ecae55f117a3175105dd9f5f7ff0079eed014988
[linux-2.6-block.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "../scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 static void smp_task_timedout(struct timer_list *t)
32 {
33         struct sas_task_slow *slow = from_timer(slow, t, timer);
34         struct sas_task *task = slow->task;
35         unsigned long flags;
36
37         spin_lock_irqsave(&task->task_state_lock, flags);
38         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40                 complete(&task->slow_task->completion);
41         }
42         spin_unlock_irqrestore(&task->task_state_lock, flags);
43 }
44
45 static void smp_task_done(struct sas_task *task)
46 {
47         del_timer(&task->slow_task->timer);
48         complete(&task->slow_task->completion);
49 }
50
51 /* Give it some long enough timeout. In seconds. */
52 #define SMP_TIMEOUT 10
53
54 static int smp_execute_task_sg(struct domain_device *dev,
55                 struct scatterlist *req, struct scatterlist *resp)
56 {
57         int res, retry;
58         struct sas_task *task = NULL;
59         struct sas_internal *i =
60                 to_sas_internal(dev->port->ha->core.shost->transportt);
61
62         mutex_lock(&dev->ex_dev.cmd_mutex);
63         for (retry = 0; retry < 3; retry++) {
64                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
65                         res = -ECOMM;
66                         break;
67                 }
68
69                 task = sas_alloc_slow_task(GFP_KERNEL);
70                 if (!task) {
71                         res = -ENOMEM;
72                         break;
73                 }
74                 task->dev = dev;
75                 task->task_proto = dev->tproto;
76                 task->smp_task.smp_req = *req;
77                 task->smp_task.smp_resp = *resp;
78
79                 task->task_done = smp_task_done;
80
81                 task->slow_task->timer.function = smp_task_timedout;
82                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
83                 add_timer(&task->slow_task->timer);
84
85                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
86
87                 if (res) {
88                         del_timer(&task->slow_task->timer);
89                         pr_notice("executing SMP task failed:%d\n", res);
90                         break;
91                 }
92
93                 wait_for_completion(&task->slow_task->completion);
94                 res = -ECOMM;
95                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
96                         pr_notice("smp task timed out or aborted\n");
97                         i->dft->lldd_abort_task(task);
98                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
99                                 pr_notice("SMP task aborted and not done\n");
100                                 break;
101                         }
102                 }
103                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
104                     task->task_status.stat == SAM_STAT_GOOD) {
105                         res = 0;
106                         break;
107                 }
108                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109                     task->task_status.stat == SAS_DATA_UNDERRUN) {
110                         /* no error, but return the number of bytes of
111                          * underrun */
112                         res = task->task_status.residual;
113                         break;
114                 }
115                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116                     task->task_status.stat == SAS_DATA_OVERRUN) {
117                         res = -EMSGSIZE;
118                         break;
119                 }
120                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
121                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
122                         break;
123                 else {
124                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
125                                   __func__,
126                                   SAS_ADDR(dev->sas_addr),
127                                   task->task_status.resp,
128                                   task->task_status.stat);
129                         sas_free_task(task);
130                         task = NULL;
131                 }
132         }
133         mutex_unlock(&dev->ex_dev.cmd_mutex);
134
135         BUG_ON(retry == 3 && task != NULL);
136         sas_free_task(task);
137         return res;
138 }
139
140 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
141                             void *resp, int resp_size)
142 {
143         struct scatterlist req_sg;
144         struct scatterlist resp_sg;
145
146         sg_init_one(&req_sg, req, req_size);
147         sg_init_one(&resp_sg, resp, resp_size);
148         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
149 }
150
151 /* ---------- Allocations ---------- */
152
153 static inline void *alloc_smp_req(int size)
154 {
155         u8 *p = kzalloc(size, GFP_KERNEL);
156         if (p)
157                 p[0] = SMP_REQUEST;
158         return p;
159 }
160
161 static inline void *alloc_smp_resp(int size)
162 {
163         return kzalloc(size, GFP_KERNEL);
164 }
165
166 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
167 {
168         switch (phy->routing_attr) {
169         case TABLE_ROUTING:
170                 if (dev->ex_dev.t2t_supp)
171                         return 'U';
172                 else
173                         return 'T';
174         case DIRECT_ROUTING:
175                 return 'D';
176         case SUBTRACTIVE_ROUTING:
177                 return 'S';
178         default:
179                 return '?';
180         }
181 }
182
183 static enum sas_device_type to_dev_type(struct discover_resp *dr)
184 {
185         /* This is detecting a failure to transmit initial dev to host
186          * FIS as described in section J.5 of sas-2 r16
187          */
188         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
189             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
190                 return SAS_SATA_PENDING;
191         else
192                 return dr->attached_dev_type;
193 }
194
195 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
196 {
197         enum sas_device_type dev_type;
198         enum sas_linkrate linkrate;
199         u8 sas_addr[SAS_ADDR_SIZE];
200         struct smp_resp *resp = rsp;
201         struct discover_resp *dr = &resp->disc;
202         struct sas_ha_struct *ha = dev->port->ha;
203         struct expander_device *ex = &dev->ex_dev;
204         struct ex_phy *phy = &ex->ex_phy[phy_id];
205         struct sas_rphy *rphy = dev->rphy;
206         bool new_phy = !phy->phy;
207         char *type;
208
209         if (new_phy) {
210                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
211                         return;
212                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
213
214                 /* FIXME: error_handling */
215                 BUG_ON(!phy->phy);
216         }
217
218         switch (resp->result) {
219         case SMP_RESP_PHY_VACANT:
220                 phy->phy_state = PHY_VACANT;
221                 break;
222         default:
223                 phy->phy_state = PHY_NOT_PRESENT;
224                 break;
225         case SMP_RESP_FUNC_ACC:
226                 phy->phy_state = PHY_EMPTY; /* do not know yet */
227                 break;
228         }
229
230         /* check if anything important changed to squelch debug */
231         dev_type = phy->attached_dev_type;
232         linkrate  = phy->linkrate;
233         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
234
235         /* Handle vacant phy - rest of dr data is not valid so skip it */
236         if (phy->phy_state == PHY_VACANT) {
237                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
238                 phy->attached_dev_type = SAS_PHY_UNUSED;
239                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
240                         phy->phy_id = phy_id;
241                         goto skip;
242                 } else
243                         goto out;
244         }
245
246         phy->attached_dev_type = to_dev_type(dr);
247         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
248                 goto out;
249         phy->phy_id = phy_id;
250         phy->linkrate = dr->linkrate;
251         phy->attached_sata_host = dr->attached_sata_host;
252         phy->attached_sata_dev  = dr->attached_sata_dev;
253         phy->attached_sata_ps   = dr->attached_sata_ps;
254         phy->attached_iproto = dr->iproto << 1;
255         phy->attached_tproto = dr->tproto << 1;
256         /* help some expanders that fail to zero sas_address in the 'no
257          * device' case
258          */
259         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
260             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
261                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
262         else
263                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
264         phy->attached_phy_id = dr->attached_phy_id;
265         phy->phy_change_count = dr->change_count;
266         phy->routing_attr = dr->routing_attr;
267         phy->virtual = dr->virtual;
268         phy->last_da_index = -1;
269
270         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
271         phy->phy->identify.device_type = dr->attached_dev_type;
272         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
273         phy->phy->identify.target_port_protocols = phy->attached_tproto;
274         if (!phy->attached_tproto && dr->attached_sata_dev)
275                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
276         phy->phy->identify.phy_identifier = phy_id;
277         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
278         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
279         phy->phy->minimum_linkrate = dr->pmin_linkrate;
280         phy->phy->maximum_linkrate = dr->pmax_linkrate;
281         phy->phy->negotiated_linkrate = phy->linkrate;
282         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
283
284  skip:
285         if (new_phy)
286                 if (sas_phy_add(phy->phy)) {
287                         sas_phy_free(phy->phy);
288                         return;
289                 }
290
291  out:
292         switch (phy->attached_dev_type) {
293         case SAS_SATA_PENDING:
294                 type = "stp pending";
295                 break;
296         case SAS_PHY_UNUSED:
297                 type = "no device";
298                 break;
299         case SAS_END_DEVICE:
300                 if (phy->attached_iproto) {
301                         if (phy->attached_tproto)
302                                 type = "host+target";
303                         else
304                                 type = "host";
305                 } else {
306                         if (dr->attached_sata_dev)
307                                 type = "stp";
308                         else
309                                 type = "ssp";
310                 }
311                 break;
312         case SAS_EDGE_EXPANDER_DEVICE:
313         case SAS_FANOUT_EXPANDER_DEVICE:
314                 type = "smp";
315                 break;
316         default:
317                 type = "unknown";
318         }
319
320         /* this routine is polled by libata error recovery so filter
321          * unimportant messages
322          */
323         if (new_phy || phy->attached_dev_type != dev_type ||
324             phy->linkrate != linkrate ||
325             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
326                 /* pass */;
327         else
328                 return;
329
330         /* if the attached device type changed and ata_eh is active,
331          * make sure we run revalidation when eh completes (see:
332          * sas_enable_revalidation)
333          */
334         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
335                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
336
337         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
338                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
339                  SAS_ADDR(dev->sas_addr), phy->phy_id,
340                  sas_route_char(dev, phy), phy->linkrate,
341                  SAS_ADDR(phy->attached_sas_addr), type);
342 }
343
344 /* check if we have an existing attached ata device on this expander phy */
345 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
346 {
347         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
348         struct domain_device *dev;
349         struct sas_rphy *rphy;
350
351         if (!ex_phy->port)
352                 return NULL;
353
354         rphy = ex_phy->port->rphy;
355         if (!rphy)
356                 return NULL;
357
358         dev = sas_find_dev_by_rphy(rphy);
359
360         if (dev && dev_is_sata(dev))
361                 return dev;
362
363         return NULL;
364 }
365
366 #define DISCOVER_REQ_SIZE  16
367 #define DISCOVER_RESP_SIZE 56
368
369 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
370                                       u8 *disc_resp, int single)
371 {
372         struct discover_resp *dr;
373         int res;
374
375         disc_req[9] = single;
376
377         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
378                                disc_resp, DISCOVER_RESP_SIZE);
379         if (res)
380                 return res;
381         dr = &((struct smp_resp *)disc_resp)->disc;
382         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
383                 pr_notice("Found loopback topology, just ignore it!\n");
384                 return 0;
385         }
386         sas_set_ex_phy(dev, single, disc_resp);
387         return 0;
388 }
389
390 int sas_ex_phy_discover(struct domain_device *dev, int single)
391 {
392         struct expander_device *ex = &dev->ex_dev;
393         int  res = 0;
394         u8   *disc_req;
395         u8   *disc_resp;
396
397         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
398         if (!disc_req)
399                 return -ENOMEM;
400
401         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
402         if (!disc_resp) {
403                 kfree(disc_req);
404                 return -ENOMEM;
405         }
406
407         disc_req[1] = SMP_DISCOVER;
408
409         if (0 <= single && single < ex->num_phys) {
410                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
411         } else {
412                 int i;
413
414                 for (i = 0; i < ex->num_phys; i++) {
415                         res = sas_ex_phy_discover_helper(dev, disc_req,
416                                                          disc_resp, i);
417                         if (res)
418                                 goto out_err;
419                 }
420         }
421 out_err:
422         kfree(disc_resp);
423         kfree(disc_req);
424         return res;
425 }
426
427 static int sas_expander_discover(struct domain_device *dev)
428 {
429         struct expander_device *ex = &dev->ex_dev;
430         int res = -ENOMEM;
431
432         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
433         if (!ex->ex_phy)
434                 return -ENOMEM;
435
436         res = sas_ex_phy_discover(dev, -1);
437         if (res)
438                 goto out_err;
439
440         return 0;
441  out_err:
442         kfree(ex->ex_phy);
443         ex->ex_phy = NULL;
444         return res;
445 }
446
447 #define MAX_EXPANDER_PHYS 128
448
449 static void ex_assign_report_general(struct domain_device *dev,
450                                             struct smp_resp *resp)
451 {
452         struct report_general_resp *rg = &resp->rg;
453
454         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
455         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
456         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
457         dev->ex_dev.t2t_supp = rg->t2t_supp;
458         dev->ex_dev.conf_route_table = rg->conf_route_table;
459         dev->ex_dev.configuring = rg->configuring;
460         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
461 }
462
463 #define RG_REQ_SIZE   8
464 #define RG_RESP_SIZE 32
465
466 static int sas_ex_general(struct domain_device *dev)
467 {
468         u8 *rg_req;
469         struct smp_resp *rg_resp;
470         int res;
471         int i;
472
473         rg_req = alloc_smp_req(RG_REQ_SIZE);
474         if (!rg_req)
475                 return -ENOMEM;
476
477         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
478         if (!rg_resp) {
479                 kfree(rg_req);
480                 return -ENOMEM;
481         }
482
483         rg_req[1] = SMP_REPORT_GENERAL;
484
485         for (i = 0; i < 5; i++) {
486                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
487                                        RG_RESP_SIZE);
488
489                 if (res) {
490                         pr_notice("RG to ex %016llx failed:0x%x\n",
491                                   SAS_ADDR(dev->sas_addr), res);
492                         goto out;
493                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
494                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
495                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
496                         res = rg_resp->result;
497                         goto out;
498                 }
499
500                 ex_assign_report_general(dev, rg_resp);
501
502                 if (dev->ex_dev.configuring) {
503                         pr_debug("RG: ex %llx self-configuring...\n",
504                                  SAS_ADDR(dev->sas_addr));
505                         schedule_timeout_interruptible(5*HZ);
506                 } else
507                         break;
508         }
509 out:
510         kfree(rg_req);
511         kfree(rg_resp);
512         return res;
513 }
514
515 static void ex_assign_manuf_info(struct domain_device *dev, void
516                                         *_mi_resp)
517 {
518         u8 *mi_resp = _mi_resp;
519         struct sas_rphy *rphy = dev->rphy;
520         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
521
522         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
523         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
524         memcpy(edev->product_rev, mi_resp + 36,
525                SAS_EXPANDER_PRODUCT_REV_LEN);
526
527         if (mi_resp[8] & 1) {
528                 memcpy(edev->component_vendor_id, mi_resp + 40,
529                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
530                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
531                 edev->component_revision_id = mi_resp[50];
532         }
533 }
534
535 #define MI_REQ_SIZE   8
536 #define MI_RESP_SIZE 64
537
538 static int sas_ex_manuf_info(struct domain_device *dev)
539 {
540         u8 *mi_req;
541         u8 *mi_resp;
542         int res;
543
544         mi_req = alloc_smp_req(MI_REQ_SIZE);
545         if (!mi_req)
546                 return -ENOMEM;
547
548         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
549         if (!mi_resp) {
550                 kfree(mi_req);
551                 return -ENOMEM;
552         }
553
554         mi_req[1] = SMP_REPORT_MANUF_INFO;
555
556         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
557         if (res) {
558                 pr_notice("MI: ex %016llx failed:0x%x\n",
559                           SAS_ADDR(dev->sas_addr), res);
560                 goto out;
561         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
562                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
563                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
564                 goto out;
565         }
566
567         ex_assign_manuf_info(dev, mi_resp);
568 out:
569         kfree(mi_req);
570         kfree(mi_resp);
571         return res;
572 }
573
574 #define PC_REQ_SIZE  44
575 #define PC_RESP_SIZE 8
576
577 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
578                         enum phy_func phy_func,
579                         struct sas_phy_linkrates *rates)
580 {
581         u8 *pc_req;
582         u8 *pc_resp;
583         int res;
584
585         pc_req = alloc_smp_req(PC_REQ_SIZE);
586         if (!pc_req)
587                 return -ENOMEM;
588
589         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
590         if (!pc_resp) {
591                 kfree(pc_req);
592                 return -ENOMEM;
593         }
594
595         pc_req[1] = SMP_PHY_CONTROL;
596         pc_req[9] = phy_id;
597         pc_req[10]= phy_func;
598         if (rates) {
599                 pc_req[32] = rates->minimum_linkrate << 4;
600                 pc_req[33] = rates->maximum_linkrate << 4;
601         }
602
603         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
604         if (res) {
605                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
606                        SAS_ADDR(dev->sas_addr), phy_id, res);
607         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
608                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
609                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
610                 res = pc_resp[2];
611         }
612         kfree(pc_resp);
613         kfree(pc_req);
614         return res;
615 }
616
617 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
618 {
619         struct expander_device *ex = &dev->ex_dev;
620         struct ex_phy *phy = &ex->ex_phy[phy_id];
621
622         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
623         phy->linkrate = SAS_PHY_DISABLED;
624 }
625
626 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
627 {
628         struct expander_device *ex = &dev->ex_dev;
629         int i;
630
631         for (i = 0; i < ex->num_phys; i++) {
632                 struct ex_phy *phy = &ex->ex_phy[i];
633
634                 if (phy->phy_state == PHY_VACANT ||
635                     phy->phy_state == PHY_NOT_PRESENT)
636                         continue;
637
638                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
639                         sas_ex_disable_phy(dev, i);
640         }
641 }
642
643 static int sas_dev_present_in_domain(struct asd_sas_port *port,
644                                             u8 *sas_addr)
645 {
646         struct domain_device *dev;
647
648         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
649                 return 1;
650         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
651                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
652                         return 1;
653         }
654         return 0;
655 }
656
657 #define RPEL_REQ_SIZE   16
658 #define RPEL_RESP_SIZE  32
659 int sas_smp_get_phy_events(struct sas_phy *phy)
660 {
661         int res;
662         u8 *req;
663         u8 *resp;
664         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
665         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
666
667         req = alloc_smp_req(RPEL_REQ_SIZE);
668         if (!req)
669                 return -ENOMEM;
670
671         resp = alloc_smp_resp(RPEL_RESP_SIZE);
672         if (!resp) {
673                 kfree(req);
674                 return -ENOMEM;
675         }
676
677         req[1] = SMP_REPORT_PHY_ERR_LOG;
678         req[9] = phy->number;
679
680         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
681                                     resp, RPEL_RESP_SIZE);
682
683         if (res)
684                 goto out;
685
686         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
687         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
688         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
689         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
690
691  out:
692         kfree(req);
693         kfree(resp);
694         return res;
695
696 }
697
698 #ifdef CONFIG_SCSI_SAS_ATA
699
700 #define RPS_REQ_SIZE  16
701 #define RPS_RESP_SIZE 60
702
703 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
704                             struct smp_resp *rps_resp)
705 {
706         int res;
707         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
708         u8 *resp = (u8 *)rps_resp;
709
710         if (!rps_req)
711                 return -ENOMEM;
712
713         rps_req[1] = SMP_REPORT_PHY_SATA;
714         rps_req[9] = phy_id;
715
716         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
717                                     rps_resp, RPS_RESP_SIZE);
718
719         /* 0x34 is the FIS type for the D2H fis.  There's a potential
720          * standards cockup here.  sas-2 explicitly specifies the FIS
721          * should be encoded so that FIS type is in resp[24].
722          * However, some expanders endian reverse this.  Undo the
723          * reversal here */
724         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
725                 int i;
726
727                 for (i = 0; i < 5; i++) {
728                         int j = 24 + (i*4);
729                         u8 a, b;
730                         a = resp[j + 0];
731                         b = resp[j + 1];
732                         resp[j + 0] = resp[j + 3];
733                         resp[j + 1] = resp[j + 2];
734                         resp[j + 2] = b;
735                         resp[j + 3] = a;
736                 }
737         }
738
739         kfree(rps_req);
740         return res;
741 }
742 #endif
743
744 static void sas_ex_get_linkrate(struct domain_device *parent,
745                                        struct domain_device *child,
746                                        struct ex_phy *parent_phy)
747 {
748         struct expander_device *parent_ex = &parent->ex_dev;
749         struct sas_port *port;
750         int i;
751
752         child->pathways = 0;
753
754         port = parent_phy->port;
755
756         for (i = 0; i < parent_ex->num_phys; i++) {
757                 struct ex_phy *phy = &parent_ex->ex_phy[i];
758
759                 if (phy->phy_state == PHY_VACANT ||
760                     phy->phy_state == PHY_NOT_PRESENT)
761                         continue;
762
763                 if (SAS_ADDR(phy->attached_sas_addr) ==
764                     SAS_ADDR(child->sas_addr)) {
765
766                         child->min_linkrate = min(parent->min_linkrate,
767                                                   phy->linkrate);
768                         child->max_linkrate = max(parent->max_linkrate,
769                                                   phy->linkrate);
770                         child->pathways++;
771                         sas_port_add_phy(port, phy->phy);
772                 }
773         }
774         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
775         child->pathways = min(child->pathways, parent->pathways);
776 }
777
778 static struct domain_device *sas_ex_discover_end_dev(
779         struct domain_device *parent, int phy_id)
780 {
781         struct expander_device *parent_ex = &parent->ex_dev;
782         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
783         struct domain_device *child = NULL;
784         struct sas_rphy *rphy;
785         int res;
786
787         if (phy->attached_sata_host || phy->attached_sata_ps)
788                 return NULL;
789
790         child = sas_alloc_device();
791         if (!child)
792                 return NULL;
793
794         kref_get(&parent->kref);
795         child->parent = parent;
796         child->port   = parent->port;
797         child->iproto = phy->attached_iproto;
798         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
799         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
800         if (!phy->port) {
801                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802                 if (unlikely(!phy->port))
803                         goto out_err;
804                 if (unlikely(sas_port_add(phy->port) != 0)) {
805                         sas_port_free(phy->port);
806                         goto out_err;
807                 }
808         }
809         sas_ex_get_linkrate(parent, child, phy);
810         sas_device_set_phy(child, phy->port);
811
812 #ifdef CONFIG_SCSI_SAS_ATA
813         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
814                 if (child->linkrate > parent->min_linkrate) {
815                         struct sas_phy *cphy = child->phy;
816                         enum sas_linkrate min_prate = cphy->minimum_linkrate,
817                                 parent_min_lrate = parent->min_linkrate,
818                                 min_linkrate = (min_prate > parent_min_lrate) ?
819                                                parent_min_lrate : 0;
820                         struct sas_phy_linkrates rates = {
821                                 .maximum_linkrate = parent->min_linkrate,
822                                 .minimum_linkrate = min_linkrate,
823                         };
824                         int ret;
825
826                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
827                                    SAS_ADDR(child->sas_addr), phy_id);
828                         ret = sas_smp_phy_control(parent, phy_id,
829                                                   PHY_FUNC_LINK_RESET, &rates);
830                         if (ret) {
831                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
832                                        SAS_ADDR(child->sas_addr), phy_id, ret);
833                                 goto out_free;
834                         }
835                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
836                                   SAS_ADDR(child->sas_addr), phy_id);
837                         child->linkrate = child->min_linkrate;
838                 }
839                 res = sas_get_ata_info(child, phy);
840                 if (res)
841                         goto out_free;
842
843                 sas_init_dev(child);
844                 res = sas_ata_init(child);
845                 if (res)
846                         goto out_free;
847                 rphy = sas_end_device_alloc(phy->port);
848                 if (!rphy)
849                         goto out_free;
850                 rphy->identify.phy_identifier = phy_id;
851
852                 child->rphy = rphy;
853                 get_device(&rphy->dev);
854
855                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
856
857                 res = sas_discover_sata(child);
858                 if (res) {
859                         pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
860                                   SAS_ADDR(child->sas_addr),
861                                   SAS_ADDR(parent->sas_addr), phy_id, res);
862                         goto out_list_del;
863                 }
864         } else
865 #endif
866           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
867                 child->dev_type = SAS_END_DEVICE;
868                 rphy = sas_end_device_alloc(phy->port);
869                 /* FIXME: error handling */
870                 if (unlikely(!rphy))
871                         goto out_free;
872                 child->tproto = phy->attached_tproto;
873                 sas_init_dev(child);
874
875                 child->rphy = rphy;
876                 get_device(&rphy->dev);
877                 rphy->identify.phy_identifier = phy_id;
878                 sas_fill_in_rphy(child, rphy);
879
880                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
881
882                 res = sas_discover_end_dev(child);
883                 if (res) {
884                         pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
885                                   SAS_ADDR(child->sas_addr),
886                                   SAS_ADDR(parent->sas_addr), phy_id, res);
887                         goto out_list_del;
888                 }
889         } else {
890                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
891                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
892                           phy_id);
893                 goto out_free;
894         }
895
896         list_add_tail(&child->siblings, &parent_ex->children);
897         return child;
898
899  out_list_del:
900         sas_rphy_free(child->rphy);
901         list_del(&child->disco_list_node);
902         spin_lock_irq(&parent->port->dev_list_lock);
903         list_del(&child->dev_list_node);
904         spin_unlock_irq(&parent->port->dev_list_lock);
905  out_free:
906         sas_port_delete(phy->port);
907  out_err:
908         phy->port = NULL;
909         sas_put_device(child);
910         return NULL;
911 }
912
913 /* See if this phy is part of a wide port */
914 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
915 {
916         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
917         int i;
918
919         for (i = 0; i < parent->ex_dev.num_phys; i++) {
920                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
921
922                 if (ephy == phy)
923                         continue;
924
925                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
926                             SAS_ADDR_SIZE) && ephy->port) {
927                         sas_port_add_phy(ephy->port, phy->phy);
928                         phy->port = ephy->port;
929                         phy->phy_state = PHY_DEVICE_DISCOVERED;
930                         return true;
931                 }
932         }
933
934         return false;
935 }
936
937 static struct domain_device *sas_ex_discover_expander(
938         struct domain_device *parent, int phy_id)
939 {
940         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
941         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
942         struct domain_device *child = NULL;
943         struct sas_rphy *rphy;
944         struct sas_expander_device *edev;
945         struct asd_sas_port *port;
946         int res;
947
948         if (phy->routing_attr == DIRECT_ROUTING) {
949                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
950                         SAS_ADDR(parent->sas_addr), phy_id,
951                         SAS_ADDR(phy->attached_sas_addr),
952                         phy->attached_phy_id);
953                 return NULL;
954         }
955         child = sas_alloc_device();
956         if (!child)
957                 return NULL;
958
959         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
960         /* FIXME: better error handling */
961         BUG_ON(sas_port_add(phy->port) != 0);
962
963
964         switch (phy->attached_dev_type) {
965         case SAS_EDGE_EXPANDER_DEVICE:
966                 rphy = sas_expander_alloc(phy->port,
967                                           SAS_EDGE_EXPANDER_DEVICE);
968                 break;
969         case SAS_FANOUT_EXPANDER_DEVICE:
970                 rphy = sas_expander_alloc(phy->port,
971                                           SAS_FANOUT_EXPANDER_DEVICE);
972                 break;
973         default:
974                 rphy = NULL;    /* shut gcc up */
975                 BUG();
976         }
977         port = parent->port;
978         child->rphy = rphy;
979         get_device(&rphy->dev);
980         edev = rphy_to_expander_device(rphy);
981         child->dev_type = phy->attached_dev_type;
982         kref_get(&parent->kref);
983         child->parent = parent;
984         child->port = port;
985         child->iproto = phy->attached_iproto;
986         child->tproto = phy->attached_tproto;
987         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
988         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
989         sas_ex_get_linkrate(parent, child, phy);
990         edev->level = parent_ex->level + 1;
991         parent->port->disc.max_level = max(parent->port->disc.max_level,
992                                            edev->level);
993         sas_init_dev(child);
994         sas_fill_in_rphy(child, rphy);
995         sas_rphy_add(rphy);
996
997         spin_lock_irq(&parent->port->dev_list_lock);
998         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
999         spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001         res = sas_discover_expander(child);
1002         if (res) {
1003                 sas_rphy_delete(rphy);
1004                 spin_lock_irq(&parent->port->dev_list_lock);
1005                 list_del(&child->dev_list_node);
1006                 spin_unlock_irq(&parent->port->dev_list_lock);
1007                 sas_put_device(child);
1008                 return NULL;
1009         }
1010         list_add_tail(&child->siblings, &parent->ex_dev.children);
1011         return child;
1012 }
1013
1014 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1015 {
1016         struct expander_device *ex = &dev->ex_dev;
1017         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1018         struct domain_device *child = NULL;
1019         int res = 0;
1020
1021         /* Phy state */
1022         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1023                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1024                         res = sas_ex_phy_discover(dev, phy_id);
1025                 if (res)
1026                         return res;
1027         }
1028
1029         /* Parent and domain coherency */
1030         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1031                              SAS_ADDR(dev->port->sas_addr))) {
1032                 sas_add_parent_port(dev, phy_id);
1033                 return 0;
1034         }
1035         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1036                             SAS_ADDR(dev->parent->sas_addr))) {
1037                 sas_add_parent_port(dev, phy_id);
1038                 if (ex_phy->routing_attr == TABLE_ROUTING)
1039                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1040                 return 0;
1041         }
1042
1043         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1044                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1045
1046         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1047                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1048                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1049                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050                 }
1051                 return 0;
1052         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1053                 return 0;
1054
1055         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1056             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1057             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1058             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1059                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1060                         ex_phy->attached_dev_type,
1061                         SAS_ADDR(dev->sas_addr),
1062                         phy_id);
1063                 return 0;
1064         }
1065
1066         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1067         if (res) {
1068                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1069                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1070                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1071                 return res;
1072         }
1073
1074         if (sas_ex_join_wide_port(dev, phy_id)) {
1075                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1076                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1077                 return res;
1078         }
1079
1080         switch (ex_phy->attached_dev_type) {
1081         case SAS_END_DEVICE:
1082         case SAS_SATA_PENDING:
1083                 child = sas_ex_discover_end_dev(dev, phy_id);
1084                 break;
1085         case SAS_FANOUT_EXPANDER_DEVICE:
1086                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1087                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1088                                  SAS_ADDR(ex_phy->attached_sas_addr),
1089                                  ex_phy->attached_phy_id,
1090                                  SAS_ADDR(dev->sas_addr),
1091                                  phy_id);
1092                         sas_ex_disable_phy(dev, phy_id);
1093                         return res;
1094                 } else
1095                         memcpy(dev->port->disc.fanout_sas_addr,
1096                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1097                 /* fallthrough */
1098         case SAS_EDGE_EXPANDER_DEVICE:
1099                 child = sas_ex_discover_expander(dev, phy_id);
1100                 break;
1101         default:
1102                 break;
1103         }
1104
1105         if (!child)
1106                 pr_notice("ex %016llx phy%02d failed to discover\n",
1107                           SAS_ADDR(dev->sas_addr), phy_id);
1108         return res;
1109 }
1110
1111 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1112 {
1113         struct expander_device *ex = &dev->ex_dev;
1114         int i;
1115
1116         for (i = 0; i < ex->num_phys; i++) {
1117                 struct ex_phy *phy = &ex->ex_phy[i];
1118
1119                 if (phy->phy_state == PHY_VACANT ||
1120                     phy->phy_state == PHY_NOT_PRESENT)
1121                         continue;
1122
1123                 if (dev_is_expander(phy->attached_dev_type) &&
1124                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1125
1126                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1127
1128                         return 1;
1129                 }
1130         }
1131         return 0;
1132 }
1133
1134 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1135 {
1136         struct expander_device *ex = &dev->ex_dev;
1137         struct domain_device *child;
1138         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1139
1140         list_for_each_entry(child, &ex->children, siblings) {
1141                 if (!dev_is_expander(child->dev_type))
1142                         continue;
1143                 if (sub_addr[0] == 0) {
1144                         sas_find_sub_addr(child, sub_addr);
1145                         continue;
1146                 } else {
1147                         u8 s2[SAS_ADDR_SIZE];
1148
1149                         if (sas_find_sub_addr(child, s2) &&
1150                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1151
1152                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1153                                           SAS_ADDR(dev->sas_addr),
1154                                           SAS_ADDR(child->sas_addr),
1155                                           SAS_ADDR(s2),
1156                                           SAS_ADDR(sub_addr));
1157
1158                                 sas_ex_disable_port(child, s2);
1159                         }
1160                 }
1161         }
1162         return 0;
1163 }
1164 /**
1165  * sas_ex_discover_devices - discover devices attached to this expander
1166  * @dev: pointer to the expander domain device
1167  * @single: if you want to do a single phy, else set to -1;
1168  *
1169  * Configure this expander for use with its devices and register the
1170  * devices of this expander.
1171  */
1172 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1173 {
1174         struct expander_device *ex = &dev->ex_dev;
1175         int i = 0, end = ex->num_phys;
1176         int res = 0;
1177
1178         if (0 <= single && single < end) {
1179                 i = single;
1180                 end = i+1;
1181         }
1182
1183         for ( ; i < end; i++) {
1184                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1185
1186                 if (ex_phy->phy_state == PHY_VACANT ||
1187                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1188                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1189                         continue;
1190
1191                 switch (ex_phy->linkrate) {
1192                 case SAS_PHY_DISABLED:
1193                 case SAS_PHY_RESET_PROBLEM:
1194                 case SAS_SATA_PORT_SELECTOR:
1195                         continue;
1196                 default:
1197                         res = sas_ex_discover_dev(dev, i);
1198                         if (res)
1199                                 break;
1200                         continue;
1201                 }
1202         }
1203
1204         if (!res)
1205                 sas_check_level_subtractive_boundary(dev);
1206
1207         return res;
1208 }
1209
1210 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1211 {
1212         struct expander_device *ex = &dev->ex_dev;
1213         int i;
1214         u8  *sub_sas_addr = NULL;
1215
1216         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1217                 return 0;
1218
1219         for (i = 0; i < ex->num_phys; i++) {
1220                 struct ex_phy *phy = &ex->ex_phy[i];
1221
1222                 if (phy->phy_state == PHY_VACANT ||
1223                     phy->phy_state == PHY_NOT_PRESENT)
1224                         continue;
1225
1226                 if (dev_is_expander(phy->attached_dev_type) &&
1227                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1228
1229                         if (!sub_sas_addr)
1230                                 sub_sas_addr = &phy->attached_sas_addr[0];
1231                         else if (SAS_ADDR(sub_sas_addr) !=
1232                                  SAS_ADDR(phy->attached_sas_addr)) {
1233
1234                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1235                                           SAS_ADDR(dev->sas_addr), i,
1236                                           SAS_ADDR(phy->attached_sas_addr),
1237                                           SAS_ADDR(sub_sas_addr));
1238                                 sas_ex_disable_phy(dev, i);
1239                         }
1240                 }
1241         }
1242         return 0;
1243 }
1244
1245 static void sas_print_parent_topology_bug(struct domain_device *child,
1246                                                  struct ex_phy *parent_phy,
1247                                                  struct ex_phy *child_phy)
1248 {
1249         static const char *ex_type[] = {
1250                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1251                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1252         };
1253         struct domain_device *parent = child->parent;
1254
1255         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1256                   ex_type[parent->dev_type],
1257                   SAS_ADDR(parent->sas_addr),
1258                   parent_phy->phy_id,
1259
1260                   ex_type[child->dev_type],
1261                   SAS_ADDR(child->sas_addr),
1262                   child_phy->phy_id,
1263
1264                   sas_route_char(parent, parent_phy),
1265                   sas_route_char(child, child_phy));
1266 }
1267
1268 static int sas_check_eeds(struct domain_device *child,
1269                                  struct ex_phy *parent_phy,
1270                                  struct ex_phy *child_phy)
1271 {
1272         int res = 0;
1273         struct domain_device *parent = child->parent;
1274
1275         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276                 res = -ENODEV;
1277                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1278                         SAS_ADDR(parent->sas_addr),
1279                         parent_phy->phy_id,
1280                         SAS_ADDR(child->sas_addr),
1281                         child_phy->phy_id,
1282                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1283         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1284                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1285                        SAS_ADDR_SIZE);
1286                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1287                        SAS_ADDR_SIZE);
1288         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1289                     SAS_ADDR(parent->sas_addr)) ||
1290                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1291                     SAS_ADDR(child->sas_addr)))
1292                    &&
1293                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1294                      SAS_ADDR(parent->sas_addr)) ||
1295                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1296                      SAS_ADDR(child->sas_addr))))
1297                 ;
1298         else {
1299                 res = -ENODEV;
1300                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1301                         SAS_ADDR(parent->sas_addr),
1302                         parent_phy->phy_id,
1303                         SAS_ADDR(child->sas_addr),
1304                         child_phy->phy_id);
1305         }
1306
1307         return res;
1308 }
1309
1310 /* Here we spill over 80 columns.  It is intentional.
1311  */
1312 static int sas_check_parent_topology(struct domain_device *child)
1313 {
1314         struct expander_device *child_ex = &child->ex_dev;
1315         struct expander_device *parent_ex;
1316         int i;
1317         int res = 0;
1318
1319         if (!child->parent)
1320                 return 0;
1321
1322         if (!dev_is_expander(child->parent->dev_type))
1323                 return 0;
1324
1325         parent_ex = &child->parent->ex_dev;
1326
1327         for (i = 0; i < parent_ex->num_phys; i++) {
1328                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1329                 struct ex_phy *child_phy;
1330
1331                 if (parent_phy->phy_state == PHY_VACANT ||
1332                     parent_phy->phy_state == PHY_NOT_PRESENT)
1333                         continue;
1334
1335                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1336                         continue;
1337
1338                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1339
1340                 switch (child->parent->dev_type) {
1341                 case SAS_EDGE_EXPANDER_DEVICE:
1342                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1343                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1344                                     child_phy->routing_attr != TABLE_ROUTING) {
1345                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346                                         res = -ENODEV;
1347                                 }
1348                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1349                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1350                                         res = sas_check_eeds(child, parent_phy, child_phy);
1351                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1352                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353                                         res = -ENODEV;
1354                                 }
1355                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1356                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1357                                     (child_phy->routing_attr == TABLE_ROUTING &&
1358                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1359                                         /* All good */;
1360                                 } else {
1361                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362                                         res = -ENODEV;
1363                                 }
1364                         }
1365                         break;
1366                 case SAS_FANOUT_EXPANDER_DEVICE:
1367                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1368                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1369                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1370                                 res = -ENODEV;
1371                         }
1372                         break;
1373                 default:
1374                         break;
1375                 }
1376         }
1377
1378         return res;
1379 }
1380
1381 #define RRI_REQ_SIZE  16
1382 #define RRI_RESP_SIZE 44
1383
1384 static int sas_configure_present(struct domain_device *dev, int phy_id,
1385                                  u8 *sas_addr, int *index, int *present)
1386 {
1387         int i, res = 0;
1388         struct expander_device *ex = &dev->ex_dev;
1389         struct ex_phy *phy = &ex->ex_phy[phy_id];
1390         u8 *rri_req;
1391         u8 *rri_resp;
1392
1393         *present = 0;
1394         *index = 0;
1395
1396         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1397         if (!rri_req)
1398                 return -ENOMEM;
1399
1400         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1401         if (!rri_resp) {
1402                 kfree(rri_req);
1403                 return -ENOMEM;
1404         }
1405
1406         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1407         rri_req[9] = phy_id;
1408
1409         for (i = 0; i < ex->max_route_indexes ; i++) {
1410                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1411                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1412                                        RRI_RESP_SIZE);
1413                 if (res)
1414                         goto out;
1415                 res = rri_resp[2];
1416                 if (res == SMP_RESP_NO_INDEX) {
1417                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1418                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1419                         goto out;
1420                 } else if (res != SMP_RESP_FUNC_ACC) {
1421                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1422                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1423                                   i, res);
1424                         goto out;
1425                 }
1426                 if (SAS_ADDR(sas_addr) != 0) {
1427                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1428                                 *index = i;
1429                                 if ((rri_resp[12] & 0x80) == 0x80)
1430                                         *present = 0;
1431                                 else
1432                                         *present = 1;
1433                                 goto out;
1434                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1435                                 *index = i;
1436                                 *present = 0;
1437                                 goto out;
1438                         }
1439                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1440                            phy->last_da_index < i) {
1441                         phy->last_da_index = i;
1442                         *index = i;
1443                         *present = 0;
1444                         goto out;
1445                 }
1446         }
1447         res = -1;
1448 out:
1449         kfree(rri_req);
1450         kfree(rri_resp);
1451         return res;
1452 }
1453
1454 #define CRI_REQ_SIZE  44
1455 #define CRI_RESP_SIZE  8
1456
1457 static int sas_configure_set(struct domain_device *dev, int phy_id,
1458                              u8 *sas_addr, int index, int include)
1459 {
1460         int res;
1461         u8 *cri_req;
1462         u8 *cri_resp;
1463
1464         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1465         if (!cri_req)
1466                 return -ENOMEM;
1467
1468         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1469         if (!cri_resp) {
1470                 kfree(cri_req);
1471                 return -ENOMEM;
1472         }
1473
1474         cri_req[1] = SMP_CONF_ROUTE_INFO;
1475         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1476         cri_req[9] = phy_id;
1477         if (SAS_ADDR(sas_addr) == 0 || !include)
1478                 cri_req[12] |= 0x80;
1479         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1480
1481         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1482                                CRI_RESP_SIZE);
1483         if (res)
1484                 goto out;
1485         res = cri_resp[2];
1486         if (res == SMP_RESP_NO_INDEX) {
1487                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1488                         SAS_ADDR(dev->sas_addr), phy_id, index);
1489         }
1490 out:
1491         kfree(cri_req);
1492         kfree(cri_resp);
1493         return res;
1494 }
1495
1496 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1497                                     u8 *sas_addr, int include)
1498 {
1499         int index;
1500         int present;
1501         int res;
1502
1503         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1504         if (res)
1505                 return res;
1506         if (include ^ present)
1507                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1508
1509         return res;
1510 }
1511
1512 /**
1513  * sas_configure_parent - configure routing table of parent
1514  * @parent: parent expander
1515  * @child: child expander
1516  * @sas_addr: SAS port identifier of device directly attached to child
1517  * @include: whether or not to include @child in the expander routing table
1518  */
1519 static int sas_configure_parent(struct domain_device *parent,
1520                                 struct domain_device *child,
1521                                 u8 *sas_addr, int include)
1522 {
1523         struct expander_device *ex_parent = &parent->ex_dev;
1524         int res = 0;
1525         int i;
1526
1527         if (parent->parent) {
1528                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1529                                            include);
1530                 if (res)
1531                         return res;
1532         }
1533
1534         if (ex_parent->conf_route_table == 0) {
1535                 pr_debug("ex %016llx has self-configuring routing table\n",
1536                          SAS_ADDR(parent->sas_addr));
1537                 return 0;
1538         }
1539
1540         for (i = 0; i < ex_parent->num_phys; i++) {
1541                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1542
1543                 if ((phy->routing_attr == TABLE_ROUTING) &&
1544                     (SAS_ADDR(phy->attached_sas_addr) ==
1545                      SAS_ADDR(child->sas_addr))) {
1546                         res = sas_configure_phy(parent, i, sas_addr, include);
1547                         if (res)
1548                                 return res;
1549                 }
1550         }
1551
1552         return res;
1553 }
1554
1555 /**
1556  * sas_configure_routing - configure routing
1557  * @dev: expander device
1558  * @sas_addr: port identifier of device directly attached to the expander device
1559  */
1560 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1561 {
1562         if (dev->parent)
1563                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1564         return 0;
1565 }
1566
1567 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1568 {
1569         if (dev->parent)
1570                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1571         return 0;
1572 }
1573
1574 /**
1575  * sas_discover_expander - expander discovery
1576  * @dev: pointer to expander domain device
1577  *
1578  * See comment in sas_discover_sata().
1579  */
1580 static int sas_discover_expander(struct domain_device *dev)
1581 {
1582         int res;
1583
1584         res = sas_notify_lldd_dev_found(dev);
1585         if (res)
1586                 return res;
1587
1588         res = sas_ex_general(dev);
1589         if (res)
1590                 goto out_err;
1591         res = sas_ex_manuf_info(dev);
1592         if (res)
1593                 goto out_err;
1594
1595         res = sas_expander_discover(dev);
1596         if (res) {
1597                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1598                         SAS_ADDR(dev->sas_addr), res);
1599                 goto out_err;
1600         }
1601
1602         sas_check_ex_subtractive_boundary(dev);
1603         res = sas_check_parent_topology(dev);
1604         if (res)
1605                 goto out_err;
1606         return 0;
1607 out_err:
1608         sas_notify_lldd_dev_gone(dev);
1609         return res;
1610 }
1611
1612 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1613 {
1614         int res = 0;
1615         struct domain_device *dev;
1616
1617         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1618                 if (dev_is_expander(dev->dev_type)) {
1619                         struct sas_expander_device *ex =
1620                                 rphy_to_expander_device(dev->rphy);
1621
1622                         if (level == ex->level)
1623                                 res = sas_ex_discover_devices(dev, -1);
1624                         else if (level > 0)
1625                                 res = sas_ex_discover_devices(port->port_dev, -1);
1626
1627                 }
1628         }
1629
1630         return res;
1631 }
1632
1633 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1634 {
1635         int res;
1636         int level;
1637
1638         do {
1639                 level = port->disc.max_level;
1640                 res = sas_ex_level_discovery(port, level);
1641                 mb();
1642         } while (level < port->disc.max_level);
1643
1644         return res;
1645 }
1646
1647 int sas_discover_root_expander(struct domain_device *dev)
1648 {
1649         int res;
1650         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1651
1652         res = sas_rphy_add(dev->rphy);
1653         if (res)
1654                 goto out_err;
1655
1656         ex->level = dev->port->disc.max_level; /* 0 */
1657         res = sas_discover_expander(dev);
1658         if (res)
1659                 goto out_err2;
1660
1661         sas_ex_bfs_disc(dev->port);
1662
1663         return res;
1664
1665 out_err2:
1666         sas_rphy_remove(dev->rphy);
1667 out_err:
1668         return res;
1669 }
1670
1671 /* ---------- Domain revalidation ---------- */
1672
1673 static int sas_get_phy_discover(struct domain_device *dev,
1674                                 int phy_id, struct smp_resp *disc_resp)
1675 {
1676         int res;
1677         u8 *disc_req;
1678
1679         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1680         if (!disc_req)
1681                 return -ENOMEM;
1682
1683         disc_req[1] = SMP_DISCOVER;
1684         disc_req[9] = phy_id;
1685
1686         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1687                                disc_resp, DISCOVER_RESP_SIZE);
1688         if (res)
1689                 goto out;
1690         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1691                 res = disc_resp->result;
1692                 goto out;
1693         }
1694 out:
1695         kfree(disc_req);
1696         return res;
1697 }
1698
1699 static int sas_get_phy_change_count(struct domain_device *dev,
1700                                     int phy_id, int *pcc)
1701 {
1702         int res;
1703         struct smp_resp *disc_resp;
1704
1705         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1706         if (!disc_resp)
1707                 return -ENOMEM;
1708
1709         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1710         if (!res)
1711                 *pcc = disc_resp->disc.change_count;
1712
1713         kfree(disc_resp);
1714         return res;
1715 }
1716
1717 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1718                                     u8 *sas_addr, enum sas_device_type *type)
1719 {
1720         int res;
1721         struct smp_resp *disc_resp;
1722         struct discover_resp *dr;
1723
1724         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725         if (!disc_resp)
1726                 return -ENOMEM;
1727         dr = &disc_resp->disc;
1728
1729         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1730         if (res == 0) {
1731                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1732                        SAS_ADDR_SIZE);
1733                 *type = to_dev_type(dr);
1734                 if (*type == 0)
1735                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1736         }
1737         kfree(disc_resp);
1738         return res;
1739 }
1740
1741 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1742                               int from_phy, bool update)
1743 {
1744         struct expander_device *ex = &dev->ex_dev;
1745         int res = 0;
1746         int i;
1747
1748         for (i = from_phy; i < ex->num_phys; i++) {
1749                 int phy_change_count = 0;
1750
1751                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1752                 switch (res) {
1753                 case SMP_RESP_PHY_VACANT:
1754                 case SMP_RESP_NO_PHY:
1755                         continue;
1756                 case SMP_RESP_FUNC_ACC:
1757                         break;
1758                 default:
1759                         return res;
1760                 }
1761
1762                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1763                         if (update)
1764                                 ex->ex_phy[i].phy_change_count =
1765                                         phy_change_count;
1766                         *phy_id = i;
1767                         return 0;
1768                 }
1769         }
1770         return 0;
1771 }
1772
1773 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1774 {
1775         int res;
1776         u8  *rg_req;
1777         struct smp_resp  *rg_resp;
1778
1779         rg_req = alloc_smp_req(RG_REQ_SIZE);
1780         if (!rg_req)
1781                 return -ENOMEM;
1782
1783         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1784         if (!rg_resp) {
1785                 kfree(rg_req);
1786                 return -ENOMEM;
1787         }
1788
1789         rg_req[1] = SMP_REPORT_GENERAL;
1790
1791         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1792                                RG_RESP_SIZE);
1793         if (res)
1794                 goto out;
1795         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1796                 res = rg_resp->result;
1797                 goto out;
1798         }
1799
1800         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1801 out:
1802         kfree(rg_resp);
1803         kfree(rg_req);
1804         return res;
1805 }
1806 /**
1807  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1808  * @dev:domain device to be detect.
1809  * @src_dev: the device which originated BROADCAST(CHANGE).
1810  *
1811  * Add self-configuration expander support. Suppose two expander cascading,
1812  * when the first level expander is self-configuring, hotplug the disks in
1813  * second level expander, BROADCAST(CHANGE) will not only be originated
1814  * in the second level expander, but also be originated in the first level
1815  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1816  * expander changed count in two level expanders will all increment at least
1817  * once, but the phy which chang count has changed is the source device which
1818  * we concerned.
1819  */
1820
1821 static int sas_find_bcast_dev(struct domain_device *dev,
1822                               struct domain_device **src_dev)
1823 {
1824         struct expander_device *ex = &dev->ex_dev;
1825         int ex_change_count = -1;
1826         int phy_id = -1;
1827         int res;
1828         struct domain_device *ch;
1829
1830         res = sas_get_ex_change_count(dev, &ex_change_count);
1831         if (res)
1832                 goto out;
1833         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1834                 /* Just detect if this expander phys phy change count changed,
1835                 * in order to determine if this expander originate BROADCAST,
1836                 * and do not update phy change count field in our structure.
1837                 */
1838                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1839                 if (phy_id != -1) {
1840                         *src_dev = dev;
1841                         ex->ex_change_count = ex_change_count;
1842                         pr_info("ex %016llx phy%02d change count has changed\n",
1843                                 SAS_ADDR(dev->sas_addr), phy_id);
1844                         return res;
1845                 } else
1846                         pr_info("ex %016llx phys DID NOT change\n",
1847                                 SAS_ADDR(dev->sas_addr));
1848         }
1849         list_for_each_entry(ch, &ex->children, siblings) {
1850                 if (dev_is_expander(ch->dev_type)) {
1851                         res = sas_find_bcast_dev(ch, src_dev);
1852                         if (*src_dev)
1853                                 return res;
1854                 }
1855         }
1856 out:
1857         return res;
1858 }
1859
1860 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1861 {
1862         struct expander_device *ex = &dev->ex_dev;
1863         struct domain_device *child, *n;
1864
1865         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1866                 set_bit(SAS_DEV_GONE, &child->state);
1867                 if (dev_is_expander(child->dev_type))
1868                         sas_unregister_ex_tree(port, child);
1869                 else
1870                         sas_unregister_dev(port, child);
1871         }
1872         sas_unregister_dev(port, dev);
1873 }
1874
1875 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1876                                          int phy_id, bool last)
1877 {
1878         struct expander_device *ex_dev = &parent->ex_dev;
1879         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1880         struct domain_device *child, *n, *found = NULL;
1881         if (last) {
1882                 list_for_each_entry_safe(child, n,
1883                         &ex_dev->children, siblings) {
1884                         if (SAS_ADDR(child->sas_addr) ==
1885                             SAS_ADDR(phy->attached_sas_addr)) {
1886                                 set_bit(SAS_DEV_GONE, &child->state);
1887                                 if (dev_is_expander(child->dev_type))
1888                                         sas_unregister_ex_tree(parent->port, child);
1889                                 else
1890                                         sas_unregister_dev(parent->port, child);
1891                                 found = child;
1892                                 break;
1893                         }
1894                 }
1895                 sas_disable_routing(parent, phy->attached_sas_addr);
1896         }
1897         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1898         if (phy->port) {
1899                 sas_port_delete_phy(phy->port, phy->phy);
1900                 sas_device_set_phy(found, phy->port);
1901                 if (phy->port->num_phys == 0)
1902                         list_add_tail(&phy->port->del_list,
1903                                 &parent->port->sas_port_del_list);
1904                 phy->port = NULL;
1905         }
1906 }
1907
1908 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1909                                           const int level)
1910 {
1911         struct expander_device *ex_root = &root->ex_dev;
1912         struct domain_device *child;
1913         int res = 0;
1914
1915         list_for_each_entry(child, &ex_root->children, siblings) {
1916                 if (dev_is_expander(child->dev_type)) {
1917                         struct sas_expander_device *ex =
1918                                 rphy_to_expander_device(child->rphy);
1919
1920                         if (level > ex->level)
1921                                 res = sas_discover_bfs_by_root_level(child,
1922                                                                      level);
1923                         else if (level == ex->level)
1924                                 res = sas_ex_discover_devices(child, -1);
1925                 }
1926         }
1927         return res;
1928 }
1929
1930 static int sas_discover_bfs_by_root(struct domain_device *dev)
1931 {
1932         int res;
1933         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1934         int level = ex->level+1;
1935
1936         res = sas_ex_discover_devices(dev, -1);
1937         if (res)
1938                 goto out;
1939         do {
1940                 res = sas_discover_bfs_by_root_level(dev, level);
1941                 mb();
1942                 level += 1;
1943         } while (level <= dev->port->disc.max_level);
1944 out:
1945         return res;
1946 }
1947
1948 static int sas_discover_new(struct domain_device *dev, int phy_id)
1949 {
1950         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1951         struct domain_device *child;
1952         int res;
1953
1954         pr_debug("ex %016llx phy%02d new device attached\n",
1955                  SAS_ADDR(dev->sas_addr), phy_id);
1956         res = sas_ex_phy_discover(dev, phy_id);
1957         if (res)
1958                 return res;
1959
1960         if (sas_ex_join_wide_port(dev, phy_id))
1961                 return 0;
1962
1963         res = sas_ex_discover_devices(dev, phy_id);
1964         if (res)
1965                 return res;
1966         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1967                 if (SAS_ADDR(child->sas_addr) ==
1968                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1969                         if (dev_is_expander(child->dev_type))
1970                                 res = sas_discover_bfs_by_root(child);
1971                         break;
1972                 }
1973         }
1974         return res;
1975 }
1976
1977 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1978 {
1979         if (old == new)
1980                 return true;
1981
1982         /* treat device directed resets as flutter, if we went
1983          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1984          */
1985         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1986             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1987                 return true;
1988
1989         return false;
1990 }
1991
1992 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1993                               bool last, int sibling)
1994 {
1995         struct expander_device *ex = &dev->ex_dev;
1996         struct ex_phy *phy = &ex->ex_phy[phy_id];
1997         enum sas_device_type type = SAS_PHY_UNUSED;
1998         u8 sas_addr[SAS_ADDR_SIZE];
1999         char msg[80] = "";
2000         int res;
2001
2002         if (!last)
2003                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2004
2005         pr_debug("ex %016llx rediscovering phy%02d%s\n",
2006                  SAS_ADDR(dev->sas_addr), phy_id, msg);
2007
2008         memset(sas_addr, 0, SAS_ADDR_SIZE);
2009         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2010         switch (res) {
2011         case SMP_RESP_NO_PHY:
2012                 phy->phy_state = PHY_NOT_PRESENT;
2013                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2014                 return res;
2015         case SMP_RESP_PHY_VACANT:
2016                 phy->phy_state = PHY_VACANT;
2017                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2018                 return res;
2019         case SMP_RESP_FUNC_ACC:
2020                 break;
2021         case -ECOMM:
2022                 break;
2023         default:
2024                 return res;
2025         }
2026
2027         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2028                 phy->phy_state = PHY_EMPTY;
2029                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2030                 /*
2031                  * Even though the PHY is empty, for convenience we discover
2032                  * the PHY to update the PHY info, like negotiated linkrate.
2033                  */
2034                 sas_ex_phy_discover(dev, phy_id);
2035                 return res;
2036         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2037                    dev_type_flutter(type, phy->attached_dev_type)) {
2038                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2039                 char *action = "";
2040
2041                 sas_ex_phy_discover(dev, phy_id);
2042
2043                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2044                         action = ", needs recovery";
2045                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2046                          SAS_ADDR(dev->sas_addr), phy_id, action);
2047                 return res;
2048         }
2049
2050         /* we always have to delete the old device when we went here */
2051         pr_info("ex %016llx phy%02d replace %016llx\n",
2052                 SAS_ADDR(dev->sas_addr), phy_id,
2053                 SAS_ADDR(phy->attached_sas_addr));
2054         sas_unregister_devs_sas_addr(dev, phy_id, last);
2055
2056         return sas_discover_new(dev, phy_id);
2057 }
2058
2059 /**
2060  * sas_rediscover - revalidate the domain.
2061  * @dev:domain device to be detect.
2062  * @phy_id: the phy id will be detected.
2063  *
2064  * NOTE: this process _must_ quit (return) as soon as any connection
2065  * errors are encountered.  Connection recovery is done elsewhere.
2066  * Discover process only interrogates devices in order to discover the
2067  * domain.For plugging out, we un-register the device only when it is
2068  * the last phy in the port, for other phys in this port, we just delete it
2069  * from the port.For inserting, we do discovery when it is the
2070  * first phy,for other phys in this port, we add it to the port to
2071  * forming the wide-port.
2072  */
2073 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2074 {
2075         struct expander_device *ex = &dev->ex_dev;
2076         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2077         int res = 0;
2078         int i;
2079         bool last = true;       /* is this the last phy of the port */
2080
2081         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2082                  SAS_ADDR(dev->sas_addr), phy_id);
2083
2084         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2085                 for (i = 0; i < ex->num_phys; i++) {
2086                         struct ex_phy *phy = &ex->ex_phy[i];
2087
2088                         if (i == phy_id)
2089                                 continue;
2090                         if (SAS_ADDR(phy->attached_sas_addr) ==
2091                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2092                                 last = false;
2093                                 break;
2094                         }
2095                 }
2096                 res = sas_rediscover_dev(dev, phy_id, last, i);
2097         } else
2098                 res = sas_discover_new(dev, phy_id);
2099         return res;
2100 }
2101
2102 /**
2103  * sas_ex_revalidate_domain - revalidate the domain
2104  * @port_dev: port domain device.
2105  *
2106  * NOTE: this process _must_ quit (return) as soon as any connection
2107  * errors are encountered.  Connection recovery is done elsewhere.
2108  * Discover process only interrogates devices in order to discover the
2109  * domain.
2110  */
2111 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2112 {
2113         int res;
2114         struct domain_device *dev = NULL;
2115
2116         res = sas_find_bcast_dev(port_dev, &dev);
2117         if (res == 0 && dev) {
2118                 struct expander_device *ex = &dev->ex_dev;
2119                 int i = 0, phy_id;
2120
2121                 do {
2122                         phy_id = -1;
2123                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2124                         if (phy_id == -1)
2125                                 break;
2126                         res = sas_rediscover(dev, phy_id);
2127                         i = phy_id + 1;
2128                 } while (i < ex->num_phys);
2129         }
2130         return res;
2131 }
2132
2133 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2134                 struct sas_rphy *rphy)
2135 {
2136         struct domain_device *dev;
2137         unsigned int rcvlen = 0;
2138         int ret = -EINVAL;
2139
2140         /* no rphy means no smp target support (ie aic94xx host) */
2141         if (!rphy)
2142                 return sas_smp_host_handler(job, shost);
2143
2144         switch (rphy->identify.device_type) {
2145         case SAS_EDGE_EXPANDER_DEVICE:
2146         case SAS_FANOUT_EXPANDER_DEVICE:
2147                 break;
2148         default:
2149                 pr_err("%s: can we send a smp request to a device?\n",
2150                        __func__);
2151                 goto out;
2152         }
2153
2154         dev = sas_find_dev_by_rphy(rphy);
2155         if (!dev) {
2156                 pr_err("%s: fail to find a domain_device?\n", __func__);
2157                 goto out;
2158         }
2159
2160         /* do we need to support multiple segments? */
2161         if (job->request_payload.sg_cnt > 1 ||
2162             job->reply_payload.sg_cnt > 1) {
2163                 pr_info("%s: multiple segments req %u, rsp %u\n",
2164                         __func__, job->request_payload.payload_len,
2165                         job->reply_payload.payload_len);
2166                 goto out;
2167         }
2168
2169         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2170                         job->reply_payload.sg_list);
2171         if (ret >= 0) {
2172                 /* bsg_job_done() requires the length received  */
2173                 rcvlen = job->reply_payload.payload_len - ret;
2174                 ret = 0;
2175         }
2176
2177 out:
2178         bsg_job_done(job, ret, rcvlen);
2179 }