0e4e09a0286a9b5be10acf8fcaee166abcff3de5
[linux-block.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
34 static int smp_execute_task_sg(struct domain_device *dev,
35                 struct scatterlist *req, struct scatterlist *resp)
36 {
37         int res, retry;
38         struct sas_task *task = NULL;
39         struct sas_internal *i =
40                 to_sas_internal(dev->port->ha->core.shost->transportt);
41         struct sas_ha_struct *ha = dev->port->ha;
42
43         pm_runtime_get_sync(ha->dev);
44         mutex_lock(&dev->ex_dev.cmd_mutex);
45         for (retry = 0; retry < 3; retry++) {
46                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47                         res = -ECOMM;
48                         break;
49                 }
50
51                 task = sas_alloc_slow_task(GFP_KERNEL);
52                 if (!task) {
53                         res = -ENOMEM;
54                         break;
55                 }
56                 task->dev = dev;
57                 task->task_proto = dev->tproto;
58                 task->smp_task.smp_req = *req;
59                 task->smp_task.smp_resp = *resp;
60
61                 task->task_done = sas_task_internal_done;
62
63                 task->slow_task->timer.function = sas_task_internal_timedout;
64                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65                 add_timer(&task->slow_task->timer);
66
67                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69                 if (res) {
70                         del_timer_sync(&task->slow_task->timer);
71                         pr_notice("executing SMP task failed:%d\n", res);
72                         break;
73                 }
74
75                 wait_for_completion(&task->slow_task->completion);
76                 res = -ECOMM;
77                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78                         pr_notice("smp task timed out or aborted\n");
79                         i->dft->lldd_abort_task(task);
80                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81                                 pr_notice("SMP task aborted and not done\n");
82                                 break;
83                         }
84                 }
85                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86                     task->task_status.stat == SAS_SAM_STAT_GOOD) {
87                         res = 0;
88                         break;
89                 }
90                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91                     task->task_status.stat == SAS_DATA_UNDERRUN) {
92                         /* no error, but return the number of bytes of
93                          * underrun */
94                         res = task->task_status.residual;
95                         break;
96                 }
97                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98                     task->task_status.stat == SAS_DATA_OVERRUN) {
99                         res = -EMSGSIZE;
100                         break;
101                 }
102                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
104                         break;
105                 else {
106                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107                                   __func__,
108                                   SAS_ADDR(dev->sas_addr),
109                                   task->task_status.resp,
110                                   task->task_status.stat);
111                         sas_free_task(task);
112                         task = NULL;
113                 }
114         }
115         mutex_unlock(&dev->ex_dev.cmd_mutex);
116         pm_runtime_put_sync(ha->dev);
117
118         BUG_ON(retry == 3 && task != NULL);
119         sas_free_task(task);
120         return res;
121 }
122
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124                             void *resp, int resp_size)
125 {
126         struct scatterlist req_sg;
127         struct scatterlist resp_sg;
128
129         sg_init_one(&req_sg, req, req_size);
130         sg_init_one(&resp_sg, resp, resp_size);
131         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
136 static inline void *alloc_smp_req(int size)
137 {
138         u8 *p = kzalloc(size, GFP_KERNEL);
139         if (p)
140                 p[0] = SMP_REQUEST;
141         return p;
142 }
143
144 static inline void *alloc_smp_resp(int size)
145 {
146         return kzalloc(size, GFP_KERNEL);
147 }
148
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151         switch (phy->routing_attr) {
152         case TABLE_ROUTING:
153                 if (dev->ex_dev.t2t_supp)
154                         return 'U';
155                 else
156                         return 'T';
157         case DIRECT_ROUTING:
158                 return 'D';
159         case SUBTRACTIVE_ROUTING:
160                 return 'S';
161         default:
162                 return '?';
163         }
164 }
165
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168         /* This is detecting a failure to transmit initial dev to host
169          * FIS as described in section J.5 of sas-2 r16
170          */
171         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173                 return SAS_SATA_PENDING;
174         else
175                 return dr->attached_dev_type;
176 }
177
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179                            struct smp_disc_resp *disc_resp)
180 {
181         enum sas_device_type dev_type;
182         enum sas_linkrate linkrate;
183         u8 sas_addr[SAS_ADDR_SIZE];
184         struct discover_resp *dr = &disc_resp->disc;
185         struct sas_ha_struct *ha = dev->port->ha;
186         struct expander_device *ex = &dev->ex_dev;
187         struct ex_phy *phy = &ex->ex_phy[phy_id];
188         struct sas_rphy *rphy = dev->rphy;
189         bool new_phy = !phy->phy;
190         char *type;
191
192         if (new_phy) {
193                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194                         return;
195                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197                 /* FIXME: error_handling */
198                 BUG_ON(!phy->phy);
199         }
200
201         switch (disc_resp->result) {
202         case SMP_RESP_PHY_VACANT:
203                 phy->phy_state = PHY_VACANT;
204                 break;
205         default:
206                 phy->phy_state = PHY_NOT_PRESENT;
207                 break;
208         case SMP_RESP_FUNC_ACC:
209                 phy->phy_state = PHY_EMPTY; /* do not know yet */
210                 break;
211         }
212
213         /* check if anything important changed to squelch debug */
214         dev_type = phy->attached_dev_type;
215         linkrate  = phy->linkrate;
216         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218         /* Handle vacant phy - rest of dr data is not valid so skip it */
219         if (phy->phy_state == PHY_VACANT) {
220                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221                 phy->attached_dev_type = SAS_PHY_UNUSED;
222                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223                         phy->phy_id = phy_id;
224                         goto skip;
225                 } else
226                         goto out;
227         }
228
229         phy->attached_dev_type = to_dev_type(dr);
230         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231                 goto out;
232         phy->phy_id = phy_id;
233         phy->linkrate = dr->linkrate;
234         phy->attached_sata_host = dr->attached_sata_host;
235         phy->attached_sata_dev  = dr->attached_sata_dev;
236         phy->attached_sata_ps   = dr->attached_sata_ps;
237         phy->attached_iproto = dr->iproto << 1;
238         phy->attached_tproto = dr->tproto << 1;
239         /* help some expanders that fail to zero sas_address in the 'no
240          * device' case
241          */
242         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245         else
246                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247         phy->attached_phy_id = dr->attached_phy_id;
248         phy->phy_change_count = dr->change_count;
249         phy->routing_attr = dr->routing_attr;
250         phy->virtual = dr->virtual;
251         phy->last_da_index = -1;
252
253         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254         phy->phy->identify.device_type = dr->attached_dev_type;
255         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256         phy->phy->identify.target_port_protocols = phy->attached_tproto;
257         if (!phy->attached_tproto && dr->attached_sata_dev)
258                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259         phy->phy->identify.phy_identifier = phy_id;
260         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262         phy->phy->minimum_linkrate = dr->pmin_linkrate;
263         phy->phy->maximum_linkrate = dr->pmax_linkrate;
264         phy->phy->negotiated_linkrate = phy->linkrate;
265         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267  skip:
268         if (new_phy)
269                 if (sas_phy_add(phy->phy)) {
270                         sas_phy_free(phy->phy);
271                         return;
272                 }
273
274  out:
275         switch (phy->attached_dev_type) {
276         case SAS_SATA_PENDING:
277                 type = "stp pending";
278                 break;
279         case SAS_PHY_UNUSED:
280                 type = "no device";
281                 break;
282         case SAS_END_DEVICE:
283                 if (phy->attached_iproto) {
284                         if (phy->attached_tproto)
285                                 type = "host+target";
286                         else
287                                 type = "host";
288                 } else {
289                         if (dr->attached_sata_dev)
290                                 type = "stp";
291                         else
292                                 type = "ssp";
293                 }
294                 break;
295         case SAS_EDGE_EXPANDER_DEVICE:
296         case SAS_FANOUT_EXPANDER_DEVICE:
297                 type = "smp";
298                 break;
299         default:
300                 type = "unknown";
301         }
302
303         /* this routine is polled by libata error recovery so filter
304          * unimportant messages
305          */
306         if (new_phy || phy->attached_dev_type != dev_type ||
307             phy->linkrate != linkrate ||
308             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309                 /* pass */;
310         else
311                 return;
312
313         /* if the attached device type changed and ata_eh is active,
314          * make sure we run revalidation when eh completes (see:
315          * sas_enable_revalidation)
316          */
317         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322                  SAS_ADDR(dev->sas_addr), phy->phy_id,
323                  sas_route_char(dev, phy), phy->linkrate,
324                  SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331         struct domain_device *dev;
332         struct sas_rphy *rphy;
333
334         if (!ex_phy->port)
335                 return NULL;
336
337         rphy = ex_phy->port->rphy;
338         if (!rphy)
339                 return NULL;
340
341         dev = sas_find_dev_by_rphy(rphy);
342
343         if (dev && dev_is_sata(dev))
344                 return dev;
345
346         return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353                                       struct smp_disc_resp *disc_resp,
354                                       int single)
355 {
356         struct discover_resp *dr = &disc_resp->disc;
357         int res;
358
359         disc_req[9] = single;
360
361         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362                                disc_resp, DISCOVER_RESP_SIZE);
363         if (res)
364                 return res;
365         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366                 pr_notice("Found loopback topology, just ignore it!\n");
367                 return 0;
368         }
369         sas_set_ex_phy(dev, single, disc_resp);
370         return 0;
371 }
372
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375         struct expander_device *ex = &dev->ex_dev;
376         int  res = 0;
377         u8   *disc_req;
378         struct smp_disc_resp *disc_resp;
379
380         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381         if (!disc_req)
382                 return -ENOMEM;
383
384         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385         if (!disc_resp) {
386                 kfree(disc_req);
387                 return -ENOMEM;
388         }
389
390         disc_req[1] = SMP_DISCOVER;
391
392         if (0 <= single && single < ex->num_phys) {
393                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394         } else {
395                 int i;
396
397                 for (i = 0; i < ex->num_phys; i++) {
398                         res = sas_ex_phy_discover_helper(dev, disc_req,
399                                                          disc_resp, i);
400                         if (res)
401                                 goto out_err;
402                 }
403         }
404 out_err:
405         kfree(disc_resp);
406         kfree(disc_req);
407         return res;
408 }
409
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412         struct expander_device *ex = &dev->ex_dev;
413         int res;
414
415         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416         if (!ex->ex_phy)
417                 return -ENOMEM;
418
419         res = sas_ex_phy_discover(dev, -1);
420         if (res)
421                 goto out_err;
422
423         return 0;
424  out_err:
425         kfree(ex->ex_phy);
426         ex->ex_phy = NULL;
427         return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 #define RG_REQ_SIZE   8
433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
434
435 static int sas_ex_general(struct domain_device *dev)
436 {
437         u8 *rg_req;
438         struct smp_rg_resp *rg_resp;
439         struct report_general_resp *rg;
440         int res;
441         int i;
442
443         rg_req = alloc_smp_req(RG_REQ_SIZE);
444         if (!rg_req)
445                 return -ENOMEM;
446
447         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448         if (!rg_resp) {
449                 kfree(rg_req);
450                 return -ENOMEM;
451         }
452
453         rg_req[1] = SMP_REPORT_GENERAL;
454
455         for (i = 0; i < 5; i++) {
456                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457                                        RG_RESP_SIZE);
458
459                 if (res) {
460                         pr_notice("RG to ex %016llx failed:0x%x\n",
461                                   SAS_ADDR(dev->sas_addr), res);
462                         goto out;
463                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
466                         res = rg_resp->result;
467                         goto out;
468                 }
469
470                 rg = &rg_resp->rg;
471                 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472                 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473                 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474                 dev->ex_dev.t2t_supp = rg->t2t_supp;
475                 dev->ex_dev.conf_route_table = rg->conf_route_table;
476                 dev->ex_dev.configuring = rg->configuring;
477                 memcpy(dev->ex_dev.enclosure_logical_id,
478                        rg->enclosure_logical_id, 8);
479
480                 if (dev->ex_dev.configuring) {
481                         pr_debug("RG: ex %016llx self-configuring...\n",
482                                  SAS_ADDR(dev->sas_addr));
483                         schedule_timeout_interruptible(5*HZ);
484                 } else
485                         break;
486         }
487 out:
488         kfree(rg_req);
489         kfree(rg_resp);
490         return res;
491 }
492
493 static void ex_assign_manuf_info(struct domain_device *dev, void
494                                         *_mi_resp)
495 {
496         u8 *mi_resp = _mi_resp;
497         struct sas_rphy *rphy = dev->rphy;
498         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502         memcpy(edev->product_rev, mi_resp + 36,
503                SAS_EXPANDER_PRODUCT_REV_LEN);
504
505         if (mi_resp[8] & 1) {
506                 memcpy(edev->component_vendor_id, mi_resp + 40,
507                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509                 edev->component_revision_id = mi_resp[50];
510         }
511 }
512
513 #define MI_REQ_SIZE   8
514 #define MI_RESP_SIZE 64
515
516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518         u8 *mi_req;
519         u8 *mi_resp;
520         int res;
521
522         mi_req = alloc_smp_req(MI_REQ_SIZE);
523         if (!mi_req)
524                 return -ENOMEM;
525
526         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527         if (!mi_resp) {
528                 kfree(mi_req);
529                 return -ENOMEM;
530         }
531
532         mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535         if (res) {
536                 pr_notice("MI: ex %016llx failed:0x%x\n",
537                           SAS_ADDR(dev->sas_addr), res);
538                 goto out;
539         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
542                 goto out;
543         }
544
545         ex_assign_manuf_info(dev, mi_resp);
546 out:
547         kfree(mi_req);
548         kfree(mi_resp);
549         return res;
550 }
551
552 #define PC_REQ_SIZE  44
553 #define PC_RESP_SIZE 8
554
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556                         enum phy_func phy_func,
557                         struct sas_phy_linkrates *rates)
558 {
559         u8 *pc_req;
560         u8 *pc_resp;
561         int res;
562
563         pc_req = alloc_smp_req(PC_REQ_SIZE);
564         if (!pc_req)
565                 return -ENOMEM;
566
567         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568         if (!pc_resp) {
569                 kfree(pc_req);
570                 return -ENOMEM;
571         }
572
573         pc_req[1] = SMP_PHY_CONTROL;
574         pc_req[9] = phy_id;
575         pc_req[10] = phy_func;
576         if (rates) {
577                 pc_req[32] = rates->minimum_linkrate << 4;
578                 pc_req[33] = rates->maximum_linkrate << 4;
579         }
580
581         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582         if (res) {
583                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584                        SAS_ADDR(dev->sas_addr), phy_id, res);
585         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588                 res = pc_resp[2];
589         }
590         kfree(pc_resp);
591         kfree(pc_req);
592         return res;
593 }
594
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597         struct expander_device *ex = &dev->ex_dev;
598         struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601         phy->linkrate = SAS_PHY_DISABLED;
602 }
603
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606         struct expander_device *ex = &dev->ex_dev;
607         int i;
608
609         for (i = 0; i < ex->num_phys; i++) {
610                 struct ex_phy *phy = &ex->ex_phy[i];
611
612                 if (phy->phy_state == PHY_VACANT ||
613                     phy->phy_state == PHY_NOT_PRESENT)
614                         continue;
615
616                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617                         sas_ex_disable_phy(dev, i);
618         }
619 }
620
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622                                             u8 *sas_addr)
623 {
624         struct domain_device *dev;
625
626         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627                 return 1;
628         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630                         return 1;
631         }
632         return 0;
633 }
634
635 #define RPEL_REQ_SIZE   16
636 #define RPEL_RESP_SIZE  32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639         int res;
640         u8 *req;
641         u8 *resp;
642         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645         req = alloc_smp_req(RPEL_REQ_SIZE);
646         if (!req)
647                 return -ENOMEM;
648
649         resp = alloc_smp_resp(RPEL_RESP_SIZE);
650         if (!resp) {
651                 kfree(req);
652                 return -ENOMEM;
653         }
654
655         req[1] = SMP_REPORT_PHY_ERR_LOG;
656         req[9] = phy->number;
657
658         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659                                resp, RPEL_RESP_SIZE);
660
661         if (res)
662                 goto out;
663
664         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669  out:
670         kfree(req);
671         kfree(resp);
672         return res;
673
674 }
675
676 #ifdef CONFIG_SCSI_SAS_ATA
677
678 #define RPS_REQ_SIZE  16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682                             struct smp_rps_resp *rps_resp)
683 {
684         int res;
685         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686         u8 *resp = (u8 *)rps_resp;
687
688         if (!rps_req)
689                 return -ENOMEM;
690
691         rps_req[1] = SMP_REPORT_PHY_SATA;
692         rps_req[9] = phy_id;
693
694         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695                                rps_resp, RPS_RESP_SIZE);
696
697         /* 0x34 is the FIS type for the D2H fis.  There's a potential
698          * standards cockup here.  sas-2 explicitly specifies the FIS
699          * should be encoded so that FIS type is in resp[24].
700          * However, some expanders endian reverse this.  Undo the
701          * reversal here */
702         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703                 int i;
704
705                 for (i = 0; i < 5; i++) {
706                         int j = 24 + (i*4);
707                         u8 a, b;
708                         a = resp[j + 0];
709                         b = resp[j + 1];
710                         resp[j + 0] = resp[j + 3];
711                         resp[j + 1] = resp[j + 2];
712                         resp[j + 2] = b;
713                         resp[j + 3] = a;
714                 }
715         }
716
717         kfree(rps_req);
718         return res;
719 }
720 #endif
721
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723                                        struct domain_device *child,
724                                        struct ex_phy *parent_phy)
725 {
726         struct expander_device *parent_ex = &parent->ex_dev;
727         struct sas_port *port;
728         int i;
729
730         child->pathways = 0;
731
732         port = parent_phy->port;
733
734         for (i = 0; i < parent_ex->num_phys; i++) {
735                 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737                 if (phy->phy_state == PHY_VACANT ||
738                     phy->phy_state == PHY_NOT_PRESENT)
739                         continue;
740
741                 if (sas_phy_match_dev_addr(child, phy)) {
742                         child->min_linkrate = min(parent->min_linkrate,
743                                                   phy->linkrate);
744                         child->max_linkrate = max(parent->max_linkrate,
745                                                   phy->linkrate);
746                         child->pathways++;
747                         sas_port_add_phy(port, phy->phy);
748                 }
749         }
750         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
751         child->pathways = min(child->pathways, parent->pathways);
752 }
753
754 static struct domain_device *sas_ex_discover_end_dev(
755         struct domain_device *parent, int phy_id)
756 {
757         struct expander_device *parent_ex = &parent->ex_dev;
758         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
759         struct domain_device *child = NULL;
760         struct sas_rphy *rphy;
761         int res;
762
763         if (phy->attached_sata_host || phy->attached_sata_ps)
764                 return NULL;
765
766         child = sas_alloc_device();
767         if (!child)
768                 return NULL;
769
770         kref_get(&parent->kref);
771         child->parent = parent;
772         child->port   = parent->port;
773         child->iproto = phy->attached_iproto;
774         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
775         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
776         if (!phy->port) {
777                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
778                 if (unlikely(!phy->port))
779                         goto out_err;
780                 if (unlikely(sas_port_add(phy->port) != 0)) {
781                         sas_port_free(phy->port);
782                         goto out_err;
783                 }
784         }
785         sas_ex_get_linkrate(parent, child, phy);
786         sas_device_set_phy(child, phy->port);
787
788         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
789                 res = sas_ata_add_dev(parent, phy, child, phy_id);
790                 if (res)
791                         goto out_free;
792         } else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
793                 child->dev_type = SAS_END_DEVICE;
794                 rphy = sas_end_device_alloc(phy->port);
795                 /* FIXME: error handling */
796                 if (unlikely(!rphy))
797                         goto out_free;
798                 child->tproto = phy->attached_tproto;
799                 sas_init_dev(child);
800
801                 child->rphy = rphy;
802                 get_device(&rphy->dev);
803                 rphy->identify.phy_identifier = phy_id;
804                 sas_fill_in_rphy(child, rphy);
805
806                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
807
808                 res = sas_discover_end_dev(child);
809                 if (res) {
810                         pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
811                                   SAS_ADDR(child->sas_addr),
812                                   SAS_ADDR(parent->sas_addr), phy_id, res);
813                         goto out_list_del;
814                 }
815         } else {
816                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
817                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
818                           phy_id);
819                 goto out_free;
820         }
821
822         list_add_tail(&child->siblings, &parent_ex->children);
823         return child;
824
825  out_list_del:
826         sas_rphy_free(child->rphy);
827         list_del(&child->disco_list_node);
828  out_free:
829         sas_port_delete(phy->port);
830  out_err:
831         phy->port = NULL;
832         sas_put_device(child);
833         return NULL;
834 }
835
836 /* See if this phy is part of a wide port */
837 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
838 {
839         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
840         int i;
841
842         for (i = 0; i < parent->ex_dev.num_phys; i++) {
843                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
844
845                 if (ephy == phy)
846                         continue;
847
848                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
849                             SAS_ADDR_SIZE) && ephy->port) {
850                         sas_port_add_phy(ephy->port, phy->phy);
851                         phy->port = ephy->port;
852                         phy->phy_state = PHY_DEVICE_DISCOVERED;
853                         return true;
854                 }
855         }
856
857         return false;
858 }
859
860 static struct domain_device *sas_ex_discover_expander(
861         struct domain_device *parent, int phy_id)
862 {
863         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
864         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
865         struct domain_device *child = NULL;
866         struct sas_rphy *rphy;
867         struct sas_expander_device *edev;
868         struct asd_sas_port *port;
869         int res;
870
871         if (phy->routing_attr == DIRECT_ROUTING) {
872                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
873                         SAS_ADDR(parent->sas_addr), phy_id,
874                         SAS_ADDR(phy->attached_sas_addr),
875                         phy->attached_phy_id);
876                 return NULL;
877         }
878         child = sas_alloc_device();
879         if (!child)
880                 return NULL;
881
882         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
883         /* FIXME: better error handling */
884         BUG_ON(sas_port_add(phy->port) != 0);
885
886
887         switch (phy->attached_dev_type) {
888         case SAS_EDGE_EXPANDER_DEVICE:
889                 rphy = sas_expander_alloc(phy->port,
890                                           SAS_EDGE_EXPANDER_DEVICE);
891                 break;
892         case SAS_FANOUT_EXPANDER_DEVICE:
893                 rphy = sas_expander_alloc(phy->port,
894                                           SAS_FANOUT_EXPANDER_DEVICE);
895                 break;
896         default:
897                 rphy = NULL;    /* shut gcc up */
898                 BUG();
899         }
900         port = parent->port;
901         child->rphy = rphy;
902         get_device(&rphy->dev);
903         edev = rphy_to_expander_device(rphy);
904         child->dev_type = phy->attached_dev_type;
905         kref_get(&parent->kref);
906         child->parent = parent;
907         child->port = port;
908         child->iproto = phy->attached_iproto;
909         child->tproto = phy->attached_tproto;
910         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
911         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
912         sas_ex_get_linkrate(parent, child, phy);
913         edev->level = parent_ex->level + 1;
914         parent->port->disc.max_level = max(parent->port->disc.max_level,
915                                            edev->level);
916         sas_init_dev(child);
917         sas_fill_in_rphy(child, rphy);
918         sas_rphy_add(rphy);
919
920         spin_lock_irq(&parent->port->dev_list_lock);
921         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
922         spin_unlock_irq(&parent->port->dev_list_lock);
923
924         res = sas_discover_expander(child);
925         if (res) {
926                 sas_rphy_delete(rphy);
927                 spin_lock_irq(&parent->port->dev_list_lock);
928                 list_del(&child->dev_list_node);
929                 spin_unlock_irq(&parent->port->dev_list_lock);
930                 sas_put_device(child);
931                 sas_port_delete(phy->port);
932                 phy->port = NULL;
933                 return NULL;
934         }
935         list_add_tail(&child->siblings, &parent->ex_dev.children);
936         return child;
937 }
938
939 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
940 {
941         struct expander_device *ex = &dev->ex_dev;
942         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
943         struct domain_device *child = NULL;
944         int res = 0;
945
946         /* Phy state */
947         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
948                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
949                         res = sas_ex_phy_discover(dev, phy_id);
950                 if (res)
951                         return res;
952         }
953
954         /* Parent and domain coherency */
955         if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
956                 sas_add_parent_port(dev, phy_id);
957                 return 0;
958         }
959         if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
960                 sas_add_parent_port(dev, phy_id);
961                 if (ex_phy->routing_attr == TABLE_ROUTING)
962                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
963                 return 0;
964         }
965
966         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
967                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
968
969         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
970                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
971                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
972                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
973                 }
974                 return 0;
975         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
976                 return 0;
977
978         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
979             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
980             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
981             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
982                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
983                         ex_phy->attached_dev_type,
984                         SAS_ADDR(dev->sas_addr),
985                         phy_id);
986                 return 0;
987         }
988
989         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
990         if (res) {
991                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
992                           SAS_ADDR(ex_phy->attached_sas_addr), res);
993                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
994                 return res;
995         }
996
997         if (sas_ex_join_wide_port(dev, phy_id)) {
998                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
999                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1000                 return res;
1001         }
1002
1003         switch (ex_phy->attached_dev_type) {
1004         case SAS_END_DEVICE:
1005         case SAS_SATA_PENDING:
1006                 child = sas_ex_discover_end_dev(dev, phy_id);
1007                 break;
1008         case SAS_FANOUT_EXPANDER_DEVICE:
1009                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1010                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1011                                  SAS_ADDR(ex_phy->attached_sas_addr),
1012                                  ex_phy->attached_phy_id,
1013                                  SAS_ADDR(dev->sas_addr),
1014                                  phy_id);
1015                         sas_ex_disable_phy(dev, phy_id);
1016                         return res;
1017                 } else
1018                         memcpy(dev->port->disc.fanout_sas_addr,
1019                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1020                 fallthrough;
1021         case SAS_EDGE_EXPANDER_DEVICE:
1022                 child = sas_ex_discover_expander(dev, phy_id);
1023                 break;
1024         default:
1025                 break;
1026         }
1027
1028         if (!child)
1029                 pr_notice("ex %016llx phy%02d failed to discover\n",
1030                           SAS_ADDR(dev->sas_addr), phy_id);
1031         return res;
1032 }
1033
1034 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1035 {
1036         struct expander_device *ex = &dev->ex_dev;
1037         int i;
1038
1039         for (i = 0; i < ex->num_phys; i++) {
1040                 struct ex_phy *phy = &ex->ex_phy[i];
1041
1042                 if (phy->phy_state == PHY_VACANT ||
1043                     phy->phy_state == PHY_NOT_PRESENT)
1044                         continue;
1045
1046                 if (dev_is_expander(phy->attached_dev_type) &&
1047                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1048
1049                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1050
1051                         return 1;
1052                 }
1053         }
1054         return 0;
1055 }
1056
1057 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1058 {
1059         struct expander_device *ex = &dev->ex_dev;
1060         struct domain_device *child;
1061         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1062
1063         list_for_each_entry(child, &ex->children, siblings) {
1064                 if (!dev_is_expander(child->dev_type))
1065                         continue;
1066                 if (sub_addr[0] == 0) {
1067                         sas_find_sub_addr(child, sub_addr);
1068                         continue;
1069                 } else {
1070                         u8 s2[SAS_ADDR_SIZE];
1071
1072                         if (sas_find_sub_addr(child, s2) &&
1073                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1074
1075                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1076                                           SAS_ADDR(dev->sas_addr),
1077                                           SAS_ADDR(child->sas_addr),
1078                                           SAS_ADDR(s2),
1079                                           SAS_ADDR(sub_addr));
1080
1081                                 sas_ex_disable_port(child, s2);
1082                         }
1083                 }
1084         }
1085         return 0;
1086 }
1087 /**
1088  * sas_ex_discover_devices - discover devices attached to this expander
1089  * @dev: pointer to the expander domain device
1090  * @single: if you want to do a single phy, else set to -1;
1091  *
1092  * Configure this expander for use with its devices and register the
1093  * devices of this expander.
1094  */
1095 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1096 {
1097         struct expander_device *ex = &dev->ex_dev;
1098         int i = 0, end = ex->num_phys;
1099         int res = 0;
1100
1101         if (0 <= single && single < end) {
1102                 i = single;
1103                 end = i+1;
1104         }
1105
1106         for ( ; i < end; i++) {
1107                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1108
1109                 if (ex_phy->phy_state == PHY_VACANT ||
1110                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1111                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1112                         continue;
1113
1114                 switch (ex_phy->linkrate) {
1115                 case SAS_PHY_DISABLED:
1116                 case SAS_PHY_RESET_PROBLEM:
1117                 case SAS_SATA_PORT_SELECTOR:
1118                         continue;
1119                 default:
1120                         res = sas_ex_discover_dev(dev, i);
1121                         if (res)
1122                                 break;
1123                         continue;
1124                 }
1125         }
1126
1127         if (!res)
1128                 sas_check_level_subtractive_boundary(dev);
1129
1130         return res;
1131 }
1132
1133 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1134 {
1135         struct expander_device *ex = &dev->ex_dev;
1136         int i;
1137         u8  *sub_sas_addr = NULL;
1138
1139         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1140                 return 0;
1141
1142         for (i = 0; i < ex->num_phys; i++) {
1143                 struct ex_phy *phy = &ex->ex_phy[i];
1144
1145                 if (phy->phy_state == PHY_VACANT ||
1146                     phy->phy_state == PHY_NOT_PRESENT)
1147                         continue;
1148
1149                 if (dev_is_expander(phy->attached_dev_type) &&
1150                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1151
1152                         if (!sub_sas_addr)
1153                                 sub_sas_addr = &phy->attached_sas_addr[0];
1154                         else if (SAS_ADDR(sub_sas_addr) !=
1155                                  SAS_ADDR(phy->attached_sas_addr)) {
1156
1157                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1158                                           SAS_ADDR(dev->sas_addr), i,
1159                                           SAS_ADDR(phy->attached_sas_addr),
1160                                           SAS_ADDR(sub_sas_addr));
1161                                 sas_ex_disable_phy(dev, i);
1162                         }
1163                 }
1164         }
1165         return 0;
1166 }
1167
1168 static void sas_print_parent_topology_bug(struct domain_device *child,
1169                                                  struct ex_phy *parent_phy,
1170                                                  struct ex_phy *child_phy)
1171 {
1172         static const char *ex_type[] = {
1173                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1174                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1175         };
1176         struct domain_device *parent = child->parent;
1177
1178         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1179                   ex_type[parent->dev_type],
1180                   SAS_ADDR(parent->sas_addr),
1181                   parent_phy->phy_id,
1182
1183                   ex_type[child->dev_type],
1184                   SAS_ADDR(child->sas_addr),
1185                   child_phy->phy_id,
1186
1187                   sas_route_char(parent, parent_phy),
1188                   sas_route_char(child, child_phy));
1189 }
1190
1191 static int sas_check_eeds(struct domain_device *child,
1192                                  struct ex_phy *parent_phy,
1193                                  struct ex_phy *child_phy)
1194 {
1195         int res = 0;
1196         struct domain_device *parent = child->parent;
1197
1198         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1199                 res = -ENODEV;
1200                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1201                         SAS_ADDR(parent->sas_addr),
1202                         parent_phy->phy_id,
1203                         SAS_ADDR(child->sas_addr),
1204                         child_phy->phy_id,
1205                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1206         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1207                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1208                        SAS_ADDR_SIZE);
1209                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1210                        SAS_ADDR_SIZE);
1211         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1212                     SAS_ADDR(parent->sas_addr)) ||
1213                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1214                     SAS_ADDR(child->sas_addr)))
1215                    &&
1216                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1217                      SAS_ADDR(parent->sas_addr)) ||
1218                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1219                      SAS_ADDR(child->sas_addr))))
1220                 ;
1221         else {
1222                 res = -ENODEV;
1223                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1224                         SAS_ADDR(parent->sas_addr),
1225                         parent_phy->phy_id,
1226                         SAS_ADDR(child->sas_addr),
1227                         child_phy->phy_id);
1228         }
1229
1230         return res;
1231 }
1232
1233 /* Here we spill over 80 columns.  It is intentional.
1234  */
1235 static int sas_check_parent_topology(struct domain_device *child)
1236 {
1237         struct expander_device *child_ex = &child->ex_dev;
1238         struct expander_device *parent_ex;
1239         int i;
1240         int res = 0;
1241
1242         if (!child->parent)
1243                 return 0;
1244
1245         if (!dev_is_expander(child->parent->dev_type))
1246                 return 0;
1247
1248         parent_ex = &child->parent->ex_dev;
1249
1250         for (i = 0; i < parent_ex->num_phys; i++) {
1251                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1252                 struct ex_phy *child_phy;
1253
1254                 if (parent_phy->phy_state == PHY_VACANT ||
1255                     parent_phy->phy_state == PHY_NOT_PRESENT)
1256                         continue;
1257
1258                 if (!sas_phy_match_dev_addr(child, parent_phy))
1259                         continue;
1260
1261                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1262
1263                 switch (child->parent->dev_type) {
1264                 case SAS_EDGE_EXPANDER_DEVICE:
1265                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1266                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1267                                     child_phy->routing_attr != TABLE_ROUTING) {
1268                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1269                                         res = -ENODEV;
1270                                 }
1271                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1272                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1273                                         res = sas_check_eeds(child, parent_phy, child_phy);
1274                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1275                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1276                                         res = -ENODEV;
1277                                 }
1278                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1279                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1280                                     (child_phy->routing_attr == TABLE_ROUTING &&
1281                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1282                                         /* All good */;
1283                                 } else {
1284                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1285                                         res = -ENODEV;
1286                                 }
1287                         }
1288                         break;
1289                 case SAS_FANOUT_EXPANDER_DEVICE:
1290                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1291                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1292                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1293                                 res = -ENODEV;
1294                         }
1295                         break;
1296                 default:
1297                         break;
1298                 }
1299         }
1300
1301         return res;
1302 }
1303
1304 #define RRI_REQ_SIZE  16
1305 #define RRI_RESP_SIZE 44
1306
1307 static int sas_configure_present(struct domain_device *dev, int phy_id,
1308                                  u8 *sas_addr, int *index, int *present)
1309 {
1310         int i, res = 0;
1311         struct expander_device *ex = &dev->ex_dev;
1312         struct ex_phy *phy = &ex->ex_phy[phy_id];
1313         u8 *rri_req;
1314         u8 *rri_resp;
1315
1316         *present = 0;
1317         *index = 0;
1318
1319         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1320         if (!rri_req)
1321                 return -ENOMEM;
1322
1323         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1324         if (!rri_resp) {
1325                 kfree(rri_req);
1326                 return -ENOMEM;
1327         }
1328
1329         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1330         rri_req[9] = phy_id;
1331
1332         for (i = 0; i < ex->max_route_indexes ; i++) {
1333                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1334                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1335                                        RRI_RESP_SIZE);
1336                 if (res)
1337                         goto out;
1338                 res = rri_resp[2];
1339                 if (res == SMP_RESP_NO_INDEX) {
1340                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1341                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1342                         goto out;
1343                 } else if (res != SMP_RESP_FUNC_ACC) {
1344                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1345                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1346                                   i, res);
1347                         goto out;
1348                 }
1349                 if (SAS_ADDR(sas_addr) != 0) {
1350                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1351                                 *index = i;
1352                                 if ((rri_resp[12] & 0x80) == 0x80)
1353                                         *present = 0;
1354                                 else
1355                                         *present = 1;
1356                                 goto out;
1357                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1358                                 *index = i;
1359                                 *present = 0;
1360                                 goto out;
1361                         }
1362                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1363                            phy->last_da_index < i) {
1364                         phy->last_da_index = i;
1365                         *index = i;
1366                         *present = 0;
1367                         goto out;
1368                 }
1369         }
1370         res = -1;
1371 out:
1372         kfree(rri_req);
1373         kfree(rri_resp);
1374         return res;
1375 }
1376
1377 #define CRI_REQ_SIZE  44
1378 #define CRI_RESP_SIZE  8
1379
1380 static int sas_configure_set(struct domain_device *dev, int phy_id,
1381                              u8 *sas_addr, int index, int include)
1382 {
1383         int res;
1384         u8 *cri_req;
1385         u8 *cri_resp;
1386
1387         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1388         if (!cri_req)
1389                 return -ENOMEM;
1390
1391         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1392         if (!cri_resp) {
1393                 kfree(cri_req);
1394                 return -ENOMEM;
1395         }
1396
1397         cri_req[1] = SMP_CONF_ROUTE_INFO;
1398         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1399         cri_req[9] = phy_id;
1400         if (SAS_ADDR(sas_addr) == 0 || !include)
1401                 cri_req[12] |= 0x80;
1402         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1403
1404         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1405                                CRI_RESP_SIZE);
1406         if (res)
1407                 goto out;
1408         res = cri_resp[2];
1409         if (res == SMP_RESP_NO_INDEX) {
1410                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1411                         SAS_ADDR(dev->sas_addr), phy_id, index);
1412         }
1413 out:
1414         kfree(cri_req);
1415         kfree(cri_resp);
1416         return res;
1417 }
1418
1419 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1420                                     u8 *sas_addr, int include)
1421 {
1422         int index;
1423         int present;
1424         int res;
1425
1426         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1427         if (res)
1428                 return res;
1429         if (include ^ present)
1430                 return sas_configure_set(dev, phy_id, sas_addr, index,
1431                                          include);
1432
1433         return res;
1434 }
1435
1436 /**
1437  * sas_configure_parent - configure routing table of parent
1438  * @parent: parent expander
1439  * @child: child expander
1440  * @sas_addr: SAS port identifier of device directly attached to child
1441  * @include: whether or not to include @child in the expander routing table
1442  */
1443 static int sas_configure_parent(struct domain_device *parent,
1444                                 struct domain_device *child,
1445                                 u8 *sas_addr, int include)
1446 {
1447         struct expander_device *ex_parent = &parent->ex_dev;
1448         int res = 0;
1449         int i;
1450
1451         if (parent->parent) {
1452                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1453                                            include);
1454                 if (res)
1455                         return res;
1456         }
1457
1458         if (ex_parent->conf_route_table == 0) {
1459                 pr_debug("ex %016llx has self-configuring routing table\n",
1460                          SAS_ADDR(parent->sas_addr));
1461                 return 0;
1462         }
1463
1464         for (i = 0; i < ex_parent->num_phys; i++) {
1465                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1466
1467                 if ((phy->routing_attr == TABLE_ROUTING) &&
1468                     sas_phy_match_dev_addr(child, phy)) {
1469                         res = sas_configure_phy(parent, i, sas_addr, include);
1470                         if (res)
1471                                 return res;
1472                 }
1473         }
1474
1475         return res;
1476 }
1477
1478 /**
1479  * sas_configure_routing - configure routing
1480  * @dev: expander device
1481  * @sas_addr: port identifier of device directly attached to the expander device
1482  */
1483 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1484 {
1485         if (dev->parent)
1486                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1487         return 0;
1488 }
1489
1490 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1491 {
1492         if (dev->parent)
1493                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1494         return 0;
1495 }
1496
1497 /**
1498  * sas_discover_expander - expander discovery
1499  * @dev: pointer to expander domain device
1500  *
1501  * See comment in sas_discover_sata().
1502  */
1503 static int sas_discover_expander(struct domain_device *dev)
1504 {
1505         int res;
1506
1507         res = sas_notify_lldd_dev_found(dev);
1508         if (res)
1509                 return res;
1510
1511         res = sas_ex_general(dev);
1512         if (res)
1513                 goto out_err;
1514         res = sas_ex_manuf_info(dev);
1515         if (res)
1516                 goto out_err;
1517
1518         res = sas_expander_discover(dev);
1519         if (res) {
1520                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1521                         SAS_ADDR(dev->sas_addr), res);
1522                 goto out_err;
1523         }
1524
1525         sas_check_ex_subtractive_boundary(dev);
1526         res = sas_check_parent_topology(dev);
1527         if (res)
1528                 goto out_err;
1529         return 0;
1530 out_err:
1531         sas_notify_lldd_dev_gone(dev);
1532         return res;
1533 }
1534
1535 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1536 {
1537         int res = 0;
1538         struct domain_device *dev;
1539
1540         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1541                 if (dev_is_expander(dev->dev_type)) {
1542                         struct sas_expander_device *ex =
1543                                 rphy_to_expander_device(dev->rphy);
1544
1545                         if (level == ex->level)
1546                                 res = sas_ex_discover_devices(dev, -1);
1547                         else if (level > 0)
1548                                 res = sas_ex_discover_devices(port->port_dev, -1);
1549
1550                 }
1551         }
1552
1553         return res;
1554 }
1555
1556 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1557 {
1558         int res;
1559         int level;
1560
1561         do {
1562                 level = port->disc.max_level;
1563                 res = sas_ex_level_discovery(port, level);
1564                 mb();
1565         } while (level < port->disc.max_level);
1566
1567         return res;
1568 }
1569
1570 int sas_discover_root_expander(struct domain_device *dev)
1571 {
1572         int res;
1573         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1574
1575         res = sas_rphy_add(dev->rphy);
1576         if (res)
1577                 goto out_err;
1578
1579         ex->level = dev->port->disc.max_level; /* 0 */
1580         res = sas_discover_expander(dev);
1581         if (res)
1582                 goto out_err2;
1583
1584         sas_ex_bfs_disc(dev->port);
1585
1586         return res;
1587
1588 out_err2:
1589         sas_rphy_remove(dev->rphy);
1590 out_err:
1591         return res;
1592 }
1593
1594 /* ---------- Domain revalidation ---------- */
1595
1596 static int sas_get_phy_discover(struct domain_device *dev,
1597                                 int phy_id, struct smp_disc_resp *disc_resp)
1598 {
1599         int res;
1600         u8 *disc_req;
1601
1602         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1603         if (!disc_req)
1604                 return -ENOMEM;
1605
1606         disc_req[1] = SMP_DISCOVER;
1607         disc_req[9] = phy_id;
1608
1609         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1610                                disc_resp, DISCOVER_RESP_SIZE);
1611         if (res)
1612                 goto out;
1613         if (disc_resp->result != SMP_RESP_FUNC_ACC)
1614                 res = disc_resp->result;
1615 out:
1616         kfree(disc_req);
1617         return res;
1618 }
1619
1620 static int sas_get_phy_change_count(struct domain_device *dev,
1621                                     int phy_id, int *pcc)
1622 {
1623         int res;
1624         struct smp_disc_resp *disc_resp;
1625
1626         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1627         if (!disc_resp)
1628                 return -ENOMEM;
1629
1630         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1631         if (!res)
1632                 *pcc = disc_resp->disc.change_count;
1633
1634         kfree(disc_resp);
1635         return res;
1636 }
1637
1638 int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1639                              u8 *sas_addr, enum sas_device_type *type)
1640 {
1641         int res;
1642         struct smp_disc_resp *disc_resp;
1643
1644         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1645         if (!disc_resp)
1646                 return -ENOMEM;
1647
1648         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1649         if (res == 0) {
1650                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1651                        SAS_ADDR_SIZE);
1652                 *type = to_dev_type(&disc_resp->disc);
1653                 if (*type == 0)
1654                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1655         }
1656         kfree(disc_resp);
1657         return res;
1658 }
1659
1660 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1661                               int from_phy, bool update)
1662 {
1663         struct expander_device *ex = &dev->ex_dev;
1664         int res = 0;
1665         int i;
1666
1667         for (i = from_phy; i < ex->num_phys; i++) {
1668                 int phy_change_count = 0;
1669
1670                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1671                 switch (res) {
1672                 case SMP_RESP_PHY_VACANT:
1673                 case SMP_RESP_NO_PHY:
1674                         continue;
1675                 case SMP_RESP_FUNC_ACC:
1676                         break;
1677                 default:
1678                         return res;
1679                 }
1680
1681                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1682                         if (update)
1683                                 ex->ex_phy[i].phy_change_count =
1684                                         phy_change_count;
1685                         *phy_id = i;
1686                         return 0;
1687                 }
1688         }
1689         return 0;
1690 }
1691
1692 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1693 {
1694         int res;
1695         u8  *rg_req;
1696         struct smp_rg_resp  *rg_resp;
1697
1698         rg_req = alloc_smp_req(RG_REQ_SIZE);
1699         if (!rg_req)
1700                 return -ENOMEM;
1701
1702         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1703         if (!rg_resp) {
1704                 kfree(rg_req);
1705                 return -ENOMEM;
1706         }
1707
1708         rg_req[1] = SMP_REPORT_GENERAL;
1709
1710         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1711                                RG_RESP_SIZE);
1712         if (res)
1713                 goto out;
1714         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1715                 res = rg_resp->result;
1716                 goto out;
1717         }
1718
1719         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1720 out:
1721         kfree(rg_resp);
1722         kfree(rg_req);
1723         return res;
1724 }
1725 /**
1726  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1727  * @dev:domain device to be detect.
1728  * @src_dev: the device which originated BROADCAST(CHANGE).
1729  *
1730  * Add self-configuration expander support. Suppose two expander cascading,
1731  * when the first level expander is self-configuring, hotplug the disks in
1732  * second level expander, BROADCAST(CHANGE) will not only be originated
1733  * in the second level expander, but also be originated in the first level
1734  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1735  * expander changed count in two level expanders will all increment at least
1736  * once, but the phy which chang count has changed is the source device which
1737  * we concerned.
1738  */
1739
1740 static int sas_find_bcast_dev(struct domain_device *dev,
1741                               struct domain_device **src_dev)
1742 {
1743         struct expander_device *ex = &dev->ex_dev;
1744         int ex_change_count = -1;
1745         int phy_id = -1;
1746         int res;
1747         struct domain_device *ch;
1748
1749         res = sas_get_ex_change_count(dev, &ex_change_count);
1750         if (res)
1751                 goto out;
1752         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1753                 /* Just detect if this expander phys phy change count changed,
1754                 * in order to determine if this expander originate BROADCAST,
1755                 * and do not update phy change count field in our structure.
1756                 */
1757                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1758                 if (phy_id != -1) {
1759                         *src_dev = dev;
1760                         ex->ex_change_count = ex_change_count;
1761                         pr_info("ex %016llx phy%02d change count has changed\n",
1762                                 SAS_ADDR(dev->sas_addr), phy_id);
1763                         return res;
1764                 } else
1765                         pr_info("ex %016llx phys DID NOT change\n",
1766                                 SAS_ADDR(dev->sas_addr));
1767         }
1768         list_for_each_entry(ch, &ex->children, siblings) {
1769                 if (dev_is_expander(ch->dev_type)) {
1770                         res = sas_find_bcast_dev(ch, src_dev);
1771                         if (*src_dev)
1772                                 return res;
1773                 }
1774         }
1775 out:
1776         return res;
1777 }
1778
1779 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1780 {
1781         struct expander_device *ex = &dev->ex_dev;
1782         struct domain_device *child, *n;
1783
1784         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1785                 set_bit(SAS_DEV_GONE, &child->state);
1786                 if (dev_is_expander(child->dev_type))
1787                         sas_unregister_ex_tree(port, child);
1788                 else
1789                         sas_unregister_dev(port, child);
1790         }
1791         sas_unregister_dev(port, dev);
1792 }
1793
1794 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1795                                          int phy_id, bool last)
1796 {
1797         struct expander_device *ex_dev = &parent->ex_dev;
1798         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1799         struct domain_device *child, *n, *found = NULL;
1800         if (last) {
1801                 list_for_each_entry_safe(child, n,
1802                         &ex_dev->children, siblings) {
1803                         if (sas_phy_match_dev_addr(child, phy)) {
1804                                 set_bit(SAS_DEV_GONE, &child->state);
1805                                 if (dev_is_expander(child->dev_type))
1806                                         sas_unregister_ex_tree(parent->port, child);
1807                                 else
1808                                         sas_unregister_dev(parent->port, child);
1809                                 found = child;
1810                                 break;
1811                         }
1812                 }
1813                 sas_disable_routing(parent, phy->attached_sas_addr);
1814         }
1815         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1816         if (phy->port) {
1817                 sas_port_delete_phy(phy->port, phy->phy);
1818                 sas_device_set_phy(found, phy->port);
1819                 if (phy->port->num_phys == 0)
1820                         list_add_tail(&phy->port->del_list,
1821                                 &parent->port->sas_port_del_list);
1822                 phy->port = NULL;
1823         }
1824 }
1825
1826 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1827                                           const int level)
1828 {
1829         struct expander_device *ex_root = &root->ex_dev;
1830         struct domain_device *child;
1831         int res = 0;
1832
1833         list_for_each_entry(child, &ex_root->children, siblings) {
1834                 if (dev_is_expander(child->dev_type)) {
1835                         struct sas_expander_device *ex =
1836                                 rphy_to_expander_device(child->rphy);
1837
1838                         if (level > ex->level)
1839                                 res = sas_discover_bfs_by_root_level(child,
1840                                                                      level);
1841                         else if (level == ex->level)
1842                                 res = sas_ex_discover_devices(child, -1);
1843                 }
1844         }
1845         return res;
1846 }
1847
1848 static int sas_discover_bfs_by_root(struct domain_device *dev)
1849 {
1850         int res;
1851         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1852         int level = ex->level+1;
1853
1854         res = sas_ex_discover_devices(dev, -1);
1855         if (res)
1856                 goto out;
1857         do {
1858                 res = sas_discover_bfs_by_root_level(dev, level);
1859                 mb();
1860                 level += 1;
1861         } while (level <= dev->port->disc.max_level);
1862 out:
1863         return res;
1864 }
1865
1866 static int sas_discover_new(struct domain_device *dev, int phy_id)
1867 {
1868         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1869         struct domain_device *child;
1870         int res;
1871
1872         pr_debug("ex %016llx phy%02d new device attached\n",
1873                  SAS_ADDR(dev->sas_addr), phy_id);
1874         res = sas_ex_phy_discover(dev, phy_id);
1875         if (res)
1876                 return res;
1877
1878         if (sas_ex_join_wide_port(dev, phy_id))
1879                 return 0;
1880
1881         res = sas_ex_discover_devices(dev, phy_id);
1882         if (res)
1883                 return res;
1884         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1885                 if (sas_phy_match_dev_addr(child, ex_phy)) {
1886                         if (dev_is_expander(child->dev_type))
1887                                 res = sas_discover_bfs_by_root(child);
1888                         break;
1889                 }
1890         }
1891         return res;
1892 }
1893
1894 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1895 {
1896         if (old == new)
1897                 return true;
1898
1899         /* treat device directed resets as flutter, if we went
1900          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1901          */
1902         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1903             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1904                 return true;
1905
1906         return false;
1907 }
1908
1909 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1910                               bool last, int sibling)
1911 {
1912         struct expander_device *ex = &dev->ex_dev;
1913         struct ex_phy *phy = &ex->ex_phy[phy_id];
1914         enum sas_device_type type = SAS_PHY_UNUSED;
1915         u8 sas_addr[SAS_ADDR_SIZE];
1916         char msg[80] = "";
1917         int res;
1918
1919         if (!last)
1920                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1921
1922         pr_debug("ex %016llx rediscovering phy%02d%s\n",
1923                  SAS_ADDR(dev->sas_addr), phy_id, msg);
1924
1925         memset(sas_addr, 0, SAS_ADDR_SIZE);
1926         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1927         switch (res) {
1928         case SMP_RESP_NO_PHY:
1929                 phy->phy_state = PHY_NOT_PRESENT;
1930                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1931                 return res;
1932         case SMP_RESP_PHY_VACANT:
1933                 phy->phy_state = PHY_VACANT;
1934                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1935                 return res;
1936         case SMP_RESP_FUNC_ACC:
1937                 break;
1938         case -ECOMM:
1939                 break;
1940         default:
1941                 return res;
1942         }
1943
1944         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
1945                 phy->phy_state = PHY_EMPTY;
1946                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1947                 /*
1948                  * Even though the PHY is empty, for convenience we discover
1949                  * the PHY to update the PHY info, like negotiated linkrate.
1950                  */
1951                 sas_ex_phy_discover(dev, phy_id);
1952                 return res;
1953         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1954                    dev_type_flutter(type, phy->attached_dev_type)) {
1955                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1956                 char *action = "";
1957
1958                 sas_ex_phy_discover(dev, phy_id);
1959
1960                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
1961                         action = ", needs recovery";
1962                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
1963                          SAS_ADDR(dev->sas_addr), phy_id, action);
1964                 return res;
1965         }
1966
1967         /* we always have to delete the old device when we went here */
1968         pr_info("ex %016llx phy%02d replace %016llx\n",
1969                 SAS_ADDR(dev->sas_addr), phy_id,
1970                 SAS_ADDR(phy->attached_sas_addr));
1971         sas_unregister_devs_sas_addr(dev, phy_id, last);
1972
1973         return sas_discover_new(dev, phy_id);
1974 }
1975
1976 /**
1977  * sas_rediscover - revalidate the domain.
1978  * @dev:domain device to be detect.
1979  * @phy_id: the phy id will be detected.
1980  *
1981  * NOTE: this process _must_ quit (return) as soon as any connection
1982  * errors are encountered.  Connection recovery is done elsewhere.
1983  * Discover process only interrogates devices in order to discover the
1984  * domain.For plugging out, we un-register the device only when it is
1985  * the last phy in the port, for other phys in this port, we just delete it
1986  * from the port.For inserting, we do discovery when it is the
1987  * first phy,for other phys in this port, we add it to the port to
1988  * forming the wide-port.
1989  */
1990 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1991 {
1992         struct expander_device *ex = &dev->ex_dev;
1993         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1994         int res = 0;
1995         int i;
1996         bool last = true;       /* is this the last phy of the port */
1997
1998         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
1999                  SAS_ADDR(dev->sas_addr), phy_id);
2000
2001         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2002                 for (i = 0; i < ex->num_phys; i++) {
2003                         struct ex_phy *phy = &ex->ex_phy[i];
2004
2005                         if (i == phy_id)
2006                                 continue;
2007                         if (sas_phy_addr_match(phy, changed_phy)) {
2008                                 last = false;
2009                                 break;
2010                         }
2011                 }
2012                 res = sas_rediscover_dev(dev, phy_id, last, i);
2013         } else
2014                 res = sas_discover_new(dev, phy_id);
2015         return res;
2016 }
2017
2018 /**
2019  * sas_ex_revalidate_domain - revalidate the domain
2020  * @port_dev: port domain device.
2021  *
2022  * NOTE: this process _must_ quit (return) as soon as any connection
2023  * errors are encountered.  Connection recovery is done elsewhere.
2024  * Discover process only interrogates devices in order to discover the
2025  * domain.
2026  */
2027 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2028 {
2029         int res;
2030         struct domain_device *dev = NULL;
2031
2032         res = sas_find_bcast_dev(port_dev, &dev);
2033         if (res == 0 && dev) {
2034                 struct expander_device *ex = &dev->ex_dev;
2035                 int i = 0, phy_id;
2036
2037                 do {
2038                         phy_id = -1;
2039                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2040                         if (phy_id == -1)
2041                                 break;
2042                         res = sas_rediscover(dev, phy_id);
2043                         i = phy_id + 1;
2044                 } while (i < ex->num_phys);
2045         }
2046         return res;
2047 }
2048
2049 int sas_find_attached_phy_id(struct expander_device *ex_dev,
2050                              struct domain_device *dev)
2051 {
2052         struct ex_phy *phy;
2053         int phy_id;
2054
2055         for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2056                 phy = &ex_dev->ex_phy[phy_id];
2057                 if (sas_phy_match_dev_addr(dev, phy))
2058                         return phy_id;
2059         }
2060
2061         return -ENODEV;
2062 }
2063 EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2064
2065 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2066                 struct sas_rphy *rphy)
2067 {
2068         struct domain_device *dev;
2069         unsigned int rcvlen = 0;
2070         int ret = -EINVAL;
2071
2072         /* no rphy means no smp target support (ie aic94xx host) */
2073         if (!rphy)
2074                 return sas_smp_host_handler(job, shost);
2075
2076         switch (rphy->identify.device_type) {
2077         case SAS_EDGE_EXPANDER_DEVICE:
2078         case SAS_FANOUT_EXPANDER_DEVICE:
2079                 break;
2080         default:
2081                 pr_err("%s: can we send a smp request to a device?\n",
2082                        __func__);
2083                 goto out;
2084         }
2085
2086         dev = sas_find_dev_by_rphy(rphy);
2087         if (!dev) {
2088                 pr_err("%s: fail to find a domain_device?\n", __func__);
2089                 goto out;
2090         }
2091
2092         /* do we need to support multiple segments? */
2093         if (job->request_payload.sg_cnt > 1 ||
2094             job->reply_payload.sg_cnt > 1) {
2095                 pr_info("%s: multiple segments req %u, rsp %u\n",
2096                         __func__, job->request_payload.payload_len,
2097                         job->reply_payload.payload_len);
2098                 goto out;
2099         }
2100
2101         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2102                         job->reply_payload.sg_list);
2103         if (ret >= 0) {
2104                 /* bsg_job_done() requires the length received  */
2105                 rcvlen = job->reply_payload.payload_len - ret;
2106                 ret = 0;
2107         }
2108
2109 out:
2110         bsg_job_done(job, ret, rcvlen);
2111 }