out_free_resources;
6417         }
6418
6419         /* allocate memory for pending OS device add list */
6420         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6421         if (ioc->facts.MaxDevHandle % 8)
6422                 ioc->pend_os_device_add_sz++;
6423         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6424             GFP_KERNEL);
6425         if (!ioc->pend_os_device_add)
6426                 goto out_free_resources;
6427
6428         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6429         ioc->device_remove_in_progress =
6430                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6431         if (!ioc->device_remove_in_progress)
6432                 goto out_free_resources;
6433
6434         ioc->fwfault_debug = mpt3sas_fwfault_debug;
6435
6436         /* base internal command bits */
6437         mutex_init(&ioc->base_cmds.mutex);
6438         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6439         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6440
6441         /* port_enable command bits */
6442         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6443         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6444
6445         /* transport internal command bits */
6446         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6447         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6448         mutex_init(&ioc->transport_cmds.mutex);
6449
6450         /* scsih internal command bits */
6451         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6452         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6453         mutex_init(&ioc->scsih_cmds.mutex);
6454
6455         /* task management internal command bits */
6456         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6457         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6458         mutex_init(&ioc->tm_cmds.mutex);
6459
6460         /* config page internal command bits */
6461         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6462         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6463         mutex_init(&ioc->config_cmds.mutex);
6464
6465         /* ctl module internal command bits */
6466         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6467         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6468         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6469         mutex_init(&ioc->ctl_cmds.mutex);
6470
6471         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6472             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6473             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6474             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6475                 r = -ENOMEM;
6476                 goto out_free_resources;
6477         }
6478
6479         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6480                 ioc->event_masks[i] = -1;
6481
6482         /* here we enable the events we care about */
6483         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6484         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6485         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6486         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6487         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6488         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6489         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6490         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6491         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6492         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6493         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6494         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6495         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6496                 if (ioc->is_gen35_ioc) {
6497                         _base_unmask_events(ioc,
6498                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6499                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6500                         _base_unmask_events(ioc,
6501                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6502                 }
6503         }
6504         r = _base_make_ioc_operational(ioc);
6505         if (r)
6506                 goto out_free_resources;
6507
6508         ioc->non_operational_loop = 0;
6509         ioc->got_task_abort_from_ioctl = 0;
6510         return 0;
6511
6512  out_free_resources:
6513
6514         ioc->remove_host = 1;
6515
6516         mpt3sas_base_free_resources(ioc);
6517         _base_release_memory_pools(ioc);
6518         pci_set_drvdata(ioc->pdev, NULL);
6519         kfree(ioc->cpu_msix_table);
6520         if (ioc->is_warpdrive)
6521                 kfree(ioc->reply_post_host_index);
6522         kfree(ioc->pd_handles);
6523         kfree(ioc->blocking_handles);
6524         kfree(ioc->device_remove_in_progress);
6525         kfree(ioc->pend_os_device_add);
6526         kfree(ioc->tm_cmds.reply);
6527         kfree(ioc->transport_cmds.reply);
6528         kfree(ioc->scsih_cmds.reply);
6529         kfree(ioc->config_cmds.reply);
6530         kfree(ioc->base_cmds.reply);
6531         kfree(ioc->port_enable_cmds.reply);
6532         kfree(ioc->ctl_cmds.reply);
6533         kfree(ioc->ctl_cmds.sense);
6534         kfree(ioc->pfacts);
6535         ioc->ctl_cmds.reply = NULL;
6536         ioc->base_cmds.reply = NULL;
6537         ioc->tm_cmds.reply = NULL;
6538         ioc->scsih_cmds.reply = NULL;
6539         ioc->transport_cmds.reply = NULL;
6540         ioc->config_cmds.reply = NULL;
6541         ioc->pfacts = NULL;
6542         return r;
6543 }
6544
6545
6546 /**
6547  * mpt3sas_base_detach - remove controller instance
6548  * @ioc: per adapter object
6549  *
6550  * Return nothing.
6551  */
6552 void
6553 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6554 {
6555         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6556             __func__));
6557
6558         mpt3sas_base_stop_watchdog(ioc);
6559         mpt3sas_base_free_resources(ioc);
6560         _base_release_memory_pools(ioc);
6561         pci_set_drvdata(ioc->pdev, NULL);
6562         kfree(ioc->cpu_msix_table);
6563         if (ioc->is_warpdrive)
6564                 kfree(ioc->reply_post_host_index);
6565         kfree(ioc->pd_handles);
6566         kfree(ioc->blocking_handles);
6567         kfree(ioc->device_remove_in_progress);
6568         kfree(ioc->pend_os_device_add);
6569         kfree(ioc->pfacts);
6570         kfree(ioc->ctl_cmds.reply);
6571         kfree(ioc->ctl_cmds.sense);
6572         kfree(ioc->base_cmds.reply);
6573         kfree(ioc->port_enable_cmds.reply);
6574         kfree(ioc->tm_cmds.reply);
6575         kfree(ioc->transport_cmds.reply);
6576         kfree(ioc->scsih_cmds.reply);
6577         kfree(ioc->config_cmds.reply);
6578 }
6579
6580 /**
6581  * _base_reset_handler - reset callback handler (for base)
6582  * @ioc: per adapter object
6583  * @reset_phase: phase
6584  *
6585  * The handler for doing any required cleanup or initialization.
6586  *
6587  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6588  * MPT3_IOC_DONE_RESET
6589  *
6590  * Return nothing.
6591  */
6592 static void
6593 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6594 {
6595         mpt3sas_scsih_reset_handler(ioc, reset_phase);
6596         mpt3sas_ctl_reset_handler(ioc, reset_phase);
6597         switch (reset_phase) {
6598         case MPT3_IOC_PRE_RESET:
6599                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6600                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6601                 break;
6602         case MPT3_IOC_AFTER_RESET:
6603                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6604                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6605                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6606                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
6607                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6608                         complete(&ioc->transport_cmds.done);
6609                 }
6610                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6611                         ioc->base_cmds.status |= MPT3_CMD_RESET;
6612                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6613                         complete(&ioc->base_cmds.done);
6614                 }
6615                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6616                         ioc->port_enable_failed = 1;
6617                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6618                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6619                         if (ioc->is_driver_loading) {
6620                                 ioc->start_scan_failed =
6621                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
6622                                 ioc->start_scan = 0;
6623                                 ioc->port_enable_cmds.status =
6624                                     MPT3_CMD_NOT_USED;
6625                         } else
6626                                 complete(&ioc->port_enable_cmds.done);
6627                 }
6628                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6629                         ioc->config_cmds.status |= MPT3_CMD_RESET;
6630                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6631                         ioc->config_cmds.smid = USHRT_MAX;
6632                         complete(&ioc->config_cmds.done);
6633                 }
6634                 break;
6635         case MPT3_IOC_DONE_RESET:
6636                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
6637                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6638                 break;
6639         }
6640 }
6641
6642 /**
6643  * mpt3sas_wait_for_commands_to_complete - reset controller
6644  * @ioc: Pointer to MPT_ADAPTER structure
6645  *
6646  * This function is waiting 10s for all pending commands to complete
6647  * prior to putting controller in reset.
6648  */
6649 void
6650 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6651 {
6652         u32 ioc_state;
6653
6654         ioc->pending_io_count = 0;
6655
6656         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6657         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6658                 return;
6659
6660         /* pending command count */
6661         ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6662
6663         if (!ioc->pending_io_count)
6664                 return;
6665
6666         /* wait for pending commands to complete */
6667         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6668 }
6669
6670 /**
6671  * mpt3sas_base_hard_reset_handler - reset controller
6672  * @ioc: Pointer to MPT_ADAPTER structure
6673  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6674  *
6675  * Returns 0 for success, non-zero for failure.
6676  */
6677 int
6678 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6679         enum reset_type type)
6680 {
6681         int r;
6682         unsigned long flags;
6683         u32 ioc_state;
6684         u8 is_fault = 0, is_trigger = 0;
6685
6686         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6687             __func__));
6688
6689         if (ioc->pci_error_recovery) {
6690                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6691                     ioc->name, __func__);
6692                 r = 0;
6693                 goto out_unlocked;
6694         }
6695
6696         if (mpt3sas_fwfault_debug)
6697                 mpt3sas_halt_firmware(ioc);
6698
6699         /* wait for an active reset in progress to complete */
6700         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6701                 do {
6702                         ssleep(1);
6703                 } while (ioc->shost_recovery == 1);
6704                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6705                     __func__));
6706                 return ioc->ioc_reset_in_progress_status;
6707         }
6708
6709         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6710         ioc->shost_recovery = 1;
6711         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6712
6713         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6714             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6715             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6716             MPT3_DIAG_BUFFER_IS_RELEASED))) {
6717                 is_trigger = 1;
6718                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6719                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6720                         is_fault = 1;
6721         }
6722         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6723         mpt3sas_wait_for_commands_to_complete(ioc);
6724         _base_mask_interrupts(ioc);
6725         r = _base_make_ioc_ready(ioc, type);
6726         if (r)
6727                 goto out;
6728         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6729
6730         /* If this hard reset is called while port enable is active, then
6731          * there is no reason to call make_ioc_operational
6732          */
6733         if (ioc->is_driver_loading && ioc->port_enable_failed) {
6734                 ioc->remove_host = 1;
6735                 r = -EFAULT;
6736                 goto out;
6737         }
6738         r = _base_get_ioc_facts(ioc);
6739         if (r)
6740                 goto out;
6741
6742         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6743                 panic("%s: Issue occurred with flashing controller firmware."
6744                       "Please reboot the system and ensure that the correct"
6745                       " firmware version is running\n", ioc->name);
6746
6747         r = _base_make_ioc_operational(ioc);
6748         if (!r)
6749                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
6750
6751  out:
6752         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6753             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6754
6755         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6756         ioc->ioc_reset_in_progress_status = r;
6757         ioc->shost_recovery = 0;
6758         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6759         ioc->ioc_reset_count++;
6760         mutex_unlock(&ioc->reset_in_progress_mutex);
6761
6762  out_unlocked:
6763         if ((r == 0) && is_trigger) {
6764                 if (is_fault)
6765                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6766                 else
6767                         mpt3sas_trigger_master(ioc,
6768                             MASTER_TRIGGER_ADAPTER_RESET);
6769         }
6770         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6771             __func__));
6772         return r;
6773 }