net/mlx4_core: drop useless LIST_HEAD
[linux-2.6-block.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .use_clustering         = ENABLE_CLUSTERING,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 2048,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 c->Header.ReplyQueue = reply_queue;
1049         }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058         /*
1059          * Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         cp->ReplyQueue = reply_queue;
1063         /*
1064          * Set the bits in the address sent down to include:
1065          *  - performant mode bit (bit 0)
1066          *  - pull count (bits 1-3)
1067          *  - command type (bits 4-6)
1068          */
1069         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                         IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                 struct CommandList *c,
1075                                                 int reply_queue)
1076 {
1077         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /* Tell the controller to post the reply to the queue for this
1081          * processor.  This seems to give the best I/O throughput.
1082          */
1083         cp->reply_queue = reply_queue;
1084         /* Set the bits in the address sent down to include:
1085          *  - performant mode bit not used in ioaccel mode 2
1086          *  - pull count (bits 0-3)
1087          *  - command type isn't needed for ioaccel2
1088          */
1089         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                 struct CommandList *c,
1094                                                 int reply_queue)
1095 {
1096         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098         /*
1099          * Tell the controller to post the reply to the queue for this
1100          * processor.  This seems to give the best I/O throughput.
1101          */
1102         cp->reply_queue = reply_queue;
1103         /*
1104          * Set the bits in the address sent down to include:
1105          *  - performant mode bit not used in ioaccel mode 2
1106          *  - pull count (bits 0-3)
1107          *  - command type isn't needed for ioaccel2
1108          */
1109         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                 struct CommandList *c)
1127 {
1128         if (!is_firmware_flash_cmd(c->Request.CDB))
1129                 return;
1130         atomic_inc(&h->firmware_flash_in_progress);
1131         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                 struct CommandList *c)
1136 {
1137         if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143         struct CommandList *c, int reply_queue)
1144 {
1145         dial_down_lockup_detection_during_fw_flash(h, c);
1146         atomic_inc(&h->commands_outstanding);
1147
1148         reply_queue = h->reply_map[raw_smp_processor_id()];
1149         switch (c->cmd_type) {
1150         case CMD_IOACCEL1:
1151                 set_ioaccel1_performant_mode(h, c, reply_queue);
1152                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                 break;
1154         case CMD_IOACCEL2:
1155                 set_ioaccel2_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                 break;
1158         case IOACCEL2_TMF:
1159                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         default:
1163                 set_performant_mode(h, c, reply_queue);
1164                 h->access.submit_command(h, c);
1165         }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170         if (unlikely(hpsa_is_pending_event(c)))
1171                 return finish_cmd(c);
1172
1173         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183         if (!h->hba_inquiry_data)
1184                 return 0;
1185         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                 return 1;
1187         return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191         unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193         /* finds an unused bus, target, lun for a new physical device
1194          * assumes h->devlock is held
1195          */
1196         int i, found = 0;
1197         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201         for (i = 0; i < h->ndevices; i++) {
1202                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                         __set_bit(h->dev[i]->target, lun_taken);
1204         }
1205
1206         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207         if (i < HPSA_MAX_DEVICES) {
1208                 /* *bus = 1; */
1209                 *target = i;
1210                 *lun = 0;
1211                 found = 1;
1212         }
1213         return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217         struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220         char label[LABEL_SIZE];
1221
1222         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                 return;
1224
1225         switch (dev->devtype) {
1226         case TYPE_RAID:
1227                 snprintf(label, LABEL_SIZE, "controller");
1228                 break;
1229         case TYPE_ENCLOSURE:
1230                 snprintf(label, LABEL_SIZE, "enclosure");
1231                 break;
1232         case TYPE_DISK:
1233         case TYPE_ZBC:
1234                 if (dev->external)
1235                         snprintf(label, LABEL_SIZE, "external");
1236                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                         snprintf(label, LABEL_SIZE, "%s",
1238                                 raid_label[PHYSICAL_DRIVE]);
1239                 else
1240                         snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                 raid_label[dev->raid_level]);
1243                 break;
1244         case TYPE_ROM:
1245                 snprintf(label, LABEL_SIZE, "rom");
1246                 break;
1247         case TYPE_TAPE:
1248                 snprintf(label, LABEL_SIZE, "tape");
1249                 break;
1250         case TYPE_MEDIUM_CHANGER:
1251                 snprintf(label, LABEL_SIZE, "changer");
1252                 break;
1253         default:
1254                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                 break;
1256         }
1257
1258         dev_printk(level, &h->pdev->dev,
1259                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                         description,
1262                         scsi_device_type(dev->devtype),
1263                         dev->vendor,
1264                         dev->model,
1265                         label,
1266                         dev->offload_config ? '+' : '-',
1267                         dev->offload_to_be_enabled ? '+' : '-',
1268                         dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                 struct hpsa_scsi_dev_t *device,
1274                 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276         /* assumes h->devlock is held */
1277         int n = h->ndevices;
1278         int i;
1279         unsigned char addr1[8], addr2[8];
1280         struct hpsa_scsi_dev_t *sd;
1281
1282         if (n >= HPSA_MAX_DEVICES) {
1283                 dev_err(&h->pdev->dev, "too many devices, some will be "
1284                         "inaccessible.\n");
1285                 return -1;
1286         }
1287
1288         /* physical devices do not have lun or target assigned until now. */
1289         if (device->lun != -1)
1290                 /* Logical device, lun is already assigned. */
1291                 goto lun_assigned;
1292
1293         /* If this device a non-zero lun of a multi-lun device
1294          * byte 4 of the 8-byte LUN addr will contain the logical
1295          * unit no, zero otherwise.
1296          */
1297         if (device->scsi3addr[4] == 0) {
1298                 /* This is not a non-zero lun of a multi-lun device */
1299                 if (hpsa_find_target_lun(h, device->scsi3addr,
1300                         device->bus, &device->target, &device->lun) != 0)
1301                         return -1;
1302                 goto lun_assigned;
1303         }
1304
1305         /* This is a non-zero lun of a multi-lun device.
1306          * Search through our list and find the device which
1307          * has the same 8 byte LUN address, excepting byte 4 and 5.
1308          * Assign the same bus and target for this new LUN.
1309          * Use the logical unit number from the firmware.
1310          */
1311         memcpy(addr1, device->scsi3addr, 8);
1312         addr1[4] = 0;
1313         addr1[5] = 0;
1314         for (i = 0; i < n; i++) {
1315                 sd = h->dev[i];
1316                 memcpy(addr2, sd->scsi3addr, 8);
1317                 addr2[4] = 0;
1318                 addr2[5] = 0;
1319                 /* differ only in byte 4 and 5? */
1320                 if (memcmp(addr1, addr2, 8) == 0) {
1321                         device->bus = sd->bus;
1322                         device->target = sd->target;
1323                         device->lun = device->scsi3addr[4];
1324                         break;
1325                 }
1326         }
1327         if (device->lun == -1) {
1328                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                         " suspect firmware bug or unsupported hardware "
1330                         "configuration.\n");
1331                         return -1;
1332         }
1333
1334 lun_assigned:
1335
1336         h->dev[n] = device;
1337         h->ndevices++;
1338         added[*nadded] = device;
1339         (*nadded)++;
1340         hpsa_show_dev_msg(KERN_INFO, h, device,
1341                 device->expose_device ? "added" : "masked");
1342         return 0;
1343 }
1344
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351         int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353         /* assumes h->devlock is held */
1354         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356         /* Raid level changed. */
1357         h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359         /*
1360          * ioacccel_handle may have changed for a dual domain disk
1361          */
1362         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before. If raid map data has changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->offload_to_be_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393         /*
1394          * turn ioaccel off immediately if told to do so.
1395          */
1396         if (!new_entry->offload_to_be_enabled)
1397                 h->dev[entry]->offload_enabled = 0;
1398
1399         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404         int entry, struct hpsa_scsi_dev_t *new_entry,
1405         struct hpsa_scsi_dev_t *added[], int *nadded,
1406         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408         /* assumes h->devlock is held */
1409         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410         removed[*nremoved] = h->dev[entry];
1411         (*nremoved)++;
1412
1413         /*
1414          * New physical devices won't have target/lun assigned yet
1415          * so we need to preserve the values in the slot we are replacing.
1416          */
1417         if (new_entry->target == -1) {
1418                 new_entry->target = h->dev[entry]->target;
1419                 new_entry->lun = h->dev[entry]->lun;
1420         }
1421
1422         h->dev[entry] = new_entry;
1423         added[*nadded] = new_entry;
1424         (*nadded)++;
1425
1426         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         /*
1522          * This can happen for dual domain devices. An active
1523          * path change causes the ioaccel handle to change
1524          *
1525          * for example note the handle differences between p0 and p1
1526          * Device                    WWN               ,WWN hash,Handle
1527          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529          */
1530         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545         int *index)
1546 {
1547         int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552         if (needle == NULL)
1553                 return DEVICE_NOT_FOUND;
1554
1555         for (i = 0; i < haystack_size; i++) {
1556                 if (haystack[i] == NULL) /* previously removed. */
1557                         continue;
1558                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                         *index = i;
1560                         if (device_is_the_same(needle, haystack[i])) {
1561                                 if (device_updated(needle, haystack[i]))
1562                                         return DEVICE_UPDATED;
1563                                 return DEVICE_SAME;
1564                         } else {
1565                                 /* Keep offline devices offline */
1566                                 if (needle->volume_offline)
1567                                         return DEVICE_NOT_FOUND;
1568                                 return DEVICE_CHANGED;
1569                         }
1570                 }
1571         }
1572         *index = -1;
1573         return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                         unsigned char scsi3addr[])
1578 {
1579         struct offline_device_entry *device;
1580         unsigned long flags;
1581
1582         /* Check to see if device is already on the list */
1583         spin_lock_irqsave(&h->offline_device_lock, flags);
1584         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                 if (memcmp(device->scsi3addr, scsi3addr,
1586                         sizeof(device->scsi3addr)) == 0) {
1587                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                         return;
1589                 }
1590         }
1591         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593         /* Device is not on the list, add it. */
1594         device = kmalloc(sizeof(*device), GFP_KERNEL);
1595         if (!device)
1596                 return;
1597
1598         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599         spin_lock_irqsave(&h->offline_device_lock, flags);
1600         list_add_tail(&device->offline_list, &h->offline_device_list);
1601         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606         struct hpsa_scsi_dev_t *sd)
1607 {
1608         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613         switch (sd->volume_offline) {
1614         case HPSA_LV_OK:
1615                 break;
1616         case HPSA_LV_UNDERGOING_ERASE:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_NOT_AVAILABLE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_UNDERGOING_RPI:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_PENDING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_ENCRYPTED_NO_KEY:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_PENDING_ENCRYPTION:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         }
1683 }
1684
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693         struct raid_map_data *map = &logical_drive->raid_map;
1694         struct raid_map_disk_data *dd = &map->data[0];
1695         int i, j;
1696         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                 le16_to_cpu(map->metadata_disks_per_row);
1698         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                 le16_to_cpu(map->layout_map_count) *
1700                                 total_disks_per_row;
1701         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                 total_disks_per_row;
1703         int qdepth;
1704
1705         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708         logical_drive->nphysical_disks = nraid_map_entries;
1709
1710         qdepth = 0;
1711         for (i = 0; i < nraid_map_entries; i++) {
1712                 logical_drive->phys_disk[i] = NULL;
1713                 if (!logical_drive->offload_config)
1714                         continue;
1715                 for (j = 0; j < ndevices; j++) {
1716                         if (dev[j] == NULL)
1717                                 continue;
1718                         if (dev[j]->devtype != TYPE_DISK &&
1719                             dev[j]->devtype != TYPE_ZBC)
1720                                 continue;
1721                         if (is_logical_device(dev[j]))
1722                                 continue;
1723                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                 continue;
1725
1726                         logical_drive->phys_disk[i] = dev[j];
1727                         if (i < nphys_disk)
1728                                 qdepth = min(h->nr_cmds, qdepth +
1729                                     logical_drive->phys_disk[i]->queue_depth);
1730                         break;
1731                 }
1732
1733                 /*
1734                  * This can happen if a physical drive is removed and
1735                  * the logical drive is degraded.  In that case, the RAID
1736                  * map data will refer to a physical disk which isn't actually
1737                  * present.  And in that case offload_enabled should already
1738                  * be 0, but we'll turn it off here just in case
1739                  */
1740                 if (!logical_drive->phys_disk[i]) {
1741                         dev_warn(&h->pdev->dev,
1742                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                 __func__,
1744                                 h->scsi_host->host_no, logical_drive->bus,
1745                                 logical_drive->target, logical_drive->lun);
1746                         logical_drive->offload_enabled = 0;
1747                         logical_drive->offload_to_be_enabled = 0;
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                 struct hpsa_scsi_dev_t *device)
1847 {
1848         int cmds = 0;
1849         int waits = 0;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > 20)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > 20)
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device with %d outstanding commands!\n",
1863                         __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867                         struct hpsa_scsi_dev_t *device)
1868 {
1869         struct scsi_device *sdev = NULL;
1870
1871         if (!h->scsi_host)
1872                 return;
1873
1874         /*
1875          * Allow for commands to drain
1876          */
1877         device->removed = 1;
1878         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880         if (is_logical_device(device)) { /* RAID */
1881                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                 device->target, device->lun);
1883                 if (sdev) {
1884                         scsi_remove_device(sdev);
1885                         scsi_device_put(sdev);
1886                 } else {
1887                         /*
1888                          * We don't expect to get here.  Future commands
1889                          * to this device will get a selection timeout as
1890                          * if the device were gone.
1891                          */
1892                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                         "didn't find device for removal.");
1894                 }
1895         } else { /* HBA */
1896
1897                 hpsa_remove_sas_device(device);
1898         }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902         struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904         /* sd contains scsi3 addresses and devtypes, and inquiry
1905          * data.  This function takes what's in sd to be the current
1906          * reality and updates h->dev[] to reflect that reality.
1907          */
1908         int i, entry, device_change, changes = 0;
1909         struct hpsa_scsi_dev_t *csd;
1910         unsigned long flags;
1911         struct hpsa_scsi_dev_t **added, **removed;
1912         int nadded, nremoved;
1913
1914         /*
1915          * A reset can cause a device status to change
1916          * re-schedule the scan to see what happened.
1917          */
1918         spin_lock_irqsave(&h->reset_lock, flags);
1919         if (h->reset_in_progress) {
1920                 h->drv_req_rescan = 1;
1921                 spin_unlock_irqrestore(&h->reset_lock, flags);
1922                 return;
1923         }
1924         spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929         if (!added || !removed) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "adjust_hpsa_scsi_table\n");
1932                 goto free_and_out;
1933         }
1934
1935         spin_lock_irqsave(&h->devlock, flags);
1936
1937         /* find any devices in h->dev[] that are not in
1938          * sd[] and remove them from h->dev[], and for any
1939          * devices which have changed, remove the old device
1940          * info and add the new device info.
1941          * If minor device attributes change, just update
1942          * the existing device structure.
1943          */
1944         i = 0;
1945         nremoved = 0;
1946         nadded = 0;
1947         while (i < h->ndevices) {
1948                 csd = h->dev[i];
1949                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                 if (device_change == DEVICE_NOT_FOUND) {
1951                         changes++;
1952                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                         continue; /* remove ^^^, hence i not incremented */
1954                 } else if (device_change == DEVICE_CHANGED) {
1955                         changes++;
1956                         hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                 added, &nadded, removed, &nremoved);
1958                         /* Set it to NULL to prevent it from being freed
1959                          * at the bottom of hpsa_update_scsi_devices()
1960                          */
1961                         sd[entry] = NULL;
1962                 } else if (device_change == DEVICE_UPDATED) {
1963                         hpsa_scsi_update_entry(h, i, sd[entry]);
1964                 }
1965                 i++;
1966         }
1967
1968         /* Now, make sure every device listed in sd[] is also
1969          * listed in h->dev[], adding them if they aren't found
1970          */
1971
1972         for (i = 0; i < nsds; i++) {
1973                 if (!sd[i]) /* if already added above. */
1974                         continue;
1975
1976                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                  * as the SCSI mid-layer does not handle such devices well.
1978                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                  * at 160Hz, and prevents the system from coming up.
1980                  */
1981                 if (sd[i]->volume_offline) {
1982                         hpsa_show_volume_status(h, sd[i]);
1983                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                         continue;
1985                 }
1986
1987                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                         h->ndevices, &entry);
1989                 if (device_change == DEVICE_NOT_FOUND) {
1990                         changes++;
1991                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                 break;
1993                         sd[i] = NULL; /* prevent from being freed later. */
1994                 } else if (device_change == DEVICE_CHANGED) {
1995                         /* should never happen... */
1996                         changes++;
1997                         dev_warn(&h->pdev->dev,
1998                                 "device unexpectedly changed.\n");
1999                         /* but if it does happen, we just ignore that device */
2000                 }
2001         }
2002         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004         /*
2005          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006          * any logical drives that need it enabled.
2007          *
2008          * The raid map should be current by now.
2009          *
2010          * We are updating the device list used for I/O requests.
2011          */
2012         for (i = 0; i < h->ndevices; i++) {
2013                 if (h->dev[i] == NULL)
2014                         continue;
2015                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016         }
2017
2018         spin_unlock_irqrestore(&h->devlock, flags);
2019
2020         /* Monitor devices which are in one of several NOT READY states to be
2021          * brought online later. This must be done without holding h->devlock,
2022          * so don't touch h->dev[]
2023          */
2024         for (i = 0; i < nsds; i++) {
2025                 if (!sd[i]) /* if already added above. */
2026                         continue;
2027                 if (sd[i]->volume_offline)
2028                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029         }
2030
2031         /* Don't notify scsi mid layer of any changes the first time through
2032          * (or if there are no changes) scsi_scan_host will do it later the
2033          * first time through.
2034          */
2035         if (!changes)
2036                 goto free_and_out;
2037
2038         /* Notify scsi mid layer of any removed devices */
2039         for (i = 0; i < nremoved; i++) {
2040                 if (removed[i] == NULL)
2041                         continue;
2042                 if (removed[i]->expose_device)
2043                         hpsa_remove_device(h, removed[i]);
2044                 kfree(removed[i]);
2045                 removed[i] = NULL;
2046         }
2047
2048         /* Notify scsi mid layer of any added devices */
2049         for (i = 0; i < nadded; i++) {
2050                 int rc = 0;
2051
2052                 if (added[i] == NULL)
2053                         continue;
2054                 if (!(added[i]->expose_device))
2055                         continue;
2056                 rc = hpsa_add_device(h, added[i]);
2057                 if (!rc)
2058                         continue;
2059                 dev_warn(&h->pdev->dev,
2060                         "addition failed %d, device not added.", rc);
2061                 /* now we have to remove it from h->dev,
2062                  * since it didn't get added to scsi mid layer
2063                  */
2064                 fixup_botched_add(h, added[i]);
2065                 h->drv_req_rescan = 1;
2066         }
2067
2068 free_and_out:
2069         kfree(added);
2070         kfree(removed);
2071 }
2072
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078         int bus, int target, int lun)
2079 {
2080         int i;
2081         struct hpsa_scsi_dev_t *sd;
2082
2083         for (i = 0; i < h->ndevices; i++) {
2084                 sd = h->dev[i];
2085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                         return sd;
2087         }
2088         return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093         struct hpsa_scsi_dev_t *sd = NULL;
2094         unsigned long flags;
2095         struct ctlr_info *h;
2096
2097         h = sdev_to_hba(sdev);
2098         spin_lock_irqsave(&h->devlock, flags);
2099         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                 struct scsi_target *starget;
2101                 struct sas_rphy *rphy;
2102
2103                 starget = scsi_target(sdev);
2104                 rphy = target_to_rphy(starget);
2105                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                 if (sd) {
2107                         sd->target = sdev_id(sdev);
2108                         sd->lun = sdev->lun;
2109                 }
2110         }
2111         if (!sd)
2112                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                         sdev_id(sdev), sdev->lun);
2114
2115         if (sd && sd->expose_device) {
2116                 atomic_set(&sd->ioaccel_cmds_out, 0);
2117                 sdev->hostdata = sd;
2118         } else
2119                 sdev->hostdata = NULL;
2120         spin_unlock_irqrestore(&h->devlock, flags);
2121         return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127         struct hpsa_scsi_dev_t *sd;
2128         int queue_depth;
2129
2130         sd = sdev->hostdata;
2131         sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133         if (sd) {
2134                 if (sd->external)
2135                         queue_depth = EXTERNAL_QD;
2136                 else
2137                         queue_depth = sd->queue_depth != 0 ?
2138                                         sd->queue_depth : sdev->host->can_queue;
2139         } else
2140                 queue_depth = sdev->host->can_queue;
2141
2142         scsi_change_queue_depth(sdev, queue_depth);
2143
2144         return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149         /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154         int i;
2155
2156         if (!h->ioaccel2_cmd_sg_list)
2157                 return;
2158         for (i = 0; i < h->nr_cmds; i++) {
2159                 kfree(h->ioaccel2_cmd_sg_list[i]);
2160                 h->ioaccel2_cmd_sg_list[i] = NULL;
2161         }
2162         kfree(h->ioaccel2_cmd_sg_list);
2163         h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (h->chainsize <= 0)
2171                 return 0;
2172
2173         h->ioaccel2_cmd_sg_list =
2174                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175                                         GFP_KERNEL);
2176         if (!h->ioaccel2_cmd_sg_list)
2177                 return -ENOMEM;
2178         for (i = 0; i < h->nr_cmds; i++) {
2179                 h->ioaccel2_cmd_sg_list[i] =
2180                         kmalloc_array(h->maxsgentries,
2181                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182                                       GFP_KERNEL);
2183                 if (!h->ioaccel2_cmd_sg_list[i])
2184                         goto clean;
2185         }
2186         return 0;
2187
2188 clean:
2189         hpsa_free_ioaccel2_sg_chain_blocks(h);
2190         return -ENOMEM;
2191 }
2192
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195         int i;
2196
2197         if (!h->cmd_sg_list)
2198                 return;
2199         for (i = 0; i < h->nr_cmds; i++) {
2200                 kfree(h->cmd_sg_list[i]);
2201                 h->cmd_sg_list[i] = NULL;
2202         }
2203         kfree(h->cmd_sg_list);
2204         h->cmd_sg_list = NULL;
2205 }
2206
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (h->chainsize <= 0)
2212                 return 0;
2213
2214         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215                                  GFP_KERNEL);
2216         if (!h->cmd_sg_list)
2217                 return -ENOMEM;
2218
2219         for (i = 0; i < h->nr_cmds; i++) {
2220                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221                                                   sizeof(*h->cmd_sg_list[i]),
2222                                                   GFP_KERNEL);
2223                 if (!h->cmd_sg_list[i])
2224                         goto clean;
2225
2226         }
2227         return 0;
2228
2229 clean:
2230         hpsa_free_sg_chain_blocks(h);
2231         return -ENOMEM;
2232 }
2233
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235         struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237         struct ioaccel2_sg_element *chain_block;
2238         u64 temp64;
2239         u32 chain_size;
2240
2241         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242         chain_size = le32_to_cpu(cp->sg[0].length);
2243         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244                                 DMA_TO_DEVICE);
2245         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246                 /* prevent subsequent unmapping */
2247                 cp->sg->address = 0;
2248                 return -1;
2249         }
2250         cp->sg->address = cpu_to_le64(temp64);
2251         return 0;
2252 }
2253
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255         struct io_accel2_cmd *cp)
2256 {
2257         struct ioaccel2_sg_element *chain_sg;
2258         u64 temp64;
2259         u32 chain_size;
2260
2261         chain_sg = cp->sg;
2262         temp64 = le64_to_cpu(chain_sg->address);
2263         chain_size = le32_to_cpu(cp->sg[0].length);
2264         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268         struct CommandList *c)
2269 {
2270         struct SGDescriptor *chain_sg, *chain_block;
2271         u64 temp64;
2272         u32 chain_len;
2273
2274         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275         chain_block = h->cmd_sg_list[c->cmdindex];
2276         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277         chain_len = sizeof(*chain_sg) *
2278                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279         chain_sg->Len = cpu_to_le32(chain_len);
2280         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281                                 DMA_TO_DEVICE);
2282         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283                 /* prevent subsequent unmapping */
2284                 chain_sg->Addr = cpu_to_le64(0);
2285                 return -1;
2286         }
2287         chain_sg->Addr = cpu_to_le64(temp64);
2288         return 0;
2289 }
2290
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292         struct CommandList *c)
2293 {
2294         struct SGDescriptor *chain_sg;
2295
2296         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297                 return;
2298
2299         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303
2304
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310                                         struct CommandList *c,
2311                                         struct scsi_cmnd *cmd,
2312                                         struct io_accel2_cmd *c2,
2313                                         struct hpsa_scsi_dev_t *dev)
2314 {
2315         int data_len;
2316         int retry = 0;
2317         u32 ioaccel2_resid = 0;
2318
2319         switch (c2->error_data.serv_response) {
2320         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321                 switch (c2->error_data.status) {
2322                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323                         break;
2324                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2326                         if (c2->error_data.data_present !=
2327                                         IOACCEL2_SENSE_DATA_PRESENT) {
2328                                 memset(cmd->sense_buffer, 0,
2329                                         SCSI_SENSE_BUFFERSIZE);
2330                                 break;
2331                         }
2332                         /* copy the sense data */
2333                         data_len = c2->error_data.sense_data_len;
2334                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2335                                 data_len = SCSI_SENSE_BUFFERSIZE;
2336                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2337                                 data_len =
2338                                         sizeof(c2->error_data.sense_data_buff);
2339                         memcpy(cmd->sense_buffer,
2340                                 c2->error_data.sense_data_buff, data_len);
2341                         retry = 1;
2342                         break;
2343                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344                         retry = 1;
2345                         break;
2346                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347                         retry = 1;
2348                         break;
2349                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353                         retry = 1;
2354                         break;
2355                 default:
2356                         retry = 1;
2357                         break;
2358                 }
2359                 break;
2360         case IOACCEL2_SERV_RESPONSE_FAILURE:
2361                 switch (c2->error_data.status) {
2362                 case IOACCEL2_STATUS_SR_IO_ERROR:
2363                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364                 case IOACCEL2_STATUS_SR_OVERRUN:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_UNDERRUN:
2368                         cmd->result = (DID_OK << 16);           /* host byte */
2369                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370                         ioaccel2_resid = get_unaligned_le32(
2371                                                 &c2->error_data.resid_cnt[0]);
2372                         scsi_set_resid(cmd, ioaccel2_resid);
2373                         break;
2374                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377                         /*
2378                          * Did an HBA disk disappear? We will eventually
2379                          * get a state change event from the controller but
2380                          * in the meantime, we need to tell the OS that the
2381                          * HBA disk is no longer there and stop I/O
2382                          * from going down. This allows the potential re-insert
2383                          * of the disk to get the same device node.
2384                          */
2385                         if (dev->physical_device && dev->expose_device) {
2386                                 cmd->result = DID_NO_CONNECT << 16;
2387                                 dev->removed = 1;
2388                                 h->drv_req_rescan = 1;
2389                                 dev_warn(&h->pdev->dev,
2390                                         "%s: device is gone!\n", __func__);
2391                         } else
2392                                 /*
2393                                  * Retry by sending down the RAID path.
2394                                  * We will get an event from ctlr to
2395                                  * trigger rescan regardless.
2396                                  */
2397                                 retry = 1;
2398                         break;
2399                 default:
2400                         retry = 1;
2401                 }
2402                 break;
2403         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404                 break;
2405         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406                 break;
2407         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408                 retry = 1;
2409                 break;
2410         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411                 break;
2412         default:
2413                 retry = 1;
2414                 break;
2415         }
2416
2417         return retry;   /* retry on raid path? */
2418 }
2419
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421                 struct CommandList *c)
2422 {
2423         bool do_wake = false;
2424
2425         /*
2426          * Reset c->scsi_cmd here so that the reset handler will know
2427          * this command has completed.  Then, check to see if the handler is
2428          * waiting for this command, and, if so, wake it.
2429          */
2430         c->scsi_cmd = SCSI_CMD_IDLE;
2431         mb();   /* Declare command idle before checking for pending events. */
2432         if (c->reset_pending) {
2433                 unsigned long flags;
2434                 struct hpsa_scsi_dev_t *dev;
2435
2436                 /*
2437                  * There appears to be a reset pending; lock the lock and
2438                  * reconfirm.  If so, then decrement the count of outstanding
2439                  * commands and wake the reset command if this is the last one.
2440                  */
2441                 spin_lock_irqsave(&h->lock, flags);
2442                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2443                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444                         do_wake = true;
2445                 c->reset_pending = NULL;
2446                 spin_unlock_irqrestore(&h->lock, flags);
2447         }
2448
2449         if (do_wake)
2450                 wake_up_all(&h->event_sync_wait_queue);
2451 }
2452
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454                                       struct CommandList *c)
2455 {
2456         hpsa_cmd_resolve_events(h, c);
2457         cmd_tagged_free(h, c);
2458 }
2459
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461                 struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463         hpsa_cmd_resolve_and_free(h, c);
2464         if (cmd && cmd->scsi_done)
2465                 cmd->scsi_done(cmd);
2466 }
2467
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475                 struct CommandList *c, struct scsi_cmnd *cmd,
2476                 struct hpsa_scsi_dev_t *dev)
2477 {
2478         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480         /* check for good status */
2481         if (likely(c2->error_data.serv_response == 0 &&
2482                         c2->error_data.status == 0))
2483                 return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485         /*
2486          * Any RAID offload error results in retry which will use
2487          * the normal I/O path so the controller can handle whatever is
2488          * wrong.
2489          */
2490         if (is_logical_device(dev) &&
2491                 c2->error_data.serv_response ==
2492                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2493                 if (c2->error_data.status ==
2494                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495                         dev->offload_enabled = 0;
2496                         dev->offload_to_be_enabled = 0;
2497                 }
2498
2499                 return hpsa_retry_cmd(h, c);
2500         }
2501
2502         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503                 return hpsa_retry_cmd(h, c);
2504
2505         return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510                                         struct CommandList *cp)
2511 {
2512         u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514         switch (tmf_status) {
2515         case CISS_TMF_COMPLETE:
2516                 /*
2517                  * CISS_TMF_COMPLETE never happens, instead,
2518                  * ei->CommandStatus == 0 for this case.
2519                  */
2520         case CISS_TMF_SUCCESS:
2521                 return 0;
2522         case CISS_TMF_INVALID_FRAME:
2523         case CISS_TMF_NOT_SUPPORTED:
2524         case CISS_TMF_FAILED:
2525         case CISS_TMF_WRONG_LUN:
2526         case CISS_TMF_OVERLAPPED_TAG:
2527                 break;
2528         default:
2529                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530                                 tmf_status);
2531                 break;
2532         }
2533         return -tmf_status;
2534 }
2535
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538         struct scsi_cmnd *cmd;
2539         struct ctlr_info *h;
2540         struct ErrorInfo *ei;
2541         struct hpsa_scsi_dev_t *dev;
2542         struct io_accel2_cmd *c2;
2543
2544         u8 sense_key;
2545         u8 asc;      /* additional sense code */
2546         u8 ascq;     /* additional sense code qualifier */
2547         unsigned long sense_data_size;
2548
2549         ei = cp->err_info;
2550         cmd = cp->scsi_cmd;
2551         h = cp->h;
2552
2553         if (!cmd->device) {
2554                 cmd->result = DID_NO_CONNECT << 16;
2555                 return hpsa_cmd_free_and_done(h, cp, cmd);
2556         }
2557
2558         dev = cmd->device->hostdata;
2559         if (!dev) {
2560                 cmd->result = DID_NO_CONNECT << 16;
2561                 return hpsa_cmd_free_and_done(h, cp, cmd);
2562         }
2563         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566         if ((cp->cmd_type == CMD_SCSI) &&
2567                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568                 hpsa_unmap_sg_chain_block(h, cp);
2569
2570         if ((cp->cmd_type == CMD_IOACCEL2) &&
2571                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574         cmd->result = (DID_OK << 16);           /* host byte */
2575         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578                 if (dev->physical_device && dev->expose_device &&
2579                         dev->removed) {
2580                         cmd->result = DID_NO_CONNECT << 16;
2581                         return hpsa_cmd_free_and_done(h, cp, cmd);
2582                 }
2583                 if (likely(cp->phys_disk != NULL))
2584                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585         }
2586
2587         /*
2588          * We check for lockup status here as it may be set for
2589          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590          * fail_all_oustanding_cmds()
2591          */
2592         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593                 /* DID_NO_CONNECT will prevent a retry */
2594                 cmd->result = DID_NO_CONNECT << 16;
2595                 return hpsa_cmd_free_and_done(h, cp, cmd);
2596         }
2597
2598         if ((unlikely(hpsa_is_pending_event(cp))))
2599                 if (cp->reset_pending)
2600                         return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602         if (cp->cmd_type == CMD_IOACCEL2)
2603                 return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605         scsi_set_resid(cmd, ei->ResidualCnt);
2606         if (ei->CommandStatus == 0)
2607                 return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609         /* For I/O accelerator commands, copy over some fields to the normal
2610          * CISS header used below for error handling.
2611          */
2612         if (cp->cmd_type == CMD_IOACCEL1) {
2613                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614                 cp->Header.SGList = scsi_sg_count(cmd);
2615                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618                 cp->Header.tag = c->tag;
2619                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622                 /* Any RAID offload error results in retry which will use
2623                  * the normal I/O path so the controller can handle whatever's
2624                  * wrong.
2625                  */
2626                 if (is_logical_device(dev)) {
2627                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628                                 dev->offload_enabled = 0;
2629                         return hpsa_retry_cmd(h, cp);
2630                 }
2631         }
2632
2633         /* an error has occurred */
2634         switch (ei->CommandStatus) {
2635
2636         case CMD_TARGET_STATUS:
2637                 cmd->result |= ei->ScsiStatus;
2638                 /* copy the sense data */
2639                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641                 else
2642                         sense_data_size = sizeof(ei->SenseInfo);
2643                 if (ei->SenseLen < sense_data_size)
2644                         sense_data_size = ei->SenseLen;
2645                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646                 if (ei->ScsiStatus)
2647                         decode_sense_data(ei->SenseInfo, sense_data_size,
2648                                 &sense_key, &asc, &ascq);
2649                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650                         if (sense_key == ABORTED_COMMAND) {
2651                                 cmd->result |= DID_SOFT_ERROR << 16;
2652                                 break;
2653                         }
2654                         break;
2655                 }
2656                 /* Problem was not a check condition
2657                  * Pass it up to the upper layers...
2658                  */
2659                 if (ei->ScsiStatus) {
2660                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662                                 "Returning result: 0x%x\n",
2663                                 cp, ei->ScsiStatus,
2664                                 sense_key, asc, ascq,
2665                                 cmd->result);
2666                 } else {  /* scsi status is zero??? How??? */
2667                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668                                 "Returning no connection.\n", cp),
2669
2670                         /* Ordinarily, this case should never happen,
2671                          * but there is a bug in some released firmware
2672                          * revisions that allows it to happen if, for
2673                          * example, a 4100 backplane loses power and
2674                          * the tape drive is in it.  We assume that
2675                          * it's a fatal error of some kind because we
2676                          * can't show that it wasn't. We will make it
2677                          * look like selection timeout since that is
2678                          * the most common reason for this to occur,
2679                          * and it's severe enough.
2680                          */
2681
2682                         cmd->result = DID_NO_CONNECT << 16;
2683                 }
2684                 break;
2685
2686         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687                 break;
2688         case CMD_DATA_OVERRUN:
2689                 dev_warn(&h->pdev->dev,
2690                         "CDB %16phN data overrun\n", cp->Request.CDB);
2691                 break;
2692         case CMD_INVALID: {
2693                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2694                 print_cmd(cp); */
2695                 /* We get CMD_INVALID if you address a non-existent device
2696                  * instead of a selection timeout (no response).  You will
2697                  * see this if you yank out a drive, then try to access it.
2698                  * This is kind of a shame because it means that any other
2699                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700                  * missing target. */
2701                 cmd->result = DID_NO_CONNECT << 16;
2702         }
2703                 break;
2704         case CMD_PROTOCOL_ERR:
2705                 cmd->result = DID_ERROR << 16;
2706                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707                                 cp->Request.CDB);
2708                 break;
2709         case CMD_HARDWARE_ERR:
2710                 cmd->result = DID_ERROR << 16;
2711                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712                         cp->Request.CDB);
2713                 break;
2714         case CMD_CONNECTION_LOST:
2715                 cmd->result = DID_ERROR << 16;
2716                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717                         cp->Request.CDB);
2718                 break;
2719         case CMD_ABORTED:
2720                 cmd->result = DID_ABORT << 16;
2721                 break;
2722         case CMD_ABORT_FAILED:
2723                 cmd->result = DID_ERROR << 16;
2724                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725                         cp->Request.CDB);
2726                 break;
2727         case CMD_UNSOLICITED_ABORT:
2728                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730                         cp->Request.CDB);
2731                 break;
2732         case CMD_TIMEOUT:
2733                 cmd->result = DID_TIME_OUT << 16;
2734                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735                         cp->Request.CDB);
2736                 break;
2737         case CMD_UNABORTABLE:
2738                 cmd->result = DID_ERROR << 16;
2739                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2740                 break;
2741         case CMD_TMF_STATUS:
2742                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743                         cmd->result = DID_ERROR << 16;
2744                 break;
2745         case CMD_IOACCEL_DISABLED:
2746                 /* This only handles the direct pass-through case since RAID
2747                  * offload is handled above.  Just attempt a retry.
2748                  */
2749                 cmd->result = DID_SOFT_ERROR << 16;
2750                 dev_warn(&h->pdev->dev,
2751                                 "cp %p had HP SSD Smart Path error\n", cp);
2752                 break;
2753         default:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756                                 cp, ei->CommandStatus);
2757         }
2758
2759         return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761
2762 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2763                 int sg_used, enum dma_data_direction data_direction)
2764 {
2765         int i;
2766
2767         for (i = 0; i < sg_used; i++)
2768                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2769                                 le32_to_cpu(c->SG[i].Len),
2770                                 data_direction);
2771 }
2772
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774                 struct CommandList *cp,
2775                 unsigned char *buf,
2776                 size_t buflen,
2777                 enum dma_data_direction data_direction)
2778 {
2779         u64 addr64;
2780
2781         if (buflen == 0 || data_direction == DMA_NONE) {
2782                 cp->Header.SGList = 0;
2783                 cp->Header.SGTotal = cpu_to_le16(0);
2784                 return 0;
2785         }
2786
2787         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2788         if (dma_mapping_error(&pdev->dev, addr64)) {
2789                 /* Prevent subsequent unmap of something never mapped */
2790                 cp->Header.SGList = 0;
2791                 cp->Header.SGTotal = cpu_to_le16(0);
2792                 return -1;
2793         }
2794         cp->SG[0].Addr = cpu_to_le64(addr64);
2795         cp->SG[0].Len = cpu_to_le32(buflen);
2796         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799         return 0;
2800 }
2801
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807         DECLARE_COMPLETION_ONSTACK(wait);
2808
2809         c->waiting = &wait;
2810         __enqueue_cmd_and_start_io(h, c, reply_queue);
2811         if (timeout_msecs == NO_TIMEOUT) {
2812                 /* TODO: get rid of this no-timeout thing */
2813                 wait_for_completion_io(&wait);
2814                 return IO_OK;
2815         }
2816         if (!wait_for_completion_io_timeout(&wait,
2817                                         msecs_to_jiffies(timeout_msecs))) {
2818                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2819                 return -ETIMEDOUT;
2820         }
2821         return IO_OK;
2822 }
2823
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825                                    int reply_queue, unsigned long timeout_msecs)
2826 {
2827         if (unlikely(lockup_detected(h))) {
2828                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829                 return IO_OK;
2830         }
2831         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836         int cpu;
2837         u32 rc, *lockup_detected;
2838
2839         cpu = get_cpu();
2840         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841         rc = *lockup_detected;
2842         put_cpu();
2843         return rc;
2844 }
2845
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848                 struct CommandList *c, enum dma_data_direction data_direction,
2849                 unsigned long timeout_msecs)
2850 {
2851         int backoff_time = 10, retry_count = 0;
2852         int rc;
2853
2854         do {
2855                 memset(c->err_info, 0, sizeof(*c->err_info));
2856                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2857                                                   timeout_msecs);
2858                 if (rc)
2859                         break;
2860                 retry_count++;
2861                 if (retry_count > 3) {
2862                         msleep(backoff_time);
2863                         if (backoff_time < 1000)
2864                                 backoff_time *= 2;
2865                 }
2866         } while ((check_for_unit_attention(h, c) ||
2867                         check_for_busy(h, c)) &&
2868                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2869         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2870         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2871                 rc = -EIO;
2872         return rc;
2873 }
2874
2875 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2876                                 struct CommandList *c)
2877 {
2878         const u8 *cdb = c->Request.CDB;
2879         const u8 *lun = c->Header.LUN.LunAddrBytes;
2880
2881         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2882                  txt, lun, cdb);
2883 }
2884
2885 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2886                         struct CommandList *cp)
2887 {
2888         const struct ErrorInfo *ei = cp->err_info;
2889         struct device *d = &cp->h->pdev->dev;
2890         u8 sense_key, asc, ascq;
2891         int sense_len;
2892
2893         switch (ei->CommandStatus) {
2894         case CMD_TARGET_STATUS:
2895                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2896                         sense_len = sizeof(ei->SenseInfo);
2897                 else
2898                         sense_len = ei->SenseLen;
2899                 decode_sense_data(ei->SenseInfo, sense_len,
2900                                         &sense_key, &asc, &ascq);
2901                 hpsa_print_cmd(h, "SCSI status", cp);
2902                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2903                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2904                                 sense_key, asc, ascq);
2905                 else
2906                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2907                 if (ei->ScsiStatus == 0)
2908                         dev_warn(d, "SCSI status is abnormally zero.  "
2909                         "(probably indicates selection timeout "
2910                         "reported incorrectly due to a known "
2911                         "firmware bug, circa July, 2001.)\n");
2912                 break;
2913         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2914                 break;
2915         case CMD_DATA_OVERRUN:
2916                 hpsa_print_cmd(h, "overrun condition", cp);
2917                 break;
2918         case CMD_INVALID: {
2919                 /* controller unfortunately reports SCSI passthru's
2920                  * to non-existent targets as invalid commands.
2921                  */
2922                 hpsa_print_cmd(h, "invalid command", cp);
2923                 dev_warn(d, "probably means device no longer present\n");
2924                 }
2925                 break;
2926         case CMD_PROTOCOL_ERR:
2927                 hpsa_print_cmd(h, "protocol error", cp);
2928                 break;
2929         case CMD_HARDWARE_ERR:
2930                 hpsa_print_cmd(h, "hardware error", cp);
2931                 break;
2932         case CMD_CONNECTION_LOST:
2933                 hpsa_print_cmd(h, "connection lost", cp);
2934                 break;
2935         case CMD_ABORTED:
2936                 hpsa_print_cmd(h, "aborted", cp);
2937                 break;
2938         case CMD_ABORT_FAILED:
2939                 hpsa_print_cmd(h, "abort failed", cp);
2940                 break;
2941         case CMD_UNSOLICITED_ABORT:
2942                 hpsa_print_cmd(h, "unsolicited abort", cp);
2943                 break;
2944         case CMD_TIMEOUT:
2945                 hpsa_print_cmd(h, "timed out", cp);
2946                 break;
2947         case CMD_UNABORTABLE:
2948                 hpsa_print_cmd(h, "unabortable", cp);
2949                 break;
2950         case CMD_CTLR_LOCKUP:
2951                 hpsa_print_cmd(h, "controller lockup detected", cp);
2952                 break;
2953         default:
2954                 hpsa_print_cmd(h, "unknown status", cp);
2955                 dev_warn(d, "Unknown command status %x\n",
2956                                 ei->CommandStatus);
2957         }
2958 }
2959
2960 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2961                                         u8 page, u8 *buf, size_t bufsize)
2962 {
2963         int rc = IO_OK;
2964         struct CommandList *c;
2965         struct ErrorInfo *ei;
2966
2967         c = cmd_alloc(h);
2968         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2969                         page, scsi3addr, TYPE_CMD)) {
2970                 rc = -1;
2971                 goto out;
2972         }
2973         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2974                         NO_TIMEOUT);
2975         if (rc)
2976                 goto out;
2977         ei = c->err_info;
2978         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2979                 hpsa_scsi_interpret_error(h, c);
2980                 rc = -1;
2981         }
2982 out:
2983         cmd_free(h, c);
2984         return rc;
2985 }
2986
2987 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2988                                                 u8 *scsi3addr)
2989 {
2990         u8 *buf;
2991         u64 sa = 0;
2992         int rc = 0;
2993
2994         buf = kzalloc(1024, GFP_KERNEL);
2995         if (!buf)
2996                 return 0;
2997
2998         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2999                                         buf, 1024);
3000
3001         if (rc)
3002                 goto out;
3003
3004         sa = get_unaligned_be64(buf+12);
3005
3006 out:
3007         kfree(buf);
3008         return sa;
3009 }
3010
3011 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3012                         u16 page, unsigned char *buf,
3013                         unsigned char bufsize)
3014 {
3015         int rc = IO_OK;
3016         struct CommandList *c;
3017         struct ErrorInfo *ei;
3018
3019         c = cmd_alloc(h);
3020
3021         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3022                         page, scsi3addr, TYPE_CMD)) {
3023                 rc = -1;
3024                 goto out;
3025         }
3026         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3027                         NO_TIMEOUT);
3028         if (rc)
3029                 goto out;
3030         ei = c->err_info;
3031         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3032                 hpsa_scsi_interpret_error(h, c);
3033                 rc = -1;
3034         }
3035 out:
3036         cmd_free(h, c);
3037         return rc;
3038 }
3039
3040 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3041         u8 reset_type, int reply_queue)
3042 {
3043         int rc = IO_OK;
3044         struct CommandList *c;
3045         struct ErrorInfo *ei;
3046
3047         c = cmd_alloc(h);
3048
3049
3050         /* fill_cmd can't fail here, no data buffer to map. */
3051         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3052                         scsi3addr, TYPE_MSG);
3053         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3054         if (rc) {
3055                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3056                 goto out;
3057         }
3058         /* no unmap needed here because no data xfer. */
3059
3060         ei = c->err_info;
3061         if (ei->CommandStatus != 0) {
3062                 hpsa_scsi_interpret_error(h, c);
3063                 rc = -1;
3064         }
3065 out:
3066         cmd_free(h, c);
3067         return rc;
3068 }
3069
3070 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3071                                struct hpsa_scsi_dev_t *dev,
3072                                unsigned char *scsi3addr)
3073 {
3074         int i;
3075         bool match = false;
3076         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3077         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3078
3079         if (hpsa_is_cmd_idle(c))
3080                 return false;
3081
3082         switch (c->cmd_type) {
3083         case CMD_SCSI:
3084         case CMD_IOCTL_PEND:
3085                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3086                                 sizeof(c->Header.LUN.LunAddrBytes));
3087                 break;
3088
3089         case CMD_IOACCEL1:
3090         case CMD_IOACCEL2:
3091                 if (c->phys_disk == dev) {
3092                         /* HBA mode match */
3093                         match = true;
3094                 } else {
3095                         /* Possible RAID mode -- check each phys dev. */
3096                         /* FIXME:  Do we need to take out a lock here?  If
3097                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3098                          * instead. */
3099                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3100                                 /* FIXME: an alternate test might be
3101                                  *
3102                                  * match = dev->phys_disk[i]->ioaccel_handle
3103                                  *              == c2->scsi_nexus;      */
3104                                 match = dev->phys_disk[i] == c->phys_disk;
3105                         }
3106                 }
3107                 break;
3108
3109         case IOACCEL2_TMF:
3110                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111                         match = dev->phys_disk[i]->ioaccel_handle ==
3112                                         le32_to_cpu(ac->it_nexus);
3113                 }
3114                 break;
3115
3116         case 0:         /* The command is in the middle of being initialized. */
3117                 match = false;
3118                 break;
3119
3120         default:
3121                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3122                         c->cmd_type);
3123                 BUG();
3124         }
3125
3126         return match;
3127 }
3128
3129 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3130         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3131 {
3132         int i;
3133         int rc = 0;
3134
3135         /* We can really only handle one reset at a time */
3136         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3137                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3138                 return -EINTR;
3139         }
3140
3141         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3142
3143         for (i = 0; i < h->nr_cmds; i++) {
3144                 struct CommandList *c = h->cmd_pool + i;
3145                 int refcount = atomic_inc_return(&c->refcount);
3146
3147                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3148                         unsigned long flags;
3149
3150                         /*
3151                          * Mark the target command as having a reset pending,
3152                          * then lock a lock so that the command cannot complete
3153                          * while we're considering it.  If the command is not
3154                          * idle then count it; otherwise revoke the event.
3155                          */
3156                         c->reset_pending = dev;
3157                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3158                         if (!hpsa_is_cmd_idle(c))
3159                                 atomic_inc(&dev->reset_cmds_out);
3160                         else
3161                                 c->reset_pending = NULL;
3162                         spin_unlock_irqrestore(&h->lock, flags);
3163                 }
3164
3165                 cmd_free(h, c);
3166         }
3167
3168         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3169         if (!rc)
3170                 wait_event(h->event_sync_wait_queue,
3171                         atomic_read(&dev->reset_cmds_out) == 0 ||
3172                         lockup_detected(h));
3173
3174         if (unlikely(lockup_detected(h))) {
3175                 dev_warn(&h->pdev->dev,
3176                          "Controller lockup detected during reset wait\n");
3177                 rc = -ENODEV;
3178         }
3179
3180         if (unlikely(rc))
3181                 atomic_set(&dev->reset_cmds_out, 0);
3182         else
3183                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3184
3185         mutex_unlock(&h->reset_mutex);
3186         return rc;
3187 }
3188
3189 static void hpsa_get_raid_level(struct ctlr_info *h,
3190         unsigned char *scsi3addr, unsigned char *raid_level)
3191 {
3192         int rc;
3193         unsigned char *buf;
3194
3195         *raid_level = RAID_UNKNOWN;
3196         buf = kzalloc(64, GFP_KERNEL);
3197         if (!buf)
3198                 return;
3199
3200         if (!hpsa_vpd_page_supported(h, scsi3addr,
3201                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3202                 goto exit;
3203
3204         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3205                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3206
3207         if (rc == 0)
3208                 *raid_level = buf[8];
3209         if (*raid_level > RAID_UNKNOWN)
3210                 *raid_level = RAID_UNKNOWN;
3211 exit:
3212         kfree(buf);
3213         return;
3214 }
3215
3216 #define HPSA_MAP_DEBUG
3217 #ifdef HPSA_MAP_DEBUG
3218 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3219                                 struct raid_map_data *map_buff)
3220 {
3221         struct raid_map_disk_data *dd = &map_buff->data[0];
3222         int map, row, col;
3223         u16 map_cnt, row_cnt, disks_per_row;
3224
3225         if (rc != 0)
3226                 return;
3227
3228         /* Show details only if debugging has been activated. */
3229         if (h->raid_offload_debug < 2)
3230                 return;
3231
3232         dev_info(&h->pdev->dev, "structure_size = %u\n",
3233                                 le32_to_cpu(map_buff->structure_size));
3234         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3235                         le32_to_cpu(map_buff->volume_blk_size));
3236         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3237                         le64_to_cpu(map_buff->volume_blk_cnt));
3238         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3239                         map_buff->phys_blk_shift);
3240         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3241                         map_buff->parity_rotation_shift);
3242         dev_info(&h->pdev->dev, "strip_size = %u\n",
3243                         le16_to_cpu(map_buff->strip_size));
3244         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3245                         le64_to_cpu(map_buff->disk_starting_blk));
3246         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3247                         le64_to_cpu(map_buff->disk_blk_cnt));
3248         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3249                         le16_to_cpu(map_buff->data_disks_per_row));
3250         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3251                         le16_to_cpu(map_buff->metadata_disks_per_row));
3252         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3253                         le16_to_cpu(map_buff->row_cnt));
3254         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3255                         le16_to_cpu(map_buff->layout_map_count));
3256         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3257                         le16_to_cpu(map_buff->flags));
3258         dev_info(&h->pdev->dev, "encryption = %s\n",
3259                         le16_to_cpu(map_buff->flags) &
3260                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3261         dev_info(&h->pdev->dev, "dekindex = %u\n",
3262                         le16_to_cpu(map_buff->dekindex));
3263         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3264         for (map = 0; map < map_cnt; map++) {
3265                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3266                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3267                 for (row = 0; row < row_cnt; row++) {
3268                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3269                         disks_per_row =
3270                                 le16_to_cpu(map_buff->data_disks_per_row);
3271                         for (col = 0; col < disks_per_row; col++, dd++)
3272                                 dev_info(&h->pdev->dev,
3273                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3274                                         col, dd->ioaccel_handle,
3275                                         dd->xor_mult[0], dd->xor_mult[1]);
3276                         disks_per_row =
3277                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3278                         for (col = 0; col < disks_per_row; col++, dd++)
3279                                 dev_info(&h->pdev->dev,
3280                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3281                                         col, dd->ioaccel_handle,
3282                                         dd->xor_mult[0], dd->xor_mult[1]);
3283                 }
3284         }
3285 }
3286 #else
3287 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3288                         __attribute__((unused)) int rc,
3289                         __attribute__((unused)) struct raid_map_data *map_buff)
3290 {
3291 }
3292 #endif
3293
3294 static int hpsa_get_raid_map(struct ctlr_info *h,
3295         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3296 {
3297         int rc = 0;
3298         struct CommandList *c;
3299         struct ErrorInfo *ei;
3300
3301         c = cmd_alloc(h);
3302
3303         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3304                         sizeof(this_device->raid_map), 0,
3305                         scsi3addr, TYPE_CMD)) {
3306                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3307                 cmd_free(h, c);
3308                 return -1;
3309         }
3310         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3311                         NO_TIMEOUT);
3312         if (rc)
3313                 goto out;
3314         ei = c->err_info;
3315         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3316                 hpsa_scsi_interpret_error(h, c);
3317                 rc = -1;
3318                 goto out;
3319         }
3320         cmd_free(h, c);
3321
3322         /* @todo in the future, dynamically allocate RAID map memory */
3323         if (le32_to_cpu(this_device->raid_map.structure_size) >
3324                                 sizeof(this_device->raid_map)) {
3325                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3326                 rc = -1;
3327         }
3328         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329         return rc;
3330 out:
3331         cmd_free(h, c);
3332         return rc;
3333 }
3334
3335 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3336                 unsigned char scsi3addr[], u16 bmic_device_index,
3337                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3338 {
3339         int rc = IO_OK;
3340         struct CommandList *c;
3341         struct ErrorInfo *ei;
3342
3343         c = cmd_alloc(h);
3344
3345         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3346                 0, RAID_CTLR_LUNID, TYPE_CMD);
3347         if (rc)
3348                 goto out;
3349
3350         c->Request.CDB[2] = bmic_device_index & 0xff;
3351         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3352
3353         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3354                         NO_TIMEOUT);
3355         if (rc)
3356                 goto out;
3357         ei = c->err_info;
3358         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3359                 hpsa_scsi_interpret_error(h, c);
3360                 rc = -1;
3361         }
3362 out:
3363         cmd_free(h, c);
3364         return rc;
3365 }
3366
3367 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3368         struct bmic_identify_controller *buf, size_t bufsize)
3369 {
3370         int rc = IO_OK;
3371         struct CommandList *c;
3372         struct ErrorInfo *ei;
3373
3374         c = cmd_alloc(h);
3375
3376         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3377                 0, RAID_CTLR_LUNID, TYPE_CMD);
3378         if (rc)
3379                 goto out;
3380
3381         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3382                         NO_TIMEOUT);
3383         if (rc)
3384                 goto out;
3385         ei = c->err_info;
3386         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3387                 hpsa_scsi_interpret_error(h, c);
3388                 rc = -1;
3389         }
3390 out:
3391         cmd_free(h, c);
3392         return rc;
3393 }
3394
3395 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3396                 unsigned char scsi3addr[], u16 bmic_device_index,
3397                 struct bmic_identify_physical_device *buf, size_t bufsize)
3398 {
3399         int rc = IO_OK;
3400         struct CommandList *c;
3401         struct ErrorInfo *ei;
3402
3403         c = cmd_alloc(h);
3404         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3405                 0, RAID_CTLR_LUNID, TYPE_CMD);
3406         if (rc)
3407                 goto out;
3408
3409         c->Request.CDB[2] = bmic_device_index & 0xff;
3410         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3411
3412         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3413                                                 NO_TIMEOUT);
3414         ei = c->err_info;
3415         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3416                 hpsa_scsi_interpret_error(h, c);
3417                 rc = -1;
3418         }
3419 out:
3420         cmd_free(h, c);
3421
3422         return rc;
3423 }
3424
3425 /*
3426  * get enclosure information
3427  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3428  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3429  * Uses id_physical_device to determine the box_index.
3430  */
3431 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3432                         unsigned char *scsi3addr,
3433                         struct ReportExtendedLUNdata *rlep, int rle_index,
3434                         struct hpsa_scsi_dev_t *encl_dev)
3435 {
3436         int rc = -1;
3437         struct CommandList *c = NULL;
3438         struct ErrorInfo *ei = NULL;
3439         struct bmic_sense_storage_box_params *bssbp = NULL;
3440         struct bmic_identify_physical_device *id_phys = NULL;
3441         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3442         u16 bmic_device_index = 0;
3443
3444         encl_dev->eli =
3445                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3446
3447         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3448
3449         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3450                 rc = IO_OK;
3451                 goto out;
3452         }
3453
3454         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3455                 rc = IO_OK;
3456                 goto out;
3457         }
3458
3459         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3460         if (!bssbp)
3461                 goto out;
3462
3463         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3464         if (!id_phys)
3465                 goto out;
3466
3467         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3468                                                 id_phys, sizeof(*id_phys));
3469         if (rc) {
3470                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3471                         __func__, encl_dev->external, bmic_device_index);
3472                 goto out;
3473         }
3474
3475         c = cmd_alloc(h);
3476
3477         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3478                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3479
3480         if (rc)
3481                 goto out;
3482
3483         if (id_phys->phys_connector[1] == 'E')
3484                 c->Request.CDB[5] = id_phys->box_index;
3485         else
3486                 c->Request.CDB[5] = 0;
3487
3488         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3489                                                 NO_TIMEOUT);
3490         if (rc)
3491                 goto out;
3492
3493         ei = c->err_info;
3494         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3495                 rc = -1;
3496                 goto out;
3497         }
3498
3499         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3500         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3501                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3502
3503         rc = IO_OK;
3504 out:
3505         kfree(bssbp);
3506         kfree(id_phys);
3507
3508         if (c)
3509                 cmd_free(h, c);
3510
3511         if (rc != IO_OK)
3512                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3513                         "Error, could not get enclosure information");
3514 }
3515
3516 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3517                                                 unsigned char *scsi3addr)
3518 {
3519         struct ReportExtendedLUNdata *physdev;
3520         u32 nphysicals;
3521         u64 sa = 0;
3522         int i;
3523
3524         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3525         if (!physdev)
3526                 return 0;
3527
3528         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3529                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3530                 kfree(physdev);
3531                 return 0;
3532         }
3533         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3534
3535         for (i = 0; i < nphysicals; i++)
3536                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3537                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3538                         break;
3539                 }
3540
3541         kfree(physdev);
3542
3543         return sa;
3544 }
3545
3546 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3547                                         struct hpsa_scsi_dev_t *dev)
3548 {
3549         int rc;
3550         u64 sa = 0;
3551
3552         if (is_hba_lunid(scsi3addr)) {
3553                 struct bmic_sense_subsystem_info *ssi;
3554
3555                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3556                 if (!ssi)
3557                         return;
3558
3559                 rc = hpsa_bmic_sense_subsystem_information(h,
3560                                         scsi3addr, 0, ssi, sizeof(*ssi));
3561                 if (rc == 0) {
3562                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3563                         h->sas_address = sa;
3564                 }
3565
3566                 kfree(ssi);
3567         } else
3568                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3569
3570         dev->sas_address = sa;
3571 }
3572
3573 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3574         struct ReportExtendedLUNdata *physdev)
3575 {
3576         u32 nphysicals;
3577         int i;
3578
3579         if (h->discovery_polling)
3580                 return;
3581
3582         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3583
3584         for (i = 0; i < nphysicals; i++) {
3585                 if (physdev->LUN[i].device_type ==
3586                         BMIC_DEVICE_TYPE_CONTROLLER
3587                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3588                         dev_info(&h->pdev->dev,
3589                                 "External controller present, activate discovery polling and disable rld caching\n");
3590                         hpsa_disable_rld_caching(h);
3591                         h->discovery_polling = 1;
3592                         break;
3593                 }
3594         }
3595 }
3596
3597 /* Get a device id from inquiry page 0x83 */
3598 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3599         unsigned char scsi3addr[], u8 page)
3600 {
3601         int rc;
3602         int i;
3603         int pages;
3604         unsigned char *buf, bufsize;
3605
3606         buf = kzalloc(256, GFP_KERNEL);
3607         if (!buf)
3608                 return false;
3609
3610         /* Get the size of the page list first */
3611         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3612                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3613                                 buf, HPSA_VPD_HEADER_SZ);
3614         if (rc != 0)
3615                 goto exit_unsupported;
3616         pages = buf[3];
3617         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3618                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3619         else
3620                 bufsize = 255;
3621
3622         /* Get the whole VPD page list */
3623         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625                                 buf, bufsize);
3626         if (rc != 0)
3627                 goto exit_unsupported;
3628
3629         pages = buf[3];
3630         for (i = 1; i <= pages; i++)
3631                 if (buf[3 + i] == page)
3632                         goto exit_supported;
3633 exit_unsupported:
3634         kfree(buf);
3635         return false;
3636 exit_supported:
3637         kfree(buf);
3638         return true;
3639 }
3640
3641 /*
3642  * Called during a scan operation.
3643  * Sets ioaccel status on the new device list, not the existing device list
3644  *
3645  * The device list used during I/O will be updated later in
3646  * adjust_hpsa_scsi_table.
3647  */
3648 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3649         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3650 {
3651         int rc;
3652         unsigned char *buf;
3653         u8 ioaccel_status;
3654
3655         this_device->offload_config = 0;
3656         this_device->offload_enabled = 0;
3657         this_device->offload_to_be_enabled = 0;
3658
3659         buf = kzalloc(64, GFP_KERNEL);
3660         if (!buf)
3661                 return;
3662         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3663                 goto out;
3664         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3665                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3666         if (rc != 0)
3667                 goto out;
3668
3669 #define IOACCEL_STATUS_BYTE 4
3670 #define OFFLOAD_CONFIGURED_BIT 0x01
3671 #define OFFLOAD_ENABLED_BIT 0x02
3672         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3673         this_device->offload_config =
3674                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3675         if (this_device->offload_config) {
3676                 this_device->offload_to_be_enabled =
3677                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3678                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3679                         this_device->offload_to_be_enabled = 0;
3680         }
3681
3682 out:
3683         kfree(buf);
3684         return;
3685 }
3686
3687 /* Get the device id from inquiry page 0x83 */
3688 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3689         unsigned char *device_id, int index, int buflen)
3690 {
3691         int rc;
3692         unsigned char *buf;
3693
3694         /* Does controller have VPD for device id? */
3695         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3696                 return 1; /* not supported */
3697
3698         buf = kzalloc(64, GFP_KERNEL);
3699         if (!buf)
3700                 return -ENOMEM;
3701
3702         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3703                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3704         if (rc == 0) {
3705                 if (buflen > 16)
3706                         buflen = 16;
3707                 memcpy(device_id, &buf[8], buflen);
3708         }
3709
3710         kfree(buf);
3711
3712         return rc; /*0 - got id,  otherwise, didn't */
3713 }
3714
3715 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3716                 void *buf, int bufsize,
3717                 int extended_response)
3718 {
3719         int rc = IO_OK;
3720         struct CommandList *c;
3721         unsigned char scsi3addr[8];
3722         struct ErrorInfo *ei;
3723
3724         c = cmd_alloc(h);
3725
3726         /* address the controller */
3727         memset(scsi3addr, 0, sizeof(scsi3addr));
3728         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3729                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3730                 rc = -EAGAIN;
3731                 goto out;
3732         }
3733         if (extended_response)
3734                 c->Request.CDB[1] = extended_response;
3735         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3736                         NO_TIMEOUT);
3737         if (rc)
3738                 goto out;
3739         ei = c->err_info;
3740         if (ei->CommandStatus != 0 &&
3741             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3742                 hpsa_scsi_interpret_error(h, c);
3743                 rc = -EIO;
3744         } else {
3745                 struct ReportLUNdata *rld = buf;
3746
3747                 if (rld->extended_response_flag != extended_response) {
3748                         if (!h->legacy_board) {
3749                                 dev_err(&h->pdev->dev,
3750                                         "report luns requested format %u, got %u\n",
3751                                         extended_response,
3752                                         rld->extended_response_flag);
3753                                 rc = -EINVAL;
3754                         } else
3755                                 rc = -EOPNOTSUPP;
3756                 }
3757         }
3758 out:
3759         cmd_free(h, c);
3760         return rc;
3761 }
3762
3763 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3764                 struct ReportExtendedLUNdata *buf, int bufsize)
3765 {
3766         int rc;
3767         struct ReportLUNdata *lbuf;
3768
3769         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3770                                       HPSA_REPORT_PHYS_EXTENDED);
3771         if (!rc || rc != -EOPNOTSUPP)
3772                 return rc;
3773
3774         /* REPORT PHYS EXTENDED is not supported */
3775         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3776         if (!lbuf)
3777                 return -ENOMEM;
3778
3779         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3780         if (!rc) {
3781                 int i;
3782                 u32 nphys;
3783
3784                 /* Copy ReportLUNdata header */
3785                 memcpy(buf, lbuf, 8);
3786                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3787                 for (i = 0; i < nphys; i++)
3788                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3789         }
3790         kfree(lbuf);
3791         return rc;
3792 }
3793
3794 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3795                 struct ReportLUNdata *buf, int bufsize)
3796 {
3797         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3798 }
3799
3800 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3801         int bus, int target, int lun)
3802 {
3803         device->bus = bus;
3804         device->target = target;
3805         device->lun = lun;
3806 }
3807
3808 /* Use VPD inquiry to get details of volume status */
3809 static int hpsa_get_volume_status(struct ctlr_info *h,
3810                                         unsigned char scsi3addr[])
3811 {
3812         int rc;
3813         int status;
3814         int size;
3815         unsigned char *buf;
3816
3817         buf = kzalloc(64, GFP_KERNEL);
3818         if (!buf)
3819                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3820
3821         /* Does controller have VPD for logical volume status? */
3822         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3823                 goto exit_failed;
3824
3825         /* Get the size of the VPD return buffer */
3826         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827                                         buf, HPSA_VPD_HEADER_SZ);
3828         if (rc != 0)
3829                 goto exit_failed;
3830         size = buf[3];
3831
3832         /* Now get the whole VPD buffer */
3833         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3834                                         buf, size + HPSA_VPD_HEADER_SZ);
3835         if (rc != 0)
3836                 goto exit_failed;
3837         status = buf[4]; /* status byte */
3838
3839         kfree(buf);
3840         return status;
3841 exit_failed:
3842         kfree(buf);
3843         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3844 }
3845
3846 /* Determine offline status of a volume.
3847  * Return either:
3848  *  0 (not offline)
3849  *  0xff (offline for unknown reasons)
3850  *  # (integer code indicating one of several NOT READY states
3851  *     describing why a volume is to be kept offline)
3852  */
3853 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3854                                         unsigned char scsi3addr[])
3855 {
3856         struct CommandList *c;
3857         unsigned char *sense;
3858         u8 sense_key, asc, ascq;
3859         int sense_len;
3860         int rc, ldstat = 0;
3861         u16 cmd_status;
3862         u8 scsi_status;
3863 #define ASC_LUN_NOT_READY 0x04
3864 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3865 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866
3867         c = cmd_alloc(h);
3868
3869         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3870         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3871                                         NO_TIMEOUT);
3872         if (rc) {
3873                 cmd_free(h, c);
3874                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3875         }
3876         sense = c->err_info->SenseInfo;
3877         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3878                 sense_len = sizeof(c->err_info->SenseInfo);
3879         else
3880                 sense_len = c->err_info->SenseLen;
3881         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3882         cmd_status = c->err_info->CommandStatus;
3883         scsi_status = c->err_info->ScsiStatus;
3884         cmd_free(h, c);
3885
3886         /* Determine the reason for not ready state */
3887         ldstat = hpsa_get_volume_status(h, scsi3addr);
3888
3889         /* Keep volume offline in certain cases: */
3890         switch (ldstat) {
3891         case HPSA_LV_FAILED:
3892         case HPSA_LV_UNDERGOING_ERASE:
3893         case HPSA_LV_NOT_AVAILABLE:
3894         case HPSA_LV_UNDERGOING_RPI:
3895         case HPSA_LV_PENDING_RPI:
3896         case HPSA_LV_ENCRYPTED_NO_KEY:
3897         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3898         case HPSA_LV_UNDERGOING_ENCRYPTION:
3899         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3900         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3901                 return ldstat;
3902         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3903                 /* If VPD status page isn't available,
3904                  * use ASC/ASCQ to determine state
3905                  */
3906                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3907                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3908                         return ldstat;
3909                 break;
3910         default:
3911                 break;
3912         }
3913         return HPSA_LV_OK;
3914 }
3915
3916 static int hpsa_update_device_info(struct ctlr_info *h,
3917         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3918         unsigned char *is_OBDR_device)
3919 {
3920
3921 #define OBDR_SIG_OFFSET 43
3922 #define OBDR_TAPE_SIG "$DR-10"
3923 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3924 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3925
3926         unsigned char *inq_buff;
3927         unsigned char *obdr_sig;
3928         int rc = 0;
3929
3930         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3931         if (!inq_buff) {
3932                 rc = -ENOMEM;
3933                 goto bail_out;
3934         }
3935
3936         /* Do an inquiry to the device to see what it is. */
3937         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3938                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3939                 dev_err(&h->pdev->dev,
3940                         "%s: inquiry failed, device will be skipped.\n",
3941                         __func__);
3942                 rc = HPSA_INQUIRY_FAILED;
3943                 goto bail_out;
3944         }
3945
3946         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3947         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3948
3949         this_device->devtype = (inq_buff[0] & 0x1f);
3950         memcpy(this_device->scsi3addr, scsi3addr, 8);
3951         memcpy(this_device->vendor, &inq_buff[8],
3952                 sizeof(this_device->vendor));
3953         memcpy(this_device->model, &inq_buff[16],
3954                 sizeof(this_device->model));
3955         this_device->rev = inq_buff[2];
3956         memset(this_device->device_id, 0,
3957                 sizeof(this_device->device_id));
3958         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3959                 sizeof(this_device->device_id)) < 0)
3960                 dev_err(&h->pdev->dev,
3961                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3962                         h->ctlr, __func__,
3963                         h->scsi_host->host_no,
3964                         this_device->target, this_device->lun,
3965                         scsi_device_type(this_device->devtype),
3966                         this_device->model);
3967
3968         if ((this_device->devtype == TYPE_DISK ||
3969                 this_device->devtype == TYPE_ZBC) &&
3970                 is_logical_dev_addr_mode(scsi3addr)) {
3971                 unsigned char volume_offline;
3972
3973                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3974                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3975                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3976                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3977                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978                     h->legacy_board) {
3979                         /*
3980                          * Legacy boards might not support volume status
3981                          */
3982                         dev_info(&h->pdev->dev,
3983                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3984                                  this_device->target, this_device->lun);
3985                         volume_offline = 0;
3986                 }
3987                 this_device->volume_offline = volume_offline;
3988                 if (volume_offline == HPSA_LV_FAILED) {
3989                         rc = HPSA_LV_FAILED;
3990                         dev_err(&h->pdev->dev,
3991                                 "%s: LV failed, device will be skipped.\n",
3992                                 __func__);
3993                         goto bail_out;
3994                 }
3995         } else {
3996                 this_device->raid_level = RAID_UNKNOWN;
3997                 this_device->offload_config = 0;
3998                 this_device->offload_enabled = 0;
3999                 this_device->offload_to_be_enabled = 0;
4000                 this_device->hba_ioaccel_enabled = 0;
4001                 this_device->volume_offline = 0;
4002                 this_device->queue_depth = h->nr_cmds;
4003         }
4004
4005         if (this_device->external)
4006                 this_device->queue_depth = EXTERNAL_QD;
4007
4008         if (is_OBDR_device) {
4009                 /* See if this is a One-Button-Disaster-Recovery device
4010                  * by looking for "$DR-10" at offset 43 in inquiry data.
4011                  */
4012                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4013                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4014                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4015                                                 OBDR_SIG_LEN) == 0);
4016         }
4017         kfree(inq_buff);
4018         return 0;
4019
4020 bail_out:
4021         kfree(inq_buff);
4022         return rc;
4023 }
4024
4025 /*
4026  * Helper function to assign bus, target, lun mapping of devices.
4027  * Logical drive target and lun are assigned at this time, but
4028  * physical device lun and target assignment are deferred (assigned
4029  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4030 */
4031 static void figure_bus_target_lun(struct ctlr_info *h,
4032         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4033 {
4034         u32 lunid = get_unaligned_le32(lunaddrbytes);
4035
4036         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4037                 /* physical device, target and lun filled in later */
4038                 if (is_hba_lunid(lunaddrbytes)) {
4039                         int bus = HPSA_HBA_BUS;
4040
4041                         if (!device->rev)
4042                                 bus = HPSA_LEGACY_HBA_BUS;
4043                         hpsa_set_bus_target_lun(device,
4044                                         bus, 0, lunid & 0x3fff);
4045                 } else
4046                         /* defer target, lun assignment for physical devices */
4047                         hpsa_set_bus_target_lun(device,
4048                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049                 return;
4050         }
4051         /* It's a logical device */
4052         if (device->external) {
4053                 hpsa_set_bus_target_lun(device,
4054                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4055                         lunid & 0x00ff);
4056                 return;
4057         }
4058         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4059                                 0, lunid & 0x3fff);
4060 }
4061
4062 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4063         int i, int nphysicals, int nlocal_logicals)
4064 {
4065         /* In report logicals, local logicals are listed first,
4066         * then any externals.
4067         */
4068         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4069
4070         if (i == raid_ctlr_position)
4071                 return 0;
4072
4073         if (i < logicals_start)
4074                 return 0;
4075
4076         /* i is in logicals range, but still within local logicals */
4077         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078                 return 0;
4079
4080         return 1; /* it's an external lun */
4081 }
4082
4083 /*
4084  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4085  * logdev.  The number of luns in physdev and logdev are returned in
4086  * *nphysicals and *nlogicals, respectively.
4087  * Returns 0 on success, -1 otherwise.
4088  */
4089 static int hpsa_gather_lun_info(struct ctlr_info *h,
4090         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4091         struct ReportLUNdata *logdev, u32 *nlogicals)
4092 {
4093         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4094                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095                 return -1;
4096         }
4097         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4098         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4099                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4100                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4101                 *nphysicals = HPSA_MAX_PHYS_LUN;
4102         }
4103         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4104                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105                 return -1;
4106         }
4107         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4108         /* Reject Logicals in excess of our max capability. */
4109         if (*nlogicals > HPSA_MAX_LUN) {
4110                 dev_warn(&h->pdev->dev,
4111                         "maximum logical LUNs (%d) exceeded.  "
4112                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4113                         *nlogicals - HPSA_MAX_LUN);
4114                         *nlogicals = HPSA_MAX_LUN;
4115         }
4116         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4117                 dev_warn(&h->pdev->dev,
4118                         "maximum logical + physical LUNs (%d) exceeded. "
4119                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4120                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4121                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4122         }
4123         return 0;
4124 }
4125
4126 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4127         int i, int nphysicals, int nlogicals,
4128         struct ReportExtendedLUNdata *physdev_list,
4129         struct ReportLUNdata *logdev_list)
4130 {
4131         /* Helper function, figure out where the LUN ID info is coming from
4132          * given index i, lists of physical and logical devices, where in
4133          * the list the raid controller is supposed to appear (first or last)
4134          */
4135
4136         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4137         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4138
4139         if (i == raid_ctlr_position)
4140                 return RAID_CTLR_LUNID;
4141
4142         if (i < logicals_start)
4143                 return &physdev_list->LUN[i -
4144                                 (raid_ctlr_position == 0)].lunid[0];
4145
4146         if (i < last_device)
4147                 return &logdev_list->LUN[i - nphysicals -
4148                         (raid_ctlr_position == 0)][0];
4149         BUG();
4150         return NULL;
4151 }
4152
4153 /* get physical drive ioaccel handle and queue depth */
4154 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4155                 struct hpsa_scsi_dev_t *dev,
4156                 struct ReportExtendedLUNdata *rlep, int rle_index,
4157                 struct bmic_identify_physical_device *id_phys)
4158 {
4159         int rc;
4160         struct ext_report_lun_entry *rle;
4161
4162         rle = &rlep->LUN[rle_index];
4163
4164         dev->ioaccel_handle = rle->ioaccel_handle;
4165         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4166                 dev->hba_ioaccel_enabled = 1;
4167         memset(id_phys, 0, sizeof(*id_phys));
4168         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4169                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170                         sizeof(*id_phys));
4171         if (!rc)
4172                 /* Reserve space for FW operations */
4173 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4174 #define DRIVE_QUEUE_DEPTH 7
4175                 dev->queue_depth =
4176                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4177                                 DRIVE_CMDS_RESERVED_FOR_FW;
4178         else
4179                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4180 }
4181
4182 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4183         struct ReportExtendedLUNdata *rlep, int rle_index,
4184         struct bmic_identify_physical_device *id_phys)
4185 {
4186         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4187
4188         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4189                 this_device->hba_ioaccel_enabled = 1;
4190
4191         memcpy(&this_device->active_path_index,
4192                 &id_phys->active_path_number,
4193                 sizeof(this_device->active_path_index));
4194         memcpy(&this_device->path_map,
4195                 &id_phys->redundant_path_present_map,
4196                 sizeof(this_device->path_map));
4197         memcpy(&this_device->box,
4198                 &id_phys->alternate_paths_phys_box_on_port,
4199                 sizeof(this_device->box));
4200         memcpy(&this_device->phys_connector,
4201                 &id_phys->alternate_paths_phys_connector,
4202                 sizeof(this_device->phys_connector));
4203         memcpy(&this_device->bay,
4204                 &id_phys->phys_bay_in_box,
4205                 sizeof(this_device->bay));
4206 }
4207
4208 /* get number of local logical disks. */
4209 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4210         struct bmic_identify_controller *id_ctlr,
4211         u32 *nlocals)
4212 {
4213         int rc;
4214
4215         if (!id_ctlr) {
4216                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4217                         __func__);
4218                 return -ENOMEM;
4219         }
4220         memset(id_ctlr, 0, sizeof(*id_ctlr));
4221         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4222         if (!rc)
4223                 if (id_ctlr->configured_logical_drive_count < 255)
4224                         *nlocals = id_ctlr->configured_logical_drive_count;
4225                 else
4226                         *nlocals = le16_to_cpu(
4227                                         id_ctlr->extended_logical_unit_count);
4228         else
4229                 *nlocals = -1;
4230         return rc;
4231 }
4232
4233 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4234 {
4235         struct bmic_identify_physical_device *id_phys;
4236         bool is_spare = false;
4237         int rc;
4238
4239         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4240         if (!id_phys)
4241                 return false;
4242
4243         rc = hpsa_bmic_id_physical_device(h,
4244                                         lunaddrbytes,
4245                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4246                                         id_phys, sizeof(*id_phys));
4247         if (rc == 0)
4248                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4249
4250         kfree(id_phys);
4251         return is_spare;
4252 }
4253
4254 #define RPL_DEV_FLAG_NON_DISK                           0x1
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4257
4258 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4259
4260 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4261                                 struct ext_report_lun_entry *rle)
4262 {
4263         u8 device_flags;
4264         u8 device_type;
4265
4266         if (!MASKED_DEVICE(lunaddrbytes))
4267                 return false;
4268
4269         device_flags = rle->device_flags;
4270         device_type = rle->device_type;
4271
4272         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4273                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4274                         return false;
4275                 return true;
4276         }
4277
4278         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279                 return false;
4280
4281         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4282                 return false;
4283
4284         /*
4285          * Spares may be spun down, we do not want to
4286          * do an Inquiry to a RAID set spare drive as
4287          * that would have them spun up, that is a
4288          * performance hit because I/O to the RAID device
4289          * stops while the spin up occurs which can take
4290          * over 50 seconds.
4291          */
4292         if (hpsa_is_disk_spare(h, lunaddrbytes))
4293                 return true;
4294
4295         return false;
4296 }
4297
4298 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4299 {
4300         /* the idea here is we could get notified
4301          * that some devices have changed, so we do a report
4302          * physical luns and report logical luns cmd, and adjust
4303          * our list of devices accordingly.
4304          *
4305          * The scsi3addr's of devices won't change so long as the
4306          * adapter is not reset.  That means we can rescan and
4307          * tell which devices we already know about, vs. new
4308          * devices, vs.  disappearing devices.
4309          */
4310         struct ReportExtendedLUNdata *physdev_list = NULL;
4311         struct ReportLUNdata *logdev_list = NULL;
4312         struct bmic_identify_physical_device *id_phys = NULL;
4313         struct bmic_identify_controller *id_ctlr = NULL;
4314         u32 nphysicals = 0;
4315         u32 nlogicals = 0;
4316         u32 nlocal_logicals = 0;
4317         u32 ndev_allocated = 0;
4318         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4319         int ncurrent = 0;
4320         int i, n_ext_target_devs, ndevs_to_allocate;
4321         int raid_ctlr_position;
4322         bool physical_device;
4323         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4324
4325         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4326         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4327         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4328         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4329         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4330         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4331
4332         if (!currentsd || !physdev_list || !logdev_list ||
4333                 !tmpdevice || !id_phys || !id_ctlr) {
4334                 dev_err(&h->pdev->dev, "out of memory\n");
4335                 goto out;
4336         }
4337         memset(lunzerobits, 0, sizeof(lunzerobits));
4338
4339         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4340
4341         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4342                         logdev_list, &nlogicals)) {
4343                 h->drv_req_rescan = 1;
4344                 goto out;
4345         }
4346
4347         /* Set number of local logicals (non PTRAID) */
4348         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4349                 dev_warn(&h->pdev->dev,
4350                         "%s: Can't determine number of local logical devices.\n",
4351                         __func__);
4352         }
4353
4354         /* We might see up to the maximum number of logical and physical disks
4355          * plus external target devices, and a device for the local RAID
4356          * controller.
4357          */
4358         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4359
4360         hpsa_ext_ctrl_present(h, physdev_list);
4361
4362         /* Allocate the per device structures */
4363         for (i = 0; i < ndevs_to_allocate; i++) {
4364                 if (i >= HPSA_MAX_DEVICES) {
4365                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4366                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4367                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4368                         break;
4369                 }
4370
4371                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4372                 if (!currentsd[i]) {
4373                         h->drv_req_rescan = 1;
4374                         goto out;
4375                 }
4376                 ndev_allocated++;
4377         }
4378
4379         if (is_scsi_rev_5(h))
4380                 raid_ctlr_position = 0;
4381         else
4382                 raid_ctlr_position = nphysicals + nlogicals;
4383
4384         /* adjust our table of devices */
4385         n_ext_target_devs = 0;
4386         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4387                 u8 *lunaddrbytes, is_OBDR = 0;
4388                 int rc = 0;
4389                 int phys_dev_index = i - (raid_ctlr_position == 0);
4390                 bool skip_device = false;
4391
4392                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4393
4394                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4395
4396                 /* Figure out where the LUN ID info is coming from */
4397                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4398                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4399
4400                 /* Determine if this is a lun from an external target array */
4401                 tmpdevice->external =
4402                         figure_external_status(h, raid_ctlr_position, i,
4403                                                 nphysicals, nlocal_logicals);
4404
4405                 /*
4406                  * Skip over some devices such as a spare.
4407                  */
4408                 if (!tmpdevice->external && physical_device) {
4409                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4410                                         &physdev_list->LUN[phys_dev_index]);
4411                         if (skip_device)
4412                                 continue;
4413                 }
4414
4415                 /* Get device type, vendor, model, device id, raid_map */
4416                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4417                                                         &is_OBDR);
4418                 if (rc == -ENOMEM) {
4419                         dev_warn(&h->pdev->dev,
4420                                 "Out of memory, rescan deferred.\n");
4421                         h->drv_req_rescan = 1;
4422                         goto out;
4423                 }
4424                 if (rc) {
4425                         h->drv_req_rescan = 1;
4426                         continue;
4427                 }
4428
4429                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4430                 this_device = currentsd[ncurrent];
4431
4432                 *this_device = *tmpdevice;
4433                 this_device->physical_device = physical_device;
4434
4435                 /*
4436                  * Expose all devices except for physical devices that
4437                  * are masked.
4438                  */
4439                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4440                         this_device->expose_device = 0;
4441                 else
4442                         this_device->expose_device = 1;
4443
4444
4445                 /*
4446                  * Get the SAS address for physical devices that are exposed.
4447                  */
4448                 if (this_device->physical_device && this_device->expose_device)
4449                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4450
4451                 switch (this_device->devtype) {
4452                 case TYPE_ROM:
4453                         /* We don't *really* support actual CD-ROM devices,
4454                          * just "One Button Disaster Recovery" tape drive
4455                          * which temporarily pretends to be a CD-ROM drive.
4456                          * So we check that the device is really an OBDR tape
4457                          * device by checking for "$DR-10" in bytes 43-48 of
4458                          * the inquiry data.
4459                          */
4460                         if (is_OBDR)
4461                                 ncurrent++;
4462                         break;
4463                 case TYPE_DISK:
4464                 case TYPE_ZBC:
4465                         if (this_device->physical_device) {
4466                                 /* The disk is in HBA mode. */
4467                                 /* Never use RAID mapper in HBA mode. */
4468                                 this_device->offload_enabled = 0;
4469                                 hpsa_get_ioaccel_drive_info(h, this_device,
4470                                         physdev_list, phys_dev_index, id_phys);
4471                                 hpsa_get_path_info(this_device,
4472                                         physdev_list, phys_dev_index, id_phys);
4473                         }
4474                         ncurrent++;
4475                         break;
4476                 case TYPE_TAPE:
4477                 case TYPE_MEDIUM_CHANGER:
4478                         ncurrent++;
4479                         break;
4480                 case TYPE_ENCLOSURE:
4481                         if (!this_device->external)
4482                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4483                                                 physdev_list, phys_dev_index,
4484                                                 this_device);
4485                         ncurrent++;
4486                         break;
4487                 case TYPE_RAID:
4488                         /* Only present the Smartarray HBA as a RAID controller.
4489                          * If it's a RAID controller other than the HBA itself
4490                          * (an external RAID controller, MSA500 or similar)
4491                          * don't present it.
4492                          */
4493                         if (!is_hba_lunid(lunaddrbytes))
4494                                 break;
4495                         ncurrent++;
4496                         break;
4497                 default:
4498                         break;
4499                 }
4500                 if (ncurrent >= HPSA_MAX_DEVICES)
4501                         break;
4502         }
4503
4504         if (h->sas_host == NULL) {
4505                 int rc = 0;
4506
4507                 rc = hpsa_add_sas_host(h);
4508                 if (rc) {
4509                         dev_warn(&h->pdev->dev,
4510                                 "Could not add sas host %d\n", rc);
4511                         goto out;
4512                 }
4513         }
4514
4515         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 out:
4517         kfree(tmpdevice);
4518         for (i = 0; i < ndev_allocated; i++)
4519                 kfree(currentsd[i]);
4520         kfree(currentsd);
4521         kfree(physdev_list);
4522         kfree(logdev_list);
4523         kfree(id_ctlr);
4524         kfree(id_phys);
4525 }
4526
4527 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4528                                    struct scatterlist *sg)
4529 {
4530         u64 addr64 = (u64) sg_dma_address(sg);
4531         unsigned int len = sg_dma_len(sg);
4532
4533         desc->Addr = cpu_to_le64(addr64);
4534         desc->Len = cpu_to_le32(len);
4535         desc->Ext = 0;
4536 }
4537
4538 /*
4539  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4540  * dma mapping  and fills in the scatter gather entries of the
4541  * hpsa command, cp.
4542  */
4543 static int hpsa_scatter_gather(struct ctlr_info *h,
4544                 struct CommandList *cp,
4545                 struct scsi_cmnd *cmd)
4546 {
4547         struct scatterlist *sg;
4548         int use_sg, i, sg_limit, chained, last_sg;
4549         struct SGDescriptor *curr_sg;
4550
4551         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4552
4553         use_sg = scsi_dma_map(cmd);
4554         if (use_sg < 0)
4555                 return use_sg;
4556
4557         if (!use_sg)
4558                 goto sglist_finished;
4559
4560         /*
4561          * If the number of entries is greater than the max for a single list,
4562          * then we have a chained list; we will set up all but one entry in the
4563          * first list (the last entry is saved for link information);
4564          * otherwise, we don't have a chained list and we'll set up at each of
4565          * the entries in the one list.
4566          */
4567         curr_sg = cp->SG;
4568         chained = use_sg > h->max_cmd_sg_entries;
4569         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4570         last_sg = scsi_sg_count(cmd) - 1;
4571         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4572                 hpsa_set_sg_descriptor(curr_sg, sg);
4573                 curr_sg++;
4574         }
4575
4576         if (chained) {
4577                 /*
4578                  * Continue with the chained list.  Set curr_sg to the chained
4579                  * list.  Modify the limit to the total count less the entries
4580                  * we've already set up.  Resume the scan at the list entry
4581                  * where the previous loop left off.
4582                  */
4583                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4584                 sg_limit = use_sg - sg_limit;
4585                 for_each_sg(sg, sg, sg_limit, i) {
4586                         hpsa_set_sg_descriptor(curr_sg, sg);
4587                         curr_sg++;
4588                 }
4589         }
4590
4591         /* Back the pointer up to the last entry and mark it as "last". */
4592         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4593
4594         if (use_sg + chained > h->maxSG)
4595                 h->maxSG = use_sg + chained;
4596
4597         if (chained) {
4598                 cp->Header.SGList = h->max_cmd_sg_entries;
4599                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4600                 if (hpsa_map_sg_chain_block(h, cp)) {
4601                         scsi_dma_unmap(cmd);
4602                         return -1;
4603                 }
4604                 return 0;
4605         }
4606
4607 sglist_finished:
4608
4609         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4610         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4611         return 0;
4612 }
4613
4614 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4615                                                 u8 *cdb, int cdb_len,
4616                                                 const char *func)
4617 {
4618         dev_warn(&h->pdev->dev,
4619                  "%s: Blocking zero-length request: CDB:%*phN\n",
4620                  func, cdb_len, cdb);
4621 }
4622
4623 #define IO_ACCEL_INELIGIBLE 1
4624 /* zero-length transfers trigger hardware errors. */
4625 static bool is_zero_length_transfer(u8 *cdb)
4626 {
4627         u32 block_cnt;
4628
4629         /* Block zero-length transfer sizes on certain commands. */
4630         switch (cdb[0]) {
4631         case READ_10:
4632         case WRITE_10:
4633         case VERIFY:            /* 0x2F */
4634         case WRITE_VERIFY:      /* 0x2E */
4635                 block_cnt = get_unaligned_be16(&cdb[7]);
4636                 break;
4637         case READ_12:
4638         case WRITE_12:
4639         case VERIFY_12: /* 0xAF */
4640         case WRITE_VERIFY_12:   /* 0xAE */
4641                 block_cnt = get_unaligned_be32(&cdb[6]);
4642                 break;
4643         case READ_16:
4644         case WRITE_16:
4645         case VERIFY_16:         /* 0x8F */
4646                 block_cnt = get_unaligned_be32(&cdb[10]);
4647                 break;
4648         default:
4649                 return false;
4650         }
4651
4652         return block_cnt == 0;
4653 }
4654
4655 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4656 {
4657         int is_write = 0;
4658         u32 block;
4659         u32 block_cnt;
4660
4661         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4662         switch (cdb[0]) {
4663         case WRITE_6:
4664         case WRITE_12:
4665                 is_write = 1;
4666         case READ_6:
4667         case READ_12:
4668                 if (*cdb_len == 6) {
4669                         block = (((cdb[1] & 0x1F) << 16) |
4670                                 (cdb[2] << 8) |
4671                                 cdb[3]);
4672                         block_cnt = cdb[4];
4673                         if (block_cnt == 0)
4674                                 block_cnt = 256;
4675                 } else {
4676                         BUG_ON(*cdb_len != 12);
4677                         block = get_unaligned_be32(&cdb[2]);
4678                         block_cnt = get_unaligned_be32(&cdb[6]);
4679                 }
4680                 if (block_cnt > 0xffff)
4681                         return IO_ACCEL_INELIGIBLE;
4682
4683                 cdb[0] = is_write ? WRITE_10 : READ_10;
4684                 cdb[1] = 0;
4685                 cdb[2] = (u8) (block >> 24);
4686                 cdb[3] = (u8) (block >> 16);
4687                 cdb[4] = (u8) (block >> 8);
4688                 cdb[5] = (u8) (block);
4689                 cdb[6] = 0;
4690                 cdb[7] = (u8) (block_cnt >> 8);
4691                 cdb[8] = (u8) (block_cnt);
4692                 cdb[9] = 0;
4693                 *cdb_len = 10;
4694                 break;
4695         }
4696         return 0;
4697 }
4698
4699 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4700         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4701         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4702 {
4703         struct scsi_cmnd *cmd = c->scsi_cmd;
4704         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4705         unsigned int len;
4706         unsigned int total_len = 0;
4707         struct scatterlist *sg;
4708         u64 addr64;
4709         int use_sg, i;
4710         struct SGDescriptor *curr_sg;
4711         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4712
4713         /* TODO: implement chaining support */
4714         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4715                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4716                 return IO_ACCEL_INELIGIBLE;
4717         }
4718
4719         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4720
4721         if (is_zero_length_transfer(cdb)) {
4722                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4723                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4724                 return IO_ACCEL_INELIGIBLE;
4725         }
4726
4727         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4728                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4729                 return IO_ACCEL_INELIGIBLE;
4730         }
4731
4732         c->cmd_type = CMD_IOACCEL1;
4733
4734         /* Adjust the DMA address to point to the accelerated command buffer */
4735         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4736                                 (c->cmdindex * sizeof(*cp));
4737         BUG_ON(c->busaddr & 0x0000007F);
4738
4739         use_sg = scsi_dma_map(cmd);
4740         if (use_sg < 0) {
4741                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4742                 return use_sg;
4743         }
4744
4745         if (use_sg) {
4746                 curr_sg = cp->SG;
4747                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4748                         addr64 = (u64) sg_dma_address(sg);
4749                         len  = sg_dma_len(sg);
4750                         total_len += len;
4751                         curr_sg->Addr = cpu_to_le64(addr64);
4752                         curr_sg->Len = cpu_to_le32(len);
4753                         curr_sg->Ext = cpu_to_le32(0);
4754                         curr_sg++;
4755                 }
4756                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4757
4758                 switch (cmd->sc_data_direction) {
4759                 case DMA_TO_DEVICE:
4760                         control |= IOACCEL1_CONTROL_DATA_OUT;
4761                         break;
4762                 case DMA_FROM_DEVICE:
4763                         control |= IOACCEL1_CONTROL_DATA_IN;
4764                         break;
4765                 case DMA_NONE:
4766                         control |= IOACCEL1_CONTROL_NODATAXFER;
4767                         break;
4768                 default:
4769                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4770                         cmd->sc_data_direction);
4771                         BUG();
4772                         break;
4773                 }
4774         } else {
4775                 control |= IOACCEL1_CONTROL_NODATAXFER;
4776         }
4777
4778         c->Header.SGList = use_sg;
4779         /* Fill out the command structure to submit */
4780         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4781         cp->transfer_len = cpu_to_le32(total_len);
4782         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4783                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4784         cp->control = cpu_to_le32(control);
4785         memcpy(cp->CDB, cdb, cdb_len);
4786         memcpy(cp->CISS_LUN, scsi3addr, 8);
4787         /* Tag was already set at init time. */
4788         enqueue_cmd_and_start_io(h, c);
4789         return 0;
4790 }
4791
4792 /*
4793  * Queue a command directly to a device behind the controller using the
4794  * I/O accelerator path.
4795  */
4796 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4797         struct CommandList *c)
4798 {
4799         struct scsi_cmnd *cmd = c->scsi_cmd;
4800         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4801
4802         if (!dev)
4803                 return -1;
4804
4805         c->phys_disk = dev;
4806
4807         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4808                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4809 }
4810
4811 /*
4812  * Set encryption parameters for the ioaccel2 request
4813  */
4814 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4815         struct CommandList *c, struct io_accel2_cmd *cp)
4816 {
4817         struct scsi_cmnd *cmd = c->scsi_cmd;
4818         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4819         struct raid_map_data *map = &dev->raid_map;
4820         u64 first_block;
4821
4822         /* Are we doing encryption on this device */
4823         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4824                 return;
4825         /* Set the data encryption key index. */
4826         cp->dekindex = map->dekindex;
4827
4828         /* Set the encryption enable flag, encoded into direction field. */
4829         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4830
4831         /* Set encryption tweak values based on logical block address
4832          * If block size is 512, tweak value is LBA.
4833          * For other block sizes, tweak is (LBA * block size)/ 512)
4834          */
4835         switch (cmd->cmnd[0]) {
4836         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4837         case READ_6:
4838         case WRITE_6:
4839                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4840                                 (cmd->cmnd[2] << 8) |
4841                                 cmd->cmnd[3]);
4842                 break;
4843         case WRITE_10:
4844         case READ_10:
4845         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4846         case WRITE_12:
4847         case READ_12:
4848                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4849                 break;
4850         case WRITE_16:
4851         case READ_16:
4852                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4853                 break;
4854         default:
4855                 dev_err(&h->pdev->dev,
4856                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4857                         __func__, cmd->cmnd[0]);
4858                 BUG();
4859                 break;
4860         }
4861
4862         if (le32_to_cpu(map->volume_blk_size) != 512)
4863                 first_block = first_block *
4864                                 le32_to_cpu(map->volume_blk_size)/512;
4865
4866         cp->tweak_lower = cpu_to_le32(first_block);
4867         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4868 }
4869
4870 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4871         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4872         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4873 {
4874         struct scsi_cmnd *cmd = c->scsi_cmd;
4875         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4876         struct ioaccel2_sg_element *curr_sg;
4877         int use_sg, i;
4878         struct scatterlist *sg;
4879         u64 addr64;
4880         u32 len;
4881         u32 total_len = 0;
4882
4883         if (!cmd->device)
4884                 return -1;
4885
4886         if (!cmd->device->hostdata)
4887                 return -1;
4888
4889         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4890
4891         if (is_zero_length_transfer(cdb)) {
4892                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4893                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4894                 return IO_ACCEL_INELIGIBLE;
4895         }
4896
4897         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4898                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4899                 return IO_ACCEL_INELIGIBLE;
4900         }
4901
4902         c->cmd_type = CMD_IOACCEL2;
4903         /* Adjust the DMA address to point to the accelerated command buffer */
4904         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4905                                 (c->cmdindex * sizeof(*cp));
4906         BUG_ON(c->busaddr & 0x0000007F);
4907
4908         memset(cp, 0, sizeof(*cp));
4909         cp->IU_type = IOACCEL2_IU_TYPE;
4910
4911         use_sg = scsi_dma_map(cmd);
4912         if (use_sg < 0) {
4913                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4914                 return use_sg;
4915         }
4916
4917         if (use_sg) {
4918                 curr_sg = cp->sg;
4919                 if (use_sg > h->ioaccel_maxsg) {
4920                         addr64 = le64_to_cpu(
4921                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4922                         curr_sg->address = cpu_to_le64(addr64);
4923                         curr_sg->length = 0;
4924                         curr_sg->reserved[0] = 0;
4925                         curr_sg->reserved[1] = 0;
4926                         curr_sg->reserved[2] = 0;
4927                         curr_sg->chain_indicator = 0x80;
4928
4929                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4930                 }
4931                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4932                         addr64 = (u64) sg_dma_address(sg);
4933                         len  = sg_dma_len(sg);
4934                         total_len += len;
4935                         curr_sg->address = cpu_to_le64(addr64);
4936                         curr_sg->length = cpu_to_le32(len);
4937                         curr_sg->reserved[0] = 0;
4938                         curr_sg->reserved[1] = 0;
4939                         curr_sg->reserved[2] = 0;
4940                         curr_sg->chain_indicator = 0;
4941                         curr_sg++;
4942                 }
4943
4944                 switch (cmd->sc_data_direction) {
4945                 case DMA_TO_DEVICE:
4946                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4947                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4948                         break;
4949                 case DMA_FROM_DEVICE:
4950                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4951                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4952                         break;
4953                 case DMA_NONE:
4954                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4956                         break;
4957                 default:
4958                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4959                                 cmd->sc_data_direction);
4960                         BUG();
4961                         break;
4962                 }
4963         } else {
4964                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4966         }
4967
4968         /* Set encryption parameters, if necessary */
4969         set_encrypt_ioaccel2(h, c, cp);
4970
4971         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4972         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4973         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4974
4975         cp->data_len = cpu_to_le32(total_len);
4976         cp->err_ptr = cpu_to_le64(c->busaddr +
4977                         offsetof(struct io_accel2_cmd, error_data));
4978         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4979
4980         /* fill in sg elements */
4981         if (use_sg > h->ioaccel_maxsg) {
4982                 cp->sg_count = 1;
4983                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4984                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4985                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4986                         scsi_dma_unmap(cmd);
4987                         return -1;
4988                 }
4989         } else
4990                 cp->sg_count = (u8) use_sg;
4991
4992         enqueue_cmd_and_start_io(h, c);
4993         return 0;
4994 }
4995
4996 /*
4997  * Queue a command to the correct I/O accelerator path.
4998  */
4999 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5000         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5001         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5002 {
5003         if (!c->scsi_cmd->device)
5004                 return -1;
5005
5006         if (!c->scsi_cmd->device->hostdata)
5007                 return -1;
5008
5009         /* Try to honor the device's queue depth */
5010         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5011                                         phys_disk->queue_depth) {
5012                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5013                 return IO_ACCEL_INELIGIBLE;
5014         }
5015         if (h->transMethod & CFGTBL_Trans_io_accel1)
5016                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5017                                                 cdb, cdb_len, scsi3addr,
5018                                                 phys_disk);
5019         else
5020                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5021                                                 cdb, cdb_len, scsi3addr,
5022                                                 phys_disk);
5023 }
5024
5025 static void raid_map_helper(struct raid_map_data *map,
5026                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5027 {
5028         if (offload_to_mirror == 0)  {
5029                 /* use physical disk in the first mirrored group. */
5030                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5031                 return;
5032         }
5033         do {
5034                 /* determine mirror group that *map_index indicates */
5035                 *current_group = *map_index /
5036                         le16_to_cpu(map->data_disks_per_row);
5037                 if (offload_to_mirror == *current_group)
5038                         continue;
5039                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5040                         /* select map index from next group */
5041                         *map_index += le16_to_cpu(map->data_disks_per_row);
5042                         (*current_group)++;
5043                 } else {
5044                         /* select map index from first group */
5045                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5046                         *current_group = 0;
5047                 }
5048         } while (offload_to_mirror != *current_group);
5049 }
5050
5051 /*
5052  * Attempt to perform offload RAID mapping for a logical volume I/O.
5053  */
5054 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5055         struct CommandList *c)
5056 {
5057         struct scsi_cmnd *cmd = c->scsi_cmd;
5058         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5059         struct raid_map_data *map = &dev->raid_map;
5060         struct raid_map_disk_data *dd = &map->data[0];
5061         int is_write = 0;
5062         u32 map_index;
5063         u64 first_block, last_block;
5064         u32 block_cnt;
5065         u32 blocks_per_row;
5066         u64 first_row, last_row;
5067         u32 first_row_offset, last_row_offset;
5068         u32 first_column, last_column;
5069         u64 r0_first_row, r0_last_row;
5070         u32 r5or6_blocks_per_row;
5071         u64 r5or6_first_row, r5or6_last_row;
5072         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5073         u32 r5or6_first_column, r5or6_last_column;
5074         u32 total_disks_per_row;
5075         u32 stripesize;
5076         u32 first_group, last_group, current_group;
5077         u32 map_row;
5078         u32 disk_handle;
5079         u64 disk_block;
5080         u32 disk_block_cnt;
5081         u8 cdb[16];
5082         u8 cdb_len;
5083         u16 strip_size;
5084 #if BITS_PER_LONG == 32
5085         u64 tmpdiv;
5086 #endif
5087         int offload_to_mirror;
5088
5089         if (!dev)
5090                 return -1;
5091
5092         /* check for valid opcode, get LBA and block count */
5093         switch (cmd->cmnd[0]) {
5094         case WRITE_6:
5095                 is_write = 1;
5096         case READ_6:
5097                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5098                                 (cmd->cmnd[2] << 8) |
5099                                 cmd->cmnd[3]);
5100                 block_cnt = cmd->cmnd[4];
5101                 if (block_cnt == 0)
5102                         block_cnt = 256;
5103                 break;
5104         case WRITE_10:
5105                 is_write = 1;
5106         case READ_10:
5107                 first_block =
5108                         (((u64) cmd->cmnd[2]) << 24) |
5109                         (((u64) cmd->cmnd[3]) << 16) |
5110                         (((u64) cmd->cmnd[4]) << 8) |
5111                         cmd->cmnd[5];
5112                 block_cnt =
5113                         (((u32) cmd->cmnd[7]) << 8) |
5114                         cmd->cmnd[8];
5115                 break;
5116         case WRITE_12:
5117                 is_write = 1;
5118         case READ_12:
5119                 first_block =
5120                         (((u64) cmd->cmnd[2]) << 24) |
5121                         (((u64) cmd->cmnd[3]) << 16) |
5122                         (((u64) cmd->cmnd[4]) << 8) |
5123                         cmd->cmnd[5];
5124                 block_cnt =
5125                         (((u32) cmd->cmnd[6]) << 24) |
5126                         (((u32) cmd->cmnd[7]) << 16) |
5127                         (((u32) cmd->cmnd[8]) << 8) |
5128                 cmd->cmnd[9];
5129                 break;
5130         case WRITE_16:
5131                 is_write = 1;
5132         case READ_16:
5133                 first_block =
5134                         (((u64) cmd->cmnd[2]) << 56) |
5135                         (((u64) cmd->cmnd[3]) << 48) |
5136                         (((u64) cmd->cmnd[4]) << 40) |
5137                         (((u64) cmd->cmnd[5]) << 32) |
5138                         (((u64) cmd->cmnd[6]) << 24) |
5139                         (((u64) cmd->cmnd[7]) << 16) |
5140                         (((u64) cmd->cmnd[8]) << 8) |
5141                         cmd->cmnd[9];
5142                 block_cnt =
5143                         (((u32) cmd->cmnd[10]) << 24) |
5144                         (((u32) cmd->cmnd[11]) << 16) |
5145                         (((u32) cmd->cmnd[12]) << 8) |
5146                         cmd->cmnd[13];
5147                 break;
5148         default:
5149                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5150         }
5151         last_block = first_block + block_cnt - 1;
5152
5153         /* check for write to non-RAID-0 */
5154         if (is_write && dev->raid_level != 0)
5155                 return IO_ACCEL_INELIGIBLE;
5156
5157         /* check for invalid block or wraparound */
5158         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5159                 last_block < first_block)
5160                 return IO_ACCEL_INELIGIBLE;
5161
5162         /* calculate stripe information for the request */
5163         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5164                                 le16_to_cpu(map->strip_size);
5165         strip_size = le16_to_cpu(map->strip_size);
5166 #if BITS_PER_LONG == 32
5167         tmpdiv = first_block;
5168         (void) do_div(tmpdiv, blocks_per_row);
5169         first_row = tmpdiv;
5170         tmpdiv = last_block;
5171         (void) do_div(tmpdiv, blocks_per_row);
5172         last_row = tmpdiv;
5173         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5174         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5175         tmpdiv = first_row_offset;
5176         (void) do_div(tmpdiv, strip_size);
5177         first_column = tmpdiv;
5178         tmpdiv = last_row_offset;
5179         (void) do_div(tmpdiv, strip_size);
5180         last_column = tmpdiv;
5181 #else
5182         first_row = first_block / blocks_per_row;
5183         last_row = last_block / blocks_per_row;
5184         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5185         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5186         first_column = first_row_offset / strip_size;
5187         last_column = last_row_offset / strip_size;
5188 #endif
5189
5190         /* if this isn't a single row/column then give to the controller */
5191         if ((first_row != last_row) || (first_column != last_column))
5192                 return IO_ACCEL_INELIGIBLE;
5193
5194         /* proceeding with driver mapping */
5195         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5196                                 le16_to_cpu(map->metadata_disks_per_row);
5197         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5198                                 le16_to_cpu(map->row_cnt);
5199         map_index = (map_row * total_disks_per_row) + first_column;
5200
5201         switch (dev->raid_level) {
5202         case HPSA_RAID_0:
5203                 break; /* nothing special to do */
5204         case HPSA_RAID_1:
5205                 /* Handles load balance across RAID 1 members.
5206                  * (2-drive R1 and R10 with even # of drives.)
5207                  * Appropriate for SSDs, not optimal for HDDs
5208                  */
5209                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5210                 if (dev->offload_to_mirror)
5211                         map_index += le16_to_cpu(map->data_disks_per_row);
5212                 dev->offload_to_mirror = !dev->offload_to_mirror;
5213                 break;
5214         case HPSA_RAID_ADM:
5215                 /* Handles N-way mirrors  (R1-ADM)
5216                  * and R10 with # of drives divisible by 3.)
5217                  */
5218                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5219
5220                 offload_to_mirror = dev->offload_to_mirror;
5221                 raid_map_helper(map, offload_to_mirror,
5222                                 &map_index, &current_group);
5223                 /* set mirror group to use next time */
5224                 offload_to_mirror =
5225                         (offload_to_mirror >=
5226                         le16_to_cpu(map->layout_map_count) - 1)
5227                         ? 0 : offload_to_mirror + 1;
5228                 dev->offload_to_mirror = offload_to_mirror;
5229                 /* Avoid direct use of dev->offload_to_mirror within this
5230                  * function since multiple threads might simultaneously
5231                  * increment it beyond the range of dev->layout_map_count -1.
5232                  */
5233                 break;
5234         case HPSA_RAID_5:
5235         case HPSA_RAID_6:
5236                 if (le16_to_cpu(map->layout_map_count) <= 1)
5237                         break;
5238
5239                 /* Verify first and last block are in same RAID group */
5240                 r5or6_blocks_per_row =
5241                         le16_to_cpu(map->strip_size) *
5242                         le16_to_cpu(map->data_disks_per_row);
5243                 BUG_ON(r5or6_blocks_per_row == 0);
5244                 stripesize = r5or6_blocks_per_row *
5245                         le16_to_cpu(map->layout_map_count);
5246 #if BITS_PER_LONG == 32
5247                 tmpdiv = first_block;
5248                 first_group = do_div(tmpdiv, stripesize);
5249                 tmpdiv = first_group;
5250                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5251                 first_group = tmpdiv;
5252                 tmpdiv = last_block;
5253                 last_group = do_div(tmpdiv, stripesize);
5254                 tmpdiv = last_group;
5255                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5256                 last_group = tmpdiv;
5257 #else
5258                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5259                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5260 #endif
5261                 if (first_group != last_group)
5262                         return IO_ACCEL_INELIGIBLE;
5263
5264                 /* Verify request is in a single row of RAID 5/6 */
5265 #if BITS_PER_LONG == 32
5266                 tmpdiv = first_block;
5267                 (void) do_div(tmpdiv, stripesize);
5268                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5269                 tmpdiv = last_block;
5270                 (void) do_div(tmpdiv, stripesize);
5271                 r5or6_last_row = r0_last_row = tmpdiv;
5272 #else
5273                 first_row = r5or6_first_row = r0_first_row =
5274                                                 first_block / stripesize;
5275                 r5or6_last_row = r0_last_row = last_block / stripesize;
5276 #endif
5277                 if (r5or6_first_row != r5or6_last_row)
5278                         return IO_ACCEL_INELIGIBLE;
5279
5280
5281                 /* Verify request is in a single column */
5282 #if BITS_PER_LONG == 32
5283                 tmpdiv = first_block;
5284                 first_row_offset = do_div(tmpdiv, stripesize);
5285                 tmpdiv = first_row_offset;
5286                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5287                 r5or6_first_row_offset = first_row_offset;
5288                 tmpdiv = last_block;
5289                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5290                 tmpdiv = r5or6_last_row_offset;
5291                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5292                 tmpdiv = r5or6_first_row_offset;
5293                 (void) do_div(tmpdiv, map->strip_size);
5294                 first_column = r5or6_first_column = tmpdiv;
5295                 tmpdiv = r5or6_last_row_offset;
5296                 (void) do_div(tmpdiv, map->strip_size);
5297                 r5or6_last_column = tmpdiv;
5298 #else
5299                 first_row_offset = r5or6_first_row_offset =
5300                         (u32)((first_block % stripesize) %
5301                                                 r5or6_blocks_per_row);
5302
5303                 r5or6_last_row_offset =
5304                         (u32)((last_block % stripesize) %
5305                                                 r5or6_blocks_per_row);
5306
5307                 first_column = r5or6_first_column =
5308                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5309                 r5or6_last_column =
5310                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5311 #endif
5312                 if (r5or6_first_column != r5or6_last_column)
5313                         return IO_ACCEL_INELIGIBLE;
5314
5315                 /* Request is eligible */
5316                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5317                         le16_to_cpu(map->row_cnt);
5318
5319                 map_index = (first_group *
5320                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5321                         (map_row * total_disks_per_row) + first_column;
5322                 break;
5323         default:
5324                 return IO_ACCEL_INELIGIBLE;
5325         }
5326
5327         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5328                 return IO_ACCEL_INELIGIBLE;
5329
5330         c->phys_disk = dev->phys_disk[map_index];
5331         if (!c->phys_disk)
5332                 return IO_ACCEL_INELIGIBLE;
5333
5334         disk_handle = dd[map_index].ioaccel_handle;
5335         disk_block = le64_to_cpu(map->disk_starting_blk) +
5336                         first_row * le16_to_cpu(map->strip_size) +
5337                         (first_row_offset - first_column *
5338                         le16_to_cpu(map->strip_size));
5339         disk_block_cnt = block_cnt;
5340
5341         /* handle differing logical/physical block sizes */
5342         if (map->phys_blk_shift) {
5343                 disk_block <<= map->phys_blk_shift;
5344                 disk_block_cnt <<= map->phys_blk_shift;
5345         }
5346         BUG_ON(disk_block_cnt > 0xffff);
5347
5348         /* build the new CDB for the physical disk I/O */
5349         if (disk_block > 0xffffffff) {
5350                 cdb[0] = is_write ? WRITE_16 : READ_16;
5351                 cdb[1] = 0;
5352                 cdb[2] = (u8) (disk_block >> 56);
5353                 cdb[3] = (u8) (disk_block >> 48);
5354                 cdb[4] = (u8) (disk_block >> 40);
5355                 cdb[5] = (u8) (disk_block >> 32);
5356                 cdb[6] = (u8) (disk_block >> 24);
5357                 cdb[7] = (u8) (disk_block >> 16);
5358                 cdb[8] = (u8) (disk_block >> 8);
5359                 cdb[9] = (u8) (disk_block);
5360                 cdb[10] = (u8) (disk_block_cnt >> 24);
5361                 cdb[11] = (u8) (disk_block_cnt >> 16);
5362                 cdb[12] = (u8) (disk_block_cnt >> 8);
5363                 cdb[13] = (u8) (disk_block_cnt);
5364                 cdb[14] = 0;
5365                 cdb[15] = 0;
5366                 cdb_len = 16;
5367         } else {
5368                 cdb[0] = is_write ? WRITE_10 : READ_10;
5369                 cdb[1] = 0;
5370                 cdb[2] = (u8) (disk_block >> 24);
5371                 cdb[3] = (u8) (disk_block >> 16);
5372                 cdb[4] = (u8) (disk_block >> 8);
5373                 cdb[5] = (u8) (disk_block);
5374                 cdb[6] = 0;
5375                 cdb[7] = (u8) (disk_block_cnt >> 8);
5376                 cdb[8] = (u8) (disk_block_cnt);
5377                 cdb[9] = 0;
5378                 cdb_len = 10;
5379         }
5380         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5381                                                 dev->scsi3addr,
5382                                                 dev->phys_disk[map_index]);
5383 }
5384
5385 /*
5386  * Submit commands down the "normal" RAID stack path
5387  * All callers to hpsa_ciss_submit must check lockup_detected
5388  * beforehand, before (opt.) and after calling cmd_alloc
5389  */
5390 static int hpsa_ciss_submit(struct ctlr_info *h,
5391         struct CommandList *c, struct scsi_cmnd *cmd,
5392         unsigned char scsi3addr[])
5393 {
5394         cmd->host_scribble = (unsigned char *) c;
5395         c->cmd_type = CMD_SCSI;
5396         c->scsi_cmd = cmd;
5397         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5398         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5399         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5400
5401         /* Fill in the request block... */
5402
5403         c->Request.Timeout = 0;
5404         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5405         c->Request.CDBLen = cmd->cmd_len;
5406         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5407         switch (cmd->sc_data_direction) {
5408         case DMA_TO_DEVICE:
5409                 c->Request.type_attr_dir =
5410                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5411                 break;
5412         case DMA_FROM_DEVICE:
5413                 c->Request.type_attr_dir =
5414                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5415                 break;
5416         case DMA_NONE:
5417                 c->Request.type_attr_dir =
5418                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5419                 break;
5420         case DMA_BIDIRECTIONAL:
5421                 /* This can happen if a buggy application does a scsi passthru
5422                  * and sets both inlen and outlen to non-zero. ( see
5423                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5424                  */
5425
5426                 c->Request.type_attr_dir =
5427                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5428                 /* This is technically wrong, and hpsa controllers should
5429                  * reject it with CMD_INVALID, which is the most correct
5430                  * response, but non-fibre backends appear to let it
5431                  * slide by, and give the same results as if this field
5432                  * were set correctly.  Either way is acceptable for
5433                  * our purposes here.
5434                  */
5435
5436                 break;
5437
5438         default:
5439                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5440                         cmd->sc_data_direction);
5441                 BUG();
5442                 break;
5443         }
5444
5445         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5446                 hpsa_cmd_resolve_and_free(h, c);
5447                 return SCSI_MLQUEUE_HOST_BUSY;
5448         }
5449         enqueue_cmd_and_start_io(h, c);
5450         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5451         return 0;
5452 }
5453
5454 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5455                                 struct CommandList *c)
5456 {
5457         dma_addr_t cmd_dma_handle, err_dma_handle;
5458
5459         /* Zero out all of commandlist except the last field, refcount */
5460         memset(c, 0, offsetof(struct CommandList, refcount));
5461         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5462         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5463         c->err_info = h->errinfo_pool + index;
5464         memset(c->err_info, 0, sizeof(*c->err_info));
5465         err_dma_handle = h->errinfo_pool_dhandle
5466             + index * sizeof(*c->err_info);
5467         c->cmdindex = index;
5468         c->busaddr = (u32) cmd_dma_handle;
5469         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5470         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5471         c->h = h;
5472         c->scsi_cmd = SCSI_CMD_IDLE;
5473 }
5474
5475 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5476 {
5477         int i;
5478
5479         for (i = 0; i < h->nr_cmds; i++) {
5480                 struct CommandList *c = h->cmd_pool + i;
5481
5482                 hpsa_cmd_init(h, i, c);
5483                 atomic_set(&c->refcount, 0);
5484         }
5485 }
5486
5487 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5488                                 struct CommandList *c)
5489 {
5490         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5491
5492         BUG_ON(c->cmdindex != index);
5493
5494         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5495         memset(c->err_info, 0, sizeof(*c->err_info));
5496         c->busaddr = (u32) cmd_dma_handle;
5497 }
5498
5499 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5500                 struct CommandList *c, struct scsi_cmnd *cmd,
5501                 unsigned char *scsi3addr)
5502 {
5503         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5504         int rc = IO_ACCEL_INELIGIBLE;
5505
5506         if (!dev)
5507                 return SCSI_MLQUEUE_HOST_BUSY;
5508
5509         cmd->host_scribble = (unsigned char *) c;
5510
5511         if (dev->offload_enabled) {
5512                 hpsa_cmd_init(h, c->cmdindex, c);
5513                 c->cmd_type = CMD_SCSI;
5514                 c->scsi_cmd = cmd;
5515                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5516                 if (rc < 0)     /* scsi_dma_map failed. */
5517                         rc = SCSI_MLQUEUE_HOST_BUSY;
5518         } else if (dev->hba_ioaccel_enabled) {
5519                 hpsa_cmd_init(h, c->cmdindex, c);
5520                 c->cmd_type = CMD_SCSI;
5521                 c->scsi_cmd = cmd;
5522                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5523                 if (rc < 0)     /* scsi_dma_map failed. */
5524                         rc = SCSI_MLQUEUE_HOST_BUSY;
5525         }
5526         return rc;
5527 }
5528
5529 static void hpsa_command_resubmit_worker(struct work_struct *work)
5530 {
5531         struct scsi_cmnd *cmd;
5532         struct hpsa_scsi_dev_t *dev;
5533         struct CommandList *c = container_of(work, struct CommandList, work);
5534
5535         cmd = c->scsi_cmd;
5536         dev = cmd->device->hostdata;
5537         if (!dev) {
5538                 cmd->result = DID_NO_CONNECT << 16;
5539                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5540         }
5541         if (c->reset_pending)
5542                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5543         if (c->cmd_type == CMD_IOACCEL2) {
5544                 struct ctlr_info *h = c->h;
5545                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5546                 int rc;
5547
5548                 if (c2->error_data.serv_response ==
5549                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5550                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5551                         if (rc == 0)
5552                                 return;
5553                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5554                                 /*
5555                                  * If we get here, it means dma mapping failed.
5556                                  * Try again via scsi mid layer, which will
5557                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5558                                  */
5559                                 cmd->result = DID_IMM_RETRY << 16;
5560                                 return hpsa_cmd_free_and_done(h, c, cmd);
5561                         }
5562                         /* else, fall thru and resubmit down CISS path */
5563                 }
5564         }
5565         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5566         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5567                 /*
5568                  * If we get here, it means dma mapping failed. Try
5569                  * again via scsi mid layer, which will then get
5570                  * SCSI_MLQUEUE_HOST_BUSY.
5571                  *
5572                  * hpsa_ciss_submit will have already freed c
5573                  * if it encountered a dma mapping failure.
5574                  */
5575                 cmd->result = DID_IMM_RETRY << 16;
5576                 cmd->scsi_done(cmd);
5577         }
5578 }
5579
5580 /* Running in struct Scsi_Host->host_lock less mode */
5581 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5582 {
5583         struct ctlr_info *h;
5584         struct hpsa_scsi_dev_t *dev;
5585         unsigned char scsi3addr[8];
5586         struct CommandList *c;
5587         int rc = 0;
5588
5589         /* Get the ptr to our adapter structure out of cmd->host. */
5590         h = sdev_to_hba(cmd->device);
5591
5592         BUG_ON(cmd->request->tag < 0);
5593
5594         dev = cmd->device->hostdata;
5595         if (!dev) {
5596                 cmd->result = DID_NO_CONNECT << 16;
5597                 cmd->scsi_done(cmd);
5598                 return 0;
5599         }
5600
5601         if (dev->removed) {
5602                 cmd->result = DID_NO_CONNECT << 16;
5603                 cmd->scsi_done(cmd);
5604                 return 0;
5605         }
5606
5607         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5608
5609         if (unlikely(lockup_detected(h))) {
5610                 cmd->result = DID_NO_CONNECT << 16;
5611                 cmd->scsi_done(cmd);
5612                 return 0;
5613         }
5614         c = cmd_tagged_alloc(h, cmd);
5615
5616         /*
5617          * Call alternate submit routine for I/O accelerated commands.
5618          * Retries always go down the normal I/O path.
5619          */
5620         if (likely(cmd->retries == 0 &&
5621                         !blk_rq_is_passthrough(cmd->request) &&
5622                         h->acciopath_status)) {
5623                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5624                 if (rc == 0)
5625                         return 0;
5626                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5627                         hpsa_cmd_resolve_and_free(h, c);
5628                         return SCSI_MLQUEUE_HOST_BUSY;
5629                 }
5630         }
5631         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5632 }
5633
5634 static void hpsa_scan_complete(struct ctlr_info *h)
5635 {
5636         unsigned long flags;
5637
5638         spin_lock_irqsave(&h->scan_lock, flags);
5639         h->scan_finished = 1;
5640         wake_up(&h->scan_wait_queue);
5641         spin_unlock_irqrestore(&h->scan_lock, flags);
5642 }
5643
5644 static void hpsa_scan_start(struct Scsi_Host *sh)
5645 {
5646         struct ctlr_info *h = shost_to_hba(sh);
5647         unsigned long flags;
5648
5649         /*
5650          * Don't let rescans be initiated on a controller known to be locked
5651          * up.  If the controller locks up *during* a rescan, that thread is
5652          * probably hosed, but at least we can prevent new rescan threads from
5653          * piling up on a locked up controller.
5654          */
5655         if (unlikely(lockup_detected(h)))
5656                 return hpsa_scan_complete(h);
5657
5658         /*
5659          * If a scan is already waiting to run, no need to add another
5660          */
5661         spin_lock_irqsave(&h->scan_lock, flags);
5662         if (h->scan_waiting) {
5663                 spin_unlock_irqrestore(&h->scan_lock, flags);
5664                 return;
5665         }
5666
5667         spin_unlock_irqrestore(&h->scan_lock, flags);
5668
5669         /* wait until any scan already in progress is finished. */
5670         while (1) {
5671                 spin_lock_irqsave(&h->scan_lock, flags);
5672                 if (h->scan_finished)
5673                         break;
5674                 h->scan_waiting = 1;
5675                 spin_unlock_irqrestore(&h->scan_lock, flags);
5676                 wait_event(h->scan_wait_queue, h->scan_finished);
5677                 /* Note: We don't need to worry about a race between this
5678                  * thread and driver unload because the midlayer will
5679                  * have incremented the reference count, so unload won't
5680                  * happen if we're in here.
5681                  */
5682         }
5683         h->scan_finished = 0; /* mark scan as in progress */
5684         h->scan_waiting = 0;
5685         spin_unlock_irqrestore(&h->scan_lock, flags);
5686
5687         if (unlikely(lockup_detected(h)))
5688                 return hpsa_scan_complete(h);
5689
5690         /*
5691          * Do the scan after a reset completion
5692          */
5693         spin_lock_irqsave(&h->reset_lock, flags);
5694         if (h->reset_in_progress) {
5695                 h->drv_req_rescan = 1;
5696                 spin_unlock_irqrestore(&h->reset_lock, flags);
5697                 hpsa_scan_complete(h);
5698                 return;
5699         }
5700         spin_unlock_irqrestore(&h->reset_lock, flags);
5701
5702         hpsa_update_scsi_devices(h);
5703
5704         hpsa_scan_complete(h);
5705 }
5706
5707 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5708 {
5709         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5710
5711         if (!logical_drive)
5712                 return -ENODEV;
5713
5714         if (qdepth < 1)
5715                 qdepth = 1;
5716         else if (qdepth > logical_drive->queue_depth)
5717                 qdepth = logical_drive->queue_depth;
5718
5719         return scsi_change_queue_depth(sdev, qdepth);
5720 }
5721
5722 static int hpsa_scan_finished(struct Scsi_Host *sh,
5723         unsigned long elapsed_time)
5724 {
5725         struct ctlr_info *h = shost_to_hba(sh);
5726         unsigned long flags;
5727         int finished;
5728
5729         spin_lock_irqsave(&h->scan_lock, flags);
5730         finished = h->scan_finished;
5731         spin_unlock_irqrestore(&h->scan_lock, flags);
5732         return finished;
5733 }
5734
5735 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5736 {
5737         struct Scsi_Host *sh;
5738
5739         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5740         if (sh == NULL) {
5741                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5742                 return -ENOMEM;
5743         }
5744
5745         sh->io_port = 0;
5746         sh->n_io_port = 0;
5747         sh->this_id = -1;
5748         sh->max_channel = 3;
5749         sh->max_cmd_len = MAX_COMMAND_SIZE;
5750         sh->max_lun = HPSA_MAX_LUN;
5751         sh->max_id = HPSA_MAX_LUN;
5752         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5753         sh->cmd_per_lun = sh->can_queue;
5754         sh->sg_tablesize = h->maxsgentries;
5755         sh->transportt = hpsa_sas_transport_template;
5756         sh->hostdata[0] = (unsigned long) h;
5757         sh->irq = pci_irq_vector(h->pdev, 0);
5758         sh->unique_id = sh->irq;
5759
5760         h->scsi_host = sh;
5761         return 0;
5762 }
5763
5764 static int hpsa_scsi_add_host(struct ctlr_info *h)
5765 {
5766         int rv;
5767
5768         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5769         if (rv) {
5770                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5771                 return rv;
5772         }
5773         scsi_scan_host(h->scsi_host);
5774         return 0;
5775 }
5776
5777 /*
5778  * The block layer has already gone to the trouble of picking out a unique,
5779  * small-integer tag for this request.  We use an offset from that value as
5780  * an index to select our command block.  (The offset allows us to reserve the
5781  * low-numbered entries for our own uses.)
5782  */
5783 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5784 {
5785         int idx = scmd->request->tag;
5786
5787         if (idx < 0)
5788                 return idx;
5789
5790         /* Offset to leave space for internal cmds. */
5791         return idx += HPSA_NRESERVED_CMDS;
5792 }
5793
5794 /*
5795  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5796  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5797  */
5798 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5799                                 struct CommandList *c, unsigned char lunaddr[],
5800                                 int reply_queue)
5801 {
5802         int rc;
5803
5804         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5805         (void) fill_cmd(c, TEST_UNIT_READY, h,
5806                         NULL, 0, 0, lunaddr, TYPE_CMD);
5807         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5808         if (rc)
5809                 return rc;
5810         /* no unmap needed here because no data xfer. */
5811
5812         /* Check if the unit is already ready. */
5813         if (c->err_info->CommandStatus == CMD_SUCCESS)
5814                 return 0;
5815
5816         /*
5817          * The first command sent after reset will receive "unit attention" to
5818          * indicate that the LUN has been reset...this is actually what we're
5819          * looking for (but, success is good too).
5820          */
5821         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5822                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5823                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5824                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5825                 return 0;
5826
5827         return 1;
5828 }
5829
5830 /*
5831  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5832  * returns zero when the unit is ready, and non-zero when giving up.
5833  */
5834 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5835                                 struct CommandList *c,
5836                                 unsigned char lunaddr[], int reply_queue)
5837 {
5838         int rc;
5839         int count = 0;
5840         int waittime = 1; /* seconds */
5841
5842         /* Send test unit ready until device ready, or give up. */
5843         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5844
5845                 /*
5846                  * Wait for a bit.  do this first, because if we send
5847                  * the TUR right away, the reset will just abort it.
5848                  */
5849                 msleep(1000 * waittime);
5850
5851                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5852                 if (!rc)
5853                         break;
5854
5855                 /* Increase wait time with each try, up to a point. */
5856                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5857                         waittime *= 2;
5858
5859                 dev_warn(&h->pdev->dev,
5860                          "waiting %d secs for device to become ready.\n",
5861                          waittime);
5862         }
5863
5864         return rc;
5865 }
5866
5867 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5868                                            unsigned char lunaddr[],
5869                                            int reply_queue)
5870 {
5871         int first_queue;
5872         int last_queue;
5873         int rq;
5874         int rc = 0;
5875         struct CommandList *c;
5876
5877         c = cmd_alloc(h);
5878
5879         /*
5880          * If no specific reply queue was requested, then send the TUR
5881          * repeatedly, requesting a reply on each reply queue; otherwise execute
5882          * the loop exactly once using only the specified queue.
5883          */
5884         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5885                 first_queue = 0;
5886                 last_queue = h->nreply_queues - 1;
5887         } else {
5888                 first_queue = reply_queue;
5889                 last_queue = reply_queue;
5890         }
5891
5892         for (rq = first_queue; rq <= last_queue; rq++) {
5893                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5894                 if (rc)
5895                         break;
5896         }
5897
5898         if (rc)
5899                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5900         else
5901                 dev_warn(&h->pdev->dev, "device is ready.\n");
5902
5903         cmd_free(h, c);
5904         return rc;
5905 }
5906
5907 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5908  * complaining.  Doing a host- or bus-reset can't do anything good here.
5909  */
5910 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5911 {
5912         int rc = SUCCESS;
5913         struct ctlr_info *h;
5914         struct hpsa_scsi_dev_t *dev;
5915         u8 reset_type;
5916         char msg[48];
5917         unsigned long flags;
5918
5919         /* find the controller to which the command to be aborted was sent */
5920         h = sdev_to_hba(scsicmd->device);
5921         if (h == NULL) /* paranoia */
5922                 return FAILED;
5923
5924         spin_lock_irqsave(&h->reset_lock, flags);
5925         h->reset_in_progress = 1;
5926         spin_unlock_irqrestore(&h->reset_lock, flags);
5927
5928         if (lockup_detected(h)) {
5929                 rc = FAILED;
5930                 goto return_reset_status;
5931         }
5932
5933         dev = scsicmd->device->hostdata;
5934         if (!dev) {
5935                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5936                 rc = FAILED;
5937                 goto return_reset_status;
5938         }
5939
5940         if (dev->devtype == TYPE_ENCLOSURE) {
5941                 rc = SUCCESS;
5942                 goto return_reset_status;
5943         }
5944
5945         /* if controller locked up, we can guarantee command won't complete */
5946         if (lockup_detected(h)) {
5947                 snprintf(msg, sizeof(msg),
5948                          "cmd %d RESET FAILED, lockup detected",
5949                          hpsa_get_cmd_index(scsicmd));
5950                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5951                 rc = FAILED;
5952                 goto return_reset_status;
5953         }
5954
5955         /* this reset request might be the result of a lockup; check */
5956         if (detect_controller_lockup(h)) {
5957                 snprintf(msg, sizeof(msg),
5958                          "cmd %d RESET FAILED, new lockup detected",
5959                          hpsa_get_cmd_index(scsicmd));
5960                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5961                 rc = FAILED;
5962                 goto return_reset_status;
5963         }
5964
5965         /* Do not attempt on controller */
5966         if (is_hba_lunid(dev->scsi3addr)) {
5967                 rc = SUCCESS;
5968                 goto return_reset_status;
5969         }
5970
5971         if (is_logical_dev_addr_mode(dev->scsi3addr))
5972                 reset_type = HPSA_DEVICE_RESET_MSG;
5973         else
5974                 reset_type = HPSA_PHYS_TARGET_RESET;
5975
5976         sprintf(msg, "resetting %s",
5977                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5978         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5979
5980         /* send a reset to the SCSI LUN which the command was sent to */
5981         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5982                            DEFAULT_REPLY_QUEUE);
5983         if (rc == 0)
5984                 rc = SUCCESS;
5985         else
5986                 rc = FAILED;
5987
5988         sprintf(msg, "reset %s %s",
5989                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5990                 rc == SUCCESS ? "completed successfully" : "failed");
5991         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5992
5993 return_reset_status:
5994         spin_lock_irqsave(&h->reset_lock, flags);
5995         h->reset_in_progress = 0;
5996         spin_unlock_irqrestore(&h->reset_lock, flags);
5997         return rc;
5998 }
5999
6000 /*
6001  * For operations with an associated SCSI command, a command block is allocated
6002  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6003  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6004  * the complement, although cmd_free() may be called instead.
6005  */
6006 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6007                                             struct scsi_cmnd *scmd)
6008 {
6009         int idx = hpsa_get_cmd_index(scmd);
6010         struct CommandList *c = h->cmd_pool + idx;
6011
6012         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6013                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6014                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6015                 /* The index value comes from the block layer, so if it's out of
6016                  * bounds, it's probably not our bug.
6017                  */
6018                 BUG();
6019         }
6020
6021         atomic_inc(&c->refcount);
6022         if (unlikely(!hpsa_is_cmd_idle(c))) {
6023                 /*
6024                  * We expect that the SCSI layer will hand us a unique tag
6025                  * value.  Thus, there should never be a collision here between
6026                  * two requests...because if the selected command isn't idle
6027                  * then someone is going to be very disappointed.
6028                  */
6029                 dev_err(&h->pdev->dev,
6030                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6031                         idx);
6032                 if (c->scsi_cmd != NULL)
6033                         scsi_print_command(c->scsi_cmd);
6034                 scsi_print_command(scmd);
6035         }
6036
6037         hpsa_cmd_partial_init(h, idx, c);
6038         return c;
6039 }
6040
6041 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6042 {
6043         /*
6044          * Release our reference to the block.  We don't need to do anything
6045          * else to free it, because it is accessed by index.
6046          */
6047         (void)atomic_dec(&c->refcount);
6048 }
6049
6050 /*
6051  * For operations that cannot sleep, a command block is allocated at init,
6052  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6053  * which ones are free or in use.  Lock must be held when calling this.
6054  * cmd_free() is the complement.
6055  * This function never gives up and returns NULL.  If it hangs,
6056  * another thread must call cmd_free() to free some tags.
6057  */
6058
6059 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6060 {
6061         struct CommandList *c;
6062         int refcount, i;
6063         int offset = 0;
6064
6065         /*
6066          * There is some *extremely* small but non-zero chance that that
6067          * multiple threads could get in here, and one thread could
6068          * be scanning through the list of bits looking for a free
6069          * one, but the free ones are always behind him, and other
6070          * threads sneak in behind him and eat them before he can
6071          * get to them, so that while there is always a free one, a
6072          * very unlucky thread might be starved anyway, never able to
6073          * beat the other threads.  In reality, this happens so
6074          * infrequently as to be indistinguishable from never.
6075          *
6076          * Note that we start allocating commands before the SCSI host structure
6077          * is initialized.  Since the search starts at bit zero, this
6078          * all works, since we have at least one command structure available;
6079          * however, it means that the structures with the low indexes have to be
6080          * reserved for driver-initiated requests, while requests from the block
6081          * layer will use the higher indexes.
6082          */
6083
6084         for (;;) {
6085                 i = find_next_zero_bit(h->cmd_pool_bits,
6086                                         HPSA_NRESERVED_CMDS,
6087                                         offset);
6088                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6089                         offset = 0;
6090                         continue;
6091                 }
6092                 c = h->cmd_pool + i;
6093                 refcount = atomic_inc_return(&c->refcount);
6094                 if (unlikely(refcount > 1)) {
6095                         cmd_free(h, c); /* already in use */
6096                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6097                         continue;
6098                 }
6099                 set_bit(i & (BITS_PER_LONG - 1),
6100                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6101                 break; /* it's ours now. */
6102         }
6103         hpsa_cmd_partial_init(h, i, c);
6104         return c;
6105 }
6106
6107 /*
6108  * This is the complementary operation to cmd_alloc().  Note, however, in some
6109  * corner cases it may also be used to free blocks allocated by
6110  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6111  * the clear-bit is harmless.
6112  */
6113 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6114 {
6115         if (atomic_dec_and_test(&c->refcount)) {
6116                 int i;
6117
6118                 i = c - h->cmd_pool;
6119                 clear_bit(i & (BITS_PER_LONG - 1),
6120                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6121         }
6122 }
6123
6124 #ifdef CONFIG_COMPAT
6125
6126 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6127         void __user *arg)
6128 {
6129         IOCTL32_Command_struct __user *arg32 =
6130             (IOCTL32_Command_struct __user *) arg;
6131         IOCTL_Command_struct arg64;
6132         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6133         int err;
6134         u32 cp;
6135
6136         memset(&arg64, 0, sizeof(arg64));
6137         err = 0;
6138         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6139                            sizeof(arg64.LUN_info));
6140         err |= copy_from_user(&arg64.Request, &arg32->Request,
6141                            sizeof(arg64.Request));
6142         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6143                            sizeof(arg64.error_info));
6144         err |= get_user(arg64.buf_size, &arg32->buf_size);
6145         err |= get_user(cp, &arg32->buf);
6146         arg64.buf = compat_ptr(cp);
6147         err |= copy_to_user(p, &arg64, sizeof(arg64));
6148
6149         if (err)
6150                 return -EFAULT;
6151
6152         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6153         if (err)
6154                 return err;
6155         err |= copy_in_user(&arg32->error_info, &p->error_info,
6156                          sizeof(arg32->error_info));
6157         if (err)
6158                 return -EFAULT;
6159         return err;
6160 }
6161
6162 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6163         int cmd, void __user *arg)
6164 {
6165         BIG_IOCTL32_Command_struct __user *arg32 =
6166             (BIG_IOCTL32_Command_struct __user *) arg;
6167         BIG_IOCTL_Command_struct arg64;
6168         BIG_IOCTL_Command_struct __user *p =
6169             compat_alloc_user_space(sizeof(arg64));
6170         int err;
6171         u32 cp;
6172
6173         memset(&arg64, 0, sizeof(arg64));
6174         err = 0;
6175         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6176                            sizeof(arg64.LUN_info));
6177         err |= copy_from_user(&arg64.Request, &arg32->Request,
6178                            sizeof(arg64.Request));
6179         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6180                            sizeof(arg64.error_info));
6181         err |= get_user(arg64.buf_size, &arg32->buf_size);
6182         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6183         err |= get_user(cp, &arg32->buf);
6184         arg64.buf = compat_ptr(cp);
6185         err |= copy_to_user(p, &arg64, sizeof(arg64));
6186
6187         if (err)
6188                 return -EFAULT;
6189
6190         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6191         if (err)
6192                 return err;
6193         err |= copy_in_user(&arg32->error_info, &p->error_info,
6194                          sizeof(arg32->error_info));
6195         if (err)
6196                 return -EFAULT;
6197         return err;
6198 }
6199
6200 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6201 {
6202         switch (cmd) {
6203         case CCISS_GETPCIINFO:
6204         case CCISS_GETINTINFO:
6205         case CCISS_SETINTINFO:
6206         case CCISS_GETNODENAME:
6207         case CCISS_SETNODENAME:
6208         case CCISS_GETHEARTBEAT:
6209         case CCISS_GETBUSTYPES:
6210         case CCISS_GETFIRMVER:
6211         case CCISS_GETDRIVVER:
6212         case CCISS_REVALIDVOLS:
6213         case CCISS_DEREGDISK:
6214         case CCISS_REGNEWDISK:
6215         case CCISS_REGNEWD:
6216         case CCISS_RESCANDISK:
6217         case CCISS_GETLUNINFO:
6218                 return hpsa_ioctl(dev, cmd, arg);
6219
6220         case CCISS_PASSTHRU32:
6221                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6222         case CCISS_BIG_PASSTHRU32:
6223                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6224
6225         default:
6226                 return -ENOIOCTLCMD;
6227         }
6228 }
6229 #endif
6230
6231 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6232 {
6233         struct hpsa_pci_info pciinfo;
6234
6235         if (!argp)
6236                 return -EINVAL;
6237         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6238         pciinfo.bus = h->pdev->bus->number;
6239         pciinfo.dev_fn = h->pdev->devfn;
6240         pciinfo.board_id = h->board_id;
6241         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6242                 return -EFAULT;
6243         return 0;
6244 }
6245
6246 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6247 {
6248         DriverVer_type DriverVer;
6249         unsigned char vmaj, vmin, vsubmin;
6250         int rc;
6251
6252         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6253                 &vmaj, &vmin, &vsubmin);
6254         if (rc != 3) {
6255                 dev_info(&h->pdev->dev, "driver version string '%s' "
6256                         "unrecognized.", HPSA_DRIVER_VERSION);
6257                 vmaj = 0;
6258                 vmin = 0;
6259                 vsubmin = 0;
6260         }
6261         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6262         if (!argp)
6263                 return -EINVAL;
6264         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6265                 return -EFAULT;
6266         return 0;
6267 }
6268
6269 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6270 {
6271         IOCTL_Command_struct iocommand;
6272         struct CommandList *c;
6273         char *buff = NULL;
6274         u64 temp64;
6275         int rc = 0;
6276
6277         if (!argp)
6278                 return -EINVAL;
6279         if (!capable(CAP_SYS_RAWIO))
6280                 return -EPERM;
6281         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6282                 return -EFAULT;
6283         if ((iocommand.buf_size < 1) &&
6284             (iocommand.Request.Type.Direction != XFER_NONE)) {
6285                 return -EINVAL;
6286         }
6287         if (iocommand.buf_size > 0) {
6288                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6289                 if (buff == NULL)
6290                         return -ENOMEM;
6291                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6292                         /* Copy the data into the buffer we created */
6293                         if (copy_from_user(buff, iocommand.buf,
6294                                 iocommand.buf_size)) {
6295                                 rc = -EFAULT;
6296                                 goto out_kfree;
6297                         }
6298                 } else {
6299                         memset(buff, 0, iocommand.buf_size);
6300                 }
6301         }
6302         c = cmd_alloc(h);
6303
6304         /* Fill in the command type */
6305         c->cmd_type = CMD_IOCTL_PEND;
6306         c->scsi_cmd = SCSI_CMD_BUSY;
6307         /* Fill in Command Header */
6308         c->Header.ReplyQueue = 0; /* unused in simple mode */
6309         if (iocommand.buf_size > 0) {   /* buffer to fill */
6310                 c->Header.SGList = 1;
6311                 c->Header.SGTotal = cpu_to_le16(1);
6312         } else  { /* no buffers to fill */
6313                 c->Header.SGList = 0;
6314                 c->Header.SGTotal = cpu_to_le16(0);
6315         }
6316         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6317
6318         /* Fill in Request block */
6319         memcpy(&c->Request, &iocommand.Request,
6320                 sizeof(c->Request));
6321
6322         /* Fill in the scatter gather information */
6323         if (iocommand.buf_size > 0) {
6324                 temp64 = dma_map_single(&h->pdev->dev, buff,
6325                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6326                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6327                         c->SG[0].Addr = cpu_to_le64(0);
6328                         c->SG[0].Len = cpu_to_le32(0);
6329                         rc = -ENOMEM;
6330                         goto out;
6331                 }
6332                 c->SG[0].Addr = cpu_to_le64(temp64);
6333                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6334                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6335         }
6336         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6337                                         NO_TIMEOUT);
6338         if (iocommand.buf_size > 0)
6339                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6340         check_ioctl_unit_attention(h, c);
6341         if (rc) {
6342                 rc = -EIO;
6343                 goto out;
6344         }
6345
6346         /* Copy the error information out */
6347         memcpy(&iocommand.error_info, c->err_info,
6348                 sizeof(iocommand.error_info));
6349         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6350                 rc = -EFAULT;
6351                 goto out;
6352         }
6353         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6354                 iocommand.buf_size > 0) {
6355                 /* Copy the data out of the buffer we created */
6356                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6357                         rc = -EFAULT;
6358                         goto out;
6359                 }
6360         }
6361 out:
6362         cmd_free(h, c);
6363 out_kfree:
6364         kfree(buff);
6365         return rc;
6366 }
6367
6368 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6369 {
6370         BIG_IOCTL_Command_struct *ioc;
6371         struct CommandList *c;
6372         unsigned char **buff = NULL;
6373         int *buff_size = NULL;
6374         u64 temp64;
6375         BYTE sg_used = 0;
6376         int status = 0;
6377         u32 left;
6378         u32 sz;
6379         BYTE __user *data_ptr;
6380
6381         if (!argp)
6382                 return -EINVAL;
6383         if (!capable(CAP_SYS_RAWIO))
6384                 return -EPERM;
6385         ioc = vmemdup_user(argp, sizeof(*ioc));
6386         if (IS_ERR(ioc)) {
6387                 status = PTR_ERR(ioc);
6388                 goto cleanup1;
6389         }
6390         if ((ioc->buf_size < 1) &&
6391             (ioc->Request.Type.Direction != XFER_NONE)) {
6392                 status = -EINVAL;
6393                 goto cleanup1;
6394         }
6395         /* Check kmalloc limits  using all SGs */
6396         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6397                 status = -EINVAL;
6398                 goto cleanup1;
6399         }
6400         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6401                 status = -EINVAL;
6402                 goto cleanup1;
6403         }
6404         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6405         if (!buff) {
6406                 status = -ENOMEM;
6407                 goto cleanup1;
6408         }
6409         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6410         if (!buff_size) {
6411                 status = -ENOMEM;
6412                 goto cleanup1;
6413         }
6414         left = ioc->buf_size;
6415         data_ptr = ioc->buf;
6416         while (left) {
6417                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6418                 buff_size[sg_used] = sz;
6419                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6420                 if (buff[sg_used] == NULL) {
6421                         status = -ENOMEM;
6422                         goto cleanup1;
6423                 }
6424                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6425                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6426                                 status = -EFAULT;
6427                                 goto cleanup1;
6428                         }
6429                 } else
6430                         memset(buff[sg_used], 0, sz);
6431                 left -= sz;
6432                 data_ptr += sz;
6433                 sg_used++;
6434         }
6435         c = cmd_alloc(h);
6436
6437         c->cmd_type = CMD_IOCTL_PEND;
6438         c->scsi_cmd = SCSI_CMD_BUSY;
6439         c->Header.ReplyQueue = 0;
6440         c->Header.SGList = (u8) sg_used;
6441         c->Header.SGTotal = cpu_to_le16(sg_used);
6442         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6443         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6444         if (ioc->buf_size > 0) {
6445                 int i;
6446                 for (i = 0; i < sg_used; i++) {
6447                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6448                                     buff_size[i], DMA_BIDIRECTIONAL);
6449                         if (dma_mapping_error(&h->pdev->dev,
6450                                                         (dma_addr_t) temp64)) {
6451                                 c->SG[i].Addr = cpu_to_le64(0);
6452                                 c->SG[i].Len = cpu_to_le32(0);
6453                                 hpsa_pci_unmap(h->pdev, c, i,
6454                                         DMA_BIDIRECTIONAL);
6455                                 status = -ENOMEM;
6456                                 goto cleanup0;
6457                         }
6458                         c->SG[i].Addr = cpu_to_le64(temp64);
6459                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6460                         c->SG[i].Ext = cpu_to_le32(0);
6461                 }
6462                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6463         }
6464         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465                                                 NO_TIMEOUT);
6466         if (sg_used)
6467                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6468         check_ioctl_unit_attention(h, c);
6469         if (status) {
6470                 status = -EIO;
6471                 goto cleanup0;
6472         }
6473
6474         /* Copy the error information out */
6475         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6476         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6477                 status = -EFAULT;
6478                 goto cleanup0;
6479         }
6480         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6481                 int i;
6482
6483                 /* Copy the data out of the buffer we created */
6484                 BYTE __user *ptr = ioc->buf;
6485                 for (i = 0; i < sg_used; i++) {
6486                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6487                                 status = -EFAULT;
6488                                 goto cleanup0;
6489                         }
6490                         ptr += buff_size[i];
6491                 }
6492         }
6493         status = 0;
6494 cleanup0:
6495         cmd_free(h, c);
6496 cleanup1:
6497         if (buff) {
6498                 int i;
6499
6500                 for (i = 0; i < sg_used; i++)
6501                         kfree(buff[i]);
6502                 kfree(buff);
6503         }
6504         kfree(buff_size);
6505         kvfree(ioc);
6506         return status;
6507 }
6508
6509 static void check_ioctl_unit_attention(struct ctlr_info *h,
6510         struct CommandList *c)
6511 {
6512         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6513                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6514                 (void) check_for_unit_attention(h, c);
6515 }
6516
6517 /*
6518  * ioctl
6519  */
6520 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6521 {
6522         struct ctlr_info *h;
6523         void __user *argp = (void __user *)arg;
6524         int rc;
6525
6526         h = sdev_to_hba(dev);
6527
6528         switch (cmd) {
6529         case CCISS_DEREGDISK:
6530         case CCISS_REGNEWDISK:
6531         case CCISS_REGNEWD:
6532                 hpsa_scan_start(h->scsi_host);
6533                 return 0;
6534         case CCISS_GETPCIINFO:
6535                 return hpsa_getpciinfo_ioctl(h, argp);
6536         case CCISS_GETDRIVVER:
6537                 return hpsa_getdrivver_ioctl(h, argp);
6538         case CCISS_PASSTHRU:
6539                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6540                         return -EAGAIN;
6541                 rc = hpsa_passthru_ioctl(h, argp);
6542                 atomic_inc(&h->passthru_cmds_avail);
6543                 return rc;
6544         case CCISS_BIG_PASSTHRU:
6545                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6546                         return -EAGAIN;
6547                 rc = hpsa_big_passthru_ioctl(h, argp);
6548                 atomic_inc(&h->passthru_cmds_avail);
6549                 return rc;
6550         default:
6551                 return -ENOTTY;
6552         }
6553 }
6554
6555 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6556                                 u8 reset_type)
6557 {
6558         struct CommandList *c;
6559
6560         c = cmd_alloc(h);
6561
6562         /* fill_cmd can't fail here, no data buffer to map */
6563         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6564                 RAID_CTLR_LUNID, TYPE_MSG);
6565         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6566         c->waiting = NULL;
6567         enqueue_cmd_and_start_io(h, c);
6568         /* Don't wait for completion, the reset won't complete.  Don't free
6569          * the command either.  This is the last command we will send before
6570          * re-initializing everything, so it doesn't matter and won't leak.
6571          */
6572         return;
6573 }
6574
6575 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6576         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6577         int cmd_type)
6578 {
6579         enum dma_data_direction dir = DMA_NONE;
6580
6581         c->cmd_type = CMD_IOCTL_PEND;
6582         c->scsi_cmd = SCSI_CMD_BUSY;
6583         c->Header.ReplyQueue = 0;
6584         if (buff != NULL && size > 0) {
6585                 c->Header.SGList = 1;
6586                 c->Header.SGTotal = cpu_to_le16(1);
6587         } else {
6588                 c->Header.SGList = 0;
6589                 c->Header.SGTotal = cpu_to_le16(0);
6590         }
6591         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6592
6593         if (cmd_type == TYPE_CMD) {
6594                 switch (cmd) {
6595                 case HPSA_INQUIRY:
6596                         /* are we trying to read a vital product page */
6597                         if (page_code & VPD_PAGE) {
6598                                 c->Request.CDB[1] = 0x01;
6599                                 c->Request.CDB[2] = (page_code & 0xff);
6600                         }
6601                         c->Request.CDBLen = 6;
6602                         c->Request.type_attr_dir =
6603                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6604                         c->Request.Timeout = 0;
6605                         c->Request.CDB[0] = HPSA_INQUIRY;
6606                         c->Request.CDB[4] = size & 0xFF;
6607                         break;
6608                 case RECEIVE_DIAGNOSTIC:
6609                         c->Request.CDBLen = 6;
6610                         c->Request.type_attr_dir =
6611                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6612                         c->Request.Timeout = 0;
6613                         c->Request.CDB[0] = cmd;
6614                         c->Request.CDB[1] = 1;
6615                         c->Request.CDB[2] = 1;
6616                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6617                         c->Request.CDB[4] = size & 0xFF;
6618                         break;
6619                 case HPSA_REPORT_LOG:
6620                 case HPSA_REPORT_PHYS:
6621                         /* Talking to controller so It's a physical command
6622                            mode = 00 target = 0.  Nothing to write.
6623                          */
6624                         c->Request.CDBLen = 12;
6625                         c->Request.type_attr_dir =
6626                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6627                         c->Request.Timeout = 0;
6628                         c->Request.CDB[0] = cmd;
6629                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6630                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6631                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6632                         c->Request.CDB[9] = size & 0xFF;
6633                         break;
6634                 case BMIC_SENSE_DIAG_OPTIONS:
6635                         c->Request.CDBLen = 16;
6636                         c->Request.type_attr_dir =
6637                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6638                         c->Request.Timeout = 0;
6639                         /* Spec says this should be BMIC_WRITE */
6640                         c->Request.CDB[0] = BMIC_READ;
6641                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6642                         break;
6643                 case BMIC_SET_DIAG_OPTIONS:
6644                         c->Request.CDBLen = 16;
6645                         c->Request.type_attr_dir =
6646                                         TYPE_ATTR_DIR(cmd_type,
6647                                                 ATTR_SIMPLE, XFER_WRITE);
6648                         c->Request.Timeout = 0;
6649                         c->Request.CDB[0] = BMIC_WRITE;
6650                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6651                         break;
6652                 case HPSA_CACHE_FLUSH:
6653                         c->Request.CDBLen = 12;
6654                         c->Request.type_attr_dir =
6655                                         TYPE_ATTR_DIR(cmd_type,
6656                                                 ATTR_SIMPLE, XFER_WRITE);
6657                         c->Request.Timeout = 0;
6658                         c->Request.CDB[0] = BMIC_WRITE;
6659                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6660                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6661                         c->Request.CDB[8] = size & 0xFF;
6662                         break;
6663                 case TEST_UNIT_READY:
6664                         c->Request.CDBLen = 6;
6665                         c->Request.type_attr_dir =
6666                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6667                         c->Request.Timeout = 0;
6668                         break;
6669                 case HPSA_GET_RAID_MAP:
6670                         c->Request.CDBLen = 12;
6671                         c->Request.type_attr_dir =
6672                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6673                         c->Request.Timeout = 0;
6674                         c->Request.CDB[0] = HPSA_CISS_READ;
6675                         c->Request.CDB[1] = cmd;
6676                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6677                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6678                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6679                         c->Request.CDB[9] = size & 0xFF;
6680                         break;
6681                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6682                         c->Request.CDBLen = 10;
6683                         c->Request.type_attr_dir =
6684                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685                         c->Request.Timeout = 0;
6686                         c->Request.CDB[0] = BMIC_READ;
6687                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6688                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6689                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6690                         break;
6691                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6692                         c->Request.CDBLen = 10;
6693                         c->Request.type_attr_dir =
6694                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695                         c->Request.Timeout = 0;
6696                         c->Request.CDB[0] = BMIC_READ;
6697                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6698                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6699                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6700                         break;
6701                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6702                         c->Request.CDBLen = 10;
6703                         c->Request.type_attr_dir =
6704                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705                         c->Request.Timeout = 0;
6706                         c->Request.CDB[0] = BMIC_READ;
6707                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6708                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6709                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6710                         break;
6711                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6712                         c->Request.CDBLen = 10;
6713                         c->Request.type_attr_dir =
6714                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6715                         c->Request.Timeout = 0;
6716                         c->Request.CDB[0] = BMIC_READ;
6717                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6718                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6719                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6720                         break;
6721                 case BMIC_IDENTIFY_CONTROLLER:
6722                         c->Request.CDBLen = 10;
6723                         c->Request.type_attr_dir =
6724                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725                         c->Request.Timeout = 0;
6726                         c->Request.CDB[0] = BMIC_READ;
6727                         c->Request.CDB[1] = 0;
6728                         c->Request.CDB[2] = 0;
6729                         c->Request.CDB[3] = 0;
6730                         c->Request.CDB[4] = 0;
6731                         c->Request.CDB[5] = 0;
6732                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6733                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6734                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6735                         c->Request.CDB[9] = 0;
6736                         break;
6737                 default:
6738                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6739                         BUG();
6740                 }
6741         } else if (cmd_type == TYPE_MSG) {
6742                 switch (cmd) {
6743
6744                 case  HPSA_PHYS_TARGET_RESET:
6745                         c->Request.CDBLen = 16;
6746                         c->Request.type_attr_dir =
6747                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6748                         c->Request.Timeout = 0; /* Don't time out */
6749                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6750                         c->Request.CDB[0] = HPSA_RESET;
6751                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6752                         /* Physical target reset needs no control bytes 4-7*/
6753                         c->Request.CDB[4] = 0x00;
6754                         c->Request.CDB[5] = 0x00;
6755                         c->Request.CDB[6] = 0x00;
6756                         c->Request.CDB[7] = 0x00;
6757                         break;
6758                 case  HPSA_DEVICE_RESET_MSG:
6759                         c->Request.CDBLen = 16;
6760                         c->Request.type_attr_dir =
6761                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6762                         c->Request.Timeout = 0; /* Don't time out */
6763                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6764                         c->Request.CDB[0] =  cmd;
6765                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6766                         /* If bytes 4-7 are zero, it means reset the */
6767                         /* LunID device */
6768                         c->Request.CDB[4] = 0x00;
6769                         c->Request.CDB[5] = 0x00;
6770                         c->Request.CDB[6] = 0x00;
6771                         c->Request.CDB[7] = 0x00;
6772                         break;
6773                 default:
6774                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6775                                 cmd);
6776                         BUG();
6777                 }
6778         } else {
6779                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6780                 BUG();
6781         }
6782
6783         switch (GET_DIR(c->Request.type_attr_dir)) {
6784         case XFER_READ:
6785                 dir = DMA_FROM_DEVICE;
6786                 break;
6787         case XFER_WRITE:
6788                 dir = DMA_TO_DEVICE;
6789                 break;
6790         case XFER_NONE:
6791                 dir = DMA_NONE;
6792                 break;
6793         default:
6794                 dir = DMA_BIDIRECTIONAL;
6795         }
6796         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6797                 return -1;
6798         return 0;
6799 }
6800
6801 /*
6802  * Map (physical) PCI mem into (virtual) kernel space
6803  */
6804 static void __iomem *remap_pci_mem(ulong base, ulong size)
6805 {
6806         ulong page_base = ((ulong) base) & PAGE_MASK;
6807         ulong page_offs = ((ulong) base) - page_base;
6808         void __iomem *page_remapped = ioremap_nocache(page_base,
6809                 page_offs + size);
6810
6811         return page_remapped ? (page_remapped + page_offs) : NULL;
6812 }
6813
6814 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6815 {
6816         return h->access.command_completed(h, q);
6817 }
6818
6819 static inline bool interrupt_pending(struct ctlr_info *h)
6820 {
6821         return h->access.intr_pending(h);
6822 }
6823
6824 static inline long interrupt_not_for_us(struct ctlr_info *h)
6825 {
6826         return (h->access.intr_pending(h) == 0) ||
6827                 (h->interrupts_enabled == 0);
6828 }
6829
6830 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6831         u32 raw_tag)
6832 {
6833         if (unlikely(tag_index >= h->nr_cmds)) {
6834                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6835                 return 1;
6836         }
6837         return 0;
6838 }
6839
6840 static inline void finish_cmd(struct CommandList *c)
6841 {
6842         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6843         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6844                         || c->cmd_type == CMD_IOACCEL2))
6845                 complete_scsi_command(c);
6846         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6847                 complete(c->waiting);
6848 }
6849
6850 /* process completion of an indexed ("direct lookup") command */
6851 static inline void process_indexed_cmd(struct ctlr_info *h,
6852         u32 raw_tag)
6853 {
6854         u32 tag_index;
6855         struct CommandList *c;
6856
6857         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6858         if (!bad_tag(h, tag_index, raw_tag)) {
6859                 c = h->cmd_pool + tag_index;
6860                 finish_cmd(c);
6861         }
6862 }
6863
6864 /* Some controllers, like p400, will give us one interrupt
6865  * after a soft reset, even if we turned interrupts off.
6866  * Only need to check for this in the hpsa_xxx_discard_completions
6867  * functions.
6868  */
6869 static int ignore_bogus_interrupt(struct ctlr_info *h)
6870 {
6871         if (likely(!reset_devices))
6872                 return 0;
6873
6874         if (likely(h->interrupts_enabled))
6875                 return 0;
6876
6877         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6878                 "(known firmware bug.)  Ignoring.\n");
6879
6880         return 1;
6881 }
6882
6883 /*
6884  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6885  * Relies on (h-q[x] == x) being true for x such that
6886  * 0 <= x < MAX_REPLY_QUEUES.
6887  */
6888 static struct ctlr_info *queue_to_hba(u8 *queue)
6889 {
6890         return container_of((queue - *queue), struct ctlr_info, q[0]);
6891 }
6892
6893 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6894 {
6895         struct ctlr_info *h = queue_to_hba(queue);
6896         u8 q = *(u8 *) queue;
6897         u32 raw_tag;
6898
6899         if (ignore_bogus_interrupt(h))
6900                 return IRQ_NONE;
6901
6902         if (interrupt_not_for_us(h))
6903                 return IRQ_NONE;
6904         h->last_intr_timestamp = get_jiffies_64();
6905         while (interrupt_pending(h)) {
6906                 raw_tag = get_next_completion(h, q);
6907                 while (raw_tag != FIFO_EMPTY)
6908                         raw_tag = next_command(h, q);
6909         }
6910         return IRQ_HANDLED;
6911 }
6912
6913 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6914 {
6915         struct ctlr_info *h = queue_to_hba(queue);
6916         u32 raw_tag;
6917         u8 q = *(u8 *) queue;
6918
6919         if (ignore_bogus_interrupt(h))
6920                 return IRQ_NONE;
6921
6922         h->last_intr_timestamp = get_jiffies_64();
6923         raw_tag = get_next_completion(h, q);
6924         while (raw_tag != FIFO_EMPTY)
6925                 raw_tag = next_command(h, q);
6926         return IRQ_HANDLED;
6927 }
6928
6929 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6930 {
6931         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6932         u32 raw_tag;
6933         u8 q = *(u8 *) queue;
6934
6935         if (interrupt_not_for_us(h))
6936                 return IRQ_NONE;
6937         h->last_intr_timestamp = get_jiffies_64();
6938         while (interrupt_pending(h)) {
6939                 raw_tag = get_next_completion(h, q);
6940                 while (raw_tag != FIFO_EMPTY) {
6941                         process_indexed_cmd(h, raw_tag);
6942                         raw_tag = next_command(h, q);
6943                 }
6944         }
6945         return IRQ_HANDLED;
6946 }
6947
6948 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6949 {
6950         struct ctlr_info *h = queue_to_hba(queue);
6951         u32 raw_tag;
6952         u8 q = *(u8 *) queue;
6953
6954         h->last_intr_timestamp = get_jiffies_64();
6955         raw_tag = get_next_completion(h, q);
6956         while (raw_tag != FIFO_EMPTY) {
6957                 process_indexed_cmd(h, raw_tag);
6958                 raw_tag = next_command(h, q);
6959         }
6960         return IRQ_HANDLED;
6961 }
6962
6963 /* Send a message CDB to the firmware. Careful, this only works
6964  * in simple mode, not performant mode due to the tag lookup.
6965  * We only ever use this immediately after a controller reset.
6966  */
6967 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6968                         unsigned char type)
6969 {
6970         struct Command {
6971                 struct CommandListHeader CommandHeader;
6972                 struct RequestBlock Request;
6973                 struct ErrDescriptor ErrorDescriptor;
6974         };
6975         struct Command *cmd;
6976         static const size_t cmd_sz = sizeof(*cmd) +
6977                                         sizeof(cmd->ErrorDescriptor);
6978         dma_addr_t paddr64;
6979         __le32 paddr32;
6980         u32 tag;
6981         void __iomem *vaddr;
6982         int i, err;
6983
6984         vaddr = pci_ioremap_bar(pdev, 0);
6985         if (vaddr == NULL)
6986                 return -ENOMEM;
6987
6988         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6989          * CCISS commands, so they must be allocated from the lower 4GiB of
6990          * memory.
6991          */
6992         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6993         if (err) {
6994                 iounmap(vaddr);
6995                 return err;
6996         }
6997
6998         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
6999         if (cmd == NULL) {
7000                 iounmap(vaddr);
7001                 return -ENOMEM;
7002         }
7003
7004         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7005          * although there's no guarantee, we assume that the address is at
7006          * least 4-byte aligned (most likely, it's page-aligned).
7007          */
7008         paddr32 = cpu_to_le32(paddr64);
7009
7010         cmd->CommandHeader.ReplyQueue = 0;
7011         cmd->CommandHeader.SGList = 0;
7012         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7013         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7014         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7015
7016         cmd->Request.CDBLen = 16;
7017         cmd->Request.type_attr_dir =
7018                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7019         cmd->Request.Timeout = 0; /* Don't time out */
7020         cmd->Request.CDB[0] = opcode;
7021         cmd->Request.CDB[1] = type;
7022         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7023         cmd->ErrorDescriptor.Addr =
7024                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7025         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7026
7027         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7028
7029         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7030                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7031                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7032                         break;
7033                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7034         }
7035
7036         iounmap(vaddr);
7037
7038         /* we leak the DMA buffer here ... no choice since the controller could
7039          *  still complete the command.
7040          */
7041         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7042                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7043                         opcode, type);
7044                 return -ETIMEDOUT;
7045         }
7046
7047         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7048
7049         if (tag & HPSA_ERROR_BIT) {
7050                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7051                         opcode, type);
7052                 return -EIO;
7053         }
7054
7055         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7056                 opcode, type);
7057         return 0;
7058 }
7059
7060 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7061
7062 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7063         void __iomem *vaddr, u32 use_doorbell)
7064 {
7065
7066         if (use_doorbell) {
7067                 /* For everything after the P600, the PCI power state method
7068                  * of resetting the controller doesn't work, so we have this
7069                  * other way using the doorbell register.
7070                  */
7071                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7072                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7073
7074                 /* PMC hardware guys tell us we need a 10 second delay after
7075                  * doorbell reset and before any attempt to talk to the board
7076                  * at all to ensure that this actually works and doesn't fall
7077                  * over in some weird corner cases.
7078                  */
7079                 msleep(10000);
7080         } else { /* Try to do it the PCI power state way */
7081
7082                 /* Quoting from the Open CISS Specification: "The Power
7083                  * Management Control/Status Register (CSR) controls the power
7084                  * state of the device.  The normal operating state is D0,
7085                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7086                  * the controller, place the interface device in D3 then to D0,
7087                  * this causes a secondary PCI reset which will reset the
7088                  * controller." */
7089
7090                 int rc = 0;
7091
7092                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7093
7094                 /* enter the D3hot power management state */
7095                 rc = pci_set_power_state(pdev, PCI_D3hot);
7096                 if (rc)
7097                         return rc;
7098
7099                 msleep(500);
7100
7101                 /* enter the D0 power management state */
7102                 rc = pci_set_power_state(pdev, PCI_D0);
7103                 if (rc)
7104                         return rc;
7105
7106                 /*
7107                  * The P600 requires a small delay when changing states.
7108                  * Otherwise we may think the board did not reset and we bail.
7109                  * This for kdump only and is particular to the P600.
7110                  */
7111                 msleep(500);
7112         }
7113         return 0;
7114 }
7115
7116 static void init_driver_version(char *driver_version, int len)
7117 {
7118         memset(driver_version, 0, len);
7119         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7120 }
7121
7122 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7123 {
7124         char *driver_version;
7125         int i, size = sizeof(cfgtable->driver_version);
7126
7127         driver_version = kmalloc(size, GFP_KERNEL);
7128         if (!driver_version)
7129                 return -ENOMEM;
7130
7131         init_driver_version(driver_version, size);
7132         for (i = 0; i < size; i++)
7133                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7134         kfree(driver_version);
7135         return 0;
7136 }
7137
7138 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7139                                           unsigned char *driver_ver)
7140 {
7141         int i;
7142
7143         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7144                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7145 }
7146
7147 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7148 {
7149
7150         char *driver_ver, *old_driver_ver;
7151         int rc, size = sizeof(cfgtable->driver_version);
7152
7153         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7154         if (!old_driver_ver)
7155                 return -ENOMEM;
7156         driver_ver = old_driver_ver + size;
7157
7158         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7159          * should have been changed, otherwise we know the reset failed.
7160          */
7161         init_driver_version(old_driver_ver, size);
7162         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7163         rc = !memcmp(driver_ver, old_driver_ver, size);
7164         kfree(old_driver_ver);
7165         return rc;
7166 }
7167 /* This does a hard reset of the controller using PCI power management
7168  * states or the using the doorbell register.
7169  */
7170 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7171 {
7172         u64 cfg_offset;
7173         u32 cfg_base_addr;
7174         u64 cfg_base_addr_index;
7175         void __iomem *vaddr;
7176         unsigned long paddr;
7177         u32 misc_fw_support;
7178         int rc;
7179         struct CfgTable __iomem *cfgtable;
7180         u32 use_doorbell;
7181         u16 command_register;
7182
7183         /* For controllers as old as the P600, this is very nearly
7184          * the same thing as
7185          *
7186          * pci_save_state(pci_dev);
7187          * pci_set_power_state(pci_dev, PCI_D3hot);
7188          * pci_set_power_state(pci_dev, PCI_D0);
7189          * pci_restore_state(pci_dev);
7190          *
7191          * For controllers newer than the P600, the pci power state
7192          * method of resetting doesn't work so we have another way
7193          * using the doorbell register.
7194          */
7195
7196         if (!ctlr_is_resettable(board_id)) {
7197                 dev_warn(&pdev->dev, "Controller not resettable\n");
7198                 return -ENODEV;
7199         }
7200
7201         /* if controller is soft- but not hard resettable... */
7202         if (!ctlr_is_hard_resettable(board_id))
7203                 return -ENOTSUPP; /* try soft reset later. */
7204
7205         /* Save the PCI command register */
7206         pci_read_config_word(pdev, 4, &command_register);
7207         pci_save_state(pdev);
7208
7209         /* find the first memory BAR, so we can find the cfg table */
7210         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7211         if (rc)
7212                 return rc;
7213         vaddr = remap_pci_mem(paddr, 0x250);
7214         if (!vaddr)
7215                 return -ENOMEM;
7216
7217         /* find cfgtable in order to check if reset via doorbell is supported */
7218         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7219                                         &cfg_base_addr_index, &cfg_offset);
7220         if (rc)
7221                 goto unmap_vaddr;
7222         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7223                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7224         if (!cfgtable) {
7225                 rc = -ENOMEM;
7226                 goto unmap_vaddr;
7227         }
7228         rc = write_driver_ver_to_cfgtable(cfgtable);
7229         if (rc)
7230                 goto unmap_cfgtable;
7231
7232         /* If reset via doorbell register is supported, use that.
7233          * There are two such methods.  Favor the newest method.
7234          */
7235         misc_fw_support = readl(&cfgtable->misc_fw_support);
7236         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7237         if (use_doorbell) {
7238                 use_doorbell = DOORBELL_CTLR_RESET2;
7239         } else {
7240                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7241                 if (use_doorbell) {
7242                         dev_warn(&pdev->dev,
7243                                 "Soft reset not supported. Firmware update is required.\n");
7244                         rc = -ENOTSUPP; /* try soft reset */
7245                         goto unmap_cfgtable;
7246                 }
7247         }
7248
7249         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7250         if (rc)
7251                 goto unmap_cfgtable;
7252
7253         pci_restore_state(pdev);
7254         pci_write_config_word(pdev, 4, command_register);
7255
7256         /* Some devices (notably the HP Smart Array 5i Controller)
7257            need a little pause here */
7258         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7259
7260         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7261         if (rc) {
7262                 dev_warn(&pdev->dev,
7263                         "Failed waiting for board to become ready after hard reset\n");
7264                 goto unmap_cfgtable;
7265         }
7266
7267         rc = controller_reset_failed(vaddr);
7268         if (rc < 0)
7269                 goto unmap_cfgtable;
7270         if (rc) {
7271                 dev_warn(&pdev->dev, "Unable to successfully reset "
7272                         "controller. Will try soft reset.\n");
7273                 rc = -ENOTSUPP;
7274         } else {
7275                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7276         }
7277
7278 unmap_cfgtable:
7279         iounmap(cfgtable);
7280
7281 unmap_vaddr:
7282         iounmap(vaddr);
7283         return rc;
7284 }
7285
7286 /*
7287  *  We cannot read the structure directly, for portability we must use
7288  *   the io functions.
7289  *   This is for debug only.
7290  */
7291 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7292 {
7293 #ifdef HPSA_DEBUG
7294         int i;
7295         char temp_name[17];
7296
7297         dev_info(dev, "Controller Configuration information\n");
7298         dev_info(dev, "------------------------------------\n");
7299         for (i = 0; i < 4; i++)
7300                 temp_name[i] = readb(&(tb->Signature[i]));
7301         temp_name[4] = '\0';
7302         dev_info(dev, "   Signature = %s\n", temp_name);
7303         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7304         dev_info(dev, "   Transport methods supported = 0x%x\n",
7305                readl(&(tb->TransportSupport)));
7306         dev_info(dev, "   Transport methods active = 0x%x\n",
7307                readl(&(tb->TransportActive)));
7308         dev_info(dev, "   Requested transport Method = 0x%x\n",
7309                readl(&(tb->HostWrite.TransportRequest)));
7310         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7311                readl(&(tb->HostWrite.CoalIntDelay)));
7312         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7313                readl(&(tb->HostWrite.CoalIntCount)));
7314         dev_info(dev, "   Max outstanding commands = %d\n",
7315                readl(&(tb->CmdsOutMax)));
7316         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7317         for (i = 0; i < 16; i++)
7318                 temp_name[i] = readb(&(tb->ServerName[i]));
7319         temp_name[16] = '\0';
7320         dev_info(dev, "   Server Name = %s\n", temp_name);
7321         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7322                 readl(&(tb->HeartBeat)));
7323 #endif                          /* HPSA_DEBUG */
7324 }
7325
7326 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7327 {
7328         int i, offset, mem_type, bar_type;
7329
7330         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7331                 return 0;
7332         offset = 0;
7333         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7334                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7335                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7336                         offset += 4;
7337                 else {
7338                         mem_type = pci_resource_flags(pdev, i) &
7339                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7340                         switch (mem_type) {
7341                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7342                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7343                                 offset += 4;    /* 32 bit */
7344                                 break;
7345                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7346                                 offset += 8;
7347                                 break;
7348                         default:        /* reserved in PCI 2.2 */
7349                                 dev_warn(&pdev->dev,
7350                                        "base address is invalid\n");
7351                                 return -1;
7352                                 break;
7353                         }
7354                 }
7355                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7356                         return i + 1;
7357         }
7358         return -1;
7359 }
7360
7361 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7362 {
7363         pci_free_irq_vectors(h->pdev);
7364         h->msix_vectors = 0;
7365 }
7366
7367 static void hpsa_setup_reply_map(struct ctlr_info *h)
7368 {
7369         const struct cpumask *mask;
7370         unsigned int queue, cpu;
7371
7372         for (queue = 0; queue < h->msix_vectors; queue++) {
7373                 mask = pci_irq_get_affinity(h->pdev, queue);
7374                 if (!mask)
7375                         goto fallback;
7376
7377                 for_each_cpu(cpu, mask)
7378                         h->reply_map[cpu] = queue;
7379         }
7380         return;
7381
7382 fallback:
7383         for_each_possible_cpu(cpu)
7384                 h->reply_map[cpu] = 0;
7385 }
7386
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388  * controllers that are capable. If not, we use legacy INTx mode.
7389  */
7390 static int hpsa_interrupt_mode(struct ctlr_info *h)
7391 {
7392         unsigned int flags = PCI_IRQ_LEGACY;
7393         int ret;
7394
7395         /* Some boards advertise MSI but don't really support it */
7396         switch (h->board_id) {
7397         case 0x40700E11:
7398         case 0x40800E11:
7399         case 0x40820E11:
7400         case 0x40830E11:
7401                 break;
7402         default:
7403                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7404                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7405                 if (ret > 0) {
7406                         h->msix_vectors = ret;
7407                         return 0;
7408                 }
7409
7410                 flags |= PCI_IRQ_MSI;
7411                 break;
7412         }
7413
7414         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7415         if (ret < 0)
7416                 return ret;
7417         return 0;
7418 }
7419
7420 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7421                                 bool *legacy_board)
7422 {
7423         int i;
7424         u32 subsystem_vendor_id, subsystem_device_id;
7425
7426         subsystem_vendor_id = pdev->subsystem_vendor;
7427         subsystem_device_id = pdev->subsystem_device;
7428         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7429                     subsystem_vendor_id;
7430
7431         if (legacy_board)
7432                 *legacy_board = false;
7433         for (i = 0; i < ARRAY_SIZE(products); i++)
7434                 if (*board_id == products[i].board_id) {
7435                         if (products[i].access != &SA5A_access &&
7436                             products[i].access != &SA5B_access)
7437                                 return i;
7438                         dev_warn(&pdev->dev,
7439                                  "legacy board ID: 0x%08x\n",
7440                                  *board_id);
7441                         if (legacy_board)
7442                             *legacy_board = true;
7443                         return i;
7444                 }
7445
7446         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7447         if (legacy_board)
7448                 *legacy_board = true;
7449         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7450 }
7451
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7453                                     unsigned long *memory_bar)
7454 {
7455         int i;
7456
7457         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7458                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7459                         /* addressing mode bits already removed */
7460                         *memory_bar = pci_resource_start(pdev, i);
7461                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7462                                 *memory_bar);
7463                         return 0;
7464                 }
7465         dev_warn(&pdev->dev, "no memory BAR found\n");
7466         return -ENODEV;
7467 }
7468
7469 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7470                                      int wait_for_ready)
7471 {
7472         int i, iterations;
7473         u32 scratchpad;
7474         if (wait_for_ready)
7475                 iterations = HPSA_BOARD_READY_ITERATIONS;
7476         else
7477                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7478
7479         for (i = 0; i < iterations; i++) {
7480                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7481                 if (wait_for_ready) {
7482                         if (scratchpad == HPSA_FIRMWARE_READY)
7483                                 return 0;
7484                 } else {
7485                         if (scratchpad != HPSA_FIRMWARE_READY)
7486                                 return 0;
7487                 }
7488                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7489         }
7490         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7491         return -ENODEV;
7492 }
7493
7494 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7495                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7496                                u64 *cfg_offset)
7497 {
7498         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7499         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7500         *cfg_base_addr &= (u32) 0x0000ffff;
7501         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7502         if (*cfg_base_addr_index == -1) {
7503                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7504                 return -ENODEV;
7505         }
7506         return 0;
7507 }
7508
7509 static void hpsa_free_cfgtables(struct ctlr_info *h)
7510 {
7511         if (h->transtable) {
7512                 iounmap(h->transtable);
7513                 h->transtable = NULL;
7514         }
7515         if (h->cfgtable) {
7516                 iounmap(h->cfgtable);
7517                 h->cfgtable = NULL;
7518         }
7519 }
7520
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7523 + * */
7524 static int hpsa_find_cfgtables(struct ctlr_info *h)
7525 {
7526         u64 cfg_offset;
7527         u32 cfg_base_addr;
7528         u64 cfg_base_addr_index;
7529         u32 trans_offset;
7530         int rc;
7531
7532         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7533                 &cfg_base_addr_index, &cfg_offset);
7534         if (rc)
7535                 return rc;
7536         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7537                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7538         if (!h->cfgtable) {
7539                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7540                 return -ENOMEM;
7541         }
7542         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7543         if (rc)
7544                 return rc;
7545         /* Find performant mode table. */
7546         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7547         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7548                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7549                                 sizeof(*h->transtable));
7550         if (!h->transtable) {
7551                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7552                 hpsa_free_cfgtables(h);
7553                 return -ENOMEM;
7554         }
7555         return 0;
7556 }
7557
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7559 {
7560 #define MIN_MAX_COMMANDS 16
7561         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7562
7563         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7564
7565         /* Limit commands in memory limited kdump scenario. */
7566         if (reset_devices && h->max_commands > 32)
7567                 h->max_commands = 32;
7568
7569         if (h->max_commands < MIN_MAX_COMMANDS) {
7570                 dev_warn(&h->pdev->dev,
7571                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7572                         h->max_commands,
7573                         MIN_MAX_COMMANDS);
7574                 h->max_commands = MIN_MAX_COMMANDS;
7575         }
7576 }
7577
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579  * then we know that chained SG blocks work.  (Original smart arrays did not
7580  * support chained SG blocks and would return zero for max sg entries.)
7581  */
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7583 {
7584         return h->maxsgentries > 512;
7585 }
7586
7587 /* Interrogate the hardware for some limits:
7588  * max commands, max SG elements without chaining, and with chaining,
7589  * SG chain block size, etc.
7590  */
7591 static void hpsa_find_board_params(struct ctlr_info *h)
7592 {
7593         hpsa_get_max_perf_mode_cmds(h);
7594         h->nr_cmds = h->max_commands;
7595         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7596         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7597         if (hpsa_supports_chained_sg_blocks(h)) {
7598                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7599                 h->max_cmd_sg_entries = 32;
7600                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7601                 h->maxsgentries--; /* save one for chain pointer */
7602         } else {
7603                 /*
7604                  * Original smart arrays supported at most 31 s/g entries
7605                  * embedded inline in the command (trying to use more
7606                  * would lock up the controller)
7607                  */
7608                 h->max_cmd_sg_entries = 31;
7609                 h->maxsgentries = 31; /* default to traditional values */
7610                 h->chainsize = 0;
7611         }
7612
7613         /* Find out what task management functions are supported and cache */
7614         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7615         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7616                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7617         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7618                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7619         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7620                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7621 }
7622
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7624 {
7625         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7626                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7627                 return false;
7628         }
7629         return true;
7630 }
7631
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7633 {
7634         u32 driver_support;
7635
7636         driver_support = readl(&(h->cfgtable->driver_support));
7637         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7638 #ifdef CONFIG_X86
7639         driver_support |= ENABLE_SCSI_PREFETCH;
7640 #endif
7641         driver_support |= ENABLE_UNIT_ATTN;
7642         writel(driver_support, &(h->cfgtable->driver_support));
7643 }
7644
7645 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7646  * in a prefetch beyond physical memory.
7647  */
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7649 {
7650         u32 dma_prefetch;
7651
7652         if (h->board_id != 0x3225103C)
7653                 return;
7654         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7655         dma_prefetch |= 0x8000;
7656         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7657 }
7658
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7660 {
7661         int i;
7662         u32 doorbell_value;
7663         unsigned long flags;
7664         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7665         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7666                 spin_lock_irqsave(&h->lock, flags);
7667                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7668                 spin_unlock_irqrestore(&h->lock, flags);
7669                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7670                         goto done;
7671                 /* delay and try again */
7672                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7673         }
7674         return -ENODEV;
7675 done:
7676         return 0;
7677 }
7678
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7680 {
7681         int i;
7682         u32 doorbell_value;
7683         unsigned long flags;
7684
7685         /* under certain very rare conditions, this can take awhile.
7686          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687          * as we enter this code.)
7688          */
7689         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7690                 if (h->remove_in_progress)
7691                         goto done;
7692                 spin_lock_irqsave(&h->lock, flags);
7693                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7694                 spin_unlock_irqrestore(&h->lock, flags);
7695                 if (!(doorbell_value & CFGTBL_ChangeReq))
7696                         goto done;
7697                 /* delay and try again */
7698                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7699         }
7700         return -ENODEV;
7701 done:
7702         return 0;
7703 }
7704
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7707 {
7708         u32 trans_support;
7709
7710         trans_support = readl(&(h->cfgtable->TransportSupport));
7711         if (!(trans_support & SIMPLE_MODE))
7712                 return -ENOTSUPP;
7713
7714         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7715
7716         /* Update the field, and then ring the doorbell */
7717         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7718         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7719         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7720         if (hpsa_wait_for_mode_change_ack(h))
7721                 goto error;
7722         print_cfg_table(&h->pdev->dev, h->cfgtable);
7723         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7724                 goto error;
7725         h->transMethod = CFGTBL_Trans_Simple;
7726         return 0;
7727 error:
7728         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7729         return -ENODEV;
7730 }
7731
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info *h)
7734 {
7735         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7736         iounmap(h->vaddr);                      /* pci_init 3 */
7737         h->vaddr = NULL;
7738         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7739         /*
7740          * call pci_disable_device before pci_release_regions per
7741          * Documentation/PCI/pci.txt
7742          */
7743         pci_disable_device(h->pdev);            /* pci_init 1 */
7744         pci_release_regions(h->pdev);           /* pci_init 2 */
7745 }
7746
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info *h)
7749 {
7750         int prod_index, err;
7751         bool legacy_board;
7752
7753         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7754         if (prod_index < 0)
7755                 return prod_index;
7756         h->product_name = products[prod_index].product_name;
7757         h->access = *(products[prod_index].access);
7758         h->legacy_board = legacy_board;
7759         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7760                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7761
7762         err = pci_enable_device(h->pdev);
7763         if (err) {
7764                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7765                 pci_disable_device(h->pdev);
7766                 return err;
7767         }
7768
7769         err = pci_request_regions(h->pdev, HPSA);
7770         if (err) {
7771                 dev_err(&h->pdev->dev,
7772                         "failed to obtain PCI resources\n");
7773                 pci_disable_device(h->pdev);
7774                 return err;
7775         }
7776
7777         pci_set_master(h->pdev);
7778
7779         err = hpsa_interrupt_mode(h);
7780         if (err)
7781                 goto clean1;
7782
7783         /* setup mapping between CPU and reply queue */
7784         hpsa_setup_reply_map(h);
7785
7786         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7787         if (err)
7788                 goto clean2;    /* intmode+region, pci */
7789         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7790         if (!h->vaddr) {
7791                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7792                 err = -ENOMEM;
7793                 goto clean2;    /* intmode+region, pci */
7794         }
7795         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7796         if (err)
7797                 goto clean3;    /* vaddr, intmode+region, pci */
7798         err = hpsa_find_cfgtables(h);
7799         if (err)
7800                 goto clean3;    /* vaddr, intmode+region, pci */
7801         hpsa_find_board_params(h);
7802
7803         if (!hpsa_CISS_signature_present(h)) {
7804                 err = -ENODEV;
7805                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7806         }
7807         hpsa_set_driver_support_bits(h);
7808         hpsa_p600_dma_prefetch_quirk(h);
7809         err = hpsa_enter_simple_mode(h);
7810         if (err)
7811                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7812         return 0;
7813
7814 clean4: /* cfgtables, vaddr, intmode+region, pci */
7815         hpsa_free_cfgtables(h);
7816 clean3: /* vaddr, intmode+region, pci */
7817         iounmap(h->vaddr);
7818         h->vaddr = NULL;
7819 clean2: /* intmode+region, pci */
7820         hpsa_disable_interrupt_mode(h);
7821 clean1:
7822         /*
7823          * call pci_disable_device before pci_release_regions per
7824          * Documentation/PCI/pci.txt
7825          */
7826         pci_disable_device(h->pdev);
7827         pci_release_regions(h->pdev);
7828         return err;
7829 }
7830
7831 static void hpsa_hba_inquiry(struct ctlr_info *h)
7832 {
7833         int rc;
7834
7835 #define HBA_INQUIRY_BYTE_COUNT 64
7836         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7837         if (!h->hba_inquiry_data)
7838                 return;
7839         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7840                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7841         if (rc != 0) {
7842                 kfree(h->hba_inquiry_data);
7843                 h->hba_inquiry_data = NULL;
7844         }
7845 }
7846
7847 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7848 {
7849         int rc, i;
7850         void __iomem *vaddr;
7851
7852         if (!reset_devices)
7853                 return 0;
7854
7855         /* kdump kernel is loading, we don't know in which state is
7856          * the pci interface. The dev->enable_cnt is equal zero
7857          * so we call enable+disable, wait a while and switch it on.
7858          */
7859         rc = pci_enable_device(pdev);
7860         if (rc) {
7861                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7862                 return -ENODEV;
7863         }
7864         pci_disable_device(pdev);
7865         msleep(260);                    /* a randomly chosen number */
7866         rc = pci_enable_device(pdev);
7867         if (rc) {
7868                 dev_warn(&pdev->dev, "failed to enable device.\n");
7869                 return -ENODEV;
7870         }
7871
7872         pci_set_master(pdev);
7873
7874         vaddr = pci_ioremap_bar(pdev, 0);
7875         if (vaddr == NULL) {
7876                 rc = -ENOMEM;
7877                 goto out_disable;
7878         }
7879         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7880         iounmap(vaddr);
7881
7882         /* Reset the controller with a PCI power-cycle or via doorbell */
7883         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7884
7885         /* -ENOTSUPP here means we cannot reset the controller
7886          * but it's already (and still) up and running in
7887          * "performant mode".  Or, it might be 640x, which can't reset
7888          * due to concerns about shared bbwc between 6402/6404 pair.
7889          */
7890         if (rc)
7891                 goto out_disable;
7892
7893         /* Now try to get the controller to respond to a no-op */
7894         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7895         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7896                 if (hpsa_noop(pdev) == 0)
7897                         break;
7898                 else
7899                         dev_warn(&pdev->dev, "no-op failed%s\n",
7900                                         (i < 11 ? "; re-trying" : ""));
7901         }
7902
7903 out_disable:
7904
7905         pci_disable_device(pdev);
7906         return rc;
7907 }
7908
7909 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7910 {
7911         kfree(h->cmd_pool_bits);
7912         h->cmd_pool_bits = NULL;
7913         if (h->cmd_pool) {
7914                 dma_free_coherent(&h->pdev->dev,
7915                                 h->nr_cmds * sizeof(struct CommandList),
7916                                 h->cmd_pool,
7917                                 h->cmd_pool_dhandle);
7918                 h->cmd_pool = NULL;
7919                 h->cmd_pool_dhandle = 0;
7920         }
7921         if (h->errinfo_pool) {
7922                 dma_free_coherent(&h->pdev->dev,
7923                                 h->nr_cmds * sizeof(struct ErrorInfo),
7924                                 h->errinfo_pool,
7925                                 h->errinfo_pool_dhandle);
7926                 h->errinfo_pool = NULL;
7927                 h->errinfo_pool_dhandle = 0;
7928         }
7929 }
7930
7931 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7932 {
7933         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7934                                    sizeof(unsigned long),
7935                                    GFP_KERNEL);
7936         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7937                     h->nr_cmds * sizeof(*h->cmd_pool),
7938                     &h->cmd_pool_dhandle, GFP_KERNEL);
7939         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7940                     h->nr_cmds * sizeof(*h->errinfo_pool),
7941                     &h->errinfo_pool_dhandle, GFP_KERNEL);
7942         if ((h->cmd_pool_bits == NULL)
7943             || (h->cmd_pool == NULL)
7944             || (h->errinfo_pool == NULL)) {
7945                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7946                 goto clean_up;
7947         }
7948         hpsa_preinitialize_commands(h);
7949         return 0;
7950 clean_up:
7951         hpsa_free_cmd_pool(h);
7952         return -ENOMEM;
7953 }
7954
7955 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7956 static void hpsa_free_irqs(struct ctlr_info *h)
7957 {
7958         int i;
7959
7960         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7961                 /* Single reply queue, only one irq to free */
7962                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7963                 h->q[h->intr_mode] = 0;
7964                 return;
7965         }
7966
7967         for (i = 0; i < h->msix_vectors; i++) {
7968                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7969                 h->q[i] = 0;
7970         }
7971         for (; i < MAX_REPLY_QUEUES; i++)
7972                 h->q[i] = 0;
7973 }
7974
7975 /* returns 0 on success; cleans up and returns -Enn on error */
7976 static int hpsa_request_irqs(struct ctlr_info *h,
7977         irqreturn_t (*msixhandler)(int, void *),
7978         irqreturn_t (*intxhandler)(int, void *))
7979 {
7980         int rc, i;
7981
7982         /*
7983          * initialize h->q[x] = x so that interrupt handlers know which
7984          * queue to process.
7985          */
7986         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7987                 h->q[i] = (u8) i;
7988
7989         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7990                 /* If performant mode and MSI-X, use multiple reply queues */
7991                 for (i = 0; i < h->msix_vectors; i++) {
7992                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7993                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7994                                         0, h->intrname[i],
7995                                         &h->q[i]);
7996                         if (rc) {
7997                                 int j;
7998
7999                                 dev_err(&h->pdev->dev,
8000                                         "failed to get irq %d for %s\n",
8001                                        pci_irq_vector(h->pdev, i), h->devname);
8002                                 for (j = 0; j < i; j++) {
8003                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8004                                         h->q[j] = 0;
8005                                 }
8006                                 for (; j < MAX_REPLY_QUEUES; j++)
8007                                         h->q[j] = 0;
8008                                 return rc;
8009                         }
8010                 }
8011         } else {
8012                 /* Use single reply pool */
8013                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8014                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8015                                 h->msix_vectors ? "x" : "");
8016                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8017                                 msixhandler, 0,
8018                                 h->intrname[0],
8019                                 &h->q[h->intr_mode]);
8020                 } else {
8021                         sprintf(h->intrname[h->intr_mode],
8022                                 "%s-intx", h->devname);
8023                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8024                                 intxhandler, IRQF_SHARED,
8025                                 h->intrname[0],
8026                                 &h->q[h->intr_mode]);
8027                 }
8028         }
8029         if (rc) {
8030                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8031                        pci_irq_vector(h->pdev, 0), h->devname);
8032                 hpsa_free_irqs(h);
8033                 return -ENODEV;
8034         }
8035         return 0;
8036 }
8037
8038 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8039 {
8040         int rc;
8041         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8042
8043         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8044         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8045         if (rc) {
8046                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8047                 return rc;
8048         }
8049
8050         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8051         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8052         if (rc) {
8053                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8054                         "after soft reset.\n");
8055                 return rc;
8056         }
8057
8058         return 0;
8059 }
8060
8061 static void hpsa_free_reply_queues(struct ctlr_info *h)
8062 {
8063         int i;
8064
8065         for (i = 0; i < h->nreply_queues; i++) {
8066                 if (!h->reply_queue[i].head)
8067                         continue;
8068                 dma_free_coherent(&h->pdev->dev,
8069                                         h->reply_queue_size,
8070                                         h->reply_queue[i].head,
8071                                         h->reply_queue[i].busaddr);
8072                 h->reply_queue[i].head = NULL;
8073                 h->reply_queue[i].busaddr = 0;
8074         }
8075         h->reply_queue_size = 0;
8076 }
8077
8078 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8079 {
8080         hpsa_free_performant_mode(h);           /* init_one 7 */
8081         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8082         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8083         hpsa_free_irqs(h);                      /* init_one 4 */
8084         scsi_host_put(h->scsi_host);            /* init_one 3 */
8085         h->scsi_host = NULL;                    /* init_one 3 */
8086         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8087         free_percpu(h->lockup_detected);        /* init_one 2 */
8088         h->lockup_detected = NULL;              /* init_one 2 */
8089         if (h->resubmit_wq) {
8090                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8091                 h->resubmit_wq = NULL;
8092         }
8093         if (h->rescan_ctlr_wq) {
8094                 destroy_workqueue(h->rescan_ctlr_wq);
8095                 h->rescan_ctlr_wq = NULL;
8096         }
8097         kfree(h);                               /* init_one 1 */
8098 }
8099
8100 /* Called when controller lockup detected. */
8101 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8102 {
8103         int i, refcount;
8104         struct CommandList *c;
8105         int failcount = 0;
8106
8107         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8108         for (i = 0; i < h->nr_cmds; i++) {
8109                 c = h->cmd_pool + i;
8110                 refcount = atomic_inc_return(&c->refcount);
8111                 if (refcount > 1) {
8112                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8113                         finish_cmd(c);
8114                         atomic_dec(&h->commands_outstanding);
8115                         failcount++;
8116                 }
8117                 cmd_free(h, c);
8118         }
8119         dev_warn(&h->pdev->dev,
8120                 "failed %d commands in fail_all\n", failcount);
8121 }
8122
8123 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8124 {
8125         int cpu;
8126
8127         for_each_online_cpu(cpu) {
8128                 u32 *lockup_detected;
8129                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8130                 *lockup_detected = value;
8131         }
8132         wmb(); /* be sure the per-cpu variables are out to memory */
8133 }
8134
8135 static void controller_lockup_detected(struct ctlr_info *h)
8136 {
8137         unsigned long flags;
8138         u32 lockup_detected;
8139
8140         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8141         spin_lock_irqsave(&h->lock, flags);
8142         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8143         if (!lockup_detected) {
8144                 /* no heartbeat, but controller gave us a zero. */
8145                 dev_warn(&h->pdev->dev,
8146                         "lockup detected after %d but scratchpad register is zero\n",
8147                         h->heartbeat_sample_interval / HZ);
8148                 lockup_detected = 0xffffffff;
8149         }
8150         set_lockup_detected_for_all_cpus(h, lockup_detected);
8151         spin_unlock_irqrestore(&h->lock, flags);
8152         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8153                         lockup_detected, h->heartbeat_sample_interval / HZ);
8154         if (lockup_detected == 0xffff0000) {
8155                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8156                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8157         }
8158         pci_disable_device(h->pdev);
8159         fail_all_outstanding_cmds(h);
8160 }
8161
8162 static int detect_controller_lockup(struct ctlr_info *h)
8163 {
8164         u64 now;
8165         u32 heartbeat;
8166         unsigned long flags;
8167
8168         now = get_jiffies_64();
8169         /* If we've received an interrupt recently, we're ok. */
8170         if (time_after64(h->last_intr_timestamp +
8171                                 (h->heartbeat_sample_interval), now))
8172                 return false;
8173
8174         /*
8175          * If we've already checked the heartbeat recently, we're ok.
8176          * This could happen if someone sends us a signal. We
8177          * otherwise don't care about signals in this thread.
8178          */
8179         if (time_after64(h->last_heartbeat_timestamp +
8180                                 (h->heartbeat_sample_interval), now))
8181                 return false;
8182
8183         /* If heartbeat has not changed since we last looked, we're not ok. */
8184         spin_lock_irqsave(&h->lock, flags);
8185         heartbeat = readl(&h->cfgtable->HeartBeat);
8186         spin_unlock_irqrestore(&h->lock, flags);
8187         if (h->last_heartbeat == heartbeat) {
8188                 controller_lockup_detected(h);
8189                 return true;
8190         }
8191
8192         /* We're ok. */
8193         h->last_heartbeat = heartbeat;
8194         h->last_heartbeat_timestamp = now;
8195         return false;
8196 }
8197
8198 /*
8199  * Set ioaccel status for all ioaccel volumes.
8200  *
8201  * Called from monitor controller worker (hpsa_event_monitor_worker)
8202  *
8203  * A Volume (or Volumes that comprise an Array set may be undergoing a
8204  * transformation, so we will be turning off ioaccel for all volumes that
8205  * make up the Array.
8206  */
8207 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8208 {
8209         int rc;
8210         int i;
8211         u8 ioaccel_status;
8212         unsigned char *buf;
8213         struct hpsa_scsi_dev_t *device;
8214
8215         if (!h)
8216                 return;
8217
8218         buf = kmalloc(64, GFP_KERNEL);
8219         if (!buf)
8220                 return;
8221
8222         /*
8223          * Run through current device list used during I/O requests.
8224          */
8225         for (i = 0; i < h->ndevices; i++) {
8226                 device = h->dev[i];
8227
8228                 if (!device)
8229                         continue;
8230                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8231                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8232                         continue;
8233
8234                 memset(buf, 0, 64);
8235
8236                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8237                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8238                                         buf, 64);
8239                 if (rc != 0)
8240                         continue;
8241
8242                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8243                 device->offload_config =
8244                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8245                 if (device->offload_config)
8246                         device->offload_to_be_enabled =
8247                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8248
8249                 /*
8250                  * Immediately turn off ioaccel for any volume the
8251                  * controller tells us to. Some of the reasons could be:
8252                  *    transformation - change to the LVs of an Array.
8253                  *    degraded volume - component failure
8254                  *
8255                  * If ioaccel is to be re-enabled, re-enable later during the
8256                  * scan operation so the driver can get a fresh raidmap
8257                  * before turning ioaccel back on.
8258                  *
8259                  */
8260                 if (!device->offload_to_be_enabled)
8261                         device->offload_enabled = 0;
8262         }
8263
8264         kfree(buf);
8265 }
8266
8267 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8268 {
8269         char *event_type;
8270
8271         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8272                 return;
8273
8274         /* Ask the controller to clear the events we're handling. */
8275         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8276                         | CFGTBL_Trans_io_accel2)) &&
8277                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8278                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8279
8280                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8281                         event_type = "state change";
8282                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8283                         event_type = "configuration change";
8284                 /* Stop sending new RAID offload reqs via the IO accelerator */
8285                 scsi_block_requests(h->scsi_host);
8286                 hpsa_set_ioaccel_status(h);
8287                 hpsa_drain_accel_commands(h);
8288                 /* Set 'accelerator path config change' bit */
8289                 dev_warn(&h->pdev->dev,
8290                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8291                         h->events, event_type);
8292                 writel(h->events, &(h->cfgtable->clear_event_notify));
8293                 /* Set the "clear event notify field update" bit 6 */
8294                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8295                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8296                 hpsa_wait_for_clear_event_notify_ack(h);
8297                 scsi_unblock_requests(h->scsi_host);
8298         } else {
8299                 /* Acknowledge controller notification events. */
8300                 writel(h->events, &(h->cfgtable->clear_event_notify));
8301                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8302                 hpsa_wait_for_clear_event_notify_ack(h);
8303         }
8304         return;
8305 }
8306
8307 /* Check a register on the controller to see if there are configuration
8308  * changes (added/changed/removed logical drives, etc.) which mean that
8309  * we should rescan the controller for devices.
8310  * Also check flag for driver-initiated rescan.
8311  */
8312 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8313 {
8314         if (h->drv_req_rescan) {
8315                 h->drv_req_rescan = 0;
8316                 return 1;
8317         }
8318
8319         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8320                 return 0;
8321
8322         h->events = readl(&(h->cfgtable->event_notify));
8323         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8324 }
8325
8326 /*
8327  * Check if any of the offline devices have become ready
8328  */
8329 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8330 {
8331         unsigned long flags;
8332         struct offline_device_entry *d;
8333         struct list_head *this, *tmp;
8334
8335         spin_lock_irqsave(&h->offline_device_lock, flags);
8336         list_for_each_safe(this, tmp, &h->offline_device_list) {
8337                 d = list_entry(this, struct offline_device_entry,
8338                                 offline_list);
8339                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8340                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8341                         spin_lock_irqsave(&h->offline_device_lock, flags);
8342                         list_del(&d->offline_list);
8343                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8344                         return 1;
8345                 }
8346                 spin_lock_irqsave(&h->offline_device_lock, flags);
8347         }
8348         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8349         return 0;
8350 }
8351
8352 static int hpsa_luns_changed(struct ctlr_info *h)
8353 {
8354         int rc = 1; /* assume there are changes */
8355         struct ReportLUNdata *logdev = NULL;
8356
8357         /* if we can't find out if lun data has changed,
8358          * assume that it has.
8359          */
8360
8361         if (!h->lastlogicals)
8362                 return rc;
8363
8364         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8365         if (!logdev)
8366                 return rc;
8367
8368         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8369                 dev_warn(&h->pdev->dev,
8370                         "report luns failed, can't track lun changes.\n");
8371                 goto out;
8372         }
8373         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8374                 dev_info(&h->pdev->dev,
8375                         "Lun changes detected.\n");
8376                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8377                 goto out;
8378         } else
8379                 rc = 0; /* no changes detected. */
8380 out:
8381         kfree(logdev);
8382         return rc;
8383 }
8384
8385 static void hpsa_perform_rescan(struct ctlr_info *h)
8386 {
8387         struct Scsi_Host *sh = NULL;
8388         unsigned long flags;
8389
8390         /*
8391          * Do the scan after the reset
8392          */
8393         spin_lock_irqsave(&h->reset_lock, flags);
8394         if (h->reset_in_progress) {
8395                 h->drv_req_rescan = 1;
8396                 spin_unlock_irqrestore(&h->reset_lock, flags);
8397                 return;
8398         }
8399         spin_unlock_irqrestore(&h->reset_lock, flags);
8400
8401         sh = scsi_host_get(h->scsi_host);
8402         if (sh != NULL) {
8403                 hpsa_scan_start(sh);
8404                 scsi_host_put(sh);
8405                 h->drv_req_rescan = 0;
8406         }
8407 }
8408
8409 /*
8410  * watch for controller events
8411  */
8412 static void hpsa_event_monitor_worker(struct work_struct *work)
8413 {
8414         struct ctlr_info *h = container_of(to_delayed_work(work),
8415                                         struct ctlr_info, event_monitor_work);
8416         unsigned long flags;
8417
8418         spin_lock_irqsave(&h->lock, flags);
8419         if (h->remove_in_progress) {
8420                 spin_unlock_irqrestore(&h->lock, flags);
8421                 return;
8422         }
8423         spin_unlock_irqrestore(&h->lock, flags);
8424
8425         if (hpsa_ctlr_needs_rescan(h)) {
8426                 hpsa_ack_ctlr_events(h);
8427                 hpsa_perform_rescan(h);
8428         }
8429
8430         spin_lock_irqsave(&h->lock, flags);
8431         if (!h->remove_in_progress)
8432                 schedule_delayed_work(&h->event_monitor_work,
8433                                         HPSA_EVENT_MONITOR_INTERVAL);
8434         spin_unlock_irqrestore(&h->lock, flags);
8435 }
8436
8437 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8438 {
8439         unsigned long flags;
8440         struct ctlr_info *h = container_of(to_delayed_work(work),
8441                                         struct ctlr_info, rescan_ctlr_work);
8442
8443         spin_lock_irqsave(&h->lock, flags);
8444         if (h->remove_in_progress) {
8445                 spin_unlock_irqrestore(&h->lock, flags);
8446                 return;
8447         }
8448         spin_unlock_irqrestore(&h->lock, flags);
8449
8450         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8451                 hpsa_perform_rescan(h);
8452         } else if (h->discovery_polling) {
8453                 if (hpsa_luns_changed(h)) {
8454                         dev_info(&h->pdev->dev,
8455                                 "driver discovery polling rescan.\n");
8456                         hpsa_perform_rescan(h);
8457                 }
8458         }
8459         spin_lock_irqsave(&h->lock, flags);
8460         if (!h->remove_in_progress)
8461                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8462                                 h->heartbeat_sample_interval);
8463         spin_unlock_irqrestore(&h->lock, flags);
8464 }
8465
8466 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8467 {
8468         unsigned long flags;
8469         struct ctlr_info *h = container_of(to_delayed_work(work),
8470                                         struct ctlr_info, monitor_ctlr_work);
8471
8472         detect_controller_lockup(h);
8473         if (lockup_detected(h))
8474                 return;
8475
8476         spin_lock_irqsave(&h->lock, flags);
8477         if (!h->remove_in_progress)
8478                 schedule_delayed_work(&h->monitor_ctlr_work,
8479                                 h->heartbeat_sample_interval);
8480         spin_unlock_irqrestore(&h->lock, flags);
8481 }
8482
8483 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8484                                                 char *name)
8485 {
8486         struct workqueue_struct *wq = NULL;
8487
8488         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8489         if (!wq)
8490                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8491
8492         return wq;
8493 }
8494
8495 static void hpda_free_ctlr_info(struct ctlr_info *h)
8496 {
8497         kfree(h->reply_map);
8498         kfree(h);
8499 }
8500
8501 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8502 {
8503         struct ctlr_info *h;
8504
8505         h = kzalloc(sizeof(*h), GFP_KERNEL);
8506         if (!h)
8507                 return NULL;
8508
8509         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8510         if (!h->reply_map) {
8511                 kfree(h);
8512                 return NULL;
8513         }
8514         return h;
8515 }
8516
8517 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8518 {
8519         int dac, rc;
8520         struct ctlr_info *h;
8521         int try_soft_reset = 0;
8522         unsigned long flags;
8523         u32 board_id;
8524
8525         if (number_of_controllers == 0)
8526                 printk(KERN_INFO DRIVER_NAME "\n");
8527
8528         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8529         if (rc < 0) {
8530                 dev_warn(&pdev->dev, "Board ID not found\n");
8531                 return rc;
8532         }
8533
8534         rc = hpsa_init_reset_devices(pdev, board_id);
8535         if (rc) {
8536                 if (rc != -ENOTSUPP)
8537                         return rc;
8538                 /* If the reset fails in a particular way (it has no way to do
8539                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8540                  * a soft reset once we get the controller configured up to the
8541                  * point that it can accept a command.
8542                  */
8543                 try_soft_reset = 1;
8544                 rc = 0;
8545         }
8546
8547 reinit_after_soft_reset:
8548
8549         /* Command structures must be aligned on a 32-byte boundary because
8550          * the 5 lower bits of the address are used by the hardware. and by
8551          * the driver.  See comments in hpsa.h for more info.
8552          */
8553         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8554         h = hpda_alloc_ctlr_info();
8555         if (!h) {
8556                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8557                 return -ENOMEM;
8558         }
8559
8560         h->pdev = pdev;
8561
8562         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8563         INIT_LIST_HEAD(&h->offline_device_list);
8564         spin_lock_init(&h->lock);
8565         spin_lock_init(&h->offline_device_lock);
8566         spin_lock_init(&h->scan_lock);
8567         spin_lock_init(&h->reset_lock);
8568         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8569
8570         /* Allocate and clear per-cpu variable lockup_detected */
8571         h->lockup_detected = alloc_percpu(u32);
8572         if (!h->lockup_detected) {
8573                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8574                 rc = -ENOMEM;
8575                 goto clean1;    /* aer/h */
8576         }
8577         set_lockup_detected_for_all_cpus(h, 0);
8578
8579         rc = hpsa_pci_init(h);
8580         if (rc)
8581                 goto clean2;    /* lu, aer/h */
8582
8583         /* relies on h-> settings made by hpsa_pci_init, including
8584          * interrupt_mode h->intr */
8585         rc = hpsa_scsi_host_alloc(h);
8586         if (rc)
8587                 goto clean2_5;  /* pci, lu, aer/h */
8588
8589         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8590         h->ctlr = number_of_controllers;
8591         number_of_controllers++;
8592
8593         /* configure PCI DMA stuff */
8594         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8595         if (rc == 0) {
8596                 dac = 1;
8597         } else {
8598                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8599                 if (rc == 0) {
8600                         dac = 0;
8601                 } else {
8602                         dev_err(&pdev->dev, "no suitable DMA available\n");
8603                         goto clean3;    /* shost, pci, lu, aer/h */
8604                 }
8605         }
8606
8607         /* make sure the board interrupts are off */
8608         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8609
8610         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8611         if (rc)
8612                 goto clean3;    /* shost, pci, lu, aer/h */
8613         rc = hpsa_alloc_cmd_pool(h);
8614         if (rc)
8615                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8616         rc = hpsa_alloc_sg_chain_blocks(h);
8617         if (rc)
8618                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8619         init_waitqueue_head(&h->scan_wait_queue);
8620         init_waitqueue_head(&h->event_sync_wait_queue);
8621         mutex_init(&h->reset_mutex);
8622         h->scan_finished = 1; /* no scan currently in progress */
8623         h->scan_waiting = 0;
8624
8625         pci_set_drvdata(pdev, h);
8626         h->ndevices = 0;
8627
8628         spin_lock_init(&h->devlock);
8629         rc = hpsa_put_ctlr_into_performant_mode(h);
8630         if (rc)
8631                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8632
8633         /* create the resubmit workqueue */
8634         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8635         if (!h->rescan_ctlr_wq) {
8636                 rc = -ENOMEM;
8637                 goto clean7;
8638         }
8639
8640         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8641         if (!h->resubmit_wq) {
8642                 rc = -ENOMEM;
8643                 goto clean7;    /* aer/h */
8644         }
8645
8646         /*
8647          * At this point, the controller is ready to take commands.
8648          * Now, if reset_devices and the hard reset didn't work, try
8649          * the soft reset and see if that works.
8650          */
8651         if (try_soft_reset) {
8652
8653                 /* This is kind of gross.  We may or may not get a completion
8654                  * from the soft reset command, and if we do, then the value
8655                  * from the fifo may or may not be valid.  So, we wait 10 secs
8656                  * after the reset throwing away any completions we get during
8657                  * that time.  Unregister the interrupt handler and register
8658                  * fake ones to scoop up any residual completions.
8659                  */
8660                 spin_lock_irqsave(&h->lock, flags);
8661                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8662                 spin_unlock_irqrestore(&h->lock, flags);
8663                 hpsa_free_irqs(h);
8664                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8665                                         hpsa_intx_discard_completions);
8666                 if (rc) {
8667                         dev_warn(&h->pdev->dev,
8668                                 "Failed to request_irq after soft reset.\n");
8669                         /*
8670                          * cannot goto clean7 or free_irqs will be called
8671                          * again. Instead, do its work
8672                          */
8673                         hpsa_free_performant_mode(h);   /* clean7 */
8674                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8675                         hpsa_free_cmd_pool(h);          /* clean5 */
8676                         /*
8677                          * skip hpsa_free_irqs(h) clean4 since that
8678                          * was just called before request_irqs failed
8679                          */
8680                         goto clean3;
8681                 }
8682
8683                 rc = hpsa_kdump_soft_reset(h);
8684                 if (rc)
8685                         /* Neither hard nor soft reset worked, we're hosed. */
8686                         goto clean7;
8687
8688                 dev_info(&h->pdev->dev, "Board READY.\n");
8689                 dev_info(&h->pdev->dev,
8690                         "Waiting for stale completions to drain.\n");
8691                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8692                 msleep(10000);
8693                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8694
8695                 rc = controller_reset_failed(h->cfgtable);
8696                 if (rc)
8697                         dev_info(&h->pdev->dev,
8698                                 "Soft reset appears to have failed.\n");
8699
8700                 /* since the controller's reset, we have to go back and re-init
8701                  * everything.  Easiest to just forget what we've done and do it
8702                  * all over again.
8703                  */
8704                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8705                 try_soft_reset = 0;
8706                 if (rc)
8707                         /* don't goto clean, we already unallocated */
8708                         return -ENODEV;
8709
8710                 goto reinit_after_soft_reset;
8711         }
8712
8713         /* Enable Accelerated IO path at driver layer */
8714         h->acciopath_status = 1;
8715         /* Disable discovery polling.*/
8716         h->discovery_polling = 0;
8717
8718
8719         /* Turn the interrupts on so we can service requests */
8720         h->access.set_intr_mask(h, HPSA_INTR_ON);
8721
8722         hpsa_hba_inquiry(h);
8723
8724         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8725         if (!h->lastlogicals)
8726                 dev_info(&h->pdev->dev,
8727                         "Can't track change to report lun data\n");
8728
8729         /* hook into SCSI subsystem */
8730         rc = hpsa_scsi_add_host(h);
8731         if (rc)
8732                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8733
8734         /* Monitor the controller for firmware lockups */
8735         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8736         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8737         schedule_delayed_work(&h->monitor_ctlr_work,
8738                                 h->heartbeat_sample_interval);
8739         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8740         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8741                                 h->heartbeat_sample_interval);
8742         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8743         schedule_delayed_work(&h->event_monitor_work,
8744                                 HPSA_EVENT_MONITOR_INTERVAL);
8745         return 0;
8746
8747 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8748         hpsa_free_performant_mode(h);
8749         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8751         hpsa_free_sg_chain_blocks(h);
8752 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8753         hpsa_free_cmd_pool(h);
8754 clean4: /* irq, shost, pci, lu, aer/h */
8755         hpsa_free_irqs(h);
8756 clean3: /* shost, pci, lu, aer/h */
8757         scsi_host_put(h->scsi_host);
8758         h->scsi_host = NULL;
8759 clean2_5: /* pci, lu, aer/h */
8760         hpsa_free_pci_init(h);
8761 clean2: /* lu, aer/h */
8762         if (h->lockup_detected) {
8763                 free_percpu(h->lockup_detected);
8764                 h->lockup_detected = NULL;
8765         }
8766 clean1: /* wq/aer/h */
8767         if (h->resubmit_wq) {
8768                 destroy_workqueue(h->resubmit_wq);
8769                 h->resubmit_wq = NULL;
8770         }
8771         if (h->rescan_ctlr_wq) {
8772                 destroy_workqueue(h->rescan_ctlr_wq);
8773                 h->rescan_ctlr_wq = NULL;
8774         }
8775         kfree(h);
8776         return rc;
8777 }
8778
8779 static void hpsa_flush_cache(struct ctlr_info *h)
8780 {
8781         char *flush_buf;
8782         struct CommandList *c;
8783         int rc;
8784
8785         if (unlikely(lockup_detected(h)))
8786                 return;
8787         flush_buf = kzalloc(4, GFP_KERNEL);
8788         if (!flush_buf)
8789                 return;
8790
8791         c = cmd_alloc(h);
8792
8793         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8794                 RAID_CTLR_LUNID, TYPE_CMD)) {
8795                 goto out;
8796         }
8797         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8798                         DEFAULT_TIMEOUT);
8799         if (rc)
8800                 goto out;
8801         if (c->err_info->CommandStatus != 0)
8802 out:
8803                 dev_warn(&h->pdev->dev,
8804                         "error flushing cache on controller\n");
8805         cmd_free(h, c);
8806         kfree(flush_buf);
8807 }
8808
8809 /* Make controller gather fresh report lun data each time we
8810  * send down a report luns request
8811  */
8812 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8813 {
8814         u32 *options;
8815         struct CommandList *c;
8816         int rc;
8817
8818         /* Don't bother trying to set diag options if locked up */
8819         if (unlikely(h->lockup_detected))
8820                 return;
8821
8822         options = kzalloc(sizeof(*options), GFP_KERNEL);
8823         if (!options)
8824                 return;
8825
8826         c = cmd_alloc(h);
8827
8828         /* first, get the current diag options settings */
8829         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8830                 RAID_CTLR_LUNID, TYPE_CMD))
8831                 goto errout;
8832
8833         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8834                         NO_TIMEOUT);
8835         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8836                 goto errout;
8837
8838         /* Now, set the bit for disabling the RLD caching */
8839         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8840
8841         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8842                 RAID_CTLR_LUNID, TYPE_CMD))
8843                 goto errout;
8844
8845         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8846                         NO_TIMEOUT);
8847         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8848                 goto errout;
8849
8850         /* Now verify that it got set: */
8851         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8852                 RAID_CTLR_LUNID, TYPE_CMD))
8853                 goto errout;
8854
8855         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8856                         NO_TIMEOUT);
8857         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8858                 goto errout;
8859
8860         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8861                 goto out;
8862
8863 errout:
8864         dev_err(&h->pdev->dev,
8865                         "Error: failed to disable report lun data caching.\n");
8866 out:
8867         cmd_free(h, c);
8868         kfree(options);
8869 }
8870
8871 static void __hpsa_shutdown(struct pci_dev *pdev)
8872 {
8873         struct ctlr_info *h;
8874
8875         h = pci_get_drvdata(pdev);
8876         /* Turn board interrupts off  and send the flush cache command
8877          * sendcmd will turn off interrupt, and send the flush...
8878          * To write all data in the battery backed cache to disks
8879          */
8880         hpsa_flush_cache(h);
8881         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8882         hpsa_free_irqs(h);                      /* init_one 4 */
8883         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8884 }
8885
8886 static void hpsa_shutdown(struct pci_dev *pdev)
8887 {
8888         __hpsa_shutdown(pdev);
8889         pci_disable_device(pdev);
8890 }
8891
8892 static void hpsa_free_device_info(struct ctlr_info *h)
8893 {
8894         int i;
8895
8896         for (i = 0; i < h->ndevices; i++) {
8897                 kfree(h->dev[i]);
8898                 h->dev[i] = NULL;
8899         }
8900 }
8901
8902 static void hpsa_remove_one(struct pci_dev *pdev)
8903 {
8904         struct ctlr_info *h;
8905         unsigned long flags;
8906
8907         if (pci_get_drvdata(pdev) == NULL) {
8908                 dev_err(&pdev->dev, "unable to remove device\n");
8909                 return;
8910         }
8911         h = pci_get_drvdata(pdev);
8912
8913         /* Get rid of any controller monitoring work items */
8914         spin_lock_irqsave(&h->lock, flags);
8915         h->remove_in_progress = 1;
8916         spin_unlock_irqrestore(&h->lock, flags);
8917         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8918         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8919         cancel_delayed_work_sync(&h->event_monitor_work);
8920         destroy_workqueue(h->rescan_ctlr_wq);
8921         destroy_workqueue(h->resubmit_wq);
8922
8923         hpsa_delete_sas_host(h);
8924
8925         /*
8926          * Call before disabling interrupts.
8927          * scsi_remove_host can trigger I/O operations especially
8928          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8929          * operations which cannot complete and will hang the system.
8930          */
8931         if (h->scsi_host)
8932                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8933         /* includes hpsa_free_irqs - init_one 4 */
8934         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8935         __hpsa_shutdown(pdev);
8936
8937         hpsa_free_device_info(h);               /* scan */
8938
8939         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8940         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8941         hpsa_free_ioaccel2_sg_chain_blocks(h);
8942         hpsa_free_performant_mode(h);                   /* init_one 7 */
8943         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8944         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8945         kfree(h->lastlogicals);
8946
8947         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8948
8949         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8950         h->scsi_host = NULL;                            /* init_one 3 */
8951
8952         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8953         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8954
8955         free_percpu(h->lockup_detected);                /* init_one 2 */
8956         h->lockup_detected = NULL;                      /* init_one 2 */
8957         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8958
8959         hpda_free_ctlr_info(h);                         /* init_one 1 */
8960 }
8961
8962 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8963         __attribute__((unused)) pm_message_t state)
8964 {
8965         return -ENOSYS;
8966 }
8967
8968 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8969 {
8970         return -ENOSYS;
8971 }
8972
8973 static struct pci_driver hpsa_pci_driver = {
8974         .name = HPSA,
8975         .probe = hpsa_init_one,
8976         .remove = hpsa_remove_one,
8977         .id_table = hpsa_pci_device_id, /* id_table */
8978         .shutdown = hpsa_shutdown,
8979         .suspend = hpsa_suspend,
8980         .resume = hpsa_resume,
8981 };
8982
8983 /* Fill in bucket_map[], given nsgs (the max number of
8984  * scatter gather elements supported) and bucket[],
8985  * which is an array of 8 integers.  The bucket[] array
8986  * contains 8 different DMA transfer sizes (in 16
8987  * byte increments) which the controller uses to fetch
8988  * commands.  This function fills in bucket_map[], which
8989  * maps a given number of scatter gather elements to one of
8990  * the 8 DMA transfer sizes.  The point of it is to allow the
8991  * controller to only do as much DMA as needed to fetch the
8992  * command, with the DMA transfer size encoded in the lower
8993  * bits of the command address.
8994  */
8995 static void  calc_bucket_map(int bucket[], int num_buckets,
8996         int nsgs, int min_blocks, u32 *bucket_map)
8997 {
8998         int i, j, b, size;
8999
9000         /* Note, bucket_map must have nsgs+1 entries. */
9001         for (i = 0; i <= nsgs; i++) {
9002                 /* Compute size of a command with i SG entries */
9003                 size = i + min_blocks;
9004                 b = num_buckets; /* Assume the biggest bucket */
9005                 /* Find the bucket that is just big enough */
9006                 for (j = 0; j < num_buckets; j++) {
9007                         if (bucket[j] >= size) {
9008                                 b = j;
9009                                 break;
9010                         }
9011                 }
9012                 /* for a command with i SG entries, use bucket b. */
9013                 bucket_map[i] = b;
9014         }
9015 }
9016
9017 /*
9018  * return -ENODEV on err, 0 on success (or no action)
9019  * allocates numerous items that must be freed later
9020  */
9021 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9022 {
9023         int i;
9024         unsigned long register_value;
9025         unsigned long transMethod = CFGTBL_Trans_Performant |
9026                         (trans_support & CFGTBL_Trans_use_short_tags) |
9027                                 CFGTBL_Trans_enable_directed_msix |
9028                         (trans_support & (CFGTBL_Trans_io_accel1 |
9029                                 CFGTBL_Trans_io_accel2));
9030         struct access_method access = SA5_performant_access;
9031
9032         /* This is a bit complicated.  There are 8 registers on
9033          * the controller which we write to to tell it 8 different
9034          * sizes of commands which there may be.  It's a way of
9035          * reducing the DMA done to fetch each command.  Encoded into
9036          * each command's tag are 3 bits which communicate to the controller
9037          * which of the eight sizes that command fits within.  The size of
9038          * each command depends on how many scatter gather entries there are.
9039          * Each SG entry requires 16 bytes.  The eight registers are programmed
9040          * with the number of 16-byte blocks a command of that size requires.
9041          * The smallest command possible requires 5 such 16 byte blocks.
9042          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9043          * blocks.  Note, this only extends to the SG entries contained
9044          * within the command block, and does not extend to chained blocks
9045          * of SG elements.   bft[] contains the eight values we write to
9046          * the registers.  They are not evenly distributed, but have more
9047          * sizes for small commands, and fewer sizes for larger commands.
9048          */
9049         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9050 #define MIN_IOACCEL2_BFT_ENTRY 5
9051 #define HPSA_IOACCEL2_HEADER_SZ 4
9052         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9053                         13, 14, 15, 16, 17, 18, 19,
9054                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9055         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9056         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9057         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9058                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9059         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9060         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9061         /*  5 = 1 s/g entry or 4k
9062          *  6 = 2 s/g entry or 8k
9063          *  8 = 4 s/g entry or 16k
9064          * 10 = 6 s/g entry or 24k
9065          */
9066
9067         /* If the controller supports either ioaccel method then
9068          * we can also use the RAID stack submit path that does not
9069          * perform the superfluous readl() after each command submission.
9070          */
9071         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9072                 access = SA5_performant_access_no_read;
9073
9074         /* Controller spec: zero out this buffer. */
9075         for (i = 0; i < h->nreply_queues; i++)
9076                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9077
9078         bft[7] = SG_ENTRIES_IN_CMD + 4;
9079         calc_bucket_map(bft, ARRAY_SIZE(bft),
9080                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9081         for (i = 0; i < 8; i++)
9082                 writel(bft[i], &h->transtable->BlockFetch[i]);
9083
9084         /* size of controller ring buffer */
9085         writel(h->max_commands, &h->transtable->RepQSize);
9086         writel(h->nreply_queues, &h->transtable->RepQCount);
9087         writel(0, &h->transtable->RepQCtrAddrLow32);
9088         writel(0, &h->transtable->RepQCtrAddrHigh32);
9089
9090         for (i = 0; i < h->nreply_queues; i++) {
9091                 writel(0, &h->transtable->RepQAddr[i].upper);
9092                 writel(h->reply_queue[i].busaddr,
9093                         &h->transtable->RepQAddr[i].lower);
9094         }
9095
9096         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9097         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9098         /*
9099          * enable outbound interrupt coalescing in accelerator mode;
9100          */
9101         if (trans_support & CFGTBL_Trans_io_accel1) {
9102                 access = SA5_ioaccel_mode1_access;
9103                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9104                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9105         } else
9106                 if (trans_support & CFGTBL_Trans_io_accel2)
9107                         access = SA5_ioaccel_mode2_access;
9108         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9109         if (hpsa_wait_for_mode_change_ack(h)) {
9110                 dev_err(&h->pdev->dev,
9111                         "performant mode problem - doorbell timeout\n");
9112                 return -ENODEV;
9113         }
9114         register_value = readl(&(h->cfgtable->TransportActive));
9115         if (!(register_value & CFGTBL_Trans_Performant)) {
9116                 dev_err(&h->pdev->dev,
9117                         "performant mode problem - transport not active\n");
9118                 return -ENODEV;
9119         }
9120         /* Change the access methods to the performant access methods */
9121         h->access = access;
9122         h->transMethod = transMethod;
9123
9124         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9125                 (trans_support & CFGTBL_Trans_io_accel2)))
9126                 return 0;
9127
9128         if (trans_support & CFGTBL_Trans_io_accel1) {
9129                 /* Set up I/O accelerator mode */
9130                 for (i = 0; i < h->nreply_queues; i++) {
9131                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9132                         h->reply_queue[i].current_entry =
9133                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9134                 }
9135                 bft[7] = h->ioaccel_maxsg + 8;
9136                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9137                                 h->ioaccel1_blockFetchTable);
9138
9139                 /* initialize all reply queue entries to unused */
9140                 for (i = 0; i < h->nreply_queues; i++)
9141                         memset(h->reply_queue[i].head,
9142                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9143                                 h->reply_queue_size);
9144
9145                 /* set all the constant fields in the accelerator command
9146                  * frames once at init time to save CPU cycles later.
9147                  */
9148                 for (i = 0; i < h->nr_cmds; i++) {
9149                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9150
9151                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9152                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9153                                         (i * sizeof(struct ErrorInfo)));
9154                         cp->err_info_len = sizeof(struct ErrorInfo);
9155                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9156                         cp->host_context_flags =
9157                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9158                         cp->timeout_sec = 0;
9159                         cp->ReplyQueue = 0;
9160                         cp->tag =
9161                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9162                         cp->host_addr =
9163                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9164                                         (i * sizeof(struct io_accel1_cmd)));
9165                 }
9166         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9167                 u64 cfg_offset, cfg_base_addr_index;
9168                 u32 bft2_offset, cfg_base_addr;
9169                 int rc;
9170
9171                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9172                         &cfg_base_addr_index, &cfg_offset);
9173                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9174                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9175                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9176                                 4, h->ioaccel2_blockFetchTable);
9177                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9178                 BUILD_BUG_ON(offsetof(struct CfgTable,
9179                                 io_accel_request_size_offset) != 0xb8);
9180                 h->ioaccel2_bft2_regs =
9181                         remap_pci_mem(pci_resource_start(h->pdev,
9182                                         cfg_base_addr_index) +
9183                                         cfg_offset + bft2_offset,
9184                                         ARRAY_SIZE(bft2) *
9185                                         sizeof(*h->ioaccel2_bft2_regs));
9186                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9187                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9188         }
9189         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9190         if (hpsa_wait_for_mode_change_ack(h)) {
9191                 dev_err(&h->pdev->dev,
9192                         "performant mode problem - enabling ioaccel mode\n");
9193                 return -ENODEV;
9194         }
9195         return 0;
9196 }
9197
9198 /* Free ioaccel1 mode command blocks and block fetch table */
9199 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9200 {
9201         if (h->ioaccel_cmd_pool) {
9202                 pci_free_consistent(h->pdev,
9203                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9204                         h->ioaccel_cmd_pool,
9205                         h->ioaccel_cmd_pool_dhandle);
9206                 h->ioaccel_cmd_pool = NULL;
9207                 h->ioaccel_cmd_pool_dhandle = 0;
9208         }
9209         kfree(h->ioaccel1_blockFetchTable);
9210         h->ioaccel1_blockFetchTable = NULL;
9211 }
9212
9213 /* Allocate ioaccel1 mode command blocks and block fetch table */
9214 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9215 {
9216         h->ioaccel_maxsg =
9217                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9218         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9219                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9220
9221         /* Command structures must be aligned on a 128-byte boundary
9222          * because the 7 lower bits of the address are used by the
9223          * hardware.
9224          */
9225         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9226                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9227         h->ioaccel_cmd_pool =
9228                 dma_alloc_coherent(&h->pdev->dev,
9229                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9230                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9231
9232         h->ioaccel1_blockFetchTable =
9233                 kmalloc(((h->ioaccel_maxsg + 1) *
9234                                 sizeof(u32)), GFP_KERNEL);
9235
9236         if ((h->ioaccel_cmd_pool == NULL) ||
9237                 (h->ioaccel1_blockFetchTable == NULL))
9238                 goto clean_up;
9239
9240         memset(h->ioaccel_cmd_pool, 0,
9241                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9242         return 0;
9243
9244 clean_up:
9245         hpsa_free_ioaccel1_cmd_and_bft(h);
9246         return -ENOMEM;
9247 }
9248
9249 /* Free ioaccel2 mode command blocks and block fetch table */
9250 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9251 {
9252         hpsa_free_ioaccel2_sg_chain_blocks(h);
9253
9254         if (h->ioaccel2_cmd_pool) {
9255                 pci_free_consistent(h->pdev,
9256                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9257                         h->ioaccel2_cmd_pool,
9258                         h->ioaccel2_cmd_pool_dhandle);
9259                 h->ioaccel2_cmd_pool = NULL;
9260                 h->ioaccel2_cmd_pool_dhandle = 0;
9261         }
9262         kfree(h->ioaccel2_blockFetchTable);
9263         h->ioaccel2_blockFetchTable = NULL;
9264 }
9265
9266 /* Allocate ioaccel2 mode command blocks and block fetch table */
9267 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9268 {
9269         int rc;
9270
9271         /* Allocate ioaccel2 mode command blocks and block fetch table */
9272
9273         h->ioaccel_maxsg =
9274                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9275         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9276                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9277
9278         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9279                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9280         h->ioaccel2_cmd_pool =
9281                 dma_alloc_coherent(&h->pdev->dev,
9282                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9283                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9284
9285         h->ioaccel2_blockFetchTable =
9286                 kmalloc(((h->ioaccel_maxsg + 1) *
9287                                 sizeof(u32)), GFP_KERNEL);
9288
9289         if ((h->ioaccel2_cmd_pool == NULL) ||
9290                 (h->ioaccel2_blockFetchTable == NULL)) {
9291                 rc = -ENOMEM;
9292                 goto clean_up;
9293         }
9294
9295         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9296         if (rc)
9297                 goto clean_up;
9298
9299         memset(h->ioaccel2_cmd_pool, 0,
9300                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9301         return 0;
9302
9303 clean_up:
9304         hpsa_free_ioaccel2_cmd_and_bft(h);
9305         return rc;
9306 }
9307
9308 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9309 static void hpsa_free_performant_mode(struct ctlr_info *h)
9310 {
9311         kfree(h->blockFetchTable);
9312         h->blockFetchTable = NULL;
9313         hpsa_free_reply_queues(h);
9314         hpsa_free_ioaccel1_cmd_and_bft(h);
9315         hpsa_free_ioaccel2_cmd_and_bft(h);
9316 }
9317
9318 /* return -ENODEV on error, 0 on success (or no action)
9319  * allocates numerous items that must be freed later
9320  */
9321 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9322 {
9323         u32 trans_support;
9324         unsigned long transMethod = CFGTBL_Trans_Performant |
9325                                         CFGTBL_Trans_use_short_tags;
9326         int i, rc;
9327
9328         if (hpsa_simple_mode)
9329                 return 0;
9330
9331         trans_support = readl(&(h->cfgtable->TransportSupport));
9332         if (!(trans_support & PERFORMANT_MODE))
9333                 return 0;
9334
9335         /* Check for I/O accelerator mode support */
9336         if (trans_support & CFGTBL_Trans_io_accel1) {
9337                 transMethod |= CFGTBL_Trans_io_accel1 |
9338                                 CFGTBL_Trans_enable_directed_msix;
9339                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9340                 if (rc)
9341                         return rc;
9342         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9343                 transMethod |= CFGTBL_Trans_io_accel2 |
9344                                 CFGTBL_Trans_enable_directed_msix;
9345                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9346                 if (rc)
9347                         return rc;
9348         }
9349
9350         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9351         hpsa_get_max_perf_mode_cmds(h);
9352         /* Performant mode ring buffer and supporting data structures */
9353         h->reply_queue_size = h->max_commands * sizeof(u64);
9354
9355         for (i = 0; i < h->nreply_queues; i++) {
9356                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9357                                                 h->reply_queue_size,
9358                                                 &h->reply_queue[i].busaddr,
9359                                                 GFP_KERNEL);
9360                 if (!h->reply_queue[i].head) {
9361                         rc = -ENOMEM;
9362                         goto clean1;    /* rq, ioaccel */
9363                 }
9364                 h->reply_queue[i].size = h->max_commands;
9365                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9366                 h->reply_queue[i].current_entry = 0;
9367         }
9368
9369         /* Need a block fetch table for performant mode */
9370         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9371                                 sizeof(u32)), GFP_KERNEL);
9372         if (!h->blockFetchTable) {
9373                 rc = -ENOMEM;
9374                 goto clean1;    /* rq, ioaccel */
9375         }
9376
9377         rc = hpsa_enter_performant_mode(h, trans_support);
9378         if (rc)
9379                 goto clean2;    /* bft, rq, ioaccel */
9380         return 0;
9381
9382 clean2: /* bft, rq, ioaccel */
9383         kfree(h->blockFetchTable);
9384         h->blockFetchTable = NULL;
9385 clean1: /* rq, ioaccel */
9386         hpsa_free_reply_queues(h);
9387         hpsa_free_ioaccel1_cmd_and_bft(h);
9388         hpsa_free_ioaccel2_cmd_and_bft(h);
9389         return rc;
9390 }
9391
9392 static int is_accelerated_cmd(struct CommandList *c)
9393 {
9394         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9395 }
9396
9397 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9398 {
9399         struct CommandList *c = NULL;
9400         int i, accel_cmds_out;
9401         int refcount;
9402
9403         do { /* wait for all outstanding ioaccel commands to drain out */
9404                 accel_cmds_out = 0;
9405                 for (i = 0; i < h->nr_cmds; i++) {
9406                         c = h->cmd_pool + i;
9407                         refcount = atomic_inc_return(&c->refcount);
9408                         if (refcount > 1) /* Command is allocated */
9409                                 accel_cmds_out += is_accelerated_cmd(c);
9410                         cmd_free(h, c);
9411                 }
9412                 if (accel_cmds_out <= 0)
9413                         break;
9414                 msleep(100);
9415         } while (1);
9416 }
9417
9418 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9419                                 struct hpsa_sas_port *hpsa_sas_port)
9420 {
9421         struct hpsa_sas_phy *hpsa_sas_phy;
9422         struct sas_phy *phy;
9423
9424         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9425         if (!hpsa_sas_phy)
9426                 return NULL;
9427
9428         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9429                 hpsa_sas_port->next_phy_index);
9430         if (!phy) {
9431                 kfree(hpsa_sas_phy);
9432                 return NULL;
9433         }
9434
9435         hpsa_sas_port->next_phy_index++;
9436         hpsa_sas_phy->phy = phy;
9437         hpsa_sas_phy->parent_port = hpsa_sas_port;
9438
9439         return hpsa_sas_phy;
9440 }
9441
9442 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9443 {
9444         struct sas_phy *phy = hpsa_sas_phy->phy;
9445
9446         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9447         if (hpsa_sas_phy->added_to_port)
9448                 list_del(&hpsa_sas_phy->phy_list_entry);
9449         sas_phy_delete(phy);
9450         kfree(hpsa_sas_phy);
9451 }
9452
9453 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9454 {
9455         int rc;
9456         struct hpsa_sas_port *hpsa_sas_port;
9457         struct sas_phy *phy;
9458         struct sas_identify *identify;
9459
9460         hpsa_sas_port = hpsa_sas_phy->parent_port;
9461         phy = hpsa_sas_phy->phy;
9462
9463         identify = &phy->identify;
9464         memset(identify, 0, sizeof(*identify));
9465         identify->sas_address = hpsa_sas_port->sas_address;
9466         identify->device_type = SAS_END_DEVICE;
9467         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9468         identify->target_port_protocols = SAS_PROTOCOL_STP;
9469         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9470         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9471         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9472         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9473         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9474
9475         rc = sas_phy_add(hpsa_sas_phy->phy);
9476         if (rc)
9477                 return rc;
9478
9479         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9480         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9481                         &hpsa_sas_port->phy_list_head);
9482         hpsa_sas_phy->added_to_port = true;
9483
9484         return 0;
9485 }
9486
9487 static int
9488         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9489                                 struct sas_rphy *rphy)
9490 {
9491         struct sas_identify *identify;
9492
9493         identify = &rphy->identify;
9494         identify->sas_address = hpsa_sas_port->sas_address;
9495         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9496         identify->target_port_protocols = SAS_PROTOCOL_STP;
9497
9498         return sas_rphy_add(rphy);
9499 }
9500
9501 static struct hpsa_sas_port
9502         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9503                                 u64 sas_address)
9504 {
9505         int rc;
9506         struct hpsa_sas_port *hpsa_sas_port;
9507         struct sas_port *port;
9508
9509         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9510         if (!hpsa_sas_port)
9511                 return NULL;
9512
9513         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9514         hpsa_sas_port->parent_node = hpsa_sas_node;
9515
9516         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9517         if (!port)
9518                 goto free_hpsa_port;
9519
9520         rc = sas_port_add(port);
9521         if (rc)
9522                 goto free_sas_port;
9523
9524         hpsa_sas_port->port = port;
9525         hpsa_sas_port->sas_address = sas_address;
9526         list_add_tail(&hpsa_sas_port->port_list_entry,
9527                         &hpsa_sas_node->port_list_head);
9528
9529         return hpsa_sas_port;
9530
9531 free_sas_port:
9532         sas_port_free(port);
9533 free_hpsa_port:
9534         kfree(hpsa_sas_port);
9535
9536         return NULL;
9537 }
9538
9539 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9540 {
9541         struct hpsa_sas_phy *hpsa_sas_phy;
9542         struct hpsa_sas_phy *next;
9543
9544         list_for_each_entry_safe(hpsa_sas_phy, next,
9545                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9546                 hpsa_free_sas_phy(hpsa_sas_phy);
9547
9548         sas_port_delete(hpsa_sas_port->port);
9549         list_del(&hpsa_sas_port->port_list_entry);
9550         kfree(hpsa_sas_port);
9551 }
9552
9553 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9554 {
9555         struct hpsa_sas_node *hpsa_sas_node;
9556
9557         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9558         if (hpsa_sas_node) {
9559                 hpsa_sas_node->parent_dev = parent_dev;
9560                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9561         }
9562
9563         return hpsa_sas_node;
9564 }
9565
9566 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9567 {
9568         struct hpsa_sas_port *hpsa_sas_port;
9569         struct hpsa_sas_port *next;
9570
9571         if (!hpsa_sas_node)
9572                 return;
9573
9574         list_for_each_entry_safe(hpsa_sas_port, next,
9575                         &hpsa_sas_node->port_list_head, port_list_entry)
9576                 hpsa_free_sas_port(hpsa_sas_port);
9577
9578         kfree(hpsa_sas_node);
9579 }
9580
9581 static struct hpsa_scsi_dev_t
9582         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9583                                         struct sas_rphy *rphy)
9584 {
9585         int i;
9586         struct hpsa_scsi_dev_t *device;
9587
9588         for (i = 0; i < h->ndevices; i++) {
9589                 device = h->dev[i];
9590                 if (!device->sas_port)
9591                         continue;
9592                 if (device->sas_port->rphy == rphy)
9593                         return device;
9594         }
9595
9596         return NULL;
9597 }
9598
9599 static int hpsa_add_sas_host(struct ctlr_info *h)
9600 {
9601         int rc;
9602         struct device *parent_dev;
9603         struct hpsa_sas_node *hpsa_sas_node;
9604         struct hpsa_sas_port *hpsa_sas_port;
9605         struct hpsa_sas_phy *hpsa_sas_phy;
9606
9607         parent_dev = &h->scsi_host->shost_dev;
9608
9609         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9610         if (!hpsa_sas_node)
9611                 return -ENOMEM;
9612
9613         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9614         if (!hpsa_sas_port) {
9615                 rc = -ENODEV;
9616                 goto free_sas_node;
9617         }
9618
9619         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9620         if (!hpsa_sas_phy) {
9621                 rc = -ENODEV;
9622                 goto free_sas_port;
9623         }
9624
9625         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9626         if (rc)
9627                 goto free_sas_phy;
9628
9629         h->sas_host = hpsa_sas_node;
9630
9631         return 0;
9632
9633 free_sas_phy:
9634         hpsa_free_sas_phy(hpsa_sas_phy);
9635 free_sas_port:
9636         hpsa_free_sas_port(hpsa_sas_port);
9637 free_sas_node:
9638         hpsa_free_sas_node(hpsa_sas_node);
9639
9640         return rc;
9641 }
9642
9643 static void hpsa_delete_sas_host(struct ctlr_info *h)
9644 {
9645         hpsa_free_sas_node(h->sas_host);
9646 }
9647
9648 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9649                                 struct hpsa_scsi_dev_t *device)
9650 {
9651         int rc;
9652         struct hpsa_sas_port *hpsa_sas_port;
9653         struct sas_rphy *rphy;
9654
9655         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9656         if (!hpsa_sas_port)
9657                 return -ENOMEM;
9658
9659         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9660         if (!rphy) {
9661                 rc = -ENODEV;
9662                 goto free_sas_port;
9663         }
9664
9665         hpsa_sas_port->rphy = rphy;
9666         device->sas_port = hpsa_sas_port;
9667
9668         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9669         if (rc)
9670                 goto free_sas_port;
9671
9672         return 0;
9673
9674 free_sas_port:
9675         hpsa_free_sas_port(hpsa_sas_port);
9676         device->sas_port = NULL;
9677
9678         return rc;
9679 }
9680
9681 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9682 {
9683         if (device->sas_port) {
9684                 hpsa_free_sas_port(device->sas_port);
9685                 device->sas_port = NULL;
9686         }
9687 }
9688
9689 static int
9690 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9691 {
9692         return 0;
9693 }
9694
9695 static int
9696 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9697 {
9698         struct Scsi_Host *shost = phy_to_shost(rphy);
9699         struct ctlr_info *h;
9700         struct hpsa_scsi_dev_t *sd;
9701
9702         if (!shost)
9703                 return -ENXIO;
9704
9705         h = shost_to_hba(shost);
9706
9707         if (!h)
9708                 return -ENXIO;
9709
9710         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9711         if (!sd)
9712                 return -ENXIO;
9713
9714         *identifier = sd->eli;
9715
9716         return 0;
9717 }
9718
9719 static int
9720 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9721 {
9722         return -ENXIO;
9723 }
9724
9725 static int
9726 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9727 {
9728         return 0;
9729 }
9730
9731 static int
9732 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9733 {
9734         return 0;
9735 }
9736
9737 static int
9738 hpsa_sas_phy_setup(struct sas_phy *phy)
9739 {
9740         return 0;
9741 }
9742
9743 static void
9744 hpsa_sas_phy_release(struct sas_phy *phy)
9745 {
9746 }
9747
9748 static int
9749 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9750 {
9751         return -EINVAL;
9752 }
9753
9754 static struct sas_function_template hpsa_sas_transport_functions = {
9755         .get_linkerrors = hpsa_sas_get_linkerrors,
9756         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9757         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9758         .phy_reset = hpsa_sas_phy_reset,
9759         .phy_enable = hpsa_sas_phy_enable,
9760         .phy_setup = hpsa_sas_phy_setup,
9761         .phy_release = hpsa_sas_phy_release,
9762         .set_phy_speed = hpsa_sas_phy_speed,
9763 };
9764
9765 /*
9766  *  This is it.  Register the PCI driver information for the cards we control
9767  *  the OS will call our registered routines when it finds one of our cards.
9768  */
9769 static int __init hpsa_init(void)
9770 {
9771         int rc;
9772
9773         hpsa_sas_transport_template =
9774                 sas_attach_transport(&hpsa_sas_transport_functions);
9775         if (!hpsa_sas_transport_template)
9776                 return -ENODEV;
9777
9778         rc = pci_register_driver(&hpsa_pci_driver);
9779
9780         if (rc)
9781                 sas_release_transport(hpsa_sas_transport_template);
9782
9783         return rc;
9784 }
9785
9786 static void __exit hpsa_cleanup(void)
9787 {
9788         pci_unregister_driver(&hpsa_pci_driver);
9789         sas_release_transport(hpsa_sas_transport_template);
9790 }
9791
9792 static void __attribute__((unused)) verify_offsets(void)
9793 {
9794 #define VERIFY_OFFSET(member, offset) \
9795         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9796
9797         VERIFY_OFFSET(structure_size, 0);
9798         VERIFY_OFFSET(volume_blk_size, 4);
9799         VERIFY_OFFSET(volume_blk_cnt, 8);
9800         VERIFY_OFFSET(phys_blk_shift, 16);
9801         VERIFY_OFFSET(parity_rotation_shift, 17);
9802         VERIFY_OFFSET(strip_size, 18);
9803         VERIFY_OFFSET(disk_starting_blk, 20);
9804         VERIFY_OFFSET(disk_blk_cnt, 28);
9805         VERIFY_OFFSET(data_disks_per_row, 36);
9806         VERIFY_OFFSET(metadata_disks_per_row, 38);
9807         VERIFY_OFFSET(row_cnt, 40);
9808         VERIFY_OFFSET(layout_map_count, 42);
9809         VERIFY_OFFSET(flags, 44);
9810         VERIFY_OFFSET(dekindex, 46);
9811         /* VERIFY_OFFSET(reserved, 48 */
9812         VERIFY_OFFSET(data, 64);
9813
9814 #undef VERIFY_OFFSET
9815
9816 #define VERIFY_OFFSET(member, offset) \
9817         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9818
9819         VERIFY_OFFSET(IU_type, 0);
9820         VERIFY_OFFSET(direction, 1);
9821         VERIFY_OFFSET(reply_queue, 2);
9822         /* VERIFY_OFFSET(reserved1, 3);  */
9823         VERIFY_OFFSET(scsi_nexus, 4);
9824         VERIFY_OFFSET(Tag, 8);
9825         VERIFY_OFFSET(cdb, 16);
9826         VERIFY_OFFSET(cciss_lun, 32);
9827         VERIFY_OFFSET(data_len, 40);
9828         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9829         VERIFY_OFFSET(sg_count, 45);
9830         /* VERIFY_OFFSET(reserved3 */
9831         VERIFY_OFFSET(err_ptr, 48);
9832         VERIFY_OFFSET(err_len, 56);
9833         /* VERIFY_OFFSET(reserved4  */
9834         VERIFY_OFFSET(sg, 64);
9835
9836 #undef VERIFY_OFFSET
9837
9838 #define VERIFY_OFFSET(member, offset) \
9839         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9840
9841         VERIFY_OFFSET(dev_handle, 0x00);
9842         VERIFY_OFFSET(reserved1, 0x02);
9843         VERIFY_OFFSET(function, 0x03);
9844         VERIFY_OFFSET(reserved2, 0x04);
9845         VERIFY_OFFSET(err_info, 0x0C);
9846         VERIFY_OFFSET(reserved3, 0x10);
9847         VERIFY_OFFSET(err_info_len, 0x12);
9848         VERIFY_OFFSET(reserved4, 0x13);
9849         VERIFY_OFFSET(sgl_offset, 0x14);
9850         VERIFY_OFFSET(reserved5, 0x15);
9851         VERIFY_OFFSET(transfer_len, 0x1C);
9852         VERIFY_OFFSET(reserved6, 0x20);
9853         VERIFY_OFFSET(io_flags, 0x24);
9854         VERIFY_OFFSET(reserved7, 0x26);
9855         VERIFY_OFFSET(LUN, 0x34);
9856         VERIFY_OFFSET(control, 0x3C);
9857         VERIFY_OFFSET(CDB, 0x40);
9858         VERIFY_OFFSET(reserved8, 0x50);
9859         VERIFY_OFFSET(host_context_flags, 0x60);
9860         VERIFY_OFFSET(timeout_sec, 0x62);
9861         VERIFY_OFFSET(ReplyQueue, 0x64);
9862         VERIFY_OFFSET(reserved9, 0x65);
9863         VERIFY_OFFSET(tag, 0x68);
9864         VERIFY_OFFSET(host_addr, 0x70);
9865         VERIFY_OFFSET(CISS_LUN, 0x78);
9866         VERIFY_OFFSET(SG, 0x78 + 8);
9867 #undef VERIFY_OFFSET
9868 }
9869
9870 module_init(hpsa_init);
9871 module_exit(hpsa_cleanup);