2da8f6f71002cfd6f042744f3dd855c59d1cf8b0
[linux-2.6-block.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
152                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
153         {0,}
154 };
155
156 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
157
158 /*  board_id = Subsystem Device ID & Vendor ID
159  *  product = Marketing Name for the board
160  *  access = Address of the struct of function pointers
161  */
162 static struct board_type products[] = {
163         {0x40700E11, "Smart Array 5300", &SA5A_access},
164         {0x40800E11, "Smart Array 5i", &SA5B_access},
165         {0x40820E11, "Smart Array 532", &SA5B_access},
166         {0x40830E11, "Smart Array 5312", &SA5B_access},
167         {0x409A0E11, "Smart Array 641", &SA5A_access},
168         {0x409B0E11, "Smart Array 642", &SA5A_access},
169         {0x409C0E11, "Smart Array 6400", &SA5A_access},
170         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
171         {0x40910E11, "Smart Array 6i", &SA5A_access},
172         {0x3225103C, "Smart Array P600", &SA5A_access},
173         {0x3223103C, "Smart Array P800", &SA5A_access},
174         {0x3234103C, "Smart Array P400", &SA5A_access},
175         {0x3235103C, "Smart Array P400i", &SA5A_access},
176         {0x3211103C, "Smart Array E200i", &SA5A_access},
177         {0x3212103C, "Smart Array E200", &SA5A_access},
178         {0x3213103C, "Smart Array E200i", &SA5A_access},
179         {0x3214103C, "Smart Array E200i", &SA5A_access},
180         {0x3215103C, "Smart Array E200i", &SA5A_access},
181         {0x3237103C, "Smart Array E500", &SA5A_access},
182         {0x323D103C, "Smart Array P700m", &SA5A_access},
183         {0x3241103C, "Smart Array P212", &SA5_access},
184         {0x3243103C, "Smart Array P410", &SA5_access},
185         {0x3245103C, "Smart Array P410i", &SA5_access},
186         {0x3247103C, "Smart Array P411", &SA5_access},
187         {0x3249103C, "Smart Array P812", &SA5_access},
188         {0x324A103C, "Smart Array P712m", &SA5_access},
189         {0x324B103C, "Smart Array P711m", &SA5_access},
190         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
191         {0x3350103C, "Smart Array P222", &SA5_access},
192         {0x3351103C, "Smart Array P420", &SA5_access},
193         {0x3352103C, "Smart Array P421", &SA5_access},
194         {0x3353103C, "Smart Array P822", &SA5_access},
195         {0x3354103C, "Smart Array P420i", &SA5_access},
196         {0x3355103C, "Smart Array P220i", &SA5_access},
197         {0x3356103C, "Smart Array P721m", &SA5_access},
198         {0x1920103C, "Smart Array P430i", &SA5_access},
199         {0x1921103C, "Smart Array P830i", &SA5_access},
200         {0x1922103C, "Smart Array P430", &SA5_access},
201         {0x1923103C, "Smart Array P431", &SA5_access},
202         {0x1924103C, "Smart Array P830", &SA5_access},
203         {0x1925103C, "Smart Array P831", &SA5_access},
204         {0x1926103C, "Smart Array P731m", &SA5_access},
205         {0x1928103C, "Smart Array P230i", &SA5_access},
206         {0x1929103C, "Smart Array P530", &SA5_access},
207         {0x21BD103C, "Smart Array P244br", &SA5_access},
208         {0x21BE103C, "Smart Array P741m", &SA5_access},
209         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
210         {0x21C0103C, "Smart Array P440ar", &SA5_access},
211         {0x21C1103C, "Smart Array P840ar", &SA5_access},
212         {0x21C2103C, "Smart Array P440", &SA5_access},
213         {0x21C3103C, "Smart Array P441", &SA5_access},
214         {0x21C4103C, "Smart Array", &SA5_access},
215         {0x21C5103C, "Smart Array P841", &SA5_access},
216         {0x21C6103C, "Smart HBA H244br", &SA5_access},
217         {0x21C7103C, "Smart HBA H240", &SA5_access},
218         {0x21C8103C, "Smart HBA H241", &SA5_access},
219         {0x21C9103C, "Smart Array", &SA5_access},
220         {0x21CA103C, "Smart Array P246br", &SA5_access},
221         {0x21CB103C, "Smart Array P840", &SA5_access},
222         {0x21CC103C, "Smart Array", &SA5_access},
223         {0x21CD103C, "Smart Array", &SA5_access},
224         {0x21CE103C, "Smart HBA", &SA5_access},
225         {0x05809005, "SmartHBA-SA", &SA5_access},
226         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
227         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
228         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
229         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
230         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
231         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
232         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
233         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
234         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
235         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
236         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
237 };
238
239 static struct scsi_transport_template *hpsa_sas_transport_template;
240 static int hpsa_add_sas_host(struct ctlr_info *h);
241 static void hpsa_delete_sas_host(struct ctlr_info *h);
242 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
243                         struct hpsa_scsi_dev_t *device);
244 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
245 static struct hpsa_scsi_dev_t
246         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
247                 struct sas_rphy *rphy);
248
249 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
250 static const struct scsi_cmnd hpsa_cmd_busy;
251 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
252 static const struct scsi_cmnd hpsa_cmd_idle;
253 static int number_of_controllers;
254
255 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
256 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
257 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
258
259 #ifdef CONFIG_COMPAT
260 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
261         void __user *arg);
262 #endif
263
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268                                             struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
271         int cmd_type);
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
275
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279         unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
286
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289         struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291         struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294         int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
300                                u64 *cfg_offset);
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302                                     unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
304                                 bool *legacy_board);
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306                                            unsigned char lunaddr[],
307                                            int reply_queue);
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
309                                      int wait_for_ready);
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324         struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326         unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329                                struct hpsa_scsi_dev_t *dev,
330                                unsigned char *scsi3addr);
331
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 {
334         unsigned long *priv = shost_priv(sdev->host);
335         return (struct ctlr_info *) *priv;
336 }
337
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 {
340         unsigned long *priv = shost_priv(sh);
341         return (struct ctlr_info *) *priv;
342 }
343
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 {
346         return c->scsi_cmd == SCSI_CMD_IDLE;
347 }
348
349 static inline bool hpsa_is_pending_event(struct CommandList *c)
350 {
351         return c->reset_pending;
352 }
353
354 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
355 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
356                         u8 *sense_key, u8 *asc, u8 *ascq)
357 {
358         struct scsi_sense_hdr sshdr;
359         bool rc;
360
361         *sense_key = -1;
362         *asc = -1;
363         *ascq = -1;
364
365         if (sense_data_len < 1)
366                 return;
367
368         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
369         if (rc) {
370                 *sense_key = sshdr.sense_key;
371                 *asc = sshdr.asc;
372                 *ascq = sshdr.ascq;
373         }
374 }
375
376 static int check_for_unit_attention(struct ctlr_info *h,
377         struct CommandList *c)
378 {
379         u8 sense_key, asc, ascq;
380         int sense_len;
381
382         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
383                 sense_len = sizeof(c->err_info->SenseInfo);
384         else
385                 sense_len = c->err_info->SenseLen;
386
387         decode_sense_data(c->err_info->SenseInfo, sense_len,
388                                 &sense_key, &asc, &ascq);
389         if (sense_key != UNIT_ATTENTION || asc == 0xff)
390                 return 0;
391
392         switch (asc) {
393         case STATE_CHANGED:
394                 dev_warn(&h->pdev->dev,
395                         "%s: a state change detected, command retried\n",
396                         h->devname);
397                 break;
398         case LUN_FAILED:
399                 dev_warn(&h->pdev->dev,
400                         "%s: LUN failure detected\n", h->devname);
401                 break;
402         case REPORT_LUNS_CHANGED:
403                 dev_warn(&h->pdev->dev,
404                         "%s: report LUN data changed\n", h->devname);
405         /*
406          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
407          * target (array) devices.
408          */
409                 break;
410         case POWER_OR_RESET:
411                 dev_warn(&h->pdev->dev,
412                         "%s: a power on or device reset detected\n",
413                         h->devname);
414                 break;
415         case UNIT_ATTENTION_CLEARED:
416                 dev_warn(&h->pdev->dev,
417                         "%s: unit attention cleared by another initiator\n",
418                         h->devname);
419                 break;
420         default:
421                 dev_warn(&h->pdev->dev,
422                         "%s: unknown unit attention detected\n",
423                         h->devname);
424                 break;
425         }
426         return 1;
427 }
428
429 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
430 {
431         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
432                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
433                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
434                 return 0;
435         dev_warn(&h->pdev->dev, HPSA "device busy");
436         return 1;
437 }
438
439 static u32 lockup_detected(struct ctlr_info *h);
440 static ssize_t host_show_lockup_detected(struct device *dev,
441                 struct device_attribute *attr, char *buf)
442 {
443         int ld;
444         struct ctlr_info *h;
445         struct Scsi_Host *shost = class_to_shost(dev);
446
447         h = shost_to_hba(shost);
448         ld = lockup_detected(h);
449
450         return sprintf(buf, "ld=%d\n", ld);
451 }
452
453 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
454                                          struct device_attribute *attr,
455                                          const char *buf, size_t count)
456 {
457         int status, len;
458         struct ctlr_info *h;
459         struct Scsi_Host *shost = class_to_shost(dev);
460         char tmpbuf[10];
461
462         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
463                 return -EACCES;
464         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
465         strncpy(tmpbuf, buf, len);
466         tmpbuf[len] = '\0';
467         if (sscanf(tmpbuf, "%d", &status) != 1)
468                 return -EINVAL;
469         h = shost_to_hba(shost);
470         h->acciopath_status = !!status;
471         dev_warn(&h->pdev->dev,
472                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
473                 h->acciopath_status ? "enabled" : "disabled");
474         return count;
475 }
476
477 static ssize_t host_store_raid_offload_debug(struct device *dev,
478                                          struct device_attribute *attr,
479                                          const char *buf, size_t count)
480 {
481         int debug_level, len;
482         struct ctlr_info *h;
483         struct Scsi_Host *shost = class_to_shost(dev);
484         char tmpbuf[10];
485
486         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
487                 return -EACCES;
488         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
489         strncpy(tmpbuf, buf, len);
490         tmpbuf[len] = '\0';
491         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
492                 return -EINVAL;
493         if (debug_level < 0)
494                 debug_level = 0;
495         h = shost_to_hba(shost);
496         h->raid_offload_debug = debug_level;
497         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
498                 h->raid_offload_debug);
499         return count;
500 }
501
502 static ssize_t host_store_rescan(struct device *dev,
503                                  struct device_attribute *attr,
504                                  const char *buf, size_t count)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508         h = shost_to_hba(shost);
509         hpsa_scan_start(h->scsi_host);
510         return count;
511 }
512
513 static ssize_t host_show_firmware_revision(struct device *dev,
514              struct device_attribute *attr, char *buf)
515 {
516         struct ctlr_info *h;
517         struct Scsi_Host *shost = class_to_shost(dev);
518         unsigned char *fwrev;
519
520         h = shost_to_hba(shost);
521         if (!h->hba_inquiry_data)
522                 return 0;
523         fwrev = &h->hba_inquiry_data[32];
524         return snprintf(buf, 20, "%c%c%c%c\n",
525                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
526 }
527
528 static ssize_t host_show_commands_outstanding(struct device *dev,
529              struct device_attribute *attr, char *buf)
530 {
531         struct Scsi_Host *shost = class_to_shost(dev);
532         struct ctlr_info *h = shost_to_hba(shost);
533
534         return snprintf(buf, 20, "%d\n",
535                         atomic_read(&h->commands_outstanding));
536 }
537
538 static ssize_t host_show_transport_mode(struct device *dev,
539         struct device_attribute *attr, char *buf)
540 {
541         struct ctlr_info *h;
542         struct Scsi_Host *shost = class_to_shost(dev);
543
544         h = shost_to_hba(shost);
545         return snprintf(buf, 20, "%s\n",
546                 h->transMethod & CFGTBL_Trans_Performant ?
547                         "performant" : "simple");
548 }
549
550 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
551         struct device_attribute *attr, char *buf)
552 {
553         struct ctlr_info *h;
554         struct Scsi_Host *shost = class_to_shost(dev);
555
556         h = shost_to_hba(shost);
557         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
558                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
559 }
560
561 /* List of controllers which cannot be hard reset on kexec with reset_devices */
562 static u32 unresettable_controller[] = {
563         0x324a103C, /* Smart Array P712m */
564         0x324b103C, /* Smart Array P711m */
565         0x3223103C, /* Smart Array P800 */
566         0x3234103C, /* Smart Array P400 */
567         0x3235103C, /* Smart Array P400i */
568         0x3211103C, /* Smart Array E200i */
569         0x3212103C, /* Smart Array E200 */
570         0x3213103C, /* Smart Array E200i */
571         0x3214103C, /* Smart Array E200i */
572         0x3215103C, /* Smart Array E200i */
573         0x3237103C, /* Smart Array E500 */
574         0x323D103C, /* Smart Array P700m */
575         0x40800E11, /* Smart Array 5i */
576         0x409C0E11, /* Smart Array 6400 */
577         0x409D0E11, /* Smart Array 6400 EM */
578         0x40700E11, /* Smart Array 5300 */
579         0x40820E11, /* Smart Array 532 */
580         0x40830E11, /* Smart Array 5312 */
581         0x409A0E11, /* Smart Array 641 */
582         0x409B0E11, /* Smart Array 642 */
583         0x40910E11, /* Smart Array 6i */
584 };
585
586 /* List of controllers which cannot even be soft reset */
587 static u32 soft_unresettable_controller[] = {
588         0x40800E11, /* Smart Array 5i */
589         0x40700E11, /* Smart Array 5300 */
590         0x40820E11, /* Smart Array 532 */
591         0x40830E11, /* Smart Array 5312 */
592         0x409A0E11, /* Smart Array 641 */
593         0x409B0E11, /* Smart Array 642 */
594         0x40910E11, /* Smart Array 6i */
595         /* Exclude 640x boards.  These are two pci devices in one slot
596          * which share a battery backed cache module.  One controls the
597          * cache, the other accesses the cache through the one that controls
598          * it.  If we reset the one controlling the cache, the other will
599          * likely not be happy.  Just forbid resetting this conjoined mess.
600          * The 640x isn't really supported by hpsa anyway.
601          */
602         0x409C0E11, /* Smart Array 6400 */
603         0x409D0E11, /* Smart Array 6400 EM */
604 };
605
606 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
607 {
608         int i;
609
610         for (i = 0; i < nelems; i++)
611                 if (a[i] == board_id)
612                         return 1;
613         return 0;
614 }
615
616 static int ctlr_is_hard_resettable(u32 board_id)
617 {
618         return !board_id_in_array(unresettable_controller,
619                         ARRAY_SIZE(unresettable_controller), board_id);
620 }
621
622 static int ctlr_is_soft_resettable(u32 board_id)
623 {
624         return !board_id_in_array(soft_unresettable_controller,
625                         ARRAY_SIZE(soft_unresettable_controller), board_id);
626 }
627
628 static int ctlr_is_resettable(u32 board_id)
629 {
630         return ctlr_is_hard_resettable(board_id) ||
631                 ctlr_is_soft_resettable(board_id);
632 }
633
634 static ssize_t host_show_resettable(struct device *dev,
635         struct device_attribute *attr, char *buf)
636 {
637         struct ctlr_info *h;
638         struct Scsi_Host *shost = class_to_shost(dev);
639
640         h = shost_to_hba(shost);
641         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
642 }
643
644 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
645 {
646         return (scsi3addr[3] & 0xC0) == 0x40;
647 }
648
649 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
650         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
651 };
652 #define HPSA_RAID_0     0
653 #define HPSA_RAID_4     1
654 #define HPSA_RAID_1     2       /* also used for RAID 10 */
655 #define HPSA_RAID_5     3       /* also used for RAID 50 */
656 #define HPSA_RAID_51    4
657 #define HPSA_RAID_6     5       /* also used for RAID 60 */
658 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
659 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
660 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
661
662 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
663 {
664         return !device->physical_device;
665 }
666
667 static ssize_t raid_level_show(struct device *dev,
668              struct device_attribute *attr, char *buf)
669 {
670         ssize_t l = 0;
671         unsigned char rlevel;
672         struct ctlr_info *h;
673         struct scsi_device *sdev;
674         struct hpsa_scsi_dev_t *hdev;
675         unsigned long flags;
676
677         sdev = to_scsi_device(dev);
678         h = sdev_to_hba(sdev);
679         spin_lock_irqsave(&h->lock, flags);
680         hdev = sdev->hostdata;
681         if (!hdev) {
682                 spin_unlock_irqrestore(&h->lock, flags);
683                 return -ENODEV;
684         }
685
686         /* Is this even a logical drive? */
687         if (!is_logical_device(hdev)) {
688                 spin_unlock_irqrestore(&h->lock, flags);
689                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
690                 return l;
691         }
692
693         rlevel = hdev->raid_level;
694         spin_unlock_irqrestore(&h->lock, flags);
695         if (rlevel > RAID_UNKNOWN)
696                 rlevel = RAID_UNKNOWN;
697         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
698         return l;
699 }
700
701 static ssize_t lunid_show(struct device *dev,
702              struct device_attribute *attr, char *buf)
703 {
704         struct ctlr_info *h;
705         struct scsi_device *sdev;
706         struct hpsa_scsi_dev_t *hdev;
707         unsigned long flags;
708         unsigned char lunid[8];
709
710         sdev = to_scsi_device(dev);
711         h = sdev_to_hba(sdev);
712         spin_lock_irqsave(&h->lock, flags);
713         hdev = sdev->hostdata;
714         if (!hdev) {
715                 spin_unlock_irqrestore(&h->lock, flags);
716                 return -ENODEV;
717         }
718         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
719         spin_unlock_irqrestore(&h->lock, flags);
720         return snprintf(buf, 20, "0x%8phN\n", lunid);
721 }
722
723 static ssize_t unique_id_show(struct device *dev,
724              struct device_attribute *attr, char *buf)
725 {
726         struct ctlr_info *h;
727         struct scsi_device *sdev;
728         struct hpsa_scsi_dev_t *hdev;
729         unsigned long flags;
730         unsigned char sn[16];
731
732         sdev = to_scsi_device(dev);
733         h = sdev_to_hba(sdev);
734         spin_lock_irqsave(&h->lock, flags);
735         hdev = sdev->hostdata;
736         if (!hdev) {
737                 spin_unlock_irqrestore(&h->lock, flags);
738                 return -ENODEV;
739         }
740         memcpy(sn, hdev->device_id, sizeof(sn));
741         spin_unlock_irqrestore(&h->lock, flags);
742         return snprintf(buf, 16 * 2 + 2,
743                         "%02X%02X%02X%02X%02X%02X%02X%02X"
744                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
745                         sn[0], sn[1], sn[2], sn[3],
746                         sn[4], sn[5], sn[6], sn[7],
747                         sn[8], sn[9], sn[10], sn[11],
748                         sn[12], sn[13], sn[14], sn[15]);
749 }
750
751 static ssize_t sas_address_show(struct device *dev,
752               struct device_attribute *attr, char *buf)
753 {
754         struct ctlr_info *h;
755         struct scsi_device *sdev;
756         struct hpsa_scsi_dev_t *hdev;
757         unsigned long flags;
758         u64 sas_address;
759
760         sdev = to_scsi_device(dev);
761         h = sdev_to_hba(sdev);
762         spin_lock_irqsave(&h->lock, flags);
763         hdev = sdev->hostdata;
764         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
765                 spin_unlock_irqrestore(&h->lock, flags);
766                 return -ENODEV;
767         }
768         sas_address = hdev->sas_address;
769         spin_unlock_irqrestore(&h->lock, flags);
770
771         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
772 }
773
774 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
775              struct device_attribute *attr, char *buf)
776 {
777         struct ctlr_info *h;
778         struct scsi_device *sdev;
779         struct hpsa_scsi_dev_t *hdev;
780         unsigned long flags;
781         int offload_enabled;
782
783         sdev = to_scsi_device(dev);
784         h = sdev_to_hba(sdev);
785         spin_lock_irqsave(&h->lock, flags);
786         hdev = sdev->hostdata;
787         if (!hdev) {
788                 spin_unlock_irqrestore(&h->lock, flags);
789                 return -ENODEV;
790         }
791         offload_enabled = hdev->offload_enabled;
792         spin_unlock_irqrestore(&h->lock, flags);
793         return snprintf(buf, 20, "%d\n", offload_enabled);
794 }
795
796 #define MAX_PATHS 8
797 static ssize_t path_info_show(struct device *dev,
798              struct device_attribute *attr, char *buf)
799 {
800         struct ctlr_info *h;
801         struct scsi_device *sdev;
802         struct hpsa_scsi_dev_t *hdev;
803         unsigned long flags;
804         int i;
805         int output_len = 0;
806         u8 box;
807         u8 bay;
808         u8 path_map_index = 0;
809         char *active;
810         unsigned char phys_connector[2];
811
812         sdev = to_scsi_device(dev);
813         h = sdev_to_hba(sdev);
814         spin_lock_irqsave(&h->devlock, flags);
815         hdev = sdev->hostdata;
816         if (!hdev) {
817                 spin_unlock_irqrestore(&h->devlock, flags);
818                 return -ENODEV;
819         }
820
821         bay = hdev->bay;
822         for (i = 0; i < MAX_PATHS; i++) {
823                 path_map_index = 1<<i;
824                 if (i == hdev->active_path_index)
825                         active = "Active";
826                 else if (hdev->path_map & path_map_index)
827                         active = "Inactive";
828                 else
829                         continue;
830
831                 output_len += scnprintf(buf + output_len,
832                                 PAGE_SIZE - output_len,
833                                 "[%d:%d:%d:%d] %20.20s ",
834                                 h->scsi_host->host_no,
835                                 hdev->bus, hdev->target, hdev->lun,
836                                 scsi_device_type(hdev->devtype));
837
838                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839                         output_len += scnprintf(buf + output_len,
840                                                 PAGE_SIZE - output_len,
841                                                 "%s\n", active);
842                         continue;
843                 }
844
845                 box = hdev->box[i];
846                 memcpy(&phys_connector, &hdev->phys_connector[i],
847                         sizeof(phys_connector));
848                 if (phys_connector[0] < '0')
849                         phys_connector[0] = '0';
850                 if (phys_connector[1] < '0')
851                         phys_connector[1] = '0';
852                 output_len += scnprintf(buf + output_len,
853                                 PAGE_SIZE - output_len,
854                                 "PORT: %.2s ",
855                                 phys_connector);
856                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857                         hdev->expose_device) {
858                         if (box == 0 || box == 0xFF) {
859                                 output_len += scnprintf(buf + output_len,
860                                         PAGE_SIZE - output_len,
861                                         "BAY: %hhu %s\n",
862                                         bay, active);
863                         } else {
864                                 output_len += scnprintf(buf + output_len,
865                                         PAGE_SIZE - output_len,
866                                         "BOX: %hhu BAY: %hhu %s\n",
867                                         box, bay, active);
868                         }
869                 } else if (box != 0 && box != 0xFF) {
870                         output_len += scnprintf(buf + output_len,
871                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
872                                 box, active);
873                 } else
874                         output_len += scnprintf(buf + output_len,
875                                 PAGE_SIZE - output_len, "%s\n", active);
876         }
877
878         spin_unlock_irqrestore(&h->devlock, flags);
879         return output_len;
880 }
881
882 static ssize_t host_show_ctlr_num(struct device *dev,
883         struct device_attribute *attr, char *buf)
884 {
885         struct ctlr_info *h;
886         struct Scsi_Host *shost = class_to_shost(dev);
887
888         h = shost_to_hba(shost);
889         return snprintf(buf, 20, "%d\n", h->ctlr);
890 }
891
892 static ssize_t host_show_legacy_board(struct device *dev,
893         struct device_attribute *attr, char *buf)
894 {
895         struct ctlr_info *h;
896         struct Scsi_Host *shost = class_to_shost(dev);
897
898         h = shost_to_hba(shost);
899         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
900 }
901
902 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
903 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
904 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908                         host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911                 host_show_hp_ssd_smart_path_status,
912                 host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914                         host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916         host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918         host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920         host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922         host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924         host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926         host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928         host_show_legacy_board, NULL);
929
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931         &dev_attr_raid_level,
932         &dev_attr_lunid,
933         &dev_attr_unique_id,
934         &dev_attr_hp_ssd_smart_path_enabled,
935         &dev_attr_path_info,
936         &dev_attr_sas_address,
937         NULL,
938 };
939
940 static struct device_attribute *hpsa_shost_attrs[] = {
941         &dev_attr_rescan,
942         &dev_attr_firmware_revision,
943         &dev_attr_commands_outstanding,
944         &dev_attr_transport_mode,
945         &dev_attr_resettable,
946         &dev_attr_hp_ssd_smart_path_status,
947         &dev_attr_raid_offload_debug,
948         &dev_attr_lockup_detected,
949         &dev_attr_ctlr_num,
950         &dev_attr_legacy_board,
951         NULL,
952 };
953
954 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
955                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
956
957 static struct scsi_host_template hpsa_driver_template = {
958         .module                 = THIS_MODULE,
959         .name                   = HPSA,
960         .proc_name              = HPSA,
961         .queuecommand           = hpsa_scsi_queue_command,
962         .scan_start             = hpsa_scan_start,
963         .scan_finished          = hpsa_scan_finished,
964         .change_queue_depth     = hpsa_change_queue_depth,
965         .this_id                = -1,
966         .use_clustering         = ENABLE_CLUSTERING,
967         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
968         .ioctl                  = hpsa_ioctl,
969         .slave_alloc            = hpsa_slave_alloc,
970         .slave_configure        = hpsa_slave_configure,
971         .slave_destroy          = hpsa_slave_destroy,
972 #ifdef CONFIG_COMPAT
973         .compat_ioctl           = hpsa_compat_ioctl,
974 #endif
975         .sdev_attrs = hpsa_sdev_attrs,
976         .shost_attrs = hpsa_shost_attrs,
977         .max_sectors = 1024,
978         .no_write_same = 1,
979 };
980
981 static inline u32 next_command(struct ctlr_info *h, u8 q)
982 {
983         u32 a;
984         struct reply_queue_buffer *rq = &h->reply_queue[q];
985
986         if (h->transMethod & CFGTBL_Trans_io_accel1)
987                 return h->access.command_completed(h, q);
988
989         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
990                 return h->access.command_completed(h, q);
991
992         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
993                 a = rq->head[rq->current_entry];
994                 rq->current_entry++;
995                 atomic_dec(&h->commands_outstanding);
996         } else {
997                 a = FIFO_EMPTY;
998         }
999         /* Check for wraparound */
1000         if (rq->current_entry == h->max_commands) {
1001                 rq->current_entry = 0;
1002                 rq->wraparound ^= 1;
1003         }
1004         return a;
1005 }
1006
1007 /*
1008  * There are some special bits in the bus address of the
1009  * command that we have to set for the controller to know
1010  * how to process the command:
1011  *
1012  * Normal performant mode:
1013  * bit 0: 1 means performant mode, 0 means simple mode.
1014  * bits 1-3 = block fetch table entry
1015  * bits 4-6 = command type (== 0)
1016  *
1017  * ioaccel1 mode:
1018  * bit 0 = "performant mode" bit.
1019  * bits 1-3 = block fetch table entry
1020  * bits 4-6 = command type (== 110)
1021  * (command type is needed because ioaccel1 mode
1022  * commands are submitted through the same register as normal
1023  * mode commands, so this is how the controller knows whether
1024  * the command is normal mode or ioaccel1 mode.)
1025  *
1026  * ioaccel2 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-4 = block fetch table entry (note extra bit)
1029  * bits 4-6 = not needed, because ioaccel2 mode has
1030  * a separate special register for submitting commands.
1031  */
1032
1033 /*
1034  * set_performant_mode: Modify the tag for cciss performant
1035  * set bit 0 for pull model, bits 3-1 for block fetch
1036  * register number
1037  */
1038 #define DEFAULT_REPLY_QUEUE (-1)
1039 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1040                                         int reply_queue)
1041 {
1042         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1043                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1044                 if (unlikely(!h->msix_vectors))
1045                         return;
1046                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047                         c->Header.ReplyQueue =
1048                                 raw_smp_processor_id() % h->nreply_queues;
1049                 else
1050                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1051         }
1052 }
1053
1054 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1055                                                 struct CommandList *c,
1056                                                 int reply_queue)
1057 {
1058         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1059
1060         /*
1061          * Tell the controller to post the reply to the queue for this
1062          * processor.  This seems to give the best I/O throughput.
1063          */
1064         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1065                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1066         else
1067                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1068         /*
1069          * Set the bits in the address sent down to include:
1070          *  - performant mode bit (bit 0)
1071          *  - pull count (bits 1-3)
1072          *  - command type (bits 4-6)
1073          */
1074         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1075                                         IOACCEL1_BUSADDR_CMDTYPE;
1076 }
1077
1078 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1079                                                 struct CommandList *c,
1080                                                 int reply_queue)
1081 {
1082         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1083                 &h->ioaccel2_cmd_pool[c->cmdindex];
1084
1085         /* Tell the controller to post the reply to the queue for this
1086          * processor.  This seems to give the best I/O throughput.
1087          */
1088         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090         else
1091                 cp->reply_queue = reply_queue % h->nreply_queues;
1092         /* Set the bits in the address sent down to include:
1093          *  - performant mode bit not used in ioaccel mode 2
1094          *  - pull count (bits 0-3)
1095          *  - command type isn't needed for ioaccel2
1096          */
1097         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1098 }
1099
1100 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1101                                                 struct CommandList *c,
1102                                                 int reply_queue)
1103 {
1104         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1105
1106         /*
1107          * Tell the controller to post the reply to the queue for this
1108          * processor.  This seems to give the best I/O throughput.
1109          */
1110         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1111                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1112         else
1113                 cp->reply_queue = reply_queue % h->nreply_queues;
1114         /*
1115          * Set the bits in the address sent down to include:
1116          *  - performant mode bit not used in ioaccel mode 2
1117          *  - pull count (bits 0-3)
1118          *  - command type isn't needed for ioaccel2
1119          */
1120         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1121 }
1122
1123 static int is_firmware_flash_cmd(u8 *cdb)
1124 {
1125         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1126 }
1127
1128 /*
1129  * During firmware flash, the heartbeat register may not update as frequently
1130  * as it should.  So we dial down lockup detection during firmware flash. and
1131  * dial it back up when firmware flash completes.
1132  */
1133 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1134 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1135 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1136 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1137                 struct CommandList *c)
1138 {
1139         if (!is_firmware_flash_cmd(c->Request.CDB))
1140                 return;
1141         atomic_inc(&h->firmware_flash_in_progress);
1142         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1143 }
1144
1145 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1146                 struct CommandList *c)
1147 {
1148         if (is_firmware_flash_cmd(c->Request.CDB) &&
1149                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1150                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1151 }
1152
1153 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1154         struct CommandList *c, int reply_queue)
1155 {
1156         dial_down_lockup_detection_during_fw_flash(h, c);
1157         atomic_inc(&h->commands_outstanding);
1158         switch (c->cmd_type) {
1159         case CMD_IOACCEL1:
1160                 set_ioaccel1_performant_mode(h, c, reply_queue);
1161                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162                 break;
1163         case CMD_IOACCEL2:
1164                 set_ioaccel2_performant_mode(h, c, reply_queue);
1165                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166                 break;
1167         case IOACCEL2_TMF:
1168                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170                 break;
1171         default:
1172                 set_performant_mode(h, c, reply_queue);
1173                 h->access.submit_command(h, c);
1174         }
1175 }
1176
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179         if (unlikely(hpsa_is_pending_event(c)))
1180                 return finish_cmd(c);
1181
1182         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1183 }
1184
1185 static inline int is_hba_lunid(unsigned char scsi3addr[])
1186 {
1187         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1188 }
1189
1190 static inline int is_scsi_rev_5(struct ctlr_info *h)
1191 {
1192         if (!h->hba_inquiry_data)
1193                 return 0;
1194         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1195                 return 1;
1196         return 0;
1197 }
1198
1199 static int hpsa_find_target_lun(struct ctlr_info *h,
1200         unsigned char scsi3addr[], int bus, int *target, int *lun)
1201 {
1202         /* finds an unused bus, target, lun for a new physical device
1203          * assumes h->devlock is held
1204          */
1205         int i, found = 0;
1206         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1207
1208         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1209
1210         for (i = 0; i < h->ndevices; i++) {
1211                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1212                         __set_bit(h->dev[i]->target, lun_taken);
1213         }
1214
1215         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1216         if (i < HPSA_MAX_DEVICES) {
1217                 /* *bus = 1; */
1218                 *target = i;
1219                 *lun = 0;
1220                 found = 1;
1221         }
1222         return !found;
1223 }
1224
1225 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1226         struct hpsa_scsi_dev_t *dev, char *description)
1227 {
1228 #define LABEL_SIZE 25
1229         char label[LABEL_SIZE];
1230
1231         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1232                 return;
1233
1234         switch (dev->devtype) {
1235         case TYPE_RAID:
1236                 snprintf(label, LABEL_SIZE, "controller");
1237                 break;
1238         case TYPE_ENCLOSURE:
1239                 snprintf(label, LABEL_SIZE, "enclosure");
1240                 break;
1241         case TYPE_DISK:
1242         case TYPE_ZBC:
1243                 if (dev->external)
1244                         snprintf(label, LABEL_SIZE, "external");
1245                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1246                         snprintf(label, LABEL_SIZE, "%s",
1247                                 raid_label[PHYSICAL_DRIVE]);
1248                 else
1249                         snprintf(label, LABEL_SIZE, "RAID-%s",
1250                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1251                                 raid_label[dev->raid_level]);
1252                 break;
1253         case TYPE_ROM:
1254                 snprintf(label, LABEL_SIZE, "rom");
1255                 break;
1256         case TYPE_TAPE:
1257                 snprintf(label, LABEL_SIZE, "tape");
1258                 break;
1259         case TYPE_MEDIUM_CHANGER:
1260                 snprintf(label, LABEL_SIZE, "changer");
1261                 break;
1262         default:
1263                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1264                 break;
1265         }
1266
1267         dev_printk(level, &h->pdev->dev,
1268                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1269                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1270                         description,
1271                         scsi_device_type(dev->devtype),
1272                         dev->vendor,
1273                         dev->model,
1274                         label,
1275                         dev->offload_config ? '+' : '-',
1276                         dev->offload_enabled ? '+' : '-',
1277                         dev->expose_device);
1278 }
1279
1280 /* Add an entry into h->dev[] array. */
1281 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1282                 struct hpsa_scsi_dev_t *device,
1283                 struct hpsa_scsi_dev_t *added[], int *nadded)
1284 {
1285         /* assumes h->devlock is held */
1286         int n = h->ndevices;
1287         int i;
1288         unsigned char addr1[8], addr2[8];
1289         struct hpsa_scsi_dev_t *sd;
1290
1291         if (n >= HPSA_MAX_DEVICES) {
1292                 dev_err(&h->pdev->dev, "too many devices, some will be "
1293                         "inaccessible.\n");
1294                 return -1;
1295         }
1296
1297         /* physical devices do not have lun or target assigned until now. */
1298         if (device->lun != -1)
1299                 /* Logical device, lun is already assigned. */
1300                 goto lun_assigned;
1301
1302         /* If this device a non-zero lun of a multi-lun device
1303          * byte 4 of the 8-byte LUN addr will contain the logical
1304          * unit no, zero otherwise.
1305          */
1306         if (device->scsi3addr[4] == 0) {
1307                 /* This is not a non-zero lun of a multi-lun device */
1308                 if (hpsa_find_target_lun(h, device->scsi3addr,
1309                         device->bus, &device->target, &device->lun) != 0)
1310                         return -1;
1311                 goto lun_assigned;
1312         }
1313
1314         /* This is a non-zero lun of a multi-lun device.
1315          * Search through our list and find the device which
1316          * has the same 8 byte LUN address, excepting byte 4 and 5.
1317          * Assign the same bus and target for this new LUN.
1318          * Use the logical unit number from the firmware.
1319          */
1320         memcpy(addr1, device->scsi3addr, 8);
1321         addr1[4] = 0;
1322         addr1[5] = 0;
1323         for (i = 0; i < n; i++) {
1324                 sd = h->dev[i];
1325                 memcpy(addr2, sd->scsi3addr, 8);
1326                 addr2[4] = 0;
1327                 addr2[5] = 0;
1328                 /* differ only in byte 4 and 5? */
1329                 if (memcmp(addr1, addr2, 8) == 0) {
1330                         device->bus = sd->bus;
1331                         device->target = sd->target;
1332                         device->lun = device->scsi3addr[4];
1333                         break;
1334                 }
1335         }
1336         if (device->lun == -1) {
1337                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1338                         " suspect firmware bug or unsupported hardware "
1339                         "configuration.\n");
1340                         return -1;
1341         }
1342
1343 lun_assigned:
1344
1345         h->dev[n] = device;
1346         h->ndevices++;
1347         added[*nadded] = device;
1348         (*nadded)++;
1349         hpsa_show_dev_msg(KERN_INFO, h, device,
1350                 device->expose_device ? "added" : "masked");
1351         device->offload_to_be_enabled = device->offload_enabled;
1352         device->offload_enabled = 0;
1353         return 0;
1354 }
1355
1356 /* Update an entry in h->dev[] array. */
1357 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1358         int entry, struct hpsa_scsi_dev_t *new_entry)
1359 {
1360         int offload_enabled;
1361         /* assumes h->devlock is held */
1362         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1363
1364         /* Raid level changed. */
1365         h->dev[entry]->raid_level = new_entry->raid_level;
1366
1367         /* Raid offload parameters changed.  Careful about the ordering. */
1368         if (new_entry->offload_config && new_entry->offload_enabled) {
1369                 /*
1370                  * if drive is newly offload_enabled, we want to copy the
1371                  * raid map data first.  If previously offload_enabled and
1372                  * offload_config were set, raid map data had better be
1373                  * the same as it was before.  if raid map data is changed
1374                  * then it had better be the case that
1375                  * h->dev[entry]->offload_enabled is currently 0.
1376                  */
1377                 h->dev[entry]->raid_map = new_entry->raid_map;
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379         }
1380         if (new_entry->hba_ioaccel_enabled) {
1381                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1383         }
1384         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1385         h->dev[entry]->offload_config = new_entry->offload_config;
1386         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1387         h->dev[entry]->queue_depth = new_entry->queue_depth;
1388
1389         /*
1390          * We can turn off ioaccel offload now, but need to delay turning
1391          * it on until we can update h->dev[entry]->phys_disk[], but we
1392          * can't do that until all the devices are updated.
1393          */
1394         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1395         if (!new_entry->offload_enabled)
1396                 h->dev[entry]->offload_enabled = 0;
1397
1398         offload_enabled = h->dev[entry]->offload_enabled;
1399         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1400         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1401         h->dev[entry]->offload_enabled = offload_enabled;
1402 }
1403
1404 /* Replace an entry from h->dev[] array. */
1405 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1406         int entry, struct hpsa_scsi_dev_t *new_entry,
1407         struct hpsa_scsi_dev_t *added[], int *nadded,
1408         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1409 {
1410         /* assumes h->devlock is held */
1411         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1412         removed[*nremoved] = h->dev[entry];
1413         (*nremoved)++;
1414
1415         /*
1416          * New physical devices won't have target/lun assigned yet
1417          * so we need to preserve the values in the slot we are replacing.
1418          */
1419         if (new_entry->target == -1) {
1420                 new_entry->target = h->dev[entry]->target;
1421                 new_entry->lun = h->dev[entry]->lun;
1422         }
1423
1424         h->dev[entry] = new_entry;
1425         added[*nadded] = new_entry;
1426         (*nadded)++;
1427         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1428         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1429         new_entry->offload_enabled = 0;
1430 }
1431
1432 /* Remove an entry from h->dev[] array. */
1433 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1434         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1435 {
1436         /* assumes h->devlock is held */
1437         int i;
1438         struct hpsa_scsi_dev_t *sd;
1439
1440         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1441
1442         sd = h->dev[entry];
1443         removed[*nremoved] = h->dev[entry];
1444         (*nremoved)++;
1445
1446         for (i = entry; i < h->ndevices-1; i++)
1447                 h->dev[i] = h->dev[i+1];
1448         h->ndevices--;
1449         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1450 }
1451
1452 #define SCSI3ADDR_EQ(a, b) ( \
1453         (a)[7] == (b)[7] && \
1454         (a)[6] == (b)[6] && \
1455         (a)[5] == (b)[5] && \
1456         (a)[4] == (b)[4] && \
1457         (a)[3] == (b)[3] && \
1458         (a)[2] == (b)[2] && \
1459         (a)[1] == (b)[1] && \
1460         (a)[0] == (b)[0])
1461
1462 static void fixup_botched_add(struct ctlr_info *h,
1463         struct hpsa_scsi_dev_t *added)
1464 {
1465         /* called when scsi_add_device fails in order to re-adjust
1466          * h->dev[] to match the mid layer's view.
1467          */
1468         unsigned long flags;
1469         int i, j;
1470
1471         spin_lock_irqsave(&h->lock, flags);
1472         for (i = 0; i < h->ndevices; i++) {
1473                 if (h->dev[i] == added) {
1474                         for (j = i; j < h->ndevices-1; j++)
1475                                 h->dev[j] = h->dev[j+1];
1476                         h->ndevices--;
1477                         break;
1478                 }
1479         }
1480         spin_unlock_irqrestore(&h->lock, flags);
1481         kfree(added);
1482 }
1483
1484 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1485         struct hpsa_scsi_dev_t *dev2)
1486 {
1487         /* we compare everything except lun and target as these
1488          * are not yet assigned.  Compare parts likely
1489          * to differ first
1490          */
1491         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1492                 sizeof(dev1->scsi3addr)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->device_id, dev2->device_id,
1495                 sizeof(dev1->device_id)) != 0)
1496                 return 0;
1497         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1498                 return 0;
1499         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1500                 return 0;
1501         if (dev1->devtype != dev2->devtype)
1502                 return 0;
1503         if (dev1->bus != dev2->bus)
1504                 return 0;
1505         return 1;
1506 }
1507
1508 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1509         struct hpsa_scsi_dev_t *dev2)
1510 {
1511         /* Device attributes that can change, but don't mean
1512          * that the device is a different device, nor that the OS
1513          * needs to be told anything about the change.
1514          */
1515         if (dev1->raid_level != dev2->raid_level)
1516                 return 1;
1517         if (dev1->offload_config != dev2->offload_config)
1518                 return 1;
1519         if (dev1->offload_enabled != dev2->offload_enabled)
1520                 return 1;
1521         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1522                 if (dev1->queue_depth != dev2->queue_depth)
1523                         return 1;
1524         return 0;
1525 }
1526
1527 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1528  * and return needle location in *index.  If scsi3addr matches, but not
1529  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1530  * location in *index.
1531  * In the case of a minor device attribute change, such as RAID level, just
1532  * return DEVICE_UPDATED, along with the updated device's location in index.
1533  * If needle not found, return DEVICE_NOT_FOUND.
1534  */
1535 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1536         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1537         int *index)
1538 {
1539         int i;
1540 #define DEVICE_NOT_FOUND 0
1541 #define DEVICE_CHANGED 1
1542 #define DEVICE_SAME 2
1543 #define DEVICE_UPDATED 3
1544         if (needle == NULL)
1545                 return DEVICE_NOT_FOUND;
1546
1547         for (i = 0; i < haystack_size; i++) {
1548                 if (haystack[i] == NULL) /* previously removed. */
1549                         continue;
1550                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1551                         *index = i;
1552                         if (device_is_the_same(needle, haystack[i])) {
1553                                 if (device_updated(needle, haystack[i]))
1554                                         return DEVICE_UPDATED;
1555                                 return DEVICE_SAME;
1556                         } else {
1557                                 /* Keep offline devices offline */
1558                                 if (needle->volume_offline)
1559                                         return DEVICE_NOT_FOUND;
1560                                 return DEVICE_CHANGED;
1561                         }
1562                 }
1563         }
1564         *index = -1;
1565         return DEVICE_NOT_FOUND;
1566 }
1567
1568 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1569                                         unsigned char scsi3addr[])
1570 {
1571         struct offline_device_entry *device;
1572         unsigned long flags;
1573
1574         /* Check to see if device is already on the list */
1575         spin_lock_irqsave(&h->offline_device_lock, flags);
1576         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1577                 if (memcmp(device->scsi3addr, scsi3addr,
1578                         sizeof(device->scsi3addr)) == 0) {
1579                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1580                         return;
1581                 }
1582         }
1583         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584
1585         /* Device is not on the list, add it. */
1586         device = kmalloc(sizeof(*device), GFP_KERNEL);
1587         if (!device)
1588                 return;
1589
1590         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1591         spin_lock_irqsave(&h->offline_device_lock, flags);
1592         list_add_tail(&device->offline_list, &h->offline_device_list);
1593         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594 }
1595
1596 /* Print a message explaining various offline volume states */
1597 static void hpsa_show_volume_status(struct ctlr_info *h,
1598         struct hpsa_scsi_dev_t *sd)
1599 {
1600         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1601                 dev_info(&h->pdev->dev,
1602                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1603                         h->scsi_host->host_no,
1604                         sd->bus, sd->target, sd->lun);
1605         switch (sd->volume_offline) {
1606         case HPSA_LV_OK:
1607                 break;
1608         case HPSA_LV_UNDERGOING_ERASE:
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613                 break;
1614         case HPSA_LV_NOT_AVAILABLE:
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619                 break;
1620         case HPSA_LV_UNDERGOING_RPI:
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625                 break;
1626         case HPSA_LV_PENDING_RPI:
1627                 dev_info(&h->pdev->dev,
1628                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1629                         h->scsi_host->host_no,
1630                         sd->bus, sd->target, sd->lun);
1631                 break;
1632         case HPSA_LV_ENCRYPTED_NO_KEY:
1633                 dev_info(&h->pdev->dev,
1634                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1635                         h->scsi_host->host_no,
1636                         sd->bus, sd->target, sd->lun);
1637                 break;
1638         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1639                 dev_info(&h->pdev->dev,
1640                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1641                         h->scsi_host->host_no,
1642                         sd->bus, sd->target, sd->lun);
1643                 break;
1644         case HPSA_LV_UNDERGOING_ENCRYPTION:
1645                 dev_info(&h->pdev->dev,
1646                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1647                         h->scsi_host->host_no,
1648                         sd->bus, sd->target, sd->lun);
1649                 break;
1650         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1651                 dev_info(&h->pdev->dev,
1652                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1653                         h->scsi_host->host_no,
1654                         sd->bus, sd->target, sd->lun);
1655                 break;
1656         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1657                 dev_info(&h->pdev->dev,
1658                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1659                         h->scsi_host->host_no,
1660                         sd->bus, sd->target, sd->lun);
1661                 break;
1662         case HPSA_LV_PENDING_ENCRYPTION:
1663                 dev_info(&h->pdev->dev,
1664                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1665                         h->scsi_host->host_no,
1666                         sd->bus, sd->target, sd->lun);
1667                 break;
1668         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1669                 dev_info(&h->pdev->dev,
1670                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1671                         h->scsi_host->host_no,
1672                         sd->bus, sd->target, sd->lun);
1673                 break;
1674         }
1675 }
1676
1677 /*
1678  * Figure the list of physical drive pointers for a logical drive with
1679  * raid offload configured.
1680  */
1681 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1682                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1683                                 struct hpsa_scsi_dev_t *logical_drive)
1684 {
1685         struct raid_map_data *map = &logical_drive->raid_map;
1686         struct raid_map_disk_data *dd = &map->data[0];
1687         int i, j;
1688         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1689                                 le16_to_cpu(map->metadata_disks_per_row);
1690         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1691                                 le16_to_cpu(map->layout_map_count) *
1692                                 total_disks_per_row;
1693         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1694                                 total_disks_per_row;
1695         int qdepth;
1696
1697         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1698                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1699
1700         logical_drive->nphysical_disks = nraid_map_entries;
1701
1702         qdepth = 0;
1703         for (i = 0; i < nraid_map_entries; i++) {
1704                 logical_drive->phys_disk[i] = NULL;
1705                 if (!logical_drive->offload_config)
1706                         continue;
1707                 for (j = 0; j < ndevices; j++) {
1708                         if (dev[j] == NULL)
1709                                 continue;
1710                         if (dev[j]->devtype != TYPE_DISK &&
1711                             dev[j]->devtype != TYPE_ZBC)
1712                                 continue;
1713                         if (is_logical_device(dev[j]))
1714                                 continue;
1715                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1716                                 continue;
1717
1718                         logical_drive->phys_disk[i] = dev[j];
1719                         if (i < nphys_disk)
1720                                 qdepth = min(h->nr_cmds, qdepth +
1721                                     logical_drive->phys_disk[i]->queue_depth);
1722                         break;
1723                 }
1724
1725                 /*
1726                  * This can happen if a physical drive is removed and
1727                  * the logical drive is degraded.  In that case, the RAID
1728                  * map data will refer to a physical disk which isn't actually
1729                  * present.  And in that case offload_enabled should already
1730                  * be 0, but we'll turn it off here just in case
1731                  */
1732                 if (!logical_drive->phys_disk[i]) {
1733                         logical_drive->offload_enabled = 0;
1734                         logical_drive->offload_to_be_enabled = 0;
1735                         logical_drive->queue_depth = 8;
1736                 }
1737         }
1738         if (nraid_map_entries)
1739                 /*
1740                  * This is correct for reads, too high for full stripe writes,
1741                  * way too high for partial stripe writes
1742                  */
1743                 logical_drive->queue_depth = qdepth;
1744         else
1745                 logical_drive->queue_depth = h->nr_cmds;
1746 }
1747
1748 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1749                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1750 {
1751         int i;
1752
1753         for (i = 0; i < ndevices; i++) {
1754                 if (dev[i] == NULL)
1755                         continue;
1756                 if (dev[i]->devtype != TYPE_DISK &&
1757                     dev[i]->devtype != TYPE_ZBC)
1758                         continue;
1759                 if (!is_logical_device(dev[i]))
1760                         continue;
1761
1762                 /*
1763                  * If offload is currently enabled, the RAID map and
1764                  * phys_disk[] assignment *better* not be changing
1765                  * and since it isn't changing, we do not need to
1766                  * update it.
1767                  */
1768                 if (dev[i]->offload_enabled)
1769                         continue;
1770
1771                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1772         }
1773 }
1774
1775 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1776 {
1777         int rc = 0;
1778
1779         if (!h->scsi_host)
1780                 return 1;
1781
1782         if (is_logical_device(device)) /* RAID */
1783                 rc = scsi_add_device(h->scsi_host, device->bus,
1784                                         device->target, device->lun);
1785         else /* HBA */
1786                 rc = hpsa_add_sas_device(h->sas_host, device);
1787
1788         return rc;
1789 }
1790
1791 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1792                                                 struct hpsa_scsi_dev_t *dev)
1793 {
1794         int i;
1795         int count = 0;
1796
1797         for (i = 0; i < h->nr_cmds; i++) {
1798                 struct CommandList *c = h->cmd_pool + i;
1799                 int refcount = atomic_inc_return(&c->refcount);
1800
1801                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1802                                 dev->scsi3addr)) {
1803                         unsigned long flags;
1804
1805                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1806                         if (!hpsa_is_cmd_idle(c))
1807                                 ++count;
1808                         spin_unlock_irqrestore(&h->lock, flags);
1809                 }
1810
1811                 cmd_free(h, c);
1812         }
1813
1814         return count;
1815 }
1816
1817 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1818                                                 struct hpsa_scsi_dev_t *device)
1819 {
1820         int cmds = 0;
1821         int waits = 0;
1822
1823         while (1) {
1824                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1825                 if (cmds == 0)
1826                         break;
1827                 if (++waits > 20)
1828                         break;
1829                 dev_warn(&h->pdev->dev,
1830                         "%s: removing device with %d outstanding commands!\n",
1831                         __func__, cmds);
1832                 msleep(1000);
1833         }
1834 }
1835
1836 static void hpsa_remove_device(struct ctlr_info *h,
1837                         struct hpsa_scsi_dev_t *device)
1838 {
1839         struct scsi_device *sdev = NULL;
1840
1841         if (!h->scsi_host)
1842                 return;
1843
1844         if (is_logical_device(device)) { /* RAID */
1845                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1846                                                 device->target, device->lun);
1847                 if (sdev) {
1848                         scsi_remove_device(sdev);
1849                         scsi_device_put(sdev);
1850                 } else {
1851                         /*
1852                          * We don't expect to get here.  Future commands
1853                          * to this device will get a selection timeout as
1854                          * if the device were gone.
1855                          */
1856                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1857                                         "didn't find device for removal.");
1858                 }
1859         } else { /* HBA */
1860
1861                 device->removed = 1;
1862                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1863
1864                 hpsa_remove_sas_device(device);
1865         }
1866 }
1867
1868 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1869         struct hpsa_scsi_dev_t *sd[], int nsds)
1870 {
1871         /* sd contains scsi3 addresses and devtypes, and inquiry
1872          * data.  This function takes what's in sd to be the current
1873          * reality and updates h->dev[] to reflect that reality.
1874          */
1875         int i, entry, device_change, changes = 0;
1876         struct hpsa_scsi_dev_t *csd;
1877         unsigned long flags;
1878         struct hpsa_scsi_dev_t **added, **removed;
1879         int nadded, nremoved;
1880
1881         /*
1882          * A reset can cause a device status to change
1883          * re-schedule the scan to see what happened.
1884          */
1885         spin_lock_irqsave(&h->reset_lock, flags);
1886         if (h->reset_in_progress) {
1887                 h->drv_req_rescan = 1;
1888                 spin_unlock_irqrestore(&h->reset_lock, flags);
1889                 return;
1890         }
1891         spin_unlock_irqrestore(&h->reset_lock, flags);
1892
1893         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1894         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1895
1896         if (!added || !removed) {
1897                 dev_warn(&h->pdev->dev, "out of memory in "
1898                         "adjust_hpsa_scsi_table\n");
1899                 goto free_and_out;
1900         }
1901
1902         spin_lock_irqsave(&h->devlock, flags);
1903
1904         /* find any devices in h->dev[] that are not in
1905          * sd[] and remove them from h->dev[], and for any
1906          * devices which have changed, remove the old device
1907          * info and add the new device info.
1908          * If minor device attributes change, just update
1909          * the existing device structure.
1910          */
1911         i = 0;
1912         nremoved = 0;
1913         nadded = 0;
1914         while (i < h->ndevices) {
1915                 csd = h->dev[i];
1916                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1917                 if (device_change == DEVICE_NOT_FOUND) {
1918                         changes++;
1919                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1920                         continue; /* remove ^^^, hence i not incremented */
1921                 } else if (device_change == DEVICE_CHANGED) {
1922                         changes++;
1923                         hpsa_scsi_replace_entry(h, i, sd[entry],
1924                                 added, &nadded, removed, &nremoved);
1925                         /* Set it to NULL to prevent it from being freed
1926                          * at the bottom of hpsa_update_scsi_devices()
1927                          */
1928                         sd[entry] = NULL;
1929                 } else if (device_change == DEVICE_UPDATED) {
1930                         hpsa_scsi_update_entry(h, i, sd[entry]);
1931                 }
1932                 i++;
1933         }
1934
1935         /* Now, make sure every device listed in sd[] is also
1936          * listed in h->dev[], adding them if they aren't found
1937          */
1938
1939         for (i = 0; i < nsds; i++) {
1940                 if (!sd[i]) /* if already added above. */
1941                         continue;
1942
1943                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1944                  * as the SCSI mid-layer does not handle such devices well.
1945                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1946                  * at 160Hz, and prevents the system from coming up.
1947                  */
1948                 if (sd[i]->volume_offline) {
1949                         hpsa_show_volume_status(h, sd[i]);
1950                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1951                         continue;
1952                 }
1953
1954                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1955                                         h->ndevices, &entry);
1956                 if (device_change == DEVICE_NOT_FOUND) {
1957                         changes++;
1958                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1959                                 break;
1960                         sd[i] = NULL; /* prevent from being freed later. */
1961                 } else if (device_change == DEVICE_CHANGED) {
1962                         /* should never happen... */
1963                         changes++;
1964                         dev_warn(&h->pdev->dev,
1965                                 "device unexpectedly changed.\n");
1966                         /* but if it does happen, we just ignore that device */
1967                 }
1968         }
1969         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1970
1971         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1972          * any logical drives that need it enabled.
1973          */
1974         for (i = 0; i < h->ndevices; i++) {
1975                 if (h->dev[i] == NULL)
1976                         continue;
1977                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1978         }
1979
1980         spin_unlock_irqrestore(&h->devlock, flags);
1981
1982         /* Monitor devices which are in one of several NOT READY states to be
1983          * brought online later. This must be done without holding h->devlock,
1984          * so don't touch h->dev[]
1985          */
1986         for (i = 0; i < nsds; i++) {
1987                 if (!sd[i]) /* if already added above. */
1988                         continue;
1989                 if (sd[i]->volume_offline)
1990                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1991         }
1992
1993         /* Don't notify scsi mid layer of any changes the first time through
1994          * (or if there are no changes) scsi_scan_host will do it later the
1995          * first time through.
1996          */
1997         if (!changes)
1998                 goto free_and_out;
1999
2000         /* Notify scsi mid layer of any removed devices */
2001         for (i = 0; i < nremoved; i++) {
2002                 if (removed[i] == NULL)
2003                         continue;
2004                 if (removed[i]->expose_device)
2005                         hpsa_remove_device(h, removed[i]);
2006                 kfree(removed[i]);
2007                 removed[i] = NULL;
2008         }
2009
2010         /* Notify scsi mid layer of any added devices */
2011         for (i = 0; i < nadded; i++) {
2012                 int rc = 0;
2013
2014                 if (added[i] == NULL)
2015                         continue;
2016                 if (!(added[i]->expose_device))
2017                         continue;
2018                 rc = hpsa_add_device(h, added[i]);
2019                 if (!rc)
2020                         continue;
2021                 dev_warn(&h->pdev->dev,
2022                         "addition failed %d, device not added.", rc);
2023                 /* now we have to remove it from h->dev,
2024                  * since it didn't get added to scsi mid layer
2025                  */
2026                 fixup_botched_add(h, added[i]);
2027                 h->drv_req_rescan = 1;
2028         }
2029
2030 free_and_out:
2031         kfree(added);
2032         kfree(removed);
2033 }
2034
2035 /*
2036  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2037  * Assume's h->devlock is held.
2038  */
2039 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2040         int bus, int target, int lun)
2041 {
2042         int i;
2043         struct hpsa_scsi_dev_t *sd;
2044
2045         for (i = 0; i < h->ndevices; i++) {
2046                 sd = h->dev[i];
2047                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2048                         return sd;
2049         }
2050         return NULL;
2051 }
2052
2053 static int hpsa_slave_alloc(struct scsi_device *sdev)
2054 {
2055         struct hpsa_scsi_dev_t *sd = NULL;
2056         unsigned long flags;
2057         struct ctlr_info *h;
2058
2059         h = sdev_to_hba(sdev);
2060         spin_lock_irqsave(&h->devlock, flags);
2061         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2062                 struct scsi_target *starget;
2063                 struct sas_rphy *rphy;
2064
2065                 starget = scsi_target(sdev);
2066                 rphy = target_to_rphy(starget);
2067                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2068                 if (sd) {
2069                         sd->target = sdev_id(sdev);
2070                         sd->lun = sdev->lun;
2071                 }
2072         }
2073         if (!sd)
2074                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2075                                         sdev_id(sdev), sdev->lun);
2076
2077         if (sd && sd->expose_device) {
2078                 atomic_set(&sd->ioaccel_cmds_out, 0);
2079                 sdev->hostdata = sd;
2080         } else
2081                 sdev->hostdata = NULL;
2082         spin_unlock_irqrestore(&h->devlock, flags);
2083         return 0;
2084 }
2085
2086 /* configure scsi device based on internal per-device structure */
2087 static int hpsa_slave_configure(struct scsi_device *sdev)
2088 {
2089         struct hpsa_scsi_dev_t *sd;
2090         int queue_depth;
2091
2092         sd = sdev->hostdata;
2093         sdev->no_uld_attach = !sd || !sd->expose_device;
2094
2095         if (sd) {
2096                 if (sd->external)
2097                         queue_depth = EXTERNAL_QD;
2098                 else
2099                         queue_depth = sd->queue_depth != 0 ?
2100                                         sd->queue_depth : sdev->host->can_queue;
2101         } else
2102                 queue_depth = sdev->host->can_queue;
2103
2104         scsi_change_queue_depth(sdev, queue_depth);
2105
2106         return 0;
2107 }
2108
2109 static void hpsa_slave_destroy(struct scsi_device *sdev)
2110 {
2111         /* nothing to do. */
2112 }
2113
2114 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2115 {
2116         int i;
2117
2118         if (!h->ioaccel2_cmd_sg_list)
2119                 return;
2120         for (i = 0; i < h->nr_cmds; i++) {
2121                 kfree(h->ioaccel2_cmd_sg_list[i]);
2122                 h->ioaccel2_cmd_sg_list[i] = NULL;
2123         }
2124         kfree(h->ioaccel2_cmd_sg_list);
2125         h->ioaccel2_cmd_sg_list = NULL;
2126 }
2127
2128 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2129 {
2130         int i;
2131
2132         if (h->chainsize <= 0)
2133                 return 0;
2134
2135         h->ioaccel2_cmd_sg_list =
2136                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2137                                         GFP_KERNEL);
2138         if (!h->ioaccel2_cmd_sg_list)
2139                 return -ENOMEM;
2140         for (i = 0; i < h->nr_cmds; i++) {
2141                 h->ioaccel2_cmd_sg_list[i] =
2142                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2143                                         h->maxsgentries, GFP_KERNEL);
2144                 if (!h->ioaccel2_cmd_sg_list[i])
2145                         goto clean;
2146         }
2147         return 0;
2148
2149 clean:
2150         hpsa_free_ioaccel2_sg_chain_blocks(h);
2151         return -ENOMEM;
2152 }
2153
2154 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2155 {
2156         int i;
2157
2158         if (!h->cmd_sg_list)
2159                 return;
2160         for (i = 0; i < h->nr_cmds; i++) {
2161                 kfree(h->cmd_sg_list[i]);
2162                 h->cmd_sg_list[i] = NULL;
2163         }
2164         kfree(h->cmd_sg_list);
2165         h->cmd_sg_list = NULL;
2166 }
2167
2168 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2169 {
2170         int i;
2171
2172         if (h->chainsize <= 0)
2173                 return 0;
2174
2175         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2176                                 GFP_KERNEL);
2177         if (!h->cmd_sg_list)
2178                 return -ENOMEM;
2179
2180         for (i = 0; i < h->nr_cmds; i++) {
2181                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2182                                                 h->chainsize, GFP_KERNEL);
2183                 if (!h->cmd_sg_list[i])
2184                         goto clean;
2185
2186         }
2187         return 0;
2188
2189 clean:
2190         hpsa_free_sg_chain_blocks(h);
2191         return -ENOMEM;
2192 }
2193
2194 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2195         struct io_accel2_cmd *cp, struct CommandList *c)
2196 {
2197         struct ioaccel2_sg_element *chain_block;
2198         u64 temp64;
2199         u32 chain_size;
2200
2201         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2202         chain_size = le32_to_cpu(cp->sg[0].length);
2203         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2204                                 PCI_DMA_TODEVICE);
2205         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2206                 /* prevent subsequent unmapping */
2207                 cp->sg->address = 0;
2208                 return -1;
2209         }
2210         cp->sg->address = cpu_to_le64(temp64);
2211         return 0;
2212 }
2213
2214 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2215         struct io_accel2_cmd *cp)
2216 {
2217         struct ioaccel2_sg_element *chain_sg;
2218         u64 temp64;
2219         u32 chain_size;
2220
2221         chain_sg = cp->sg;
2222         temp64 = le64_to_cpu(chain_sg->address);
2223         chain_size = le32_to_cpu(cp->sg[0].length);
2224         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2225 }
2226
2227 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2228         struct CommandList *c)
2229 {
2230         struct SGDescriptor *chain_sg, *chain_block;
2231         u64 temp64;
2232         u32 chain_len;
2233
2234         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2235         chain_block = h->cmd_sg_list[c->cmdindex];
2236         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2237         chain_len = sizeof(*chain_sg) *
2238                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2239         chain_sg->Len = cpu_to_le32(chain_len);
2240         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2241                                 PCI_DMA_TODEVICE);
2242         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2243                 /* prevent subsequent unmapping */
2244                 chain_sg->Addr = cpu_to_le64(0);
2245                 return -1;
2246         }
2247         chain_sg->Addr = cpu_to_le64(temp64);
2248         return 0;
2249 }
2250
2251 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2252         struct CommandList *c)
2253 {
2254         struct SGDescriptor *chain_sg;
2255
2256         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2257                 return;
2258
2259         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2260         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2261                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2262 }
2263
2264
2265 /* Decode the various types of errors on ioaccel2 path.
2266  * Return 1 for any error that should generate a RAID path retry.
2267  * Return 0 for errors that don't require a RAID path retry.
2268  */
2269 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2270                                         struct CommandList *c,
2271                                         struct scsi_cmnd *cmd,
2272                                         struct io_accel2_cmd *c2,
2273                                         struct hpsa_scsi_dev_t *dev)
2274 {
2275         int data_len;
2276         int retry = 0;
2277         u32 ioaccel2_resid = 0;
2278
2279         switch (c2->error_data.serv_response) {
2280         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2281                 switch (c2->error_data.status) {
2282                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2283                         break;
2284                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2285                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2286                         if (c2->error_data.data_present !=
2287                                         IOACCEL2_SENSE_DATA_PRESENT) {
2288                                 memset(cmd->sense_buffer, 0,
2289                                         SCSI_SENSE_BUFFERSIZE);
2290                                 break;
2291                         }
2292                         /* copy the sense data */
2293                         data_len = c2->error_data.sense_data_len;
2294                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2295                                 data_len = SCSI_SENSE_BUFFERSIZE;
2296                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2297                                 data_len =
2298                                         sizeof(c2->error_data.sense_data_buff);
2299                         memcpy(cmd->sense_buffer,
2300                                 c2->error_data.sense_data_buff, data_len);
2301                         retry = 1;
2302                         break;
2303                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2304                         retry = 1;
2305                         break;
2306                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2307                         retry = 1;
2308                         break;
2309                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2310                         retry = 1;
2311                         break;
2312                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2313                         retry = 1;
2314                         break;
2315                 default:
2316                         retry = 1;
2317                         break;
2318                 }
2319                 break;
2320         case IOACCEL2_SERV_RESPONSE_FAILURE:
2321                 switch (c2->error_data.status) {
2322                 case IOACCEL2_STATUS_SR_IO_ERROR:
2323                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2324                 case IOACCEL2_STATUS_SR_OVERRUN:
2325                         retry = 1;
2326                         break;
2327                 case IOACCEL2_STATUS_SR_UNDERRUN:
2328                         cmd->result = (DID_OK << 16);           /* host byte */
2329                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2330                         ioaccel2_resid = get_unaligned_le32(
2331                                                 &c2->error_data.resid_cnt[0]);
2332                         scsi_set_resid(cmd, ioaccel2_resid);
2333                         break;
2334                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2335                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2336                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2337                         /*
2338                          * Did an HBA disk disappear? We will eventually
2339                          * get a state change event from the controller but
2340                          * in the meantime, we need to tell the OS that the
2341                          * HBA disk is no longer there and stop I/O
2342                          * from going down. This allows the potential re-insert
2343                          * of the disk to get the same device node.
2344                          */
2345                         if (dev->physical_device && dev->expose_device) {
2346                                 cmd->result = DID_NO_CONNECT << 16;
2347                                 dev->removed = 1;
2348                                 h->drv_req_rescan = 1;
2349                                 dev_warn(&h->pdev->dev,
2350                                         "%s: device is gone!\n", __func__);
2351                         } else
2352                                 /*
2353                                  * Retry by sending down the RAID path.
2354                                  * We will get an event from ctlr to
2355                                  * trigger rescan regardless.
2356                                  */
2357                                 retry = 1;
2358                         break;
2359                 default:
2360                         retry = 1;
2361                 }
2362                 break;
2363         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2364                 break;
2365         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2366                 break;
2367         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2368                 retry = 1;
2369                 break;
2370         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2371                 break;
2372         default:
2373                 retry = 1;
2374                 break;
2375         }
2376
2377         return retry;   /* retry on raid path? */
2378 }
2379
2380 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2381                 struct CommandList *c)
2382 {
2383         bool do_wake = false;
2384
2385         /*
2386          * Reset c->scsi_cmd here so that the reset handler will know
2387          * this command has completed.  Then, check to see if the handler is
2388          * waiting for this command, and, if so, wake it.
2389          */
2390         c->scsi_cmd = SCSI_CMD_IDLE;
2391         mb();   /* Declare command idle before checking for pending events. */
2392         if (c->reset_pending) {
2393                 unsigned long flags;
2394                 struct hpsa_scsi_dev_t *dev;
2395
2396                 /*
2397                  * There appears to be a reset pending; lock the lock and
2398                  * reconfirm.  If so, then decrement the count of outstanding
2399                  * commands and wake the reset command if this is the last one.
2400                  */
2401                 spin_lock_irqsave(&h->lock, flags);
2402                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2403                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2404                         do_wake = true;
2405                 c->reset_pending = NULL;
2406                 spin_unlock_irqrestore(&h->lock, flags);
2407         }
2408
2409         if (do_wake)
2410                 wake_up_all(&h->event_sync_wait_queue);
2411 }
2412
2413 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2414                                       struct CommandList *c)
2415 {
2416         hpsa_cmd_resolve_events(h, c);
2417         cmd_tagged_free(h, c);
2418 }
2419
2420 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2421                 struct CommandList *c, struct scsi_cmnd *cmd)
2422 {
2423         hpsa_cmd_resolve_and_free(h, c);
2424         if (cmd && cmd->scsi_done)
2425                 cmd->scsi_done(cmd);
2426 }
2427
2428 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2429 {
2430         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2431         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2432 }
2433
2434 static void process_ioaccel2_completion(struct ctlr_info *h,
2435                 struct CommandList *c, struct scsi_cmnd *cmd,
2436                 struct hpsa_scsi_dev_t *dev)
2437 {
2438         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2439
2440         /* check for good status */
2441         if (likely(c2->error_data.serv_response == 0 &&
2442                         c2->error_data.status == 0))
2443                 return hpsa_cmd_free_and_done(h, c, cmd);
2444
2445         /*
2446          * Any RAID offload error results in retry which will use
2447          * the normal I/O path so the controller can handle whatever's
2448          * wrong.
2449          */
2450         if (is_logical_device(dev) &&
2451                 c2->error_data.serv_response ==
2452                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2453                 if (c2->error_data.status ==
2454                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2455                         dev->offload_enabled = 0;
2456                         dev->offload_to_be_enabled = 0;
2457                 }
2458
2459                 return hpsa_retry_cmd(h, c);
2460         }
2461
2462         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2463                 return hpsa_retry_cmd(h, c);
2464
2465         return hpsa_cmd_free_and_done(h, c, cmd);
2466 }
2467
2468 /* Returns 0 on success, < 0 otherwise. */
2469 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2470                                         struct CommandList *cp)
2471 {
2472         u8 tmf_status = cp->err_info->ScsiStatus;
2473
2474         switch (tmf_status) {
2475         case CISS_TMF_COMPLETE:
2476                 /*
2477                  * CISS_TMF_COMPLETE never happens, instead,
2478                  * ei->CommandStatus == 0 for this case.
2479                  */
2480         case CISS_TMF_SUCCESS:
2481                 return 0;
2482         case CISS_TMF_INVALID_FRAME:
2483         case CISS_TMF_NOT_SUPPORTED:
2484         case CISS_TMF_FAILED:
2485         case CISS_TMF_WRONG_LUN:
2486         case CISS_TMF_OVERLAPPED_TAG:
2487                 break;
2488         default:
2489                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2490                                 tmf_status);
2491                 break;
2492         }
2493         return -tmf_status;
2494 }
2495
2496 static void complete_scsi_command(struct CommandList *cp)
2497 {
2498         struct scsi_cmnd *cmd;
2499         struct ctlr_info *h;
2500         struct ErrorInfo *ei;
2501         struct hpsa_scsi_dev_t *dev;
2502         struct io_accel2_cmd *c2;
2503
2504         u8 sense_key;
2505         u8 asc;      /* additional sense code */
2506         u8 ascq;     /* additional sense code qualifier */
2507         unsigned long sense_data_size;
2508
2509         ei = cp->err_info;
2510         cmd = cp->scsi_cmd;
2511         h = cp->h;
2512
2513         if (!cmd->device) {
2514                 cmd->result = DID_NO_CONNECT << 16;
2515                 return hpsa_cmd_free_and_done(h, cp, cmd);
2516         }
2517
2518         dev = cmd->device->hostdata;
2519         if (!dev) {
2520                 cmd->result = DID_NO_CONNECT << 16;
2521                 return hpsa_cmd_free_and_done(h, cp, cmd);
2522         }
2523         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2524
2525         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2526         if ((cp->cmd_type == CMD_SCSI) &&
2527                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2528                 hpsa_unmap_sg_chain_block(h, cp);
2529
2530         if ((cp->cmd_type == CMD_IOACCEL2) &&
2531                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2532                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2533
2534         cmd->result = (DID_OK << 16);           /* host byte */
2535         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2536
2537         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2538                 if (dev->physical_device && dev->expose_device &&
2539                         dev->removed) {
2540                         cmd->result = DID_NO_CONNECT << 16;
2541                         return hpsa_cmd_free_and_done(h, cp, cmd);
2542                 }
2543                 if (likely(cp->phys_disk != NULL))
2544                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2545         }
2546
2547         /*
2548          * We check for lockup status here as it may be set for
2549          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2550          * fail_all_oustanding_cmds()
2551          */
2552         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2553                 /* DID_NO_CONNECT will prevent a retry */
2554                 cmd->result = DID_NO_CONNECT << 16;
2555                 return hpsa_cmd_free_and_done(h, cp, cmd);
2556         }
2557
2558         if ((unlikely(hpsa_is_pending_event(cp))))
2559                 if (cp->reset_pending)
2560                         return hpsa_cmd_free_and_done(h, cp, cmd);
2561
2562         if (cp->cmd_type == CMD_IOACCEL2)
2563                 return process_ioaccel2_completion(h, cp, cmd, dev);
2564
2565         scsi_set_resid(cmd, ei->ResidualCnt);
2566         if (ei->CommandStatus == 0)
2567                 return hpsa_cmd_free_and_done(h, cp, cmd);
2568
2569         /* For I/O accelerator commands, copy over some fields to the normal
2570          * CISS header used below for error handling.
2571          */
2572         if (cp->cmd_type == CMD_IOACCEL1) {
2573                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2574                 cp->Header.SGList = scsi_sg_count(cmd);
2575                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2576                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2577                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2578                 cp->Header.tag = c->tag;
2579                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2580                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2581
2582                 /* Any RAID offload error results in retry which will use
2583                  * the normal I/O path so the controller can handle whatever's
2584                  * wrong.
2585                  */
2586                 if (is_logical_device(dev)) {
2587                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2588                                 dev->offload_enabled = 0;
2589                         return hpsa_retry_cmd(h, cp);
2590                 }
2591         }
2592
2593         /* an error has occurred */
2594         switch (ei->CommandStatus) {
2595
2596         case CMD_TARGET_STATUS:
2597                 cmd->result |= ei->ScsiStatus;
2598                 /* copy the sense data */
2599                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2600                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2601                 else
2602                         sense_data_size = sizeof(ei->SenseInfo);
2603                 if (ei->SenseLen < sense_data_size)
2604                         sense_data_size = ei->SenseLen;
2605                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2606                 if (ei->ScsiStatus)
2607                         decode_sense_data(ei->SenseInfo, sense_data_size,
2608                                 &sense_key, &asc, &ascq);
2609                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2610                         if (sense_key == ABORTED_COMMAND) {
2611                                 cmd->result |= DID_SOFT_ERROR << 16;
2612                                 break;
2613                         }
2614                         break;
2615                 }
2616                 /* Problem was not a check condition
2617                  * Pass it up to the upper layers...
2618                  */
2619                 if (ei->ScsiStatus) {
2620                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2621                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2622                                 "Returning result: 0x%x\n",
2623                                 cp, ei->ScsiStatus,
2624                                 sense_key, asc, ascq,
2625                                 cmd->result);
2626                 } else {  /* scsi status is zero??? How??? */
2627                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2628                                 "Returning no connection.\n", cp),
2629
2630                         /* Ordinarily, this case should never happen,
2631                          * but there is a bug in some released firmware
2632                          * revisions that allows it to happen if, for
2633                          * example, a 4100 backplane loses power and
2634                          * the tape drive is in it.  We assume that
2635                          * it's a fatal error of some kind because we
2636                          * can't show that it wasn't. We will make it
2637                          * look like selection timeout since that is
2638                          * the most common reason for this to occur,
2639                          * and it's severe enough.
2640                          */
2641
2642                         cmd->result = DID_NO_CONNECT << 16;
2643                 }
2644                 break;
2645
2646         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2647                 break;
2648         case CMD_DATA_OVERRUN:
2649                 dev_warn(&h->pdev->dev,
2650                         "CDB %16phN data overrun\n", cp->Request.CDB);
2651                 break;
2652         case CMD_INVALID: {
2653                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2654                 print_cmd(cp); */
2655                 /* We get CMD_INVALID if you address a non-existent device
2656                  * instead of a selection timeout (no response).  You will
2657                  * see this if you yank out a drive, then try to access it.
2658                  * This is kind of a shame because it means that any other
2659                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2660                  * missing target. */
2661                 cmd->result = DID_NO_CONNECT << 16;
2662         }
2663                 break;
2664         case CMD_PROTOCOL_ERR:
2665                 cmd->result = DID_ERROR << 16;
2666                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2667                                 cp->Request.CDB);
2668                 break;
2669         case CMD_HARDWARE_ERR:
2670                 cmd->result = DID_ERROR << 16;
2671                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2672                         cp->Request.CDB);
2673                 break;
2674         case CMD_CONNECTION_LOST:
2675                 cmd->result = DID_ERROR << 16;
2676                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2677                         cp->Request.CDB);
2678                 break;
2679         case CMD_ABORTED:
2680                 cmd->result = DID_ABORT << 16;
2681                 break;
2682         case CMD_ABORT_FAILED:
2683                 cmd->result = DID_ERROR << 16;
2684                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2685                         cp->Request.CDB);
2686                 break;
2687         case CMD_UNSOLICITED_ABORT:
2688                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2689                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2690                         cp->Request.CDB);
2691                 break;
2692         case CMD_TIMEOUT:
2693                 cmd->result = DID_TIME_OUT << 16;
2694                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2695                         cp->Request.CDB);
2696                 break;
2697         case CMD_UNABORTABLE:
2698                 cmd->result = DID_ERROR << 16;
2699                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2700                 break;
2701         case CMD_TMF_STATUS:
2702                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2703                         cmd->result = DID_ERROR << 16;
2704                 break;
2705         case CMD_IOACCEL_DISABLED:
2706                 /* This only handles the direct pass-through case since RAID
2707                  * offload is handled above.  Just attempt a retry.
2708                  */
2709                 cmd->result = DID_SOFT_ERROR << 16;
2710                 dev_warn(&h->pdev->dev,
2711                                 "cp %p had HP SSD Smart Path error\n", cp);
2712                 break;
2713         default:
2714                 cmd->result = DID_ERROR << 16;
2715                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2716                                 cp, ei->CommandStatus);
2717         }
2718
2719         return hpsa_cmd_free_and_done(h, cp, cmd);
2720 }
2721
2722 static void hpsa_pci_unmap(struct pci_dev *pdev,
2723         struct CommandList *c, int sg_used, int data_direction)
2724 {
2725         int i;
2726
2727         for (i = 0; i < sg_used; i++)
2728                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2729                                 le32_to_cpu(c->SG[i].Len),
2730                                 data_direction);
2731 }
2732
2733 static int hpsa_map_one(struct pci_dev *pdev,
2734                 struct CommandList *cp,
2735                 unsigned char *buf,
2736                 size_t buflen,
2737                 int data_direction)
2738 {
2739         u64 addr64;
2740
2741         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2742                 cp->Header.SGList = 0;
2743                 cp->Header.SGTotal = cpu_to_le16(0);
2744                 return 0;
2745         }
2746
2747         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2748         if (dma_mapping_error(&pdev->dev, addr64)) {
2749                 /* Prevent subsequent unmap of something never mapped */
2750                 cp->Header.SGList = 0;
2751                 cp->Header.SGTotal = cpu_to_le16(0);
2752                 return -1;
2753         }
2754         cp->SG[0].Addr = cpu_to_le64(addr64);
2755         cp->SG[0].Len = cpu_to_le32(buflen);
2756         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2757         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2758         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2759         return 0;
2760 }
2761
2762 #define NO_TIMEOUT ((unsigned long) -1)
2763 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2764 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2765         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2766 {
2767         DECLARE_COMPLETION_ONSTACK(wait);
2768
2769         c->waiting = &wait;
2770         __enqueue_cmd_and_start_io(h, c, reply_queue);
2771         if (timeout_msecs == NO_TIMEOUT) {
2772                 /* TODO: get rid of this no-timeout thing */
2773                 wait_for_completion_io(&wait);
2774                 return IO_OK;
2775         }
2776         if (!wait_for_completion_io_timeout(&wait,
2777                                         msecs_to_jiffies(timeout_msecs))) {
2778                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2779                 return -ETIMEDOUT;
2780         }
2781         return IO_OK;
2782 }
2783
2784 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2785                                    int reply_queue, unsigned long timeout_msecs)
2786 {
2787         if (unlikely(lockup_detected(h))) {
2788                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2789                 return IO_OK;
2790         }
2791         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2792 }
2793
2794 static u32 lockup_detected(struct ctlr_info *h)
2795 {
2796         int cpu;
2797         u32 rc, *lockup_detected;
2798
2799         cpu = get_cpu();
2800         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2801         rc = *lockup_detected;
2802         put_cpu();
2803         return rc;
2804 }
2805
2806 #define MAX_DRIVER_CMD_RETRIES 25
2807 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2808         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2809 {
2810         int backoff_time = 10, retry_count = 0;
2811         int rc;
2812
2813         do {
2814                 memset(c->err_info, 0, sizeof(*c->err_info));
2815                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2816                                                   timeout_msecs);
2817                 if (rc)
2818                         break;
2819                 retry_count++;
2820                 if (retry_count > 3) {
2821                         msleep(backoff_time);
2822                         if (backoff_time < 1000)
2823                                 backoff_time *= 2;
2824                 }
2825         } while ((check_for_unit_attention(h, c) ||
2826                         check_for_busy(h, c)) &&
2827                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2828         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2829         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2830                 rc = -EIO;
2831         return rc;
2832 }
2833
2834 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2835                                 struct CommandList *c)
2836 {
2837         const u8 *cdb = c->Request.CDB;
2838         const u8 *lun = c->Header.LUN.LunAddrBytes;
2839
2840         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2841                  txt, lun, cdb);
2842 }
2843
2844 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2845                         struct CommandList *cp)
2846 {
2847         const struct ErrorInfo *ei = cp->err_info;
2848         struct device *d = &cp->h->pdev->dev;
2849         u8 sense_key, asc, ascq;
2850         int sense_len;
2851
2852         switch (ei->CommandStatus) {
2853         case CMD_TARGET_STATUS:
2854                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2855                         sense_len = sizeof(ei->SenseInfo);
2856                 else
2857                         sense_len = ei->SenseLen;
2858                 decode_sense_data(ei->SenseInfo, sense_len,
2859                                         &sense_key, &asc, &ascq);
2860                 hpsa_print_cmd(h, "SCSI status", cp);
2861                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2862                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2863                                 sense_key, asc, ascq);
2864                 else
2865                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2866                 if (ei->ScsiStatus == 0)
2867                         dev_warn(d, "SCSI status is abnormally zero.  "
2868                         "(probably indicates selection timeout "
2869                         "reported incorrectly due to a known "
2870                         "firmware bug, circa July, 2001.)\n");
2871                 break;
2872         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2873                 break;
2874         case CMD_DATA_OVERRUN:
2875                 hpsa_print_cmd(h, "overrun condition", cp);
2876                 break;
2877         case CMD_INVALID: {
2878                 /* controller unfortunately reports SCSI passthru's
2879                  * to non-existent targets as invalid commands.
2880                  */
2881                 hpsa_print_cmd(h, "invalid command", cp);
2882                 dev_warn(d, "probably means device no longer present\n");
2883                 }
2884                 break;
2885         case CMD_PROTOCOL_ERR:
2886                 hpsa_print_cmd(h, "protocol error", cp);
2887                 break;
2888         case CMD_HARDWARE_ERR:
2889                 hpsa_print_cmd(h, "hardware error", cp);
2890                 break;
2891         case CMD_CONNECTION_LOST:
2892                 hpsa_print_cmd(h, "connection lost", cp);
2893                 break;
2894         case CMD_ABORTED:
2895                 hpsa_print_cmd(h, "aborted", cp);
2896                 break;
2897         case CMD_ABORT_FAILED:
2898                 hpsa_print_cmd(h, "abort failed", cp);
2899                 break;
2900         case CMD_UNSOLICITED_ABORT:
2901                 hpsa_print_cmd(h, "unsolicited abort", cp);
2902                 break;
2903         case CMD_TIMEOUT:
2904                 hpsa_print_cmd(h, "timed out", cp);
2905                 break;
2906         case CMD_UNABORTABLE:
2907                 hpsa_print_cmd(h, "unabortable", cp);
2908                 break;
2909         case CMD_CTLR_LOCKUP:
2910                 hpsa_print_cmd(h, "controller lockup detected", cp);
2911                 break;
2912         default:
2913                 hpsa_print_cmd(h, "unknown status", cp);
2914                 dev_warn(d, "Unknown command status %x\n",
2915                                 ei->CommandStatus);
2916         }
2917 }
2918
2919 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2920                         u16 page, unsigned char *buf,
2921                         unsigned char bufsize)
2922 {
2923         int rc = IO_OK;
2924         struct CommandList *c;
2925         struct ErrorInfo *ei;
2926
2927         c = cmd_alloc(h);
2928
2929         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2930                         page, scsi3addr, TYPE_CMD)) {
2931                 rc = -1;
2932                 goto out;
2933         }
2934         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2935                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2936         if (rc)
2937                 goto out;
2938         ei = c->err_info;
2939         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2940                 hpsa_scsi_interpret_error(h, c);
2941                 rc = -1;
2942         }
2943 out:
2944         cmd_free(h, c);
2945         return rc;
2946 }
2947
2948 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2949         u8 reset_type, int reply_queue)
2950 {
2951         int rc = IO_OK;
2952         struct CommandList *c;
2953         struct ErrorInfo *ei;
2954
2955         c = cmd_alloc(h);
2956
2957
2958         /* fill_cmd can't fail here, no data buffer to map. */
2959         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2960                         scsi3addr, TYPE_MSG);
2961         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2962         if (rc) {
2963                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2964                 goto out;
2965         }
2966         /* no unmap needed here because no data xfer. */
2967
2968         ei = c->err_info;
2969         if (ei->CommandStatus != 0) {
2970                 hpsa_scsi_interpret_error(h, c);
2971                 rc = -1;
2972         }
2973 out:
2974         cmd_free(h, c);
2975         return rc;
2976 }
2977
2978 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2979                                struct hpsa_scsi_dev_t *dev,
2980                                unsigned char *scsi3addr)
2981 {
2982         int i;
2983         bool match = false;
2984         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2985         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2986
2987         if (hpsa_is_cmd_idle(c))
2988                 return false;
2989
2990         switch (c->cmd_type) {
2991         case CMD_SCSI:
2992         case CMD_IOCTL_PEND:
2993                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2994                                 sizeof(c->Header.LUN.LunAddrBytes));
2995                 break;
2996
2997         case CMD_IOACCEL1:
2998         case CMD_IOACCEL2:
2999                 if (c->phys_disk == dev) {
3000                         /* HBA mode match */
3001                         match = true;
3002                 } else {
3003                         /* Possible RAID mode -- check each phys dev. */
3004                         /* FIXME:  Do we need to take out a lock here?  If
3005                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3006                          * instead. */
3007                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3008                                 /* FIXME: an alternate test might be
3009                                  *
3010                                  * match = dev->phys_disk[i]->ioaccel_handle
3011                                  *              == c2->scsi_nexus;      */
3012                                 match = dev->phys_disk[i] == c->phys_disk;
3013                         }
3014                 }
3015                 break;
3016
3017         case IOACCEL2_TMF:
3018                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3019                         match = dev->phys_disk[i]->ioaccel_handle ==
3020                                         le32_to_cpu(ac->it_nexus);
3021                 }
3022                 break;
3023
3024         case 0:         /* The command is in the middle of being initialized. */
3025                 match = false;
3026                 break;
3027
3028         default:
3029                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3030                         c->cmd_type);
3031                 BUG();
3032         }
3033
3034         return match;
3035 }
3036
3037 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3038         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3039 {
3040         int i;
3041         int rc = 0;
3042
3043         /* We can really only handle one reset at a time */
3044         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3045                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3046                 return -EINTR;
3047         }
3048
3049         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3050
3051         for (i = 0; i < h->nr_cmds; i++) {
3052                 struct CommandList *c = h->cmd_pool + i;
3053                 int refcount = atomic_inc_return(&c->refcount);
3054
3055                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3056                         unsigned long flags;
3057
3058                         /*
3059                          * Mark the target command as having a reset pending,
3060                          * then lock a lock so that the command cannot complete
3061                          * while we're considering it.  If the command is not
3062                          * idle then count it; otherwise revoke the event.
3063                          */
3064                         c->reset_pending = dev;
3065                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3066                         if (!hpsa_is_cmd_idle(c))
3067                                 atomic_inc(&dev->reset_cmds_out);
3068                         else
3069                                 c->reset_pending = NULL;
3070                         spin_unlock_irqrestore(&h->lock, flags);
3071                 }
3072
3073                 cmd_free(h, c);
3074         }
3075
3076         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3077         if (!rc)
3078                 wait_event(h->event_sync_wait_queue,
3079                         atomic_read(&dev->reset_cmds_out) == 0 ||
3080                         lockup_detected(h));
3081
3082         if (unlikely(lockup_detected(h))) {
3083                 dev_warn(&h->pdev->dev,
3084                          "Controller lockup detected during reset wait\n");
3085                 rc = -ENODEV;
3086         }
3087
3088         if (unlikely(rc))
3089                 atomic_set(&dev->reset_cmds_out, 0);
3090         else
3091                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3092
3093         mutex_unlock(&h->reset_mutex);
3094         return rc;
3095 }
3096
3097 static void hpsa_get_raid_level(struct ctlr_info *h,
3098         unsigned char *scsi3addr, unsigned char *raid_level)
3099 {
3100         int rc;
3101         unsigned char *buf;
3102
3103         *raid_level = RAID_UNKNOWN;
3104         buf = kzalloc(64, GFP_KERNEL);
3105         if (!buf)
3106                 return;
3107
3108         if (!hpsa_vpd_page_supported(h, scsi3addr,
3109                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3110                 goto exit;
3111
3112         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3113                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3114
3115         if (rc == 0)
3116                 *raid_level = buf[8];
3117         if (*raid_level > RAID_UNKNOWN)
3118                 *raid_level = RAID_UNKNOWN;
3119 exit:
3120         kfree(buf);
3121         return;
3122 }
3123
3124 #define HPSA_MAP_DEBUG
3125 #ifdef HPSA_MAP_DEBUG
3126 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3127                                 struct raid_map_data *map_buff)
3128 {
3129         struct raid_map_disk_data *dd = &map_buff->data[0];
3130         int map, row, col;
3131         u16 map_cnt, row_cnt, disks_per_row;
3132
3133         if (rc != 0)
3134                 return;
3135
3136         /* Show details only if debugging has been activated. */
3137         if (h->raid_offload_debug < 2)
3138                 return;
3139
3140         dev_info(&h->pdev->dev, "structure_size = %u\n",
3141                                 le32_to_cpu(map_buff->structure_size));
3142         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3143                         le32_to_cpu(map_buff->volume_blk_size));
3144         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3145                         le64_to_cpu(map_buff->volume_blk_cnt));
3146         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3147                         map_buff->phys_blk_shift);
3148         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3149                         map_buff->parity_rotation_shift);
3150         dev_info(&h->pdev->dev, "strip_size = %u\n",
3151                         le16_to_cpu(map_buff->strip_size));
3152         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3153                         le64_to_cpu(map_buff->disk_starting_blk));
3154         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3155                         le64_to_cpu(map_buff->disk_blk_cnt));
3156         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3157                         le16_to_cpu(map_buff->data_disks_per_row));
3158         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3159                         le16_to_cpu(map_buff->metadata_disks_per_row));
3160         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3161                         le16_to_cpu(map_buff->row_cnt));
3162         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3163                         le16_to_cpu(map_buff->layout_map_count));
3164         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3165                         le16_to_cpu(map_buff->flags));
3166         dev_info(&h->pdev->dev, "encryption = %s\n",
3167                         le16_to_cpu(map_buff->flags) &
3168                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3169         dev_info(&h->pdev->dev, "dekindex = %u\n",
3170                         le16_to_cpu(map_buff->dekindex));
3171         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3172         for (map = 0; map < map_cnt; map++) {
3173                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3174                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3175                 for (row = 0; row < row_cnt; row++) {
3176                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3177                         disks_per_row =
3178                                 le16_to_cpu(map_buff->data_disks_per_row);
3179                         for (col = 0; col < disks_per_row; col++, dd++)
3180                                 dev_info(&h->pdev->dev,
3181                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3182                                         col, dd->ioaccel_handle,
3183                                         dd->xor_mult[0], dd->xor_mult[1]);
3184                         disks_per_row =
3185                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3186                         for (col = 0; col < disks_per_row; col++, dd++)
3187                                 dev_info(&h->pdev->dev,
3188                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3189                                         col, dd->ioaccel_handle,
3190                                         dd->xor_mult[0], dd->xor_mult[1]);
3191                 }
3192         }
3193 }
3194 #else
3195 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3196                         __attribute__((unused)) int rc,
3197                         __attribute__((unused)) struct raid_map_data *map_buff)
3198 {
3199 }
3200 #endif
3201
3202 static int hpsa_get_raid_map(struct ctlr_info *h,
3203         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3204 {
3205         int rc = 0;
3206         struct CommandList *c;
3207         struct ErrorInfo *ei;
3208
3209         c = cmd_alloc(h);
3210
3211         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3212                         sizeof(this_device->raid_map), 0,
3213                         scsi3addr, TYPE_CMD)) {
3214                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3215                 cmd_free(h, c);
3216                 return -1;
3217         }
3218         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3219                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3220         if (rc)
3221                 goto out;
3222         ei = c->err_info;
3223         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3224                 hpsa_scsi_interpret_error(h, c);
3225                 rc = -1;
3226                 goto out;
3227         }
3228         cmd_free(h, c);
3229
3230         /* @todo in the future, dynamically allocate RAID map memory */
3231         if (le32_to_cpu(this_device->raid_map.structure_size) >
3232                                 sizeof(this_device->raid_map)) {
3233                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3234                 rc = -1;
3235         }
3236         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3237         return rc;
3238 out:
3239         cmd_free(h, c);
3240         return rc;
3241 }
3242
3243 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3244                 unsigned char scsi3addr[], u16 bmic_device_index,
3245                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3246 {
3247         int rc = IO_OK;
3248         struct CommandList *c;
3249         struct ErrorInfo *ei;
3250
3251         c = cmd_alloc(h);
3252
3253         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3254                 0, RAID_CTLR_LUNID, TYPE_CMD);
3255         if (rc)
3256                 goto out;
3257
3258         c->Request.CDB[2] = bmic_device_index & 0xff;
3259         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3260
3261         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3262                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3263         if (rc)
3264                 goto out;
3265         ei = c->err_info;
3266         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3267                 hpsa_scsi_interpret_error(h, c);
3268                 rc = -1;
3269         }
3270 out:
3271         cmd_free(h, c);
3272         return rc;
3273 }
3274
3275 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3276         struct bmic_identify_controller *buf, size_t bufsize)
3277 {
3278         int rc = IO_OK;
3279         struct CommandList *c;
3280         struct ErrorInfo *ei;
3281
3282         c = cmd_alloc(h);
3283
3284         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3285                 0, RAID_CTLR_LUNID, TYPE_CMD);
3286         if (rc)
3287                 goto out;
3288
3289         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3290                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3291         if (rc)
3292                 goto out;
3293         ei = c->err_info;
3294         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3295                 hpsa_scsi_interpret_error(h, c);
3296                 rc = -1;
3297         }
3298 out:
3299         cmd_free(h, c);
3300         return rc;
3301 }
3302
3303 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3304                 unsigned char scsi3addr[], u16 bmic_device_index,
3305                 struct bmic_identify_physical_device *buf, size_t bufsize)
3306 {
3307         int rc = IO_OK;
3308         struct CommandList *c;
3309         struct ErrorInfo *ei;
3310
3311         c = cmd_alloc(h);
3312         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3313                 0, RAID_CTLR_LUNID, TYPE_CMD);
3314         if (rc)
3315                 goto out;
3316
3317         c->Request.CDB[2] = bmic_device_index & 0xff;
3318         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3319
3320         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3321                                                 DEFAULT_TIMEOUT);
3322         ei = c->err_info;
3323         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324                 hpsa_scsi_interpret_error(h, c);
3325                 rc = -1;
3326         }
3327 out:
3328         cmd_free(h, c);
3329
3330         return rc;
3331 }
3332
3333 /*
3334  * get enclosure information
3335  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3336  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3337  * Uses id_physical_device to determine the box_index.
3338  */
3339 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3340                         unsigned char *scsi3addr,
3341                         struct ReportExtendedLUNdata *rlep, int rle_index,
3342                         struct hpsa_scsi_dev_t *encl_dev)
3343 {
3344         int rc = -1;
3345         struct CommandList *c = NULL;
3346         struct ErrorInfo *ei = NULL;
3347         struct bmic_sense_storage_box_params *bssbp = NULL;
3348         struct bmic_identify_physical_device *id_phys = NULL;
3349         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3350         u16 bmic_device_index = 0;
3351
3352         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3353
3354         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3355                 rc = IO_OK;
3356                 goto out;
3357         }
3358
3359         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3360                 rc = IO_OK;
3361                 goto out;
3362         }
3363
3364         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3365         if (!bssbp)
3366                 goto out;
3367
3368         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3369         if (!id_phys)
3370                 goto out;
3371
3372         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3373                                                 id_phys, sizeof(*id_phys));
3374         if (rc) {
3375                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3376                         __func__, encl_dev->external, bmic_device_index);
3377                 goto out;
3378         }
3379
3380         c = cmd_alloc(h);
3381
3382         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3383                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3384
3385         if (rc)
3386                 goto out;
3387
3388         if (id_phys->phys_connector[1] == 'E')
3389                 c->Request.CDB[5] = id_phys->box_index;
3390         else
3391                 c->Request.CDB[5] = 0;
3392
3393         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3394                                                 DEFAULT_TIMEOUT);
3395         if (rc)
3396                 goto out;
3397
3398         ei = c->err_info;
3399         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3400                 rc = -1;
3401                 goto out;
3402         }
3403
3404         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3405         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3406                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3407
3408         rc = IO_OK;
3409 out:
3410         kfree(bssbp);
3411         kfree(id_phys);
3412
3413         if (c)
3414                 cmd_free(h, c);
3415
3416         if (rc != IO_OK)
3417                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3418                         "Error, could not get enclosure information\n");
3419 }
3420
3421 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3422                                                 unsigned char *scsi3addr)
3423 {
3424         struct ReportExtendedLUNdata *physdev;
3425         u32 nphysicals;
3426         u64 sa = 0;
3427         int i;
3428
3429         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3430         if (!physdev)
3431                 return 0;
3432
3433         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3434                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3435                 kfree(physdev);
3436                 return 0;
3437         }
3438         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3439
3440         for (i = 0; i < nphysicals; i++)
3441                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3442                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3443                         break;
3444                 }
3445
3446         kfree(physdev);
3447
3448         return sa;
3449 }
3450
3451 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3452                                         struct hpsa_scsi_dev_t *dev)
3453 {
3454         int rc;
3455         u64 sa = 0;
3456
3457         if (is_hba_lunid(scsi3addr)) {
3458                 struct bmic_sense_subsystem_info *ssi;
3459
3460                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3461                 if (!ssi)
3462                         return;
3463
3464                 rc = hpsa_bmic_sense_subsystem_information(h,
3465                                         scsi3addr, 0, ssi, sizeof(*ssi));
3466                 if (rc == 0) {
3467                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3468                         h->sas_address = sa;
3469                 }
3470
3471                 kfree(ssi);
3472         } else
3473                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3474
3475         dev->sas_address = sa;
3476 }
3477
3478 /* Get a device id from inquiry page 0x83 */
3479 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3480         unsigned char scsi3addr[], u8 page)
3481 {
3482         int rc;
3483         int i;
3484         int pages;
3485         unsigned char *buf, bufsize;
3486
3487         buf = kzalloc(256, GFP_KERNEL);
3488         if (!buf)
3489                 return false;
3490
3491         /* Get the size of the page list first */
3492         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3493                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3494                                 buf, HPSA_VPD_HEADER_SZ);
3495         if (rc != 0)
3496                 goto exit_unsupported;
3497         pages = buf[3];
3498         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3499                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3500         else
3501                 bufsize = 255;
3502
3503         /* Get the whole VPD page list */
3504         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3505                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3506                                 buf, bufsize);
3507         if (rc != 0)
3508                 goto exit_unsupported;
3509
3510         pages = buf[3];
3511         for (i = 1; i <= pages; i++)
3512                 if (buf[3 + i] == page)
3513                         goto exit_supported;
3514 exit_unsupported:
3515         kfree(buf);
3516         return false;
3517 exit_supported:
3518         kfree(buf);
3519         return true;
3520 }
3521
3522 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3523         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3524 {
3525         int rc;
3526         unsigned char *buf;
3527         u8 ioaccel_status;
3528
3529         this_device->offload_config = 0;
3530         this_device->offload_enabled = 0;
3531         this_device->offload_to_be_enabled = 0;
3532
3533         buf = kzalloc(64, GFP_KERNEL);
3534         if (!buf)
3535                 return;
3536         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3537                 goto out;
3538         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3539                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3540         if (rc != 0)
3541                 goto out;
3542
3543 #define IOACCEL_STATUS_BYTE 4
3544 #define OFFLOAD_CONFIGURED_BIT 0x01
3545 #define OFFLOAD_ENABLED_BIT 0x02
3546         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3547         this_device->offload_config =
3548                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3549         if (this_device->offload_config) {
3550                 this_device->offload_enabled =
3551                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3552                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3553                         this_device->offload_enabled = 0;
3554         }
3555         this_device->offload_to_be_enabled = this_device->offload_enabled;
3556 out:
3557         kfree(buf);
3558         return;
3559 }
3560
3561 /* Get the device id from inquiry page 0x83 */
3562 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3563         unsigned char *device_id, int index, int buflen)
3564 {
3565         int rc;
3566         unsigned char *buf;
3567
3568         /* Does controller have VPD for device id? */
3569         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3570                 return 1; /* not supported */
3571
3572         buf = kzalloc(64, GFP_KERNEL);
3573         if (!buf)
3574                 return -ENOMEM;
3575
3576         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3577                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3578         if (rc == 0) {
3579                 if (buflen > 16)
3580                         buflen = 16;
3581                 memcpy(device_id, &buf[8], buflen);
3582         }
3583
3584         kfree(buf);
3585
3586         return rc; /*0 - got id,  otherwise, didn't */
3587 }
3588
3589 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3590                 void *buf, int bufsize,
3591                 int extended_response)
3592 {
3593         int rc = IO_OK;
3594         struct CommandList *c;
3595         unsigned char scsi3addr[8];
3596         struct ErrorInfo *ei;
3597
3598         c = cmd_alloc(h);
3599
3600         /* address the controller */
3601         memset(scsi3addr, 0, sizeof(scsi3addr));
3602         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3603                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3604                 rc = -EAGAIN;
3605                 goto out;
3606         }
3607         if (extended_response)
3608                 c->Request.CDB[1] = extended_response;
3609         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3610                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3611         if (rc)
3612                 goto out;
3613         ei = c->err_info;
3614         if (ei->CommandStatus != 0 &&
3615             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3616                 hpsa_scsi_interpret_error(h, c);
3617                 rc = -EIO;
3618         } else {
3619                 struct ReportLUNdata *rld = buf;
3620
3621                 if (rld->extended_response_flag != extended_response) {
3622                         if (!h->legacy_board) {
3623                                 dev_err(&h->pdev->dev,
3624                                         "report luns requested format %u, got %u\n",
3625                                         extended_response,
3626                                         rld->extended_response_flag);
3627                                 rc = -EINVAL;
3628                         } else
3629                                 rc = -EOPNOTSUPP;
3630                 }
3631         }
3632 out:
3633         cmd_free(h, c);
3634         return rc;
3635 }
3636
3637 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3638                 struct ReportExtendedLUNdata *buf, int bufsize)
3639 {
3640         int rc;
3641         struct ReportLUNdata *lbuf;
3642
3643         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3644                                       HPSA_REPORT_PHYS_EXTENDED);
3645         if (!rc || rc != -EOPNOTSUPP)
3646                 return rc;
3647
3648         /* REPORT PHYS EXTENDED is not supported */
3649         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3650         if (!lbuf)
3651                 return -ENOMEM;
3652
3653         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3654         if (!rc) {
3655                 int i;
3656                 u32 nphys;
3657
3658                 /* Copy ReportLUNdata header */
3659                 memcpy(buf, lbuf, 8);
3660                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3661                 for (i = 0; i < nphys; i++)
3662                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3663         }
3664         kfree(lbuf);
3665         return rc;
3666 }
3667
3668 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3669                 struct ReportLUNdata *buf, int bufsize)
3670 {
3671         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3672 }
3673
3674 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3675         int bus, int target, int lun)
3676 {
3677         device->bus = bus;
3678         device->target = target;
3679         device->lun = lun;
3680 }
3681
3682 /* Use VPD inquiry to get details of volume status */
3683 static int hpsa_get_volume_status(struct ctlr_info *h,
3684                                         unsigned char scsi3addr[])
3685 {
3686         int rc;
3687         int status;
3688         int size;
3689         unsigned char *buf;
3690
3691         buf = kzalloc(64, GFP_KERNEL);
3692         if (!buf)
3693                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3694
3695         /* Does controller have VPD for logical volume status? */
3696         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3697                 goto exit_failed;
3698
3699         /* Get the size of the VPD return buffer */
3700         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3701                                         buf, HPSA_VPD_HEADER_SZ);
3702         if (rc != 0)
3703                 goto exit_failed;
3704         size = buf[3];
3705
3706         /* Now get the whole VPD buffer */
3707         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3708                                         buf, size + HPSA_VPD_HEADER_SZ);
3709         if (rc != 0)
3710                 goto exit_failed;
3711         status = buf[4]; /* status byte */
3712
3713         kfree(buf);
3714         return status;
3715 exit_failed:
3716         kfree(buf);
3717         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3718 }
3719
3720 /* Determine offline status of a volume.
3721  * Return either:
3722  *  0 (not offline)
3723  *  0xff (offline for unknown reasons)
3724  *  # (integer code indicating one of several NOT READY states
3725  *     describing why a volume is to be kept offline)
3726  */
3727 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3728                                         unsigned char scsi3addr[])
3729 {
3730         struct CommandList *c;
3731         unsigned char *sense;
3732         u8 sense_key, asc, ascq;
3733         int sense_len;
3734         int rc, ldstat = 0;
3735         u16 cmd_status;
3736         u8 scsi_status;
3737 #define ASC_LUN_NOT_READY 0x04
3738 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3739 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3740
3741         c = cmd_alloc(h);
3742
3743         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3744         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3745                                         DEFAULT_TIMEOUT);
3746         if (rc) {
3747                 cmd_free(h, c);
3748                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3749         }
3750         sense = c->err_info->SenseInfo;
3751         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3752                 sense_len = sizeof(c->err_info->SenseInfo);
3753         else
3754                 sense_len = c->err_info->SenseLen;
3755         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3756         cmd_status = c->err_info->CommandStatus;
3757         scsi_status = c->err_info->ScsiStatus;
3758         cmd_free(h, c);
3759
3760         /* Determine the reason for not ready state */
3761         ldstat = hpsa_get_volume_status(h, scsi3addr);
3762
3763         /* Keep volume offline in certain cases: */
3764         switch (ldstat) {
3765         case HPSA_LV_FAILED:
3766         case HPSA_LV_UNDERGOING_ERASE:
3767         case HPSA_LV_NOT_AVAILABLE:
3768         case HPSA_LV_UNDERGOING_RPI:
3769         case HPSA_LV_PENDING_RPI:
3770         case HPSA_LV_ENCRYPTED_NO_KEY:
3771         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3772         case HPSA_LV_UNDERGOING_ENCRYPTION:
3773         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3774         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3775                 return ldstat;
3776         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3777                 /* If VPD status page isn't available,
3778                  * use ASC/ASCQ to determine state
3779                  */
3780                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3781                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3782                         return ldstat;
3783                 break;
3784         default:
3785                 break;
3786         }
3787         return HPSA_LV_OK;
3788 }
3789
3790 static int hpsa_update_device_info(struct ctlr_info *h,
3791         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3792         unsigned char *is_OBDR_device)
3793 {
3794
3795 #define OBDR_SIG_OFFSET 43
3796 #define OBDR_TAPE_SIG "$DR-10"
3797 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3798 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3799
3800         unsigned char *inq_buff;
3801         unsigned char *obdr_sig;
3802         int rc = 0;
3803
3804         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3805         if (!inq_buff) {
3806                 rc = -ENOMEM;
3807                 goto bail_out;
3808         }
3809
3810         /* Do an inquiry to the device to see what it is. */
3811         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3812                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3813                 dev_err(&h->pdev->dev,
3814                         "%s: inquiry failed, device will be skipped.\n",
3815                         __func__);
3816                 rc = HPSA_INQUIRY_FAILED;
3817                 goto bail_out;
3818         }
3819
3820         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3821         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3822
3823         this_device->devtype = (inq_buff[0] & 0x1f);
3824         memcpy(this_device->scsi3addr, scsi3addr, 8);
3825         memcpy(this_device->vendor, &inq_buff[8],
3826                 sizeof(this_device->vendor));
3827         memcpy(this_device->model, &inq_buff[16],
3828                 sizeof(this_device->model));
3829         this_device->rev = inq_buff[2];
3830         memset(this_device->device_id, 0,
3831                 sizeof(this_device->device_id));
3832         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3833                 sizeof(this_device->device_id) < 0))
3834                 dev_err(&h->pdev->dev,
3835                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3836                         h->ctlr, __func__,
3837                         h->scsi_host->host_no,
3838                         this_device->target, this_device->lun,
3839                         scsi_device_type(this_device->devtype),
3840                         this_device->model);
3841
3842         if ((this_device->devtype == TYPE_DISK ||
3843                 this_device->devtype == TYPE_ZBC) &&
3844                 is_logical_dev_addr_mode(scsi3addr)) {
3845                 unsigned char volume_offline;
3846
3847                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3848                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3849                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3850                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3851                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3852                     h->legacy_board) {
3853                         /*
3854                          * Legacy boards might not support volume status
3855                          */
3856                         dev_info(&h->pdev->dev,
3857                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3858                                  this_device->target, this_device->lun);
3859                         volume_offline = 0;
3860                 }
3861                 this_device->volume_offline = volume_offline;
3862                 if (volume_offline == HPSA_LV_FAILED) {
3863                         rc = HPSA_LV_FAILED;
3864                         dev_err(&h->pdev->dev,
3865                                 "%s: LV failed, device will be skipped.\n",
3866                                 __func__);
3867                         goto bail_out;
3868                 }
3869         } else {
3870                 this_device->raid_level = RAID_UNKNOWN;
3871                 this_device->offload_config = 0;
3872                 this_device->offload_enabled = 0;
3873                 this_device->offload_to_be_enabled = 0;
3874                 this_device->hba_ioaccel_enabled = 0;
3875                 this_device->volume_offline = 0;
3876                 this_device->queue_depth = h->nr_cmds;
3877         }
3878
3879         if (this_device->external)
3880                 this_device->queue_depth = EXTERNAL_QD;
3881
3882         if (is_OBDR_device) {
3883                 /* See if this is a One-Button-Disaster-Recovery device
3884                  * by looking for "$DR-10" at offset 43 in inquiry data.
3885                  */
3886                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3887                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3888                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3889                                                 OBDR_SIG_LEN) == 0);
3890         }
3891         kfree(inq_buff);
3892         return 0;
3893
3894 bail_out:
3895         kfree(inq_buff);
3896         return rc;
3897 }
3898
3899 /*
3900  * Helper function to assign bus, target, lun mapping of devices.
3901  * Logical drive target and lun are assigned at this time, but
3902  * physical device lun and target assignment are deferred (assigned
3903  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3904 */
3905 static void figure_bus_target_lun(struct ctlr_info *h,
3906         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3907 {
3908         u32 lunid = get_unaligned_le32(lunaddrbytes);
3909
3910         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3911                 /* physical device, target and lun filled in later */
3912                 if (is_hba_lunid(lunaddrbytes)) {
3913                         int bus = HPSA_HBA_BUS;
3914
3915                         if (!device->rev)
3916                                 bus = HPSA_LEGACY_HBA_BUS;
3917                         hpsa_set_bus_target_lun(device,
3918                                         bus, 0, lunid & 0x3fff);
3919                 } else
3920                         /* defer target, lun assignment for physical devices */
3921                         hpsa_set_bus_target_lun(device,
3922                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3923                 return;
3924         }
3925         /* It's a logical device */
3926         if (device->external) {
3927                 hpsa_set_bus_target_lun(device,
3928                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3929                         lunid & 0x00ff);
3930                 return;
3931         }
3932         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3933                                 0, lunid & 0x3fff);
3934 }
3935
3936 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3937         int i, int nphysicals, int nlocal_logicals)
3938 {
3939         /* In report logicals, local logicals are listed first,
3940         * then any externals.
3941         */
3942         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3943
3944         if (i == raid_ctlr_position)
3945                 return 0;
3946
3947         if (i < logicals_start)
3948                 return 0;
3949
3950         /* i is in logicals range, but still within local logicals */
3951         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3952                 return 0;
3953
3954         return 1; /* it's an external lun */
3955 }
3956
3957 /*
3958  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3959  * logdev.  The number of luns in physdev and logdev are returned in
3960  * *nphysicals and *nlogicals, respectively.
3961  * Returns 0 on success, -1 otherwise.
3962  */
3963 static int hpsa_gather_lun_info(struct ctlr_info *h,
3964         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3965         struct ReportLUNdata *logdev, u32 *nlogicals)
3966 {
3967         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3968                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3969                 return -1;
3970         }
3971         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3972         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3973                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3974                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3975                 *nphysicals = HPSA_MAX_PHYS_LUN;
3976         }
3977         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3978                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3979                 return -1;
3980         }
3981         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3982         /* Reject Logicals in excess of our max capability. */
3983         if (*nlogicals > HPSA_MAX_LUN) {
3984                 dev_warn(&h->pdev->dev,
3985                         "maximum logical LUNs (%d) exceeded.  "
3986                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3987                         *nlogicals - HPSA_MAX_LUN);
3988                         *nlogicals = HPSA_MAX_LUN;
3989         }
3990         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3991                 dev_warn(&h->pdev->dev,
3992                         "maximum logical + physical LUNs (%d) exceeded. "
3993                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3994                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3995                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3996         }
3997         return 0;
3998 }
3999
4000 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4001         int i, int nphysicals, int nlogicals,
4002         struct ReportExtendedLUNdata *physdev_list,
4003         struct ReportLUNdata *logdev_list)
4004 {
4005         /* Helper function, figure out where the LUN ID info is coming from
4006          * given index i, lists of physical and logical devices, where in
4007          * the list the raid controller is supposed to appear (first or last)
4008          */
4009
4010         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4011         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4012
4013         if (i == raid_ctlr_position)
4014                 return RAID_CTLR_LUNID;
4015
4016         if (i < logicals_start)
4017                 return &physdev_list->LUN[i -
4018                                 (raid_ctlr_position == 0)].lunid[0];
4019
4020         if (i < last_device)
4021                 return &logdev_list->LUN[i - nphysicals -
4022                         (raid_ctlr_position == 0)][0];
4023         BUG();
4024         return NULL;
4025 }
4026
4027 /* get physical drive ioaccel handle and queue depth */
4028 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4029                 struct hpsa_scsi_dev_t *dev,
4030                 struct ReportExtendedLUNdata *rlep, int rle_index,
4031                 struct bmic_identify_physical_device *id_phys)
4032 {
4033         int rc;
4034         struct ext_report_lun_entry *rle;
4035
4036         rle = &rlep->LUN[rle_index];
4037
4038         dev->ioaccel_handle = rle->ioaccel_handle;
4039         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4040                 dev->hba_ioaccel_enabled = 1;
4041         memset(id_phys, 0, sizeof(*id_phys));
4042         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4043                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4044                         sizeof(*id_phys));
4045         if (!rc)
4046                 /* Reserve space for FW operations */
4047 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4048 #define DRIVE_QUEUE_DEPTH 7
4049                 dev->queue_depth =
4050                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4051                                 DRIVE_CMDS_RESERVED_FOR_FW;
4052         else
4053                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4054 }
4055
4056 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4057         struct ReportExtendedLUNdata *rlep, int rle_index,
4058         struct bmic_identify_physical_device *id_phys)
4059 {
4060         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4061
4062         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4063                 this_device->hba_ioaccel_enabled = 1;
4064
4065         memcpy(&this_device->active_path_index,
4066                 &id_phys->active_path_number,
4067                 sizeof(this_device->active_path_index));
4068         memcpy(&this_device->path_map,
4069                 &id_phys->redundant_path_present_map,
4070                 sizeof(this_device->path_map));
4071         memcpy(&this_device->box,
4072                 &id_phys->alternate_paths_phys_box_on_port,
4073                 sizeof(this_device->box));
4074         memcpy(&this_device->phys_connector,
4075                 &id_phys->alternate_paths_phys_connector,
4076                 sizeof(this_device->phys_connector));
4077         memcpy(&this_device->bay,
4078                 &id_phys->phys_bay_in_box,
4079                 sizeof(this_device->bay));
4080 }
4081
4082 /* get number of local logical disks. */
4083 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4084         struct bmic_identify_controller *id_ctlr,
4085         u32 *nlocals)
4086 {
4087         int rc;
4088
4089         if (!id_ctlr) {
4090                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4091                         __func__);
4092                 return -ENOMEM;
4093         }
4094         memset(id_ctlr, 0, sizeof(*id_ctlr));
4095         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4096         if (!rc)
4097                 if (id_ctlr->configured_logical_drive_count < 256)
4098                         *nlocals = id_ctlr->configured_logical_drive_count;
4099                 else
4100                         *nlocals = le16_to_cpu(
4101                                         id_ctlr->extended_logical_unit_count);
4102         else
4103                 *nlocals = -1;
4104         return rc;
4105 }
4106
4107 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4108 {
4109         struct bmic_identify_physical_device *id_phys;
4110         bool is_spare = false;
4111         int rc;
4112
4113         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4114         if (!id_phys)
4115                 return false;
4116
4117         rc = hpsa_bmic_id_physical_device(h,
4118                                         lunaddrbytes,
4119                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4120                                         id_phys, sizeof(*id_phys));
4121         if (rc == 0)
4122                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4123
4124         kfree(id_phys);
4125         return is_spare;
4126 }
4127
4128 #define RPL_DEV_FLAG_NON_DISK                           0x1
4129 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4130 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4131
4132 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4133
4134 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4135                                 struct ext_report_lun_entry *rle)
4136 {
4137         u8 device_flags;
4138         u8 device_type;
4139
4140         if (!MASKED_DEVICE(lunaddrbytes))
4141                 return false;
4142
4143         device_flags = rle->device_flags;
4144         device_type = rle->device_type;
4145
4146         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4147                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4148                         return false;
4149                 return true;
4150         }
4151
4152         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4153                 return false;
4154
4155         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4156                 return false;
4157
4158         /*
4159          * Spares may be spun down, we do not want to
4160          * do an Inquiry to a RAID set spare drive as
4161          * that would have them spun up, that is a
4162          * performance hit because I/O to the RAID device
4163          * stops while the spin up occurs which can take
4164          * over 50 seconds.
4165          */
4166         if (hpsa_is_disk_spare(h, lunaddrbytes))
4167                 return true;
4168
4169         return false;
4170 }
4171
4172 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4173 {
4174         /* the idea here is we could get notified
4175          * that some devices have changed, so we do a report
4176          * physical luns and report logical luns cmd, and adjust
4177          * our list of devices accordingly.
4178          *
4179          * The scsi3addr's of devices won't change so long as the
4180          * adapter is not reset.  That means we can rescan and
4181          * tell which devices we already know about, vs. new
4182          * devices, vs.  disappearing devices.
4183          */
4184         struct ReportExtendedLUNdata *physdev_list = NULL;
4185         struct ReportLUNdata *logdev_list = NULL;
4186         struct bmic_identify_physical_device *id_phys = NULL;
4187         struct bmic_identify_controller *id_ctlr = NULL;
4188         u32 nphysicals = 0;
4189         u32 nlogicals = 0;
4190         u32 nlocal_logicals = 0;
4191         u32 ndev_allocated = 0;
4192         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4193         int ncurrent = 0;
4194         int i, n_ext_target_devs, ndevs_to_allocate;
4195         int raid_ctlr_position;
4196         bool physical_device;
4197         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4198
4199         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4200         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4201         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4202         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4203         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4204         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4205
4206         if (!currentsd || !physdev_list || !logdev_list ||
4207                 !tmpdevice || !id_phys || !id_ctlr) {
4208                 dev_err(&h->pdev->dev, "out of memory\n");
4209                 goto out;
4210         }
4211         memset(lunzerobits, 0, sizeof(lunzerobits));
4212
4213         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4214
4215         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4216                         logdev_list, &nlogicals)) {
4217                 h->drv_req_rescan = 1;
4218                 goto out;
4219         }
4220
4221         /* Set number of local logicals (non PTRAID) */
4222         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4223                 dev_warn(&h->pdev->dev,
4224                         "%s: Can't determine number of local logical devices.\n",
4225                         __func__);
4226         }
4227
4228         /* We might see up to the maximum number of logical and physical disks
4229          * plus external target devices, and a device for the local RAID
4230          * controller.
4231          */
4232         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4233
4234         /* Allocate the per device structures */
4235         for (i = 0; i < ndevs_to_allocate; i++) {
4236                 if (i >= HPSA_MAX_DEVICES) {
4237                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4238                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4239                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4240                         break;
4241                 }
4242
4243                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4244                 if (!currentsd[i]) {
4245                         h->drv_req_rescan = 1;
4246                         goto out;
4247                 }
4248                 ndev_allocated++;
4249         }
4250
4251         if (is_scsi_rev_5(h))
4252                 raid_ctlr_position = 0;
4253         else
4254                 raid_ctlr_position = nphysicals + nlogicals;
4255
4256         /* adjust our table of devices */
4257         n_ext_target_devs = 0;
4258         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4259                 u8 *lunaddrbytes, is_OBDR = 0;
4260                 int rc = 0;
4261                 int phys_dev_index = i - (raid_ctlr_position == 0);
4262                 bool skip_device = false;
4263
4264                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4265
4266                 /* Figure out where the LUN ID info is coming from */
4267                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4268                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4269
4270                 /* Determine if this is a lun from an external target array */
4271                 tmpdevice->external =
4272                         figure_external_status(h, raid_ctlr_position, i,
4273                                                 nphysicals, nlocal_logicals);
4274
4275                 /*
4276                  * Skip over some devices such as a spare.
4277                  */
4278                 if (!tmpdevice->external && physical_device) {
4279                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4280                                         &physdev_list->LUN[phys_dev_index]);
4281                         if (skip_device)
4282                                 continue;
4283                 }
4284
4285                 /* Get device type, vendor, model, device id */
4286                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4287                                                         &is_OBDR);
4288                 if (rc == -ENOMEM) {
4289                         dev_warn(&h->pdev->dev,
4290                                 "Out of memory, rescan deferred.\n");
4291                         h->drv_req_rescan = 1;
4292                         goto out;
4293                 }
4294                 if (rc) {
4295                         h->drv_req_rescan = 1;
4296                         continue;
4297                 }
4298
4299                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4300                 this_device = currentsd[ncurrent];
4301
4302                 /* Turn on discovery_polling if there are ext target devices.
4303                  * Event-based change notification is unreliable for those.
4304                  */
4305                 if (!h->discovery_polling) {
4306                         if (tmpdevice->external) {
4307                                 h->discovery_polling = 1;
4308                                 dev_info(&h->pdev->dev,
4309                                         "External target, activate discovery polling.\n");
4310                         }
4311                 }
4312
4313
4314                 *this_device = *tmpdevice;
4315                 this_device->physical_device = physical_device;
4316
4317                 /*
4318                  * Expose all devices except for physical devices that
4319                  * are masked.
4320                  */
4321                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4322                         this_device->expose_device = 0;
4323                 else
4324                         this_device->expose_device = 1;
4325
4326
4327                 /*
4328                  * Get the SAS address for physical devices that are exposed.
4329                  */
4330                 if (this_device->physical_device && this_device->expose_device)
4331                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4332
4333                 switch (this_device->devtype) {
4334                 case TYPE_ROM:
4335                         /* We don't *really* support actual CD-ROM devices,
4336                          * just "One Button Disaster Recovery" tape drive
4337                          * which temporarily pretends to be a CD-ROM drive.
4338                          * So we check that the device is really an OBDR tape
4339                          * device by checking for "$DR-10" in bytes 43-48 of
4340                          * the inquiry data.
4341                          */
4342                         if (is_OBDR)
4343                                 ncurrent++;
4344                         break;
4345                 case TYPE_DISK:
4346                 case TYPE_ZBC:
4347                         if (this_device->physical_device) {
4348                                 /* The disk is in HBA mode. */
4349                                 /* Never use RAID mapper in HBA mode. */
4350                                 this_device->offload_enabled = 0;
4351                                 hpsa_get_ioaccel_drive_info(h, this_device,
4352                                         physdev_list, phys_dev_index, id_phys);
4353                                 hpsa_get_path_info(this_device,
4354                                         physdev_list, phys_dev_index, id_phys);
4355                         }
4356                         ncurrent++;
4357                         break;
4358                 case TYPE_TAPE:
4359                 case TYPE_MEDIUM_CHANGER:
4360                         ncurrent++;
4361                         break;
4362                 case TYPE_ENCLOSURE:
4363                         if (!this_device->external)
4364                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4365                                                 physdev_list, phys_dev_index,
4366                                                 this_device);
4367                         ncurrent++;
4368                         break;
4369                 case TYPE_RAID:
4370                         /* Only present the Smartarray HBA as a RAID controller.
4371                          * If it's a RAID controller other than the HBA itself
4372                          * (an external RAID controller, MSA500 or similar)
4373                          * don't present it.
4374                          */
4375                         if (!is_hba_lunid(lunaddrbytes))
4376                                 break;
4377                         ncurrent++;
4378                         break;
4379                 default:
4380                         break;
4381                 }
4382                 if (ncurrent >= HPSA_MAX_DEVICES)
4383                         break;
4384         }
4385
4386         if (h->sas_host == NULL) {
4387                 int rc = 0;
4388
4389                 rc = hpsa_add_sas_host(h);
4390                 if (rc) {
4391                         dev_warn(&h->pdev->dev,
4392                                 "Could not add sas host %d\n", rc);
4393                         goto out;
4394                 }
4395         }
4396
4397         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4398 out:
4399         kfree(tmpdevice);
4400         for (i = 0; i < ndev_allocated; i++)
4401                 kfree(currentsd[i]);
4402         kfree(currentsd);
4403         kfree(physdev_list);
4404         kfree(logdev_list);
4405         kfree(id_ctlr);
4406         kfree(id_phys);
4407 }
4408
4409 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4410                                    struct scatterlist *sg)
4411 {
4412         u64 addr64 = (u64) sg_dma_address(sg);
4413         unsigned int len = sg_dma_len(sg);
4414
4415         desc->Addr = cpu_to_le64(addr64);
4416         desc->Len = cpu_to_le32(len);
4417         desc->Ext = 0;
4418 }
4419
4420 /*
4421  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4422  * dma mapping  and fills in the scatter gather entries of the
4423  * hpsa command, cp.
4424  */
4425 static int hpsa_scatter_gather(struct ctlr_info *h,
4426                 struct CommandList *cp,
4427                 struct scsi_cmnd *cmd)
4428 {
4429         struct scatterlist *sg;
4430         int use_sg, i, sg_limit, chained, last_sg;
4431         struct SGDescriptor *curr_sg;
4432
4433         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4434
4435         use_sg = scsi_dma_map(cmd);
4436         if (use_sg < 0)
4437                 return use_sg;
4438
4439         if (!use_sg)
4440                 goto sglist_finished;
4441
4442         /*
4443          * If the number of entries is greater than the max for a single list,
4444          * then we have a chained list; we will set up all but one entry in the
4445          * first list (the last entry is saved for link information);
4446          * otherwise, we don't have a chained list and we'll set up at each of
4447          * the entries in the one list.
4448          */
4449         curr_sg = cp->SG;
4450         chained = use_sg > h->max_cmd_sg_entries;
4451         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4452         last_sg = scsi_sg_count(cmd) - 1;
4453         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4454                 hpsa_set_sg_descriptor(curr_sg, sg);
4455                 curr_sg++;
4456         }
4457
4458         if (chained) {
4459                 /*
4460                  * Continue with the chained list.  Set curr_sg to the chained
4461                  * list.  Modify the limit to the total count less the entries
4462                  * we've already set up.  Resume the scan at the list entry
4463                  * where the previous loop left off.
4464                  */
4465                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4466                 sg_limit = use_sg - sg_limit;
4467                 for_each_sg(sg, sg, sg_limit, i) {
4468                         hpsa_set_sg_descriptor(curr_sg, sg);
4469                         curr_sg++;
4470                 }
4471         }
4472
4473         /* Back the pointer up to the last entry and mark it as "last". */
4474         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4475
4476         if (use_sg + chained > h->maxSG)
4477                 h->maxSG = use_sg + chained;
4478
4479         if (chained) {
4480                 cp->Header.SGList = h->max_cmd_sg_entries;
4481                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4482                 if (hpsa_map_sg_chain_block(h, cp)) {
4483                         scsi_dma_unmap(cmd);
4484                         return -1;
4485                 }
4486                 return 0;
4487         }
4488
4489 sglist_finished:
4490
4491         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4492         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4493         return 0;
4494 }
4495
4496 #define BUFLEN 128
4497 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4498                                                 u8 *cdb, int cdb_len,
4499                                                 const char *func)
4500 {
4501         char buf[BUFLEN];
4502         int outlen;
4503         int i;
4504
4505         outlen = scnprintf(buf, BUFLEN,
4506                                 "%s: Blocking zero-length request: CDB:", func);
4507         for (i = 0; i < cdb_len; i++)
4508                 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4509                                         "%02hhx", cdb[i]);
4510         dev_warn(&h->pdev->dev, "%s\n", buf);
4511 }
4512
4513 #define IO_ACCEL_INELIGIBLE 1
4514 /* zero-length transfers trigger hardware errors. */
4515 static bool is_zero_length_transfer(u8 *cdb)
4516 {
4517         u32 block_cnt;
4518
4519         /* Block zero-length transfer sizes on certain commands. */
4520         switch (cdb[0]) {
4521         case READ_10:
4522         case WRITE_10:
4523         case VERIFY:            /* 0x2F */
4524         case WRITE_VERIFY:      /* 0x2E */
4525                 block_cnt = get_unaligned_be16(&cdb[7]);
4526                 break;
4527         case READ_12:
4528         case WRITE_12:
4529         case VERIFY_12: /* 0xAF */
4530         case WRITE_VERIFY_12:   /* 0xAE */
4531                 block_cnt = get_unaligned_be32(&cdb[6]);
4532                 break;
4533         case READ_16:
4534         case WRITE_16:
4535         case VERIFY_16:         /* 0x8F */
4536                 block_cnt = get_unaligned_be32(&cdb[10]);
4537                 break;
4538         default:
4539                 return false;
4540         }
4541
4542         return block_cnt == 0;
4543 }
4544
4545 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4546 {
4547         int is_write = 0;
4548         u32 block;
4549         u32 block_cnt;
4550
4551         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4552         switch (cdb[0]) {
4553         case WRITE_6:
4554         case WRITE_12:
4555                 is_write = 1;
4556         case READ_6:
4557         case READ_12:
4558                 if (*cdb_len == 6) {
4559                         block = (((cdb[1] & 0x1F) << 16) |
4560                                 (cdb[2] << 8) |
4561                                 cdb[3]);
4562                         block_cnt = cdb[4];
4563                         if (block_cnt == 0)
4564                                 block_cnt = 256;
4565                 } else {
4566                         BUG_ON(*cdb_len != 12);
4567                         block = get_unaligned_be32(&cdb[2]);
4568                         block_cnt = get_unaligned_be32(&cdb[6]);
4569                 }
4570                 if (block_cnt > 0xffff)
4571                         return IO_ACCEL_INELIGIBLE;
4572
4573                 cdb[0] = is_write ? WRITE_10 : READ_10;
4574                 cdb[1] = 0;
4575                 cdb[2] = (u8) (block >> 24);
4576                 cdb[3] = (u8) (block >> 16);
4577                 cdb[4] = (u8) (block >> 8);
4578                 cdb[5] = (u8) (block);
4579                 cdb[6] = 0;
4580                 cdb[7] = (u8) (block_cnt >> 8);
4581                 cdb[8] = (u8) (block_cnt);
4582                 cdb[9] = 0;
4583                 *cdb_len = 10;
4584                 break;
4585         }
4586         return 0;
4587 }
4588
4589 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4590         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4591         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4592 {
4593         struct scsi_cmnd *cmd = c->scsi_cmd;
4594         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4595         unsigned int len;
4596         unsigned int total_len = 0;
4597         struct scatterlist *sg;
4598         u64 addr64;
4599         int use_sg, i;
4600         struct SGDescriptor *curr_sg;
4601         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4602
4603         /* TODO: implement chaining support */
4604         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4605                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4606                 return IO_ACCEL_INELIGIBLE;
4607         }
4608
4609         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4610
4611         if (is_zero_length_transfer(cdb)) {
4612                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4613                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4614                 return IO_ACCEL_INELIGIBLE;
4615         }
4616
4617         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4618                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4619                 return IO_ACCEL_INELIGIBLE;
4620         }
4621
4622         c->cmd_type = CMD_IOACCEL1;
4623
4624         /* Adjust the DMA address to point to the accelerated command buffer */
4625         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4626                                 (c->cmdindex * sizeof(*cp));
4627         BUG_ON(c->busaddr & 0x0000007F);
4628
4629         use_sg = scsi_dma_map(cmd);
4630         if (use_sg < 0) {
4631                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4632                 return use_sg;
4633         }
4634
4635         if (use_sg) {
4636                 curr_sg = cp->SG;
4637                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4638                         addr64 = (u64) sg_dma_address(sg);
4639                         len  = sg_dma_len(sg);
4640                         total_len += len;
4641                         curr_sg->Addr = cpu_to_le64(addr64);
4642                         curr_sg->Len = cpu_to_le32(len);
4643                         curr_sg->Ext = cpu_to_le32(0);
4644                         curr_sg++;
4645                 }
4646                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4647
4648                 switch (cmd->sc_data_direction) {
4649                 case DMA_TO_DEVICE:
4650                         control |= IOACCEL1_CONTROL_DATA_OUT;
4651                         break;
4652                 case DMA_FROM_DEVICE:
4653                         control |= IOACCEL1_CONTROL_DATA_IN;
4654                         break;
4655                 case DMA_NONE:
4656                         control |= IOACCEL1_CONTROL_NODATAXFER;
4657                         break;
4658                 default:
4659                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4660                         cmd->sc_data_direction);
4661                         BUG();
4662                         break;
4663                 }
4664         } else {
4665                 control |= IOACCEL1_CONTROL_NODATAXFER;
4666         }
4667
4668         c->Header.SGList = use_sg;
4669         /* Fill out the command structure to submit */
4670         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4671         cp->transfer_len = cpu_to_le32(total_len);
4672         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4673                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4674         cp->control = cpu_to_le32(control);
4675         memcpy(cp->CDB, cdb, cdb_len);
4676         memcpy(cp->CISS_LUN, scsi3addr, 8);
4677         /* Tag was already set at init time. */
4678         enqueue_cmd_and_start_io(h, c);
4679         return 0;
4680 }
4681
4682 /*
4683  * Queue a command directly to a device behind the controller using the
4684  * I/O accelerator path.
4685  */
4686 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4687         struct CommandList *c)
4688 {
4689         struct scsi_cmnd *cmd = c->scsi_cmd;
4690         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4691
4692         if (!dev)
4693                 return -1;
4694
4695         c->phys_disk = dev;
4696
4697         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4698                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4699 }
4700
4701 /*
4702  * Set encryption parameters for the ioaccel2 request
4703  */
4704 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4705         struct CommandList *c, struct io_accel2_cmd *cp)
4706 {
4707         struct scsi_cmnd *cmd = c->scsi_cmd;
4708         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4709         struct raid_map_data *map = &dev->raid_map;
4710         u64 first_block;
4711
4712         /* Are we doing encryption on this device */
4713         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4714                 return;
4715         /* Set the data encryption key index. */
4716         cp->dekindex = map->dekindex;
4717
4718         /* Set the encryption enable flag, encoded into direction field. */
4719         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4720
4721         /* Set encryption tweak values based on logical block address
4722          * If block size is 512, tweak value is LBA.
4723          * For other block sizes, tweak is (LBA * block size)/ 512)
4724          */
4725         switch (cmd->cmnd[0]) {
4726         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4727         case READ_6:
4728         case WRITE_6:
4729                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4730                                 (cmd->cmnd[2] << 8) |
4731                                 cmd->cmnd[3]);
4732                 break;
4733         case WRITE_10:
4734         case READ_10:
4735         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4736         case WRITE_12:
4737         case READ_12:
4738                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4739                 break;
4740         case WRITE_16:
4741         case READ_16:
4742                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4743                 break;
4744         default:
4745                 dev_err(&h->pdev->dev,
4746                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4747                         __func__, cmd->cmnd[0]);
4748                 BUG();
4749                 break;
4750         }
4751
4752         if (le32_to_cpu(map->volume_blk_size) != 512)
4753                 first_block = first_block *
4754                                 le32_to_cpu(map->volume_blk_size)/512;
4755
4756         cp->tweak_lower = cpu_to_le32(first_block);
4757         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4758 }
4759
4760 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4761         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4762         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4763 {
4764         struct scsi_cmnd *cmd = c->scsi_cmd;
4765         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4766         struct ioaccel2_sg_element *curr_sg;
4767         int use_sg, i;
4768         struct scatterlist *sg;
4769         u64 addr64;
4770         u32 len;
4771         u32 total_len = 0;
4772
4773         if (!cmd->device)
4774                 return -1;
4775
4776         if (!cmd->device->hostdata)
4777                 return -1;
4778
4779         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4780
4781         if (is_zero_length_transfer(cdb)) {
4782                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4783                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4784                 return IO_ACCEL_INELIGIBLE;
4785         }
4786
4787         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4788                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4789                 return IO_ACCEL_INELIGIBLE;
4790         }
4791
4792         c->cmd_type = CMD_IOACCEL2;
4793         /* Adjust the DMA address to point to the accelerated command buffer */
4794         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4795                                 (c->cmdindex * sizeof(*cp));
4796         BUG_ON(c->busaddr & 0x0000007F);
4797
4798         memset(cp, 0, sizeof(*cp));
4799         cp->IU_type = IOACCEL2_IU_TYPE;
4800
4801         use_sg = scsi_dma_map(cmd);
4802         if (use_sg < 0) {
4803                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4804                 return use_sg;
4805         }
4806
4807         if (use_sg) {
4808                 curr_sg = cp->sg;
4809                 if (use_sg > h->ioaccel_maxsg) {
4810                         addr64 = le64_to_cpu(
4811                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4812                         curr_sg->address = cpu_to_le64(addr64);
4813                         curr_sg->length = 0;
4814                         curr_sg->reserved[0] = 0;
4815                         curr_sg->reserved[1] = 0;
4816                         curr_sg->reserved[2] = 0;
4817                         curr_sg->chain_indicator = 0x80;
4818
4819                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4820                 }
4821                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4822                         addr64 = (u64) sg_dma_address(sg);
4823                         len  = sg_dma_len(sg);
4824                         total_len += len;
4825                         curr_sg->address = cpu_to_le64(addr64);
4826                         curr_sg->length = cpu_to_le32(len);
4827                         curr_sg->reserved[0] = 0;
4828                         curr_sg->reserved[1] = 0;
4829                         curr_sg->reserved[2] = 0;
4830                         curr_sg->chain_indicator = 0;
4831                         curr_sg++;
4832                 }
4833
4834                 switch (cmd->sc_data_direction) {
4835                 case DMA_TO_DEVICE:
4836                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4837                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4838                         break;
4839                 case DMA_FROM_DEVICE:
4840                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4841                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4842                         break;
4843                 case DMA_NONE:
4844                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4845                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4846                         break;
4847                 default:
4848                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4849                                 cmd->sc_data_direction);
4850                         BUG();
4851                         break;
4852                 }
4853         } else {
4854                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4855                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4856         }
4857
4858         /* Set encryption parameters, if necessary */
4859         set_encrypt_ioaccel2(h, c, cp);
4860
4861         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4862         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4863         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4864
4865         cp->data_len = cpu_to_le32(total_len);
4866         cp->err_ptr = cpu_to_le64(c->busaddr +
4867                         offsetof(struct io_accel2_cmd, error_data));
4868         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4869
4870         /* fill in sg elements */
4871         if (use_sg > h->ioaccel_maxsg) {
4872                 cp->sg_count = 1;
4873                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4874                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4875                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4876                         scsi_dma_unmap(cmd);
4877                         return -1;
4878                 }
4879         } else
4880                 cp->sg_count = (u8) use_sg;
4881
4882         enqueue_cmd_and_start_io(h, c);
4883         return 0;
4884 }
4885
4886 /*
4887  * Queue a command to the correct I/O accelerator path.
4888  */
4889 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4890         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4891         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4892 {
4893         if (!c->scsi_cmd->device)
4894                 return -1;
4895
4896         if (!c->scsi_cmd->device->hostdata)
4897                 return -1;
4898
4899         /* Try to honor the device's queue depth */
4900         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4901                                         phys_disk->queue_depth) {
4902                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4903                 return IO_ACCEL_INELIGIBLE;
4904         }
4905         if (h->transMethod & CFGTBL_Trans_io_accel1)
4906                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4907                                                 cdb, cdb_len, scsi3addr,
4908                                                 phys_disk);
4909         else
4910                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4911                                                 cdb, cdb_len, scsi3addr,
4912                                                 phys_disk);
4913 }
4914
4915 static void raid_map_helper(struct raid_map_data *map,
4916                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4917 {
4918         if (offload_to_mirror == 0)  {
4919                 /* use physical disk in the first mirrored group. */
4920                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4921                 return;
4922         }
4923         do {
4924                 /* determine mirror group that *map_index indicates */
4925                 *current_group = *map_index /
4926                         le16_to_cpu(map->data_disks_per_row);
4927                 if (offload_to_mirror == *current_group)
4928                         continue;
4929                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4930                         /* select map index from next group */
4931                         *map_index += le16_to_cpu(map->data_disks_per_row);
4932                         (*current_group)++;
4933                 } else {
4934                         /* select map index from first group */
4935                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4936                         *current_group = 0;
4937                 }
4938         } while (offload_to_mirror != *current_group);
4939 }
4940
4941 /*
4942  * Attempt to perform offload RAID mapping for a logical volume I/O.
4943  */
4944 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4945         struct CommandList *c)
4946 {
4947         struct scsi_cmnd *cmd = c->scsi_cmd;
4948         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4949         struct raid_map_data *map = &dev->raid_map;
4950         struct raid_map_disk_data *dd = &map->data[0];
4951         int is_write = 0;
4952         u32 map_index;
4953         u64 first_block, last_block;
4954         u32 block_cnt;
4955         u32 blocks_per_row;
4956         u64 first_row, last_row;
4957         u32 first_row_offset, last_row_offset;
4958         u32 first_column, last_column;
4959         u64 r0_first_row, r0_last_row;
4960         u32 r5or6_blocks_per_row;
4961         u64 r5or6_first_row, r5or6_last_row;
4962         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4963         u32 r5or6_first_column, r5or6_last_column;
4964         u32 total_disks_per_row;
4965         u32 stripesize;
4966         u32 first_group, last_group, current_group;
4967         u32 map_row;
4968         u32 disk_handle;
4969         u64 disk_block;
4970         u32 disk_block_cnt;
4971         u8 cdb[16];
4972         u8 cdb_len;
4973         u16 strip_size;
4974 #if BITS_PER_LONG == 32
4975         u64 tmpdiv;
4976 #endif
4977         int offload_to_mirror;
4978
4979         if (!dev)
4980                 return -1;
4981
4982         /* check for valid opcode, get LBA and block count */
4983         switch (cmd->cmnd[0]) {
4984         case WRITE_6:
4985                 is_write = 1;
4986         case READ_6:
4987                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4988                                 (cmd->cmnd[2] << 8) |
4989                                 cmd->cmnd[3]);
4990                 block_cnt = cmd->cmnd[4];
4991                 if (block_cnt == 0)
4992                         block_cnt = 256;
4993                 break;
4994         case WRITE_10:
4995                 is_write = 1;
4996         case READ_10:
4997                 first_block =
4998                         (((u64) cmd->cmnd[2]) << 24) |
4999                         (((u64) cmd->cmnd[3]) << 16) |
5000                         (((u64) cmd->cmnd[4]) << 8) |
5001                         cmd->cmnd[5];
5002                 block_cnt =
5003                         (((u32) cmd->cmnd[7]) << 8) |
5004                         cmd->cmnd[8];
5005                 break;
5006         case WRITE_12:
5007                 is_write = 1;
5008         case READ_12:
5009                 first_block =
5010                         (((u64) cmd->cmnd[2]) << 24) |
5011                         (((u64) cmd->cmnd[3]) << 16) |
5012                         (((u64) cmd->cmnd[4]) << 8) |
5013                         cmd->cmnd[5];
5014                 block_cnt =
5015                         (((u32) cmd->cmnd[6]) << 24) |
5016                         (((u32) cmd->cmnd[7]) << 16) |
5017                         (((u32) cmd->cmnd[8]) << 8) |
5018                 cmd->cmnd[9];
5019                 break;
5020         case WRITE_16:
5021                 is_write = 1;
5022         case READ_16:
5023                 first_block =
5024                         (((u64) cmd->cmnd[2]) << 56) |
5025                         (((u64) cmd->cmnd[3]) << 48) |
5026                         (((u64) cmd->cmnd[4]) << 40) |
5027                         (((u64) cmd->cmnd[5]) << 32) |
5028                         (((u64) cmd->cmnd[6]) << 24) |
5029                         (((u64) cmd->cmnd[7]) << 16) |
5030                         (((u64) cmd->cmnd[8]) << 8) |
5031                         cmd->cmnd[9];
5032                 block_cnt =
5033                         (((u32) cmd->cmnd[10]) << 24) |
5034                         (((u32) cmd->cmnd[11]) << 16) |
5035                         (((u32) cmd->cmnd[12]) << 8) |
5036                         cmd->cmnd[13];
5037                 break;
5038         default:
5039                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5040         }
5041         last_block = first_block + block_cnt - 1;
5042
5043         /* check for write to non-RAID-0 */
5044         if (is_write && dev->raid_level != 0)
5045                 return IO_ACCEL_INELIGIBLE;
5046
5047         /* check for invalid block or wraparound */
5048         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5049                 last_block < first_block)
5050                 return IO_ACCEL_INELIGIBLE;
5051
5052         /* calculate stripe information for the request */
5053         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5054                                 le16_to_cpu(map->strip_size);
5055         strip_size = le16_to_cpu(map->strip_size);
5056 #if BITS_PER_LONG == 32
5057         tmpdiv = first_block;
5058         (void) do_div(tmpdiv, blocks_per_row);
5059         first_row = tmpdiv;
5060         tmpdiv = last_block;
5061         (void) do_div(tmpdiv, blocks_per_row);
5062         last_row = tmpdiv;
5063         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5064         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5065         tmpdiv = first_row_offset;
5066         (void) do_div(tmpdiv, strip_size);
5067         first_column = tmpdiv;
5068         tmpdiv = last_row_offset;
5069         (void) do_div(tmpdiv, strip_size);
5070         last_column = tmpdiv;
5071 #else
5072         first_row = first_block / blocks_per_row;
5073         last_row = last_block / blocks_per_row;
5074         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5075         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5076         first_column = first_row_offset / strip_size;
5077         last_column = last_row_offset / strip_size;
5078 #endif
5079
5080         /* if this isn't a single row/column then give to the controller */
5081         if ((first_row != last_row) || (first_column != last_column))
5082                 return IO_ACCEL_INELIGIBLE;
5083
5084         /* proceeding with driver mapping */
5085         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5086                                 le16_to_cpu(map->metadata_disks_per_row);
5087         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5088                                 le16_to_cpu(map->row_cnt);
5089         map_index = (map_row * total_disks_per_row) + first_column;
5090
5091         switch (dev->raid_level) {
5092         case HPSA_RAID_0:
5093                 break; /* nothing special to do */
5094         case HPSA_RAID_1:
5095                 /* Handles load balance across RAID 1 members.
5096                  * (2-drive R1 and R10 with even # of drives.)
5097                  * Appropriate for SSDs, not optimal for HDDs
5098                  */
5099                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5100                 if (dev->offload_to_mirror)
5101                         map_index += le16_to_cpu(map->data_disks_per_row);
5102                 dev->offload_to_mirror = !dev->offload_to_mirror;
5103                 break;
5104         case HPSA_RAID_ADM:
5105                 /* Handles N-way mirrors  (R1-ADM)
5106                  * and R10 with # of drives divisible by 3.)
5107                  */
5108                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5109
5110                 offload_to_mirror = dev->offload_to_mirror;
5111                 raid_map_helper(map, offload_to_mirror,
5112                                 &map_index, &current_group);
5113                 /* set mirror group to use next time */
5114                 offload_to_mirror =
5115                         (offload_to_mirror >=
5116                         le16_to_cpu(map->layout_map_count) - 1)
5117                         ? 0 : offload_to_mirror + 1;
5118                 dev->offload_to_mirror = offload_to_mirror;
5119                 /* Avoid direct use of dev->offload_to_mirror within this
5120                  * function since multiple threads might simultaneously
5121                  * increment it beyond the range of dev->layout_map_count -1.
5122                  */
5123                 break;
5124         case HPSA_RAID_5:
5125         case HPSA_RAID_6:
5126                 if (le16_to_cpu(map->layout_map_count) <= 1)
5127                         break;
5128
5129                 /* Verify first and last block are in same RAID group */
5130                 r5or6_blocks_per_row =
5131                         le16_to_cpu(map->strip_size) *
5132                         le16_to_cpu(map->data_disks_per_row);
5133                 BUG_ON(r5or6_blocks_per_row == 0);
5134                 stripesize = r5or6_blocks_per_row *
5135                         le16_to_cpu(map->layout_map_count);
5136 #if BITS_PER_LONG == 32
5137                 tmpdiv = first_block;
5138                 first_group = do_div(tmpdiv, stripesize);
5139                 tmpdiv = first_group;
5140                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5141                 first_group = tmpdiv;
5142                 tmpdiv = last_block;
5143                 last_group = do_div(tmpdiv, stripesize);
5144                 tmpdiv = last_group;
5145                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5146                 last_group = tmpdiv;
5147 #else
5148                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5149                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5150 #endif
5151                 if (first_group != last_group)
5152                         return IO_ACCEL_INELIGIBLE;
5153
5154                 /* Verify request is in a single row of RAID 5/6 */
5155 #if BITS_PER_LONG == 32
5156                 tmpdiv = first_block;
5157                 (void) do_div(tmpdiv, stripesize);
5158                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5159                 tmpdiv = last_block;
5160                 (void) do_div(tmpdiv, stripesize);
5161                 r5or6_last_row = r0_last_row = tmpdiv;
5162 #else
5163                 first_row = r5or6_first_row = r0_first_row =
5164                                                 first_block / stripesize;
5165                 r5or6_last_row = r0_last_row = last_block / stripesize;
5166 #endif
5167                 if (r5or6_first_row != r5or6_last_row)
5168                         return IO_ACCEL_INELIGIBLE;
5169
5170
5171                 /* Verify request is in a single column */
5172 #if BITS_PER_LONG == 32
5173                 tmpdiv = first_block;
5174                 first_row_offset = do_div(tmpdiv, stripesize);
5175                 tmpdiv = first_row_offset;
5176                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5177                 r5or6_first_row_offset = first_row_offset;
5178                 tmpdiv = last_block;
5179                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5180                 tmpdiv = r5or6_last_row_offset;
5181                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5182                 tmpdiv = r5or6_first_row_offset;
5183                 (void) do_div(tmpdiv, map->strip_size);
5184                 first_column = r5or6_first_column = tmpdiv;
5185                 tmpdiv = r5or6_last_row_offset;
5186                 (void) do_div(tmpdiv, map->strip_size);
5187                 r5or6_last_column = tmpdiv;
5188 #else
5189                 first_row_offset = r5or6_first_row_offset =
5190                         (u32)((first_block % stripesize) %
5191                                                 r5or6_blocks_per_row);
5192
5193                 r5or6_last_row_offset =
5194                         (u32)((last_block % stripesize) %
5195                                                 r5or6_blocks_per_row);
5196
5197                 first_column = r5or6_first_column =
5198                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5199                 r5or6_last_column =
5200                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5201 #endif
5202                 if (r5or6_first_column != r5or6_last_column)
5203                         return IO_ACCEL_INELIGIBLE;
5204
5205                 /* Request is eligible */
5206                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5207                         le16_to_cpu(map->row_cnt);
5208
5209                 map_index = (first_group *
5210                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5211                         (map_row * total_disks_per_row) + first_column;
5212                 break;
5213         default:
5214                 return IO_ACCEL_INELIGIBLE;
5215         }
5216
5217         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5218                 return IO_ACCEL_INELIGIBLE;
5219
5220         c->phys_disk = dev->phys_disk[map_index];
5221         if (!c->phys_disk)
5222                 return IO_ACCEL_INELIGIBLE;
5223
5224         disk_handle = dd[map_index].ioaccel_handle;
5225         disk_block = le64_to_cpu(map->disk_starting_blk) +
5226                         first_row * le16_to_cpu(map->strip_size) +
5227                         (first_row_offset - first_column *
5228                         le16_to_cpu(map->strip_size));
5229         disk_block_cnt = block_cnt;
5230
5231         /* handle differing logical/physical block sizes */
5232         if (map->phys_blk_shift) {
5233                 disk_block <<= map->phys_blk_shift;
5234                 disk_block_cnt <<= map->phys_blk_shift;
5235         }
5236         BUG_ON(disk_block_cnt > 0xffff);
5237
5238         /* build the new CDB for the physical disk I/O */
5239         if (disk_block > 0xffffffff) {
5240                 cdb[0] = is_write ? WRITE_16 : READ_16;
5241                 cdb[1] = 0;
5242                 cdb[2] = (u8) (disk_block >> 56);
5243                 cdb[3] = (u8) (disk_block >> 48);
5244                 cdb[4] = (u8) (disk_block >> 40);
5245                 cdb[5] = (u8) (disk_block >> 32);
5246                 cdb[6] = (u8) (disk_block >> 24);
5247                 cdb[7] = (u8) (disk_block >> 16);
5248                 cdb[8] = (u8) (disk_block >> 8);
5249                 cdb[9] = (u8) (disk_block);
5250                 cdb[10] = (u8) (disk_block_cnt >> 24);
5251                 cdb[11] = (u8) (disk_block_cnt >> 16);
5252                 cdb[12] = (u8) (disk_block_cnt >> 8);
5253                 cdb[13] = (u8) (disk_block_cnt);
5254                 cdb[14] = 0;
5255                 cdb[15] = 0;
5256                 cdb_len = 16;
5257         } else {
5258                 cdb[0] = is_write ? WRITE_10 : READ_10;
5259                 cdb[1] = 0;
5260                 cdb[2] = (u8) (disk_block >> 24);
5261                 cdb[3] = (u8) (disk_block >> 16);
5262                 cdb[4] = (u8) (disk_block >> 8);
5263                 cdb[5] = (u8) (disk_block);
5264                 cdb[6] = 0;
5265                 cdb[7] = (u8) (disk_block_cnt >> 8);
5266                 cdb[8] = (u8) (disk_block_cnt);
5267                 cdb[9] = 0;
5268                 cdb_len = 10;
5269         }
5270         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5271                                                 dev->scsi3addr,
5272                                                 dev->phys_disk[map_index]);
5273 }
5274
5275 /*
5276  * Submit commands down the "normal" RAID stack path
5277  * All callers to hpsa_ciss_submit must check lockup_detected
5278  * beforehand, before (opt.) and after calling cmd_alloc
5279  */
5280 static int hpsa_ciss_submit(struct ctlr_info *h,
5281         struct CommandList *c, struct scsi_cmnd *cmd,
5282         unsigned char scsi3addr[])
5283 {
5284         cmd->host_scribble = (unsigned char *) c;
5285         c->cmd_type = CMD_SCSI;
5286         c->scsi_cmd = cmd;
5287         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5288         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5289         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5290
5291         /* Fill in the request block... */
5292
5293         c->Request.Timeout = 0;
5294         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5295         c->Request.CDBLen = cmd->cmd_len;
5296         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5297         switch (cmd->sc_data_direction) {
5298         case DMA_TO_DEVICE:
5299                 c->Request.type_attr_dir =
5300                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5301                 break;
5302         case DMA_FROM_DEVICE:
5303                 c->Request.type_attr_dir =
5304                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5305                 break;
5306         case DMA_NONE:
5307                 c->Request.type_attr_dir =
5308                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5309                 break;
5310         case DMA_BIDIRECTIONAL:
5311                 /* This can happen if a buggy application does a scsi passthru
5312                  * and sets both inlen and outlen to non-zero. ( see
5313                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5314                  */
5315
5316                 c->Request.type_attr_dir =
5317                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5318                 /* This is technically wrong, and hpsa controllers should
5319                  * reject it with CMD_INVALID, which is the most correct
5320                  * response, but non-fibre backends appear to let it
5321                  * slide by, and give the same results as if this field
5322                  * were set correctly.  Either way is acceptable for
5323                  * our purposes here.
5324                  */
5325
5326                 break;
5327
5328         default:
5329                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5330                         cmd->sc_data_direction);
5331                 BUG();
5332                 break;
5333         }
5334
5335         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5336                 hpsa_cmd_resolve_and_free(h, c);
5337                 return SCSI_MLQUEUE_HOST_BUSY;
5338         }
5339         enqueue_cmd_and_start_io(h, c);
5340         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5341         return 0;
5342 }
5343
5344 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5345                                 struct CommandList *c)
5346 {
5347         dma_addr_t cmd_dma_handle, err_dma_handle;
5348
5349         /* Zero out all of commandlist except the last field, refcount */
5350         memset(c, 0, offsetof(struct CommandList, refcount));
5351         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5352         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5353         c->err_info = h->errinfo_pool + index;
5354         memset(c->err_info, 0, sizeof(*c->err_info));
5355         err_dma_handle = h->errinfo_pool_dhandle
5356             + index * sizeof(*c->err_info);
5357         c->cmdindex = index;
5358         c->busaddr = (u32) cmd_dma_handle;
5359         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5360         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5361         c->h = h;
5362         c->scsi_cmd = SCSI_CMD_IDLE;
5363 }
5364
5365 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5366 {
5367         int i;
5368
5369         for (i = 0; i < h->nr_cmds; i++) {
5370                 struct CommandList *c = h->cmd_pool + i;
5371
5372                 hpsa_cmd_init(h, i, c);
5373                 atomic_set(&c->refcount, 0);
5374         }
5375 }
5376
5377 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5378                                 struct CommandList *c)
5379 {
5380         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5381
5382         BUG_ON(c->cmdindex != index);
5383
5384         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5385         memset(c->err_info, 0, sizeof(*c->err_info));
5386         c->busaddr = (u32) cmd_dma_handle;
5387 }
5388
5389 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5390                 struct CommandList *c, struct scsi_cmnd *cmd,
5391                 unsigned char *scsi3addr)
5392 {
5393         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5394         int rc = IO_ACCEL_INELIGIBLE;
5395
5396         if (!dev)
5397                 return SCSI_MLQUEUE_HOST_BUSY;
5398
5399         cmd->host_scribble = (unsigned char *) c;
5400
5401         if (dev->offload_enabled) {
5402                 hpsa_cmd_init(h, c->cmdindex, c);
5403                 c->cmd_type = CMD_SCSI;
5404                 c->scsi_cmd = cmd;
5405                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5406                 if (rc < 0)     /* scsi_dma_map failed. */
5407                         rc = SCSI_MLQUEUE_HOST_BUSY;
5408         } else if (dev->hba_ioaccel_enabled) {
5409                 hpsa_cmd_init(h, c->cmdindex, c);
5410                 c->cmd_type = CMD_SCSI;
5411                 c->scsi_cmd = cmd;
5412                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5413                 if (rc < 0)     /* scsi_dma_map failed. */
5414                         rc = SCSI_MLQUEUE_HOST_BUSY;
5415         }
5416         return rc;
5417 }
5418
5419 static void hpsa_command_resubmit_worker(struct work_struct *work)
5420 {
5421         struct scsi_cmnd *cmd;
5422         struct hpsa_scsi_dev_t *dev;
5423         struct CommandList *c = container_of(work, struct CommandList, work);
5424
5425         cmd = c->scsi_cmd;
5426         dev = cmd->device->hostdata;
5427         if (!dev) {
5428                 cmd->result = DID_NO_CONNECT << 16;
5429                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5430         }
5431         if (c->reset_pending)
5432                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5433         if (c->cmd_type == CMD_IOACCEL2) {
5434                 struct ctlr_info *h = c->h;
5435                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5436                 int rc;
5437
5438                 if (c2->error_data.serv_response ==
5439                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5440                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5441                         if (rc == 0)
5442                                 return;
5443                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5444                                 /*
5445                                  * If we get here, it means dma mapping failed.
5446                                  * Try again via scsi mid layer, which will
5447                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5448                                  */
5449                                 cmd->result = DID_IMM_RETRY << 16;
5450                                 return hpsa_cmd_free_and_done(h, c, cmd);
5451                         }
5452                         /* else, fall thru and resubmit down CISS path */
5453                 }
5454         }
5455         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5456         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5457                 /*
5458                  * If we get here, it means dma mapping failed. Try
5459                  * again via scsi mid layer, which will then get
5460                  * SCSI_MLQUEUE_HOST_BUSY.
5461                  *
5462                  * hpsa_ciss_submit will have already freed c
5463                  * if it encountered a dma mapping failure.
5464                  */
5465                 cmd->result = DID_IMM_RETRY << 16;
5466                 cmd->scsi_done(cmd);
5467         }
5468 }
5469
5470 /* Running in struct Scsi_Host->host_lock less mode */
5471 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5472 {
5473         struct ctlr_info *h;
5474         struct hpsa_scsi_dev_t *dev;
5475         unsigned char scsi3addr[8];
5476         struct CommandList *c;
5477         int rc = 0;
5478
5479         /* Get the ptr to our adapter structure out of cmd->host. */
5480         h = sdev_to_hba(cmd->device);
5481
5482         BUG_ON(cmd->request->tag < 0);
5483
5484         dev = cmd->device->hostdata;
5485         if (!dev) {
5486                 cmd->result = DID_NO_CONNECT << 16;
5487                 cmd->scsi_done(cmd);
5488                 return 0;
5489         }
5490
5491         if (dev->removed) {
5492                 cmd->result = DID_NO_CONNECT << 16;
5493                 cmd->scsi_done(cmd);
5494                 return 0;
5495         }
5496
5497         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5498
5499         if (unlikely(lockup_detected(h))) {
5500                 cmd->result = DID_NO_CONNECT << 16;
5501                 cmd->scsi_done(cmd);
5502                 return 0;
5503         }
5504         c = cmd_tagged_alloc(h, cmd);
5505
5506         /*
5507          * Call alternate submit routine for I/O accelerated commands.
5508          * Retries always go down the normal I/O path.
5509          */
5510         if (likely(cmd->retries == 0 &&
5511                         !blk_rq_is_passthrough(cmd->request) &&
5512                         h->acciopath_status)) {
5513                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5514                 if (rc == 0)
5515                         return 0;
5516                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5517                         hpsa_cmd_resolve_and_free(h, c);
5518                         return SCSI_MLQUEUE_HOST_BUSY;
5519                 }
5520         }
5521         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5522 }
5523
5524 static void hpsa_scan_complete(struct ctlr_info *h)
5525 {
5526         unsigned long flags;
5527
5528         spin_lock_irqsave(&h->scan_lock, flags);
5529         h->scan_finished = 1;
5530         wake_up(&h->scan_wait_queue);
5531         spin_unlock_irqrestore(&h->scan_lock, flags);
5532 }
5533
5534 static void hpsa_scan_start(struct Scsi_Host *sh)
5535 {
5536         struct ctlr_info *h = shost_to_hba(sh);
5537         unsigned long flags;
5538
5539         /*
5540          * Don't let rescans be initiated on a controller known to be locked
5541          * up.  If the controller locks up *during* a rescan, that thread is
5542          * probably hosed, but at least we can prevent new rescan threads from
5543          * piling up on a locked up controller.
5544          */
5545         if (unlikely(lockup_detected(h)))
5546                 return hpsa_scan_complete(h);
5547
5548         /*
5549          * If a scan is already waiting to run, no need to add another
5550          */
5551         spin_lock_irqsave(&h->scan_lock, flags);
5552         if (h->scan_waiting) {
5553                 spin_unlock_irqrestore(&h->scan_lock, flags);
5554                 return;
5555         }
5556
5557         spin_unlock_irqrestore(&h->scan_lock, flags);
5558
5559         /* wait until any scan already in progress is finished. */
5560         while (1) {
5561                 spin_lock_irqsave(&h->scan_lock, flags);
5562                 if (h->scan_finished)
5563                         break;
5564                 h->scan_waiting = 1;
5565                 spin_unlock_irqrestore(&h->scan_lock, flags);
5566                 wait_event(h->scan_wait_queue, h->scan_finished);
5567                 /* Note: We don't need to worry about a race between this
5568                  * thread and driver unload because the midlayer will
5569                  * have incremented the reference count, so unload won't
5570                  * happen if we're in here.
5571                  */
5572         }
5573         h->scan_finished = 0; /* mark scan as in progress */
5574         h->scan_waiting = 0;
5575         spin_unlock_irqrestore(&h->scan_lock, flags);
5576
5577         if (unlikely(lockup_detected(h)))
5578                 return hpsa_scan_complete(h);
5579
5580         /*
5581          * Do the scan after a reset completion
5582          */
5583         spin_lock_irqsave(&h->reset_lock, flags);
5584         if (h->reset_in_progress) {
5585                 h->drv_req_rescan = 1;
5586                 spin_unlock_irqrestore(&h->reset_lock, flags);
5587                 hpsa_scan_complete(h);
5588                 return;
5589         }
5590         spin_unlock_irqrestore(&h->reset_lock, flags);
5591
5592         hpsa_update_scsi_devices(h);
5593
5594         hpsa_scan_complete(h);
5595 }
5596
5597 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5598 {
5599         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5600
5601         if (!logical_drive)
5602                 return -ENODEV;
5603
5604         if (qdepth < 1)
5605                 qdepth = 1;
5606         else if (qdepth > logical_drive->queue_depth)
5607                 qdepth = logical_drive->queue_depth;
5608
5609         return scsi_change_queue_depth(sdev, qdepth);
5610 }
5611
5612 static int hpsa_scan_finished(struct Scsi_Host *sh,
5613         unsigned long elapsed_time)
5614 {
5615         struct ctlr_info *h = shost_to_hba(sh);
5616         unsigned long flags;
5617         int finished;
5618
5619         spin_lock_irqsave(&h->scan_lock, flags);
5620         finished = h->scan_finished;
5621         spin_unlock_irqrestore(&h->scan_lock, flags);
5622         return finished;
5623 }
5624
5625 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5626 {
5627         struct Scsi_Host *sh;
5628
5629         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5630         if (sh == NULL) {
5631                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5632                 return -ENOMEM;
5633         }
5634
5635         sh->io_port = 0;
5636         sh->n_io_port = 0;
5637         sh->this_id = -1;
5638         sh->max_channel = 3;
5639         sh->max_cmd_len = MAX_COMMAND_SIZE;
5640         sh->max_lun = HPSA_MAX_LUN;
5641         sh->max_id = HPSA_MAX_LUN;
5642         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5643         sh->cmd_per_lun = sh->can_queue;
5644         sh->sg_tablesize = h->maxsgentries;
5645         sh->transportt = hpsa_sas_transport_template;
5646         sh->hostdata[0] = (unsigned long) h;
5647         sh->irq = pci_irq_vector(h->pdev, 0);
5648         sh->unique_id = sh->irq;
5649
5650         h->scsi_host = sh;
5651         return 0;
5652 }
5653
5654 static int hpsa_scsi_add_host(struct ctlr_info *h)
5655 {
5656         int rv;
5657
5658         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5659         if (rv) {
5660                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5661                 return rv;
5662         }
5663         scsi_scan_host(h->scsi_host);
5664         return 0;
5665 }
5666
5667 /*
5668  * The block layer has already gone to the trouble of picking out a unique,
5669  * small-integer tag for this request.  We use an offset from that value as
5670  * an index to select our command block.  (The offset allows us to reserve the
5671  * low-numbered entries for our own uses.)
5672  */
5673 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5674 {
5675         int idx = scmd->request->tag;
5676
5677         if (idx < 0)
5678                 return idx;
5679
5680         /* Offset to leave space for internal cmds. */
5681         return idx += HPSA_NRESERVED_CMDS;
5682 }
5683
5684 /*
5685  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5686  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5687  */
5688 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5689                                 struct CommandList *c, unsigned char lunaddr[],
5690                                 int reply_queue)
5691 {
5692         int rc;
5693
5694         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5695         (void) fill_cmd(c, TEST_UNIT_READY, h,
5696                         NULL, 0, 0, lunaddr, TYPE_CMD);
5697         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5698         if (rc)
5699                 return rc;
5700         /* no unmap needed here because no data xfer. */
5701
5702         /* Check if the unit is already ready. */
5703         if (c->err_info->CommandStatus == CMD_SUCCESS)
5704                 return 0;
5705
5706         /*
5707          * The first command sent after reset will receive "unit attention" to
5708          * indicate that the LUN has been reset...this is actually what we're
5709          * looking for (but, success is good too).
5710          */
5711         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5712                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5713                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5714                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5715                 return 0;
5716
5717         return 1;
5718 }
5719
5720 /*
5721  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5722  * returns zero when the unit is ready, and non-zero when giving up.
5723  */
5724 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5725                                 struct CommandList *c,
5726                                 unsigned char lunaddr[], int reply_queue)
5727 {
5728         int rc;
5729         int count = 0;
5730         int waittime = 1; /* seconds */
5731
5732         /* Send test unit ready until device ready, or give up. */
5733         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5734
5735                 /*
5736                  * Wait for a bit.  do this first, because if we send
5737                  * the TUR right away, the reset will just abort it.
5738                  */
5739                 msleep(1000 * waittime);
5740
5741                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5742                 if (!rc)
5743                         break;
5744
5745                 /* Increase wait time with each try, up to a point. */
5746                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5747                         waittime *= 2;
5748
5749                 dev_warn(&h->pdev->dev,
5750                          "waiting %d secs for device to become ready.\n",
5751                          waittime);
5752         }
5753
5754         return rc;
5755 }
5756
5757 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5758                                            unsigned char lunaddr[],
5759                                            int reply_queue)
5760 {
5761         int first_queue;
5762         int last_queue;
5763         int rq;
5764         int rc = 0;
5765         struct CommandList *c;
5766
5767         c = cmd_alloc(h);
5768
5769         /*
5770          * If no specific reply queue was requested, then send the TUR
5771          * repeatedly, requesting a reply on each reply queue; otherwise execute
5772          * the loop exactly once using only the specified queue.
5773          */
5774         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5775                 first_queue = 0;
5776                 last_queue = h->nreply_queues - 1;
5777         } else {
5778                 first_queue = reply_queue;
5779                 last_queue = reply_queue;
5780         }
5781
5782         for (rq = first_queue; rq <= last_queue; rq++) {
5783                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5784                 if (rc)
5785                         break;
5786         }
5787
5788         if (rc)
5789                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5790         else
5791                 dev_warn(&h->pdev->dev, "device is ready.\n");
5792
5793         cmd_free(h, c);
5794         return rc;
5795 }
5796
5797 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5798  * complaining.  Doing a host- or bus-reset can't do anything good here.
5799  */
5800 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5801 {
5802         int rc = SUCCESS;
5803         struct ctlr_info *h;
5804         struct hpsa_scsi_dev_t *dev;
5805         u8 reset_type;
5806         char msg[48];
5807         unsigned long flags;
5808
5809         /* find the controller to which the command to be aborted was sent */
5810         h = sdev_to_hba(scsicmd->device);
5811         if (h == NULL) /* paranoia */
5812                 return FAILED;
5813
5814         spin_lock_irqsave(&h->reset_lock, flags);
5815         h->reset_in_progress = 1;
5816         spin_unlock_irqrestore(&h->reset_lock, flags);
5817
5818         if (lockup_detected(h)) {
5819                 rc = FAILED;
5820                 goto return_reset_status;
5821         }
5822
5823         dev = scsicmd->device->hostdata;
5824         if (!dev) {
5825                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5826                 rc = FAILED;
5827                 goto return_reset_status;
5828         }
5829
5830         if (dev->devtype == TYPE_ENCLOSURE) {
5831                 rc = SUCCESS;
5832                 goto return_reset_status;
5833         }
5834
5835         /* if controller locked up, we can guarantee command won't complete */
5836         if (lockup_detected(h)) {
5837                 snprintf(msg, sizeof(msg),
5838                          "cmd %d RESET FAILED, lockup detected",
5839                          hpsa_get_cmd_index(scsicmd));
5840                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5841                 rc = FAILED;
5842                 goto return_reset_status;
5843         }
5844
5845         /* this reset request might be the result of a lockup; check */
5846         if (detect_controller_lockup(h)) {
5847                 snprintf(msg, sizeof(msg),
5848                          "cmd %d RESET FAILED, new lockup detected",
5849                          hpsa_get_cmd_index(scsicmd));
5850                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5851                 rc = FAILED;
5852                 goto return_reset_status;
5853         }
5854
5855         /* Do not attempt on controller */
5856         if (is_hba_lunid(dev->scsi3addr)) {
5857                 rc = SUCCESS;
5858                 goto return_reset_status;
5859         }
5860
5861         if (is_logical_dev_addr_mode(dev->scsi3addr))
5862                 reset_type = HPSA_DEVICE_RESET_MSG;
5863         else
5864                 reset_type = HPSA_PHYS_TARGET_RESET;
5865
5866         sprintf(msg, "resetting %s",
5867                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5868         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5869
5870         /* send a reset to the SCSI LUN which the command was sent to */
5871         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5872                            DEFAULT_REPLY_QUEUE);
5873         if (rc == 0)
5874                 rc = SUCCESS;
5875         else
5876                 rc = FAILED;
5877
5878         sprintf(msg, "reset %s %s",
5879                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5880                 rc == SUCCESS ? "completed successfully" : "failed");
5881         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5882
5883 return_reset_status:
5884         spin_lock_irqsave(&h->reset_lock, flags);
5885         h->reset_in_progress = 0;
5886         spin_unlock_irqrestore(&h->reset_lock, flags);
5887         return rc;
5888 }
5889
5890 /*
5891  * For operations with an associated SCSI command, a command block is allocated
5892  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5893  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5894  * the complement, although cmd_free() may be called instead.
5895  */
5896 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5897                                             struct scsi_cmnd *scmd)
5898 {
5899         int idx = hpsa_get_cmd_index(scmd);
5900         struct CommandList *c = h->cmd_pool + idx;
5901
5902         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5903                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5904                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5905                 /* The index value comes from the block layer, so if it's out of
5906                  * bounds, it's probably not our bug.
5907                  */
5908                 BUG();
5909         }
5910
5911         atomic_inc(&c->refcount);
5912         if (unlikely(!hpsa_is_cmd_idle(c))) {
5913                 /*
5914                  * We expect that the SCSI layer will hand us a unique tag
5915                  * value.  Thus, there should never be a collision here between
5916                  * two requests...because if the selected command isn't idle
5917                  * then someone is going to be very disappointed.
5918                  */
5919                 dev_err(&h->pdev->dev,
5920                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5921                         idx);
5922                 if (c->scsi_cmd != NULL)
5923                         scsi_print_command(c->scsi_cmd);
5924                 scsi_print_command(scmd);
5925         }
5926
5927         hpsa_cmd_partial_init(h, idx, c);
5928         return c;
5929 }
5930
5931 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5932 {
5933         /*
5934          * Release our reference to the block.  We don't need to do anything
5935          * else to free it, because it is accessed by index.
5936          */
5937         (void)atomic_dec(&c->refcount);
5938 }
5939
5940 /*
5941  * For operations that cannot sleep, a command block is allocated at init,
5942  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5943  * which ones are free or in use.  Lock must be held when calling this.
5944  * cmd_free() is the complement.
5945  * This function never gives up and returns NULL.  If it hangs,
5946  * another thread must call cmd_free() to free some tags.
5947  */
5948
5949 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5950 {
5951         struct CommandList *c;
5952         int refcount, i;
5953         int offset = 0;
5954
5955         /*
5956          * There is some *extremely* small but non-zero chance that that
5957          * multiple threads could get in here, and one thread could
5958          * be scanning through the list of bits looking for a free
5959          * one, but the free ones are always behind him, and other
5960          * threads sneak in behind him and eat them before he can
5961          * get to them, so that while there is always a free one, a
5962          * very unlucky thread might be starved anyway, never able to
5963          * beat the other threads.  In reality, this happens so
5964          * infrequently as to be indistinguishable from never.
5965          *
5966          * Note that we start allocating commands before the SCSI host structure
5967          * is initialized.  Since the search starts at bit zero, this
5968          * all works, since we have at least one command structure available;
5969          * however, it means that the structures with the low indexes have to be
5970          * reserved for driver-initiated requests, while requests from the block
5971          * layer will use the higher indexes.
5972          */
5973
5974         for (;;) {
5975                 i = find_next_zero_bit(h->cmd_pool_bits,
5976                                         HPSA_NRESERVED_CMDS,
5977                                         offset);
5978                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5979                         offset = 0;
5980                         continue;
5981                 }
5982                 c = h->cmd_pool + i;
5983                 refcount = atomic_inc_return(&c->refcount);
5984                 if (unlikely(refcount > 1)) {
5985                         cmd_free(h, c); /* already in use */
5986                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5987                         continue;
5988                 }
5989                 set_bit(i & (BITS_PER_LONG - 1),
5990                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5991                 break; /* it's ours now. */
5992         }
5993         hpsa_cmd_partial_init(h, i, c);
5994         return c;
5995 }
5996
5997 /*
5998  * This is the complementary operation to cmd_alloc().  Note, however, in some
5999  * corner cases it may also be used to free blocks allocated by
6000  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6001  * the clear-bit is harmless.
6002  */
6003 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6004 {
6005         if (atomic_dec_and_test(&c->refcount)) {
6006                 int i;
6007
6008                 i = c - h->cmd_pool;
6009                 clear_bit(i & (BITS_PER_LONG - 1),
6010                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6011         }
6012 }
6013
6014 #ifdef CONFIG_COMPAT
6015
6016 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6017         void __user *arg)
6018 {
6019         IOCTL32_Command_struct __user *arg32 =
6020             (IOCTL32_Command_struct __user *) arg;
6021         IOCTL_Command_struct arg64;
6022         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6023         int err;
6024         u32 cp;
6025
6026         memset(&arg64, 0, sizeof(arg64));
6027         err = 0;
6028         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6029                            sizeof(arg64.LUN_info));
6030         err |= copy_from_user(&arg64.Request, &arg32->Request,
6031                            sizeof(arg64.Request));
6032         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6033                            sizeof(arg64.error_info));
6034         err |= get_user(arg64.buf_size, &arg32->buf_size);
6035         err |= get_user(cp, &arg32->buf);
6036         arg64.buf = compat_ptr(cp);
6037         err |= copy_to_user(p, &arg64, sizeof(arg64));
6038
6039         if (err)
6040                 return -EFAULT;
6041
6042         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6043         if (err)
6044                 return err;
6045         err |= copy_in_user(&arg32->error_info, &p->error_info,
6046                          sizeof(arg32->error_info));
6047         if (err)
6048                 return -EFAULT;
6049         return err;
6050 }
6051
6052 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6053         int cmd, void __user *arg)
6054 {
6055         BIG_IOCTL32_Command_struct __user *arg32 =
6056             (BIG_IOCTL32_Command_struct __user *) arg;
6057         BIG_IOCTL_Command_struct arg64;
6058         BIG_IOCTL_Command_struct __user *p =
6059             compat_alloc_user_space(sizeof(arg64));
6060         int err;
6061         u32 cp;
6062
6063         memset(&arg64, 0, sizeof(arg64));
6064         err = 0;
6065         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6066                            sizeof(arg64.LUN_info));
6067         err |= copy_from_user(&arg64.Request, &arg32->Request,
6068                            sizeof(arg64.Request));
6069         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6070                            sizeof(arg64.error_info));
6071         err |= get_user(arg64.buf_size, &arg32->buf_size);
6072         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6073         err |= get_user(cp, &arg32->buf);
6074         arg64.buf = compat_ptr(cp);
6075         err |= copy_to_user(p, &arg64, sizeof(arg64));
6076
6077         if (err)
6078                 return -EFAULT;
6079
6080         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6081         if (err)
6082                 return err;
6083         err |= copy_in_user(&arg32->error_info, &p->error_info,
6084                          sizeof(arg32->error_info));
6085         if (err)
6086                 return -EFAULT;
6087         return err;
6088 }
6089
6090 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6091 {
6092         switch (cmd) {
6093         case CCISS_GETPCIINFO:
6094         case CCISS_GETINTINFO:
6095         case CCISS_SETINTINFO:
6096         case CCISS_GETNODENAME:
6097         case CCISS_SETNODENAME:
6098         case CCISS_GETHEARTBEAT:
6099         case CCISS_GETBUSTYPES:
6100         case CCISS_GETFIRMVER:
6101         case CCISS_GETDRIVVER:
6102         case CCISS_REVALIDVOLS:
6103         case CCISS_DEREGDISK:
6104         case CCISS_REGNEWDISK:
6105         case CCISS_REGNEWD:
6106         case CCISS_RESCANDISK:
6107         case CCISS_GETLUNINFO:
6108                 return hpsa_ioctl(dev, cmd, arg);
6109
6110         case CCISS_PASSTHRU32:
6111                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6112         case CCISS_BIG_PASSTHRU32:
6113                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6114
6115         default:
6116                 return -ENOIOCTLCMD;
6117         }
6118 }
6119 #endif
6120
6121 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6122 {
6123         struct hpsa_pci_info pciinfo;
6124
6125         if (!argp)
6126                 return -EINVAL;
6127         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6128         pciinfo.bus = h->pdev->bus->number;
6129         pciinfo.dev_fn = h->pdev->devfn;
6130         pciinfo.board_id = h->board_id;
6131         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6132                 return -EFAULT;
6133         return 0;
6134 }
6135
6136 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6137 {
6138         DriverVer_type DriverVer;
6139         unsigned char vmaj, vmin, vsubmin;
6140         int rc;
6141
6142         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6143                 &vmaj, &vmin, &vsubmin);
6144         if (rc != 3) {
6145                 dev_info(&h->pdev->dev, "driver version string '%s' "
6146                         "unrecognized.", HPSA_DRIVER_VERSION);
6147                 vmaj = 0;
6148                 vmin = 0;
6149                 vsubmin = 0;
6150         }
6151         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6152         if (!argp)
6153                 return -EINVAL;
6154         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6155                 return -EFAULT;
6156         return 0;
6157 }
6158
6159 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6160 {
6161         IOCTL_Command_struct iocommand;
6162         struct CommandList *c;
6163         char *buff = NULL;
6164         u64 temp64;
6165         int rc = 0;
6166
6167         if (!argp)
6168                 return -EINVAL;
6169         if (!capable(CAP_SYS_RAWIO))
6170                 return -EPERM;
6171         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6172                 return -EFAULT;
6173         if ((iocommand.buf_size < 1) &&
6174             (iocommand.Request.Type.Direction != XFER_NONE)) {
6175                 return -EINVAL;
6176         }
6177         if (iocommand.buf_size > 0) {
6178                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6179                 if (buff == NULL)
6180                         return -ENOMEM;
6181                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6182                         /* Copy the data into the buffer we created */
6183                         if (copy_from_user(buff, iocommand.buf,
6184                                 iocommand.buf_size)) {
6185                                 rc = -EFAULT;
6186                                 goto out_kfree;
6187                         }
6188                 } else {
6189                         memset(buff, 0, iocommand.buf_size);
6190                 }
6191         }
6192         c = cmd_alloc(h);
6193
6194         /* Fill in the command type */
6195         c->cmd_type = CMD_IOCTL_PEND;
6196         c->scsi_cmd = SCSI_CMD_BUSY;
6197         /* Fill in Command Header */
6198         c->Header.ReplyQueue = 0; /* unused in simple mode */
6199         if (iocommand.buf_size > 0) {   /* buffer to fill */
6200                 c->Header.SGList = 1;
6201                 c->Header.SGTotal = cpu_to_le16(1);
6202         } else  { /* no buffers to fill */
6203                 c->Header.SGList = 0;
6204                 c->Header.SGTotal = cpu_to_le16(0);
6205         }
6206         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6207
6208         /* Fill in Request block */
6209         memcpy(&c->Request, &iocommand.Request,
6210                 sizeof(c->Request));
6211
6212         /* Fill in the scatter gather information */
6213         if (iocommand.buf_size > 0) {
6214                 temp64 = pci_map_single(h->pdev, buff,
6215                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6216                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6217                         c->SG[0].Addr = cpu_to_le64(0);
6218                         c->SG[0].Len = cpu_to_le32(0);
6219                         rc = -ENOMEM;
6220                         goto out;
6221                 }
6222                 c->SG[0].Addr = cpu_to_le64(temp64);
6223                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6224                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6225         }
6226         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6227                                         NO_TIMEOUT);
6228         if (iocommand.buf_size > 0)
6229                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6230         check_ioctl_unit_attention(h, c);
6231         if (rc) {
6232                 rc = -EIO;
6233                 goto out;
6234         }
6235
6236         /* Copy the error information out */
6237         memcpy(&iocommand.error_info, c->err_info,
6238                 sizeof(iocommand.error_info));
6239         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6240                 rc = -EFAULT;
6241                 goto out;
6242         }
6243         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6244                 iocommand.buf_size > 0) {
6245                 /* Copy the data out of the buffer we created */
6246                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6247                         rc = -EFAULT;
6248                         goto out;
6249                 }
6250         }
6251 out:
6252         cmd_free(h, c);
6253 out_kfree:
6254         kfree(buff);
6255         return rc;
6256 }
6257
6258 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6259 {
6260         BIG_IOCTL_Command_struct *ioc;
6261         struct CommandList *c;
6262         unsigned char **buff = NULL;
6263         int *buff_size = NULL;
6264         u64 temp64;
6265         BYTE sg_used = 0;
6266         int status = 0;
6267         u32 left;
6268         u32 sz;
6269         BYTE __user *data_ptr;
6270
6271         if (!argp)
6272                 return -EINVAL;
6273         if (!capable(CAP_SYS_RAWIO))
6274                 return -EPERM;
6275         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6276         if (!ioc) {
6277                 status = -ENOMEM;
6278                 goto cleanup1;
6279         }
6280         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6281                 status = -EFAULT;
6282                 goto cleanup1;
6283         }
6284         if ((ioc->buf_size < 1) &&
6285             (ioc->Request.Type.Direction != XFER_NONE)) {
6286                 status = -EINVAL;
6287                 goto cleanup1;
6288         }
6289         /* Check kmalloc limits  using all SGs */
6290         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6291                 status = -EINVAL;
6292                 goto cleanup1;
6293         }
6294         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6295                 status = -EINVAL;
6296                 goto cleanup1;
6297         }
6298         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6299         if (!buff) {
6300                 status = -ENOMEM;
6301                 goto cleanup1;
6302         }
6303         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6304         if (!buff_size) {
6305                 status = -ENOMEM;
6306                 goto cleanup1;
6307         }
6308         left = ioc->buf_size;
6309         data_ptr = ioc->buf;
6310         while (left) {
6311                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6312                 buff_size[sg_used] = sz;
6313                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6314                 if (buff[sg_used] == NULL) {
6315                         status = -ENOMEM;
6316                         goto cleanup1;
6317                 }
6318                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6319                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6320                                 status = -EFAULT;
6321                                 goto cleanup1;
6322                         }
6323                 } else
6324                         memset(buff[sg_used], 0, sz);
6325                 left -= sz;
6326                 data_ptr += sz;
6327                 sg_used++;
6328         }
6329         c = cmd_alloc(h);
6330
6331         c->cmd_type = CMD_IOCTL_PEND;
6332         c->scsi_cmd = SCSI_CMD_BUSY;
6333         c->Header.ReplyQueue = 0;
6334         c->Header.SGList = (u8) sg_used;
6335         c->Header.SGTotal = cpu_to_le16(sg_used);
6336         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6337         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6338         if (ioc->buf_size > 0) {
6339                 int i;
6340                 for (i = 0; i < sg_used; i++) {
6341                         temp64 = pci_map_single(h->pdev, buff[i],
6342                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6343                         if (dma_mapping_error(&h->pdev->dev,
6344                                                         (dma_addr_t) temp64)) {
6345                                 c->SG[i].Addr = cpu_to_le64(0);
6346                                 c->SG[i].Len = cpu_to_le32(0);
6347                                 hpsa_pci_unmap(h->pdev, c, i,
6348                                         PCI_DMA_BIDIRECTIONAL);
6349                                 status = -ENOMEM;
6350                                 goto cleanup0;
6351                         }
6352                         c->SG[i].Addr = cpu_to_le64(temp64);
6353                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6354                         c->SG[i].Ext = cpu_to_le32(0);
6355                 }
6356                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6357         }
6358         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6359                                                 NO_TIMEOUT);
6360         if (sg_used)
6361                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6362         check_ioctl_unit_attention(h, c);
6363         if (status) {
6364                 status = -EIO;
6365                 goto cleanup0;
6366         }
6367
6368         /* Copy the error information out */
6369         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6370         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6371                 status = -EFAULT;
6372                 goto cleanup0;
6373         }
6374         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6375                 int i;
6376
6377                 /* Copy the data out of the buffer we created */
6378                 BYTE __user *ptr = ioc->buf;
6379                 for (i = 0; i < sg_used; i++) {
6380                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6381                                 status = -EFAULT;
6382                                 goto cleanup0;
6383                         }
6384                         ptr += buff_size[i];
6385                 }
6386         }
6387         status = 0;
6388 cleanup0:
6389         cmd_free(h, c);
6390 cleanup1:
6391         if (buff) {
6392                 int i;
6393
6394                 for (i = 0; i < sg_used; i++)
6395                         kfree(buff[i]);
6396                 kfree(buff);
6397         }
6398         kfree(buff_size);
6399         kfree(ioc);
6400         return status;
6401 }
6402
6403 static void check_ioctl_unit_attention(struct ctlr_info *h,
6404         struct CommandList *c)
6405 {
6406         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6407                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6408                 (void) check_for_unit_attention(h, c);
6409 }
6410
6411 /*
6412  * ioctl
6413  */
6414 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6415 {
6416         struct ctlr_info *h;
6417         void __user *argp = (void __user *)arg;
6418         int rc;
6419
6420         h = sdev_to_hba(dev);
6421
6422         switch (cmd) {
6423         case CCISS_DEREGDISK:
6424         case CCISS_REGNEWDISK:
6425         case CCISS_REGNEWD:
6426                 hpsa_scan_start(h->scsi_host);
6427                 return 0;
6428         case CCISS_GETPCIINFO:
6429                 return hpsa_getpciinfo_ioctl(h, argp);
6430         case CCISS_GETDRIVVER:
6431                 return hpsa_getdrivver_ioctl(h, argp);
6432         case CCISS_PASSTHRU:
6433                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6434                         return -EAGAIN;
6435                 rc = hpsa_passthru_ioctl(h, argp);
6436                 atomic_inc(&h->passthru_cmds_avail);
6437                 return rc;
6438         case CCISS_BIG_PASSTHRU:
6439                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6440                         return -EAGAIN;
6441                 rc = hpsa_big_passthru_ioctl(h, argp);
6442                 atomic_inc(&h->passthru_cmds_avail);
6443                 return rc;
6444         default:
6445                 return -ENOTTY;
6446         }
6447 }
6448
6449 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6450                                 u8 reset_type)
6451 {
6452         struct CommandList *c;
6453
6454         c = cmd_alloc(h);
6455
6456         /* fill_cmd can't fail here, no data buffer to map */
6457         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6458                 RAID_CTLR_LUNID, TYPE_MSG);
6459         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6460         c->waiting = NULL;
6461         enqueue_cmd_and_start_io(h, c);
6462         /* Don't wait for completion, the reset won't complete.  Don't free
6463          * the command either.  This is the last command we will send before
6464          * re-initializing everything, so it doesn't matter and won't leak.
6465          */
6466         return;
6467 }
6468
6469 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6470         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6471         int cmd_type)
6472 {
6473         int pci_dir = XFER_NONE;
6474
6475         c->cmd_type = CMD_IOCTL_PEND;
6476         c->scsi_cmd = SCSI_CMD_BUSY;
6477         c->Header.ReplyQueue = 0;
6478         if (buff != NULL && size > 0) {
6479                 c->Header.SGList = 1;
6480                 c->Header.SGTotal = cpu_to_le16(1);
6481         } else {
6482                 c->Header.SGList = 0;
6483                 c->Header.SGTotal = cpu_to_le16(0);
6484         }
6485         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6486
6487         if (cmd_type == TYPE_CMD) {
6488                 switch (cmd) {
6489                 case HPSA_INQUIRY:
6490                         /* are we trying to read a vital product page */
6491                         if (page_code & VPD_PAGE) {
6492                                 c->Request.CDB[1] = 0x01;
6493                                 c->Request.CDB[2] = (page_code & 0xff);
6494                         }
6495                         c->Request.CDBLen = 6;
6496                         c->Request.type_attr_dir =
6497                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6498                         c->Request.Timeout = 0;
6499                         c->Request.CDB[0] = HPSA_INQUIRY;
6500                         c->Request.CDB[4] = size & 0xFF;
6501                         break;
6502                 case HPSA_REPORT_LOG:
6503                 case HPSA_REPORT_PHYS:
6504                         /* Talking to controller so It's a physical command
6505                            mode = 00 target = 0.  Nothing to write.
6506                          */
6507                         c->Request.CDBLen = 12;
6508                         c->Request.type_attr_dir =
6509                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6510                         c->Request.Timeout = 0;
6511                         c->Request.CDB[0] = cmd;
6512                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6513                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6514                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6515                         c->Request.CDB[9] = size & 0xFF;
6516                         break;
6517                 case BMIC_SENSE_DIAG_OPTIONS:
6518                         c->Request.CDBLen = 16;
6519                         c->Request.type_attr_dir =
6520                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6521                         c->Request.Timeout = 0;
6522                         /* Spec says this should be BMIC_WRITE */
6523                         c->Request.CDB[0] = BMIC_READ;
6524                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6525                         break;
6526                 case BMIC_SET_DIAG_OPTIONS:
6527                         c->Request.CDBLen = 16;
6528                         c->Request.type_attr_dir =
6529                                         TYPE_ATTR_DIR(cmd_type,
6530                                                 ATTR_SIMPLE, XFER_WRITE);
6531                         c->Request.Timeout = 0;
6532                         c->Request.CDB[0] = BMIC_WRITE;
6533                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6534                         break;
6535                 case HPSA_CACHE_FLUSH:
6536                         c->Request.CDBLen = 12;
6537                         c->Request.type_attr_dir =
6538                                         TYPE_ATTR_DIR(cmd_type,
6539                                                 ATTR_SIMPLE, XFER_WRITE);
6540                         c->Request.Timeout = 0;
6541                         c->Request.CDB[0] = BMIC_WRITE;
6542                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6543                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6544                         c->Request.CDB[8] = size & 0xFF;
6545                         break;
6546                 case TEST_UNIT_READY:
6547                         c->Request.CDBLen = 6;
6548                         c->Request.type_attr_dir =
6549                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6550                         c->Request.Timeout = 0;
6551                         break;
6552                 case HPSA_GET_RAID_MAP:
6553                         c->Request.CDBLen = 12;
6554                         c->Request.type_attr_dir =
6555                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6556                         c->Request.Timeout = 0;
6557                         c->Request.CDB[0] = HPSA_CISS_READ;
6558                         c->Request.CDB[1] = cmd;
6559                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6560                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6561                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6562                         c->Request.CDB[9] = size & 0xFF;
6563                         break;
6564                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6565                         c->Request.CDBLen = 10;
6566                         c->Request.type_attr_dir =
6567                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6568                         c->Request.Timeout = 0;
6569                         c->Request.CDB[0] = BMIC_READ;
6570                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6571                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6572                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6573                         break;
6574                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6575                         c->Request.CDBLen = 10;
6576                         c->Request.type_attr_dir =
6577                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6578                         c->Request.Timeout = 0;
6579                         c->Request.CDB[0] = BMIC_READ;
6580                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6581                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6582                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6583                         break;
6584                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6585                         c->Request.CDBLen = 10;
6586                         c->Request.type_attr_dir =
6587                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6588                         c->Request.Timeout = 0;
6589                         c->Request.CDB[0] = BMIC_READ;
6590                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6591                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6592                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6593                         break;
6594                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6595                         c->Request.CDBLen = 10;
6596                         c->Request.type_attr_dir =
6597                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6598                         c->Request.Timeout = 0;
6599                         c->Request.CDB[0] = BMIC_READ;
6600                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6601                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6602                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6603                         break;
6604                 case BMIC_IDENTIFY_CONTROLLER:
6605                         c->Request.CDBLen = 10;
6606                         c->Request.type_attr_dir =
6607                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6608                         c->Request.Timeout = 0;
6609                         c->Request.CDB[0] = BMIC_READ;
6610                         c->Request.CDB[1] = 0;
6611                         c->Request.CDB[2] = 0;
6612                         c->Request.CDB[3] = 0;
6613                         c->Request.CDB[4] = 0;
6614                         c->Request.CDB[5] = 0;
6615                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6616                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6617                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6618                         c->Request.CDB[9] = 0;
6619                         break;
6620                 default:
6621                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6622                         BUG();
6623                 }
6624         } else if (cmd_type == TYPE_MSG) {
6625                 switch (cmd) {
6626
6627                 case  HPSA_PHYS_TARGET_RESET:
6628                         c->Request.CDBLen = 16;
6629                         c->Request.type_attr_dir =
6630                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6631                         c->Request.Timeout = 0; /* Don't time out */
6632                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6633                         c->Request.CDB[0] = HPSA_RESET;
6634                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6635                         /* Physical target reset needs no control bytes 4-7*/
6636                         c->Request.CDB[4] = 0x00;
6637                         c->Request.CDB[5] = 0x00;
6638                         c->Request.CDB[6] = 0x00;
6639                         c->Request.CDB[7] = 0x00;
6640                         break;
6641                 case  HPSA_DEVICE_RESET_MSG:
6642                         c->Request.CDBLen = 16;
6643                         c->Request.type_attr_dir =
6644                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6645                         c->Request.Timeout = 0; /* Don't time out */
6646                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6647                         c->Request.CDB[0] =  cmd;
6648                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6649                         /* If bytes 4-7 are zero, it means reset the */
6650                         /* LunID device */
6651                         c->Request.CDB[4] = 0x00;
6652                         c->Request.CDB[5] = 0x00;
6653                         c->Request.CDB[6] = 0x00;
6654                         c->Request.CDB[7] = 0x00;
6655                         break;
6656                 default:
6657                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6658                                 cmd);
6659                         BUG();
6660                 }
6661         } else {
6662                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6663                 BUG();
6664         }
6665
6666         switch (GET_DIR(c->Request.type_attr_dir)) {
6667         case XFER_READ:
6668                 pci_dir = PCI_DMA_FROMDEVICE;
6669                 break;
6670         case XFER_WRITE:
6671                 pci_dir = PCI_DMA_TODEVICE;
6672                 break;
6673         case XFER_NONE:
6674                 pci_dir = PCI_DMA_NONE;
6675                 break;
6676         default:
6677                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6678         }
6679         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6680                 return -1;
6681         return 0;
6682 }
6683
6684 /*
6685  * Map (physical) PCI mem into (virtual) kernel space
6686  */
6687 static void __iomem *remap_pci_mem(ulong base, ulong size)
6688 {
6689         ulong page_base = ((ulong) base) & PAGE_MASK;
6690         ulong page_offs = ((ulong) base) - page_base;
6691         void __iomem *page_remapped = ioremap_nocache(page_base,
6692                 page_offs + size);
6693
6694         return page_remapped ? (page_remapped + page_offs) : NULL;
6695 }
6696
6697 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6698 {
6699         return h->access.command_completed(h, q);
6700 }
6701
6702 static inline bool interrupt_pending(struct ctlr_info *h)
6703 {
6704         return h->access.intr_pending(h);
6705 }
6706
6707 static inline long interrupt_not_for_us(struct ctlr_info *h)
6708 {
6709         return (h->access.intr_pending(h) == 0) ||
6710                 (h->interrupts_enabled == 0);
6711 }
6712
6713 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6714         u32 raw_tag)
6715 {
6716         if (unlikely(tag_index >= h->nr_cmds)) {
6717                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6718                 return 1;
6719         }
6720         return 0;
6721 }
6722
6723 static inline void finish_cmd(struct CommandList *c)
6724 {
6725         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6726         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6727                         || c->cmd_type == CMD_IOACCEL2))
6728                 complete_scsi_command(c);
6729         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6730                 complete(c->waiting);
6731 }
6732
6733 /* process completion of an indexed ("direct lookup") command */
6734 static inline void process_indexed_cmd(struct ctlr_info *h,
6735         u32 raw_tag)
6736 {
6737         u32 tag_index;
6738         struct CommandList *c;
6739
6740         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6741         if (!bad_tag(h, tag_index, raw_tag)) {
6742                 c = h->cmd_pool + tag_index;
6743                 finish_cmd(c);
6744         }
6745 }
6746
6747 /* Some controllers, like p400, will give us one interrupt
6748  * after a soft reset, even if we turned interrupts off.
6749  * Only need to check for this in the hpsa_xxx_discard_completions
6750  * functions.
6751  */
6752 static int ignore_bogus_interrupt(struct ctlr_info *h)
6753 {
6754         if (likely(!reset_devices))
6755                 return 0;
6756
6757         if (likely(h->interrupts_enabled))
6758                 return 0;
6759
6760         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6761                 "(known firmware bug.)  Ignoring.\n");
6762
6763         return 1;
6764 }
6765
6766 /*
6767  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6768  * Relies on (h-q[x] == x) being true for x such that
6769  * 0 <= x < MAX_REPLY_QUEUES.
6770  */
6771 static struct ctlr_info *queue_to_hba(u8 *queue)
6772 {
6773         return container_of((queue - *queue), struct ctlr_info, q[0]);
6774 }
6775
6776 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6777 {
6778         struct ctlr_info *h = queue_to_hba(queue);
6779         u8 q = *(u8 *) queue;
6780         u32 raw_tag;
6781
6782         if (ignore_bogus_interrupt(h))
6783                 return IRQ_NONE;
6784
6785         if (interrupt_not_for_us(h))
6786                 return IRQ_NONE;
6787         h->last_intr_timestamp = get_jiffies_64();
6788         while (interrupt_pending(h)) {
6789                 raw_tag = get_next_completion(h, q);
6790                 while (raw_tag != FIFO_EMPTY)
6791                         raw_tag = next_command(h, q);
6792         }
6793         return IRQ_HANDLED;
6794 }
6795
6796 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6797 {
6798         struct ctlr_info *h = queue_to_hba(queue);
6799         u32 raw_tag;
6800         u8 q = *(u8 *) queue;
6801
6802         if (ignore_bogus_interrupt(h))
6803                 return IRQ_NONE;
6804
6805         h->last_intr_timestamp = get_jiffies_64();
6806         raw_tag = get_next_completion(h, q);
6807         while (raw_tag != FIFO_EMPTY)
6808                 raw_tag = next_command(h, q);
6809         return IRQ_HANDLED;
6810 }
6811
6812 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6813 {
6814         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6815         u32 raw_tag;
6816         u8 q = *(u8 *) queue;
6817
6818         if (interrupt_not_for_us(h))
6819                 return IRQ_NONE;
6820         h->last_intr_timestamp = get_jiffies_64();
6821         while (interrupt_pending(h)) {
6822                 raw_tag = get_next_completion(h, q);
6823                 while (raw_tag != FIFO_EMPTY) {
6824                         process_indexed_cmd(h, raw_tag);
6825                         raw_tag = next_command(h, q);
6826                 }
6827         }
6828         return IRQ_HANDLED;
6829 }
6830
6831 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6832 {
6833         struct ctlr_info *h = queue_to_hba(queue);
6834         u32 raw_tag;
6835         u8 q = *(u8 *) queue;
6836
6837         h->last_intr_timestamp = get_jiffies_64();
6838         raw_tag = get_next_completion(h, q);
6839         while (raw_tag != FIFO_EMPTY) {
6840                 process_indexed_cmd(h, raw_tag);
6841                 raw_tag = next_command(h, q);
6842         }
6843         return IRQ_HANDLED;
6844 }
6845
6846 /* Send a message CDB to the firmware. Careful, this only works
6847  * in simple mode, not performant mode due to the tag lookup.
6848  * We only ever use this immediately after a controller reset.
6849  */
6850 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6851                         unsigned char type)
6852 {
6853         struct Command {
6854                 struct CommandListHeader CommandHeader;
6855                 struct RequestBlock Request;
6856                 struct ErrDescriptor ErrorDescriptor;
6857         };
6858         struct Command *cmd;
6859         static const size_t cmd_sz = sizeof(*cmd) +
6860                                         sizeof(cmd->ErrorDescriptor);
6861         dma_addr_t paddr64;
6862         __le32 paddr32;
6863         u32 tag;
6864         void __iomem *vaddr;
6865         int i, err;
6866
6867         vaddr = pci_ioremap_bar(pdev, 0);
6868         if (vaddr == NULL)
6869                 return -ENOMEM;
6870
6871         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6872          * CCISS commands, so they must be allocated from the lower 4GiB of
6873          * memory.
6874          */
6875         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6876         if (err) {
6877                 iounmap(vaddr);
6878                 return err;
6879         }
6880
6881         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6882         if (cmd == NULL) {
6883                 iounmap(vaddr);
6884                 return -ENOMEM;
6885         }
6886
6887         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6888          * although there's no guarantee, we assume that the address is at
6889          * least 4-byte aligned (most likely, it's page-aligned).
6890          */
6891         paddr32 = cpu_to_le32(paddr64);
6892
6893         cmd->CommandHeader.ReplyQueue = 0;
6894         cmd->CommandHeader.SGList = 0;
6895         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6896         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6897         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6898
6899         cmd->Request.CDBLen = 16;
6900         cmd->Request.type_attr_dir =
6901                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6902         cmd->Request.Timeout = 0; /* Don't time out */
6903         cmd->Request.CDB[0] = opcode;
6904         cmd->Request.CDB[1] = type;
6905         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6906         cmd->ErrorDescriptor.Addr =
6907                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6908         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6909
6910         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6911
6912         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6913                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6914                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6915                         break;
6916                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6917         }
6918
6919         iounmap(vaddr);
6920
6921         /* we leak the DMA buffer here ... no choice since the controller could
6922          *  still complete the command.
6923          */
6924         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6925                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6926                         opcode, type);
6927                 return -ETIMEDOUT;
6928         }
6929
6930         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6931
6932         if (tag & HPSA_ERROR_BIT) {
6933                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6934                         opcode, type);
6935                 return -EIO;
6936         }
6937
6938         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6939                 opcode, type);
6940         return 0;
6941 }
6942
6943 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6944
6945 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6946         void __iomem *vaddr, u32 use_doorbell)
6947 {
6948
6949         if (use_doorbell) {
6950                 /* For everything after the P600, the PCI power state method
6951                  * of resetting the controller doesn't work, so we have this
6952                  * other way using the doorbell register.
6953                  */
6954                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6955                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6956
6957                 /* PMC hardware guys tell us we need a 10 second delay after
6958                  * doorbell reset and before any attempt to talk to the board
6959                  * at all to ensure that this actually works and doesn't fall
6960                  * over in some weird corner cases.
6961                  */
6962                 msleep(10000);
6963         } else { /* Try to do it the PCI power state way */
6964
6965                 /* Quoting from the Open CISS Specification: "The Power
6966                  * Management Control/Status Register (CSR) controls the power
6967                  * state of the device.  The normal operating state is D0,
6968                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6969                  * the controller, place the interface device in D3 then to D0,
6970                  * this causes a secondary PCI reset which will reset the
6971                  * controller." */
6972
6973                 int rc = 0;
6974
6975                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6976
6977                 /* enter the D3hot power management state */
6978                 rc = pci_set_power_state(pdev, PCI_D3hot);
6979                 if (rc)
6980                         return rc;
6981
6982                 msleep(500);
6983
6984                 /* enter the D0 power management state */
6985                 rc = pci_set_power_state(pdev, PCI_D0);
6986                 if (rc)
6987                         return rc;
6988
6989                 /*
6990                  * The P600 requires a small delay when changing states.
6991                  * Otherwise we may think the board did not reset and we bail.
6992                  * This for kdump only and is particular to the P600.
6993                  */
6994                 msleep(500);
6995         }
6996         return 0;
6997 }
6998
6999 static void init_driver_version(char *driver_version, int len)
7000 {
7001         memset(driver_version, 0, len);
7002         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7003 }
7004
7005 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7006 {
7007         char *driver_version;
7008         int i, size = sizeof(cfgtable->driver_version);
7009
7010         driver_version = kmalloc(size, GFP_KERNEL);
7011         if (!driver_version)
7012                 return -ENOMEM;
7013
7014         init_driver_version(driver_version, size);
7015         for (i = 0; i < size; i++)
7016                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7017         kfree(driver_version);
7018         return 0;
7019 }
7020
7021 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7022                                           unsigned char *driver_ver)
7023 {
7024         int i;
7025
7026         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7027                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7028 }
7029
7030 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7031 {
7032
7033         char *driver_ver, *old_driver_ver;
7034         int rc, size = sizeof(cfgtable->driver_version);
7035
7036         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7037         if (!old_driver_ver)
7038                 return -ENOMEM;
7039         driver_ver = old_driver_ver + size;
7040
7041         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7042          * should have been changed, otherwise we know the reset failed.
7043          */
7044         init_driver_version(old_driver_ver, size);
7045         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7046         rc = !memcmp(driver_ver, old_driver_ver, size);
7047         kfree(old_driver_ver);
7048         return rc;
7049 }
7050 /* This does a hard reset of the controller using PCI power management
7051  * states or the using the doorbell register.
7052  */
7053 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7054 {
7055         u64 cfg_offset;
7056         u32 cfg_base_addr;
7057         u64 cfg_base_addr_index;
7058         void __iomem *vaddr;
7059         unsigned long paddr;
7060         u32 misc_fw_support;
7061         int rc;
7062         struct CfgTable __iomem *cfgtable;
7063         u32 use_doorbell;
7064         u16 command_register;
7065
7066         /* For controllers as old as the P600, this is very nearly
7067          * the same thing as
7068          *
7069          * pci_save_state(pci_dev);
7070          * pci_set_power_state(pci_dev, PCI_D3hot);
7071          * pci_set_power_state(pci_dev, PCI_D0);
7072          * pci_restore_state(pci_dev);
7073          *
7074          * For controllers newer than the P600, the pci power state
7075          * method of resetting doesn't work so we have another way
7076          * using the doorbell register.
7077          */
7078
7079         if (!ctlr_is_resettable(board_id)) {
7080                 dev_warn(&pdev->dev, "Controller not resettable\n");
7081                 return -ENODEV;
7082         }
7083
7084         /* if controller is soft- but not hard resettable... */
7085         if (!ctlr_is_hard_resettable(board_id))
7086                 return -ENOTSUPP; /* try soft reset later. */
7087
7088         /* Save the PCI command register */
7089         pci_read_config_word(pdev, 4, &command_register);
7090         pci_save_state(pdev);
7091
7092         /* find the first memory BAR, so we can find the cfg table */
7093         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7094         if (rc)
7095                 return rc;
7096         vaddr = remap_pci_mem(paddr, 0x250);
7097         if (!vaddr)
7098                 return -ENOMEM;
7099
7100         /* find cfgtable in order to check if reset via doorbell is supported */
7101         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7102                                         &cfg_base_addr_index, &cfg_offset);
7103         if (rc)
7104                 goto unmap_vaddr;
7105         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7106                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7107         if (!cfgtable) {
7108                 rc = -ENOMEM;
7109                 goto unmap_vaddr;
7110         }
7111         rc = write_driver_ver_to_cfgtable(cfgtable);
7112         if (rc)
7113                 goto unmap_cfgtable;
7114
7115         /* If reset via doorbell register is supported, use that.
7116          * There are two such methods.  Favor the newest method.
7117          */
7118         misc_fw_support = readl(&cfgtable->misc_fw_support);
7119         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7120         if (use_doorbell) {
7121                 use_doorbell = DOORBELL_CTLR_RESET2;
7122         } else {
7123                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7124                 if (use_doorbell) {
7125                         dev_warn(&pdev->dev,
7126                                 "Soft reset not supported. Firmware update is required.\n");
7127                         rc = -ENOTSUPP; /* try soft reset */
7128                         goto unmap_cfgtable;
7129                 }
7130         }
7131
7132         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7133         if (rc)
7134                 goto unmap_cfgtable;
7135
7136         pci_restore_state(pdev);
7137         pci_write_config_word(pdev, 4, command_register);
7138
7139         /* Some devices (notably the HP Smart Array 5i Controller)
7140            need a little pause here */
7141         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7142
7143         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7144         if (rc) {
7145                 dev_warn(&pdev->dev,
7146                         "Failed waiting for board to become ready after hard reset\n");
7147                 goto unmap_cfgtable;
7148         }
7149
7150         rc = controller_reset_failed(vaddr);
7151         if (rc < 0)
7152                 goto unmap_cfgtable;
7153         if (rc) {
7154                 dev_warn(&pdev->dev, "Unable to successfully reset "
7155                         "controller. Will try soft reset.\n");
7156                 rc = -ENOTSUPP;
7157         } else {
7158                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7159         }
7160
7161 unmap_cfgtable:
7162         iounmap(cfgtable);
7163
7164 unmap_vaddr:
7165         iounmap(vaddr);
7166         return rc;
7167 }
7168
7169 /*
7170  *  We cannot read the structure directly, for portability we must use
7171  *   the io functions.
7172  *   This is for debug only.
7173  */
7174 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7175 {
7176 #ifdef HPSA_DEBUG
7177         int i;
7178         char temp_name[17];
7179
7180         dev_info(dev, "Controller Configuration information\n");
7181         dev_info(dev, "------------------------------------\n");
7182         for (i = 0; i < 4; i++)
7183                 temp_name[i] = readb(&(tb->Signature[i]));
7184         temp_name[4] = '\0';
7185         dev_info(dev, "   Signature = %s\n", temp_name);
7186         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7187         dev_info(dev, "   Transport methods supported = 0x%x\n",
7188                readl(&(tb->TransportSupport)));
7189         dev_info(dev, "   Transport methods active = 0x%x\n",
7190                readl(&(tb->TransportActive)));
7191         dev_info(dev, "   Requested transport Method = 0x%x\n",
7192                readl(&(tb->HostWrite.TransportRequest)));
7193         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7194                readl(&(tb->HostWrite.CoalIntDelay)));
7195         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7196                readl(&(tb->HostWrite.CoalIntCount)));
7197         dev_info(dev, "   Max outstanding commands = %d\n",
7198                readl(&(tb->CmdsOutMax)));
7199         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7200         for (i = 0; i < 16; i++)
7201                 temp_name[i] = readb(&(tb->ServerName[i]));
7202         temp_name[16] = '\0';
7203         dev_info(dev, "   Server Name = %s\n", temp_name);
7204         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7205                 readl(&(tb->HeartBeat)));
7206 #endif                          /* HPSA_DEBUG */
7207 }
7208
7209 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7210 {
7211         int i, offset, mem_type, bar_type;
7212
7213         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7214                 return 0;
7215         offset = 0;
7216         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7217                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7218                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7219                         offset += 4;
7220                 else {
7221                         mem_type = pci_resource_flags(pdev, i) &
7222                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7223                         switch (mem_type) {
7224                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7225                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7226                                 offset += 4;    /* 32 bit */
7227                                 break;
7228                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7229                                 offset += 8;
7230                                 break;
7231                         default:        /* reserved in PCI 2.2 */
7232                                 dev_warn(&pdev->dev,
7233                                        "base address is invalid\n");
7234                                 return -1;
7235                                 break;
7236                         }
7237                 }
7238                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7239                         return i + 1;
7240         }
7241         return -1;
7242 }
7243
7244 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7245 {
7246         pci_free_irq_vectors(h->pdev);
7247         h->msix_vectors = 0;
7248 }
7249
7250 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7251  * controllers that are capable. If not, we use legacy INTx mode.
7252  */
7253 static int hpsa_interrupt_mode(struct ctlr_info *h)
7254 {
7255         unsigned int flags = PCI_IRQ_LEGACY;
7256         int ret;
7257
7258         /* Some boards advertise MSI but don't really support it */
7259         switch (h->board_id) {
7260         case 0x40700E11:
7261         case 0x40800E11:
7262         case 0x40820E11:
7263         case 0x40830E11:
7264                 break;
7265         default:
7266                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7267                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7268                 if (ret > 0) {
7269                         h->msix_vectors = ret;
7270                         return 0;
7271                 }
7272
7273                 flags |= PCI_IRQ_MSI;
7274                 break;
7275         }
7276
7277         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7278         if (ret < 0)
7279                 return ret;
7280         return 0;
7281 }
7282
7283 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7284                                 bool *legacy_board)
7285 {
7286         int i;
7287         u32 subsystem_vendor_id, subsystem_device_id;
7288
7289         subsystem_vendor_id = pdev->subsystem_vendor;
7290         subsystem_device_id = pdev->subsystem_device;
7291         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7292                     subsystem_vendor_id;
7293
7294         if (legacy_board)
7295                 *legacy_board = false;
7296         for (i = 0; i < ARRAY_SIZE(products); i++)
7297                 if (*board_id == products[i].board_id) {
7298                         if (products[i].access != &SA5A_access &&
7299                             products[i].access != &SA5B_access)
7300                                 return i;
7301                         if (hpsa_allow_any) {
7302                                 dev_warn(&pdev->dev,
7303                                          "legacy board ID: 0x%08x\n",
7304                                          *board_id);
7305                                 if (legacy_board)
7306                                         *legacy_board = true;
7307                                 return i;
7308                         }
7309                 }
7310
7311         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7312                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7313                 !hpsa_allow_any) {
7314                 dev_warn(&pdev->dev, "unrecognized board ID: "
7315                         "0x%08x, ignoring.\n", *board_id);
7316                         return -ENODEV;
7317         }
7318         if (legacy_board)
7319                 *legacy_board = true;
7320         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7321 }
7322
7323 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7324                                     unsigned long *memory_bar)
7325 {
7326         int i;
7327
7328         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7329                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7330                         /* addressing mode bits already removed */
7331                         *memory_bar = pci_resource_start(pdev, i);
7332                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7333                                 *memory_bar);
7334                         return 0;
7335                 }
7336         dev_warn(&pdev->dev, "no memory BAR found\n");
7337         return -ENODEV;
7338 }
7339
7340 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7341                                      int wait_for_ready)
7342 {
7343         int i, iterations;
7344         u32 scratchpad;
7345         if (wait_for_ready)
7346                 iterations = HPSA_BOARD_READY_ITERATIONS;
7347         else
7348                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7349
7350         for (i = 0; i < iterations; i++) {
7351                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7352                 if (wait_for_ready) {
7353                         if (scratchpad == HPSA_FIRMWARE_READY)
7354                                 return 0;
7355                 } else {
7356                         if (scratchpad != HPSA_FIRMWARE_READY)
7357                                 return 0;
7358                 }
7359                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7360         }
7361         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7362         return -ENODEV;
7363 }
7364
7365 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7366                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7367                                u64 *cfg_offset)
7368 {
7369         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7370         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7371         *cfg_base_addr &= (u32) 0x0000ffff;
7372         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7373         if (*cfg_base_addr_index == -1) {
7374                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7375                 return -ENODEV;
7376         }
7377         return 0;
7378 }
7379
7380 static void hpsa_free_cfgtables(struct ctlr_info *h)
7381 {
7382         if (h->transtable) {
7383                 iounmap(h->transtable);
7384                 h->transtable = NULL;
7385         }
7386         if (h->cfgtable) {
7387                 iounmap(h->cfgtable);
7388                 h->cfgtable = NULL;
7389         }
7390 }
7391
7392 /* Find and map CISS config table and transfer table
7393 + * several items must be unmapped (freed) later
7394 + * */
7395 static int hpsa_find_cfgtables(struct ctlr_info *h)
7396 {
7397         u64 cfg_offset;
7398         u32 cfg_base_addr;
7399         u64 cfg_base_addr_index;
7400         u32 trans_offset;
7401         int rc;
7402
7403         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7404                 &cfg_base_addr_index, &cfg_offset);
7405         if (rc)
7406                 return rc;
7407         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7408                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7409         if (!h->cfgtable) {
7410                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7411                 return -ENOMEM;
7412         }
7413         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7414         if (rc)
7415                 return rc;
7416         /* Find performant mode table. */
7417         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7418         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7419                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7420                                 sizeof(*h->transtable));
7421         if (!h->transtable) {
7422                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7423                 hpsa_free_cfgtables(h);
7424                 return -ENOMEM;
7425         }
7426         return 0;
7427 }
7428
7429 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7430 {
7431 #define MIN_MAX_COMMANDS 16
7432         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7433
7434         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7435
7436         /* Limit commands in memory limited kdump scenario. */
7437         if (reset_devices && h->max_commands > 32)
7438                 h->max_commands = 32;
7439
7440         if (h->max_commands < MIN_MAX_COMMANDS) {
7441                 dev_warn(&h->pdev->dev,
7442                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7443                         h->max_commands,
7444                         MIN_MAX_COMMANDS);
7445                 h->max_commands = MIN_MAX_COMMANDS;
7446         }
7447 }
7448
7449 /* If the controller reports that the total max sg entries is greater than 512,
7450  * then we know that chained SG blocks work.  (Original smart arrays did not
7451  * support chained SG blocks and would return zero for max sg entries.)
7452  */
7453 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7454 {
7455         return h->maxsgentries > 512;
7456 }
7457
7458 /* Interrogate the hardware for some limits:
7459  * max commands, max SG elements without chaining, and with chaining,
7460  * SG chain block size, etc.
7461  */
7462 static void hpsa_find_board_params(struct ctlr_info *h)
7463 {
7464         hpsa_get_max_perf_mode_cmds(h);
7465         h->nr_cmds = h->max_commands;
7466         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7467         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7468         if (hpsa_supports_chained_sg_blocks(h)) {
7469                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7470                 h->max_cmd_sg_entries = 32;
7471                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7472                 h->maxsgentries--; /* save one for chain pointer */
7473         } else {
7474                 /*
7475                  * Original smart arrays supported at most 31 s/g entries
7476                  * embedded inline in the command (trying to use more
7477                  * would lock up the controller)
7478                  */
7479                 h->max_cmd_sg_entries = 31;
7480                 h->maxsgentries = 31; /* default to traditional values */
7481                 h->chainsize = 0;
7482         }
7483
7484         /* Find out what task management functions are supported and cache */
7485         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7486         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7487                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7488         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7489                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7490         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7491                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7492 }
7493
7494 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7495 {
7496         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7497                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7498                 return false;
7499         }
7500         return true;
7501 }
7502
7503 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7504 {
7505         u32 driver_support;
7506
7507         driver_support = readl(&(h->cfgtable->driver_support));
7508         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7509 #ifdef CONFIG_X86
7510         driver_support |= ENABLE_SCSI_PREFETCH;
7511 #endif
7512         driver_support |= ENABLE_UNIT_ATTN;
7513         writel(driver_support, &(h->cfgtable->driver_support));
7514 }
7515
7516 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7517  * in a prefetch beyond physical memory.
7518  */
7519 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7520 {
7521         u32 dma_prefetch;
7522
7523         if (h->board_id != 0x3225103C)
7524                 return;
7525         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7526         dma_prefetch |= 0x8000;
7527         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7528 }
7529
7530 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7531 {
7532         int i;
7533         u32 doorbell_value;
7534         unsigned long flags;
7535         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7536         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7537                 spin_lock_irqsave(&h->lock, flags);
7538                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7539                 spin_unlock_irqrestore(&h->lock, flags);
7540                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7541                         goto done;
7542                 /* delay and try again */
7543                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7544         }
7545         return -ENODEV;
7546 done:
7547         return 0;
7548 }
7549
7550 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7551 {
7552         int i;
7553         u32 doorbell_value;
7554         unsigned long flags;
7555
7556         /* under certain very rare conditions, this can take awhile.
7557          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7558          * as we enter this code.)
7559          */
7560         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7561                 if (h->remove_in_progress)
7562                         goto done;
7563                 spin_lock_irqsave(&h->lock, flags);
7564                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7565                 spin_unlock_irqrestore(&h->lock, flags);
7566                 if (!(doorbell_value & CFGTBL_ChangeReq))
7567                         goto done;
7568                 /* delay and try again */
7569                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7570         }
7571         return -ENODEV;
7572 done:
7573         return 0;
7574 }
7575
7576 /* return -ENODEV or other reason on error, 0 on success */
7577 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7578 {
7579         u32 trans_support;
7580
7581         trans_support = readl(&(h->cfgtable->TransportSupport));
7582         if (!(trans_support & SIMPLE_MODE))
7583                 return -ENOTSUPP;
7584
7585         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7586
7587         /* Update the field, and then ring the doorbell */
7588         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7589         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7590         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7591         if (hpsa_wait_for_mode_change_ack(h))
7592                 goto error;
7593         print_cfg_table(&h->pdev->dev, h->cfgtable);
7594         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7595                 goto error;
7596         h->transMethod = CFGTBL_Trans_Simple;
7597         return 0;
7598 error:
7599         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7600         return -ENODEV;
7601 }
7602
7603 /* free items allocated or mapped by hpsa_pci_init */
7604 static void hpsa_free_pci_init(struct ctlr_info *h)
7605 {
7606         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7607         iounmap(h->vaddr);                      /* pci_init 3 */
7608         h->vaddr = NULL;
7609         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7610         /*
7611          * call pci_disable_device before pci_release_regions per
7612          * Documentation/PCI/pci.txt
7613          */
7614         pci_disable_device(h->pdev);            /* pci_init 1 */
7615         pci_release_regions(h->pdev);           /* pci_init 2 */
7616 }
7617
7618 /* several items must be freed later */
7619 static int hpsa_pci_init(struct ctlr_info *h)
7620 {
7621         int prod_index, err;
7622         bool legacy_board;
7623
7624         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7625         if (prod_index < 0)
7626                 return prod_index;
7627         h->product_name = products[prod_index].product_name;
7628         h->access = *(products[prod_index].access);
7629         h->legacy_board = legacy_board;
7630         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7631                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7632
7633         err = pci_enable_device(h->pdev);
7634         if (err) {
7635                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7636                 pci_disable_device(h->pdev);
7637                 return err;
7638         }
7639
7640         err = pci_request_regions(h->pdev, HPSA);
7641         if (err) {
7642                 dev_err(&h->pdev->dev,
7643                         "failed to obtain PCI resources\n");
7644                 pci_disable_device(h->pdev);
7645                 return err;
7646         }
7647
7648         pci_set_master(h->pdev);
7649
7650         err = hpsa_interrupt_mode(h);
7651         if (err)
7652                 goto clean1;
7653         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7654         if (err)
7655                 goto clean2;    /* intmode+region, pci */
7656         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7657         if (!h->vaddr) {
7658                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7659                 err = -ENOMEM;
7660                 goto clean2;    /* intmode+region, pci */
7661         }
7662         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7663         if (err)
7664                 goto clean3;    /* vaddr, intmode+region, pci */
7665         err = hpsa_find_cfgtables(h);
7666         if (err)
7667                 goto clean3;    /* vaddr, intmode+region, pci */
7668         hpsa_find_board_params(h);
7669
7670         if (!hpsa_CISS_signature_present(h)) {
7671                 err = -ENODEV;
7672                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7673         }
7674         hpsa_set_driver_support_bits(h);
7675         hpsa_p600_dma_prefetch_quirk(h);
7676         err = hpsa_enter_simple_mode(h);
7677         if (err)
7678                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7679         return 0;
7680
7681 clean4: /* cfgtables, vaddr, intmode+region, pci */
7682         hpsa_free_cfgtables(h);
7683 clean3: /* vaddr, intmode+region, pci */
7684         iounmap(h->vaddr);
7685         h->vaddr = NULL;
7686 clean2: /* intmode+region, pci */
7687         hpsa_disable_interrupt_mode(h);
7688 clean1:
7689         /*
7690          * call pci_disable_device before pci_release_regions per
7691          * Documentation/PCI/pci.txt
7692          */
7693         pci_disable_device(h->pdev);
7694         pci_release_regions(h->pdev);
7695         return err;
7696 }
7697
7698 static void hpsa_hba_inquiry(struct ctlr_info *h)
7699 {
7700         int rc;
7701
7702 #define HBA_INQUIRY_BYTE_COUNT 64
7703         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7704         if (!h->hba_inquiry_data)
7705                 return;
7706         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7707                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7708         if (rc != 0) {
7709                 kfree(h->hba_inquiry_data);
7710                 h->hba_inquiry_data = NULL;
7711         }
7712 }
7713
7714 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7715 {
7716         int rc, i;
7717         void __iomem *vaddr;
7718
7719         if (!reset_devices)
7720                 return 0;
7721
7722         /* kdump kernel is loading, we don't know in which state is
7723          * the pci interface. The dev->enable_cnt is equal zero
7724          * so we call enable+disable, wait a while and switch it on.
7725          */
7726         rc = pci_enable_device(pdev);
7727         if (rc) {
7728                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7729                 return -ENODEV;
7730         }
7731         pci_disable_device(pdev);
7732         msleep(260);                    /* a randomly chosen number */
7733         rc = pci_enable_device(pdev);
7734         if (rc) {
7735                 dev_warn(&pdev->dev, "failed to enable device.\n");
7736                 return -ENODEV;
7737         }
7738
7739         pci_set_master(pdev);
7740
7741         vaddr = pci_ioremap_bar(pdev, 0);
7742         if (vaddr == NULL) {
7743                 rc = -ENOMEM;
7744                 goto out_disable;
7745         }
7746         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7747         iounmap(vaddr);
7748
7749         /* Reset the controller with a PCI power-cycle or via doorbell */
7750         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7751
7752         /* -ENOTSUPP here means we cannot reset the controller
7753          * but it's already (and still) up and running in
7754          * "performant mode".  Or, it might be 640x, which can't reset
7755          * due to concerns about shared bbwc between 6402/6404 pair.
7756          */
7757         if (rc)
7758                 goto out_disable;
7759
7760         /* Now try to get the controller to respond to a no-op */
7761         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7762         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7763                 if (hpsa_noop(pdev) == 0)
7764                         break;
7765                 else
7766                         dev_warn(&pdev->dev, "no-op failed%s\n",
7767                                         (i < 11 ? "; re-trying" : ""));
7768         }
7769
7770 out_disable:
7771
7772         pci_disable_device(pdev);
7773         return rc;
7774 }
7775
7776 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7777 {
7778         kfree(h->cmd_pool_bits);
7779         h->cmd_pool_bits = NULL;
7780         if (h->cmd_pool) {
7781                 pci_free_consistent(h->pdev,
7782                                 h->nr_cmds * sizeof(struct CommandList),
7783                                 h->cmd_pool,
7784                                 h->cmd_pool_dhandle);
7785                 h->cmd_pool = NULL;
7786                 h->cmd_pool_dhandle = 0;
7787         }
7788         if (h->errinfo_pool) {
7789                 pci_free_consistent(h->pdev,
7790                                 h->nr_cmds * sizeof(struct ErrorInfo),
7791                                 h->errinfo_pool,
7792                                 h->errinfo_pool_dhandle);
7793                 h->errinfo_pool = NULL;
7794                 h->errinfo_pool_dhandle = 0;
7795         }
7796 }
7797
7798 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7799 {
7800         h->cmd_pool_bits = kzalloc(
7801                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7802                 sizeof(unsigned long), GFP_KERNEL);
7803         h->cmd_pool = pci_alloc_consistent(h->pdev,
7804                     h->nr_cmds * sizeof(*h->cmd_pool),
7805                     &(h->cmd_pool_dhandle));
7806         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7807                     h->nr_cmds * sizeof(*h->errinfo_pool),
7808                     &(h->errinfo_pool_dhandle));
7809         if ((h->cmd_pool_bits == NULL)
7810             || (h->cmd_pool == NULL)
7811             || (h->errinfo_pool == NULL)) {
7812                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7813                 goto clean_up;
7814         }
7815         hpsa_preinitialize_commands(h);
7816         return 0;
7817 clean_up:
7818         hpsa_free_cmd_pool(h);
7819         return -ENOMEM;
7820 }
7821
7822 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7823 static void hpsa_free_irqs(struct ctlr_info *h)
7824 {
7825         int i;
7826
7827         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7828                 /* Single reply queue, only one irq to free */
7829                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7830                 h->q[h->intr_mode] = 0;
7831                 return;
7832         }
7833
7834         for (i = 0; i < h->msix_vectors; i++) {
7835                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7836                 h->q[i] = 0;
7837         }
7838         for (; i < MAX_REPLY_QUEUES; i++)
7839                 h->q[i] = 0;
7840 }
7841
7842 /* returns 0 on success; cleans up and returns -Enn on error */
7843 static int hpsa_request_irqs(struct ctlr_info *h,
7844         irqreturn_t (*msixhandler)(int, void *),
7845         irqreturn_t (*intxhandler)(int, void *))
7846 {
7847         int rc, i;
7848
7849         /*
7850          * initialize h->q[x] = x so that interrupt handlers know which
7851          * queue to process.
7852          */
7853         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7854                 h->q[i] = (u8) i;
7855
7856         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7857                 /* If performant mode and MSI-X, use multiple reply queues */
7858                 for (i = 0; i < h->msix_vectors; i++) {
7859                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7860                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7861                                         0, h->intrname[i],
7862                                         &h->q[i]);
7863                         if (rc) {
7864                                 int j;
7865
7866                                 dev_err(&h->pdev->dev,
7867                                         "failed to get irq %d for %s\n",
7868                                        pci_irq_vector(h->pdev, i), h->devname);
7869                                 for (j = 0; j < i; j++) {
7870                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7871                                         h->q[j] = 0;
7872                                 }
7873                                 for (; j < MAX_REPLY_QUEUES; j++)
7874                                         h->q[j] = 0;
7875                                 return rc;
7876                         }
7877                 }
7878         } else {
7879                 /* Use single reply pool */
7880                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7881                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
7882                                 h->msix_vectors ? "x" : "");
7883                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7884                                 msixhandler, 0,
7885                                 h->intrname[0],
7886                                 &h->q[h->intr_mode]);
7887                 } else {
7888                         sprintf(h->intrname[h->intr_mode],
7889                                 "%s-intx", h->devname);
7890                         rc = request_irq(pci_irq_vector(h->pdev, 0),
7891                                 intxhandler, IRQF_SHARED,
7892                                 h->intrname[0],
7893                                 &h->q[h->intr_mode]);
7894                 }
7895         }
7896         if (rc) {
7897                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7898                        pci_irq_vector(h->pdev, 0), h->devname);
7899                 hpsa_free_irqs(h);
7900                 return -ENODEV;
7901         }
7902         return 0;
7903 }
7904
7905 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7906 {
7907         int rc;
7908         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7909
7910         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7911         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7912         if (rc) {
7913                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7914                 return rc;
7915         }
7916
7917         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7918         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7919         if (rc) {
7920                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7921                         "after soft reset.\n");
7922                 return rc;
7923         }
7924
7925         return 0;
7926 }
7927
7928 static void hpsa_free_reply_queues(struct ctlr_info *h)
7929 {
7930         int i;
7931
7932         for (i = 0; i < h->nreply_queues; i++) {
7933                 if (!h->reply_queue[i].head)
7934                         continue;
7935                 pci_free_consistent(h->pdev,
7936                                         h->reply_queue_size,
7937                                         h->reply_queue[i].head,
7938                                         h->reply_queue[i].busaddr);
7939                 h->reply_queue[i].head = NULL;
7940                 h->reply_queue[i].busaddr = 0;
7941         }
7942         h->reply_queue_size = 0;
7943 }
7944
7945 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7946 {
7947         hpsa_free_performant_mode(h);           /* init_one 7 */
7948         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7949         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7950         hpsa_free_irqs(h);                      /* init_one 4 */
7951         scsi_host_put(h->scsi_host);            /* init_one 3 */
7952         h->scsi_host = NULL;                    /* init_one 3 */
7953         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7954         free_percpu(h->lockup_detected);        /* init_one 2 */
7955         h->lockup_detected = NULL;              /* init_one 2 */
7956         if (h->resubmit_wq) {
7957                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7958                 h->resubmit_wq = NULL;
7959         }
7960         if (h->rescan_ctlr_wq) {
7961                 destroy_workqueue(h->rescan_ctlr_wq);
7962                 h->rescan_ctlr_wq = NULL;
7963         }
7964         kfree(h);                               /* init_one 1 */
7965 }
7966
7967 /* Called when controller lockup detected. */
7968 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7969 {
7970         int i, refcount;
7971         struct CommandList *c;
7972         int failcount = 0;
7973
7974         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7975         for (i = 0; i < h->nr_cmds; i++) {
7976                 c = h->cmd_pool + i;
7977                 refcount = atomic_inc_return(&c->refcount);
7978                 if (refcount > 1) {
7979                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7980                         finish_cmd(c);
7981                         atomic_dec(&h->commands_outstanding);
7982                         failcount++;
7983                 }
7984                 cmd_free(h, c);
7985         }
7986         dev_warn(&h->pdev->dev,
7987                 "failed %d commands in fail_all\n", failcount);
7988 }
7989
7990 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7991 {
7992         int cpu;
7993
7994         for_each_online_cpu(cpu) {
7995                 u32 *lockup_detected;
7996                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7997                 *lockup_detected = value;
7998         }
7999         wmb(); /* be sure the per-cpu variables are out to memory */
8000 }
8001
8002 static void controller_lockup_detected(struct ctlr_info *h)
8003 {
8004         unsigned long flags;
8005         u32 lockup_detected;
8006
8007         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8008         spin_lock_irqsave(&h->lock, flags);
8009         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8010         if (!lockup_detected) {
8011                 /* no heartbeat, but controller gave us a zero. */
8012                 dev_warn(&h->pdev->dev,
8013                         "lockup detected after %d but scratchpad register is zero\n",
8014                         h->heartbeat_sample_interval / HZ);
8015                 lockup_detected = 0xffffffff;
8016         }
8017         set_lockup_detected_for_all_cpus(h, lockup_detected);
8018         spin_unlock_irqrestore(&h->lock, flags);
8019         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8020                         lockup_detected, h->heartbeat_sample_interval / HZ);
8021         pci_disable_device(h->pdev);
8022         fail_all_outstanding_cmds(h);
8023 }
8024
8025 static int detect_controller_lockup(struct ctlr_info *h)
8026 {
8027         u64 now;
8028         u32 heartbeat;
8029         unsigned long flags;
8030
8031         now = get_jiffies_64();
8032         /* If we've received an interrupt recently, we're ok. */
8033         if (time_after64(h->last_intr_timestamp +
8034                                 (h->heartbeat_sample_interval), now))
8035                 return false;
8036
8037         /*
8038          * If we've already checked the heartbeat recently, we're ok.
8039          * This could happen if someone sends us a signal. We
8040          * otherwise don't care about signals in this thread.
8041          */
8042         if (time_after64(h->last_heartbeat_timestamp +
8043                                 (h->heartbeat_sample_interval), now))
8044                 return false;
8045
8046         /* If heartbeat has not changed since we last looked, we're not ok. */
8047         spin_lock_irqsave(&h->lock, flags);
8048         heartbeat = readl(&h->cfgtable->HeartBeat);
8049         spin_unlock_irqrestore(&h->lock, flags);
8050         if (h->last_heartbeat == heartbeat) {
8051                 controller_lockup_detected(h);
8052                 return true;
8053         }
8054
8055         /* We're ok. */
8056         h->last_heartbeat = heartbeat;
8057         h->last_heartbeat_timestamp = now;
8058         return false;
8059 }
8060
8061 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8062 {
8063         int i;
8064         char *event_type;
8065
8066         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8067                 return;
8068
8069         /* Ask the controller to clear the events we're handling. */
8070         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8071                         | CFGTBL_Trans_io_accel2)) &&
8072                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8073                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8074
8075                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8076                         event_type = "state change";
8077                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8078                         event_type = "configuration change";
8079                 /* Stop sending new RAID offload reqs via the IO accelerator */
8080                 scsi_block_requests(h->scsi_host);
8081                 for (i = 0; i < h->ndevices; i++) {
8082                         h->dev[i]->offload_enabled = 0;
8083                         h->dev[i]->offload_to_be_enabled = 0;
8084                 }
8085                 hpsa_drain_accel_commands(h);
8086                 /* Set 'accelerator path config change' bit */
8087                 dev_warn(&h->pdev->dev,
8088                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8089                         h->events, event_type);
8090                 writel(h->events, &(h->cfgtable->clear_event_notify));
8091                 /* Set the "clear event notify field update" bit 6 */
8092                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8093                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8094                 hpsa_wait_for_clear_event_notify_ack(h);
8095                 scsi_unblock_requests(h->scsi_host);
8096         } else {
8097                 /* Acknowledge controller notification events. */
8098                 writel(h->events, &(h->cfgtable->clear_event_notify));
8099                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8100                 hpsa_wait_for_clear_event_notify_ack(h);
8101 #if 0
8102                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8103                 hpsa_wait_for_mode_change_ack(h);
8104 #endif
8105         }
8106         return;
8107 }
8108
8109 /* Check a register on the controller to see if there are configuration
8110  * changes (added/changed/removed logical drives, etc.) which mean that
8111  * we should rescan the controller for devices.
8112  * Also check flag for driver-initiated rescan.
8113  */
8114 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8115 {
8116         if (h->drv_req_rescan) {
8117                 h->drv_req_rescan = 0;
8118                 return 1;
8119         }
8120
8121         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8122                 return 0;
8123
8124         h->events = readl(&(h->cfgtable->event_notify));
8125         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8126 }
8127
8128 /*
8129  * Check if any of the offline devices have become ready
8130  */
8131 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8132 {
8133         unsigned long flags;
8134         struct offline_device_entry *d;
8135         struct list_head *this, *tmp;
8136
8137         spin_lock_irqsave(&h->offline_device_lock, flags);
8138         list_for_each_safe(this, tmp, &h->offline_device_list) {
8139                 d = list_entry(this, struct offline_device_entry,
8140                                 offline_list);
8141                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8142                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8143                         spin_lock_irqsave(&h->offline_device_lock, flags);
8144                         list_del(&d->offline_list);
8145                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8146                         return 1;
8147                 }
8148                 spin_lock_irqsave(&h->offline_device_lock, flags);
8149         }
8150         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8151         return 0;
8152 }
8153
8154 static int hpsa_luns_changed(struct ctlr_info *h)
8155 {
8156         int rc = 1; /* assume there are changes */
8157         struct ReportLUNdata *logdev = NULL;
8158
8159         /* if we can't find out if lun data has changed,
8160          * assume that it has.
8161          */
8162
8163         if (!h->lastlogicals)
8164                 return rc;
8165
8166         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8167         if (!logdev)
8168                 return rc;
8169
8170         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8171                 dev_warn(&h->pdev->dev,
8172                         "report luns failed, can't track lun changes.\n");
8173                 goto out;
8174         }
8175         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8176                 dev_info(&h->pdev->dev,
8177                         "Lun changes detected.\n");
8178                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8179                 goto out;
8180         } else
8181                 rc = 0; /* no changes detected. */
8182 out:
8183         kfree(logdev);
8184         return rc;
8185 }
8186
8187 static void hpsa_perform_rescan(struct ctlr_info *h)
8188 {
8189         struct Scsi_Host *sh = NULL;
8190         unsigned long flags;
8191
8192         /*
8193          * Do the scan after the reset
8194          */
8195         spin_lock_irqsave(&h->reset_lock, flags);
8196         if (h->reset_in_progress) {
8197                 h->drv_req_rescan = 1;
8198                 spin_unlock_irqrestore(&h->reset_lock, flags);
8199                 return;
8200         }
8201         spin_unlock_irqrestore(&h->reset_lock, flags);
8202
8203         sh = scsi_host_get(h->scsi_host);
8204         if (sh != NULL) {
8205                 hpsa_scan_start(sh);
8206                 scsi_host_put(sh);
8207                 h->drv_req_rescan = 0;
8208         }
8209 }
8210
8211 /*
8212  * watch for controller events
8213  */
8214 static void hpsa_event_monitor_worker(struct work_struct *work)
8215 {
8216         struct ctlr_info *h = container_of(to_delayed_work(work),
8217                                         struct ctlr_info, event_monitor_work);
8218         unsigned long flags;
8219
8220         spin_lock_irqsave(&h->lock, flags);
8221         if (h->remove_in_progress) {
8222                 spin_unlock_irqrestore(&h->lock, flags);
8223                 return;
8224         }
8225         spin_unlock_irqrestore(&h->lock, flags);
8226
8227         if (hpsa_ctlr_needs_rescan(h)) {
8228                 hpsa_ack_ctlr_events(h);
8229                 hpsa_perform_rescan(h);
8230         }
8231
8232         spin_lock_irqsave(&h->lock, flags);
8233         if (!h->remove_in_progress)
8234                 schedule_delayed_work(&h->event_monitor_work,
8235                                         HPSA_EVENT_MONITOR_INTERVAL);
8236         spin_unlock_irqrestore(&h->lock, flags);
8237 }
8238
8239 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8240 {
8241         unsigned long flags;
8242         struct ctlr_info *h = container_of(to_delayed_work(work),
8243                                         struct ctlr_info, rescan_ctlr_work);
8244
8245         spin_lock_irqsave(&h->lock, flags);
8246         if (h->remove_in_progress) {
8247                 spin_unlock_irqrestore(&h->lock, flags);
8248                 return;
8249         }
8250         spin_unlock_irqrestore(&h->lock, flags);
8251
8252         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8253                 hpsa_perform_rescan(h);
8254         } else if (h->discovery_polling) {
8255                 hpsa_disable_rld_caching(h);
8256                 if (hpsa_luns_changed(h)) {
8257                         dev_info(&h->pdev->dev,
8258                                 "driver discovery polling rescan.\n");
8259                         hpsa_perform_rescan(h);
8260                 }
8261         }
8262         spin_lock_irqsave(&h->lock, flags);
8263         if (!h->remove_in_progress)
8264                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8265                                 h->heartbeat_sample_interval);
8266         spin_unlock_irqrestore(&h->lock, flags);
8267 }
8268
8269 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8270 {
8271         unsigned long flags;
8272         struct ctlr_info *h = container_of(to_delayed_work(work),
8273                                         struct ctlr_info, monitor_ctlr_work);
8274
8275         detect_controller_lockup(h);
8276         if (lockup_detected(h))
8277                 return;
8278
8279         spin_lock_irqsave(&h->lock, flags);
8280         if (!h->remove_in_progress)
8281                 schedule_delayed_work(&h->monitor_ctlr_work,
8282                                 h->heartbeat_sample_interval);
8283         spin_unlock_irqrestore(&h->lock, flags);
8284 }
8285
8286 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8287                                                 char *name)
8288 {
8289         struct workqueue_struct *wq = NULL;
8290
8291         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8292         if (!wq)
8293                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8294
8295         return wq;
8296 }
8297
8298 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8299 {
8300         int dac, rc;
8301         struct ctlr_info *h;
8302         int try_soft_reset = 0;
8303         unsigned long flags;
8304         u32 board_id;
8305
8306         if (number_of_controllers == 0)
8307                 printk(KERN_INFO DRIVER_NAME "\n");
8308
8309         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8310         if (rc < 0) {
8311                 dev_warn(&pdev->dev, "Board ID not found\n");
8312                 return rc;
8313         }
8314
8315         rc = hpsa_init_reset_devices(pdev, board_id);
8316         if (rc) {
8317                 if (rc != -ENOTSUPP)
8318                         return rc;
8319                 /* If the reset fails in a particular way (it has no way to do
8320                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8321                  * a soft reset once we get the controller configured up to the
8322                  * point that it can accept a command.
8323                  */
8324                 try_soft_reset = 1;
8325                 rc = 0;
8326         }
8327
8328 reinit_after_soft_reset:
8329
8330         /* Command structures must be aligned on a 32-byte boundary because
8331          * the 5 lower bits of the address are used by the hardware. and by
8332          * the driver.  See comments in hpsa.h for more info.
8333          */
8334         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8335         h = kzalloc(sizeof(*h), GFP_KERNEL);
8336         if (!h) {
8337                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8338                 return -ENOMEM;
8339         }
8340
8341         h->pdev = pdev;
8342
8343         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8344         INIT_LIST_HEAD(&h->offline_device_list);
8345         spin_lock_init(&h->lock);
8346         spin_lock_init(&h->offline_device_lock);
8347         spin_lock_init(&h->scan_lock);
8348         spin_lock_init(&h->reset_lock);
8349         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8350
8351         /* Allocate and clear per-cpu variable lockup_detected */
8352         h->lockup_detected = alloc_percpu(u32);
8353         if (!h->lockup_detected) {
8354                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8355                 rc = -ENOMEM;
8356                 goto clean1;    /* aer/h */
8357         }
8358         set_lockup_detected_for_all_cpus(h, 0);
8359
8360         rc = hpsa_pci_init(h);
8361         if (rc)
8362                 goto clean2;    /* lu, aer/h */
8363
8364         /* relies on h-> settings made by hpsa_pci_init, including
8365          * interrupt_mode h->intr */
8366         rc = hpsa_scsi_host_alloc(h);
8367         if (rc)
8368                 goto clean2_5;  /* pci, lu, aer/h */
8369
8370         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8371         h->ctlr = number_of_controllers;
8372         number_of_controllers++;
8373
8374         /* configure PCI DMA stuff */
8375         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8376         if (rc == 0) {
8377                 dac = 1;
8378         } else {
8379                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8380                 if (rc == 0) {
8381                         dac = 0;
8382                 } else {
8383                         dev_err(&pdev->dev, "no suitable DMA available\n");
8384                         goto clean3;    /* shost, pci, lu, aer/h */
8385                 }
8386         }
8387
8388         /* make sure the board interrupts are off */
8389         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8390
8391         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8392         if (rc)
8393                 goto clean3;    /* shost, pci, lu, aer/h */
8394         rc = hpsa_alloc_cmd_pool(h);
8395         if (rc)
8396                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8397         rc = hpsa_alloc_sg_chain_blocks(h);
8398         if (rc)
8399                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8400         init_waitqueue_head(&h->scan_wait_queue);
8401         init_waitqueue_head(&h->event_sync_wait_queue);
8402         mutex_init(&h->reset_mutex);
8403         h->scan_finished = 1; /* no scan currently in progress */
8404         h->scan_waiting = 0;
8405
8406         pci_set_drvdata(pdev, h);
8407         h->ndevices = 0;
8408
8409         spin_lock_init(&h->devlock);
8410         rc = hpsa_put_ctlr_into_performant_mode(h);
8411         if (rc)
8412                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8413
8414         /* create the resubmit workqueue */
8415         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8416         if (!h->rescan_ctlr_wq) {
8417                 rc = -ENOMEM;
8418                 goto clean7;
8419         }
8420
8421         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8422         if (!h->resubmit_wq) {
8423                 rc = -ENOMEM;
8424                 goto clean7;    /* aer/h */
8425         }
8426
8427         /*
8428          * At this point, the controller is ready to take commands.
8429          * Now, if reset_devices and the hard reset didn't work, try
8430          * the soft reset and see if that works.
8431          */
8432         if (try_soft_reset) {
8433
8434                 /* This is kind of gross.  We may or may not get a completion
8435                  * from the soft reset command, and if we do, then the value
8436                  * from the fifo may or may not be valid.  So, we wait 10 secs
8437                  * after the reset throwing away any completions we get during
8438                  * that time.  Unregister the interrupt handler and register
8439                  * fake ones to scoop up any residual completions.
8440                  */
8441                 spin_lock_irqsave(&h->lock, flags);
8442                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8443                 spin_unlock_irqrestore(&h->lock, flags);
8444                 hpsa_free_irqs(h);
8445                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8446                                         hpsa_intx_discard_completions);
8447                 if (rc) {
8448                         dev_warn(&h->pdev->dev,
8449                                 "Failed to request_irq after soft reset.\n");
8450                         /*
8451                          * cannot goto clean7 or free_irqs will be called
8452                          * again. Instead, do its work
8453                          */
8454                         hpsa_free_performant_mode(h);   /* clean7 */
8455                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8456                         hpsa_free_cmd_pool(h);          /* clean5 */
8457                         /*
8458                          * skip hpsa_free_irqs(h) clean4 since that
8459                          * was just called before request_irqs failed
8460                          */
8461                         goto clean3;
8462                 }
8463
8464                 rc = hpsa_kdump_soft_reset(h);
8465                 if (rc)
8466                         /* Neither hard nor soft reset worked, we're hosed. */
8467                         goto clean7;
8468
8469                 dev_info(&h->pdev->dev, "Board READY.\n");
8470                 dev_info(&h->pdev->dev,
8471                         "Waiting for stale completions to drain.\n");
8472                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8473                 msleep(10000);
8474                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8475
8476                 rc = controller_reset_failed(h->cfgtable);
8477                 if (rc)
8478                         dev_info(&h->pdev->dev,
8479                                 "Soft reset appears to have failed.\n");
8480
8481                 /* since the controller's reset, we have to go back and re-init
8482                  * everything.  Easiest to just forget what we've done and do it
8483                  * all over again.
8484                  */
8485                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8486                 try_soft_reset = 0;
8487                 if (rc)
8488                         /* don't goto clean, we already unallocated */
8489                         return -ENODEV;
8490
8491                 goto reinit_after_soft_reset;
8492         }
8493
8494         /* Enable Accelerated IO path at driver layer */
8495         h->acciopath_status = 1;
8496         /* Disable discovery polling.*/
8497         h->discovery_polling = 0;
8498
8499
8500         /* Turn the interrupts on so we can service requests */
8501         h->access.set_intr_mask(h, HPSA_INTR_ON);
8502
8503         hpsa_hba_inquiry(h);
8504
8505         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8506         if (!h->lastlogicals)
8507                 dev_info(&h->pdev->dev,
8508                         "Can't track change to report lun data\n");
8509
8510         /* hook into SCSI subsystem */
8511         rc = hpsa_scsi_add_host(h);
8512         if (rc)
8513                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8514
8515         /* Monitor the controller for firmware lockups */
8516         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8517         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8518         schedule_delayed_work(&h->monitor_ctlr_work,
8519                                 h->heartbeat_sample_interval);
8520         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8521         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8522                                 h->heartbeat_sample_interval);
8523         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8524         schedule_delayed_work(&h->event_monitor_work,
8525                                 HPSA_EVENT_MONITOR_INTERVAL);
8526         return 0;
8527
8528 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8529         hpsa_free_performant_mode(h);
8530         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8531 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8532         hpsa_free_sg_chain_blocks(h);
8533 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8534         hpsa_free_cmd_pool(h);
8535 clean4: /* irq, shost, pci, lu, aer/h */
8536         hpsa_free_irqs(h);
8537 clean3: /* shost, pci, lu, aer/h */
8538         scsi_host_put(h->scsi_host);
8539         h->scsi_host = NULL;
8540 clean2_5: /* pci, lu, aer/h */
8541         hpsa_free_pci_init(h);
8542 clean2: /* lu, aer/h */
8543         if (h->lockup_detected) {
8544                 free_percpu(h->lockup_detected);
8545                 h->lockup_detected = NULL;
8546         }
8547 clean1: /* wq/aer/h */
8548         if (h->resubmit_wq) {
8549                 destroy_workqueue(h->resubmit_wq);
8550                 h->resubmit_wq = NULL;
8551         }
8552         if (h->rescan_ctlr_wq) {
8553                 destroy_workqueue(h->rescan_ctlr_wq);
8554                 h->rescan_ctlr_wq = NULL;
8555         }
8556         kfree(h);
8557         return rc;
8558 }
8559
8560 static void hpsa_flush_cache(struct ctlr_info *h)
8561 {
8562         char *flush_buf;
8563         struct CommandList *c;
8564         int rc;
8565
8566         if (unlikely(lockup_detected(h)))
8567                 return;
8568         flush_buf = kzalloc(4, GFP_KERNEL);
8569         if (!flush_buf)
8570                 return;
8571
8572         c = cmd_alloc(h);
8573
8574         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8575                 RAID_CTLR_LUNID, TYPE_CMD)) {
8576                 goto out;
8577         }
8578         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8579                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8580         if (rc)
8581                 goto out;
8582         if (c->err_info->CommandStatus != 0)
8583 out:
8584                 dev_warn(&h->pdev->dev,
8585                         "error flushing cache on controller\n");
8586         cmd_free(h, c);
8587         kfree(flush_buf);
8588 }
8589
8590 /* Make controller gather fresh report lun data each time we
8591  * send down a report luns request
8592  */
8593 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8594 {
8595         u32 *options;
8596         struct CommandList *c;
8597         int rc;
8598
8599         /* Don't bother trying to set diag options if locked up */
8600         if (unlikely(h->lockup_detected))
8601                 return;
8602
8603         options = kzalloc(sizeof(*options), GFP_KERNEL);
8604         if (!options)
8605                 return;
8606
8607         c = cmd_alloc(h);
8608
8609         /* first, get the current diag options settings */
8610         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8611                 RAID_CTLR_LUNID, TYPE_CMD))
8612                 goto errout;
8613
8614         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8615                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8616         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8617                 goto errout;
8618
8619         /* Now, set the bit for disabling the RLD caching */
8620         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8621
8622         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8623                 RAID_CTLR_LUNID, TYPE_CMD))
8624                 goto errout;
8625
8626         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8627                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8628         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8629                 goto errout;
8630
8631         /* Now verify that it got set: */
8632         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8633                 RAID_CTLR_LUNID, TYPE_CMD))
8634                 goto errout;
8635
8636         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8637                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8638         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8639                 goto errout;
8640
8641         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8642                 goto out;
8643
8644 errout:
8645         dev_err(&h->pdev->dev,
8646                         "Error: failed to disable report lun data caching.\n");
8647 out:
8648         cmd_free(h, c);
8649         kfree(options);
8650 }
8651
8652 static void hpsa_shutdown(struct pci_dev *pdev)
8653 {
8654         struct ctlr_info *h;
8655
8656         h = pci_get_drvdata(pdev);
8657         /* Turn board interrupts off  and send the flush cache command
8658          * sendcmd will turn off interrupt, and send the flush...
8659          * To write all data in the battery backed cache to disks
8660          */
8661         hpsa_flush_cache(h);
8662         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663         hpsa_free_irqs(h);                      /* init_one 4 */
8664         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8665 }
8666
8667 static void hpsa_free_device_info(struct ctlr_info *h)
8668 {
8669         int i;
8670
8671         for (i = 0; i < h->ndevices; i++) {
8672                 kfree(h->dev[i]);
8673                 h->dev[i] = NULL;
8674         }
8675 }
8676
8677 static void hpsa_remove_one(struct pci_dev *pdev)
8678 {
8679         struct ctlr_info *h;
8680         unsigned long flags;
8681
8682         if (pci_get_drvdata(pdev) == NULL) {
8683                 dev_err(&pdev->dev, "unable to remove device\n");
8684                 return;
8685         }
8686         h = pci_get_drvdata(pdev);
8687
8688         /* Get rid of any controller monitoring work items */
8689         spin_lock_irqsave(&h->lock, flags);
8690         h->remove_in_progress = 1;
8691         spin_unlock_irqrestore(&h->lock, flags);
8692         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8693         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8694         cancel_delayed_work_sync(&h->event_monitor_work);
8695         destroy_workqueue(h->rescan_ctlr_wq);
8696         destroy_workqueue(h->resubmit_wq);
8697
8698         /*
8699          * Call before disabling interrupts.
8700          * scsi_remove_host can trigger I/O operations especially
8701          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8702          * operations which cannot complete and will hang the system.
8703          */
8704         if (h->scsi_host)
8705                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8706         /* includes hpsa_free_irqs - init_one 4 */
8707         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8708         hpsa_shutdown(pdev);
8709
8710         hpsa_free_device_info(h);               /* scan */
8711
8712         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8713         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8714         hpsa_free_ioaccel2_sg_chain_blocks(h);
8715         hpsa_free_performant_mode(h);                   /* init_one 7 */
8716         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8717         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8718         kfree(h->lastlogicals);
8719
8720         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8721
8722         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8723         h->scsi_host = NULL;                            /* init_one 3 */
8724
8725         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8726         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8727
8728         free_percpu(h->lockup_detected);                /* init_one 2 */
8729         h->lockup_detected = NULL;                      /* init_one 2 */
8730         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8731
8732         hpsa_delete_sas_host(h);
8733
8734         kfree(h);                                       /* init_one 1 */
8735 }
8736
8737 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8738         __attribute__((unused)) pm_message_t state)
8739 {
8740         return -ENOSYS;
8741 }
8742
8743 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8744 {
8745         return -ENOSYS;
8746 }
8747
8748 static struct pci_driver hpsa_pci_driver = {
8749         .name = HPSA,
8750         .probe = hpsa_init_one,
8751         .remove = hpsa_remove_one,
8752         .id_table = hpsa_pci_device_id, /* id_table */
8753         .shutdown = hpsa_shutdown,
8754         .suspend = hpsa_suspend,
8755         .resume = hpsa_resume,
8756 };
8757
8758 /* Fill in bucket_map[], given nsgs (the max number of
8759  * scatter gather elements supported) and bucket[],
8760  * which is an array of 8 integers.  The bucket[] array
8761  * contains 8 different DMA transfer sizes (in 16
8762  * byte increments) which the controller uses to fetch
8763  * commands.  This function fills in bucket_map[], which
8764  * maps a given number of scatter gather elements to one of
8765  * the 8 DMA transfer sizes.  The point of it is to allow the
8766  * controller to only do as much DMA as needed to fetch the
8767  * command, with the DMA transfer size encoded in the lower
8768  * bits of the command address.
8769  */
8770 static void  calc_bucket_map(int bucket[], int num_buckets,
8771         int nsgs, int min_blocks, u32 *bucket_map)
8772 {
8773         int i, j, b, size;
8774
8775         /* Note, bucket_map must have nsgs+1 entries. */
8776         for (i = 0; i <= nsgs; i++) {
8777                 /* Compute size of a command with i SG entries */
8778                 size = i + min_blocks;
8779                 b = num_buckets; /* Assume the biggest bucket */
8780                 /* Find the bucket that is just big enough */
8781                 for (j = 0; j < num_buckets; j++) {
8782                         if (bucket[j] >= size) {
8783                                 b = j;
8784                                 break;
8785                         }
8786                 }
8787                 /* for a command with i SG entries, use bucket b. */
8788                 bucket_map[i] = b;
8789         }
8790 }
8791
8792 /*
8793  * return -ENODEV on err, 0 on success (or no action)
8794  * allocates numerous items that must be freed later
8795  */
8796 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8797 {
8798         int i;
8799         unsigned long register_value;
8800         unsigned long transMethod = CFGTBL_Trans_Performant |
8801                         (trans_support & CFGTBL_Trans_use_short_tags) |
8802                                 CFGTBL_Trans_enable_directed_msix |
8803                         (trans_support & (CFGTBL_Trans_io_accel1 |
8804                                 CFGTBL_Trans_io_accel2));
8805         struct access_method access = SA5_performant_access;
8806
8807         /* This is a bit complicated.  There are 8 registers on
8808          * the controller which we write to to tell it 8 different
8809          * sizes of commands which there may be.  It's a way of
8810          * reducing the DMA done to fetch each command.  Encoded into
8811          * each command's tag are 3 bits which communicate to the controller
8812          * which of the eight sizes that command fits within.  The size of
8813          * each command depends on how many scatter gather entries there are.
8814          * Each SG entry requires 16 bytes.  The eight registers are programmed
8815          * with the number of 16-byte blocks a command of that size requires.
8816          * The smallest command possible requires 5 such 16 byte blocks.
8817          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8818          * blocks.  Note, this only extends to the SG entries contained
8819          * within the command block, and does not extend to chained blocks
8820          * of SG elements.   bft[] contains the eight values we write to
8821          * the registers.  They are not evenly distributed, but have more
8822          * sizes for small commands, and fewer sizes for larger commands.
8823          */
8824         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8825 #define MIN_IOACCEL2_BFT_ENTRY 5
8826 #define HPSA_IOACCEL2_HEADER_SZ 4
8827         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8828                         13, 14, 15, 16, 17, 18, 19,
8829                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8830         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8831         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8832         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8833                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8834         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8835         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8836         /*  5 = 1 s/g entry or 4k
8837          *  6 = 2 s/g entry or 8k
8838          *  8 = 4 s/g entry or 16k
8839          * 10 = 6 s/g entry or 24k
8840          */
8841
8842         /* If the controller supports either ioaccel method then
8843          * we can also use the RAID stack submit path that does not
8844          * perform the superfluous readl() after each command submission.
8845          */
8846         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8847                 access = SA5_performant_access_no_read;
8848
8849         /* Controller spec: zero out this buffer. */
8850         for (i = 0; i < h->nreply_queues; i++)
8851                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8852
8853         bft[7] = SG_ENTRIES_IN_CMD + 4;
8854         calc_bucket_map(bft, ARRAY_SIZE(bft),
8855                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8856         for (i = 0; i < 8; i++)
8857                 writel(bft[i], &h->transtable->BlockFetch[i]);
8858
8859         /* size of controller ring buffer */
8860         writel(h->max_commands, &h->transtable->RepQSize);
8861         writel(h->nreply_queues, &h->transtable->RepQCount);
8862         writel(0, &h->transtable->RepQCtrAddrLow32);
8863         writel(0, &h->transtable->RepQCtrAddrHigh32);
8864
8865         for (i = 0; i < h->nreply_queues; i++) {
8866                 writel(0, &h->transtable->RepQAddr[i].upper);
8867                 writel(h->reply_queue[i].busaddr,
8868                         &h->transtable->RepQAddr[i].lower);
8869         }
8870
8871         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8872         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8873         /*
8874          * enable outbound interrupt coalescing in accelerator mode;
8875          */
8876         if (trans_support & CFGTBL_Trans_io_accel1) {
8877                 access = SA5_ioaccel_mode1_access;
8878                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8879                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8880         } else
8881                 if (trans_support & CFGTBL_Trans_io_accel2)
8882                         access = SA5_ioaccel_mode2_access;
8883         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8884         if (hpsa_wait_for_mode_change_ack(h)) {
8885                 dev_err(&h->pdev->dev,
8886                         "performant mode problem - doorbell timeout\n");
8887                 return -ENODEV;
8888         }
8889         register_value = readl(&(h->cfgtable->TransportActive));
8890         if (!(register_value & CFGTBL_Trans_Performant)) {
8891                 dev_err(&h->pdev->dev,
8892                         "performant mode problem - transport not active\n");
8893                 return -ENODEV;
8894         }
8895         /* Change the access methods to the performant access methods */
8896         h->access = access;
8897         h->transMethod = transMethod;
8898
8899         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8900                 (trans_support & CFGTBL_Trans_io_accel2)))
8901                 return 0;
8902
8903         if (trans_support & CFGTBL_Trans_io_accel1) {
8904                 /* Set up I/O accelerator mode */
8905                 for (i = 0; i < h->nreply_queues; i++) {
8906                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8907                         h->reply_queue[i].current_entry =
8908                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8909                 }
8910                 bft[7] = h->ioaccel_maxsg + 8;
8911                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8912                                 h->ioaccel1_blockFetchTable);
8913
8914                 /* initialize all reply queue entries to unused */
8915                 for (i = 0; i < h->nreply_queues; i++)
8916                         memset(h->reply_queue[i].head,
8917                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8918                                 h->reply_queue_size);
8919
8920                 /* set all the constant fields in the accelerator command
8921                  * frames once at init time to save CPU cycles later.
8922                  */
8923                 for (i = 0; i < h->nr_cmds; i++) {
8924                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8925
8926                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8927                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8928                                         (i * sizeof(struct ErrorInfo)));
8929                         cp->err_info_len = sizeof(struct ErrorInfo);
8930                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8931                         cp->host_context_flags =
8932                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8933                         cp->timeout_sec = 0;
8934                         cp->ReplyQueue = 0;
8935                         cp->tag =
8936                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8937                         cp->host_addr =
8938                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8939                                         (i * sizeof(struct io_accel1_cmd)));
8940                 }
8941         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8942                 u64 cfg_offset, cfg_base_addr_index;
8943                 u32 bft2_offset, cfg_base_addr;
8944                 int rc;
8945
8946                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8947                         &cfg_base_addr_index, &cfg_offset);
8948                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8949                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8950                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8951                                 4, h->ioaccel2_blockFetchTable);
8952                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8953                 BUILD_BUG_ON(offsetof(struct CfgTable,
8954                                 io_accel_request_size_offset) != 0xb8);
8955                 h->ioaccel2_bft2_regs =
8956                         remap_pci_mem(pci_resource_start(h->pdev,
8957                                         cfg_base_addr_index) +
8958                                         cfg_offset + bft2_offset,
8959                                         ARRAY_SIZE(bft2) *
8960                                         sizeof(*h->ioaccel2_bft2_regs));
8961                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8962                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8963         }
8964         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8965         if (hpsa_wait_for_mode_change_ack(h)) {
8966                 dev_err(&h->pdev->dev,
8967                         "performant mode problem - enabling ioaccel mode\n");
8968                 return -ENODEV;
8969         }
8970         return 0;
8971 }
8972
8973 /* Free ioaccel1 mode command blocks and block fetch table */
8974 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8975 {
8976         if (h->ioaccel_cmd_pool) {
8977                 pci_free_consistent(h->pdev,
8978                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8979                         h->ioaccel_cmd_pool,
8980                         h->ioaccel_cmd_pool_dhandle);
8981                 h->ioaccel_cmd_pool = NULL;
8982                 h->ioaccel_cmd_pool_dhandle = 0;
8983         }
8984         kfree(h->ioaccel1_blockFetchTable);
8985         h->ioaccel1_blockFetchTable = NULL;
8986 }
8987
8988 /* Allocate ioaccel1 mode command blocks and block fetch table */
8989 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8990 {
8991         h->ioaccel_maxsg =
8992                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8993         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8994                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8995
8996         /* Command structures must be aligned on a 128-byte boundary
8997          * because the 7 lower bits of the address are used by the
8998          * hardware.
8999          */
9000         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9001                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9002         h->ioaccel_cmd_pool =
9003                 pci_alloc_consistent(h->pdev,
9004                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9005                         &(h->ioaccel_cmd_pool_dhandle));
9006
9007         h->ioaccel1_blockFetchTable =
9008                 kmalloc(((h->ioaccel_maxsg + 1) *
9009                                 sizeof(u32)), GFP_KERNEL);
9010
9011         if ((h->ioaccel_cmd_pool == NULL) ||
9012                 (h->ioaccel1_blockFetchTable == NULL))
9013                 goto clean_up;
9014
9015         memset(h->ioaccel_cmd_pool, 0,
9016                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9017         return 0;
9018
9019 clean_up:
9020         hpsa_free_ioaccel1_cmd_and_bft(h);
9021         return -ENOMEM;
9022 }
9023
9024 /* Free ioaccel2 mode command blocks and block fetch table */
9025 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9026 {
9027         hpsa_free_ioaccel2_sg_chain_blocks(h);
9028
9029         if (h->ioaccel2_cmd_pool) {
9030                 pci_free_consistent(h->pdev,
9031                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9032                         h->ioaccel2_cmd_pool,
9033                         h->ioaccel2_cmd_pool_dhandle);
9034                 h->ioaccel2_cmd_pool = NULL;
9035                 h->ioaccel2_cmd_pool_dhandle = 0;
9036         }
9037         kfree(h->ioaccel2_blockFetchTable);
9038         h->ioaccel2_blockFetchTable = NULL;
9039 }
9040
9041 /* Allocate ioaccel2 mode command blocks and block fetch table */
9042 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9043 {
9044         int rc;
9045
9046         /* Allocate ioaccel2 mode command blocks and block fetch table */
9047
9048         h->ioaccel_maxsg =
9049                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9050         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9051                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9052
9053         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9054                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9055         h->ioaccel2_cmd_pool =
9056                 pci_alloc_consistent(h->pdev,
9057                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9058                         &(h->ioaccel2_cmd_pool_dhandle));
9059
9060         h->ioaccel2_blockFetchTable =
9061                 kmalloc(((h->ioaccel_maxsg + 1) *
9062                                 sizeof(u32)), GFP_KERNEL);
9063
9064         if ((h->ioaccel2_cmd_pool == NULL) ||
9065                 (h->ioaccel2_blockFetchTable == NULL)) {
9066                 rc = -ENOMEM;
9067                 goto clean_up;
9068         }
9069
9070         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9071         if (rc)
9072                 goto clean_up;
9073
9074         memset(h->ioaccel2_cmd_pool, 0,
9075                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9076         return 0;
9077
9078 clean_up:
9079         hpsa_free_ioaccel2_cmd_and_bft(h);
9080         return rc;
9081 }
9082
9083 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9084 static void hpsa_free_performant_mode(struct ctlr_info *h)
9085 {
9086         kfree(h->blockFetchTable);
9087         h->blockFetchTable = NULL;
9088         hpsa_free_reply_queues(h);
9089         hpsa_free_ioaccel1_cmd_and_bft(h);
9090         hpsa_free_ioaccel2_cmd_and_bft(h);
9091 }
9092
9093 /* return -ENODEV on error, 0 on success (or no action)
9094  * allocates numerous items that must be freed later
9095  */
9096 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9097 {
9098         u32 trans_support;
9099         unsigned long transMethod = CFGTBL_Trans_Performant |
9100                                         CFGTBL_Trans_use_short_tags;
9101         int i, rc;
9102
9103         if (hpsa_simple_mode)
9104                 return 0;
9105
9106         trans_support = readl(&(h->cfgtable->TransportSupport));
9107         if (!(trans_support & PERFORMANT_MODE))
9108                 return 0;
9109
9110         /* Check for I/O accelerator mode support */
9111         if (trans_support & CFGTBL_Trans_io_accel1) {
9112                 transMethod |= CFGTBL_Trans_io_accel1 |
9113                                 CFGTBL_Trans_enable_directed_msix;
9114                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9115                 if (rc)
9116                         return rc;
9117         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9118                 transMethod |= CFGTBL_Trans_io_accel2 |
9119                                 CFGTBL_Trans_enable_directed_msix;
9120                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9121                 if (rc)
9122                         return rc;
9123         }
9124
9125         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9126         hpsa_get_max_perf_mode_cmds(h);
9127         /* Performant mode ring buffer and supporting data structures */
9128         h->reply_queue_size = h->max_commands * sizeof(u64);
9129
9130         for (i = 0; i < h->nreply_queues; i++) {
9131                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9132                                                 h->reply_queue_size,
9133                                                 &(h->reply_queue[i].busaddr));
9134                 if (!h->reply_queue[i].head) {
9135                         rc = -ENOMEM;
9136                         goto clean1;    /* rq, ioaccel */
9137                 }
9138                 h->reply_queue[i].size = h->max_commands;
9139                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9140                 h->reply_queue[i].current_entry = 0;
9141         }
9142
9143         /* Need a block fetch table for performant mode */
9144         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9145                                 sizeof(u32)), GFP_KERNEL);
9146         if (!h->blockFetchTable) {
9147                 rc = -ENOMEM;
9148                 goto clean1;    /* rq, ioaccel */
9149         }
9150
9151         rc = hpsa_enter_performant_mode(h, trans_support);
9152         if (rc)
9153                 goto clean2;    /* bft, rq, ioaccel */
9154         return 0;
9155
9156 clean2: /* bft, rq, ioaccel */
9157         kfree(h->blockFetchTable);
9158         h->blockFetchTable = NULL;
9159 clean1: /* rq, ioaccel */
9160         hpsa_free_reply_queues(h);
9161         hpsa_free_ioaccel1_cmd_and_bft(h);
9162         hpsa_free_ioaccel2_cmd_and_bft(h);
9163         return rc;
9164 }
9165
9166 static int is_accelerated_cmd(struct CommandList *c)
9167 {
9168         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9169 }
9170
9171 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9172 {
9173         struct CommandList *c = NULL;
9174         int i, accel_cmds_out;
9175         int refcount;
9176
9177         do { /* wait for all outstanding ioaccel commands to drain out */
9178                 accel_cmds_out = 0;
9179                 for (i = 0; i < h->nr_cmds; i++) {
9180                         c = h->cmd_pool + i;
9181                         refcount = atomic_inc_return(&c->refcount);
9182                         if (refcount > 1) /* Command is allocated */
9183                                 accel_cmds_out += is_accelerated_cmd(c);
9184                         cmd_free(h, c);
9185                 }
9186                 if (accel_cmds_out <= 0)
9187                         break;
9188                 msleep(100);
9189         } while (1);
9190 }
9191
9192 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9193                                 struct hpsa_sas_port *hpsa_sas_port)
9194 {
9195         struct hpsa_sas_phy *hpsa_sas_phy;
9196         struct sas_phy *phy;
9197
9198         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9199         if (!hpsa_sas_phy)
9200                 return NULL;
9201
9202         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9203                 hpsa_sas_port->next_phy_index);
9204         if (!phy) {
9205                 kfree(hpsa_sas_phy);
9206                 return NULL;
9207         }
9208
9209         hpsa_sas_port->next_phy_index++;
9210         hpsa_sas_phy->phy = phy;
9211         hpsa_sas_phy->parent_port = hpsa_sas_port;
9212
9213         return hpsa_sas_phy;
9214 }
9215
9216 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9217 {
9218         struct sas_phy *phy = hpsa_sas_phy->phy;
9219
9220         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9221         sas_phy_free(phy);
9222         if (hpsa_sas_phy->added_to_port)
9223                 list_del(&hpsa_sas_phy->phy_list_entry);
9224         kfree(hpsa_sas_phy);
9225 }
9226
9227 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9228 {
9229         int rc;
9230         struct hpsa_sas_port *hpsa_sas_port;
9231         struct sas_phy *phy;
9232         struct sas_identify *identify;
9233
9234         hpsa_sas_port = hpsa_sas_phy->parent_port;
9235         phy = hpsa_sas_phy->phy;
9236
9237         identify = &phy->identify;
9238         memset(identify, 0, sizeof(*identify));
9239         identify->sas_address = hpsa_sas_port->sas_address;
9240         identify->device_type = SAS_END_DEVICE;
9241         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9242         identify->target_port_protocols = SAS_PROTOCOL_STP;
9243         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9244         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9245         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9246         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9247         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9248
9249         rc = sas_phy_add(hpsa_sas_phy->phy);
9250         if (rc)
9251                 return rc;
9252
9253         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9254         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9255                         &hpsa_sas_port->phy_list_head);
9256         hpsa_sas_phy->added_to_port = true;
9257
9258         return 0;
9259 }
9260
9261 static int
9262         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9263                                 struct sas_rphy *rphy)
9264 {
9265         struct sas_identify *identify;
9266
9267         identify = &rphy->identify;
9268         identify->sas_address = hpsa_sas_port->sas_address;
9269         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9270         identify->target_port_protocols = SAS_PROTOCOL_STP;
9271
9272         return sas_rphy_add(rphy);
9273 }
9274
9275 static struct hpsa_sas_port
9276         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9277                                 u64 sas_address)
9278 {
9279         int rc;
9280         struct hpsa_sas_port *hpsa_sas_port;
9281         struct sas_port *port;
9282
9283         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9284         if (!hpsa_sas_port)
9285                 return NULL;
9286
9287         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9288         hpsa_sas_port->parent_node = hpsa_sas_node;
9289
9290         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9291         if (!port)
9292                 goto free_hpsa_port;
9293
9294         rc = sas_port_add(port);
9295         if (rc)
9296                 goto free_sas_port;
9297
9298         hpsa_sas_port->port = port;
9299         hpsa_sas_port->sas_address = sas_address;
9300         list_add_tail(&hpsa_sas_port->port_list_entry,
9301                         &hpsa_sas_node->port_list_head);
9302
9303         return hpsa_sas_port;
9304
9305 free_sas_port:
9306         sas_port_free(port);
9307 free_hpsa_port:
9308         kfree(hpsa_sas_port);
9309
9310         return NULL;
9311 }
9312
9313 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9314 {
9315         struct hpsa_sas_phy *hpsa_sas_phy;
9316         struct hpsa_sas_phy *next;
9317
9318         list_for_each_entry_safe(hpsa_sas_phy, next,
9319                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9320                 hpsa_free_sas_phy(hpsa_sas_phy);
9321
9322         sas_port_delete(hpsa_sas_port->port);
9323         list_del(&hpsa_sas_port->port_list_entry);
9324         kfree(hpsa_sas_port);
9325 }
9326
9327 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9328 {
9329         struct hpsa_sas_node *hpsa_sas_node;
9330
9331         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9332         if (hpsa_sas_node) {
9333                 hpsa_sas_node->parent_dev = parent_dev;
9334                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9335         }
9336
9337         return hpsa_sas_node;
9338 }
9339
9340 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9341 {
9342         struct hpsa_sas_port *hpsa_sas_port;
9343         struct hpsa_sas_port *next;
9344
9345         if (!hpsa_sas_node)
9346                 return;
9347
9348         list_for_each_entry_safe(hpsa_sas_port, next,
9349                         &hpsa_sas_node->port_list_head, port_list_entry)
9350                 hpsa_free_sas_port(hpsa_sas_port);
9351
9352         kfree(hpsa_sas_node);
9353 }
9354
9355 static struct hpsa_scsi_dev_t
9356         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9357                                         struct sas_rphy *rphy)
9358 {
9359         int i;
9360         struct hpsa_scsi_dev_t *device;
9361
9362         for (i = 0; i < h->ndevices; i++) {
9363                 device = h->dev[i];
9364                 if (!device->sas_port)
9365                         continue;
9366                 if (device->sas_port->rphy == rphy)
9367                         return device;
9368         }
9369
9370         return NULL;
9371 }
9372
9373 static int hpsa_add_sas_host(struct ctlr_info *h)
9374 {
9375         int rc;
9376         struct device *parent_dev;
9377         struct hpsa_sas_node *hpsa_sas_node;
9378         struct hpsa_sas_port *hpsa_sas_port;
9379         struct hpsa_sas_phy *hpsa_sas_phy;
9380
9381         parent_dev = &h->scsi_host->shost_gendev;
9382
9383         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9384         if (!hpsa_sas_node)
9385                 return -ENOMEM;
9386
9387         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9388         if (!hpsa_sas_port) {
9389                 rc = -ENODEV;
9390                 goto free_sas_node;
9391         }
9392
9393         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9394         if (!hpsa_sas_phy) {
9395                 rc = -ENODEV;
9396                 goto free_sas_port;
9397         }
9398
9399         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9400         if (rc)
9401                 goto free_sas_phy;
9402
9403         h->sas_host = hpsa_sas_node;
9404
9405         return 0;
9406
9407 free_sas_phy:
9408         hpsa_free_sas_phy(hpsa_sas_phy);
9409 free_sas_port:
9410         hpsa_free_sas_port(hpsa_sas_port);
9411 free_sas_node:
9412         hpsa_free_sas_node(hpsa_sas_node);
9413
9414         return rc;
9415 }
9416
9417 static void hpsa_delete_sas_host(struct ctlr_info *h)
9418 {
9419         hpsa_free_sas_node(h->sas_host);
9420 }
9421
9422 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9423                                 struct hpsa_scsi_dev_t *device)
9424 {
9425         int rc;
9426         struct hpsa_sas_port *hpsa_sas_port;
9427         struct sas_rphy *rphy;
9428
9429         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9430         if (!hpsa_sas_port)
9431                 return -ENOMEM;
9432
9433         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9434         if (!rphy) {
9435                 rc = -ENODEV;
9436                 goto free_sas_port;
9437         }
9438
9439         hpsa_sas_port->rphy = rphy;
9440         device->sas_port = hpsa_sas_port;
9441
9442         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9443         if (rc)
9444                 goto free_sas_port;
9445
9446         return 0;
9447
9448 free_sas_port:
9449         hpsa_free_sas_port(hpsa_sas_port);
9450         device->sas_port = NULL;
9451
9452         return rc;
9453 }
9454
9455 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9456 {
9457         if (device->sas_port) {
9458                 hpsa_free_sas_port(device->sas_port);
9459                 device->sas_port = NULL;
9460         }
9461 }
9462
9463 static int
9464 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9465 {
9466         return 0;
9467 }
9468
9469 static int
9470 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9471 {
9472         *identifier = 0;
9473         return 0;
9474 }
9475
9476 static int
9477 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9478 {
9479         return -ENXIO;
9480 }
9481
9482 static int
9483 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9484 {
9485         return 0;
9486 }
9487
9488 static int
9489 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9490 {
9491         return 0;
9492 }
9493
9494 static int
9495 hpsa_sas_phy_setup(struct sas_phy *phy)
9496 {
9497         return 0;
9498 }
9499
9500 static void
9501 hpsa_sas_phy_release(struct sas_phy *phy)
9502 {
9503 }
9504
9505 static int
9506 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9507 {
9508         return -EINVAL;
9509 }
9510
9511 /* SMP = Serial Management Protocol */
9512 static int
9513 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9514 struct request *req)
9515 {
9516         return -EINVAL;
9517 }
9518
9519 static struct sas_function_template hpsa_sas_transport_functions = {
9520         .get_linkerrors = hpsa_sas_get_linkerrors,
9521         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9522         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9523         .phy_reset = hpsa_sas_phy_reset,
9524         .phy_enable = hpsa_sas_phy_enable,
9525         .phy_setup = hpsa_sas_phy_setup,
9526         .phy_release = hpsa_sas_phy_release,
9527         .set_phy_speed = hpsa_sas_phy_speed,
9528         .smp_handler = hpsa_sas_smp_handler,
9529 };
9530
9531 /*
9532  *  This is it.  Register the PCI driver information for the cards we control
9533  *  the OS will call our registered routines when it finds one of our cards.
9534  */
9535 static int __init hpsa_init(void)
9536 {
9537         int rc;
9538
9539         hpsa_sas_transport_template =
9540                 sas_attach_transport(&hpsa_sas_transport_functions);
9541         if (!hpsa_sas_transport_template)
9542                 return -ENODEV;
9543
9544         rc = pci_register_driver(&hpsa_pci_driver);
9545
9546         if (rc)
9547                 sas_release_transport(hpsa_sas_transport_template);
9548
9549         return rc;
9550 }
9551
9552 static void __exit hpsa_cleanup(void)
9553 {
9554         pci_unregister_driver(&hpsa_pci_driver);
9555         sas_release_transport(hpsa_sas_transport_template);
9556 }
9557
9558 static void __attribute__((unused)) verify_offsets(void)
9559 {
9560 #define VERIFY_OFFSET(member, offset) \
9561         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9562
9563         VERIFY_OFFSET(structure_size, 0);
9564         VERIFY_OFFSET(volume_blk_size, 4);
9565         VERIFY_OFFSET(volume_blk_cnt, 8);
9566         VERIFY_OFFSET(phys_blk_shift, 16);
9567         VERIFY_OFFSET(parity_rotation_shift, 17);
9568         VERIFY_OFFSET(strip_size, 18);
9569         VERIFY_OFFSET(disk_starting_blk, 20);
9570         VERIFY_OFFSET(disk_blk_cnt, 28);
9571         VERIFY_OFFSET(data_disks_per_row, 36);
9572         VERIFY_OFFSET(metadata_disks_per_row, 38);
9573         VERIFY_OFFSET(row_cnt, 40);
9574         VERIFY_OFFSET(layout_map_count, 42);
9575         VERIFY_OFFSET(flags, 44);
9576         VERIFY_OFFSET(dekindex, 46);
9577         /* VERIFY_OFFSET(reserved, 48 */
9578         VERIFY_OFFSET(data, 64);
9579
9580 #undef VERIFY_OFFSET
9581
9582 #define VERIFY_OFFSET(member, offset) \
9583         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9584
9585         VERIFY_OFFSET(IU_type, 0);
9586         VERIFY_OFFSET(direction, 1);
9587         VERIFY_OFFSET(reply_queue, 2);
9588         /* VERIFY_OFFSET(reserved1, 3);  */
9589         VERIFY_OFFSET(scsi_nexus, 4);
9590         VERIFY_OFFSET(Tag, 8);
9591         VERIFY_OFFSET(cdb, 16);
9592         VERIFY_OFFSET(cciss_lun, 32);
9593         VERIFY_OFFSET(data_len, 40);
9594         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9595         VERIFY_OFFSET(sg_count, 45);
9596         /* VERIFY_OFFSET(reserved3 */
9597         VERIFY_OFFSET(err_ptr, 48);
9598         VERIFY_OFFSET(err_len, 56);
9599         /* VERIFY_OFFSET(reserved4  */
9600         VERIFY_OFFSET(sg, 64);
9601
9602 #undef VERIFY_OFFSET
9603
9604 #define VERIFY_OFFSET(member, offset) \
9605         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9606
9607         VERIFY_OFFSET(dev_handle, 0x00);
9608         VERIFY_OFFSET(reserved1, 0x02);
9609         VERIFY_OFFSET(function, 0x03);
9610         VERIFY_OFFSET(reserved2, 0x04);
9611         VERIFY_OFFSET(err_info, 0x0C);
9612         VERIFY_OFFSET(reserved3, 0x10);
9613         VERIFY_OFFSET(err_info_len, 0x12);
9614         VERIFY_OFFSET(reserved4, 0x13);
9615         VERIFY_OFFSET(sgl_offset, 0x14);
9616         VERIFY_OFFSET(reserved5, 0x15);
9617         VERIFY_OFFSET(transfer_len, 0x1C);
9618         VERIFY_OFFSET(reserved6, 0x20);
9619         VERIFY_OFFSET(io_flags, 0x24);
9620         VERIFY_OFFSET(reserved7, 0x26);
9621         VERIFY_OFFSET(LUN, 0x34);
9622         VERIFY_OFFSET(control, 0x3C);
9623         VERIFY_OFFSET(CDB, 0x40);
9624         VERIFY_OFFSET(reserved8, 0x50);
9625         VERIFY_OFFSET(host_context_flags, 0x60);
9626         VERIFY_OFFSET(timeout_sec, 0x62);
9627         VERIFY_OFFSET(ReplyQueue, 0x64);
9628         VERIFY_OFFSET(reserved9, 0x65);
9629         VERIFY_OFFSET(tag, 0x68);
9630         VERIFY_OFFSET(host_addr, 0x70);
9631         VERIFY_OFFSET(CISS_LUN, 0x78);
9632         VERIFY_OFFSET(SG, 0x78 + 8);
9633 #undef VERIFY_OFFSET
9634 }
9635
9636 module_init(hpsa_init);
9637 module_exit(hpsa_cleanup);