scsi: scsi_transport_srp: Fix a couple of kernel-doc warnings
[linux-block.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
34 static int smp_execute_task_sg(struct domain_device *dev,
35                 struct scatterlist *req, struct scatterlist *resp)
36 {
37         int res, retry;
38         struct sas_task *task = NULL;
39         struct sas_internal *i =
40                 to_sas_internal(dev->port->ha->shost->transportt);
41         struct sas_ha_struct *ha = dev->port->ha;
42
43         pm_runtime_get_sync(ha->dev);
44         mutex_lock(&dev->ex_dev.cmd_mutex);
45         for (retry = 0; retry < 3; retry++) {
46                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47                         res = -ECOMM;
48                         break;
49                 }
50
51                 task = sas_alloc_slow_task(GFP_KERNEL);
52                 if (!task) {
53                         res = -ENOMEM;
54                         break;
55                 }
56                 task->dev = dev;
57                 task->task_proto = dev->tproto;
58                 task->smp_task.smp_req = *req;
59                 task->smp_task.smp_resp = *resp;
60
61                 task->task_done = sas_task_internal_done;
62
63                 task->slow_task->timer.function = sas_task_internal_timedout;
64                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65                 add_timer(&task->slow_task->timer);
66
67                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69                 if (res) {
70                         del_timer_sync(&task->slow_task->timer);
71                         pr_notice("executing SMP task failed:%d\n", res);
72                         break;
73                 }
74
75                 wait_for_completion(&task->slow_task->completion);
76                 res = -ECOMM;
77                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78                         pr_notice("smp task timed out or aborted\n");
79                         i->dft->lldd_abort_task(task);
80                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81                                 pr_notice("SMP task aborted and not done\n");
82                                 break;
83                         }
84                 }
85                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86                     task->task_status.stat == SAS_SAM_STAT_GOOD) {
87                         res = 0;
88                         break;
89                 }
90                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91                     task->task_status.stat == SAS_DATA_UNDERRUN) {
92                         /* no error, but return the number of bytes of
93                          * underrun */
94                         res = task->task_status.residual;
95                         break;
96                 }
97                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98                     task->task_status.stat == SAS_DATA_OVERRUN) {
99                         res = -EMSGSIZE;
100                         break;
101                 }
102                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
104                         break;
105                 else {
106                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107                                   __func__,
108                                   SAS_ADDR(dev->sas_addr),
109                                   task->task_status.resp,
110                                   task->task_status.stat);
111                         sas_free_task(task);
112                         task = NULL;
113                 }
114         }
115         mutex_unlock(&dev->ex_dev.cmd_mutex);
116         pm_runtime_put_sync(ha->dev);
117
118         BUG_ON(retry == 3 && task != NULL);
119         sas_free_task(task);
120         return res;
121 }
122
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124                             void *resp, int resp_size)
125 {
126         struct scatterlist req_sg;
127         struct scatterlist resp_sg;
128
129         sg_init_one(&req_sg, req, req_size);
130         sg_init_one(&resp_sg, resp, resp_size);
131         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
136 static inline void *alloc_smp_req(int size)
137 {
138         u8 *p = kzalloc(size, GFP_KERNEL);
139         if (p)
140                 p[0] = SMP_REQUEST;
141         return p;
142 }
143
144 static inline void *alloc_smp_resp(int size)
145 {
146         return kzalloc(size, GFP_KERNEL);
147 }
148
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151         switch (phy->routing_attr) {
152         case TABLE_ROUTING:
153                 if (dev->ex_dev.t2t_supp)
154                         return 'U';
155                 else
156                         return 'T';
157         case DIRECT_ROUTING:
158                 return 'D';
159         case SUBTRACTIVE_ROUTING:
160                 return 'S';
161         default:
162                 return '?';
163         }
164 }
165
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168         /* This is detecting a failure to transmit initial dev to host
169          * FIS as described in section J.5 of sas-2 r16
170          */
171         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173                 return SAS_SATA_PENDING;
174         else
175                 return dr->attached_dev_type;
176 }
177
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179                            struct smp_disc_resp *disc_resp)
180 {
181         enum sas_device_type dev_type;
182         enum sas_linkrate linkrate;
183         u8 sas_addr[SAS_ADDR_SIZE];
184         struct discover_resp *dr = &disc_resp->disc;
185         struct sas_ha_struct *ha = dev->port->ha;
186         struct expander_device *ex = &dev->ex_dev;
187         struct ex_phy *phy = &ex->ex_phy[phy_id];
188         struct sas_rphy *rphy = dev->rphy;
189         bool new_phy = !phy->phy;
190         char *type;
191
192         if (new_phy) {
193                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194                         return;
195                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197                 /* FIXME: error_handling */
198                 BUG_ON(!phy->phy);
199         }
200
201         switch (disc_resp->result) {
202         case SMP_RESP_PHY_VACANT:
203                 phy->phy_state = PHY_VACANT;
204                 break;
205         default:
206                 phy->phy_state = PHY_NOT_PRESENT;
207                 break;
208         case SMP_RESP_FUNC_ACC:
209                 phy->phy_state = PHY_EMPTY; /* do not know yet */
210                 break;
211         }
212
213         /* check if anything important changed to squelch debug */
214         dev_type = phy->attached_dev_type;
215         linkrate  = phy->linkrate;
216         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218         /* Handle vacant phy - rest of dr data is not valid so skip it */
219         if (phy->phy_state == PHY_VACANT) {
220                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221                 phy->attached_dev_type = SAS_PHY_UNUSED;
222                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223                         phy->phy_id = phy_id;
224                         goto skip;
225                 } else
226                         goto out;
227         }
228
229         phy->attached_dev_type = to_dev_type(dr);
230         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231                 goto out;
232         phy->phy_id = phy_id;
233         phy->linkrate = dr->linkrate;
234         phy->attached_sata_host = dr->attached_sata_host;
235         phy->attached_sata_dev  = dr->attached_sata_dev;
236         phy->attached_sata_ps   = dr->attached_sata_ps;
237         phy->attached_iproto = dr->iproto << 1;
238         phy->attached_tproto = dr->tproto << 1;
239         /* help some expanders that fail to zero sas_address in the 'no
240          * device' case
241          */
242         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245         else
246                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247         phy->attached_phy_id = dr->attached_phy_id;
248         phy->phy_change_count = dr->change_count;
249         phy->routing_attr = dr->routing_attr;
250         phy->virtual = dr->virtual;
251         phy->last_da_index = -1;
252
253         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254         phy->phy->identify.device_type = dr->attached_dev_type;
255         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256         phy->phy->identify.target_port_protocols = phy->attached_tproto;
257         if (!phy->attached_tproto && dr->attached_sata_dev)
258                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259         phy->phy->identify.phy_identifier = phy_id;
260         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262         phy->phy->minimum_linkrate = dr->pmin_linkrate;
263         phy->phy->maximum_linkrate = dr->pmax_linkrate;
264         phy->phy->negotiated_linkrate = phy->linkrate;
265         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267  skip:
268         if (new_phy)
269                 if (sas_phy_add(phy->phy)) {
270                         sas_phy_free(phy->phy);
271                         return;
272                 }
273
274  out:
275         switch (phy->attached_dev_type) {
276         case SAS_SATA_PENDING:
277                 type = "stp pending";
278                 break;
279         case SAS_PHY_UNUSED:
280                 type = "no device";
281                 break;
282         case SAS_END_DEVICE:
283                 if (phy->attached_iproto) {
284                         if (phy->attached_tproto)
285                                 type = "host+target";
286                         else
287                                 type = "host";
288                 } else {
289                         if (dr->attached_sata_dev)
290                                 type = "stp";
291                         else
292                                 type = "ssp";
293                 }
294                 break;
295         case SAS_EDGE_EXPANDER_DEVICE:
296         case SAS_FANOUT_EXPANDER_DEVICE:
297                 type = "smp";
298                 break;
299         default:
300                 type = "unknown";
301         }
302
303         /* this routine is polled by libata error recovery so filter
304          * unimportant messages
305          */
306         if (new_phy || phy->attached_dev_type != dev_type ||
307             phy->linkrate != linkrate ||
308             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309                 /* pass */;
310         else
311                 return;
312
313         /* if the attached device type changed and ata_eh is active,
314          * make sure we run revalidation when eh completes (see:
315          * sas_enable_revalidation)
316          */
317         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322                  SAS_ADDR(dev->sas_addr), phy->phy_id,
323                  sas_route_char(dev, phy), phy->linkrate,
324                  SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331         struct domain_device *dev;
332         struct sas_rphy *rphy;
333
334         if (!ex_phy->port)
335                 return NULL;
336
337         rphy = ex_phy->port->rphy;
338         if (!rphy)
339                 return NULL;
340
341         dev = sas_find_dev_by_rphy(rphy);
342
343         if (dev && dev_is_sata(dev))
344                 return dev;
345
346         return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353                                       struct smp_disc_resp *disc_resp,
354                                       int single)
355 {
356         struct discover_resp *dr = &disc_resp->disc;
357         int res;
358
359         disc_req[9] = single;
360
361         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362                                disc_resp, DISCOVER_RESP_SIZE);
363         if (res)
364                 return res;
365         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366                 pr_notice("Found loopback topology, just ignore it!\n");
367                 return 0;
368         }
369         sas_set_ex_phy(dev, single, disc_resp);
370         return 0;
371 }
372
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375         struct expander_device *ex = &dev->ex_dev;
376         int  res = 0;
377         u8   *disc_req;
378         struct smp_disc_resp *disc_resp;
379
380         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381         if (!disc_req)
382                 return -ENOMEM;
383
384         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385         if (!disc_resp) {
386                 kfree(disc_req);
387                 return -ENOMEM;
388         }
389
390         disc_req[1] = SMP_DISCOVER;
391
392         if (0 <= single && single < ex->num_phys) {
393                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394         } else {
395                 int i;
396
397                 for (i = 0; i < ex->num_phys; i++) {
398                         res = sas_ex_phy_discover_helper(dev, disc_req,
399                                                          disc_resp, i);
400                         if (res)
401                                 goto out_err;
402                 }
403         }
404 out_err:
405         kfree(disc_resp);
406         kfree(disc_req);
407         return res;
408 }
409
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412         struct expander_device *ex = &dev->ex_dev;
413         int res;
414
415         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416         if (!ex->ex_phy)
417                 return -ENOMEM;
418
419         res = sas_ex_phy_discover(dev, -1);
420         if (res)
421                 goto out_err;
422
423         return 0;
424  out_err:
425         kfree(ex->ex_phy);
426         ex->ex_phy = NULL;
427         return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 #define RG_REQ_SIZE   8
433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
434
435 static int sas_ex_general(struct domain_device *dev)
436 {
437         u8 *rg_req;
438         struct smp_rg_resp *rg_resp;
439         struct report_general_resp *rg;
440         int res;
441         int i;
442
443         rg_req = alloc_smp_req(RG_REQ_SIZE);
444         if (!rg_req)
445                 return -ENOMEM;
446
447         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448         if (!rg_resp) {
449                 kfree(rg_req);
450                 return -ENOMEM;
451         }
452
453         rg_req[1] = SMP_REPORT_GENERAL;
454
455         for (i = 0; i < 5; i++) {
456                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457                                        RG_RESP_SIZE);
458
459                 if (res) {
460                         pr_notice("RG to ex %016llx failed:0x%x\n",
461                                   SAS_ADDR(dev->sas_addr), res);
462                         goto out;
463                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
466                         res = rg_resp->result;
467                         goto out;
468                 }
469
470                 rg = &rg_resp->rg;
471                 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472                 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473                 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474                 dev->ex_dev.t2t_supp = rg->t2t_supp;
475                 dev->ex_dev.conf_route_table = rg->conf_route_table;
476                 dev->ex_dev.configuring = rg->configuring;
477                 memcpy(dev->ex_dev.enclosure_logical_id,
478                        rg->enclosure_logical_id, 8);
479
480                 if (dev->ex_dev.configuring) {
481                         pr_debug("RG: ex %016llx self-configuring...\n",
482                                  SAS_ADDR(dev->sas_addr));
483                         schedule_timeout_interruptible(5*HZ);
484                 } else
485                         break;
486         }
487 out:
488         kfree(rg_req);
489         kfree(rg_resp);
490         return res;
491 }
492
493 static void ex_assign_manuf_info(struct domain_device *dev, void
494                                         *_mi_resp)
495 {
496         u8 *mi_resp = _mi_resp;
497         struct sas_rphy *rphy = dev->rphy;
498         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502         memcpy(edev->product_rev, mi_resp + 36,
503                SAS_EXPANDER_PRODUCT_REV_LEN);
504
505         if (mi_resp[8] & 1) {
506                 memcpy(edev->component_vendor_id, mi_resp + 40,
507                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509                 edev->component_revision_id = mi_resp[50];
510         }
511 }
512
513 #define MI_REQ_SIZE   8
514 #define MI_RESP_SIZE 64
515
516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518         u8 *mi_req;
519         u8 *mi_resp;
520         int res;
521
522         mi_req = alloc_smp_req(MI_REQ_SIZE);
523         if (!mi_req)
524                 return -ENOMEM;
525
526         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527         if (!mi_resp) {
528                 kfree(mi_req);
529                 return -ENOMEM;
530         }
531
532         mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535         if (res) {
536                 pr_notice("MI: ex %016llx failed:0x%x\n",
537                           SAS_ADDR(dev->sas_addr), res);
538                 goto out;
539         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
542                 goto out;
543         }
544
545         ex_assign_manuf_info(dev, mi_resp);
546 out:
547         kfree(mi_req);
548         kfree(mi_resp);
549         return res;
550 }
551
552 #define PC_REQ_SIZE  44
553 #define PC_RESP_SIZE 8
554
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556                         enum phy_func phy_func,
557                         struct sas_phy_linkrates *rates)
558 {
559         u8 *pc_req;
560         u8 *pc_resp;
561         int res;
562
563         pc_req = alloc_smp_req(PC_REQ_SIZE);
564         if (!pc_req)
565                 return -ENOMEM;
566
567         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568         if (!pc_resp) {
569                 kfree(pc_req);
570                 return -ENOMEM;
571         }
572
573         pc_req[1] = SMP_PHY_CONTROL;
574         pc_req[9] = phy_id;
575         pc_req[10] = phy_func;
576         if (rates) {
577                 pc_req[32] = rates->minimum_linkrate << 4;
578                 pc_req[33] = rates->maximum_linkrate << 4;
579         }
580
581         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582         if (res) {
583                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584                        SAS_ADDR(dev->sas_addr), phy_id, res);
585         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588                 res = pc_resp[2];
589         }
590         kfree(pc_resp);
591         kfree(pc_req);
592         return res;
593 }
594
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597         struct expander_device *ex = &dev->ex_dev;
598         struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601         phy->linkrate = SAS_PHY_DISABLED;
602 }
603
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606         struct expander_device *ex = &dev->ex_dev;
607         int i;
608
609         for (i = 0; i < ex->num_phys; i++) {
610                 struct ex_phy *phy = &ex->ex_phy[i];
611
612                 if (phy->phy_state == PHY_VACANT ||
613                     phy->phy_state == PHY_NOT_PRESENT)
614                         continue;
615
616                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617                         sas_ex_disable_phy(dev, i);
618         }
619 }
620
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622                                             u8 *sas_addr)
623 {
624         struct domain_device *dev;
625
626         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627                 return 1;
628         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630                         return 1;
631         }
632         return 0;
633 }
634
635 #define RPEL_REQ_SIZE   16
636 #define RPEL_RESP_SIZE  32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639         int res;
640         u8 *req;
641         u8 *resp;
642         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645         req = alloc_smp_req(RPEL_REQ_SIZE);
646         if (!req)
647                 return -ENOMEM;
648
649         resp = alloc_smp_resp(RPEL_RESP_SIZE);
650         if (!resp) {
651                 kfree(req);
652                 return -ENOMEM;
653         }
654
655         req[1] = SMP_REPORT_PHY_ERR_LOG;
656         req[9] = phy->number;
657
658         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659                                resp, RPEL_RESP_SIZE);
660
661         if (res)
662                 goto out;
663
664         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669  out:
670         kfree(req);
671         kfree(resp);
672         return res;
673
674 }
675
676 #ifdef CONFIG_SCSI_SAS_ATA
677
678 #define RPS_REQ_SIZE  16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682                             struct smp_rps_resp *rps_resp)
683 {
684         int res;
685         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686         u8 *resp = (u8 *)rps_resp;
687
688         if (!rps_req)
689                 return -ENOMEM;
690
691         rps_req[1] = SMP_REPORT_PHY_SATA;
692         rps_req[9] = phy_id;
693
694         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695                                rps_resp, RPS_RESP_SIZE);
696
697         /* 0x34 is the FIS type for the D2H fis.  There's a potential
698          * standards cockup here.  sas-2 explicitly specifies the FIS
699          * should be encoded so that FIS type is in resp[24].
700          * However, some expanders endian reverse this.  Undo the
701          * reversal here */
702         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703                 int i;
704
705                 for (i = 0; i < 5; i++) {
706                         int j = 24 + (i*4);
707                         u8 a, b;
708                         a = resp[j + 0];
709                         b = resp[j + 1];
710                         resp[j + 0] = resp[j + 3];
711                         resp[j + 1] = resp[j + 2];
712                         resp[j + 2] = b;
713                         resp[j + 3] = a;
714                 }
715         }
716
717         kfree(rps_req);
718         return res;
719 }
720 #endif
721
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723                                        struct domain_device *child,
724                                        struct ex_phy *parent_phy)
725 {
726         struct expander_device *parent_ex = &parent->ex_dev;
727         struct sas_port *port;
728         int i;
729
730         child->pathways = 0;
731
732         port = parent_phy->port;
733
734         for (i = 0; i < parent_ex->num_phys; i++) {
735                 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737                 if (phy->phy_state == PHY_VACANT ||
738                     phy->phy_state == PHY_NOT_PRESENT)
739                         continue;
740
741                 if (sas_phy_match_dev_addr(child, phy)) {
742                         child->min_linkrate = min(parent->min_linkrate,
743                                                   phy->linkrate);
744                         child->max_linkrate = max(parent->max_linkrate,
745                                                   phy->linkrate);
746                         child->pathways++;
747                         sas_port_add_phy(port, phy->phy);
748                 }
749         }
750         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751         child->pathways = min(child->pathways, parent->pathways);
752 }
753
754 static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
755                           struct domain_device *child, int phy_id)
756 {
757         struct sas_rphy *rphy;
758         int res;
759
760         child->dev_type = SAS_END_DEVICE;
761         rphy = sas_end_device_alloc(phy->port);
762         if (!rphy)
763                 return -ENOMEM;
764
765         child->tproto = phy->attached_tproto;
766         sas_init_dev(child);
767
768         child->rphy = rphy;
769         get_device(&rphy->dev);
770         rphy->identify.phy_identifier = phy_id;
771         sas_fill_in_rphy(child, rphy);
772
773         list_add_tail(&child->disco_list_node, &parent->port->disco_list);
774
775         res = sas_notify_lldd_dev_found(child);
776         if (res) {
777                 pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
778                           SAS_ADDR(child->sas_addr),
779                           SAS_ADDR(parent->sas_addr), phy_id, res);
780                 sas_rphy_free(child->rphy);
781                 list_del(&child->disco_list_node);
782                 return res;
783         }
784
785         return 0;
786 }
787
788 static struct domain_device *sas_ex_discover_end_dev(
789         struct domain_device *parent, int phy_id)
790 {
791         struct expander_device *parent_ex = &parent->ex_dev;
792         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
793         struct domain_device *child = NULL;
794         int res;
795
796         if (phy->attached_sata_host || phy->attached_sata_ps)
797                 return NULL;
798
799         child = sas_alloc_device();
800         if (!child)
801                 return NULL;
802
803         kref_get(&parent->kref);
804         child->parent = parent;
805         child->port   = parent->port;
806         child->iproto = phy->attached_iproto;
807         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
808         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
809         if (!phy->port) {
810                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811                 if (unlikely(!phy->port))
812                         goto out_err;
813                 if (unlikely(sas_port_add(phy->port) != 0)) {
814                         sas_port_free(phy->port);
815                         goto out_err;
816                 }
817         }
818         sas_ex_get_linkrate(parent, child, phy);
819         sas_device_set_phy(child, phy->port);
820
821         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
822                 res = sas_ata_add_dev(parent, phy, child, phy_id);
823         } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824                 res = sas_ex_add_dev(parent, phy, child, phy_id);
825         } else {
826                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
827                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
828                           phy_id);
829                 res = -ENODEV;
830         }
831
832         if (res)
833                 goto out_free;
834
835         list_add_tail(&child->siblings, &parent_ex->children);
836         return child;
837
838  out_free:
839         sas_port_delete(phy->port);
840  out_err:
841         phy->port = NULL;
842         sas_put_device(child);
843         return NULL;
844 }
845
846 /* See if this phy is part of a wide port */
847 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
848 {
849         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
850         int i;
851
852         for (i = 0; i < parent->ex_dev.num_phys; i++) {
853                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
854
855                 if (ephy == phy)
856                         continue;
857
858                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
859                             SAS_ADDR_SIZE) && ephy->port) {
860                         sas_port_add_phy(ephy->port, phy->phy);
861                         phy->port = ephy->port;
862                         phy->phy_state = PHY_DEVICE_DISCOVERED;
863                         return true;
864                 }
865         }
866
867         return false;
868 }
869
870 static struct domain_device *sas_ex_discover_expander(
871         struct domain_device *parent, int phy_id)
872 {
873         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
874         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
875         struct domain_device *child = NULL;
876         struct sas_rphy *rphy;
877         struct sas_expander_device *edev;
878         struct asd_sas_port *port;
879         int res;
880
881         if (phy->routing_attr == DIRECT_ROUTING) {
882                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
883                         SAS_ADDR(parent->sas_addr), phy_id,
884                         SAS_ADDR(phy->attached_sas_addr),
885                         phy->attached_phy_id);
886                 return NULL;
887         }
888         child = sas_alloc_device();
889         if (!child)
890                 return NULL;
891
892         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
893         /* FIXME: better error handling */
894         BUG_ON(sas_port_add(phy->port) != 0);
895
896
897         switch (phy->attached_dev_type) {
898         case SAS_EDGE_EXPANDER_DEVICE:
899                 rphy = sas_expander_alloc(phy->port,
900                                           SAS_EDGE_EXPANDER_DEVICE);
901                 break;
902         case SAS_FANOUT_EXPANDER_DEVICE:
903                 rphy = sas_expander_alloc(phy->port,
904                                           SAS_FANOUT_EXPANDER_DEVICE);
905                 break;
906         default:
907                 rphy = NULL;    /* shut gcc up */
908                 BUG();
909         }
910         port = parent->port;
911         child->rphy = rphy;
912         get_device(&rphy->dev);
913         edev = rphy_to_expander_device(rphy);
914         child->dev_type = phy->attached_dev_type;
915         kref_get(&parent->kref);
916         child->parent = parent;
917         child->port = port;
918         child->iproto = phy->attached_iproto;
919         child->tproto = phy->attached_tproto;
920         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
921         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
922         sas_ex_get_linkrate(parent, child, phy);
923         edev->level = parent_ex->level + 1;
924         parent->port->disc.max_level = max(parent->port->disc.max_level,
925                                            edev->level);
926         sas_init_dev(child);
927         sas_fill_in_rphy(child, rphy);
928         sas_rphy_add(rphy);
929
930         spin_lock_irq(&parent->port->dev_list_lock);
931         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
932         spin_unlock_irq(&parent->port->dev_list_lock);
933
934         res = sas_discover_expander(child);
935         if (res) {
936                 sas_rphy_delete(rphy);
937                 spin_lock_irq(&parent->port->dev_list_lock);
938                 list_del(&child->dev_list_node);
939                 spin_unlock_irq(&parent->port->dev_list_lock);
940                 sas_put_device(child);
941                 sas_port_delete(phy->port);
942                 phy->port = NULL;
943                 return NULL;
944         }
945         list_add_tail(&child->siblings, &parent->ex_dev.children);
946         return child;
947 }
948
949 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
950 {
951         struct expander_device *ex = &dev->ex_dev;
952         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
953         struct domain_device *child = NULL;
954         int res = 0;
955
956         /* Phy state */
957         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
958                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
959                         res = sas_ex_phy_discover(dev, phy_id);
960                 if (res)
961                         return res;
962         }
963
964         /* Parent and domain coherency */
965         if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
966                 sas_add_parent_port(dev, phy_id);
967                 return 0;
968         }
969         if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
970                 sas_add_parent_port(dev, phy_id);
971                 if (ex_phy->routing_attr == TABLE_ROUTING)
972                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
973                 return 0;
974         }
975
976         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
977                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
978
979         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
980                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
981                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
982                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
983                 }
984                 return 0;
985         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
986                 return 0;
987
988         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
989             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
990             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
991             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
992                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
993                         ex_phy->attached_dev_type,
994                         SAS_ADDR(dev->sas_addr),
995                         phy_id);
996                 return 0;
997         }
998
999         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000         if (res) {
1001                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1002                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1003                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1004                 return res;
1005         }
1006
1007         if (sas_ex_join_wide_port(dev, phy_id)) {
1008                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1009                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010                 return res;
1011         }
1012
1013         switch (ex_phy->attached_dev_type) {
1014         case SAS_END_DEVICE:
1015         case SAS_SATA_PENDING:
1016                 child = sas_ex_discover_end_dev(dev, phy_id);
1017                 break;
1018         case SAS_FANOUT_EXPANDER_DEVICE:
1019                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1021                                  SAS_ADDR(ex_phy->attached_sas_addr),
1022                                  ex_phy->attached_phy_id,
1023                                  SAS_ADDR(dev->sas_addr),
1024                                  phy_id);
1025                         sas_ex_disable_phy(dev, phy_id);
1026                         return res;
1027                 } else
1028                         memcpy(dev->port->disc.fanout_sas_addr,
1029                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1030                 fallthrough;
1031         case SAS_EDGE_EXPANDER_DEVICE:
1032                 child = sas_ex_discover_expander(dev, phy_id);
1033                 break;
1034         default:
1035                 break;
1036         }
1037
1038         if (!child)
1039                 pr_notice("ex %016llx phy%02d failed to discover\n",
1040                           SAS_ADDR(dev->sas_addr), phy_id);
1041         return res;
1042 }
1043
1044 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1045 {
1046         struct expander_device *ex = &dev->ex_dev;
1047         int i;
1048
1049         for (i = 0; i < ex->num_phys; i++) {
1050                 struct ex_phy *phy = &ex->ex_phy[i];
1051
1052                 if (phy->phy_state == PHY_VACANT ||
1053                     phy->phy_state == PHY_NOT_PRESENT)
1054                         continue;
1055
1056                 if (dev_is_expander(phy->attached_dev_type) &&
1057                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1058
1059                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1060
1061                         return 1;
1062                 }
1063         }
1064         return 0;
1065 }
1066
1067 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1068 {
1069         struct expander_device *ex = &dev->ex_dev;
1070         struct domain_device *child;
1071         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1072
1073         list_for_each_entry(child, &ex->children, siblings) {
1074                 if (!dev_is_expander(child->dev_type))
1075                         continue;
1076                 if (sub_addr[0] == 0) {
1077                         sas_find_sub_addr(child, sub_addr);
1078                         continue;
1079                 } else {
1080                         u8 s2[SAS_ADDR_SIZE];
1081
1082                         if (sas_find_sub_addr(child, s2) &&
1083                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1084
1085                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1086                                           SAS_ADDR(dev->sas_addr),
1087                                           SAS_ADDR(child->sas_addr),
1088                                           SAS_ADDR(s2),
1089                                           SAS_ADDR(sub_addr));
1090
1091                                 sas_ex_disable_port(child, s2);
1092                         }
1093                 }
1094         }
1095         return 0;
1096 }
1097 /**
1098  * sas_ex_discover_devices - discover devices attached to this expander
1099  * @dev: pointer to the expander domain device
1100  * @single: if you want to do a single phy, else set to -1;
1101  *
1102  * Configure this expander for use with its devices and register the
1103  * devices of this expander.
1104  */
1105 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1106 {
1107         struct expander_device *ex = &dev->ex_dev;
1108         int i = 0, end = ex->num_phys;
1109         int res = 0;
1110
1111         if (0 <= single && single < end) {
1112                 i = single;
1113                 end = i+1;
1114         }
1115
1116         for ( ; i < end; i++) {
1117                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1118
1119                 if (ex_phy->phy_state == PHY_VACANT ||
1120                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1121                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1122                         continue;
1123
1124                 switch (ex_phy->linkrate) {
1125                 case SAS_PHY_DISABLED:
1126                 case SAS_PHY_RESET_PROBLEM:
1127                 case SAS_SATA_PORT_SELECTOR:
1128                         continue;
1129                 default:
1130                         res = sas_ex_discover_dev(dev, i);
1131                         if (res)
1132                                 break;
1133                         continue;
1134                 }
1135         }
1136
1137         if (!res)
1138                 sas_check_level_subtractive_boundary(dev);
1139
1140         return res;
1141 }
1142
1143 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1144 {
1145         struct expander_device *ex = &dev->ex_dev;
1146         int i;
1147         u8  *sub_sas_addr = NULL;
1148
1149         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1150                 return 0;
1151
1152         for (i = 0; i < ex->num_phys; i++) {
1153                 struct ex_phy *phy = &ex->ex_phy[i];
1154
1155                 if (phy->phy_state == PHY_VACANT ||
1156                     phy->phy_state == PHY_NOT_PRESENT)
1157                         continue;
1158
1159                 if (dev_is_expander(phy->attached_dev_type) &&
1160                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1161
1162                         if (!sub_sas_addr)
1163                                 sub_sas_addr = &phy->attached_sas_addr[0];
1164                         else if (SAS_ADDR(sub_sas_addr) !=
1165                                  SAS_ADDR(phy->attached_sas_addr)) {
1166
1167                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1168                                           SAS_ADDR(dev->sas_addr), i,
1169                                           SAS_ADDR(phy->attached_sas_addr),
1170                                           SAS_ADDR(sub_sas_addr));
1171                                 sas_ex_disable_phy(dev, i);
1172                         }
1173                 }
1174         }
1175         return 0;
1176 }
1177
1178 static void sas_print_parent_topology_bug(struct domain_device *child,
1179                                                  struct ex_phy *parent_phy,
1180                                                  struct ex_phy *child_phy)
1181 {
1182         static const char *ex_type[] = {
1183                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1184                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1185         };
1186         struct domain_device *parent = child->parent;
1187
1188         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1189                   ex_type[parent->dev_type],
1190                   SAS_ADDR(parent->sas_addr),
1191                   parent_phy->phy_id,
1192
1193                   ex_type[child->dev_type],
1194                   SAS_ADDR(child->sas_addr),
1195                   child_phy->phy_id,
1196
1197                   sas_route_char(parent, parent_phy),
1198                   sas_route_char(child, child_phy));
1199 }
1200
1201 static bool sas_eeds_valid(struct domain_device *parent,
1202                            struct domain_device *child)
1203 {
1204         struct sas_discovery *disc = &parent->port->disc;
1205
1206         return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1207                 SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1208                (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1209                 SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1210 }
1211
1212 static int sas_check_eeds(struct domain_device *child,
1213                           struct ex_phy *parent_phy,
1214                           struct ex_phy *child_phy)
1215 {
1216         int res = 0;
1217         struct domain_device *parent = child->parent;
1218         struct sas_discovery *disc = &parent->port->disc;
1219
1220         if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1221                 res = -ENODEV;
1222                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1223                         SAS_ADDR(parent->sas_addr),
1224                         parent_phy->phy_id,
1225                         SAS_ADDR(child->sas_addr),
1226                         child_phy->phy_id,
1227                         SAS_ADDR(disc->fanout_sas_addr));
1228         } else if (SAS_ADDR(disc->eeds_a) == 0) {
1229                 memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1230                 memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1231         } else if (!sas_eeds_valid(parent, child)) {
1232                 res = -ENODEV;
1233                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1234                         SAS_ADDR(parent->sas_addr),
1235                         parent_phy->phy_id,
1236                         SAS_ADDR(child->sas_addr),
1237                         child_phy->phy_id);
1238         }
1239
1240         return res;
1241 }
1242
1243 static int sas_check_edge_expander_topo(struct domain_device *child,
1244                                         struct ex_phy *parent_phy)
1245 {
1246         struct expander_device *child_ex = &child->ex_dev;
1247         struct expander_device *parent_ex = &child->parent->ex_dev;
1248         struct ex_phy *child_phy;
1249
1250         child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1251
1252         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1253                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1254                     child_phy->routing_attr != TABLE_ROUTING)
1255                         goto error;
1256         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1257                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1258                         return sas_check_eeds(child, parent_phy, child_phy);
1259                 else if (child_phy->routing_attr != TABLE_ROUTING)
1260                         goto error;
1261         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1262                 if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1263                     (child_phy->routing_attr != TABLE_ROUTING ||
1264                      !child_ex->t2t_supp || !parent_ex->t2t_supp))
1265                         goto error;
1266         }
1267
1268         return 0;
1269 error:
1270         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1271         return -ENODEV;
1272 }
1273
1274 static int sas_check_fanout_expander_topo(struct domain_device *child,
1275                                           struct ex_phy *parent_phy)
1276 {
1277         struct expander_device *child_ex = &child->ex_dev;
1278         struct ex_phy *child_phy;
1279
1280         child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1281
1282         if (parent_phy->routing_attr == TABLE_ROUTING &&
1283             child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1284                 return 0;
1285
1286         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1287
1288         return -ENODEV;
1289 }
1290
1291 static int sas_check_parent_topology(struct domain_device *child)
1292 {
1293         struct expander_device *parent_ex;
1294         int i;
1295         int res = 0;
1296
1297         if (!child->parent)
1298                 return 0;
1299
1300         if (!dev_is_expander(child->parent->dev_type))
1301                 return 0;
1302
1303         parent_ex = &child->parent->ex_dev;
1304
1305         for (i = 0; i < parent_ex->num_phys; i++) {
1306                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1307
1308                 if (parent_phy->phy_state == PHY_VACANT ||
1309                     parent_phy->phy_state == PHY_NOT_PRESENT)
1310                         continue;
1311
1312                 if (!sas_phy_match_dev_addr(child, parent_phy))
1313                         continue;
1314
1315                 switch (child->parent->dev_type) {
1316                 case SAS_EDGE_EXPANDER_DEVICE:
1317                         if (sas_check_edge_expander_topo(child, parent_phy))
1318                                 res = -ENODEV;
1319                         break;
1320                 case SAS_FANOUT_EXPANDER_DEVICE:
1321                         if (sas_check_fanout_expander_topo(child, parent_phy))
1322                                 res = -ENODEV;
1323                         break;
1324                 default:
1325                         break;
1326                 }
1327         }
1328
1329         return res;
1330 }
1331
1332 #define RRI_REQ_SIZE  16
1333 #define RRI_RESP_SIZE 44
1334
1335 static int sas_configure_present(struct domain_device *dev, int phy_id,
1336                                  u8 *sas_addr, int *index, int *present)
1337 {
1338         int i, res = 0;
1339         struct expander_device *ex = &dev->ex_dev;
1340         struct ex_phy *phy = &ex->ex_phy[phy_id];
1341         u8 *rri_req;
1342         u8 *rri_resp;
1343
1344         *present = 0;
1345         *index = 0;
1346
1347         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1348         if (!rri_req)
1349                 return -ENOMEM;
1350
1351         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1352         if (!rri_resp) {
1353                 kfree(rri_req);
1354                 return -ENOMEM;
1355         }
1356
1357         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1358         rri_req[9] = phy_id;
1359
1360         for (i = 0; i < ex->max_route_indexes ; i++) {
1361                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1362                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1363                                        RRI_RESP_SIZE);
1364                 if (res)
1365                         goto out;
1366                 res = rri_resp[2];
1367                 if (res == SMP_RESP_NO_INDEX) {
1368                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1369                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1370                         goto out;
1371                 } else if (res != SMP_RESP_FUNC_ACC) {
1372                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1373                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1374                                   i, res);
1375                         goto out;
1376                 }
1377                 if (SAS_ADDR(sas_addr) != 0) {
1378                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1379                                 *index = i;
1380                                 if ((rri_resp[12] & 0x80) == 0x80)
1381                                         *present = 0;
1382                                 else
1383                                         *present = 1;
1384                                 goto out;
1385                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1386                                 *index = i;
1387                                 *present = 0;
1388                                 goto out;
1389                         }
1390                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1391                            phy->last_da_index < i) {
1392                         phy->last_da_index = i;
1393                         *index = i;
1394                         *present = 0;
1395                         goto out;
1396                 }
1397         }
1398         res = -1;
1399 out:
1400         kfree(rri_req);
1401         kfree(rri_resp);
1402         return res;
1403 }
1404
1405 #define CRI_REQ_SIZE  44
1406 #define CRI_RESP_SIZE  8
1407
1408 static int sas_configure_set(struct domain_device *dev, int phy_id,
1409                              u8 *sas_addr, int index, int include)
1410 {
1411         int res;
1412         u8 *cri_req;
1413         u8 *cri_resp;
1414
1415         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1416         if (!cri_req)
1417                 return -ENOMEM;
1418
1419         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1420         if (!cri_resp) {
1421                 kfree(cri_req);
1422                 return -ENOMEM;
1423         }
1424
1425         cri_req[1] = SMP_CONF_ROUTE_INFO;
1426         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1427         cri_req[9] = phy_id;
1428         if (SAS_ADDR(sas_addr) == 0 || !include)
1429                 cri_req[12] |= 0x80;
1430         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1431
1432         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1433                                CRI_RESP_SIZE);
1434         if (res)
1435                 goto out;
1436         res = cri_resp[2];
1437         if (res == SMP_RESP_NO_INDEX) {
1438                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1439                         SAS_ADDR(dev->sas_addr), phy_id, index);
1440         }
1441 out:
1442         kfree(cri_req);
1443         kfree(cri_resp);
1444         return res;
1445 }
1446
1447 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1448                                     u8 *sas_addr, int include)
1449 {
1450         int index;
1451         int present;
1452         int res;
1453
1454         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1455         if (res)
1456                 return res;
1457         if (include ^ present)
1458                 return sas_configure_set(dev, phy_id, sas_addr, index,
1459                                          include);
1460
1461         return res;
1462 }
1463
1464 /**
1465  * sas_configure_parent - configure routing table of parent
1466  * @parent: parent expander
1467  * @child: child expander
1468  * @sas_addr: SAS port identifier of device directly attached to child
1469  * @include: whether or not to include @child in the expander routing table
1470  */
1471 static int sas_configure_parent(struct domain_device *parent,
1472                                 struct domain_device *child,
1473                                 u8 *sas_addr, int include)
1474 {
1475         struct expander_device *ex_parent = &parent->ex_dev;
1476         int res = 0;
1477         int i;
1478
1479         if (parent->parent) {
1480                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1481                                            include);
1482                 if (res)
1483                         return res;
1484         }
1485
1486         if (ex_parent->conf_route_table == 0) {
1487                 pr_debug("ex %016llx has self-configuring routing table\n",
1488                          SAS_ADDR(parent->sas_addr));
1489                 return 0;
1490         }
1491
1492         for (i = 0; i < ex_parent->num_phys; i++) {
1493                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1494
1495                 if ((phy->routing_attr == TABLE_ROUTING) &&
1496                     sas_phy_match_dev_addr(child, phy)) {
1497                         res = sas_configure_phy(parent, i, sas_addr, include);
1498                         if (res)
1499                                 return res;
1500                 }
1501         }
1502
1503         return res;
1504 }
1505
1506 /**
1507  * sas_configure_routing - configure routing
1508  * @dev: expander device
1509  * @sas_addr: port identifier of device directly attached to the expander device
1510  */
1511 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1512 {
1513         if (dev->parent)
1514                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1515         return 0;
1516 }
1517
1518 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1519 {
1520         if (dev->parent)
1521                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1522         return 0;
1523 }
1524
1525 /**
1526  * sas_discover_expander - expander discovery
1527  * @dev: pointer to expander domain device
1528  *
1529  * See comment in sas_discover_sata().
1530  */
1531 static int sas_discover_expander(struct domain_device *dev)
1532 {
1533         int res;
1534
1535         res = sas_notify_lldd_dev_found(dev);
1536         if (res)
1537                 return res;
1538
1539         res = sas_ex_general(dev);
1540         if (res)
1541                 goto out_err;
1542         res = sas_ex_manuf_info(dev);
1543         if (res)
1544                 goto out_err;
1545
1546         res = sas_expander_discover(dev);
1547         if (res) {
1548                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1549                         SAS_ADDR(dev->sas_addr), res);
1550                 goto out_err;
1551         }
1552
1553         sas_check_ex_subtractive_boundary(dev);
1554         res = sas_check_parent_topology(dev);
1555         if (res)
1556                 goto out_err;
1557         return 0;
1558 out_err:
1559         sas_notify_lldd_dev_gone(dev);
1560         return res;
1561 }
1562
1563 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1564 {
1565         int res = 0;
1566         struct domain_device *dev;
1567
1568         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1569                 if (dev_is_expander(dev->dev_type)) {
1570                         struct sas_expander_device *ex =
1571                                 rphy_to_expander_device(dev->rphy);
1572
1573                         if (level == ex->level)
1574                                 res = sas_ex_discover_devices(dev, -1);
1575                         else if (level > 0)
1576                                 res = sas_ex_discover_devices(port->port_dev, -1);
1577
1578                 }
1579         }
1580
1581         return res;
1582 }
1583
1584 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1585 {
1586         int res;
1587         int level;
1588
1589         do {
1590                 level = port->disc.max_level;
1591                 res = sas_ex_level_discovery(port, level);
1592                 mb();
1593         } while (level < port->disc.max_level);
1594
1595         return res;
1596 }
1597
1598 int sas_discover_root_expander(struct domain_device *dev)
1599 {
1600         int res;
1601         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1602
1603         res = sas_rphy_add(dev->rphy);
1604         if (res)
1605                 goto out_err;
1606
1607         ex->level = dev->port->disc.max_level; /* 0 */
1608         res = sas_discover_expander(dev);
1609         if (res)
1610                 goto out_err2;
1611
1612         sas_ex_bfs_disc(dev->port);
1613
1614         return res;
1615
1616 out_err2:
1617         sas_rphy_remove(dev->rphy);
1618 out_err:
1619         return res;
1620 }
1621
1622 /* ---------- Domain revalidation ---------- */
1623
1624 static int sas_get_phy_discover(struct domain_device *dev,
1625                                 int phy_id, struct smp_disc_resp *disc_resp)
1626 {
1627         int res;
1628         u8 *disc_req;
1629
1630         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1631         if (!disc_req)
1632                 return -ENOMEM;
1633
1634         disc_req[1] = SMP_DISCOVER;
1635         disc_req[9] = phy_id;
1636
1637         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1638                                disc_resp, DISCOVER_RESP_SIZE);
1639         if (res)
1640                 goto out;
1641         if (disc_resp->result != SMP_RESP_FUNC_ACC)
1642                 res = disc_resp->result;
1643 out:
1644         kfree(disc_req);
1645         return res;
1646 }
1647
1648 static int sas_get_phy_change_count(struct domain_device *dev,
1649                                     int phy_id, int *pcc)
1650 {
1651         int res;
1652         struct smp_disc_resp *disc_resp;
1653
1654         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1655         if (!disc_resp)
1656                 return -ENOMEM;
1657
1658         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1659         if (!res)
1660                 *pcc = disc_resp->disc.change_count;
1661
1662         kfree(disc_resp);
1663         return res;
1664 }
1665
1666 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1667                              u8 *sas_addr, enum sas_device_type *type)
1668 {
1669         int res;
1670         struct smp_disc_resp *disc_resp;
1671
1672         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1673         if (!disc_resp)
1674                 return -ENOMEM;
1675
1676         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1677         if (res == 0) {
1678                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1679                        SAS_ADDR_SIZE);
1680                 *type = to_dev_type(&disc_resp->disc);
1681                 if (*type == 0)
1682                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1683         }
1684         kfree(disc_resp);
1685         return res;
1686 }
1687
1688 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1689                               int from_phy, bool update)
1690 {
1691         struct expander_device *ex = &dev->ex_dev;
1692         int res = 0;
1693         int i;
1694
1695         for (i = from_phy; i < ex->num_phys; i++) {
1696                 int phy_change_count = 0;
1697
1698                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1699                 switch (res) {
1700                 case SMP_RESP_PHY_VACANT:
1701                 case SMP_RESP_NO_PHY:
1702                         continue;
1703                 case SMP_RESP_FUNC_ACC:
1704                         break;
1705                 default:
1706                         return res;
1707                 }
1708
1709                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1710                         if (update)
1711                                 ex->ex_phy[i].phy_change_count =
1712                                         phy_change_count;
1713                         *phy_id = i;
1714                         return 0;
1715                 }
1716         }
1717         return 0;
1718 }
1719
1720 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1721 {
1722         int res;
1723         u8  *rg_req;
1724         struct smp_rg_resp  *rg_resp;
1725
1726         rg_req = alloc_smp_req(RG_REQ_SIZE);
1727         if (!rg_req)
1728                 return -ENOMEM;
1729
1730         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1731         if (!rg_resp) {
1732                 kfree(rg_req);
1733                 return -ENOMEM;
1734         }
1735
1736         rg_req[1] = SMP_REPORT_GENERAL;
1737
1738         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1739                                RG_RESP_SIZE);
1740         if (res)
1741                 goto out;
1742         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1743                 res = rg_resp->result;
1744                 goto out;
1745         }
1746
1747         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1748 out:
1749         kfree(rg_resp);
1750         kfree(rg_req);
1751         return res;
1752 }
1753 /**
1754  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1755  * @dev:domain device to be detect.
1756  * @src_dev: the device which originated BROADCAST(CHANGE).
1757  *
1758  * Add self-configuration expander support. Suppose two expander cascading,
1759  * when the first level expander is self-configuring, hotplug the disks in
1760  * second level expander, BROADCAST(CHANGE) will not only be originated
1761  * in the second level expander, but also be originated in the first level
1762  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1763  * expander changed count in two level expanders will all increment at least
1764  * once, but the phy which chang count has changed is the source device which
1765  * we concerned.
1766  */
1767
1768 static int sas_find_bcast_dev(struct domain_device *dev,
1769                               struct domain_device **src_dev)
1770 {
1771         struct expander_device *ex = &dev->ex_dev;
1772         int ex_change_count = -1;
1773         int phy_id = -1;
1774         int res;
1775         struct domain_device *ch;
1776
1777         res = sas_get_ex_change_count(dev, &ex_change_count);
1778         if (res)
1779                 goto out;
1780         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1781                 /* Just detect if this expander phys phy change count changed,
1782                 * in order to determine if this expander originate BROADCAST,
1783                 * and do not update phy change count field in our structure.
1784                 */
1785                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1786                 if (phy_id != -1) {
1787                         *src_dev = dev;
1788                         ex->ex_change_count = ex_change_count;
1789                         pr_info("ex %016llx phy%02d change count has changed\n",
1790                                 SAS_ADDR(dev->sas_addr), phy_id);
1791                         return res;
1792                 } else
1793                         pr_info("ex %016llx phys DID NOT change\n",
1794                                 SAS_ADDR(dev->sas_addr));
1795         }
1796         list_for_each_entry(ch, &ex->children, siblings) {
1797                 if (dev_is_expander(ch->dev_type)) {
1798                         res = sas_find_bcast_dev(ch, src_dev);
1799                         if (*src_dev)
1800                                 return res;
1801                 }
1802         }
1803 out:
1804         return res;
1805 }
1806
1807 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1808 {
1809         struct expander_device *ex = &dev->ex_dev;
1810         struct domain_device *child, *n;
1811
1812         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1813                 set_bit(SAS_DEV_GONE, &child->state);
1814                 if (dev_is_expander(child->dev_type))
1815                         sas_unregister_ex_tree(port, child);
1816                 else
1817                         sas_unregister_dev(port, child);
1818         }
1819         sas_unregister_dev(port, dev);
1820 }
1821
1822 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1823                                          int phy_id, bool last)
1824 {
1825         struct expander_device *ex_dev = &parent->ex_dev;
1826         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1827         struct domain_device *child, *n, *found = NULL;
1828         if (last) {
1829                 list_for_each_entry_safe(child, n,
1830                         &ex_dev->children, siblings) {
1831                         if (sas_phy_match_dev_addr(child, phy)) {
1832                                 set_bit(SAS_DEV_GONE, &child->state);
1833                                 if (dev_is_expander(child->dev_type))
1834                                         sas_unregister_ex_tree(parent->port, child);
1835                                 else
1836                                         sas_unregister_dev(parent->port, child);
1837                                 found = child;
1838                                 break;
1839                         }
1840                 }
1841                 sas_disable_routing(parent, phy->attached_sas_addr);
1842         }
1843         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1844         if (phy->port) {
1845                 sas_port_delete_phy(phy->port, phy->phy);
1846                 sas_device_set_phy(found, phy->port);
1847                 if (phy->port->num_phys == 0)
1848                         list_add_tail(&phy->port->del_list,
1849                                 &parent->port->sas_port_del_list);
1850                 phy->port = NULL;
1851         }
1852 }
1853
1854 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1855                                           const int level)
1856 {
1857         struct expander_device *ex_root = &root->ex_dev;
1858         struct domain_device *child;
1859         int res = 0;
1860
1861         list_for_each_entry(child, &ex_root->children, siblings) {
1862                 if (dev_is_expander(child->dev_type)) {
1863                         struct sas_expander_device *ex =
1864                                 rphy_to_expander_device(child->rphy);
1865
1866                         if (level > ex->level)
1867                                 res = sas_discover_bfs_by_root_level(child,
1868                                                                      level);
1869                         else if (level == ex->level)
1870                                 res = sas_ex_discover_devices(child, -1);
1871                 }
1872         }
1873         return res;
1874 }
1875
1876 static int sas_discover_bfs_by_root(struct domain_device *dev)
1877 {
1878         int res;
1879         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1880         int level = ex->level+1;
1881
1882         res = sas_ex_discover_devices(dev, -1);
1883         if (res)
1884                 goto out;
1885         do {
1886                 res = sas_discover_bfs_by_root_level(dev, level);
1887                 mb();
1888                 level += 1;
1889         } while (level <= dev->port->disc.max_level);
1890 out:
1891         return res;
1892 }
1893
1894 static int sas_discover_new(struct domain_device *dev, int phy_id)
1895 {
1896         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1897         struct domain_device *child;
1898         int res;
1899
1900         pr_debug("ex %016llx phy%02d new device attached\n",
1901                  SAS_ADDR(dev->sas_addr), phy_id);
1902         res = sas_ex_phy_discover(dev, phy_id);
1903         if (res)
1904                 return res;
1905
1906         if (sas_ex_join_wide_port(dev, phy_id))
1907                 return 0;
1908
1909         res = sas_ex_discover_devices(dev, phy_id);
1910         if (res)
1911                 return res;
1912         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1913                 if (sas_phy_match_dev_addr(child, ex_phy)) {
1914                         if (dev_is_expander(child->dev_type))
1915                                 res = sas_discover_bfs_by_root(child);
1916                         break;
1917                 }
1918         }
1919         return res;
1920 }
1921
1922 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1923 {
1924         if (old == new)
1925                 return true;
1926
1927         /* treat device directed resets as flutter, if we went
1928          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1929          */
1930         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1931             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1932                 return true;
1933
1934         return false;
1935 }
1936
1937 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1938                               bool last, int sibling)
1939 {
1940         struct expander_device *ex = &dev->ex_dev;
1941         struct ex_phy *phy = &ex->ex_phy[phy_id];
1942         enum sas_device_type type = SAS_PHY_UNUSED;
1943         u8 sas_addr[SAS_ADDR_SIZE];
1944         char msg[80] = "";
1945         int res;
1946
1947         if (!last)
1948                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1949
1950         pr_debug("ex %016llx rediscovering phy%02d%s\n",
1951                  SAS_ADDR(dev->sas_addr), phy_id, msg);
1952
1953         memset(sas_addr, 0, SAS_ADDR_SIZE);
1954         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1955         switch (res) {
1956         case SMP_RESP_NO_PHY:
1957                 phy->phy_state = PHY_NOT_PRESENT;
1958                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1959                 return res;
1960         case SMP_RESP_PHY_VACANT:
1961                 phy->phy_state = PHY_VACANT;
1962                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1963                 return res;
1964         case SMP_RESP_FUNC_ACC:
1965                 break;
1966         case -ECOMM:
1967                 break;
1968         default:
1969                 return res;
1970         }
1971
1972         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1973                 phy->phy_state = PHY_EMPTY;
1974                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1975                 /*
1976                  * Even though the PHY is empty, for convenience we discover
1977                  * the PHY to update the PHY info, like negotiated linkrate.
1978                  */
1979                 sas_ex_phy_discover(dev, phy_id);
1980                 return res;
1981         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1982                    dev_type_flutter(type, phy->attached_dev_type)) {
1983                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1984                 char *action = "";
1985
1986                 sas_ex_phy_discover(dev, phy_id);
1987
1988                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1989                         action = ", needs recovery";
1990                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1991                          SAS_ADDR(dev->sas_addr), phy_id, action);
1992                 return res;
1993         }
1994
1995         /* we always have to delete the old device when we went here */
1996         pr_info("ex %016llx phy%02d replace %016llx\n",
1997                 SAS_ADDR(dev->sas_addr), phy_id,
1998                 SAS_ADDR(phy->attached_sas_addr));
1999         sas_unregister_devs_sas_addr(dev, phy_id, last);
2000
2001         return sas_discover_new(dev, phy_id);
2002 }
2003
2004 /**
2005  * sas_rediscover - revalidate the domain.
2006  * @dev:domain device to be detect.
2007  * @phy_id: the phy id will be detected.
2008  *
2009  * NOTE: this process _must_ quit (return) as soon as any connection
2010  * errors are encountered.  Connection recovery is done elsewhere.
2011  * Discover process only interrogates devices in order to discover the
2012  * domain.For plugging out, we un-register the device only when it is
2013  * the last phy in the port, for other phys in this port, we just delete it
2014  * from the port.For inserting, we do discovery when it is the
2015  * first phy,for other phys in this port, we add it to the port to
2016  * forming the wide-port.
2017  */
2018 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2019 {
2020         struct expander_device *ex = &dev->ex_dev;
2021         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2022         int res = 0;
2023         int i;
2024         bool last = true;       /* is this the last phy of the port */
2025
2026         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2027                  SAS_ADDR(dev->sas_addr), phy_id);
2028
2029         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2030                 for (i = 0; i < ex->num_phys; i++) {
2031                         struct ex_phy *phy = &ex->ex_phy[i];
2032
2033                         if (i == phy_id)
2034                                 continue;
2035                         if (sas_phy_addr_match(phy, changed_phy)) {
2036                                 last = false;
2037                                 break;
2038                         }
2039                 }
2040                 res = sas_rediscover_dev(dev, phy_id, last, i);
2041         } else
2042                 res = sas_discover_new(dev, phy_id);
2043         return res;
2044 }
2045
2046 /**
2047  * sas_ex_revalidate_domain - revalidate the domain
2048  * @port_dev: port domain device.
2049  *
2050  * NOTE: this process _must_ quit (return) as soon as any connection
2051  * errors are encountered.  Connection recovery is done elsewhere.
2052  * Discover process only interrogates devices in order to discover the
2053  * domain.
2054  */
2055 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2056 {
2057         int res;
2058         struct domain_device *dev = NULL;
2059
2060         res = sas_find_bcast_dev(port_dev, &dev);
2061         if (res == 0 && dev) {
2062                 struct expander_device *ex = &dev->ex_dev;
2063                 int i = 0, phy_id;
2064
2065                 do {
2066                         phy_id = -1;
2067                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2068                         if (phy_id == -1)
2069                                 break;
2070                         res = sas_rediscover(dev, phy_id);
2071                         i = phy_id + 1;
2072                 } while (i < ex->num_phys);
2073         }
2074         return res;
2075 }
2076
2077 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2078                              struct domain_device *dev)
2079 {
2080         struct ex_phy *phy;
2081         int phy_id;
2082
2083         for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2084                 phy = &ex_dev->ex_phy[phy_id];
2085                 if (sas_phy_match_dev_addr(dev, phy))
2086                         return phy_id;
2087         }
2088
2089         return -ENODEV;
2090 }
2091 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2092
2093 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2094                 struct sas_rphy *rphy)
2095 {
2096         struct domain_device *dev;
2097         unsigned int rcvlen = 0;
2098         int ret = -EINVAL;
2099
2100         /* no rphy means no smp target support (ie aic94xx host) */
2101         if (!rphy)
2102                 return sas_smp_host_handler(job, shost);
2103
2104         switch (rphy->identify.device_type) {
2105         case SAS_EDGE_EXPANDER_DEVICE:
2106         case SAS_FANOUT_EXPANDER_DEVICE:
2107                 break;
2108         default:
2109                 pr_err("%s: can we send a smp request to a device?\n",
2110                        __func__);
2111                 goto out;
2112         }
2113
2114         dev = sas_find_dev_by_rphy(rphy);
2115         if (!dev) {
2116                 pr_err("%s: fail to find a domain_device?\n", __func__);
2117                 goto out;
2118         }
2119
2120         /* do we need to support multiple segments? */
2121         if (job->request_payload.sg_cnt > 1 ||
2122             job->reply_payload.sg_cnt > 1) {
2123                 pr_info("%s: multiple segments req %u, rsp %u\n",
2124                         __func__, job->request_payload.payload_len,
2125                         job->reply_payload.payload_len);
2126                 goto out;
2127         }
2128
2129         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2130                         job->reply_payload.sg_list);
2131         if (ret >= 0) {
2132                 /* bsg_job_done() requires the length received  */
2133                 rcvlen = job->reply_payload.payload_len - ret;
2134                 ret = 0;
2135         }
2136
2137 out:
2138         bsg_job_done(job, ret, rcvlen);
2139 }