Merge tag 'nvme-6.1-2022-11-10' of git://git.infradead.org/nvme into block-6.1
[linux-block.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config can't commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc, mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                         cpu_relax();
1587                         udelay(500);
1588                 }
1589         }
1590 }
1591
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601         int iopoll_q_count =
1602             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603         int qid;
1604
1605         for (qid = 0; qid < iopoll_q_count; qid++)
1606                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618         u32 him_register;
1619
1620         ioc->mask_interrupts = 1;
1621         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623         writel(him_register, &ioc->chip->HostInterruptMask);
1624         ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636         u32 him_register;
1637
1638         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639         him_register &= ~MPI2_HIM_RIM;
1640         writel(him_register, &ioc->chip->HostInterruptMask);
1641         ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645         u64 word;
1646         struct {
1647                 u32 low;
1648                 u32 high;
1649         } u;
1650 };
1651
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654         u32 remainder;
1655
1656         if (!divisor)
1657                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658         remainder = do_div(dividend, divisor);
1659         return remainder;
1660 }
1661
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *              descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *              descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673         union reply_descriptor rd;
1674         u64 completed_cmds;
1675         u8 request_descript_type;
1676         u16 smid;
1677         u8 cb_idx;
1678         u32 reply;
1679         u8 msix_index = reply_q->msix_index;
1680         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681         Mpi2ReplyDescriptorsUnion_t *rpf;
1682         u8 rc;
1683
1684         completed_cmds = 0;
1685         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                 return completed_cmds;
1687
1688         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689         request_descript_type = rpf->Default.ReplyFlags
1690              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                 atomic_dec(&reply_q->busy);
1693                 return completed_cmds;
1694         }
1695
1696         cb_idx = 0xFF;
1697         do {
1698                 rd.word = le64_to_cpu(rpf->Words);
1699                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                         goto out;
1701                 reply = 0;
1702                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                 if (request_descript_type ==
1704                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                     request_descript_type ==
1708                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                         cb_idx = _base_get_cb_idx(ioc, smid);
1710                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                     msix_index, 0);
1714                                 if (rc)
1715                                         mpt3sas_base_free_smid(ioc, smid);
1716                         }
1717                 } else if (request_descript_type ==
1718                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                         reply = le32_to_cpu(
1720                             rpf->AddressReply.ReplyFrameAddress);
1721                         if (reply > ioc->reply_dma_max_address ||
1722                             reply < ioc->reply_dma_min_address)
1723                                 reply = 0;
1724                         if (smid) {
1725                                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                             msix_index, reply);
1730                                         if (reply)
1731                                                 _base_display_reply_info(ioc,
1732                                                     smid, msix_index, reply);
1733                                         if (rc)
1734                                                 mpt3sas_base_free_smid(ioc,
1735                                                     smid);
1736                                 }
1737                         } else {
1738                                 _base_async_event(ioc, msix_index, reply);
1739                         }
1740
1741                         /* reply free queue handling */
1742                         if (reply) {
1743                                 ioc->reply_free_host_index =
1744                                     (ioc->reply_free_host_index ==
1745                                     (ioc->reply_free_queue_depth - 1)) ?
1746                                     0 : ioc->reply_free_host_index + 1;
1747                                 ioc->reply_free[ioc->reply_free_host_index] =
1748                                     cpu_to_le32(reply);
1749                                 if (ioc->is_mcpu_endpoint)
1750                                         _base_clone_reply_to_sys_mem(ioc,
1751                                                 reply,
1752                                                 ioc->reply_free_host_index);
1753                                 writel(ioc->reply_free_host_index,
1754                                     &ioc->chip->ReplyFreeHostIndex);
1755                         }
1756                 }
1757
1758                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                 reply_q->reply_post_host_index =
1760                     (reply_q->reply_post_host_index ==
1761                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                     reply_q->reply_post_host_index + 1;
1763                 request_descript_type =
1764                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                 completed_cmds++;
1767                 /* Update the reply post host index after continuously
1768                  * processing the threshold number of Reply Descriptors.
1769                  * So that FW can find enough entries to post the Reply
1770                  * Descriptors in the reply descriptor post queue.
1771                  */
1772                 if (completed_cmds >= ioc->thresh_hold) {
1773                         if (ioc->combined_reply_queue) {
1774                                 writel(reply_q->reply_post_host_index |
1775                                                 ((msix_index  & 7) <<
1776                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                     ioc->replyPostRegisterIndex[msix_index/8]);
1778                         } else {
1779                                 writel(reply_q->reply_post_host_index |
1780                                                 (msix_index <<
1781                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                 &ioc->chip->ReplyPostHostIndex);
1783                         }
1784                         if (!reply_q->is_iouring_poll_q &&
1785                             !reply_q->irq_poll_scheduled) {
1786                                 reply_q->irq_poll_scheduled = true;
1787                                 irq_poll_sched(&reply_q->irqpoll);
1788                         }
1789                         atomic_dec(&reply_q->busy);
1790                         return completed_cmds;
1791                 }
1792                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                         goto out;
1794                 if (!reply_q->reply_post_host_index)
1795                         rpf = reply_q->reply_post_free;
1796                 else
1797                         rpf++;
1798         } while (1);
1799
1800  out:
1801
1802         if (!completed_cmds) {
1803                 atomic_dec(&reply_q->busy);
1804                 return completed_cmds;
1805         }
1806
1807         if (ioc->is_warpdrive) {
1808                 writel(reply_q->reply_post_host_index,
1809                 ioc->reply_post_host_index[msix_index]);
1810                 atomic_dec(&reply_q->busy);
1811                 return completed_cmds;
1812         }
1813
1814         /* Update Reply Post Host Index.
1815          * For those HBA's which support combined reply queue feature
1816          * 1. Get the correct Supplemental Reply Post Host Index Register.
1817          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818          *    Index Register address bank i.e replyPostRegisterIndex[],
1819          * 2. Then update this register with new reply host index value
1820          *    in ReplyPostIndex field and the MSIxIndex field with
1821          *    msix_index value reduced to a value between 0 and 7,
1822          *    using a modulo 8 operation. Since each Supplemental Reply Post
1823          *    Host Index Register supports 8 MSI-X vectors.
1824          *
1825          * For other HBA's just update the Reply Post Host Index register with
1826          * new reply host index value in ReplyPostIndex Field and msix_index
1827          * value in MSIxIndex field.
1828          */
1829         if (ioc->combined_reply_queue)
1830                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                         ioc->replyPostRegisterIndex[msix_index/8]);
1833         else
1834                 writel(reply_q->reply_post_host_index | (msix_index <<
1835                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                         &ioc->chip->ReplyPostHostIndex);
1837         atomic_dec(&reply_q->busy);
1838         return completed_cmds;
1839 }
1840
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850         struct MPT3SAS_ADAPTER *ioc =
1851             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852         struct adapter_reply_queue *reply_q;
1853         int num_entries = 0;
1854         int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                 return 0;
1859
1860         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862         num_entries = _base_process_reply_queue(reply_q);
1863         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865         return num_entries;
1866 }
1867
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878         struct adapter_reply_queue *reply_q = bus_id;
1879         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881         if (ioc->mask_interrupts)
1882                 return IRQ_NONE;
1883         if (reply_q->irq_poll_scheduled)
1884                 return IRQ_HANDLED;
1885         return ((_base_process_reply_queue(reply_q) > 0) ?
1886                         IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899         struct adapter_reply_queue *reply_q;
1900         int num_entries = 0;
1901
1902         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                         irqpoll);
1904         if (reply_q->irq_line_enable) {
1905                 disable_irq_nosync(reply_q->os_irq);
1906                 reply_q->irq_line_enable = false;
1907         }
1908         num_entries = _base_process_reply_queue(reply_q);
1909         if (num_entries < budget) {
1910                 irq_poll_complete(irqpoll);
1911                 reply_q->irq_poll_scheduled = false;
1912                 reply_q->irq_line_enable = true;
1913                 enable_irq(reply_q->os_irq);
1914                 /*
1915                  * Go for one more round of processing the
1916                  * reply descriptor post queue in case the HBA
1917                  * Firmware has posted some reply descriptors
1918                  * while reenabling the IRQ.
1919                  */
1920                 _base_process_reply_queue(reply_q);
1921         }
1922
1923         return num_entries;
1924 }
1925
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935         struct adapter_reply_queue *reply_q, *next;
1936
1937         if (list_empty(&ioc->reply_queue_list))
1938                 return;
1939
1940         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                 if (reply_q->is_iouring_poll_q)
1942                         continue;
1943                 irq_poll_init(&reply_q->irqpoll,
1944                         ioc->hba_queue_depth/4, _base_irqpoll);
1945                 reply_q->irq_poll_scheduled = false;
1946                 reply_q->irq_line_enable = true;
1947                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                     reply_q->msix_index);
1949         }
1950 }
1951
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         return (ioc->facts.IOCCapabilities &
1962             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *              timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977         struct adapter_reply_queue *reply_q;
1978
1979         /* If MSIX capability is turned off
1980          * then multi-queues are not enabled
1981          */
1982         if (!_base_is_controller_msix_enabled(ioc))
1983                 return;
1984
1985         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                 if (ioc->shost_recovery || ioc->remove_host ||
1987                                 ioc->pci_error_recovery)
1988                         return;
1989                 /* TMs are on msix_index == 0 */
1990                 if (reply_q->msix_index == 0)
1991                         continue;
1992
1993                 if (reply_q->is_iouring_poll_q) {
1994                         _base_process_reply_queue(reply_q);
1995                         continue;
1996                 }
1997
1998                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                 if (reply_q->irq_poll_scheduled) {
2000                         /* Calling irq_poll_disable will wait for any pending
2001                          * callbacks to have completed.
2002                          */
2003                         irq_poll_disable(&reply_q->irqpoll);
2004                         irq_poll_enable(&reply_q->irqpoll);
2005                         /* check how the scheduled poll has ended,
2006                          * clean up only if necessary
2007                          */
2008                         if (reply_q->irq_poll_scheduled) {
2009                                 reply_q->irq_poll_scheduled = false;
2010                                 reply_q->irq_line_enable = true;
2011                                 enable_irq(reply_q->os_irq);
2012                         }
2013                 }
2014
2015                 if (poll)
2016                         _base_process_reply_queue(reply_q);
2017         }
2018 }
2019
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027         mpt_callbacks[cb_idx] = NULL;
2028 }
2029
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039         u8 cb_idx;
2040
2041         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042                 if (mpt_callbacks[cb_idx] == NULL)
2043                         break;
2044
2045         mpt_callbacks[cb_idx] = cb_func;
2046         return cb_idx;
2047 }
2048
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055         u8 cb_idx;
2056
2057         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058                 mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060
2061
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077             MPI2_SGE_FLAGS_SHIFT);
2078         ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090         Mpi2SGESimple32_t *sgel = paddr;
2091
2092         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094         sgel->FlagsLength = cpu_to_le32(flags_length);
2095         sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097
2098
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108         Mpi2SGESimple64_t *sgel = paddr;
2109
2110         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112         sgel->FlagsLength = cpu_to_le32(flags_length);
2113         sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126                                struct scsi_cmnd *scmd)
2127 {
2128         struct chain_tracker *chain_req;
2129         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130         u16 smid = st->smid;
2131         u8 chain_offset =
2132            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133
2134         if (chain_offset == ioc->chains_needed_per_io)
2135                 return NULL;
2136
2137         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139         return chain_req;
2140 }
2141
2142
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155         size_t data_in_sz)
2156 {
2157         u32 sgl_flags;
2158
2159         if (!data_out_sz && !data_in_sz) {
2160                 _base_build_zero_len_sge(ioc, psge);
2161                 return;
2162         }
2163
2164         if (data_out_sz && data_in_sz) {
2165                 /* WRITE sgel first */
2166                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169                 ioc->base_add_sg_single(psge, sgl_flags |
2170                     data_out_sz, data_out_dma);
2171
2172                 /* incr sgel */
2173                 psge += ioc->sge_size;
2174
2175                 /* READ sgel last */
2176                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178                     MPI2_SGE_FLAGS_END_OF_LIST);
2179                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180                 ioc->base_add_sg_single(psge, sgl_flags |
2181                     data_in_sz, data_in_dma);
2182         } else if (data_out_sz) /* WRITE */ {
2183                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187                 ioc->base_add_sg_single(psge, sgl_flags |
2188                     data_out_sz, data_out_dma);
2189         } else if (data_in_sz) /* READ */ {
2190                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192                     MPI2_SGE_FLAGS_END_OF_LIST);
2193                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194                 ioc->base_add_sg_single(psge, sgl_flags |
2195                     data_in_sz, data_in_dma);
2196         }
2197 }
2198
2199 /* IEEE format sgls */
2200
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260         size_t data_in_sz)
2261 {
2262         int             prp_size = NVME_PRP_SIZE;
2263         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2264         __le64          *prp_page;
2265         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2266         u32             offset, entry_len;
2267         u32             page_mask_result, page_mask;
2268         size_t          length;
2269         struct mpt3sas_nvme_cmd *nvme_cmd =
2270                 (void *)nvme_encap_request->NVMe_Command;
2271
2272         /*
2273          * Not all commands require a data transfer. If no data, just return
2274          * without constructing any PRP.
2275          */
2276         if (!data_in_sz && !data_out_sz)
2277                 return;
2278         prp1_entry = &nvme_cmd->prp1;
2279         prp2_entry = &nvme_cmd->prp2;
2280         prp_entry = prp1_entry;
2281         /*
2282          * For the PRP entries, use the specially allocated buffer of
2283          * contiguous memory.
2284          */
2285         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287
2288         /*
2289          * Check if we are within 1 entry of a page boundary we don't
2290          * want our first entry to be a PRP List entry.
2291          */
2292         page_mask = ioc->page_size - 1;
2293         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294         if (!page_mask_result) {
2295                 /* Bump up to next page boundary. */
2296                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297                 prp_page_dma = prp_page_dma + prp_size;
2298         }
2299
2300         /*
2301          * Set PRP physical pointer, which initially points to the current PRP
2302          * DMA memory page.
2303          */
2304         prp_entry_dma = prp_page_dma;
2305
2306         /* Get physical address and length of the data buffer. */
2307         if (data_in_sz) {
2308                 dma_addr = data_in_dma;
2309                 length = data_in_sz;
2310         } else {
2311                 dma_addr = data_out_dma;
2312                 length = data_out_sz;
2313         }
2314
2315         /* Loop while the length is not zero. */
2316         while (length) {
2317                 /*
2318                  * Check if we need to put a list pointer here if we are at
2319                  * page boundary - prp_size (8 bytes).
2320                  */
2321                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322                 if (!page_mask_result) {
2323                         /*
2324                          * This is the last entry in a PRP List, so we need to
2325                          * put a PRP list pointer here.  What this does is:
2326                          *   - bump the current memory pointer to the next
2327                          *     address, which will be the next full page.
2328                          *   - set the PRP Entry to point to that page.  This
2329                          *     is now the PRP List pointer.
2330                          *   - bump the PRP Entry pointer the start of the
2331                          *     next page.  Since all of this PRP memory is
2332                          *     contiguous, no need to get a new page - it's
2333                          *     just the next address.
2334                          */
2335                         prp_entry_dma++;
2336                         *prp_entry = cpu_to_le64(prp_entry_dma);
2337                         prp_entry++;
2338                 }
2339
2340                 /* Need to handle if entry will be part of a page. */
2341                 offset = dma_addr & page_mask;
2342                 entry_len = ioc->page_size - offset;
2343
2344                 if (prp_entry == prp1_entry) {
2345                         /*
2346                          * Must fill in the first PRP pointer (PRP1) before
2347                          * moving on.
2348                          */
2349                         *prp1_entry = cpu_to_le64(dma_addr);
2350
2351                         /*
2352                          * Now point to the second PRP entry within the
2353                          * command (PRP2).
2354                          */
2355                         prp_entry = prp2_entry;
2356                 } else if (prp_entry == prp2_entry) {
2357                         /*
2358                          * Should the PRP2 entry be a PRP List pointer or just
2359                          * a regular PRP pointer?  If there is more than one
2360                          * more page of data, must use a PRP List pointer.
2361                          */
2362                         if (length > ioc->page_size) {
2363                                 /*
2364                                  * PRP2 will contain a PRP List pointer because
2365                                  * more PRP's are needed with this command. The
2366                                  * list will start at the beginning of the
2367                                  * contiguous buffer.
2368                                  */
2369                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370
2371                                 /*
2372                                  * The next PRP Entry will be the start of the
2373                                  * first PRP List.
2374                                  */
2375                                 prp_entry = prp_page;
2376                         } else {
2377                                 /*
2378                                  * After this, the PRP Entries are complete.
2379                                  * This command uses 2 PRP's and no PRP list.
2380                                  */
2381                                 *prp2_entry = cpu_to_le64(dma_addr);
2382                         }
2383                 } else {
2384                         /*
2385                          * Put entry in list and bump the addresses.
2386                          *
2387                          * After PRP1 and PRP2 are filled in, this will fill in
2388                          * all remaining PRP entries in a PRP List, one per
2389                          * each time through the loop.
2390                          */
2391                         *prp_entry = cpu_to_le64(dma_addr);
2392                         prp_entry++;
2393                         prp_entry_dma++;
2394                 }
2395
2396                 /*
2397                  * Bump the phys address of the command's data buffer by the
2398                  * entry_len.
2399                  */
2400                 dma_addr += entry_len;
2401
2402                 /* Decrement length accounting for last partial page. */
2403                 if (entry_len > length)
2404                         length = 0;
2405                 else
2406                         length -= entry_len;
2407         }
2408 }
2409
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *                      SGLs specific to NVMe drives only
2413  *
2414  * @ioc:                per adapter object
2415  * @scmd:               SCSI command from the mid-layer
2416  * @mpi_request:        mpi request
2417  * @smid:               msg Index
2418  * @sge_count:          scatter gather element count.
2419  *
2420  * Return:              true: PRPs are built
2421  *                      false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425                 struct scsi_cmnd *scmd,
2426                 Mpi25SCSIIORequest_t *mpi_request,
2427                 u16 smid, int sge_count)
2428 {
2429         int sge_len, num_prp_in_chain = 0;
2430         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431         __le64 *curr_buff;
2432         dma_addr_t msg_dma, sge_addr, offset;
2433         u32 page_mask, page_mask_result;
2434         struct scatterlist *sg_scmd;
2435         u32 first_prp_len;
2436         int data_len = scsi_bufflen(scmd);
2437         u32 nvme_pg_size;
2438
2439         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440         /*
2441          * Nvme has a very convoluted prp format.  One prp is required
2442          * for each page or partial page. Driver need to split up OS sg_list
2443          * entries if it is longer than one page or cross a page
2444          * boundary.  Driver also have to insert a PRP list pointer entry as
2445          * the last entry in each physical page of the PRP list.
2446          *
2447          * NOTE: The first PRP "entry" is actually placed in the first
2448          * SGL entry in the main message as IEEE 64 format.  The 2nd
2449          * entry in the main message is the chain element, and the rest
2450          * of the PRP entries are built in the contiguous pcie buffer.
2451          */
2452         page_mask = nvme_pg_size - 1;
2453
2454         /*
2455          * Native SGL is needed.
2456          * Put a chain element in main message frame that points to the first
2457          * chain buffer.
2458          *
2459          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460          *        a native SGL.
2461          */
2462
2463         /* Set main message chain element pointer */
2464         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465         /*
2466          * For NVMe the chain element needs to be the 2nd SG entry in the main
2467          * message.
2468          */
2469         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471
2472         /*
2473          * For the PRP entries, use the specially allocated buffer of
2474          * contiguous memory.  Normal chain buffers can't be used
2475          * because each chain buffer would need to be the size of an OS
2476          * page (4k).
2477          */
2478         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480
2481         main_chain_element->Address = cpu_to_le64(msg_dma);
2482         main_chain_element->NextChainOffset = 0;
2483         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486
2487         /* Build first prp, sge need not to be page aligned*/
2488         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489         sg_scmd = scsi_sglist(scmd);
2490         sge_addr = sg_dma_address(sg_scmd);
2491         sge_len = sg_dma_len(sg_scmd);
2492
2493         offset = sge_addr & page_mask;
2494         first_prp_len = nvme_pg_size - offset;
2495
2496         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498
2499         data_len -= first_prp_len;
2500
2501         if (sge_len > first_prp_len) {
2502                 sge_addr += first_prp_len;
2503                 sge_len -= first_prp_len;
2504         } else if (data_len && (sge_len == first_prp_len)) {
2505                 sg_scmd = sg_next(sg_scmd);
2506                 sge_addr = sg_dma_address(sg_scmd);
2507                 sge_len = sg_dma_len(sg_scmd);
2508         }
2509
2510         for (;;) {
2511                 offset = sge_addr & page_mask;
2512
2513                 /* Put PRP pointer due to page boundary*/
2514                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515                 if (unlikely(!page_mask_result)) {
2516                         scmd_printk(KERN_NOTICE,
2517                                 scmd, "page boundary curr_buff: 0x%p\n",
2518                                 curr_buff);
2519                         msg_dma += 8;
2520                         *curr_buff = cpu_to_le64(msg_dma);
2521                         curr_buff++;
2522                         num_prp_in_chain++;
2523                 }
2524
2525                 *curr_buff = cpu_to_le64(sge_addr);
2526                 curr_buff++;
2527                 msg_dma += 8;
2528                 num_prp_in_chain++;
2529
2530                 sge_addr += nvme_pg_size;
2531                 sge_len -= nvme_pg_size;
2532                 data_len -= nvme_pg_size;
2533
2534                 if (data_len <= 0)
2535                         break;
2536
2537                 if (sge_len > 0)
2538                         continue;
2539
2540                 sg_scmd = sg_next(sg_scmd);
2541                 sge_addr = sg_dma_address(sg_scmd);
2542                 sge_len = sg_dma_len(sg_scmd);
2543         }
2544
2545         main_chain_element->Length =
2546                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547         return;
2548 }
2549
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554         u32 data_length = 0;
2555         bool build_prp = true;
2556
2557         data_length = scsi_bufflen(scmd);
2558         if (pcie_device &&
2559             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560                 build_prp = false;
2561                 return build_prp;
2562         }
2563
2564         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565          * we built IEEE SGL
2566          */
2567         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568                 build_prp = false;
2569
2570         return build_prp;
2571 }
2572
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591         struct _pcie_device *pcie_device)
2592 {
2593         int sges_left;
2594
2595         /* Get the SG list pointer and info. */
2596         sges_left = scsi_dma_map(scmd);
2597         if (sges_left < 0)
2598                 return 1;
2599
2600         /* Check if we need to build a native SG list. */
2601         if (!base_is_prp_possible(ioc, pcie_device,
2602                                 scmd, sges_left)) {
2603                 /* We built a native SG list, just return. */
2604                 goto out;
2605         }
2606
2607         /*
2608          * Build native NVMe PRP.
2609          */
2610         base_make_prp_nvme(ioc, scmd, mpi_request,
2611                         smid, sges_left);
2612
2613         return 0;
2614 out:
2615         scsi_dma_unmap(scmd);
2616         return 1;
2617 }
2618
2619 /**
2620  * _base_add_sg_single_ieee - add sg element for IEEE format
2621  * @paddr: virtual address for SGE
2622  * @flags: SGE flags
2623  * @chain_offset: number of 128 byte elements from start of segment
2624  * @length: data transfer length
2625  * @dma_addr: Physical address
2626  */
2627 static void
2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629         dma_addr_t dma_addr)
2630 {
2631         Mpi25IeeeSgeChain64_t *sgel = paddr;
2632
2633         sgel->Flags = flags;
2634         sgel->NextChainOffset = chain_offset;
2635         sgel->Length = cpu_to_le32(length);
2636         sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638
2639 /**
2640  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641  * @ioc: per adapter object
2642  * @paddr: virtual address for SGE
2643  *
2644  * Create a zero length scatter gather entry to insure the IOCs hardware has
2645  * something to use if the target device goes brain dead and tries
2646  * to send data even when none is asked for.
2647  */
2648 static void
2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654
2655         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657
2658 /**
2659  * _base_build_sg_scmd - main sg creation routine
2660  *              pcie_device is unused here!
2661  * @ioc: per adapter object
2662  * @scmd: scsi command
2663  * @smid: system request message index
2664  * @unused: unused pcie_device pointer
2665  * Context: none.
2666  *
2667  * The main routine that builds scatter gather table from a given
2668  * scsi request sent via the .queuecommand main handler.
2669  *
2670  * Return: 0 success, anything else error
2671  */
2672 static int
2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676         Mpi2SCSIIORequest_t *mpi_request;
2677         dma_addr_t chain_dma;
2678         struct scatterlist *sg_scmd;
2679         void *sg_local, *chain;
2680         u32 chain_offset;
2681         u32 chain_length;
2682         u32 chain_flags;
2683         int sges_left;
2684         u32 sges_in_segment;
2685         u32 sgl_flags;
2686         u32 sgl_flags_last_element;
2687         u32 sgl_flags_end_buffer;
2688         struct chain_tracker *chain_req;
2689
2690         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691
2692         /* init scatter gather flags */
2693         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697             << MPI2_SGE_FLAGS_SHIFT;
2698         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700             << MPI2_SGE_FLAGS_SHIFT;
2701         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702
2703         sg_scmd = scsi_sglist(scmd);
2704         sges_left = scsi_dma_map(scmd);
2705         if (sges_left < 0)
2706                 return -ENOMEM;
2707
2708         sg_local = &mpi_request->SGL;
2709         sges_in_segment = ioc->max_sges_in_main_message;
2710         if (sges_left <= sges_in_segment)
2711                 goto fill_in_last_segment;
2712
2713         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714             (sges_in_segment * ioc->sge_size))/4;
2715
2716         /* fill in main message segment when there is a chain following */
2717         while (sges_in_segment) {
2718                 if (sges_in_segment == 1)
2719                         ioc->base_add_sg_single(sg_local,
2720                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2721                             sg_dma_address(sg_scmd));
2722                 else
2723                         ioc->base_add_sg_single(sg_local, sgl_flags |
2724                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725                 sg_scmd = sg_next(sg_scmd);
2726                 sg_local += ioc->sge_size;
2727                 sges_left--;
2728                 sges_in_segment--;
2729         }
2730
2731         /* initializing the chain flags and pointers */
2732         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734         if (!chain_req)
2735                 return -1;
2736         chain = chain_req->chain_buffer;
2737         chain_dma = chain_req->chain_buffer_dma;
2738         do {
2739                 sges_in_segment = (sges_left <=
2740                     ioc->max_sges_in_chain_message) ? sges_left :
2741                     ioc->max_sges_in_chain_message;
2742                 chain_offset = (sges_left == sges_in_segment) ?
2743                     0 : (sges_in_segment * ioc->sge_size)/4;
2744                 chain_length = sges_in_segment * ioc->sge_size;
2745                 if (chain_offset) {
2746                         chain_offset = chain_offset <<
2747                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748                         chain_length += ioc->sge_size;
2749                 }
2750                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751                     chain_length, chain_dma);
2752                 sg_local = chain;
2753                 if (!chain_offset)
2754                         goto fill_in_last_segment;
2755
2756                 /* fill in chain segments */
2757                 while (sges_in_segment) {
2758                         if (sges_in_segment == 1)
2759                                 ioc->base_add_sg_single(sg_local,
2760                                     sgl_flags_last_element |
2761                                     sg_dma_len(sg_scmd),
2762                                     sg_dma_address(sg_scmd));
2763                         else
2764                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2765                                     sg_dma_len(sg_scmd),
2766                                     sg_dma_address(sg_scmd));
2767                         sg_scmd = sg_next(sg_scmd);
2768                         sg_local += ioc->sge_size;
2769                         sges_left--;
2770                         sges_in_segment--;
2771                 }
2772
2773                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774                 if (!chain_req)
2775                         return -1;
2776                 chain = chain_req->chain_buffer;
2777                 chain_dma = chain_req->chain_buffer_dma;
2778         } while (1);
2779
2780
2781  fill_in_last_segment:
2782
2783         /* fill the last segment */
2784         while (sges_left) {
2785                 if (sges_left == 1)
2786                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788                 else
2789                         ioc->base_add_sg_single(sg_local, sgl_flags |
2790                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791                 sg_scmd = sg_next(sg_scmd);
2792                 sg_local += ioc->sge_size;
2793                 sges_left--;
2794         }
2795
2796         return 0;
2797 }
2798
2799 /**
2800  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801  * @ioc: per adapter object
2802  * @scmd: scsi command
2803  * @smid: system request message index
2804  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805  * constructed on need.
2806  * Context: none.
2807  *
2808  * The main routine that builds scatter gather table from a given
2809  * scsi request sent via the .queuecommand main handler.
2810  *
2811  * Return: 0 success, anything else error
2812  */
2813 static int
2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817         Mpi25SCSIIORequest_t *mpi_request;
2818         dma_addr_t chain_dma;
2819         struct scatterlist *sg_scmd;
2820         void *sg_local, *chain;
2821         u32 chain_offset;
2822         u32 chain_length;
2823         int sges_left;
2824         u32 sges_in_segment;
2825         u8 simple_sgl_flags;
2826         u8 simple_sgl_flags_last;
2827         u8 chain_sgl_flags;
2828         struct chain_tracker *chain_req;
2829
2830         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831
2832         /* init scatter gather flags */
2833         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835         simple_sgl_flags_last = simple_sgl_flags |
2836             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839
2840         /* Check if we need to build a native SG list. */
2841         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842                         smid, scmd, pcie_device) == 0)) {
2843                 /* We built a native SG list, just return. */
2844                 return 0;
2845         }
2846
2847         sg_scmd = scsi_sglist(scmd);
2848         sges_left = scsi_dma_map(scmd);
2849         if (sges_left < 0)
2850                 return -ENOMEM;
2851
2852         sg_local = &mpi_request->SGL;
2853         sges_in_segment = (ioc->request_sz -
2854                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855         if (sges_left <= sges_in_segment)
2856                 goto fill_in_last_segment;
2857
2858         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860
2861         /* fill in main message segment when there is a chain following */
2862         while (sges_in_segment > 1) {
2863                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865                 sg_scmd = sg_next(sg_scmd);
2866                 sg_local += ioc->sge_size_ieee;
2867                 sges_left--;
2868                 sges_in_segment--;
2869         }
2870
2871         /* initializing the pointers */
2872         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873         if (!chain_req)
2874                 return -1;
2875         chain = chain_req->chain_buffer;
2876         chain_dma = chain_req->chain_buffer_dma;
2877         do {
2878                 sges_in_segment = (sges_left <=
2879                     ioc->max_sges_in_chain_message) ? sges_left :
2880                     ioc->max_sges_in_chain_message;
2881                 chain_offset = (sges_left == sges_in_segment) ?
2882                     0 : sges_in_segment;
2883                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2884                 if (chain_offset)
2885                         chain_length += ioc->sge_size_ieee;
2886                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887                     chain_offset, chain_length, chain_dma);
2888
2889                 sg_local = chain;
2890                 if (!chain_offset)
2891                         goto fill_in_last_segment;
2892
2893                 /* fill in chain segments */
2894                 while (sges_in_segment) {
2895                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897                         sg_scmd = sg_next(sg_scmd);
2898                         sg_local += ioc->sge_size_ieee;
2899                         sges_left--;
2900                         sges_in_segment--;
2901                 }
2902
2903                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904                 if (!chain_req)
2905                         return -1;
2906                 chain = chain_req->chain_buffer;
2907                 chain_dma = chain_req->chain_buffer_dma;
2908         } while (1);
2909
2910
2911  fill_in_last_segment:
2912
2913         /* fill the last segment */
2914         while (sges_left > 0) {
2915                 if (sges_left == 1)
2916                         _base_add_sg_single_ieee(sg_local,
2917                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918                             sg_dma_address(sg_scmd));
2919                 else
2920                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922                 sg_scmd = sg_next(sg_scmd);
2923                 sg_local += ioc->sge_size_ieee;
2924                 sges_left--;
2925         }
2926
2927         return 0;
2928 }
2929
2930 /**
2931  * _base_build_sg_ieee - build generic sg for IEEE format
2932  * @ioc: per adapter object
2933  * @psge: virtual address for SGE
2934  * @data_out_dma: physical address for WRITES
2935  * @data_out_sz: data xfer size for WRITES
2936  * @data_in_dma: physical address for READS
2937  * @data_in_sz: data xfer size for READS
2938  */
2939 static void
2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942         size_t data_in_sz)
2943 {
2944         u8 sgl_flags;
2945
2946         if (!data_out_sz && !data_in_sz) {
2947                 _base_build_zero_len_sge_ieee(ioc, psge);
2948                 return;
2949         }
2950
2951         if (data_out_sz && data_in_sz) {
2952                 /* WRITE sgel first */
2953                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956                     data_out_dma);
2957
2958                 /* incr sgel */
2959                 psge += ioc->sge_size_ieee;
2960
2961                 /* READ sgel last */
2962                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964                     data_in_dma);
2965         } else if (data_out_sz) /* WRITE */ {
2966                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970                     data_out_dma);
2971         } else if (data_in_sz) /* READ */ {
2972                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976                     data_in_dma);
2977         }
2978 }
2979
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981
2982 /**
2983  * _base_config_dma_addressing - set dma addressing
2984  * @ioc: per adapter object
2985  * @pdev: PCI device struct
2986  *
2987  * Return: 0 for success, non-zero for failure.
2988  */
2989 static int
2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992         struct sysinfo s;
2993         u64 coherent_dma_mask, dma_mask;
2994
2995         if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4 ||
2996             dma_get_required_mask(&pdev->dev) <= 32) {
2997                 ioc->dma_mask = 32;
2998                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
2999         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3000         } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3001                 ioc->dma_mask = 63;
3002                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3003         } else {
3004                 ioc->dma_mask = 64;
3005                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3006         }
3007
3008         if (ioc->use_32bit_dma)
3009                 coherent_dma_mask = DMA_BIT_MASK(32);
3010
3011         if (dma_set_mask(&pdev->dev, dma_mask) ||
3012             dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3013                 return -ENODEV;
3014
3015         if (ioc->dma_mask > 32) {
3016                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3017                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3018         } else {
3019                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3020                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3021         }
3022
3023         si_meminfo(&s);
3024         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3025                 ioc->dma_mask, convert_to_kb(s.totalram));
3026
3027         return 0;
3028 }
3029
3030 /**
3031  * _base_check_enable_msix - checks MSIX capabable.
3032  * @ioc: per adapter object
3033  *
3034  * Check to see if card is capable of MSIX, and set number
3035  * of available msix vectors
3036  */
3037 static int
3038 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3039 {
3040         int base;
3041         u16 message_control;
3042
3043         /* Check whether controller SAS2008 B0 controller,
3044          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3045          */
3046         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3047             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3048                 return -EINVAL;
3049         }
3050
3051         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3052         if (!base) {
3053                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3054                 return -EINVAL;
3055         }
3056
3057         /* get msix vector count */
3058         /* NUMA_IO not supported for older controllers */
3059         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3060             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3061             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3062             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3063             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3064             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3065             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3066                 ioc->msix_vector_count = 1;
3067         else {
3068                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3069                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3070         }
3071         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3072                                   ioc->msix_vector_count));
3073         return 0;
3074 }
3075
3076 /**
3077  * mpt3sas_base_free_irq - free irq
3078  * @ioc: per adapter object
3079  *
3080  * Freeing respective reply_queue from the list.
3081  */
3082 void
3083 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3084 {
3085         unsigned int irq;
3086         struct adapter_reply_queue *reply_q, *next;
3087
3088         if (list_empty(&ioc->reply_queue_list))
3089                 return;
3090
3091         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3092                 list_del(&reply_q->list);
3093                 if (reply_q->is_iouring_poll_q) {
3094                         kfree(reply_q);
3095                         continue;
3096                 }
3097
3098                 if (ioc->smp_affinity_enable) {
3099                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3100                         irq_update_affinity_hint(irq, NULL);
3101                 }
3102                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3103                          reply_q);
3104                 kfree(reply_q);
3105         }
3106 }
3107
3108 /**
3109  * _base_request_irq - request irq
3110  * @ioc: per adapter object
3111  * @index: msix index into vector table
3112  *
3113  * Inserting respective reply_queue into the list.
3114  */
3115 static int
3116 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3117 {
3118         struct pci_dev *pdev = ioc->pdev;
3119         struct adapter_reply_queue *reply_q;
3120         int r, qid;
3121
3122         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3123         if (!reply_q) {
3124                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3125                         sizeof(struct adapter_reply_queue));
3126                 return -ENOMEM;
3127         }
3128         reply_q->ioc = ioc;
3129         reply_q->msix_index = index;
3130
3131         atomic_set(&reply_q->busy, 0);
3132
3133         if (index >= ioc->iopoll_q_start_index) {
3134                 qid = index - ioc->iopoll_q_start_index;
3135                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3136                     ioc->driver_name, ioc->id, qid);
3137                 reply_q->is_iouring_poll_q = 1;
3138                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3139                 goto out;
3140         }
3141
3142
3143         if (ioc->msix_enable)
3144                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3145                     ioc->driver_name, ioc->id, index);
3146         else
3147                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3148                     ioc->driver_name, ioc->id);
3149         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3150                         IRQF_SHARED, reply_q->name, reply_q);
3151         if (r) {
3152                 pr_err("%s: unable to allocate interrupt %d!\n",
3153                        reply_q->name, pci_irq_vector(pdev, index));
3154                 kfree(reply_q);
3155                 return -EBUSY;
3156         }
3157 out:
3158         INIT_LIST_HEAD(&reply_q->list);
3159         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3160         return 0;
3161 }
3162
3163 /**
3164  * _base_assign_reply_queues - assigning msix index for each cpu
3165  * @ioc: per adapter object
3166  *
3167  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3168  */
3169 static void
3170 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3171 {
3172         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3173         struct adapter_reply_queue *reply_q;
3174         int iopoll_q_count = ioc->reply_queue_count -
3175             ioc->iopoll_q_start_index;
3176         const struct cpumask *mask;
3177
3178         if (!_base_is_controller_msix_enabled(ioc))
3179                 return;
3180
3181         if (ioc->msix_load_balance)
3182                 return;
3183
3184         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3185
3186         nr_cpus = num_online_cpus();
3187         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3188                                                ioc->facts.MaxMSIxVectors);
3189         if (!nr_msix)
3190                 return;
3191
3192         if (ioc->smp_affinity_enable) {
3193
3194                 /*
3195                  * set irq affinity to local numa node for those irqs
3196                  * corresponding to high iops queues.
3197                  */
3198                 if (ioc->high_iops_queues) {
3199                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3200                         for (index = 0; index < ioc->high_iops_queues;
3201                             index++) {
3202                                 irq = pci_irq_vector(ioc->pdev, index);
3203                                 irq_set_affinity_and_hint(irq, mask);
3204                         }
3205                 }
3206
3207                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3208                         const cpumask_t *mask;
3209
3210                         if (reply_q->msix_index < ioc->high_iops_queues ||
3211                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3212                                 continue;
3213
3214                         mask = pci_irq_get_affinity(ioc->pdev,
3215                             reply_q->msix_index);
3216                         if (!mask) {
3217                                 ioc_warn(ioc, "no affinity for msi %x\n",
3218                                          reply_q->msix_index);
3219                                 goto fall_back;
3220                         }
3221
3222                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3223                                 if (cpu >= ioc->cpu_msix_table_sz)
3224                                         break;
3225                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3226                         }
3227                 }
3228                 return;
3229         }
3230
3231 fall_back:
3232         cpu = cpumask_first(cpu_online_mask);
3233         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3234         index = 0;
3235
3236         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3237                 unsigned int i, group = nr_cpus / nr_msix;
3238
3239                 if (reply_q->msix_index < ioc->high_iops_queues ||
3240                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3241                         continue;
3242
3243                 if (cpu >= nr_cpus)
3244                         break;
3245
3246                 if (index < nr_cpus % nr_msix)
3247                         group++;
3248
3249                 for (i = 0 ; i < group ; i++) {
3250                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3251                         cpu = cpumask_next(cpu, cpu_online_mask);
3252                 }
3253                 index++;
3254         }
3255 }
3256
3257 /**
3258  * _base_check_and_enable_high_iops_queues - enable high iops mode
3259  * @ioc: per adapter object
3260  * @hba_msix_vector_count: msix vectors supported by HBA
3261  *
3262  * Enable high iops queues only if
3263  *  - HBA is a SEA/AERO controller and
3264  *  - MSI-Xs vector supported by the HBA is 128 and
3265  *  - total CPU count in the system >=16 and
3266  *  - loaded driver with default max_msix_vectors module parameter and
3267  *  - system booted in non kdump mode
3268  *
3269  * Return: nothing.
3270  */
3271 static void
3272 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3273                 int hba_msix_vector_count)
3274 {
3275         u16 lnksta, speed;
3276
3277         /*
3278          * Disable high iops queues if io uring poll queues are enabled.
3279          */
3280         if (perf_mode == MPT_PERF_MODE_IOPS ||
3281             perf_mode == MPT_PERF_MODE_LATENCY ||
3282             ioc->io_uring_poll_queues) {
3283                 ioc->high_iops_queues = 0;
3284                 return;
3285         }
3286
3287         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3288
3289                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3290                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3291
3292                 if (speed < 0x4) {
3293                         ioc->high_iops_queues = 0;
3294                         return;
3295                 }
3296         }
3297
3298         if (!reset_devices && ioc->is_aero_ioc &&
3299             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3300             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3301             max_msix_vectors == -1)
3302                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3303         else
3304                 ioc->high_iops_queues = 0;
3305 }
3306
3307 /**
3308  * mpt3sas_base_disable_msix - disables msix
3309  * @ioc: per adapter object
3310  *
3311  */
3312 void
3313 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3314 {
3315         if (!ioc->msix_enable)
3316                 return;
3317         pci_free_irq_vectors(ioc->pdev);
3318         ioc->msix_enable = 0;
3319         kfree(ioc->io_uring_poll_queues);
3320 }
3321
3322 /**
3323  * _base_alloc_irq_vectors - allocate msix vectors
3324  * @ioc: per adapter object
3325  *
3326  */
3327 static int
3328 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3329 {
3330         int i, irq_flags = PCI_IRQ_MSIX;
3331         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3332         struct irq_affinity *descp = &desc;
3333         /*
3334          * Don't allocate msix vectors for poll_queues.
3335          * msix_vectors is always within a range of FW supported reply queue.
3336          */
3337         int nr_msix_vectors = ioc->iopoll_q_start_index;
3338
3339
3340         if (ioc->smp_affinity_enable)
3341                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3342         else
3343                 descp = NULL;
3344
3345         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3346             ioc->reply_queue_count, nr_msix_vectors);
3347
3348         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3349             ioc->high_iops_queues,
3350             nr_msix_vectors, irq_flags, descp);
3351
3352         return i;
3353 }
3354
3355 /**
3356  * _base_enable_msix - enables msix, failback to io_apic
3357  * @ioc: per adapter object
3358  *
3359  */
3360 static int
3361 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3362 {
3363         int r;
3364         int i, local_max_msix_vectors;
3365         u8 try_msix = 0;
3366         int iopoll_q_count = 0;
3367
3368         ioc->msix_load_balance = false;
3369
3370         if (msix_disable == -1 || msix_disable == 0)
3371                 try_msix = 1;
3372
3373         if (!try_msix)
3374                 goto try_ioapic;
3375
3376         if (_base_check_enable_msix(ioc) != 0)
3377                 goto try_ioapic;
3378
3379         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3380         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3381                 ioc->cpu_count, max_msix_vectors);
3382
3383         ioc->reply_queue_count =
3384                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3385
3386         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3387                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3388         else
3389                 local_max_msix_vectors = max_msix_vectors;
3390
3391         if (local_max_msix_vectors == 0)
3392                 goto try_ioapic;
3393
3394         /*
3395          * Enable msix_load_balance only if combined reply queue mode is
3396          * disabled on SAS3 & above generation HBA devices.
3397          */
3398         if (!ioc->combined_reply_queue &&
3399             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3400                 ioc_info(ioc,
3401                     "combined ReplyQueue is off, Enabling msix load balance\n");
3402                 ioc->msix_load_balance = true;
3403         }
3404
3405         /*
3406          * smp affinity setting is not need when msix load balance
3407          * is enabled.
3408          */
3409         if (ioc->msix_load_balance)
3410                 ioc->smp_affinity_enable = 0;
3411
3412         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3413                 ioc->shost->host_tagset = 0;
3414
3415         /*
3416          * Enable io uring poll queues only if host_tagset is enabled.
3417          */
3418         if (ioc->shost->host_tagset)
3419                 iopoll_q_count = poll_queues;
3420
3421         if (iopoll_q_count) {
3422                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3423                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3424                 if (!ioc->io_uring_poll_queues)
3425                         iopoll_q_count = 0;
3426         }
3427
3428         if (ioc->is_aero_ioc)
3429                 _base_check_and_enable_high_iops_queues(ioc,
3430                     ioc->msix_vector_count);
3431
3432         /*
3433          * Add high iops queues count to reply queue count if high iops queues
3434          * are enabled.
3435          */
3436         ioc->reply_queue_count = min_t(int,
3437             ioc->reply_queue_count + ioc->high_iops_queues,
3438             ioc->msix_vector_count);
3439
3440         /*
3441          * Adjust the reply queue count incase reply queue count
3442          * exceeds the user provided MSIx vectors count.
3443          */
3444         if (local_max_msix_vectors > 0)
3445                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3446                     ioc->reply_queue_count);
3447         /*
3448          * Add io uring poll queues count to reply queues count
3449          * if io uring is enabled in driver.
3450          */
3451         if (iopoll_q_count) {
3452                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3453                         iopoll_q_count = 0;
3454                 ioc->reply_queue_count = min_t(int,
3455                     ioc->reply_queue_count + iopoll_q_count,
3456                     ioc->msix_vector_count);
3457         }
3458
3459         /*
3460          * Starting index of io uring poll queues in reply queue list.
3461          */
3462         ioc->iopoll_q_start_index =
3463             ioc->reply_queue_count - iopoll_q_count;
3464
3465         r = _base_alloc_irq_vectors(ioc);
3466         if (r < 0) {
3467                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3468                 goto try_ioapic;
3469         }
3470
3471         /*
3472          * Adjust the reply queue count if the allocated
3473          * MSIx vectors is less then the requested number
3474          * of MSIx vectors.
3475          */
3476         if (r < ioc->iopoll_q_start_index) {
3477                 ioc->reply_queue_count = r + iopoll_q_count;
3478                 ioc->iopoll_q_start_index =
3479                     ioc->reply_queue_count - iopoll_q_count;
3480         }
3481
3482         ioc->msix_enable = 1;
3483         for (i = 0; i < ioc->reply_queue_count; i++) {
3484                 r = _base_request_irq(ioc, i);
3485                 if (r) {
3486                         mpt3sas_base_free_irq(ioc);
3487                         mpt3sas_base_disable_msix(ioc);
3488                         goto try_ioapic;
3489                 }
3490         }
3491
3492         ioc_info(ioc, "High IOPs queues : %s\n",
3493                         ioc->high_iops_queues ? "enabled" : "disabled");
3494
3495         return 0;
3496
3497 /* failback to io_apic interrupt routing */
3498  try_ioapic:
3499         ioc->high_iops_queues = 0;
3500         ioc_info(ioc, "High IOPs queues : disabled\n");
3501         ioc->reply_queue_count = 1;
3502         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3503         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3504         if (r < 0) {
3505                 dfailprintk(ioc,
3506                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3507                                      r));
3508         } else
3509                 r = _base_request_irq(ioc, 0);
3510
3511         return r;
3512 }
3513
3514 /**
3515  * mpt3sas_base_unmap_resources - free controller resources
3516  * @ioc: per adapter object
3517  */
3518 static void
3519 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3520 {
3521         struct pci_dev *pdev = ioc->pdev;
3522
3523         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3524
3525         mpt3sas_base_free_irq(ioc);
3526         mpt3sas_base_disable_msix(ioc);
3527
3528         kfree(ioc->replyPostRegisterIndex);
3529         ioc->replyPostRegisterIndex = NULL;
3530
3531
3532         if (ioc->chip_phys) {
3533                 iounmap(ioc->chip);
3534                 ioc->chip_phys = 0;
3535         }
3536
3537         if (pci_is_enabled(pdev)) {
3538                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3539                 pci_disable_pcie_error_reporting(pdev);
3540                 pci_disable_device(pdev);
3541         }
3542 }
3543
3544 static int
3545 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3546
3547 /**
3548  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3549  *     and if it is in fault state then issue diag reset.
3550  * @ioc: per adapter object
3551  *
3552  * Return: 0 for success, non-zero for failure.
3553  */
3554 int
3555 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3556 {
3557         u32 ioc_state;
3558         int rc = -EFAULT;
3559
3560         dinitprintk(ioc, pr_info("%s\n", __func__));
3561         if (ioc->pci_error_recovery)
3562                 return 0;
3563         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3564         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3565
3566         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3567                 mpt3sas_print_fault_code(ioc, ioc_state &
3568                     MPI2_DOORBELL_DATA_MASK);
3569                 mpt3sas_base_mask_interrupts(ioc);
3570                 rc = _base_diag_reset(ioc);
3571         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3572             MPI2_IOC_STATE_COREDUMP) {
3573                 mpt3sas_print_coredump_info(ioc, ioc_state &
3574                      MPI2_DOORBELL_DATA_MASK);
3575                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3576                 mpt3sas_base_mask_interrupts(ioc);
3577                 rc = _base_diag_reset(ioc);
3578         }
3579
3580         return rc;
3581 }
3582
3583 /**
3584  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3585  * @ioc: per adapter object
3586  *
3587  * Return: 0 for success, non-zero for failure.
3588  */
3589 int
3590 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3591 {
3592         struct pci_dev *pdev = ioc->pdev;
3593         u32 memap_sz;
3594         u32 pio_sz;
3595         int i, r = 0, rc;
3596         u64 pio_chip = 0;
3597         phys_addr_t chip_phys = 0;
3598         struct adapter_reply_queue *reply_q;
3599         int iopoll_q_count = 0;
3600
3601         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3602
3603         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3604         if (pci_enable_device_mem(pdev)) {
3605                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3606                 ioc->bars = 0;
3607                 return -ENODEV;
3608         }
3609
3610
3611         if (pci_request_selected_regions(pdev, ioc->bars,
3612             ioc->driver_name)) {
3613                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3614                 ioc->bars = 0;
3615                 r = -ENODEV;
3616                 goto out_fail;
3617         }
3618
3619 /* AER (Advanced Error Reporting) hooks */
3620         pci_enable_pcie_error_reporting(pdev);
3621
3622         pci_set_master(pdev);
3623
3624
3625         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3626                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3627                 r = -ENODEV;
3628                 goto out_fail;
3629         }
3630
3631         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3632              (!memap_sz || !pio_sz); i++) {
3633                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3634                         if (pio_sz)
3635                                 continue;
3636                         pio_chip = (u64)pci_resource_start(pdev, i);
3637                         pio_sz = pci_resource_len(pdev, i);
3638                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3639                         if (memap_sz)
3640                                 continue;
3641                         ioc->chip_phys = pci_resource_start(pdev, i);
3642                         chip_phys = ioc->chip_phys;
3643                         memap_sz = pci_resource_len(pdev, i);
3644                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3645                 }
3646         }
3647
3648         if (ioc->chip == NULL) {
3649                 ioc_err(ioc,
3650                     "unable to map adapter memory! or resource not found\n");
3651                 r = -EINVAL;
3652                 goto out_fail;
3653         }
3654
3655         mpt3sas_base_mask_interrupts(ioc);
3656
3657         r = _base_get_ioc_facts(ioc);
3658         if (r) {
3659                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3660                 if (rc || (_base_get_ioc_facts(ioc)))
3661                         goto out_fail;
3662         }
3663
3664         if (!ioc->rdpq_array_enable_assigned) {
3665                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3666                 ioc->rdpq_array_enable_assigned = 1;
3667         }
3668
3669         r = _base_enable_msix(ioc);
3670         if (r)
3671                 goto out_fail;
3672
3673         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3674         for (i = 0; i < iopoll_q_count; i++) {
3675                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3676                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3677         }
3678
3679         if (!ioc->is_driver_loading)
3680                 _base_init_irqpolls(ioc);
3681         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3682          * revision HBAs and also only when reply queue count is greater than 8
3683          */
3684         if (ioc->combined_reply_queue) {
3685                 /* Determine the Supplemental Reply Post Host Index Registers
3686                  * Addresse. Supplemental Reply Post Host Index Registers
3687                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3688                  * each register is at offset bytes of
3689                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3690                  */
3691                 ioc->replyPostRegisterIndex = kcalloc(
3692                      ioc->combined_reply_index_count,
3693                      sizeof(resource_size_t *), GFP_KERNEL);
3694                 if (!ioc->replyPostRegisterIndex) {
3695                         ioc_err(ioc,
3696                             "allocation for replyPostRegisterIndex failed!\n");
3697                         r = -ENOMEM;
3698                         goto out_fail;
3699                 }
3700
3701                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3702                         ioc->replyPostRegisterIndex[i] =
3703                                 (resource_size_t __iomem *)
3704                                 ((u8 __force *)&ioc->chip->Doorbell +
3705                                  MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3706                                  (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3707                 }
3708         }
3709
3710         if (ioc->is_warpdrive) {
3711                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3712                     &ioc->chip->ReplyPostHostIndex;
3713
3714                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3715                         ioc->reply_post_host_index[i] =
3716                         (resource_size_t __iomem *)
3717                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3718                         * 4)));
3719         }
3720
3721         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3722                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3723                         pr_info("%s: enabled: index: %d\n",
3724                             reply_q->name, reply_q->msix_index);
3725                         continue;
3726                 }
3727
3728                 pr_info("%s: %s enabled: IRQ %d\n",
3729                         reply_q->name,
3730                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3731                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3732         }
3733
3734         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3735                  &chip_phys, ioc->chip, memap_sz);
3736         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3737                  (unsigned long long)pio_chip, pio_sz);
3738
3739         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3740         pci_save_state(pdev);
3741         return 0;
3742
3743  out_fail:
3744         mpt3sas_base_unmap_resources(ioc);
3745         return r;
3746 }
3747
3748 /**
3749  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3750  * @ioc: per adapter object
3751  * @smid: system request message index(smid zero is invalid)
3752  *
3753  * Return: virt pointer to message frame.
3754  */
3755 void *
3756 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3757 {
3758         return (void *)(ioc->request + (smid * ioc->request_sz));
3759 }
3760
3761 /**
3762  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3763  * @ioc: per adapter object
3764  * @smid: system request message index
3765  *
3766  * Return: virt pointer to sense buffer.
3767  */
3768 void *
3769 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3770 {
3771         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3772 }
3773
3774 /**
3775  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3776  * @ioc: per adapter object
3777  * @smid: system request message index
3778  *
3779  * Return: phys pointer to the low 32bit address of the sense buffer.
3780  */
3781 __le32
3782 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3783 {
3784         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3785             SCSI_SENSE_BUFFERSIZE));
3786 }
3787
3788 /**
3789  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3790  * @ioc: per adapter object
3791  * @smid: system request message index
3792  *
3793  * Return: virt pointer to a PCIe SGL.
3794  */
3795 void *
3796 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3797 {
3798         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3799 }
3800
3801 /**
3802  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3803  * @ioc: per adapter object
3804  * @smid: system request message index
3805  *
3806  * Return: phys pointer to the address of the PCIe buffer.
3807  */
3808 dma_addr_t
3809 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3810 {
3811         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3812 }
3813
3814 /**
3815  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3816  * @ioc: per adapter object
3817  * @phys_addr: lower 32 physical addr of the reply
3818  *
3819  * Converts 32bit lower physical addr into a virt address.
3820  */
3821 void *
3822 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3823 {
3824         if (!phys_addr)
3825                 return NULL;
3826         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3827 }
3828
3829 /**
3830  * _base_get_msix_index - get the msix index
3831  * @ioc: per adapter object
3832  * @scmd: scsi_cmnd object
3833  *
3834  * Return: msix index of general reply queues,
3835  * i.e. reply queue on which IO request's reply
3836  * should be posted by the HBA firmware.
3837  */
3838 static inline u8
3839 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3840         struct scsi_cmnd *scmd)
3841 {
3842         /* Enables reply_queue load balancing */
3843         if (ioc->msix_load_balance)
3844                 return ioc->reply_queue_count ?
3845                     base_mod64(atomic64_add_return(1,
3846                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3847
3848         if (scmd && ioc->shost->nr_hw_queues > 1) {
3849                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3850
3851                 return blk_mq_unique_tag_to_hwq(tag) +
3852                         ioc->high_iops_queues;
3853         }
3854
3855         return ioc->cpu_msix_table[raw_smp_processor_id()];
3856 }
3857
3858 /**
3859  * _base_get_high_iops_msix_index - get the msix index of
3860  *                              high iops queues
3861  * @ioc: per adapter object
3862  * @scmd: scsi_cmnd object
3863  *
3864  * Return: msix index of high iops reply queues.
3865  * i.e. high iops reply queue on which IO request's
3866  * reply should be posted by the HBA firmware.
3867  */
3868 static inline u8
3869 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3870         struct scsi_cmnd *scmd)
3871 {
3872         /**
3873          * Round robin the IO interrupts among the high iops
3874          * reply queues in terms of batch count 16 when outstanding
3875          * IOs on the target device is >=8.
3876          */
3877
3878         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3879                 return base_mod64((
3880                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3881                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3882                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3883
3884         return _base_get_msix_index(ioc, scmd);
3885 }
3886
3887 /**
3888  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3889  * @ioc: per adapter object
3890  * @cb_idx: callback index
3891  *
3892  * Return: smid (zero is invalid)
3893  */
3894 u16
3895 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3896 {
3897         unsigned long flags;
3898         struct request_tracker *request;
3899         u16 smid;
3900
3901         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3902         if (list_empty(&ioc->internal_free_list)) {
3903                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3904                 ioc_err(ioc, "%s: smid not available\n", __func__);
3905                 return 0;
3906         }
3907
3908         request = list_entry(ioc->internal_free_list.next,
3909             struct request_tracker, tracker_list);
3910         request->cb_idx = cb_idx;
3911         smid = request->smid;
3912         list_del(&request->tracker_list);
3913         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3914         return smid;
3915 }
3916
3917 /**
3918  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3919  * @ioc: per adapter object
3920  * @cb_idx: callback index
3921  * @scmd: pointer to scsi command object
3922  *
3923  * Return: smid (zero is invalid)
3924  */
3925 u16
3926 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3927         struct scsi_cmnd *scmd)
3928 {
3929         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3930         u16 smid;
3931         u32 tag, unique_tag;
3932
3933         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3934         tag = blk_mq_unique_tag_to_tag(unique_tag);
3935
3936         /*
3937          * Store hw queue number corresponding to the tag.
3938          * This hw queue number is used later to determine
3939          * the unique_tag using the logic below. This unique_tag
3940          * is used to retrieve the scmd pointer corresponding
3941          * to tag using scsi_host_find_tag() API.
3942          *
3943          * tag = smid - 1;
3944          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3945          */
3946         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3947
3948         smid = tag + 1;
3949         request->cb_idx = cb_idx;
3950         request->smid = smid;
3951         request->scmd = scmd;
3952         INIT_LIST_HEAD(&request->chain_list);
3953         return smid;
3954 }
3955
3956 /**
3957  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3958  * @ioc: per adapter object
3959  * @cb_idx: callback index
3960  *
3961  * Return: smid (zero is invalid)
3962  */
3963 u16
3964 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3965 {
3966         unsigned long flags;
3967         struct request_tracker *request;
3968         u16 smid;
3969
3970         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3971         if (list_empty(&ioc->hpr_free_list)) {
3972                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3973                 return 0;
3974         }
3975
3976         request = list_entry(ioc->hpr_free_list.next,
3977             struct request_tracker, tracker_list);
3978         request->cb_idx = cb_idx;
3979         smid = request->smid;
3980         list_del(&request->tracker_list);
3981         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3982         return smid;
3983 }
3984
3985 static void
3986 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3987 {
3988         /*
3989          * See _wait_for_commands_to_complete() call with regards to this code.
3990          */
3991         if (ioc->shost_recovery && ioc->pending_io_count) {
3992                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3993                 if (ioc->pending_io_count == 0)
3994                         wake_up(&ioc->reset_wq);
3995         }
3996 }
3997
3998 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3999                            struct scsiio_tracker *st)
4000 {
4001         if (WARN_ON(st->smid == 0))
4002                 return;
4003         st->cb_idx = 0xFF;
4004         st->direct_io = 0;
4005         st->scmd = NULL;
4006         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4007         st->smid = 0;
4008 }
4009
4010 /**
4011  * mpt3sas_base_free_smid - put smid back on free_list
4012  * @ioc: per adapter object
4013  * @smid: system request message index
4014  */
4015 void
4016 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4017 {
4018         unsigned long flags;
4019         int i;
4020
4021         if (smid < ioc->hi_priority_smid) {
4022                 struct scsiio_tracker *st;
4023                 void *request;
4024
4025                 st = _get_st_from_smid(ioc, smid);
4026                 if (!st) {
4027                         _base_recovery_check(ioc);
4028                         return;
4029                 }
4030
4031                 /* Clear MPI request frame */
4032                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4033                 memset(request, 0, ioc->request_sz);
4034
4035                 mpt3sas_base_clear_st(ioc, st);
4036                 _base_recovery_check(ioc);
4037                 ioc->io_queue_num[smid - 1] = 0;
4038                 return;
4039         }
4040
4041         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4042         if (smid < ioc->internal_smid) {
4043                 /* hi-priority */
4044                 i = smid - ioc->hi_priority_smid;
4045                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4046                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4047         } else if (smid <= ioc->hba_queue_depth) {
4048                 /* internal queue */
4049                 i = smid - ioc->internal_smid;
4050                 ioc->internal_lookup[i].cb_idx = 0xFF;
4051                 list_add(&ioc->internal_lookup[i].tracker_list,
4052                     &ioc->internal_free_list);
4053         }
4054         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4055 }
4056
4057 /**
4058  * _base_mpi_ep_writeq - 32 bit write to MMIO
4059  * @b: data payload
4060  * @addr: address in MMIO space
4061  * @writeq_lock: spin lock
4062  *
4063  * This special handling for MPI EP to take care of 32 bit
4064  * environment where its not quarenteed to send the entire word
4065  * in one transfer.
4066  */
4067 static inline void
4068 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4069                                         spinlock_t *writeq_lock)
4070 {
4071         unsigned long flags;
4072
4073         spin_lock_irqsave(writeq_lock, flags);
4074         __raw_writel((u32)(b), addr);
4075         __raw_writel((u32)(b >> 32), (addr + 4));
4076         spin_unlock_irqrestore(writeq_lock, flags);
4077 }
4078
4079 /**
4080  * _base_writeq - 64 bit write to MMIO
4081  * @b: data payload
4082  * @addr: address in MMIO space
4083  * @writeq_lock: spin lock
4084  *
4085  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4086  * care of 32 bit environment where its not quarenteed to send the entire word
4087  * in one transfer.
4088  */
4089 #if defined(writeq) && defined(CONFIG_64BIT)
4090 static inline void
4091 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4092 {
4093         wmb();
4094         __raw_writeq(b, addr);
4095         barrier();
4096 }
4097 #else
4098 static inline void
4099 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4100 {
4101         _base_mpi_ep_writeq(b, addr, writeq_lock);
4102 }
4103 #endif
4104
4105 /**
4106  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4107  *                                variable of scsi tracker
4108  * @ioc: per adapter object
4109  * @smid: system request message index
4110  *
4111  * Return: msix index.
4112  */
4113 static u8
4114 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4115 {
4116         struct scsiio_tracker *st = NULL;
4117
4118         if (smid < ioc->hi_priority_smid)
4119                 st = _get_st_from_smid(ioc, smid);
4120
4121         if (st == NULL)
4122                 return  _base_get_msix_index(ioc, NULL);
4123
4124         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4125         return st->msix_io;
4126 }
4127
4128 /**
4129  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4130  * @ioc: per adapter object
4131  * @smid: system request message index
4132  * @handle: device handle
4133  */
4134 static void
4135 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4136         u16 smid, u16 handle)
4137 {
4138         Mpi2RequestDescriptorUnion_t descriptor;
4139         u64 *request = (u64 *)&descriptor;
4140         void *mpi_req_iomem;
4141         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4142
4143         _clone_sg_entries(ioc, (void *) mfp, smid);
4144         mpi_req_iomem = (void __force *)ioc->chip +
4145                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4146         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4147                                         ioc->request_sz);
4148         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4149         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4150         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4151         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4152         descriptor.SCSIIO.LMID = 0;
4153         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4154             &ioc->scsi_lookup_lock);
4155 }
4156
4157 /**
4158  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4159  * @ioc: per adapter object
4160  * @smid: system request message index
4161  * @handle: device handle
4162  */
4163 static void
4164 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4165 {
4166         Mpi2RequestDescriptorUnion_t descriptor;
4167         u64 *request = (u64 *)&descriptor;
4168
4169
4170         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4171         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4172         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4173         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4174         descriptor.SCSIIO.LMID = 0;
4175         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4176             &ioc->scsi_lookup_lock);
4177 }
4178
4179 /**
4180  * _base_put_smid_fast_path - send fast path request to firmware
4181  * @ioc: per adapter object
4182  * @smid: system request message index
4183  * @handle: device handle
4184  */
4185 static void
4186 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4187         u16 handle)
4188 {
4189         Mpi2RequestDescriptorUnion_t descriptor;
4190         u64 *request = (u64 *)&descriptor;
4191
4192         descriptor.SCSIIO.RequestFlags =
4193             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4194         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4195         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4196         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4197         descriptor.SCSIIO.LMID = 0;
4198         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4199             &ioc->scsi_lookup_lock);
4200 }
4201
4202 /**
4203  * _base_put_smid_hi_priority - send Task Management request to firmware
4204  * @ioc: per adapter object
4205  * @smid: system request message index
4206  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4207  */
4208 static void
4209 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4210         u16 msix_task)
4211 {
4212         Mpi2RequestDescriptorUnion_t descriptor;
4213         void *mpi_req_iomem;
4214         u64 *request;
4215
4216         if (ioc->is_mcpu_endpoint) {
4217                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4218
4219                 /* TBD 256 is offset within sys register. */
4220                 mpi_req_iomem = (void __force *)ioc->chip
4221                                         + MPI_FRAME_START_OFFSET
4222                                         + (smid * ioc->request_sz);
4223                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4224                                                         ioc->request_sz);
4225         }
4226
4227         request = (u64 *)&descriptor;
4228
4229         descriptor.HighPriority.RequestFlags =
4230             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4231         descriptor.HighPriority.MSIxIndex =  msix_task;
4232         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4233         descriptor.HighPriority.LMID = 0;
4234         descriptor.HighPriority.Reserved1 = 0;
4235         if (ioc->is_mcpu_endpoint)
4236                 _base_mpi_ep_writeq(*request,
4237                                 &ioc->chip->RequestDescriptorPostLow,
4238                                 &ioc->scsi_lookup_lock);
4239         else
4240                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4241                     &ioc->scsi_lookup_lock);
4242 }
4243
4244 /**
4245  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4246  *  firmware
4247  * @ioc: per adapter object
4248  * @smid: system request message index
4249  */
4250 void
4251 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4252 {
4253         Mpi2RequestDescriptorUnion_t descriptor;
4254         u64 *request = (u64 *)&descriptor;
4255
4256         descriptor.Default.RequestFlags =
4257                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4258         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4259         descriptor.Default.SMID = cpu_to_le16(smid);
4260         descriptor.Default.LMID = 0;
4261         descriptor.Default.DescriptorTypeDependent = 0;
4262         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4263             &ioc->scsi_lookup_lock);
4264 }
4265
4266 /**
4267  * _base_put_smid_default - Default, primarily used for config pages
4268  * @ioc: per adapter object
4269  * @smid: system request message index
4270  */
4271 static void
4272 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4273 {
4274         Mpi2RequestDescriptorUnion_t descriptor;
4275         void *mpi_req_iomem;
4276         u64 *request;
4277
4278         if (ioc->is_mcpu_endpoint) {
4279                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4280
4281                 _clone_sg_entries(ioc, (void *) mfp, smid);
4282                 /* TBD 256 is offset within sys register */
4283                 mpi_req_iomem = (void __force *)ioc->chip +
4284                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4285                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4286                                                         ioc->request_sz);
4287         }
4288         request = (u64 *)&descriptor;
4289         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4290         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4291         descriptor.Default.SMID = cpu_to_le16(smid);
4292         descriptor.Default.LMID = 0;
4293         descriptor.Default.DescriptorTypeDependent = 0;
4294         if (ioc->is_mcpu_endpoint)
4295                 _base_mpi_ep_writeq(*request,
4296                                 &ioc->chip->RequestDescriptorPostLow,
4297                                 &ioc->scsi_lookup_lock);
4298         else
4299                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4300                                 &ioc->scsi_lookup_lock);
4301 }
4302
4303 /**
4304  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4305  *   Atomic Request Descriptor
4306  * @ioc: per adapter object
4307  * @smid: system request message index
4308  * @handle: device handle, unused in this function, for function type match
4309  *
4310  * Return: nothing.
4311  */
4312 static void
4313 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4314         u16 handle)
4315 {
4316         Mpi26AtomicRequestDescriptor_t descriptor;
4317         u32 *request = (u32 *)&descriptor;
4318
4319         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4320         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4321         descriptor.SMID = cpu_to_le16(smid);
4322
4323         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4324 }
4325
4326 /**
4327  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4328  * using Atomic Request Descriptor
4329  * @ioc: per adapter object
4330  * @smid: system request message index
4331  * @handle: device handle, unused in this function, for function type match
4332  * Return: nothing
4333  */
4334 static void
4335 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4336         u16 handle)
4337 {
4338         Mpi26AtomicRequestDescriptor_t descriptor;
4339         u32 *request = (u32 *)&descriptor;
4340
4341         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4342         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4343         descriptor.SMID = cpu_to_le16(smid);
4344
4345         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4346 }
4347
4348 /**
4349  * _base_put_smid_hi_priority_atomic - send Task Management request to
4350  * firmware using Atomic Request Descriptor
4351  * @ioc: per adapter object
4352  * @smid: system request message index
4353  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4354  *
4355  * Return: nothing.
4356  */
4357 static void
4358 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4359         u16 msix_task)
4360 {
4361         Mpi26AtomicRequestDescriptor_t descriptor;
4362         u32 *request = (u32 *)&descriptor;
4363
4364         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4365         descriptor.MSIxIndex = msix_task;
4366         descriptor.SMID = cpu_to_le16(smid);
4367
4368         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4369 }
4370
4371 /**
4372  * _base_put_smid_default_atomic - Default, primarily used for config pages
4373  * use Atomic Request Descriptor
4374  * @ioc: per adapter object
4375  * @smid: system request message index
4376  *
4377  * Return: nothing.
4378  */
4379 static void
4380 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4381 {
4382         Mpi26AtomicRequestDescriptor_t descriptor;
4383         u32 *request = (u32 *)&descriptor;
4384
4385         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4386         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4387         descriptor.SMID = cpu_to_le16(smid);
4388
4389         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4390 }
4391
4392 /**
4393  * _base_display_OEMs_branding - Display branding string
4394  * @ioc: per adapter object
4395  */
4396 static void
4397 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4398 {
4399         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4400                 return;
4401
4402         switch (ioc->pdev->subsystem_vendor) {
4403         case PCI_VENDOR_ID_INTEL:
4404                 switch (ioc->pdev->device) {
4405                 case MPI2_MFGPAGE_DEVID_SAS2008:
4406                         switch (ioc->pdev->subsystem_device) {
4407                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4408                                 ioc_info(ioc, "%s\n",
4409                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4410                                 break;
4411                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4412                                 ioc_info(ioc, "%s\n",
4413                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4414                                 break;
4415                         case MPT2SAS_INTEL_SSD910_SSDID:
4416                                 ioc_info(ioc, "%s\n",
4417                                          MPT2SAS_INTEL_SSD910_BRANDING);
4418                                 break;
4419                         default:
4420                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4421                                          ioc->pdev->subsystem_device);
4422                                 break;
4423                         }
4424                         break;
4425                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4426                         switch (ioc->pdev->subsystem_device) {
4427                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4428                                 ioc_info(ioc, "%s\n",
4429                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4430                                 break;
4431                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4432                                 ioc_info(ioc, "%s\n",
4433                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4434                                 break;
4435                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4436                                 ioc_info(ioc, "%s\n",
4437                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4438                                 break;
4439                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4440                                 ioc_info(ioc, "%s\n",
4441                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4442                                 break;
4443                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4444                                 ioc_info(ioc, "%s\n",
4445                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4446                                 break;
4447                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4448                                 ioc_info(ioc, "%s\n",
4449                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4450                                 break;
4451                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4452                                 ioc_info(ioc, "%s\n",
4453                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4454                                 break;
4455                         default:
4456                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4457                                          ioc->pdev->subsystem_device);
4458                                 break;
4459                         }
4460                         break;
4461                 case MPI25_MFGPAGE_DEVID_SAS3008:
4462                         switch (ioc->pdev->subsystem_device) {
4463                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4464                                 ioc_info(ioc, "%s\n",
4465                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4466                                 break;
4467
4468                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4469                                 ioc_info(ioc, "%s\n",
4470                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4471                                 break;
4472                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4473                                 ioc_info(ioc, "%s\n",
4474                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4475                                 break;
4476                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4477                                 ioc_info(ioc, "%s\n",
4478                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4479                                 break;
4480                         default:
4481                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4482                                          ioc->pdev->subsystem_device);
4483                                 break;
4484                         }
4485                         break;
4486                 default:
4487                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4488                                  ioc->pdev->subsystem_device);
4489                         break;
4490                 }
4491                 break;
4492         case PCI_VENDOR_ID_DELL:
4493                 switch (ioc->pdev->device) {
4494                 case MPI2_MFGPAGE_DEVID_SAS2008:
4495                         switch (ioc->pdev->subsystem_device) {
4496                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4497                                 ioc_info(ioc, "%s\n",
4498                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4499                                 break;
4500                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4501                                 ioc_info(ioc, "%s\n",
4502                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4503                                 break;
4504                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4505                                 ioc_info(ioc, "%s\n",
4506                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4507                                 break;
4508                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4509                                 ioc_info(ioc, "%s\n",
4510                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4511                                 break;
4512                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4513                                 ioc_info(ioc, "%s\n",
4514                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4515                                 break;
4516                         case MPT2SAS_DELL_PERC_H200_SSDID:
4517                                 ioc_info(ioc, "%s\n",
4518                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4519                                 break;
4520                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4521                                 ioc_info(ioc, "%s\n",
4522                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4523                                 break;
4524                         default:
4525                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4526                                          ioc->pdev->subsystem_device);
4527                                 break;
4528                         }
4529                         break;
4530                 case MPI25_MFGPAGE_DEVID_SAS3008:
4531                         switch (ioc->pdev->subsystem_device) {
4532                         case MPT3SAS_DELL_12G_HBA_SSDID:
4533                                 ioc_info(ioc, "%s\n",
4534                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4535                                 break;
4536                         default:
4537                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4538                                          ioc->pdev->subsystem_device);
4539                                 break;
4540                         }
4541                         break;
4542                 default:
4543                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4544                                  ioc->pdev->subsystem_device);
4545                         break;
4546                 }
4547                 break;
4548         case PCI_VENDOR_ID_CISCO:
4549                 switch (ioc->pdev->device) {
4550                 case MPI25_MFGPAGE_DEVID_SAS3008:
4551                         switch (ioc->pdev->subsystem_device) {
4552                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4553                                 ioc_info(ioc, "%s\n",
4554                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4555                                 break;
4556                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4557                                 ioc_info(ioc, "%s\n",
4558                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4559                                 break;
4560                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4561                                 ioc_info(ioc, "%s\n",
4562                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4563                                 break;
4564                         default:
4565                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4566                                          ioc->pdev->subsystem_device);
4567                                 break;
4568                         }
4569                         break;
4570                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4571                         switch (ioc->pdev->subsystem_device) {
4572                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4573                                 ioc_info(ioc, "%s\n",
4574                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4575                                 break;
4576                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4577                                 ioc_info(ioc, "%s\n",
4578                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4579                                 break;
4580                         default:
4581                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4582                                          ioc->pdev->subsystem_device);
4583                                 break;
4584                         }
4585                         break;
4586                 default:
4587                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4588                                  ioc->pdev->subsystem_device);
4589                         break;
4590                 }
4591                 break;
4592         case MPT2SAS_HP_3PAR_SSVID:
4593                 switch (ioc->pdev->device) {
4594                 case MPI2_MFGPAGE_DEVID_SAS2004:
4595                         switch (ioc->pdev->subsystem_device) {
4596                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4597                                 ioc_info(ioc, "%s\n",
4598                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4599                                 break;
4600                         default:
4601                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4602                                          ioc->pdev->subsystem_device);
4603                                 break;
4604                         }
4605                         break;
4606                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4607                         switch (ioc->pdev->subsystem_device) {
4608                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4609                                 ioc_info(ioc, "%s\n",
4610                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4611                                 break;
4612                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4613                                 ioc_info(ioc, "%s\n",
4614                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4615                                 break;
4616                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4617                                 ioc_info(ioc, "%s\n",
4618                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4619                                 break;
4620                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4621                                 ioc_info(ioc, "%s\n",
4622                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4623                                 break;
4624                         default:
4625                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4626                                          ioc->pdev->subsystem_device);
4627                                 break;
4628                         }
4629                         break;
4630                 default:
4631                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4632                                  ioc->pdev->subsystem_device);
4633                         break;
4634                 }
4635                 break;
4636         default:
4637                 break;
4638         }
4639 }
4640
4641 /**
4642  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4643  *                              version from FW Image Header.
4644  * @ioc: per adapter object
4645  *
4646  * Return: 0 for success, non-zero for failure.
4647  */
4648         static int
4649 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4650 {
4651         Mpi2FWImageHeader_t *fw_img_hdr;
4652         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4653         Mpi25FWUploadRequest_t *mpi_request;
4654         Mpi2FWUploadReply_t mpi_reply;
4655         int r = 0, issue_diag_reset = 0;
4656         u32  package_version = 0;
4657         void *fwpkg_data = NULL;
4658         dma_addr_t fwpkg_data_dma;
4659         u16 smid, ioc_status;
4660         size_t data_length;
4661
4662         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4663
4664         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4665                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4666                 return -EAGAIN;
4667         }
4668
4669         data_length = sizeof(Mpi2FWImageHeader_t);
4670         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4671                         &fwpkg_data_dma, GFP_KERNEL);
4672         if (!fwpkg_data) {
4673                 ioc_err(ioc,
4674                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4675                         __FILE__, __LINE__, __func__);
4676                 return -ENOMEM;
4677         }
4678
4679         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4680         if (!smid) {
4681                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4682                 r = -EAGAIN;
4683                 goto out;
4684         }
4685
4686         ioc->base_cmds.status = MPT3_CMD_PENDING;
4687         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4688         ioc->base_cmds.smid = smid;
4689         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4690         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4691         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4692         mpi_request->ImageSize = cpu_to_le32(data_length);
4693         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4694                         data_length);
4695         init_completion(&ioc->base_cmds.done);
4696         ioc->put_smid_default(ioc, smid);
4697         /* Wait for 15 seconds */
4698         wait_for_completion_timeout(&ioc->base_cmds.done,
4699                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4700         ioc_info(ioc, "%s: complete\n", __func__);
4701         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4702                 ioc_err(ioc, "%s: timeout\n", __func__);
4703                 _debug_dump_mf(mpi_request,
4704                                 sizeof(Mpi25FWUploadRequest_t)/4);
4705                 issue_diag_reset = 1;
4706         } else {
4707                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4708                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4709                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4710                                         sizeof(Mpi2FWUploadReply_t));
4711                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4712                                                 MPI2_IOCSTATUS_MASK;
4713                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4714                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4715                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4716                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4717                                         cmp_img_hdr =
4718                                             (Mpi26ComponentImageHeader_t *)
4719                                             (fwpkg_data);
4720                                         package_version =
4721                                             le32_to_cpu(
4722                                             cmp_img_hdr->ApplicationSpecific);
4723                                 } else
4724                                         package_version =
4725                                             le32_to_cpu(
4726                                             fw_img_hdr->PackageVersion.Word);
4727                                 if (package_version)
4728                                         ioc_info(ioc,
4729                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4730                                         ((package_version) & 0xFF000000) >> 24,
4731                                         ((package_version) & 0x00FF0000) >> 16,
4732                                         ((package_version) & 0x0000FF00) >> 8,
4733                                         (package_version) & 0x000000FF);
4734                         } else {
4735                                 _debug_dump_mf(&mpi_reply,
4736                                                 sizeof(Mpi2FWUploadReply_t)/4);
4737                         }
4738                 }
4739         }
4740         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4741 out:
4742         if (fwpkg_data)
4743                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4744                                 fwpkg_data_dma);
4745         if (issue_diag_reset) {
4746                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4747                         return -EFAULT;
4748                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4749                         return -EFAULT;
4750                 r = -EAGAIN;
4751         }
4752         return r;
4753 }
4754
4755 /**
4756  * _base_display_ioc_capabilities - Display IOC's capabilities.
4757  * @ioc: per adapter object
4758  */
4759 static void
4760 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4761 {
4762         int i = 0;
4763         char desc[17] = {0};
4764         u32 iounit_pg1_flags;
4765         u32 bios_version;
4766
4767         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4768         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4769         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4770                  desc,
4771                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4772                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4773                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4774                  ioc->facts.FWVersion.Word & 0x000000FF,
4775                  ioc->pdev->revision,
4776                  (bios_version & 0xFF000000) >> 24,
4777                  (bios_version & 0x00FF0000) >> 16,
4778                  (bios_version & 0x0000FF00) >> 8,
4779                  bios_version & 0x000000FF);
4780
4781         _base_display_OEMs_branding(ioc);
4782
4783         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4784                 pr_info("%sNVMe", i ? "," : "");
4785                 i++;
4786         }
4787
4788         ioc_info(ioc, "Protocol=(");
4789
4790         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4791                 pr_cont("Initiator");
4792                 i++;
4793         }
4794
4795         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4796                 pr_cont("%sTarget", i ? "," : "");
4797                 i++;
4798         }
4799
4800         i = 0;
4801         pr_cont("), Capabilities=(");
4802
4803         if (!ioc->hide_ir_msg) {
4804                 if (ioc->facts.IOCCapabilities &
4805                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4806                         pr_cont("Raid");
4807                         i++;
4808                 }
4809         }
4810
4811         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4812                 pr_cont("%sTLR", i ? "," : "");
4813                 i++;
4814         }
4815
4816         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4817                 pr_cont("%sMulticast", i ? "," : "");
4818                 i++;
4819         }
4820
4821         if (ioc->facts.IOCCapabilities &
4822             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4823                 pr_cont("%sBIDI Target", i ? "," : "");
4824                 i++;
4825         }
4826
4827         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4828                 pr_cont("%sEEDP", i ? "," : "");
4829                 i++;
4830         }
4831
4832         if (ioc->facts.IOCCapabilities &
4833             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4834                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4835                 i++;
4836         }
4837
4838         if (ioc->facts.IOCCapabilities &
4839             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4840                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4841                 i++;
4842         }
4843
4844         if (ioc->facts.IOCCapabilities &
4845             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4846                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4847                 i++;
4848         }
4849
4850         if (ioc->facts.IOCCapabilities &
4851             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4852                 pr_cont("%sTask Set Full", i ? "," : "");
4853                 i++;
4854         }
4855
4856         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4857         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4858                 pr_cont("%sNCQ", i ? "," : "");
4859                 i++;
4860         }
4861
4862         pr_cont(")\n");
4863 }
4864
4865 /**
4866  * mpt3sas_base_update_missing_delay - change the missing delay timers
4867  * @ioc: per adapter object
4868  * @device_missing_delay: amount of time till device is reported missing
4869  * @io_missing_delay: interval IO is returned when there is a missing device
4870  *
4871  * Passed on the command line, this function will modify the device missing
4872  * delay, as well as the io missing delay. This should be called at driver
4873  * load time.
4874  */
4875 void
4876 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4877         u16 device_missing_delay, u8 io_missing_delay)
4878 {
4879         u16 dmd, dmd_new, dmd_orignal;
4880         u8 io_missing_delay_original;
4881         u16 sz;
4882         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4883         Mpi2ConfigReply_t mpi_reply;
4884         u8 num_phys = 0;
4885         u16 ioc_status;
4886
4887         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4888         if (!num_phys)
4889                 return;
4890
4891         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4892             sizeof(Mpi2SasIOUnit1PhyData_t));
4893         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4894         if (!sas_iounit_pg1) {
4895                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4896                         __FILE__, __LINE__, __func__);
4897                 goto out;
4898         }
4899         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4900             sas_iounit_pg1, sz))) {
4901                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4902                         __FILE__, __LINE__, __func__);
4903                 goto out;
4904         }
4905         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4906             MPI2_IOCSTATUS_MASK;
4907         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4908                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4909                         __FILE__, __LINE__, __func__);
4910                 goto out;
4911         }
4912
4913         /* device missing delay */
4914         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4915         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4916                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4917         else
4918                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4919         dmd_orignal = dmd;
4920         if (device_missing_delay > 0x7F) {
4921                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4922                     device_missing_delay;
4923                 dmd = dmd / 16;
4924                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4925         } else
4926                 dmd = device_missing_delay;
4927         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4928
4929         /* io missing delay */
4930         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4931         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4932
4933         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4934             sz)) {
4935                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4936                         dmd_new = (dmd &
4937                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4938                 else
4939                         dmd_new =
4940                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4941                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4942                          dmd_orignal, dmd_new);
4943                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4944                          io_missing_delay_original,
4945                          io_missing_delay);
4946                 ioc->device_missing_delay = dmd_new;
4947                 ioc->io_missing_delay = io_missing_delay;
4948         }
4949
4950 out:
4951         kfree(sas_iounit_pg1);
4952 }
4953
4954 /**
4955  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4956  *    according to performance mode.
4957  * @ioc : per adapter object
4958  *
4959  * Return: zero on success; otherwise return EAGAIN error code asking the
4960  * caller to retry.
4961  */
4962 static int
4963 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4964 {
4965         Mpi2IOCPage1_t ioc_pg1;
4966         Mpi2ConfigReply_t mpi_reply;
4967         int rc;
4968
4969         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4970         if (rc)
4971                 return rc;
4972         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4973
4974         switch (perf_mode) {
4975         case MPT_PERF_MODE_DEFAULT:
4976         case MPT_PERF_MODE_BALANCED:
4977                 if (ioc->high_iops_queues) {
4978                         ioc_info(ioc,
4979                                 "Enable interrupt coalescing only for first\t"
4980                                 "%d reply queues\n",
4981                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4982                         /*
4983                          * If 31st bit is zero then interrupt coalescing is
4984                          * enabled for all reply descriptor post queues.
4985                          * If 31st bit is set to one then user can
4986                          * enable/disable interrupt coalescing on per reply
4987                          * descriptor post queue group(8) basis. So to enable
4988                          * interrupt coalescing only on first reply descriptor
4989                          * post queue group 31st bit and zero th bit is enabled.
4990                          */
4991                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4992                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4993                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4994                         if (rc)
4995                                 return rc;
4996                         ioc_info(ioc, "performance mode: balanced\n");
4997                         return 0;
4998                 }
4999                 fallthrough;
5000         case MPT_PERF_MODE_LATENCY:
5001                 /*
5002                  * Enable interrupt coalescing on all reply queues
5003                  * with timeout value 0xA
5004                  */
5005                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5006                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5007                 ioc_pg1.ProductSpecific = 0;
5008                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5009                 if (rc)
5010                         return rc;
5011                 ioc_info(ioc, "performance mode: latency\n");
5012                 break;
5013         case MPT_PERF_MODE_IOPS:
5014                 /*
5015                  * Enable interrupt coalescing on all reply queues.
5016                  */
5017                 ioc_info(ioc,
5018                     "performance mode: iops with coalescing timeout: 0x%x\n",
5019                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5020                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5021                 ioc_pg1.ProductSpecific = 0;
5022                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5023                 if (rc)
5024                         return rc;
5025                 break;
5026         }
5027         return 0;
5028 }
5029
5030 /**
5031  * _base_get_event_diag_triggers - get event diag trigger values from
5032  *                              persistent pages
5033  * @ioc : per adapter object
5034  *
5035  * Return: nothing.
5036  */
5037 static int
5038 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5039 {
5040         Mpi26DriverTriggerPage2_t trigger_pg2;
5041         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5042         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5043         Mpi2ConfigReply_t mpi_reply;
5044         int r = 0, i = 0;
5045         u16 count = 0;
5046         u16 ioc_status;
5047
5048         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5049             &trigger_pg2);
5050         if (r)
5051                 return r;
5052
5053         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5054             MPI2_IOCSTATUS_MASK;
5055         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5056                 dinitprintk(ioc,
5057                     ioc_err(ioc,
5058                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5059                    __func__, ioc_status));
5060                 return 0;
5061         }
5062
5063         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5064                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5065                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5066                 ioc->diag_trigger_event.ValidEntries = count;
5067
5068                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5069                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5070                 for (i = 0; i < count; i++) {
5071                         event_tg->EventValue = le16_to_cpu(
5072                             mpi_event_tg->MPIEventCode);
5073                         event_tg->LogEntryQualifier = le16_to_cpu(
5074                             mpi_event_tg->MPIEventCodeSpecific);
5075                         event_tg++;
5076                         mpi_event_tg++;
5077                 }
5078         }
5079         return 0;
5080 }
5081
5082 /**
5083  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5084  *                              persistent pages
5085  * @ioc : per adapter object
5086  *
5087  * Return: 0 on success; otherwise return failure status.
5088  */
5089 static int
5090 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5091 {
5092         Mpi26DriverTriggerPage3_t trigger_pg3;
5093         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5094         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5095         Mpi2ConfigReply_t mpi_reply;
5096         int r = 0, i = 0;
5097         u16 count = 0;
5098         u16 ioc_status;
5099
5100         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5101             &trigger_pg3);
5102         if (r)
5103                 return r;
5104
5105         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5106             MPI2_IOCSTATUS_MASK;
5107         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5108                 dinitprintk(ioc,
5109                     ioc_err(ioc,
5110                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5111                     __func__, ioc_status));
5112                 return 0;
5113         }
5114
5115         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5116                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5117                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5118                 ioc->diag_trigger_scsi.ValidEntries = count;
5119
5120                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5121                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5122                 for (i = 0; i < count; i++) {
5123                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5124                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5125                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5126
5127                         scsi_tg++;
5128                         mpi_scsi_tg++;
5129                 }
5130         }
5131         return 0;
5132 }
5133
5134 /**
5135  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5136  *                              persistent pages
5137  * @ioc : per adapter object
5138  *
5139  * Return: 0 on success; otherwise return failure status.
5140  */
5141 static int
5142 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5143 {
5144         Mpi26DriverTriggerPage4_t trigger_pg4;
5145         struct SL_WH_MPI_TRIGGER_T *status_tg;
5146         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5147         Mpi2ConfigReply_t mpi_reply;
5148         int r = 0, i = 0;
5149         u16 count = 0;
5150         u16 ioc_status;
5151
5152         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5153             &trigger_pg4);
5154         if (r)
5155                 return r;
5156
5157         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5158             MPI2_IOCSTATUS_MASK;
5159         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5160                 dinitprintk(ioc,
5161                     ioc_err(ioc,
5162                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5163                     __func__, ioc_status));
5164                 return 0;
5165         }
5166
5167         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5168                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5169                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5170                 ioc->diag_trigger_mpi.ValidEntries = count;
5171
5172                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5173                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5174
5175                 for (i = 0; i < count; i++) {
5176                         status_tg->IOCStatus = le16_to_cpu(
5177                             mpi_status_tg->IOCStatus);
5178                         status_tg->IocLogInfo = le32_to_cpu(
5179                             mpi_status_tg->LogInfo);
5180
5181                         status_tg++;
5182                         mpi_status_tg++;
5183                 }
5184         }
5185         return 0;
5186 }
5187
5188 /**
5189  * _base_get_master_diag_triggers - get master diag trigger values from
5190  *                              persistent pages
5191  * @ioc : per adapter object
5192  *
5193  * Return: nothing.
5194  */
5195 static int
5196 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5197 {
5198         Mpi26DriverTriggerPage1_t trigger_pg1;
5199         Mpi2ConfigReply_t mpi_reply;
5200         int r;
5201         u16 ioc_status;
5202
5203         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5204             &trigger_pg1);
5205         if (r)
5206                 return r;
5207
5208         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5209             MPI2_IOCSTATUS_MASK;
5210         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5211                 dinitprintk(ioc,
5212                     ioc_err(ioc,
5213                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5214                    __func__, ioc_status));
5215                 return 0;
5216         }
5217
5218         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5219                 ioc->diag_trigger_master.MasterData |=
5220                     le32_to_cpu(
5221                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5222         return 0;
5223 }
5224
5225 /**
5226  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5227  *                                      driver trigger pages or not
5228  * @ioc : per adapter object
5229  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5230  *
5231  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5232  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5233  * return EAGAIN if diag reset occurred due to FW fault and asking the
5234  * caller to retry the command.
5235  *
5236  */
5237 static int
5238 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5239 {
5240         Mpi26DriverTriggerPage0_t trigger_pg0;
5241         int r = 0;
5242         Mpi2ConfigReply_t mpi_reply;
5243         u16 ioc_status;
5244
5245         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5246             &trigger_pg0);
5247         if (r)
5248                 return r;
5249
5250         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5251             MPI2_IOCSTATUS_MASK;
5252         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5253                 return -EFAULT;
5254
5255         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5256         return 0;
5257 }
5258
5259 /**
5260  * _base_get_diag_triggers - Retrieve diag trigger values from
5261  *                              persistent pages.
5262  * @ioc : per adapter object
5263  *
5264  * Return: zero on success; otherwise return EAGAIN error codes
5265  * asking the caller to retry.
5266  */
5267 static int
5268 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5269 {
5270         int trigger_flags;
5271         int r;
5272
5273         /*
5274          * Default setting of master trigger.
5275          */
5276         ioc->diag_trigger_master.MasterData =
5277             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5278
5279         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5280         if (r) {
5281                 if (r == -EAGAIN)
5282                         return r;
5283                 /*
5284                  * Don't go for error handling when FW doesn't support
5285                  * driver trigger pages.
5286                  */
5287                 return 0;
5288         }
5289
5290         ioc->supports_trigger_pages = 1;
5291
5292         /*
5293          * Retrieve master diag trigger values from driver trigger pg1
5294          * if master trigger bit enabled in TriggerFlags.
5295          */
5296         if ((u16)trigger_flags &
5297             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5298                 r = _base_get_master_diag_triggers(ioc);
5299                 if (r)
5300                         return r;
5301         }
5302
5303         /*
5304          * Retrieve event diag trigger values from driver trigger pg2
5305          * if event trigger bit enabled in TriggerFlags.
5306          */
5307         if ((u16)trigger_flags &
5308             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5309                 r = _base_get_event_diag_triggers(ioc);
5310                 if (r)
5311                         return r;
5312         }
5313
5314         /*
5315          * Retrieve scsi diag trigger values from driver trigger pg3
5316          * if scsi trigger bit enabled in TriggerFlags.
5317          */
5318         if ((u16)trigger_flags &
5319             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5320                 r = _base_get_scsi_diag_triggers(ioc);
5321                 if (r)
5322                         return r;
5323         }
5324         /*
5325          * Retrieve mpi error diag trigger values from driver trigger pg4
5326          * if loginfo trigger bit enabled in TriggerFlags.
5327          */
5328         if ((u16)trigger_flags &
5329             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5330                 r = _base_get_mpi_diag_triggers(ioc);
5331                 if (r)
5332                         return r;
5333         }
5334         return 0;
5335 }
5336
5337 /**
5338  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5339  *                      online FW update, in case updated FW supports driver
5340  *                      trigger pages.
5341  * @ioc : per adapter object
5342  *
5343  * Return: nothing.
5344  */
5345 static void
5346 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5347 {
5348
5349         if (ioc->diag_trigger_master.MasterData)
5350                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5351                     &ioc->diag_trigger_master, 1);
5352
5353         if (ioc->diag_trigger_event.ValidEntries)
5354                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5355                     &ioc->diag_trigger_event, 1);
5356
5357         if (ioc->diag_trigger_scsi.ValidEntries)
5358                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5359                     &ioc->diag_trigger_scsi, 1);
5360
5361         if (ioc->diag_trigger_mpi.ValidEntries)
5362                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5363                     &ioc->diag_trigger_mpi, 1);
5364 }
5365
5366 /**
5367  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5368  *                              - On failure set default QD values.
5369  * @ioc : per adapter object
5370  *
5371  * Returns 0 for success, non-zero for failure.
5372  *
5373  */
5374 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5375 {
5376         Mpi2ConfigReply_t mpi_reply;
5377         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5378         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5379         u16 depth;
5380         int sz;
5381         int rc = 0;
5382
5383         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5384         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5385         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5386         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5387         if (!ioc->is_gen35_ioc)
5388                 goto out;
5389         /* sas iounit page 1 */
5390         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5391         sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5392         if (!sas_iounit_pg1) {
5393                 pr_err("%s: failure at %s:%d/%s()!\n",
5394                     ioc->name, __FILE__, __LINE__, __func__);
5395                 return rc;
5396         }
5397         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5398             sas_iounit_pg1, sz);
5399         if (rc) {
5400                 pr_err("%s: failure at %s:%d/%s()!\n",
5401                     ioc->name, __FILE__, __LINE__, __func__);
5402                 goto out;
5403         }
5404
5405         depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5406         ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5407
5408         depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5409         ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5410
5411         depth = sas_iounit_pg1->SATAMaxQDepth;
5412         ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5413
5414         /* pcie iounit page 1 */
5415         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5416             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5417         if (rc) {
5418                 pr_err("%s: failure at %s:%d/%s()!\n",
5419                     ioc->name, __FILE__, __LINE__, __func__);
5420                 goto out;
5421         }
5422         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5423             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5424             MPT3SAS_NVME_QUEUE_DEPTH;
5425 out:
5426         dinitprintk(ioc, pr_err(
5427             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5428             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5429             ioc->max_sata_qd, ioc->max_nvme_qd));
5430         kfree(sas_iounit_pg1);
5431         return rc;
5432 }
5433
5434 /**
5435  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5436  *
5437  * @ioc : per adapter object
5438  * @n   : ptr to the ATTO nvram structure
5439  * Return: 0 for success, non-zero for failure.
5440  */
5441 static int
5442 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5443                             struct ATTO_SAS_NVRAM *n)
5444 {
5445         int r = -EINVAL;
5446         union ATTO_SAS_ADDRESS *s1;
5447         u32 len;
5448         u8 *pb;
5449         u8 ckSum;
5450
5451         /* validate nvram checksum */
5452         pb = (u8 *) n;
5453         ckSum = ATTO_SASNVR_CKSUM_SEED;
5454         len = sizeof(struct ATTO_SAS_NVRAM);
5455
5456         while (len--)
5457                 ckSum = ckSum + pb[len];
5458
5459         if (ckSum) {
5460                 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5461                 return r;
5462         }
5463
5464         s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5465
5466         if (n->Signature[0] != 'E'
5467         || n->Signature[1] != 'S'
5468         || n->Signature[2] != 'A'
5469         || n->Signature[3] != 'S')
5470                 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5471         else if (n->Version > ATTO_SASNVR_VERSION)
5472                 ioc_info(ioc, "Invalid ATTO NVRAM version");
5473         else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5474                         || s1->b[0] != 0x50
5475                         || s1->b[1] != 0x01
5476                         || s1->b[2] != 0x08
5477                         || (s1->b[3] & 0xF0) != 0x60
5478                         || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5479                 ioc_err(ioc, "Invalid ATTO SAS address\n");
5480         } else
5481                 r = 0;
5482         return r;
5483 }
5484
5485 /**
5486  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5487  *
5488  * @ioc : per adapter object
5489  * @*sas_addr : return sas address
5490  * Return: 0 for success, non-zero for failure.
5491  */
5492 static int
5493 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5494 {
5495         Mpi2ManufacturingPage1_t mfg_pg1;
5496         Mpi2ConfigReply_t mpi_reply;
5497         struct ATTO_SAS_NVRAM *nvram;
5498         int r;
5499         __be64 addr;
5500
5501         r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5502         if (r) {
5503                 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5504                 return r;
5505         }
5506
5507         /* validate nvram */
5508         nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5509         r = mpt3sas_atto_validate_nvram(ioc, nvram);
5510         if (r)
5511                 return r;
5512
5513         addr = *((__be64 *) nvram->SasAddr);
5514         sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5515         return r;
5516 }
5517
5518 /**
5519  * mpt3sas_atto_init - perform initializaion for ATTO branded
5520  *                                      adapter.
5521  * @ioc : per adapter object
5522  *5
5523  * Return: 0 for success, non-zero for failure.
5524  */
5525 static int
5526 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5527 {
5528         int sz = 0;
5529         Mpi2BiosPage4_t *bios_pg4 = NULL;
5530         Mpi2ConfigReply_t mpi_reply;
5531         int r;
5532         int ix;
5533         union ATTO_SAS_ADDRESS sas_addr;
5534         union ATTO_SAS_ADDRESS temp;
5535         union ATTO_SAS_ADDRESS bias;
5536
5537         r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5538         if (r)
5539                 return r;
5540
5541         /* get header first to get size */
5542         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5543         if (r) {
5544                 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5545                 return r;
5546         }
5547
5548         sz = mpi_reply.Header.PageLength * sizeof(u32);
5549         bios_pg4 = kzalloc(sz, GFP_KERNEL);
5550         if (!bios_pg4) {
5551                 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5552                 return -ENOMEM;
5553         }
5554
5555         /* read bios page 4 */
5556         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5557         if (r) {
5558                 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5559                 goto out;
5560         }
5561
5562         /* Update bios page 4 with the ATTO WWID */
5563         bias.q = sas_addr.q;
5564         bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5565
5566         for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5567                 temp.q = sas_addr.q;
5568                 temp.b[7] += ix;
5569                 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5570                 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5571         }
5572         r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5573
5574 out:
5575         kfree(bios_pg4);
5576         return r;
5577 }
5578
5579 /**
5580  * _base_static_config_pages - static start of day config pages
5581  * @ioc: per adapter object
5582  */
5583 static int
5584 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5585 {
5586         Mpi2ConfigReply_t mpi_reply;
5587         u32 iounit_pg1_flags;
5588         int tg_flags = 0;
5589         int rc;
5590         ioc->nvme_abort_timeout = 30;
5591
5592         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5593             &ioc->manu_pg0);
5594         if (rc)
5595                 return rc;
5596         if (ioc->ir_firmware) {
5597                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5598                     &ioc->manu_pg10);
5599                 if (rc)
5600                         return rc;
5601         }
5602
5603         if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5604                 rc = mpt3sas_atto_init(ioc);
5605                 if (rc)
5606                         return rc;
5607         }
5608
5609         /*
5610          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5611          * flag unset in NVDATA.
5612          */
5613         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5614             &ioc->manu_pg11);
5615         if (rc)
5616                 return rc;
5617         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5618                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5619                     ioc->name);
5620                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5621                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5622                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5623                     &ioc->manu_pg11);
5624         }
5625         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5626                 ioc->tm_custom_handling = 1;
5627         else {
5628                 ioc->tm_custom_handling = 0;
5629                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5630                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5631                 else if (ioc->manu_pg11.NVMeAbortTO >
5632                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5633                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5634                 else
5635                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5636         }
5637         ioc->time_sync_interval =
5638             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5639         if (ioc->time_sync_interval) {
5640                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5641                         ioc->time_sync_interval =
5642                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5643                 else
5644                         ioc->time_sync_interval =
5645                             ioc->time_sync_interval * SECONDS_PER_MIN;
5646                 dinitprintk(ioc, ioc_info(ioc,
5647                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5648                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5649                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5650         } else {
5651                 if (ioc->is_gen35_ioc)
5652                         ioc_warn(ioc,
5653                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5654         }
5655         rc = _base_assign_fw_reported_qd(ioc);
5656         if (rc)
5657                 return rc;
5658
5659         /*
5660          * ATTO doesn't use bios page 2 and 3 for bios settings.
5661          */
5662         if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5663                 ioc->bios_pg3.BiosVersion = 0;
5664         else {
5665                 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5666                 if (rc)
5667                         return rc;
5668                 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5669                 if (rc)
5670                         return rc;
5671         }
5672
5673         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5674         if (rc)
5675                 return rc;
5676         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5677         if (rc)
5678                 return rc;
5679         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5680         if (rc)
5681                 return rc;
5682         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5683         if (rc)
5684                 return rc;
5685         _base_display_ioc_capabilities(ioc);
5686
5687         /*
5688          * Enable task_set_full handling in iounit_pg1 when the
5689          * facts capabilities indicate that its supported.
5690          */
5691         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5692         if ((ioc->facts.IOCCapabilities &
5693             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5694                 iounit_pg1_flags &=
5695                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5696         else
5697                 iounit_pg1_flags |=
5698                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5699         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5700         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5701         if (rc)
5702                 return rc;
5703
5704         if (ioc->iounit_pg8.NumSensors)
5705                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5706         if (ioc->is_aero_ioc) {
5707                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5708                 if (rc)
5709                         return rc;
5710         }
5711         if (ioc->is_gen35_ioc) {
5712                 if (ioc->is_driver_loading) {
5713                         rc = _base_get_diag_triggers(ioc);
5714                         if (rc)
5715                                 return rc;
5716                 } else {
5717                         /*
5718                          * In case of online HBA FW update operation,
5719                          * check whether updated FW supports the driver trigger
5720                          * pages or not.
5721                          * - If previous FW has not supported driver trigger
5722                          *   pages and newer FW supports them then update these
5723                          *   pages with current diag trigger values.
5724                          * - If previous FW has supported driver trigger pages
5725                          *   and new FW doesn't support them then disable
5726                          *   support_trigger_pages flag.
5727                          */
5728                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5729                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5730                                 _base_update_diag_trigger_pages(ioc);
5731                         else if (ioc->supports_trigger_pages &&
5732                             tg_flags == -EFAULT)
5733                                 ioc->supports_trigger_pages = 0;
5734                 }
5735         }
5736         return 0;
5737 }
5738
5739 /**
5740  * mpt3sas_free_enclosure_list - release memory
5741  * @ioc: per adapter object
5742  *
5743  * Free memory allocated during enclosure add.
5744  */
5745 void
5746 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5747 {
5748         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5749
5750         /* Free enclosure list */
5751         list_for_each_entry_safe(enclosure_dev,
5752                         enclosure_dev_next, &ioc->enclosure_list, list) {
5753                 list_del(&enclosure_dev->list);
5754                 kfree(enclosure_dev);
5755         }
5756 }
5757
5758 /**
5759  * _base_release_memory_pools - release memory
5760  * @ioc: per adapter object
5761  *
5762  * Free memory allocated from _base_allocate_memory_pools.
5763  */
5764 static void
5765 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5766 {
5767         int i = 0;
5768         int j = 0;
5769         int dma_alloc_count = 0;
5770         struct chain_tracker *ct;
5771         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5772
5773         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5774
5775         if (ioc->request) {
5776                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5777                     ioc->request,  ioc->request_dma);
5778                 dexitprintk(ioc,
5779                             ioc_info(ioc, "request_pool(0x%p): free\n",
5780                                      ioc->request));
5781                 ioc->request = NULL;
5782         }
5783
5784         if (ioc->sense) {
5785                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5786                 dma_pool_destroy(ioc->sense_dma_pool);
5787                 dexitprintk(ioc,
5788                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5789                                      ioc->sense));
5790                 ioc->sense = NULL;
5791         }
5792
5793         if (ioc->reply) {
5794                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5795                 dma_pool_destroy(ioc->reply_dma_pool);
5796                 dexitprintk(ioc,
5797                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5798                                      ioc->reply));
5799                 ioc->reply = NULL;
5800         }
5801
5802         if (ioc->reply_free) {
5803                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5804                     ioc->reply_free_dma);
5805                 dma_pool_destroy(ioc->reply_free_dma_pool);
5806                 dexitprintk(ioc,
5807                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5808                                      ioc->reply_free));
5809                 ioc->reply_free = NULL;
5810         }
5811
5812         if (ioc->reply_post) {
5813                 dma_alloc_count = DIV_ROUND_UP(count,
5814                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5815                 for (i = 0; i < count; i++) {
5816                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5817                             && dma_alloc_count) {
5818                                 if (ioc->reply_post[i].reply_post_free) {
5819                                         dma_pool_free(
5820                                             ioc->reply_post_free_dma_pool,
5821                                             ioc->reply_post[i].reply_post_free,
5822                                         ioc->reply_post[i].reply_post_free_dma);
5823                                         dexitprintk(ioc, ioc_info(ioc,
5824                                            "reply_post_free_pool(0x%p): free\n",
5825                                            ioc->reply_post[i].reply_post_free));
5826                                         ioc->reply_post[i].reply_post_free =
5827                                                                         NULL;
5828                                 }
5829                                 --dma_alloc_count;
5830                         }
5831                 }
5832                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5833                 if (ioc->reply_post_free_array &&
5834                         ioc->rdpq_array_enable) {
5835                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5836                             ioc->reply_post_free_array,
5837                             ioc->reply_post_free_array_dma);
5838                         ioc->reply_post_free_array = NULL;
5839                 }
5840                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5841                 kfree(ioc->reply_post);
5842         }
5843
5844         if (ioc->pcie_sgl_dma_pool) {
5845                 for (i = 0; i < ioc->scsiio_depth; i++) {
5846                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5847                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5848                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5849                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5850                 }
5851                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5852         }
5853         if (ioc->config_page) {
5854                 dexitprintk(ioc,
5855                             ioc_info(ioc, "config_page(0x%p): free\n",
5856                                      ioc->config_page));
5857                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5858                     ioc->config_page, ioc->config_page_dma);
5859         }
5860
5861         kfree(ioc->hpr_lookup);
5862         ioc->hpr_lookup = NULL;
5863         kfree(ioc->internal_lookup);
5864         ioc->internal_lookup = NULL;
5865         if (ioc->chain_lookup) {
5866                 for (i = 0; i < ioc->scsiio_depth; i++) {
5867                         for (j = ioc->chains_per_prp_buffer;
5868                             j < ioc->chains_needed_per_io; j++) {
5869                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5870                                 if (ct && ct->chain_buffer)
5871                                         dma_pool_free(ioc->chain_dma_pool,
5872                                                 ct->chain_buffer,
5873                                                 ct->chain_buffer_dma);
5874                         }
5875                         kfree(ioc->chain_lookup[i].chains_per_smid);
5876                 }
5877                 dma_pool_destroy(ioc->chain_dma_pool);
5878                 kfree(ioc->chain_lookup);
5879                 ioc->chain_lookup = NULL;
5880         }
5881
5882         kfree(ioc->io_queue_num);
5883         ioc->io_queue_num = NULL;
5884 }
5885
5886 /**
5887  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5888  *      having same upper 32bits in their base memory address.
5889  * @start_address: Base address of a reply queue set
5890  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5891  *
5892  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5893  * memory address, else 0.
5894  */
5895 static int
5896 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5897 {
5898         dma_addr_t end_address;
5899
5900         end_address = start_address + pool_sz - 1;
5901
5902         if (upper_32_bits(start_address) == upper_32_bits(end_address))
5903                 return 1;
5904         else
5905                 return 0;
5906 }
5907
5908 /**
5909  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5910  * @ioc: Adapter object
5911  *
5912  * Return: 0 for success, non-zero for failure.
5913  **/
5914 static inline int
5915 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5916 {
5917         int reduce_sz = 64;
5918
5919         if ((ioc->hba_queue_depth - reduce_sz) >
5920             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5921                 ioc->hba_queue_depth -= reduce_sz;
5922                 return 0;
5923         } else
5924                 return -ENOMEM;
5925 }
5926
5927 /**
5928  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5929  *                      for pcie sgl pools.
5930  * @ioc: Adapter object
5931  * @sz: DMA Pool size
5932  *
5933  * Return: 0 for success, non-zero for failure.
5934  */
5935
5936 static int
5937 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5938 {
5939         int i = 0, j = 0;
5940         struct chain_tracker *ct;
5941
5942         ioc->pcie_sgl_dma_pool =
5943             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5944             ioc->page_size, 0);
5945         if (!ioc->pcie_sgl_dma_pool) {
5946                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5947                 return -ENOMEM;
5948         }
5949
5950         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5951         ioc->chains_per_prp_buffer =
5952             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5953         for (i = 0; i < ioc->scsiio_depth; i++) {
5954                 ioc->pcie_sg_lookup[i].pcie_sgl =
5955                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5956                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5957                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5958                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5959                         return -EAGAIN;
5960                 }
5961
5962                 if (!mpt3sas_check_same_4gb_region(
5963                     ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5964                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5965                             ioc->pcie_sg_lookup[i].pcie_sgl,
5966                             (unsigned long long)
5967                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5968                         ioc->use_32bit_dma = true;
5969                         return -EAGAIN;
5970                 }
5971
5972                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5973                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5974                         ct->chain_buffer =
5975                             ioc->pcie_sg_lookup[i].pcie_sgl +
5976                             (j * ioc->chain_segment_sz);
5977                         ct->chain_buffer_dma =
5978                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5979                             (j * ioc->chain_segment_sz);
5980                 }
5981         }
5982         dinitprintk(ioc, ioc_info(ioc,
5983             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5984             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5985         dinitprintk(ioc, ioc_info(ioc,
5986             "Number of chains can fit in a PRP page(%d)\n",
5987             ioc->chains_per_prp_buffer));
5988         return 0;
5989 }
5990
5991 /**
5992  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5993  *                      for chain dma pool.
5994  * @ioc: Adapter object
5995  * @sz: DMA Pool size
5996  *
5997  * Return: 0 for success, non-zero for failure.
5998  */
5999 static int
6000 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6001 {
6002         int i = 0, j = 0;
6003         struct chain_tracker *ctr;
6004
6005         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6006             ioc->chain_segment_sz, 16, 0);
6007         if (!ioc->chain_dma_pool)
6008                 return -ENOMEM;
6009
6010         for (i = 0; i < ioc->scsiio_depth; i++) {
6011                 for (j = ioc->chains_per_prp_buffer;
6012                     j < ioc->chains_needed_per_io; j++) {
6013                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6014                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6015                             GFP_KERNEL, &ctr->chain_buffer_dma);
6016                         if (!ctr->chain_buffer)
6017                                 return -EAGAIN;
6018                         if (!mpt3sas_check_same_4gb_region(
6019                             ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6020                                 ioc_err(ioc,
6021                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6022                                     ctr->chain_buffer,
6023                                     (unsigned long long)ctr->chain_buffer_dma);
6024                                 ioc->use_32bit_dma = true;
6025                                 return -EAGAIN;
6026                         }
6027                 }
6028         }
6029         dinitprintk(ioc, ioc_info(ioc,
6030             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6031             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6032             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6033             ioc->chain_segment_sz))/1024));
6034         return 0;
6035 }
6036
6037 /**
6038  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6039  *                      for sense dma pool.
6040  * @ioc: Adapter object
6041  * @sz: DMA Pool size
6042  * Return: 0 for success, non-zero for failure.
6043  */
6044 static int
6045 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6046 {
6047         ioc->sense_dma_pool =
6048             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6049         if (!ioc->sense_dma_pool)
6050                 return -ENOMEM;
6051         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6052             GFP_KERNEL, &ioc->sense_dma);
6053         if (!ioc->sense)
6054                 return -EAGAIN;
6055         if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6056                 dinitprintk(ioc, pr_err(
6057                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6058                     ioc->sense, (unsigned long long) ioc->sense_dma));
6059                 ioc->use_32bit_dma = true;
6060                 return -EAGAIN;
6061         }
6062         ioc_info(ioc,
6063             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6064             ioc->sense, (unsigned long long)ioc->sense_dma,
6065             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6066         return 0;
6067 }
6068
6069 /**
6070  * _base_allocate_reply_pool - Allocating DMA'able memory
6071  *                      for reply pool.
6072  * @ioc: Adapter object
6073  * @sz: DMA Pool size
6074  * Return: 0 for success, non-zero for failure.
6075  */
6076 static int
6077 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6078 {
6079         /* reply pool, 4 byte align */
6080         ioc->reply_dma_pool = dma_pool_create("reply pool",
6081             &ioc->pdev->dev, sz, 4, 0);
6082         if (!ioc->reply_dma_pool)
6083                 return -ENOMEM;
6084         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6085             &ioc->reply_dma);
6086         if (!ioc->reply)
6087                 return -EAGAIN;
6088         if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6089                 dinitprintk(ioc, pr_err(
6090                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6091                     ioc->reply, (unsigned long long) ioc->reply_dma));
6092                 ioc->use_32bit_dma = true;
6093                 return -EAGAIN;
6094         }
6095         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6096         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6097         ioc_info(ioc,
6098             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6099             ioc->reply, (unsigned long long)ioc->reply_dma,
6100             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6101         return 0;
6102 }
6103
6104 /**
6105  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6106  *                      for reply free dma pool.
6107  * @ioc: Adapter object
6108  * @sz: DMA Pool size
6109  * Return: 0 for success, non-zero for failure.
6110  */
6111 static int
6112 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6113 {
6114         /* reply free queue, 16 byte align */
6115         ioc->reply_free_dma_pool = dma_pool_create(
6116             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6117         if (!ioc->reply_free_dma_pool)
6118                 return -ENOMEM;
6119         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6120             GFP_KERNEL, &ioc->reply_free_dma);
6121         if (!ioc->reply_free)
6122                 return -EAGAIN;
6123         if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6124                 dinitprintk(ioc,
6125                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6126                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6127                 ioc->use_32bit_dma = true;
6128                 return -EAGAIN;
6129         }
6130         memset(ioc->reply_free, 0, sz);
6131         dinitprintk(ioc, ioc_info(ioc,
6132             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6133             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6134         dinitprintk(ioc, ioc_info(ioc,
6135             "reply_free_dma (0x%llx)\n",
6136             (unsigned long long)ioc->reply_free_dma));
6137         return 0;
6138 }
6139
6140 /**
6141  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6142  *                      for reply post free array.
6143  * @ioc: Adapter object
6144  * @reply_post_free_array_sz: DMA Pool size
6145  * Return: 0 for success, non-zero for failure.
6146  */
6147
6148 static int
6149 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6150         u32 reply_post_free_array_sz)
6151 {
6152         ioc->reply_post_free_array_dma_pool =
6153             dma_pool_create("reply_post_free_array pool",
6154             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6155         if (!ioc->reply_post_free_array_dma_pool)
6156                 return -ENOMEM;
6157         ioc->reply_post_free_array =
6158             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6159             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6160         if (!ioc->reply_post_free_array)
6161                 return -EAGAIN;
6162         if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6163             reply_post_free_array_sz)) {
6164                 dinitprintk(ioc, pr_err(
6165                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6166                     ioc->reply_free,
6167                     (unsigned long long) ioc->reply_free_dma));
6168                 ioc->use_32bit_dma = true;
6169                 return -EAGAIN;
6170         }
6171         return 0;
6172 }
6173 /**
6174  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6175  *                     for reply queues.
6176  * @ioc: per adapter object
6177  * @sz: DMA Pool size
6178  * Return: 0 for success, non-zero for failure.
6179  */
6180 static int
6181 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6182 {
6183         int i = 0;
6184         u32 dma_alloc_count = 0;
6185         int reply_post_free_sz = ioc->reply_post_queue_depth *
6186                 sizeof(Mpi2DefaultReplyDescriptor_t);
6187         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6188
6189         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6190                         GFP_KERNEL);
6191         if (!ioc->reply_post)
6192                 return -ENOMEM;
6193         /*
6194          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6195          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6196          *  be within 4GB boundary i.e reply queues in a set must have same
6197          *  upper 32-bits in their memory address. so here driver is allocating
6198          *  the DMA'able memory for reply queues according.
6199          *  Driver uses limitation of
6200          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6201          */
6202         dma_alloc_count = DIV_ROUND_UP(count,
6203                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6204         ioc->reply_post_free_dma_pool =
6205                 dma_pool_create("reply_post_free pool",
6206                     &ioc->pdev->dev, sz, 16, 0);
6207         if (!ioc->reply_post_free_dma_pool)
6208                 return -ENOMEM;
6209         for (i = 0; i < count; i++) {
6210                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6211                         ioc->reply_post[i].reply_post_free =
6212                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6213                                 GFP_KERNEL,
6214                                 &ioc->reply_post[i].reply_post_free_dma);
6215                         if (!ioc->reply_post[i].reply_post_free)
6216                                 return -ENOMEM;
6217                         /*
6218                          * Each set of RDPQ pool must satisfy 4gb boundary
6219                          * restriction.
6220                          * 1) Check if allocated resources for RDPQ pool are in
6221                          *      the same 4GB range.
6222                          * 2) If #1 is true, continue with 64 bit DMA.
6223                          * 3) If #1 is false, return 1. which means free all the
6224                          * resources and set DMA mask to 32 and allocate.
6225                          */
6226                         if (!mpt3sas_check_same_4gb_region(
6227                                 ioc->reply_post[i].reply_post_free_dma, sz)) {
6228                                 dinitprintk(ioc,
6229                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6230                                     "reply_post_free_dma = (0x%llx)\n",
6231                                     ioc->reply_post[i].reply_post_free,
6232                                     (unsigned long long)
6233                                     ioc->reply_post[i].reply_post_free_dma));
6234                                 return -EAGAIN;
6235                         }
6236                         dma_alloc_count--;
6237
6238                 } else {
6239                         ioc->reply_post[i].reply_post_free =
6240                             (Mpi2ReplyDescriptorsUnion_t *)
6241                             ((long)ioc->reply_post[i-1].reply_post_free
6242                             + reply_post_free_sz);
6243                         ioc->reply_post[i].reply_post_free_dma =
6244                             (dma_addr_t)
6245                             (ioc->reply_post[i-1].reply_post_free_dma +
6246                             reply_post_free_sz);
6247                 }
6248         }
6249         return 0;
6250 }
6251
6252 /**
6253  * _base_allocate_memory_pools - allocate start of day memory pools
6254  * @ioc: per adapter object
6255  *
6256  * Return: 0 success, anything else error.
6257  */
6258 static int
6259 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6260 {
6261         struct mpt3sas_facts *facts;
6262         u16 max_sge_elements;
6263         u16 chains_needed_per_io;
6264         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6265         u32 retry_sz;
6266         u32 rdpq_sz = 0, sense_sz = 0;
6267         u16 max_request_credit, nvme_blocks_needed;
6268         unsigned short sg_tablesize;
6269         u16 sge_size;
6270         int i;
6271         int ret = 0, rc = 0;
6272
6273         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6274
6275
6276         retry_sz = 0;
6277         facts = &ioc->facts;
6278
6279         /* command line tunables for max sgl entries */
6280         if (max_sgl_entries != -1)
6281                 sg_tablesize = max_sgl_entries;
6282         else {
6283                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6284                         sg_tablesize = MPT2SAS_SG_DEPTH;
6285                 else
6286                         sg_tablesize = MPT3SAS_SG_DEPTH;
6287         }
6288
6289         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6290         if (reset_devices)
6291                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6292                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6293
6294         if (ioc->is_mcpu_endpoint)
6295                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6296         else {
6297                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6298                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6299                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6300                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6301                                         SG_MAX_SEGMENTS);
6302                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6303                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6304                 }
6305                 ioc->shost->sg_tablesize = sg_tablesize;
6306         }
6307
6308         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6309                 (facts->RequestCredit / 4));
6310         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6311                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6312                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6313                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6314                                 facts->RequestCredit);
6315                         return -ENOMEM;
6316                 }
6317                 ioc->internal_depth = 10;
6318         }
6319
6320         ioc->hi_priority_depth = ioc->internal_depth - (5);
6321         /* command line tunables  for max controller queue depth */
6322         if (max_queue_depth != -1 && max_queue_depth != 0) {
6323                 max_request_credit = min_t(u16, max_queue_depth +
6324                         ioc->internal_depth, facts->RequestCredit);
6325                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6326                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6327         } else if (reset_devices)
6328                 max_request_credit = min_t(u16, facts->RequestCredit,
6329                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6330         else
6331                 max_request_credit = min_t(u16, facts->RequestCredit,
6332                     MAX_HBA_QUEUE_DEPTH);
6333
6334         /* Firmware maintains additional facts->HighPriorityCredit number of
6335          * credits for HiPriprity Request messages, so hba queue depth will be
6336          * sum of max_request_credit and high priority queue depth.
6337          */
6338         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6339
6340         /* request frame size */
6341         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6342
6343         /* reply frame size */
6344         ioc->reply_sz = facts->ReplyFrameSize * 4;
6345
6346         /* chain segment size */
6347         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6348                 if (facts->IOCMaxChainSegmentSize)
6349                         ioc->chain_segment_sz =
6350                                         facts->IOCMaxChainSegmentSize *
6351                                         MAX_CHAIN_ELEMT_SZ;
6352                 else
6353                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6354                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6355                                                     MAX_CHAIN_ELEMT_SZ;
6356         } else
6357                 ioc->chain_segment_sz = ioc->request_sz;
6358
6359         /* calculate the max scatter element size */
6360         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6361
6362  retry_allocation:
6363         total_sz = 0;
6364         /* calculate number of sg elements left over in the 1st frame */
6365         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6366             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6367         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6368
6369         /* now do the same for a chain buffer */
6370         max_sge_elements = ioc->chain_segment_sz - sge_size;
6371         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6372
6373         /*
6374          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6375          */
6376         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6377            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6378             + 1;
6379         if (chains_needed_per_io > facts->MaxChainDepth) {
6380                 chains_needed_per_io = facts->MaxChainDepth;
6381                 ioc->shost->sg_tablesize = min_t(u16,
6382                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6383                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6384         }
6385         ioc->chains_needed_per_io = chains_needed_per_io;
6386
6387         /* reply free queue sizing - taking into account for 64 FW events */
6388         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6389
6390         /* mCPU manage single counters for simplicity */
6391         if (ioc->is_mcpu_endpoint)
6392                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6393         else {
6394                 /* calculate reply descriptor post queue depth */
6395                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6396                         ioc->reply_free_queue_depth +  1;
6397                 /* align the reply post queue on the next 16 count boundary */
6398                 if (ioc->reply_post_queue_depth % 16)
6399                         ioc->reply_post_queue_depth += 16 -
6400                                 (ioc->reply_post_queue_depth % 16);
6401         }
6402
6403         if (ioc->reply_post_queue_depth >
6404             facts->MaxReplyDescriptorPostQueueDepth) {
6405                 ioc->reply_post_queue_depth =
6406                                 facts->MaxReplyDescriptorPostQueueDepth -
6407                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6408                 ioc->hba_queue_depth =
6409                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6410                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6411         }
6412
6413         ioc_info(ioc,
6414             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6415             "sge_per_io(%d), chains_per_io(%d)\n",
6416             ioc->max_sges_in_main_message,
6417             ioc->max_sges_in_chain_message,
6418             ioc->shost->sg_tablesize,
6419             ioc->chains_needed_per_io);
6420
6421         /* reply post queue, 16 byte align */
6422         reply_post_free_sz = ioc->reply_post_queue_depth *
6423             sizeof(Mpi2DefaultReplyDescriptor_t);
6424         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6425         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6426             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6427                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6428         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6429         if (ret == -EAGAIN) {
6430                 /*
6431                  * Free allocated bad RDPQ memory pools.
6432                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6433                  */
6434                 _base_release_memory_pools(ioc);
6435                 ioc->use_32bit_dma = true;
6436                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6437                         ioc_err(ioc,
6438                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6439                         return -ENODEV;
6440                 }
6441                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6442                         return -ENOMEM;
6443         } else if (ret == -ENOMEM)
6444                 return -ENOMEM;
6445         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6446             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6447         ioc->scsiio_depth = ioc->hba_queue_depth -
6448             ioc->hi_priority_depth - ioc->internal_depth;
6449
6450         /* set the scsi host can_queue depth
6451          * with some internal commands that could be outstanding
6452          */
6453         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6454         dinitprintk(ioc,
6455                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6456                              ioc->shost->can_queue));
6457
6458         /* contiguous pool for request and chains, 16 byte align, one extra "
6459          * "frame for smid=0
6460          */
6461         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6462         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6463
6464         /* hi-priority queue */
6465         sz += (ioc->hi_priority_depth * ioc->request_sz);
6466
6467         /* internal queue */
6468         sz += (ioc->internal_depth * ioc->request_sz);
6469
6470         ioc->request_dma_sz = sz;
6471         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6472                         &ioc->request_dma, GFP_KERNEL);
6473         if (!ioc->request) {
6474                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6475                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6476                         ioc->request_sz, sz / 1024);
6477                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6478                         goto out;
6479                 retry_sz = 64;
6480                 ioc->hba_queue_depth -= retry_sz;
6481                 _base_release_memory_pools(ioc);
6482                 goto retry_allocation;
6483         }
6484
6485         if (retry_sz)
6486                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6487                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6488                         ioc->request_sz, sz / 1024);
6489
6490         /* hi-priority queue */
6491         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6492             ioc->request_sz);
6493         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6494             ioc->request_sz);
6495
6496         /* internal queue */
6497         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6498             ioc->request_sz);
6499         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6500             ioc->request_sz);
6501
6502         ioc_info(ioc,
6503             "request pool(0x%p) - dma(0x%llx): "
6504             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6505             ioc->request, (unsigned long long) ioc->request_dma,
6506             ioc->hba_queue_depth, ioc->request_sz,
6507             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6508
6509         total_sz += sz;
6510
6511         dinitprintk(ioc,
6512                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6513                              ioc->request, ioc->scsiio_depth));
6514
6515         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6516         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6517         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6518         if (!ioc->chain_lookup) {
6519                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6520                 goto out;
6521         }
6522
6523         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6524         for (i = 0; i < ioc->scsiio_depth; i++) {
6525                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6526                 if (!ioc->chain_lookup[i].chains_per_smid) {
6527                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6528                         goto out;
6529                 }
6530         }
6531
6532         /* initialize hi-priority queue smid's */
6533         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6534             sizeof(struct request_tracker), GFP_KERNEL);
6535         if (!ioc->hpr_lookup) {
6536                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6537                 goto out;
6538         }
6539         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6540         dinitprintk(ioc,
6541                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6542                              ioc->hi_priority,
6543                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6544
6545         /* initialize internal queue smid's */
6546         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6547             sizeof(struct request_tracker), GFP_KERNEL);
6548         if (!ioc->internal_lookup) {
6549                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6550                 goto out;
6551         }
6552         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6553         dinitprintk(ioc,
6554                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6555                              ioc->internal,
6556                              ioc->internal_depth, ioc->internal_smid));
6557
6558         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6559             sizeof(u16), GFP_KERNEL);
6560         if (!ioc->io_queue_num)
6561                 goto out;
6562         /*
6563          * The number of NVMe page sized blocks needed is:
6564          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6565          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6566          * that is placed in the main message frame.  8 is the size of each PRP
6567          * entry or PRP list pointer entry.  8 is subtracted from page_size
6568          * because of the PRP list pointer entry at the end of a page, so this
6569          * is not counted as a PRP entry.  The 1 added page is a round up.
6570          *
6571          * To avoid allocation failures due to the amount of memory that could
6572          * be required for NVMe PRP's, only each set of NVMe blocks will be
6573          * contiguous, so a new set is allocated for each possible I/O.
6574          */
6575
6576         ioc->chains_per_prp_buffer = 0;
6577         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6578                 nvme_blocks_needed =
6579                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6580                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6581                 nvme_blocks_needed++;
6582
6583                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6584                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6585                 if (!ioc->pcie_sg_lookup) {
6586                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6587                         goto out;
6588                 }
6589                 sz = nvme_blocks_needed * ioc->page_size;
6590                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6591                 if (rc == -ENOMEM)
6592                         return -ENOMEM;
6593                 else if (rc == -EAGAIN)
6594                         goto try_32bit_dma;
6595                 total_sz += sz * ioc->scsiio_depth;
6596         }
6597
6598         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6599         if (rc == -ENOMEM)
6600                 return -ENOMEM;
6601         else if (rc == -EAGAIN)
6602                 goto try_32bit_dma;
6603         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6604                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6605         dinitprintk(ioc,
6606             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6607             ioc->chain_depth, ioc->chain_segment_sz,
6608             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6609         /* sense buffers, 4 byte align */
6610         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6611         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6612         if (rc  == -ENOMEM)
6613                 return -ENOMEM;
6614         else if (rc == -EAGAIN)
6615                 goto try_32bit_dma;
6616         total_sz += sense_sz;
6617         ioc_info(ioc,
6618             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6619             "element_size(%d), pool_size(%d kB)\n",
6620             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6621             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6622         /* reply pool, 4 byte align */
6623         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6624         rc = _base_allocate_reply_pool(ioc, sz);
6625         if (rc == -ENOMEM)
6626                 return -ENOMEM;
6627         else if (rc == -EAGAIN)
6628                 goto try_32bit_dma;
6629         total_sz += sz;
6630
6631         /* reply free queue, 16 byte align */
6632         sz = ioc->reply_free_queue_depth * 4;
6633         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6634         if (rc  == -ENOMEM)
6635                 return -ENOMEM;
6636         else if (rc == -EAGAIN)
6637                 goto try_32bit_dma;
6638         dinitprintk(ioc,
6639                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6640                              (unsigned long long)ioc->reply_free_dma));
6641         total_sz += sz;
6642         if (ioc->rdpq_array_enable) {
6643                 reply_post_free_array_sz = ioc->reply_queue_count *
6644                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6645                 rc = _base_allocate_reply_post_free_array(ioc,
6646                     reply_post_free_array_sz);
6647                 if (rc == -ENOMEM)
6648                         return -ENOMEM;
6649                 else if (rc == -EAGAIN)
6650                         goto try_32bit_dma;
6651         }
6652         ioc->config_page_sz = 512;
6653         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6654                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6655         if (!ioc->config_page) {
6656                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6657                 goto out;
6658         }
6659
6660         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6661             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6662             ioc->config_page_sz);
6663         total_sz += ioc->config_page_sz;
6664
6665         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6666                  total_sz / 1024);
6667         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6668                  ioc->shost->can_queue, facts->RequestCredit);
6669         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6670                  ioc->shost->sg_tablesize);
6671         return 0;
6672
6673 try_32bit_dma:
6674         _base_release_memory_pools(ioc);
6675         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6676                 /* Change dma coherent mask to 32 bit and reallocate */
6677                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6678                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6679                             pci_name(ioc->pdev));
6680                         return -ENODEV;
6681                 }
6682         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6683                 return -ENOMEM;
6684         goto retry_allocation;
6685
6686  out:
6687         return -ENOMEM;
6688 }
6689
6690 /**
6691  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6692  * @ioc: Pointer to MPT_ADAPTER structure
6693  * @cooked: Request raw or cooked IOC state
6694  *
6695  * Return: all IOC Doorbell register bits if cooked==0, else just the
6696  * Doorbell bits in MPI_IOC_STATE_MASK.
6697  */
6698 u32
6699 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6700 {
6701         u32 s, sc;
6702
6703         s = ioc->base_readl(&ioc->chip->Doorbell);
6704         sc = s & MPI2_IOC_STATE_MASK;
6705         return cooked ? sc : s;
6706 }
6707
6708 /**
6709  * _base_wait_on_iocstate - waiting on a particular ioc state
6710  * @ioc: ?
6711  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6712  * @timeout: timeout in second
6713  *
6714  * Return: 0 for success, non-zero for failure.
6715  */
6716 static int
6717 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6718 {
6719         u32 count, cntdn;
6720         u32 current_state;
6721
6722         count = 0;
6723         cntdn = 1000 * timeout;
6724         do {
6725                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6726                 if (current_state == ioc_state)
6727                         return 0;
6728                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6729                         break;
6730                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6731                         break;
6732
6733                 usleep_range(1000, 1500);
6734                 count++;
6735         } while (--cntdn);
6736
6737         return current_state;
6738 }
6739
6740 /**
6741  * _base_dump_reg_set - This function will print hexdump of register set.
6742  * @ioc: per adapter object
6743  *
6744  * Return: nothing.
6745  */
6746 static inline void
6747 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6748 {
6749         unsigned int i, sz = 256;
6750         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6751
6752         ioc_info(ioc, "System Register set:\n");
6753         for (i = 0; i < (sz / sizeof(u32)); i++)
6754                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6755 }
6756
6757 /**
6758  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6759  * a write to the doorbell)
6760  * @ioc: per adapter object
6761  * @timeout: timeout in seconds
6762  *
6763  * Return: 0 for success, non-zero for failure.
6764  *
6765  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6766  */
6767
6768 static int
6769 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6770 {
6771         u32 cntdn, count;
6772         u32 int_status;
6773
6774         count = 0;
6775         cntdn = 1000 * timeout;
6776         do {
6777                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6778                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6779                         dhsprintk(ioc,
6780                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6781                                            __func__, count, timeout));
6782                         return 0;
6783                 }
6784
6785                 usleep_range(1000, 1500);
6786                 count++;
6787         } while (--cntdn);
6788
6789         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6790                 __func__, count, int_status);
6791         return -EFAULT;
6792 }
6793
6794 static int
6795 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6796 {
6797         u32 cntdn, count;
6798         u32 int_status;
6799
6800         count = 0;
6801         cntdn = 2000 * timeout;
6802         do {
6803                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6804                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6805                         dhsprintk(ioc,
6806                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6807                                            __func__, count, timeout));
6808                         return 0;
6809                 }
6810
6811                 udelay(500);
6812                 count++;
6813         } while (--cntdn);
6814
6815         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6816                 __func__, count, int_status);
6817         return -EFAULT;
6818
6819 }
6820
6821 /**
6822  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6823  * @ioc: per adapter object
6824  * @timeout: timeout in second
6825  *
6826  * Return: 0 for success, non-zero for failure.
6827  *
6828  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6829  * doorbell.
6830  */
6831 static int
6832 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6833 {
6834         u32 cntdn, count;
6835         u32 int_status;
6836         u32 doorbell;
6837
6838         count = 0;
6839         cntdn = 1000 * timeout;
6840         do {
6841                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6842                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6843                         dhsprintk(ioc,
6844                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6845                                            __func__, count, timeout));
6846                         return 0;
6847                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6848                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6849                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6850                             MPI2_IOC_STATE_FAULT) {
6851                                 mpt3sas_print_fault_code(ioc, doorbell);
6852                                 return -EFAULT;
6853                         }
6854                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6855                             MPI2_IOC_STATE_COREDUMP) {
6856                                 mpt3sas_print_coredump_info(ioc, doorbell);
6857                                 return -EFAULT;
6858                         }
6859                 } else if (int_status == 0xFFFFFFFF)
6860                         goto out;
6861
6862                 usleep_range(1000, 1500);
6863                 count++;
6864         } while (--cntdn);
6865
6866  out:
6867         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6868                 __func__, count, int_status);
6869         return -EFAULT;
6870 }
6871
6872 /**
6873  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6874  * @ioc: per adapter object
6875  * @timeout: timeout in second
6876  *
6877  * Return: 0 for success, non-zero for failure.
6878  */
6879 static int
6880 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6881 {
6882         u32 cntdn, count;
6883         u32 doorbell_reg;
6884
6885         count = 0;
6886         cntdn = 1000 * timeout;
6887         do {
6888                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6889                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6890                         dhsprintk(ioc,
6891                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6892                                            __func__, count, timeout));
6893                         return 0;
6894                 }
6895
6896                 usleep_range(1000, 1500);
6897                 count++;
6898         } while (--cntdn);
6899
6900         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6901                 __func__, count, doorbell_reg);
6902         return -EFAULT;
6903 }
6904
6905 /**
6906  * _base_send_ioc_reset - send doorbell reset
6907  * @ioc: per adapter object
6908  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6909  * @timeout: timeout in second
6910  *
6911  * Return: 0 for success, non-zero for failure.
6912  */
6913 static int
6914 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6915 {
6916         u32 ioc_state;
6917         int r = 0;
6918         unsigned long flags;
6919
6920         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6921                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6922                 return -EFAULT;
6923         }
6924
6925         if (!(ioc->facts.IOCCapabilities &
6926            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6927                 return -EFAULT;
6928
6929         ioc_info(ioc, "sending message unit reset !!\n");
6930
6931         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6932             &ioc->chip->Doorbell);
6933         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6934                 r = -EFAULT;
6935                 goto out;
6936         }
6937
6938         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6939         if (ioc_state) {
6940                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6941                         __func__, ioc_state);
6942                 r = -EFAULT;
6943                 goto out;
6944         }
6945  out:
6946         if (r != 0) {
6947                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6948                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6949                 /*
6950                  * Wait for IOC state CoreDump to clear only during
6951                  * HBA initialization & release time.
6952                  */
6953                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6954                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6955                     ioc->fault_reset_work_q == NULL)) {
6956                         spin_unlock_irqrestore(
6957                             &ioc->ioc_reset_in_progress_lock, flags);
6958                         mpt3sas_print_coredump_info(ioc, ioc_state);
6959                         mpt3sas_base_wait_for_coredump_completion(ioc,
6960                             __func__);
6961                         spin_lock_irqsave(
6962                             &ioc->ioc_reset_in_progress_lock, flags);
6963                 }
6964                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6965         }
6966         ioc_info(ioc, "message unit reset: %s\n",
6967                  r == 0 ? "SUCCESS" : "FAILED");
6968         return r;
6969 }
6970
6971 /**
6972  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6973  * @ioc: per adapter object
6974  * @timeout: timeout in seconds
6975  *
6976  * Return: Waits up to timeout seconds for the IOC to
6977  * become operational. Returns 0 if IOC is present
6978  * and operational; otherwise returns %-EFAULT.
6979  */
6980
6981 int
6982 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6983 {
6984         int wait_state_count = 0;
6985         u32 ioc_state;
6986
6987         do {
6988                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6989                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6990                         break;
6991
6992                 /*
6993                  * Watchdog thread will be started after IOC Initialization, so
6994                  * no need to wait here for IOC state to become operational
6995                  * when IOC Initialization is on. Instead the driver will
6996                  * return ETIME status, so that calling function can issue
6997                  * diag reset operation and retry the command.
6998                  */
6999                 if (ioc->is_driver_loading)
7000                         return -ETIME;
7001
7002                 ssleep(1);
7003                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7004                                 __func__, ++wait_state_count);
7005         } while (--timeout);
7006         if (!timeout) {
7007                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7008                 return -EFAULT;
7009         }
7010         if (wait_state_count)
7011                 ioc_info(ioc, "ioc is operational\n");
7012         return 0;
7013 }
7014
7015 /**
7016  * _base_handshake_req_reply_wait - send request thru doorbell interface
7017  * @ioc: per adapter object
7018  * @request_bytes: request length
7019  * @request: pointer having request payload
7020  * @reply_bytes: reply length
7021  * @reply: pointer to reply payload
7022  * @timeout: timeout in second
7023  *
7024  * Return: 0 for success, non-zero for failure.
7025  */
7026 static int
7027 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7028         u32 *request, int reply_bytes, u16 *reply, int timeout)
7029 {
7030         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7031         int i;
7032         u8 failed;
7033         __le32 *mfp;
7034
7035         /* make sure doorbell is not in use */
7036         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7037                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7038                 return -EFAULT;
7039         }
7040
7041         /* clear pending doorbell interrupts from previous state changes */
7042         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7043             MPI2_HIS_IOC2SYS_DB_STATUS)
7044                 writel(0, &ioc->chip->HostInterruptStatus);
7045
7046         /* send message to ioc */
7047         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7048             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7049             &ioc->chip->Doorbell);
7050
7051         if ((_base_spin_on_doorbell_int(ioc, 5))) {
7052                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7053                         __LINE__);
7054                 return -EFAULT;
7055         }
7056         writel(0, &ioc->chip->HostInterruptStatus);
7057
7058         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7059                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7060                         __LINE__);
7061                 return -EFAULT;
7062         }
7063
7064         /* send message 32-bits at a time */
7065         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7066                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7067                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7068                         failed = 1;
7069         }
7070
7071         if (failed) {
7072                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7073                         __LINE__);
7074                 return -EFAULT;
7075         }
7076
7077         /* now wait for the reply */
7078         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7079                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7080                         __LINE__);
7081                 return -EFAULT;
7082         }
7083
7084         /* read the first two 16-bits, it gives the total length of the reply */
7085         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7086             & MPI2_DOORBELL_DATA_MASK);
7087         writel(0, &ioc->chip->HostInterruptStatus);
7088         if ((_base_wait_for_doorbell_int(ioc, 5))) {
7089                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7090                         __LINE__);
7091                 return -EFAULT;
7092         }
7093         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7094             & MPI2_DOORBELL_DATA_MASK);
7095         writel(0, &ioc->chip->HostInterruptStatus);
7096
7097         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7098                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7099                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7100                                 __LINE__);
7101                         return -EFAULT;
7102                 }
7103                 if (i >=  reply_bytes/2) /* overflow case */
7104                         ioc->base_readl(&ioc->chip->Doorbell);
7105                 else
7106                         reply[i] = le16_to_cpu(
7107                             ioc->base_readl(&ioc->chip->Doorbell)
7108                             & MPI2_DOORBELL_DATA_MASK);
7109                 writel(0, &ioc->chip->HostInterruptStatus);
7110         }
7111
7112         _base_wait_for_doorbell_int(ioc, 5);
7113         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7114                 dhsprintk(ioc,
7115                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
7116                                    __LINE__));
7117         }
7118         writel(0, &ioc->chip->HostInterruptStatus);
7119
7120         if (ioc->logging_level & MPT_DEBUG_INIT) {
7121                 mfp = (__le32 *)reply;
7122                 pr_info("\toffset:data\n");
7123                 for (i = 0; i < reply_bytes/4; i++)
7124                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7125                             le32_to_cpu(mfp[i]));
7126         }
7127         return 0;
7128 }
7129
7130 /**
7131  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7132  * @ioc: per adapter object
7133  * @mpi_reply: the reply payload from FW
7134  * @mpi_request: the request payload sent to FW
7135  *
7136  * The SAS IO Unit Control Request message allows the host to perform low-level
7137  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7138  * to obtain the IOC assigned device handles for a device if it has other
7139  * identifying information about the device, in addition allows the host to
7140  * remove IOC resources associated with the device.
7141  *
7142  * Return: 0 for success, non-zero for failure.
7143  */
7144 int
7145 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7146         Mpi2SasIoUnitControlReply_t *mpi_reply,
7147         Mpi2SasIoUnitControlRequest_t *mpi_request)
7148 {
7149         u16 smid;
7150         u8 issue_reset = 0;
7151         int rc;
7152         void *request;
7153
7154         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7155
7156         mutex_lock(&ioc->base_cmds.mutex);
7157
7158         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7159                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7160                 rc = -EAGAIN;
7161                 goto out;
7162         }
7163
7164         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7165         if (rc)
7166                 goto out;
7167
7168         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7169         if (!smid) {
7170                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7171                 rc = -EAGAIN;
7172                 goto out;
7173         }
7174
7175         rc = 0;
7176         ioc->base_cmds.status = MPT3_CMD_PENDING;
7177         request = mpt3sas_base_get_msg_frame(ioc, smid);
7178         ioc->base_cmds.smid = smid;
7179         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7180         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7181             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7182                 ioc->ioc_link_reset_in_progress = 1;
7183         init_completion(&ioc->base_cmds.done);
7184         ioc->put_smid_default(ioc, smid);
7185         wait_for_completion_timeout(&ioc->base_cmds.done,
7186             msecs_to_jiffies(10000));
7187         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7188             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7189             ioc->ioc_link_reset_in_progress)
7190                 ioc->ioc_link_reset_in_progress = 0;
7191         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7192                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7193                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7194                     issue_reset);
7195                 goto issue_host_reset;
7196         }
7197         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7198                 memcpy(mpi_reply, ioc->base_cmds.reply,
7199                     sizeof(Mpi2SasIoUnitControlReply_t));
7200         else
7201                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7202         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7203         goto out;
7204
7205  issue_host_reset:
7206         if (issue_reset)
7207                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7208         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7209         rc = -EFAULT;
7210  out:
7211         mutex_unlock(&ioc->base_cmds.mutex);
7212         return rc;
7213 }
7214
7215 /**
7216  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7217  * @ioc: per adapter object
7218  * @mpi_reply: the reply payload from FW
7219  * @mpi_request: the request payload sent to FW
7220  *
7221  * The SCSI Enclosure Processor request message causes the IOC to
7222  * communicate with SES devices to control LED status signals.
7223  *
7224  * Return: 0 for success, non-zero for failure.
7225  */
7226 int
7227 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7228         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7229 {
7230         u16 smid;
7231         u8 issue_reset = 0;
7232         int rc;
7233         void *request;
7234
7235         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7236
7237         mutex_lock(&ioc->base_cmds.mutex);
7238
7239         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7240                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7241                 rc = -EAGAIN;
7242                 goto out;
7243         }
7244
7245         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7246         if (rc)
7247                 goto out;
7248
7249         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7250         if (!smid) {
7251                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7252                 rc = -EAGAIN;
7253                 goto out;
7254         }
7255
7256         rc = 0;
7257         ioc->base_cmds.status = MPT3_CMD_PENDING;
7258         request = mpt3sas_base_get_msg_frame(ioc, smid);
7259         ioc->base_cmds.smid = smid;
7260         memset(request, 0, ioc->request_sz);
7261         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7262         init_completion(&ioc->base_cmds.done);
7263         ioc->put_smid_default(ioc, smid);
7264         wait_for_completion_timeout(&ioc->base_cmds.done,
7265             msecs_to_jiffies(10000));
7266         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7267                 mpt3sas_check_cmd_timeout(ioc,
7268                     ioc->base_cmds.status, mpi_request,
7269                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7270                 goto issue_host_reset;
7271         }
7272         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7273                 memcpy(mpi_reply, ioc->base_cmds.reply,
7274                     sizeof(Mpi2SepReply_t));
7275         else
7276                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7277         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7278         goto out;
7279
7280  issue_host_reset:
7281         if (issue_reset)
7282                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7283         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7284         rc = -EFAULT;
7285  out:
7286         mutex_unlock(&ioc->base_cmds.mutex);
7287         return rc;
7288 }
7289
7290 /**
7291  * _base_get_port_facts - obtain port facts reply and save in ioc
7292  * @ioc: per adapter object
7293  * @port: ?
7294  *
7295  * Return: 0 for success, non-zero for failure.
7296  */
7297 static int
7298 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7299 {
7300         Mpi2PortFactsRequest_t mpi_request;
7301         Mpi2PortFactsReply_t mpi_reply;
7302         struct mpt3sas_port_facts *pfacts;
7303         int mpi_reply_sz, mpi_request_sz, r;
7304
7305         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7306
7307         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7308         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7309         memset(&mpi_request, 0, mpi_request_sz);
7310         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7311         mpi_request.PortNumber = port;
7312         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7313             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7314
7315         if (r != 0) {
7316                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7317                 return r;
7318         }
7319
7320         pfacts = &ioc->pfacts[port];
7321         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7322         pfacts->PortNumber = mpi_reply.PortNumber;
7323         pfacts->VP_ID = mpi_reply.VP_ID;
7324         pfacts->VF_ID = mpi_reply.VF_ID;
7325         pfacts->MaxPostedCmdBuffers =
7326             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7327
7328         return 0;
7329 }
7330
7331 /**
7332  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7333  * @ioc: per adapter object
7334  * @timeout:
7335  *
7336  * Return: 0 for success, non-zero for failure.
7337  */
7338 static int
7339 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7340 {
7341         u32 ioc_state;
7342         int rc;
7343
7344         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7345
7346         if (ioc->pci_error_recovery) {
7347                 dfailprintk(ioc,
7348                             ioc_info(ioc, "%s: host in pci error recovery\n",
7349                                      __func__));
7350                 return -EFAULT;
7351         }
7352
7353         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7354         dhsprintk(ioc,
7355                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7356                            __func__, ioc_state));
7357
7358         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7359             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7360                 return 0;
7361
7362         if (ioc_state & MPI2_DOORBELL_USED) {
7363                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7364                 goto issue_diag_reset;
7365         }
7366
7367         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7368                 mpt3sas_print_fault_code(ioc, ioc_state &
7369                     MPI2_DOORBELL_DATA_MASK);
7370                 goto issue_diag_reset;
7371         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7372             MPI2_IOC_STATE_COREDUMP) {
7373                 ioc_info(ioc,
7374                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7375                     __func__, ioc_state);
7376                 return -EFAULT;
7377         }
7378
7379         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7380         if (ioc_state) {
7381                 dfailprintk(ioc,
7382                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7383                                      __func__, ioc_state));
7384                 return -EFAULT;
7385         }
7386
7387  issue_diag_reset:
7388         rc = _base_diag_reset(ioc);
7389         return rc;
7390 }
7391
7392 /**
7393  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7394  * @ioc: per adapter object
7395  *
7396  * Return: 0 for success, non-zero for failure.
7397  */
7398 static int
7399 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7400 {
7401         Mpi2IOCFactsRequest_t mpi_request;
7402         Mpi2IOCFactsReply_t mpi_reply;
7403         struct mpt3sas_facts *facts;
7404         int mpi_reply_sz, mpi_request_sz, r;
7405
7406         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7407
7408         r = _base_wait_for_iocstate(ioc, 10);
7409         if (r) {
7410                 dfailprintk(ioc,
7411                             ioc_info(ioc, "%s: failed getting to correct state\n",
7412                                      __func__));
7413                 return r;
7414         }
7415         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7416         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7417         memset(&mpi_request, 0, mpi_request_sz);
7418         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7419         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7420             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7421
7422         if (r != 0) {
7423                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7424                 return r;
7425         }
7426
7427         facts = &ioc->facts;
7428         memset(facts, 0, sizeof(struct mpt3sas_facts));
7429         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7430         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7431         facts->VP_ID = mpi_reply.VP_ID;
7432         facts->VF_ID = mpi_reply.VF_ID;
7433         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7434         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7435         facts->WhoInit = mpi_reply.WhoInit;
7436         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7437         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7438         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7439             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7440                 ioc->combined_reply_queue = 0;
7441         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7442         facts->MaxReplyDescriptorPostQueueDepth =
7443             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7444         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7445         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7446         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7447                 ioc->ir_firmware = 1;
7448         if ((facts->IOCCapabilities &
7449               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7450                 ioc->rdpq_array_capable = 1;
7451         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7452             && ioc->is_aero_ioc)
7453                 ioc->atomic_desc_capable = 1;
7454         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7455         facts->IOCRequestFrameSize =
7456             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7457         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7458                 facts->IOCMaxChainSegmentSize =
7459                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7460         }
7461         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7462         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7463         ioc->shost->max_id = -1;
7464         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7465         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7466         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7467         facts->HighPriorityCredit =
7468             le16_to_cpu(mpi_reply.HighPriorityCredit);
7469         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7470         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7471         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7472
7473         /*
7474          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7475          */
7476         ioc->page_size = 1 << facts->CurrentHostPageSize;
7477         if (ioc->page_size == 1) {
7478                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7479                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7480         }
7481         dinitprintk(ioc,
7482                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7483                              facts->CurrentHostPageSize));
7484
7485         dinitprintk(ioc,
7486                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7487                              facts->RequestCredit, facts->MaxChainDepth));
7488         dinitprintk(ioc,
7489                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7490                              facts->IOCRequestFrameSize * 4,
7491                              facts->ReplyFrameSize * 4));
7492         return 0;
7493 }
7494
7495 /**
7496  * _base_send_ioc_init - send ioc_init to firmware
7497  * @ioc: per adapter object
7498  *
7499  * Return: 0 for success, non-zero for failure.
7500  */
7501 static int
7502 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7503 {
7504         Mpi2IOCInitRequest_t mpi_request;
7505         Mpi2IOCInitReply_t mpi_reply;
7506         int i, r = 0;
7507         ktime_t current_time;
7508         u16 ioc_status;
7509         u32 reply_post_free_array_sz = 0;
7510
7511         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7512
7513         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7514         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7515         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7516         mpi_request.VF_ID = 0; /* TODO */
7517         mpi_request.VP_ID = 0;
7518         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7519         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7520         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7521
7522         if (_base_is_controller_msix_enabled(ioc))
7523                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7524         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7525         mpi_request.ReplyDescriptorPostQueueDepth =
7526             cpu_to_le16(ioc->reply_post_queue_depth);
7527         mpi_request.ReplyFreeQueueDepth =
7528             cpu_to_le16(ioc->reply_free_queue_depth);
7529
7530         mpi_request.SenseBufferAddressHigh =
7531             cpu_to_le32((u64)ioc->sense_dma >> 32);
7532         mpi_request.SystemReplyAddressHigh =
7533             cpu_to_le32((u64)ioc->reply_dma >> 32);
7534         mpi_request.SystemRequestFrameBaseAddress =
7535             cpu_to_le64((u64)ioc->request_dma);
7536         mpi_request.ReplyFreeQueueAddress =
7537             cpu_to_le64((u64)ioc->reply_free_dma);
7538
7539         if (ioc->rdpq_array_enable) {
7540                 reply_post_free_array_sz = ioc->reply_queue_count *
7541                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7542                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7543                 for (i = 0; i < ioc->reply_queue_count; i++)
7544                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7545                             cpu_to_le64(
7546                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7547                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7548                 mpi_request.ReplyDescriptorPostQueueAddress =
7549                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7550         } else {
7551                 mpi_request.ReplyDescriptorPostQueueAddress =
7552                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7553         }
7554
7555         /*
7556          * Set the flag to enable CoreDump state feature in IOC firmware.
7557          */
7558         mpi_request.ConfigurationFlags |=
7559             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7560
7561         /* This time stamp specifies number of milliseconds
7562          * since epoch ~ midnight January 1, 1970.
7563          */
7564         current_time = ktime_get_real();
7565         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7566
7567         if (ioc->logging_level & MPT_DEBUG_INIT) {
7568                 __le32 *mfp;
7569                 int i;
7570
7571                 mfp = (__le32 *)&mpi_request;
7572                 ioc_info(ioc, "\toffset:data\n");
7573                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7574                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7575                             le32_to_cpu(mfp[i]));
7576         }
7577
7578         r = _base_handshake_req_reply_wait(ioc,
7579             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7580             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7581
7582         if (r != 0) {
7583                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7584                 return r;
7585         }
7586
7587         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7588         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7589             mpi_reply.IOCLogInfo) {
7590                 ioc_err(ioc, "%s: failed\n", __func__);
7591                 r = -EIO;
7592         }
7593
7594         /* Reset TimeSync Counter*/
7595         ioc->timestamp_update_count = 0;
7596         return r;
7597 }
7598
7599 /**
7600  * mpt3sas_port_enable_done - command completion routine for port enable
7601  * @ioc: per adapter object
7602  * @smid: system request message index
7603  * @msix_index: MSIX table index supplied by the OS
7604  * @reply: reply message frame(lower 32bit addr)
7605  *
7606  * Return: 1 meaning mf should be freed from _base_interrupt
7607  *          0 means the mf is freed from this function.
7608  */
7609 u8
7610 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7611         u32 reply)
7612 {
7613         MPI2DefaultReply_t *mpi_reply;
7614         u16 ioc_status;
7615
7616         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7617                 return 1;
7618
7619         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7620         if (!mpi_reply)
7621                 return 1;
7622
7623         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7624                 return 1;
7625
7626         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7627         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7628         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7629         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7630         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7631         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7632                 ioc->port_enable_failed = 1;
7633
7634         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7635                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7636                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7637                         mpt3sas_port_enable_complete(ioc);
7638                         return 1;
7639                 } else {
7640                         ioc->start_scan_failed = ioc_status;
7641                         ioc->start_scan = 0;
7642                         return 1;
7643                 }
7644         }
7645         complete(&ioc->port_enable_cmds.done);
7646         return 1;
7647 }
7648
7649 /**
7650  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7651  * @ioc: per adapter object
7652  *
7653  * Return: 0 for success, non-zero for failure.
7654  */
7655 static int
7656 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7657 {
7658         Mpi2PortEnableRequest_t *mpi_request;
7659         Mpi2PortEnableReply_t *mpi_reply;
7660         int r = 0;
7661         u16 smid;
7662         u16 ioc_status;
7663
7664         ioc_info(ioc, "sending port enable !!\n");
7665
7666         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7667                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7668                 return -EAGAIN;
7669         }
7670
7671         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7672         if (!smid) {
7673                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7674                 return -EAGAIN;
7675         }
7676
7677         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7678         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7679         ioc->port_enable_cmds.smid = smid;
7680         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7681         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7682
7683         init_completion(&ioc->port_enable_cmds.done);
7684         ioc->put_smid_default(ioc, smid);
7685         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7686         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7687                 ioc_err(ioc, "%s: timeout\n", __func__);
7688                 _debug_dump_mf(mpi_request,
7689                     sizeof(Mpi2PortEnableRequest_t)/4);
7690                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7691                         r = -EFAULT;
7692                 else
7693                         r = -ETIME;
7694                 goto out;
7695         }
7696
7697         mpi_reply = ioc->port_enable_cmds.reply;
7698         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7699         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7700                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7701                         __func__, ioc_status);
7702                 r = -EFAULT;
7703                 goto out;
7704         }
7705
7706  out:
7707         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7708         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7709         return r;
7710 }
7711
7712 /**
7713  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7714  * @ioc: per adapter object
7715  *
7716  * Return: 0 for success, non-zero for failure.
7717  */
7718 int
7719 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7720 {
7721         Mpi2PortEnableRequest_t *mpi_request;
7722         u16 smid;
7723
7724         ioc_info(ioc, "sending port enable !!\n");
7725
7726         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7727                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7728                 return -EAGAIN;
7729         }
7730
7731         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7732         if (!smid) {
7733                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7734                 return -EAGAIN;
7735         }
7736         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7737         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7738         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7739         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7740         ioc->port_enable_cmds.smid = smid;
7741         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7742         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7743
7744         ioc->put_smid_default(ioc, smid);
7745         return 0;
7746 }
7747
7748 /**
7749  * _base_determine_wait_on_discovery - desposition
7750  * @ioc: per adapter object
7751  *
7752  * Decide whether to wait on discovery to complete. Used to either
7753  * locate boot device, or report volumes ahead of physical devices.
7754  *
7755  * Return: 1 for wait, 0 for don't wait.
7756  */
7757 static int
7758 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7759 {
7760         /* We wait for discovery to complete if IR firmware is loaded.
7761          * The sas topology events arrive before PD events, so we need time to
7762          * turn on the bit in ioc->pd_handles to indicate PD
7763          * Also, it maybe required to report Volumes ahead of physical
7764          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7765          */
7766         if (ioc->ir_firmware)
7767                 return 1;
7768
7769         /* if no Bios, then we don't need to wait */
7770         if (!ioc->bios_pg3.BiosVersion)
7771                 return 0;
7772
7773         /* Bios is present, then we drop down here.
7774          *
7775          * If there any entries in the Bios Page 2, then we wait
7776          * for discovery to complete.
7777          */
7778
7779         /* Current Boot Device */
7780         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7781             MPI2_BIOSPAGE2_FORM_MASK) ==
7782             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7783         /* Request Boot Device */
7784            (ioc->bios_pg2.ReqBootDeviceForm &
7785             MPI2_BIOSPAGE2_FORM_MASK) ==
7786             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7787         /* Alternate Request Boot Device */
7788            (ioc->bios_pg2.ReqAltBootDeviceForm &
7789             MPI2_BIOSPAGE2_FORM_MASK) ==
7790             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7791                 return 0;
7792
7793         return 1;
7794 }
7795
7796 /**
7797  * _base_unmask_events - turn on notification for this event
7798  * @ioc: per adapter object
7799  * @event: firmware event
7800  *
7801  * The mask is stored in ioc->event_masks.
7802  */
7803 static void
7804 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7805 {
7806         u32 desired_event;
7807
7808         if (event >= 128)
7809                 return;
7810
7811         desired_event = (1 << (event % 32));
7812
7813         if (event < 32)
7814                 ioc->event_masks[0] &= ~desired_event;
7815         else if (event < 64)
7816                 ioc->event_masks[1] &= ~desired_event;
7817         else if (event < 96)
7818                 ioc->event_masks[2] &= ~desired_event;
7819         else if (event < 128)
7820                 ioc->event_masks[3] &= ~desired_event;
7821 }
7822
7823 /**
7824  * _base_event_notification - send event notification
7825  * @ioc: per adapter object
7826  *
7827  * Return: 0 for success, non-zero for failure.
7828  */
7829 static int
7830 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7831 {
7832         Mpi2EventNotificationRequest_t *mpi_request;
7833         u16 smid;
7834         int r = 0;
7835         int i, issue_diag_reset = 0;
7836
7837         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7838
7839         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7840                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7841                 return -EAGAIN;
7842         }
7843
7844         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7845         if (!smid) {
7846                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7847                 return -EAGAIN;
7848         }
7849         ioc->base_cmds.status = MPT3_CMD_PENDING;
7850         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7851         ioc->base_cmds.smid = smid;
7852         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7853         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7854         mpi_request->VF_ID = 0; /* TODO */
7855         mpi_request->VP_ID = 0;
7856         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7857                 mpi_request->EventMasks[i] =
7858                     cpu_to_le32(ioc->event_masks[i]);
7859         init_completion(&ioc->base_cmds.done);
7860         ioc->put_smid_default(ioc, smid);
7861         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7862         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7863                 ioc_err(ioc, "%s: timeout\n", __func__);
7864                 _debug_dump_mf(mpi_request,
7865                     sizeof(Mpi2EventNotificationRequest_t)/4);
7866                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7867                         r = -EFAULT;
7868                 else
7869                         issue_diag_reset = 1;
7870
7871         } else
7872                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7873         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7874
7875         if (issue_diag_reset) {
7876                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7877                         return -EFAULT;
7878                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7879                         return -EFAULT;
7880                 r = -EAGAIN;
7881         }
7882         return r;
7883 }
7884
7885 /**
7886  * mpt3sas_base_validate_event_type - validating event types
7887  * @ioc: per adapter object
7888  * @event_type: firmware event
7889  *
7890  * This will turn on firmware event notification when application
7891  * ask for that event. We don't mask events that are already enabled.
7892  */
7893 void
7894 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7895 {
7896         int i, j;
7897         u32 event_mask, desired_event;
7898         u8 send_update_to_fw;
7899
7900         for (i = 0, send_update_to_fw = 0; i <
7901             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7902                 event_mask = ~event_type[i];
7903                 desired_event = 1;
7904                 for (j = 0; j < 32; j++) {
7905                         if (!(event_mask & desired_event) &&
7906                             (ioc->event_masks[i] & desired_event)) {
7907                                 ioc->event_masks[i] &= ~desired_event;
7908                                 send_update_to_fw = 1;
7909                         }
7910                         desired_event = (desired_event << 1);
7911                 }
7912         }
7913
7914         if (!send_update_to_fw)
7915                 return;
7916
7917         mutex_lock(&ioc->base_cmds.mutex);
7918         _base_event_notification(ioc);
7919         mutex_unlock(&ioc->base_cmds.mutex);
7920 }
7921
7922 /**
7923  * _base_diag_reset - the "big hammer" start of day reset
7924  * @ioc: per adapter object
7925  *
7926  * Return: 0 for success, non-zero for failure.
7927  */
7928 static int
7929 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7930 {
7931         u32 host_diagnostic;
7932         u32 ioc_state;
7933         u32 count;
7934         u32 hcb_size;
7935
7936         ioc_info(ioc, "sending diag reset !!\n");
7937
7938         pci_cfg_access_lock(ioc->pdev);
7939
7940         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7941
7942         count = 0;
7943         do {
7944                 /* Write magic sequence to WriteSequence register
7945                  * Loop until in diagnostic mode
7946                  */
7947                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7948                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7949                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7950                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7951                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7952                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7953                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7954                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7955
7956                 /* wait 100 msec */
7957                 msleep(100);
7958
7959                 if (count++ > 20) {
7960                         ioc_info(ioc,
7961                             "Stop writing magic sequence after 20 retries\n");
7962                         _base_dump_reg_set(ioc);
7963                         goto out;
7964                 }
7965
7966                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7967                 drsprintk(ioc,
7968                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7969                                    count, host_diagnostic));
7970
7971         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7972
7973         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7974
7975         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7976         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7977              &ioc->chip->HostDiagnostic);
7978
7979         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7980         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7981
7982         /* Approximately 300 second max wait */
7983         for (count = 0; count < (300000000 /
7984                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7985
7986                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7987
7988                 if (host_diagnostic == 0xFFFFFFFF) {
7989                         ioc_info(ioc,
7990                             "Invalid host diagnostic register value\n");
7991                         _base_dump_reg_set(ioc);
7992                         goto out;
7993                 }
7994                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7995                         break;
7996
7997                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7998         }
7999
8000         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8001
8002                 drsprintk(ioc,
8003                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
8004                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8005                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8006                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8007
8008                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8009                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8010                     &ioc->chip->HCBSize);
8011         }
8012
8013         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8014         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8015             &ioc->chip->HostDiagnostic);
8016
8017         drsprintk(ioc,
8018                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
8019         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8020
8021         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8022         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8023         if (ioc_state) {
8024                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8025                         __func__, ioc_state);
8026                 _base_dump_reg_set(ioc);
8027                 goto out;
8028         }
8029
8030         pci_cfg_access_unlock(ioc->pdev);
8031         ioc_info(ioc, "diag reset: SUCCESS\n");
8032         return 0;
8033
8034  out:
8035         pci_cfg_access_unlock(ioc->pdev);
8036         ioc_err(ioc, "diag reset: FAILED\n");
8037         return -EFAULT;
8038 }
8039
8040 /**
8041  * mpt3sas_base_make_ioc_ready - put controller in READY state
8042  * @ioc: per adapter object
8043  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8044  *
8045  * Return: 0 for success, non-zero for failure.
8046  */
8047 int
8048 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8049 {
8050         u32 ioc_state;
8051         int rc;
8052         int count;
8053
8054         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8055
8056         if (ioc->pci_error_recovery)
8057                 return 0;
8058
8059         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8060         dhsprintk(ioc,
8061                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8062                            __func__, ioc_state));
8063
8064         /* if in RESET state, it should move to READY state shortly */
8065         count = 0;
8066         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8067                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8068                     MPI2_IOC_STATE_READY) {
8069                         if (count++ == 10) {
8070                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8071                                         __func__, ioc_state);
8072                                 return -EFAULT;
8073                         }
8074                         ssleep(1);
8075                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8076                 }
8077         }
8078
8079         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8080                 return 0;
8081
8082         if (ioc_state & MPI2_DOORBELL_USED) {
8083                 ioc_info(ioc, "unexpected doorbell active!\n");
8084                 goto issue_diag_reset;
8085         }
8086
8087         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8088                 mpt3sas_print_fault_code(ioc, ioc_state &
8089                     MPI2_DOORBELL_DATA_MASK);
8090                 goto issue_diag_reset;
8091         }
8092
8093         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8094                 /*
8095                  * if host reset is invoked while watch dog thread is waiting
8096                  * for IOC state to be changed to Fault state then driver has
8097                  * to wait here for CoreDump state to clear otherwise reset
8098                  * will be issued to the FW and FW move the IOC state to
8099                  * reset state without copying the FW logs to coredump region.
8100                  */
8101                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8102                         mpt3sas_print_coredump_info(ioc, ioc_state &
8103                             MPI2_DOORBELL_DATA_MASK);
8104                         mpt3sas_base_wait_for_coredump_completion(ioc,
8105                             __func__);
8106                 }
8107                 goto issue_diag_reset;
8108         }
8109
8110         if (type == FORCE_BIG_HAMMER)
8111                 goto issue_diag_reset;
8112
8113         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8114                 if (!(_base_send_ioc_reset(ioc,
8115                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8116                         return 0;
8117         }
8118
8119  issue_diag_reset:
8120         rc = _base_diag_reset(ioc);
8121         return rc;
8122 }
8123
8124 /**
8125  * _base_make_ioc_operational - put controller in OPERATIONAL state
8126  * @ioc: per adapter object
8127  *
8128  * Return: 0 for success, non-zero for failure.
8129  */
8130 static int
8131 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8132 {
8133         int r, i, index, rc;
8134         unsigned long   flags;
8135         u32 reply_address;
8136         u16 smid;
8137         struct _tr_list *delayed_tr, *delayed_tr_next;
8138         struct _sc_list *delayed_sc, *delayed_sc_next;
8139         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8140         u8 hide_flag;
8141         struct adapter_reply_queue *reply_q;
8142         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8143
8144         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8145
8146         /* clean the delayed target reset list */
8147         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8148             &ioc->delayed_tr_list, list) {
8149                 list_del(&delayed_tr->list);
8150                 kfree(delayed_tr);
8151         }
8152
8153
8154         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8155             &ioc->delayed_tr_volume_list, list) {
8156                 list_del(&delayed_tr->list);
8157                 kfree(delayed_tr);
8158         }
8159
8160         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8161             &ioc->delayed_sc_list, list) {
8162                 list_del(&delayed_sc->list);
8163                 kfree(delayed_sc);
8164         }
8165
8166         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8167             &ioc->delayed_event_ack_list, list) {
8168                 list_del(&delayed_event_ack->list);
8169                 kfree(delayed_event_ack);
8170         }
8171
8172         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8173
8174         /* hi-priority queue */
8175         INIT_LIST_HEAD(&ioc->hpr_free_list);
8176         smid = ioc->hi_priority_smid;
8177         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8178                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8179                 ioc->hpr_lookup[i].smid = smid;
8180                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8181                     &ioc->hpr_free_list);
8182         }
8183
8184         /* internal queue */
8185         INIT_LIST_HEAD(&ioc->internal_free_list);
8186         smid = ioc->internal_smid;
8187         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8188                 ioc->internal_lookup[i].cb_idx = 0xFF;
8189                 ioc->internal_lookup[i].smid = smid;
8190                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8191                     &ioc->internal_free_list);
8192         }
8193
8194         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8195
8196         /* initialize Reply Free Queue */
8197         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8198             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8199             ioc->reply_sz) {
8200                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8201                 if (ioc->is_mcpu_endpoint)
8202                         _base_clone_reply_to_sys_mem(ioc,
8203                                         reply_address, i);
8204         }
8205
8206         /* initialize reply queues */
8207         if (ioc->is_driver_loading)
8208                 _base_assign_reply_queues(ioc);
8209
8210         /* initialize Reply Post Free Queue */
8211         index = 0;
8212         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8213         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8214                 /*
8215                  * If RDPQ is enabled, switch to the next allocation.
8216                  * Otherwise advance within the contiguous region.
8217                  */
8218                 if (ioc->rdpq_array_enable) {
8219                         reply_q->reply_post_free =
8220                                 ioc->reply_post[index++].reply_post_free;
8221                 } else {
8222                         reply_q->reply_post_free = reply_post_free_contig;
8223                         reply_post_free_contig += ioc->reply_post_queue_depth;
8224                 }
8225
8226                 reply_q->reply_post_host_index = 0;
8227                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8228                         reply_q->reply_post_free[i].Words =
8229                             cpu_to_le64(ULLONG_MAX);
8230                 if (!_base_is_controller_msix_enabled(ioc))
8231                         goto skip_init_reply_post_free_queue;
8232         }
8233  skip_init_reply_post_free_queue:
8234
8235         r = _base_send_ioc_init(ioc);
8236         if (r) {
8237                 /*
8238                  * No need to check IOC state for fault state & issue
8239                  * diag reset during host reset. This check is need
8240                  * only during driver load time.
8241                  */
8242                 if (!ioc->is_driver_loading)
8243                         return r;
8244
8245                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8246                 if (rc || (_base_send_ioc_init(ioc)))
8247                         return r;
8248         }
8249
8250         /* initialize reply free host index */
8251         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8252         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8253
8254         /* initialize reply post host index */
8255         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8256                 if (ioc->combined_reply_queue)
8257                         writel((reply_q->msix_index & 7)<<
8258                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8259                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8260                 else
8261                         writel(reply_q->msix_index <<
8262                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8263                                 &ioc->chip->ReplyPostHostIndex);
8264
8265                 if (!_base_is_controller_msix_enabled(ioc))
8266                         goto skip_init_reply_post_host_index;
8267         }
8268
8269  skip_init_reply_post_host_index:
8270
8271         mpt3sas_base_unmask_interrupts(ioc);
8272
8273         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8274                 r = _base_display_fwpkg_version(ioc);
8275                 if (r)
8276                         return r;
8277         }
8278
8279         r = _base_static_config_pages(ioc);
8280         if (r)
8281                 return r;
8282
8283         r = _base_event_notification(ioc);
8284         if (r)
8285                 return r;
8286
8287         if (!ioc->shost_recovery) {
8288
8289                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8290                     == 0x80) {
8291                         hide_flag = (u8) (
8292                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8293                             MFG_PAGE10_HIDE_SSDS_MASK);
8294                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8295                                 ioc->mfg_pg10_hide_flag = hide_flag;
8296                 }
8297
8298                 ioc->wait_for_discovery_to_complete =
8299                     _base_determine_wait_on_discovery(ioc);
8300
8301                 return r; /* scan_start and scan_finished support */
8302         }
8303
8304         r = _base_send_port_enable(ioc);
8305         if (r)
8306                 return r;
8307
8308         return r;
8309 }
8310
8311 /**
8312  * mpt3sas_base_free_resources - free resources controller resources
8313  * @ioc: per adapter object
8314  */
8315 void
8316 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8317 {
8318         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8319
8320         /* synchronizing freeing resource with pci_access_mutex lock */
8321         mutex_lock(&ioc->pci_access_mutex);
8322         if (ioc->chip_phys && ioc->chip) {
8323                 mpt3sas_base_mask_interrupts(ioc);
8324                 ioc->shost_recovery = 1;
8325                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8326                 ioc->shost_recovery = 0;
8327         }
8328
8329         mpt3sas_base_unmap_resources(ioc);
8330         mutex_unlock(&ioc->pci_access_mutex);
8331         return;
8332 }
8333
8334 /**
8335  * mpt3sas_base_attach - attach controller instance
8336  * @ioc: per adapter object
8337  *
8338  * Return: 0 for success, non-zero for failure.
8339  */
8340 int
8341 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8342 {
8343         int r, i, rc;
8344         int cpu_id, last_cpu_id = 0;
8345
8346         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8347
8348         /* setup cpu_msix_table */
8349         ioc->cpu_count = num_online_cpus();
8350         for_each_online_cpu(cpu_id)
8351                 last_cpu_id = cpu_id;
8352         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8353         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8354         ioc->reply_queue_count = 1;
8355         if (!ioc->cpu_msix_table) {
8356                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8357                 r = -ENOMEM;
8358                 goto out_free_resources;
8359         }
8360
8361         if (ioc->is_warpdrive) {
8362                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8363                     sizeof(resource_size_t *), GFP_KERNEL);
8364                 if (!ioc->reply_post_host_index) {
8365                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8366                         r = -ENOMEM;
8367                         goto out_free_resources;
8368                 }
8369         }
8370
8371         ioc->smp_affinity_enable = smp_affinity_enable;
8372
8373         ioc->rdpq_array_enable_assigned = 0;
8374         ioc->use_32bit_dma = false;
8375         ioc->dma_mask = 64;
8376         if (ioc->is_aero_ioc)
8377                 ioc->base_readl = &_base_readl_aero;
8378         else
8379                 ioc->base_readl = &_base_readl;
8380         r = mpt3sas_base_map_resources(ioc);
8381         if (r)
8382                 goto out_free_resources;
8383
8384         pci_set_drvdata(ioc->pdev, ioc->shost);
8385         r = _base_get_ioc_facts(ioc);
8386         if (r) {
8387                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8388                 if (rc || (_base_get_ioc_facts(ioc)))
8389                         goto out_free_resources;
8390         }
8391
8392         switch (ioc->hba_mpi_version_belonged) {
8393         case MPI2_VERSION:
8394                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8395                 ioc->build_sg = &_base_build_sg;
8396                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8397                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8398                 break;
8399         case MPI25_VERSION:
8400         case MPI26_VERSION:
8401                 /*
8402                  * In SAS3.0,
8403                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8404                  * Target Status - all require the IEEE formatted scatter gather
8405                  * elements.
8406                  */
8407                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8408                 ioc->build_sg = &_base_build_sg_ieee;
8409                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8410                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8411                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8412                 if (ioc->high_iops_queues)
8413                         ioc->get_msix_index_for_smlio =
8414                                         &_base_get_high_iops_msix_index;
8415                 else
8416                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8417                 break;
8418         }
8419         if (ioc->atomic_desc_capable) {
8420                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8421                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8422                 ioc->put_smid_fast_path =
8423                                 &_base_put_smid_fast_path_atomic;
8424                 ioc->put_smid_hi_priority =
8425                                 &_base_put_smid_hi_priority_atomic;
8426         } else {
8427                 ioc->put_smid_default = &_base_put_smid_default;
8428                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8429                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8430                 if (ioc->is_mcpu_endpoint)
8431                         ioc->put_smid_scsi_io =
8432                                 &_base_put_smid_mpi_ep_scsi_io;
8433                 else
8434                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8435         }
8436         /*
8437          * These function pointers for other requests that don't
8438          * the require IEEE scatter gather elements.
8439          *
8440          * For example Configuration Pages and SAS IOUNIT Control don't.
8441          */
8442         ioc->build_sg_mpi = &_base_build_sg;
8443         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8444
8445         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8446         if (r)
8447                 goto out_free_resources;
8448
8449         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8450             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8451         if (!ioc->pfacts) {
8452                 r = -ENOMEM;
8453                 goto out_free_resources;
8454         }
8455
8456         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8457                 r = _base_get_port_facts(ioc, i);
8458                 if (r) {
8459                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8460                         if (rc || (_base_get_port_facts(ioc, i)))
8461                                 goto out_free_resources;
8462                 }
8463         }
8464
8465         r = _base_allocate_memory_pools(ioc);
8466         if (r)
8467                 goto out_free_resources;
8468
8469         if (irqpoll_weight > 0)
8470                 ioc->thresh_hold = irqpoll_weight;
8471         else
8472                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8473
8474         _base_init_irqpolls(ioc);
8475         init_waitqueue_head(&ioc->reset_wq);
8476
8477         /* allocate memory pd handle bitmask list */
8478         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8479         if (ioc->facts.MaxDevHandle % 8)
8480                 ioc->pd_handles_sz++;
8481         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8482             GFP_KERNEL);
8483         if (!ioc->pd_handles) {
8484                 r = -ENOMEM;
8485                 goto out_free_resources;
8486         }
8487         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8488             GFP_KERNEL);
8489         if (!ioc->blocking_handles) {
8490                 r = -ENOMEM;
8491                 goto out_free_resources;
8492         }
8493
8494         /* allocate memory for pending OS device add list */
8495         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8496         if (ioc->facts.MaxDevHandle % 8)
8497                 ioc->pend_os_device_add_sz++;
8498         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8499             GFP_KERNEL);
8500         if (!ioc->pend_os_device_add) {
8501                 r = -ENOMEM;
8502                 goto out_free_resources;
8503         }
8504
8505         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8506         ioc->device_remove_in_progress =
8507                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8508         if (!ioc->device_remove_in_progress) {
8509                 r = -ENOMEM;
8510                 goto out_free_resources;
8511         }
8512
8513         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8514
8515         /* base internal command bits */
8516         mutex_init(&ioc->base_cmds.mutex);
8517         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8518         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8519
8520         /* port_enable command bits */
8521         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8522         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8523
8524         /* transport internal command bits */
8525         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8526         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8527         mutex_init(&ioc->transport_cmds.mutex);
8528
8529         /* scsih internal command bits */
8530         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8531         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8532         mutex_init(&ioc->scsih_cmds.mutex);
8533
8534         /* task management internal command bits */
8535         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8536         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8537         mutex_init(&ioc->tm_cmds.mutex);
8538
8539         /* config page internal command bits */
8540         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8541         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8542         mutex_init(&ioc->config_cmds.mutex);
8543
8544         /* ctl module internal command bits */
8545         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8546         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8547         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8548         mutex_init(&ioc->ctl_cmds.mutex);
8549
8550         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8551             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8552             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8553             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8554                 r = -ENOMEM;
8555                 goto out_free_resources;
8556         }
8557
8558         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8559                 ioc->event_masks[i] = -1;
8560
8561         /* here we enable the events we care about */
8562         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8563         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8564         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8565         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8566         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8567         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8568         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8569         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8570         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8571         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8572         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8573         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8574         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8575         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8576                 if (ioc->is_gen35_ioc) {
8577                         _base_unmask_events(ioc,
8578                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8579                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8580                         _base_unmask_events(ioc,
8581                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8582                 }
8583         }
8584         r = _base_make_ioc_operational(ioc);
8585         if (r == -EAGAIN) {
8586                 r = _base_make_ioc_operational(ioc);
8587                 if (r)
8588                         goto out_free_resources;
8589         }
8590
8591         /*
8592          * Copy current copy of IOCFacts in prev_fw_facts
8593          * and it will be used during online firmware upgrade.
8594          */
8595         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8596             sizeof(struct mpt3sas_facts));
8597
8598         ioc->non_operational_loop = 0;
8599         ioc->ioc_coredump_loop = 0;
8600         ioc->got_task_abort_from_ioctl = 0;
8601         return 0;
8602
8603  out_free_resources:
8604
8605         ioc->remove_host = 1;
8606
8607         mpt3sas_base_free_resources(ioc);
8608         _base_release_memory_pools(ioc);
8609         pci_set_drvdata(ioc->pdev, NULL);
8610         kfree(ioc->cpu_msix_table);
8611         if (ioc->is_warpdrive)
8612                 kfree(ioc->reply_post_host_index);
8613         kfree(ioc->pd_handles);
8614         kfree(ioc->blocking_handles);
8615         kfree(ioc->device_remove_in_progress);
8616         kfree(ioc->pend_os_device_add);
8617         kfree(ioc->tm_cmds.reply);
8618         kfree(ioc->transport_cmds.reply);
8619         kfree(ioc->scsih_cmds.reply);
8620         kfree(ioc->config_cmds.reply);
8621         kfree(ioc->base_cmds.reply);
8622         kfree(ioc->port_enable_cmds.reply);
8623         kfree(ioc->ctl_cmds.reply);
8624         kfree(ioc->ctl_cmds.sense);
8625         kfree(ioc->pfacts);
8626         ioc->ctl_cmds.reply = NULL;
8627         ioc->base_cmds.reply = NULL;
8628         ioc->tm_cmds.reply = NULL;
8629         ioc->scsih_cmds.reply = NULL;
8630         ioc->transport_cmds.reply = NULL;
8631         ioc->config_cmds.reply = NULL;
8632         ioc->pfacts = NULL;
8633         return r;
8634 }
8635
8636
8637 /**
8638  * mpt3sas_base_detach - remove controller instance
8639  * @ioc: per adapter object
8640  */
8641 void
8642 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8643 {
8644         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8645
8646         mpt3sas_base_stop_watchdog(ioc);
8647         mpt3sas_base_free_resources(ioc);
8648         _base_release_memory_pools(ioc);
8649         mpt3sas_free_enclosure_list(ioc);
8650         pci_set_drvdata(ioc->pdev, NULL);
8651         kfree(ioc->cpu_msix_table);
8652         if (ioc->is_warpdrive)
8653                 kfree(ioc->reply_post_host_index);
8654         kfree(ioc->pd_handles);
8655         kfree(ioc->blocking_handles);
8656         kfree(ioc->device_remove_in_progress);
8657         kfree(ioc->pend_os_device_add);
8658         kfree(ioc->pfacts);
8659         kfree(ioc->ctl_cmds.reply);
8660         kfree(ioc->ctl_cmds.sense);
8661         kfree(ioc->base_cmds.reply);
8662         kfree(ioc->port_enable_cmds.reply);
8663         kfree(ioc->tm_cmds.reply);
8664         kfree(ioc->transport_cmds.reply);
8665         kfree(ioc->scsih_cmds.reply);
8666         kfree(ioc->config_cmds.reply);
8667 }
8668
8669 /**
8670  * _base_pre_reset_handler - pre reset handler
8671  * @ioc: per adapter object
8672  */
8673 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8674 {
8675         mpt3sas_scsih_pre_reset_handler(ioc);
8676         mpt3sas_ctl_pre_reset_handler(ioc);
8677         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8678 }
8679
8680 /**
8681  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8682  * @ioc: per adapter object
8683  */
8684 static void
8685 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8686 {
8687         dtmprintk(ioc,
8688             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8689         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8690                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8691                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8692                 complete(&ioc->transport_cmds.done);
8693         }
8694         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8695                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8696                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8697                 complete(&ioc->base_cmds.done);
8698         }
8699         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8700                 ioc->port_enable_failed = 1;
8701                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8702                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8703                 if (ioc->is_driver_loading) {
8704                         ioc->start_scan_failed =
8705                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8706                         ioc->start_scan = 0;
8707                 } else {
8708                         complete(&ioc->port_enable_cmds.done);
8709                 }
8710         }
8711         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8712                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8713                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8714                 ioc->config_cmds.smid = USHRT_MAX;
8715                 complete(&ioc->config_cmds.done);
8716         }
8717 }
8718
8719 /**
8720  * _base_clear_outstanding_commands - clear all outstanding commands
8721  * @ioc: per adapter object
8722  */
8723 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8724 {
8725         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8726         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8727         _base_clear_outstanding_mpt_commands(ioc);
8728 }
8729
8730 /**
8731  * _base_reset_done_handler - reset done handler
8732  * @ioc: per adapter object
8733  */
8734 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8735 {
8736         mpt3sas_scsih_reset_done_handler(ioc);
8737         mpt3sas_ctl_reset_done_handler(ioc);
8738         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8739 }
8740
8741 /**
8742  * mpt3sas_wait_for_commands_to_complete - reset controller
8743  * @ioc: Pointer to MPT_ADAPTER structure
8744  *
8745  * This function is waiting 10s for all pending commands to complete
8746  * prior to putting controller in reset.
8747  */
8748 void
8749 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8750 {
8751         u32 ioc_state;
8752
8753         ioc->pending_io_count = 0;
8754
8755         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8756         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8757                 return;
8758
8759         /* pending command count */
8760         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8761
8762         if (!ioc->pending_io_count)
8763                 return;
8764
8765         /* wait for pending commands to complete */
8766         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8767 }
8768
8769 /**
8770  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8771  *     attributes during online firmware upgrade and update the corresponding
8772  *     IOC variables accordingly.
8773  *
8774  * @ioc: Pointer to MPT_ADAPTER structure
8775  */
8776 static int
8777 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8778 {
8779         u16 pd_handles_sz;
8780         void *pd_handles = NULL, *blocking_handles = NULL;
8781         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8782         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8783
8784         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8785                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8786                 if (ioc->facts.MaxDevHandle % 8)
8787                         pd_handles_sz++;
8788
8789                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8790                     GFP_KERNEL);
8791                 if (!pd_handles) {
8792                         ioc_info(ioc,
8793                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8794                             pd_handles_sz);
8795                         return -ENOMEM;
8796                 }
8797                 memset(pd_handles + ioc->pd_handles_sz, 0,
8798                     (pd_handles_sz - ioc->pd_handles_sz));
8799                 ioc->pd_handles = pd_handles;
8800
8801                 blocking_handles = krealloc(ioc->blocking_handles,
8802                     pd_handles_sz, GFP_KERNEL);
8803                 if (!blocking_handles) {
8804                         ioc_info(ioc,
8805                             "Unable to allocate the memory for "
8806                             "blocking_handles of sz: %d\n",
8807                             pd_handles_sz);
8808                         return -ENOMEM;
8809                 }
8810                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8811                     (pd_handles_sz - ioc->pd_handles_sz));
8812                 ioc->blocking_handles = blocking_handles;
8813                 ioc->pd_handles_sz = pd_handles_sz;
8814
8815                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8816                     pd_handles_sz, GFP_KERNEL);
8817                 if (!pend_os_device_add) {
8818                         ioc_info(ioc,
8819                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8820                             pd_handles_sz);
8821                         return -ENOMEM;
8822                 }
8823                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8824                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8825                 ioc->pend_os_device_add = pend_os_device_add;
8826                 ioc->pend_os_device_add_sz = pd_handles_sz;
8827
8828                 device_remove_in_progress = krealloc(
8829                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8830                 if (!device_remove_in_progress) {
8831                         ioc_info(ioc,
8832                             "Unable to allocate the memory for "
8833                             "device_remove_in_progress of sz: %d\n "
8834                             , pd_handles_sz);
8835                         return -ENOMEM;
8836                 }
8837                 memset(device_remove_in_progress +
8838                     ioc->device_remove_in_progress_sz, 0,
8839                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8840                 ioc->device_remove_in_progress = device_remove_in_progress;
8841                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8842         }
8843
8844         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8845         return 0;
8846 }
8847
8848 /**
8849  * mpt3sas_base_hard_reset_handler - reset controller
8850  * @ioc: Pointer to MPT_ADAPTER structure
8851  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8852  *
8853  * Return: 0 for success, non-zero for failure.
8854  */
8855 int
8856 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8857         enum reset_type type)
8858 {
8859         int r;
8860         unsigned long flags;
8861         u32 ioc_state;
8862         u8 is_fault = 0, is_trigger = 0;
8863
8864         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8865
8866         if (ioc->pci_error_recovery) {
8867                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8868                 r = 0;
8869                 goto out_unlocked;
8870         }
8871
8872         if (mpt3sas_fwfault_debug)
8873                 mpt3sas_halt_firmware(ioc);
8874
8875         /* wait for an active reset in progress to complete */
8876         mutex_lock(&ioc->reset_in_progress_mutex);
8877
8878         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8879         ioc->shost_recovery = 1;
8880         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8881
8882         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8883             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8884             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8885             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8886                 is_trigger = 1;
8887                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8888                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8889                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8890                     MPI2_IOC_STATE_COREDUMP) {
8891                         is_fault = 1;
8892                         ioc->htb_rel.trigger_info_dwords[1] =
8893                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8894                 }
8895         }
8896         _base_pre_reset_handler(ioc);
8897         mpt3sas_wait_for_commands_to_complete(ioc);
8898         mpt3sas_base_mask_interrupts(ioc);
8899         mpt3sas_base_pause_mq_polling(ioc);
8900         r = mpt3sas_base_make_ioc_ready(ioc, type);
8901         if (r)
8902                 goto out;
8903         _base_clear_outstanding_commands(ioc);
8904
8905         /* If this hard reset is called while port enable is active, then
8906          * there is no reason to call make_ioc_operational
8907          */
8908         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8909                 ioc->remove_host = 1;
8910                 r = -EFAULT;
8911                 goto out;
8912         }
8913         r = _base_get_ioc_facts(ioc);
8914         if (r)
8915                 goto out;
8916
8917         r = _base_check_ioc_facts_changes(ioc);
8918         if (r) {
8919                 ioc_info(ioc,
8920                     "Some of the parameters got changed in this new firmware"
8921                     " image and it requires system reboot\n");
8922                 goto out;
8923         }
8924         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8925                 panic("%s: Issue occurred with flashing controller firmware."
8926                       "Please reboot the system and ensure that the correct"
8927                       " firmware version is running\n", ioc->name);
8928
8929         r = _base_make_ioc_operational(ioc);
8930         if (!r)
8931                 _base_reset_done_handler(ioc);
8932
8933  out:
8934         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8935
8936         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8937         ioc->shost_recovery = 0;
8938         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8939         ioc->ioc_reset_count++;
8940         mutex_unlock(&ioc->reset_in_progress_mutex);
8941         mpt3sas_base_resume_mq_polling(ioc);
8942
8943  out_unlocked:
8944         if ((r == 0) && is_trigger) {
8945                 if (is_fault)
8946                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8947                 else
8948                         mpt3sas_trigger_master(ioc,
8949                             MASTER_TRIGGER_ADAPTER_RESET);
8950         }
8951         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8952         return r;
8953 }