treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / scsi / csiostor / csio_wr.c
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41
42 #include "t4_values.h"
43 #include "csio_hw.h"
44 #include "csio_wr.h"
45 #include "csio_mb.h"
46 #include "csio_defs.h"
47
48 int csio_intr_coalesce_cnt;             /* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg;         /* SGE_INGRESS_RX_THRESHOLD[0] */
50
51 int csio_intr_coalesce_time = 10;       /* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg = 1;
53
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)                            \
55         csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
56
57 static void
58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
59 {
60         sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
61                                                         reg * sizeof(uint32_t));
62 }
63
64 /* Free list buffer size */
65 static inline uint32_t
66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
67 {
68         return sge->sge_fl_buf_size[buf->paddr & 0xF];
69 }
70
71 /* Size of the egress queue status page */
72 static inline uint32_t
73 csio_wr_qstat_pgsz(struct csio_hw *hw)
74 {
75         return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
76 }
77
78 /* Ring freelist doorbell */
79 static inline void
80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
81 {
82         /*
83          * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84          * number of bytes in the freelist queue. This translates to atleast
85          * 8 freelist buffer pointers (since each pointer is 8 bytes).
86          */
87         if (flq->inc_idx >= 8) {
88                 csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
89                                   PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
90                                   MYPF_REG(SGE_PF_KDOORBELL_A));
91                 flq->inc_idx &= 7;
92         }
93 }
94
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 static void
97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
98 {
99         csio_wr_reg32(hw, CIDXINC_V(0)          |
100                           INGRESSQID_V(iqid)    |
101                           TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
102                           MYPF_REG(SGE_PF_GTS_A));
103 }
104
105 /*
106  * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107  * @hw: HW module.
108  * @flq: Freelist queue.
109  *
110  * Fill up freelist buffer entries with buffers of size specified
111  * in the size register.
112  *
113  */
114 static int
115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
116 {
117         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
118         struct csio_sge *sge = &wrm->sge;
119         __be64 *d = (__be64 *)(flq->vstart);
120         struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
121         uint64_t paddr;
122         int sreg = flq->un.fl.sreg;
123         int n = flq->credits;
124
125         while (n--) {
126                 buf->len = sge->sge_fl_buf_size[sreg];
127                 buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
128                                                 &buf->paddr, GFP_KERNEL);
129                 if (!buf->vaddr) {
130                         csio_err(hw, "Could only fill %d buffers!\n", n + 1);
131                         return -ENOMEM;
132                 }
133
134                 paddr = buf->paddr | (sreg & 0xF);
135
136                 *d++ = cpu_to_be64(paddr);
137                 buf++;
138         }
139
140         return 0;
141 }
142
143 /*
144  * csio_wr_update_fl -
145  * @hw: HW module.
146  * @flq: Freelist queue.
147  *
148  *
149  */
150 static inline void
151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
152 {
153
154         flq->inc_idx += n;
155         flq->pidx += n;
156         if (unlikely(flq->pidx >= flq->credits))
157                 flq->pidx -= (uint16_t)flq->credits;
158
159         CSIO_INC_STATS(flq, n_flq_refill);
160 }
161
162 /*
163  * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164  * @hw: HW module
165  * @qsize: Size of the queue in bytes
166  * @wrsize: Since of WR in this queue, if fixed.
167  * @type: Type of queue (Ingress/Egress/Freelist)
168  * @owner: Module that owns this queue.
169  * @nflb: Number of freelist buffers for FL.
170  * @sreg: What is the FL buffer size register?
171  * @iq_int_handler: Ingress queue handler in INTx mode.
172  *
173  * This function allocates and sets up a queue for the caller
174  * of size qsize, aligned at the required boundary. This is subject to
175  * be free entries being available in the queue array. If one is found,
176  * it is initialized with the allocated queue, marked as being used (owner),
177  * and a handle returned to the caller in form of the queue's index
178  * into the q_arr array.
179  * If user has indicated a freelist (by specifying nflb > 0), create
180  * another queue (with its own index into q_arr) for the freelist. Allocate
181  * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182  * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183  * with its owning ingress queue.
184  */
185 int
186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
187                 uint16_t type, void *owner, uint32_t nflb, int sreg,
188                 iq_handler_t iq_intx_handler)
189 {
190         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
191         struct csio_q   *q, *flq;
192         int             free_idx = wrm->free_qidx;
193         int             ret_idx = free_idx;
194         uint32_t        qsz;
195         int flq_idx;
196
197         if (free_idx >= wrm->num_q) {
198                 csio_err(hw, "No more free queues.\n");
199                 return -1;
200         }
201
202         switch (type) {
203         case CSIO_EGRESS:
204                 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
205                 break;
206         case CSIO_INGRESS:
207                 switch (wrsize) {
208                 case 16:
209                 case 32:
210                 case 64:
211                 case 128:
212                         break;
213                 default:
214                         csio_err(hw, "Invalid Ingress queue WR size:%d\n",
215                                     wrsize);
216                         return -1;
217                 }
218
219                 /*
220                  * Number of elements must be a multiple of 16
221                  * So this includes status page size
222                  */
223                 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
224
225                 break;
226         case CSIO_FREELIST:
227                 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
228                 break;
229         default:
230                 csio_err(hw, "Invalid queue type: 0x%x\n", type);
231                 return -1;
232         }
233
234         q = wrm->q_arr[free_idx];
235
236         q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
237                                        GFP_KERNEL);
238         if (!q->vstart) {
239                 csio_err(hw,
240                          "Failed to allocate DMA memory for "
241                          "queue at id: %d size: %d\n", free_idx, qsize);
242                 return -1;
243         }
244
245         q->type         = type;
246         q->owner        = owner;
247         q->pidx         = q->cidx = q->inc_idx = 0;
248         q->size         = qsz;
249         q->wr_sz        = wrsize;       /* If using fixed size WRs */
250
251         wrm->free_qidx++;
252
253         if (type == CSIO_INGRESS) {
254                 /* Since queue area is set to zero */
255                 q->un.iq.genbit = 1;
256
257                 /*
258                  * Ingress queue status page size is always the size of
259                  * the ingress queue entry.
260                  */
261                 q->credits      = (qsz - q->wr_sz) / q->wr_sz;
262                 q->vwrap        = (void *)((uintptr_t)(q->vstart) + qsz
263                                                         - q->wr_sz);
264
265                 /* Allocate memory for FL if requested */
266                 if (nflb > 0) {
267                         flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
268                                                   sizeof(__be64), CSIO_FREELIST,
269                                                   owner, 0, sreg, NULL);
270                         if (flq_idx == -1) {
271                                 csio_err(hw,
272                                          "Failed to allocate FL queue"
273                                          " for IQ idx:%d\n", free_idx);
274                                 return -1;
275                         }
276
277                         /* Associate the new FL with the Ingress quue */
278                         q->un.iq.flq_idx = flq_idx;
279
280                         flq = wrm->q_arr[q->un.iq.flq_idx];
281                         flq->un.fl.bufs = kcalloc(flq->credits,
282                                                   sizeof(struct csio_dma_buf),
283                                                   GFP_KERNEL);
284                         if (!flq->un.fl.bufs) {
285                                 csio_err(hw,
286                                          "Failed to allocate FL queue bufs"
287                                          " for IQ idx:%d\n", free_idx);
288                                 return -1;
289                         }
290
291                         flq->un.fl.packen = 0;
292                         flq->un.fl.offset = 0;
293                         flq->un.fl.sreg = sreg;
294
295                         /* Fill up the free list buffers */
296                         if (csio_wr_fill_fl(hw, flq))
297                                 return -1;
298
299                         /*
300                          * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
301                          * remains unpopulated,otherwise HW thinks
302                          * FLQ is empty.
303                          */
304                         flq->pidx = flq->inc_idx = flq->credits - 8;
305                 } else {
306                         q->un.iq.flq_idx = -1;
307                 }
308
309                 /* Associate the IQ INTx handler. */
310                 q->un.iq.iq_intx_handler = iq_intx_handler;
311
312                 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
313
314         } else if (type == CSIO_EGRESS) {
315                 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
316                 q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
317                                                 - csio_wr_qstat_pgsz(hw));
318                 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
319         } else { /* Freelist */
320                 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
321                 q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
322                                                 - csio_wr_qstat_pgsz(hw));
323                 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
324         }
325
326         return ret_idx;
327 }
328
329 /*
330  * csio_wr_iq_create_rsp - Response handler for IQ creation.
331  * @hw: The HW module.
332  * @mbp: Mailbox.
333  * @iq_idx: Ingress queue that got created.
334  *
335  * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
336  */
337 static int
338 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
339 {
340         struct csio_iq_params iqp;
341         enum fw_retval retval;
342         uint32_t iq_id;
343         int flq_idx;
344
345         memset(&iqp, 0, sizeof(struct csio_iq_params));
346
347         csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
348
349         if (retval != FW_SUCCESS) {
350                 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
351                 mempool_free(mbp, hw->mb_mempool);
352                 return -EINVAL;
353         }
354
355         csio_q_iqid(hw, iq_idx)         = iqp.iqid;
356         csio_q_physiqid(hw, iq_idx)     = iqp.physiqid;
357         csio_q_pidx(hw, iq_idx)         = csio_q_cidx(hw, iq_idx) = 0;
358         csio_q_inc_idx(hw, iq_idx)      = 0;
359
360         /* Actual iq-id. */
361         iq_id = iqp.iqid - hw->wrm.fw_iq_start;
362
363         /* Set the iq-id to iq map table. */
364         if (iq_id >= CSIO_MAX_IQ) {
365                 csio_err(hw,
366                          "Exceeding MAX_IQ(%d) supported!"
367                          " iqid:%d rel_iqid:%d FW iq_start:%d\n",
368                          CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
369                 mempool_free(mbp, hw->mb_mempool);
370                 return -EINVAL;
371         }
372         csio_q_set_intr_map(hw, iq_idx, iq_id);
373
374         /*
375          * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
376          * ingress context of this queue. This will block interrupts to
377          * this queue until the next GTS write. Therefore, we do a
378          * 0-cidx increment GTS write for this queue just to clear the
379          * interrupt_sent bit. This will re-enable interrupts to this
380          * queue.
381          */
382         csio_wr_sge_intr_enable(hw, iqp.physiqid);
383
384         flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
385         if (flq_idx != -1) {
386                 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
387
388                 csio_q_flid(hw, flq_idx) = iqp.fl0id;
389                 csio_q_cidx(hw, flq_idx) = 0;
390                 csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
391                 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
392
393                 /* Now update SGE about the buffers allocated during init */
394                 csio_wr_ring_fldb(hw, flq);
395         }
396
397         mempool_free(mbp, hw->mb_mempool);
398
399         return 0;
400 }
401
402 /*
403  * csio_wr_iq_create - Configure an Ingress queue with FW.
404  * @hw: The HW module.
405  * @priv: Private data object.
406  * @iq_idx: Ingress queue index in the WR module.
407  * @vec: MSIX vector.
408  * @portid: PCIE Channel to be associated with this queue.
409  * @async: Is this a FW asynchronous message handling queue?
410  * @cbfn: Completion callback.
411  *
412  * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
413  * with alloc/write bits set.
414  */
415 int
416 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
417                   uint32_t vec, uint8_t portid, bool async,
418                   void (*cbfn) (struct csio_hw *, struct csio_mb *))
419 {
420         struct csio_mb  *mbp;
421         struct csio_iq_params iqp;
422         int flq_idx;
423
424         memset(&iqp, 0, sizeof(struct csio_iq_params));
425         csio_q_portid(hw, iq_idx) = portid;
426
427         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
428         if (!mbp) {
429                 csio_err(hw, "IQ command out of memory!\n");
430                 return -ENOMEM;
431         }
432
433         switch (hw->intr_mode) {
434         case CSIO_IM_INTX:
435         case CSIO_IM_MSI:
436                 /* For interrupt forwarding queue only */
437                 if (hw->intr_iq_idx == iq_idx)
438                         iqp.iqandst     = X_INTERRUPTDESTINATION_PCIE;
439                 else
440                         iqp.iqandst     = X_INTERRUPTDESTINATION_IQ;
441                 iqp.iqandstindex        =
442                         csio_q_physiqid(hw, hw->intr_iq_idx);
443                 break;
444         case CSIO_IM_MSIX:
445                 iqp.iqandst             = X_INTERRUPTDESTINATION_PCIE;
446                 iqp.iqandstindex        = (uint16_t)vec;
447                 break;
448         case CSIO_IM_NONE:
449                 mempool_free(mbp, hw->mb_mempool);
450                 return -EINVAL;
451         }
452
453         /* Pass in the ingress queue cmd parameters */
454         iqp.pfn                 = hw->pfn;
455         iqp.vfn                 = 0;
456         iqp.iq_start            = 1;
457         iqp.viid                = 0;
458         iqp.type                = FW_IQ_TYPE_FL_INT_CAP;
459         iqp.iqasynch            = async;
460         if (csio_intr_coalesce_cnt)
461                 iqp.iqanus      = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
462         else
463                 iqp.iqanus      = X_UPDATESCHEDULING_TIMER;
464         iqp.iqanud              = X_UPDATEDELIVERY_INTERRUPT;
465         iqp.iqpciech            = portid;
466         iqp.iqintcntthresh      = (uint8_t)csio_sge_thresh_reg;
467
468         switch (csio_q_wr_sz(hw, iq_idx)) {
469         case 16:
470                 iqp.iqesize = 0; break;
471         case 32:
472                 iqp.iqesize = 1; break;
473         case 64:
474                 iqp.iqesize = 2; break;
475         case 128:
476                 iqp.iqesize = 3; break;
477         }
478
479         iqp.iqsize              = csio_q_size(hw, iq_idx) /
480                                                 csio_q_wr_sz(hw, iq_idx);
481         iqp.iqaddr              = csio_q_pstart(hw, iq_idx);
482
483         flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
484         if (flq_idx != -1) {
485                 enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
486                 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
487
488                 iqp.fl0paden    = 1;
489                 iqp.fl0packen   = flq->un.fl.packen ? 1 : 0;
490                 iqp.fl0fbmin    = X_FETCHBURSTMIN_64B;
491                 iqp.fl0fbmax    = ((chip == CHELSIO_T5) ?
492                                   X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
493                 iqp.fl0size     = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
494                 iqp.fl0addr     = csio_q_pstart(hw, flq_idx);
495         }
496
497         csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
498
499         if (csio_mb_issue(hw, mbp)) {
500                 csio_err(hw, "Issue of IQ cmd failed!\n");
501                 mempool_free(mbp, hw->mb_mempool);
502                 return -EINVAL;
503         }
504
505         if (cbfn != NULL)
506                 return 0;
507
508         return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
509 }
510
511 /*
512  * csio_wr_eq_create_rsp - Response handler for EQ creation.
513  * @hw: The HW module.
514  * @mbp: Mailbox.
515  * @eq_idx: Egress queue that got created.
516  *
517  * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
518  */
519 static int
520 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
521 {
522         struct csio_eq_params eqp;
523         enum fw_retval retval;
524
525         memset(&eqp, 0, sizeof(struct csio_eq_params));
526
527         csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
528
529         if (retval != FW_SUCCESS) {
530                 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
531                 mempool_free(mbp, hw->mb_mempool);
532                 return -EINVAL;
533         }
534
535         csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
536         csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
537         csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
538         csio_q_inc_idx(hw, eq_idx) = 0;
539
540         mempool_free(mbp, hw->mb_mempool);
541
542         return 0;
543 }
544
545 /*
546  * csio_wr_eq_create - Configure an Egress queue with FW.
547  * @hw: HW module.
548  * @priv: Private data.
549  * @eq_idx: Egress queue index in the WR module.
550  * @iq_idx: Associated ingress queue index.
551  * @cbfn: Completion callback.
552  *
553  * This API configures a offload egress queue with FW by issuing a
554  * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
555  */
556 int
557 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
558                   int iq_idx, uint8_t portid,
559                   void (*cbfn) (struct csio_hw *, struct csio_mb *))
560 {
561         struct csio_mb  *mbp;
562         struct csio_eq_params eqp;
563
564         memset(&eqp, 0, sizeof(struct csio_eq_params));
565
566         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
567         if (!mbp) {
568                 csio_err(hw, "EQ command out of memory!\n");
569                 return -ENOMEM;
570         }
571
572         eqp.pfn                 = hw->pfn;
573         eqp.vfn                 = 0;
574         eqp.eqstart             = 1;
575         eqp.hostfcmode          = X_HOSTFCMODE_STATUS_PAGE;
576         eqp.iqid                = csio_q_iqid(hw, iq_idx);
577         eqp.fbmin               = X_FETCHBURSTMIN_64B;
578         eqp.fbmax               = X_FETCHBURSTMAX_512B;
579         eqp.cidxfthresh         = 0;
580         eqp.pciechn             = portid;
581         eqp.eqsize              = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
582         eqp.eqaddr              = csio_q_pstart(hw, eq_idx);
583
584         csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
585                                     &eqp, cbfn);
586
587         if (csio_mb_issue(hw, mbp)) {
588                 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
589                 mempool_free(mbp, hw->mb_mempool);
590                 return -EINVAL;
591         }
592
593         if (cbfn != NULL)
594                 return 0;
595
596         return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
597 }
598
599 /*
600  * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
601  * @hw: The HW module.
602  * @mbp: Mailbox.
603  * @iq_idx: Ingress queue that was freed.
604  *
605  * Handle FW_IQ_CMD (free) mailbox completion.
606  */
607 static int
608 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
609 {
610         enum fw_retval retval = csio_mb_fw_retval(mbp);
611         int rv = 0;
612
613         if (retval != FW_SUCCESS)
614                 rv = -EINVAL;
615
616         mempool_free(mbp, hw->mb_mempool);
617
618         return rv;
619 }
620
621 /*
622  * csio_wr_iq_destroy - Free an ingress queue.
623  * @hw: The HW module.
624  * @priv: Private data object.
625  * @iq_idx: Ingress queue index to destroy
626  * @cbfn: Completion callback.
627  *
628  * This API frees an ingress queue by issuing the FW_IQ_CMD
629  * with the free bit set.
630  */
631 static int
632 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
633                    void (*cbfn)(struct csio_hw *, struct csio_mb *))
634 {
635         int rv = 0;
636         struct csio_mb  *mbp;
637         struct csio_iq_params iqp;
638         int flq_idx;
639
640         memset(&iqp, 0, sizeof(struct csio_iq_params));
641
642         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
643         if (!mbp)
644                 return -ENOMEM;
645
646         iqp.pfn         = hw->pfn;
647         iqp.vfn         = 0;
648         iqp.iqid        = csio_q_iqid(hw, iq_idx);
649         iqp.type        = FW_IQ_TYPE_FL_INT_CAP;
650
651         flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
652         if (flq_idx != -1)
653                 iqp.fl0id = csio_q_flid(hw, flq_idx);
654         else
655                 iqp.fl0id = 0xFFFF;
656
657         iqp.fl1id = 0xFFFF;
658
659         csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
660
661         rv = csio_mb_issue(hw, mbp);
662         if (rv != 0) {
663                 mempool_free(mbp, hw->mb_mempool);
664                 return rv;
665         }
666
667         if (cbfn != NULL)
668                 return 0;
669
670         return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
671 }
672
673 /*
674  * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
675  * @hw: The HW module.
676  * @mbp: Mailbox.
677  * @eq_idx: Egress queue that was freed.
678  *
679  * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
680  */
681 static int
682 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
683 {
684         enum fw_retval retval = csio_mb_fw_retval(mbp);
685         int rv = 0;
686
687         if (retval != FW_SUCCESS)
688                 rv = -EINVAL;
689
690         mempool_free(mbp, hw->mb_mempool);
691
692         return rv;
693 }
694
695 /*
696  * csio_wr_eq_destroy - Free an Egress queue.
697  * @hw: The HW module.
698  * @priv: Private data object.
699  * @eq_idx: Egress queue index to destroy
700  * @cbfn: Completion callback.
701  *
702  * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
703  * with the free bit set.
704  */
705 static int
706 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
707                    void (*cbfn) (struct csio_hw *, struct csio_mb *))
708 {
709         int rv = 0;
710         struct csio_mb  *mbp;
711         struct csio_eq_params eqp;
712
713         memset(&eqp, 0, sizeof(struct csio_eq_params));
714
715         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
716         if (!mbp)
717                 return -ENOMEM;
718
719         eqp.pfn         = hw->pfn;
720         eqp.vfn         = 0;
721         eqp.eqid        = csio_q_eqid(hw, eq_idx);
722
723         csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
724
725         rv = csio_mb_issue(hw, mbp);
726         if (rv != 0) {
727                 mempool_free(mbp, hw->mb_mempool);
728                 return rv;
729         }
730
731         if (cbfn != NULL)
732                 return 0;
733
734         return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
735 }
736
737 /*
738  * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
739  * @hw: HW module
740  * @qidx: Egress queue index
741  *
742  * Cleanup the Egress queue status page.
743  */
744 static void
745 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
746 {
747         struct csio_q   *q = csio_hw_to_wrm(hw)->q_arr[qidx];
748         struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
749
750         memset(stp, 0, sizeof(*stp));
751 }
752
753 /*
754  * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
755  * @hw: HW module
756  * @qidx: Ingress queue index
757  *
758  * Cleanup the footer entries in the given ingress queue,
759  * set to 1 the internal copy of genbit.
760  */
761 static void
762 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
763 {
764         struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
765         struct csio_q   *q      = wrm->q_arr[qidx];
766         void *wr;
767         struct csio_iqwr_footer *ftr;
768         uint32_t i = 0;
769
770         /* set to 1 since we are just about zero out genbit */
771         q->un.iq.genbit = 1;
772
773         for (i = 0; i < q->credits; i++) {
774                 /* Get the WR */
775                 wr = (void *)((uintptr_t)q->vstart +
776                                            (i * q->wr_sz));
777                 /* Get the footer */
778                 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
779                                           (q->wr_sz - sizeof(*ftr)));
780                 /* Zero out footer */
781                 memset(ftr, 0, sizeof(*ftr));
782         }
783 }
784
785 int
786 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
787 {
788         int i, flq_idx;
789         struct csio_q *q;
790         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
791         int rv;
792
793         for (i = 0; i < wrm->free_qidx; i++) {
794                 q = wrm->q_arr[i];
795
796                 switch (q->type) {
797                 case CSIO_EGRESS:
798                         if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
799                                 csio_wr_cleanup_eq_stpg(hw, i);
800                                 if (!cmd) {
801                                         csio_q_eqid(hw, i) = CSIO_MAX_QID;
802                                         continue;
803                                 }
804
805                                 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
806                                 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
807                                         cmd = false;
808
809                                 csio_q_eqid(hw, i) = CSIO_MAX_QID;
810                         }
811                         fallthrough;
812                 case CSIO_INGRESS:
813                         if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
814                                 csio_wr_cleanup_iq_ftr(hw, i);
815                                 if (!cmd) {
816                                         csio_q_iqid(hw, i) = CSIO_MAX_QID;
817                                         flq_idx = csio_q_iq_flq_idx(hw, i);
818                                         if (flq_idx != -1)
819                                                 csio_q_flid(hw, flq_idx) =
820                                                                 CSIO_MAX_QID;
821                                         continue;
822                                 }
823
824                                 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
825                                 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
826                                         cmd = false;
827
828                                 csio_q_iqid(hw, i) = CSIO_MAX_QID;
829                                 flq_idx = csio_q_iq_flq_idx(hw, i);
830                                 if (flq_idx != -1)
831                                         csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
832                         }
833                 default:
834                         break;
835                 }
836         }
837
838         hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
839
840         return 0;
841 }
842
843 /*
844  * csio_wr_get - Get requested size of WR entry/entries from queue.
845  * @hw: HW module.
846  * @qidx: Index of queue.
847  * @size: Cumulative size of Work request(s).
848  * @wrp: Work request pair.
849  *
850  * If requested credits are available, return the start address of the
851  * work request in the work request pair. Set pidx accordingly and
852  * return.
853  *
854  * NOTE about WR pair:
855  * ==================
856  * A WR can start towards the end of a queue, and then continue at the
857  * beginning, since the queue is considered to be circular. This will
858  * require a pair of address/size to be passed back to the caller -
859  * hence Work request pair format.
860  */
861 int
862 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
863             struct csio_wr_pair *wrp)
864 {
865         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
866         struct csio_q *q = wrm->q_arr[qidx];
867         void *cwr = (void *)((uintptr_t)(q->vstart) +
868                                                 (q->pidx * CSIO_QCREDIT_SZ));
869         struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
870         uint16_t cidx = q->cidx = ntohs(stp->cidx);
871         uint16_t pidx = q->pidx;
872         uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
873         int req_credits = req_sz / CSIO_QCREDIT_SZ;
874         int credits;
875
876         CSIO_DB_ASSERT(q->owner != NULL);
877         CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
878         CSIO_DB_ASSERT(cidx <= q->credits);
879
880         /* Calculate credits */
881         if (pidx > cidx) {
882                 credits = q->credits - (pidx - cidx) - 1;
883         } else if (cidx > pidx) {
884                 credits = cidx - pidx - 1;
885         } else {
886                 /* cidx == pidx, empty queue */
887                 credits = q->credits;
888                 CSIO_INC_STATS(q, n_qempty);
889         }
890
891         /*
892          * Check if we have enough credits.
893          * credits = 1 implies queue is full.
894          */
895         if (!credits || (req_credits > credits)) {
896                 CSIO_INC_STATS(q, n_qfull);
897                 return -EBUSY;
898         }
899
900         /*
901          * If we are here, we have enough credits to satisfy the
902          * request. Check if we are near the end of q, and if WR spills over.
903          * If it does, use the first addr/size to cover the queue until
904          * the end. Fit the remainder portion of the request at the top
905          * of queue and return it in the second addr/len. Set pidx
906          * accordingly.
907          */
908         if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
909                 wrp->addr1 = cwr;
910                 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
911                 wrp->addr2 = q->vstart;
912                 wrp->size2 = req_sz - wrp->size1;
913                 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
914                                                         CSIO_QCREDIT_SZ);
915                 CSIO_INC_STATS(q, n_qwrap);
916                 CSIO_INC_STATS(q, n_eq_wr_split);
917         } else {
918                 wrp->addr1 = cwr;
919                 wrp->size1 = req_sz;
920                 wrp->addr2 = NULL;
921                 wrp->size2 = 0;
922                 q->pidx += (uint16_t)req_credits;
923
924                 /* We are the end of queue, roll back pidx to top of queue */
925                 if (unlikely(q->pidx == q->credits)) {
926                         q->pidx = 0;
927                         CSIO_INC_STATS(q, n_qwrap);
928                 }
929         }
930
931         q->inc_idx = (uint16_t)req_credits;
932
933         CSIO_INC_STATS(q, n_tot_reqs);
934
935         return 0;
936 }
937
938 /*
939  * csio_wr_copy_to_wrp - Copies given data into WR.
940  * @data_buf - Data buffer
941  * @wrp - Work request pair.
942  * @wr_off - Work request offset.
943  * @data_len - Data length.
944  *
945  * Copies the given data in Work Request. Work request pair(wrp) specifies
946  * address information of Work request.
947  * Returns: none
948  */
949 void
950 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
951                    uint32_t wr_off, uint32_t data_len)
952 {
953         uint32_t nbytes;
954
955         /* Number of space available in buffer addr1 of WRP */
956         nbytes = ((wrp->size1 - wr_off) >= data_len) ?
957                                         data_len : (wrp->size1 - wr_off);
958
959         memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
960         data_len -= nbytes;
961
962         /* Write the remaining data from the begining of circular buffer */
963         if (data_len) {
964                 CSIO_DB_ASSERT(data_len <= wrp->size2);
965                 CSIO_DB_ASSERT(wrp->addr2 != NULL);
966                 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
967         }
968 }
969
970 /*
971  * csio_wr_issue - Notify chip of Work request.
972  * @hw: HW module.
973  * @qidx: Index of queue.
974  * @prio: 0: Low priority, 1: High priority
975  *
976  * Rings the SGE Doorbell by writing the current producer index of the passed
977  * in queue into the register.
978  *
979  */
980 int
981 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
982 {
983         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
984         struct csio_q *q = wrm->q_arr[qidx];
985
986         CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
987
988         wmb();
989         /* Ring SGE Doorbell writing q->pidx into it */
990         csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
991                           PIDX_T5_V(q->inc_idx) | DBTYPE_F,
992                           MYPF_REG(SGE_PF_KDOORBELL_A));
993         q->inc_idx = 0;
994
995         return 0;
996 }
997
998 static inline uint32_t
999 csio_wr_avail_qcredits(struct csio_q *q)
1000 {
1001         if (q->pidx > q->cidx)
1002                 return q->pidx - q->cidx;
1003         else if (q->cidx > q->pidx)
1004                 return q->credits - (q->cidx - q->pidx);
1005         else
1006                 return 0;       /* cidx == pidx, empty queue */
1007 }
1008
1009 /*
1010  * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1011  * @hw: HW module.
1012  * @flq: The freelist queue.
1013  *
1014  * Invalidate the driver's version of a freelist buffer entry,
1015  * without freeing the associated the DMA memory. The entry
1016  * to be invalidated is picked up from the current Free list
1017  * queue cidx.
1018  *
1019  */
1020 static inline void
1021 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1022 {
1023         flq->cidx++;
1024         if (flq->cidx == flq->credits) {
1025                 flq->cidx = 0;
1026                 CSIO_INC_STATS(flq, n_qwrap);
1027         }
1028 }
1029
1030 /*
1031  * csio_wr_process_fl - Process a freelist completion.
1032  * @hw: HW module.
1033  * @q: The ingress queue attached to the Freelist.
1034  * @wr: The freelist completion WR in the ingress queue.
1035  * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1036  * @iq_handler: Caller's handler for this completion.
1037  * @priv: Private pointer of caller
1038  *
1039  */
1040 static inline void
1041 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1042                    void *wr, uint32_t len_to_qid,
1043                    void (*iq_handler)(struct csio_hw *, void *,
1044                                       uint32_t, struct csio_fl_dma_buf *,
1045                                       void *),
1046                    void *priv)
1047 {
1048         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1049         struct csio_sge *sge = &wrm->sge;
1050         struct csio_fl_dma_buf flb;
1051         struct csio_dma_buf *buf, *fbuf;
1052         uint32_t bufsz, len, lastlen = 0;
1053         int n;
1054         struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1055
1056         CSIO_DB_ASSERT(flq != NULL);
1057
1058         len = len_to_qid;
1059
1060         if (len & IQWRF_NEWBUF) {
1061                 if (flq->un.fl.offset > 0) {
1062                         csio_wr_inval_flq_buf(hw, flq);
1063                         flq->un.fl.offset = 0;
1064                 }
1065                 len = IQWRF_LEN_GET(len);
1066         }
1067
1068         CSIO_DB_ASSERT(len != 0);
1069
1070         flb.totlen = len;
1071
1072         /* Consume all freelist buffers used for len bytes */
1073         for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1074                 buf = &flq->un.fl.bufs[flq->cidx];
1075                 bufsz = csio_wr_fl_bufsz(sge, buf);
1076
1077                 fbuf->paddr     = buf->paddr;
1078                 fbuf->vaddr     = buf->vaddr;
1079
1080                 flb.offset      = flq->un.fl.offset;
1081                 lastlen         = min(bufsz, len);
1082                 fbuf->len       = lastlen;
1083
1084                 len -= lastlen;
1085                 if (!len)
1086                         break;
1087                 csio_wr_inval_flq_buf(hw, flq);
1088         }
1089
1090         flb.defer_free = flq->un.fl.packen ? 0 : 1;
1091
1092         iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1093                    &flb, priv);
1094
1095         if (flq->un.fl.packen)
1096                 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1097         else
1098                 csio_wr_inval_flq_buf(hw, flq);
1099
1100 }
1101
1102 /*
1103  * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1104  * @q: Ingress quueue.
1105  * @ftr: Ingress queue WR SGE footer.
1106  *
1107  * The entry is new if our generation bit matches the corresponding
1108  * bit in the footer of the current WR.
1109  */
1110 static inline bool
1111 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1112 {
1113         return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1114 }
1115
1116 /*
1117  * csio_wr_process_iq - Process elements in Ingress queue.
1118  * @hw:  HW pointer
1119  * @qidx: Index of queue
1120  * @iq_handler: Handler for this queue
1121  * @priv: Caller's private pointer
1122  *
1123  * This routine walks through every entry of the ingress queue, calling
1124  * the provided iq_handler with the entry, until the generation bit
1125  * flips.
1126  */
1127 int
1128 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1129                    void (*iq_handler)(struct csio_hw *, void *,
1130                                       uint32_t, struct csio_fl_dma_buf *,
1131                                       void *),
1132                    void *priv)
1133 {
1134         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1135         void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1136         struct csio_iqwr_footer *ftr;
1137         uint32_t wr_type, fw_qid, qid;
1138         struct csio_q *q_completed;
1139         struct csio_q *flq = csio_iq_has_fl(q) ?
1140                                         wrm->q_arr[q->un.iq.flq_idx] : NULL;
1141         int rv = 0;
1142
1143         /* Get the footer */
1144         ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1145                                           (q->wr_sz - sizeof(*ftr)));
1146
1147         /*
1148          * When q wrapped around last time, driver should have inverted
1149          * ic.genbit as well.
1150          */
1151         while (csio_is_new_iqwr(q, ftr)) {
1152
1153                 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1154                                                 (uintptr_t)q->vwrap);
1155                 rmb();
1156                 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1157
1158                 switch (wr_type) {
1159                 case X_RSPD_TYPE_CPL:
1160                         /* Subtract footer from WR len */
1161                         iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1162                         break;
1163                 case X_RSPD_TYPE_FLBUF:
1164                         csio_wr_process_fl(hw, q, wr,
1165                                            ntohl(ftr->pldbuflen_qid),
1166                                            iq_handler, priv);
1167                         break;
1168                 case X_RSPD_TYPE_INTR:
1169                         fw_qid = ntohl(ftr->pldbuflen_qid);
1170                         qid = fw_qid - wrm->fw_iq_start;
1171                         q_completed = hw->wrm.intr_map[qid];
1172
1173                         if (unlikely(qid ==
1174                                         csio_q_physiqid(hw, hw->intr_iq_idx))) {
1175                                 /*
1176                                  * We are already in the Forward Interrupt
1177                                  * Interrupt Queue Service! Do-not service
1178                                  * again!
1179                                  *
1180                                  */
1181                         } else {
1182                                 CSIO_DB_ASSERT(q_completed);
1183                                 CSIO_DB_ASSERT(
1184                                         q_completed->un.iq.iq_intx_handler);
1185
1186                                 /* Call the queue handler. */
1187                                 q_completed->un.iq.iq_intx_handler(hw, NULL,
1188                                                 0, NULL, (void *)q_completed);
1189                         }
1190                         break;
1191                 default:
1192                         csio_warn(hw, "Unknown resp type 0x%x received\n",
1193                                  wr_type);
1194                         CSIO_INC_STATS(q, n_rsp_unknown);
1195                         break;
1196                 }
1197
1198                 /*
1199                  * Ingress *always* has fixed size WR entries. Therefore,
1200                  * there should always be complete WRs towards the end of
1201                  * queue.
1202                  */
1203                 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1204
1205                         /* Roll over to start of queue */
1206                         q->cidx = 0;
1207                         wr      = q->vstart;
1208
1209                         /* Toggle genbit */
1210                         q->un.iq.genbit ^= 0x1;
1211
1212                         CSIO_INC_STATS(q, n_qwrap);
1213                 } else {
1214                         q->cidx++;
1215                         wr      = (void *)((uintptr_t)(q->vstart) +
1216                                            (q->cidx * q->wr_sz));
1217                 }
1218
1219                 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1220                                                   (q->wr_sz - sizeof(*ftr)));
1221                 q->inc_idx++;
1222
1223         } /* while (q->un.iq.genbit == hdr->genbit) */
1224
1225         /*
1226          * We need to re-arm SGE interrupts in case we got a stray interrupt,
1227          * especially in msix mode. With INTx, this may be a common occurence.
1228          */
1229         if (unlikely(!q->inc_idx)) {
1230                 CSIO_INC_STATS(q, n_stray_comp);
1231                 rv = -EINVAL;
1232                 goto restart;
1233         }
1234
1235         /* Replenish free list buffers if pending falls below low water mark */
1236         if (flq) {
1237                 uint32_t avail  = csio_wr_avail_qcredits(flq);
1238                 if (avail <= 16) {
1239                         /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1240                          * remains unpopulated otherwise HW thinks
1241                          * FLQ is empty.
1242                          */
1243                         csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1244                         csio_wr_ring_fldb(hw, flq);
1245                 }
1246         }
1247
1248 restart:
1249         /* Now inform SGE about our incremental index value */
1250         csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)         |
1251                           INGRESSQID_V(q->un.iq.physiqid)       |
1252                           TIMERREG_V(csio_sge_timer_reg),
1253                           MYPF_REG(SGE_PF_GTS_A));
1254         q->stats.n_tot_rsps += q->inc_idx;
1255
1256         q->inc_idx = 0;
1257
1258         return rv;
1259 }
1260
1261 int
1262 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1263                    void (*iq_handler)(struct csio_hw *, void *,
1264                                       uint32_t, struct csio_fl_dma_buf *,
1265                                       void *),
1266                    void *priv)
1267 {
1268         struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1269         struct csio_q   *iq     = wrm->q_arr[qidx];
1270
1271         return csio_wr_process_iq(hw, iq, iq_handler, priv);
1272 }
1273
1274 static int
1275 csio_closest_timer(struct csio_sge *s, int time)
1276 {
1277         int i, delta, match = 0, min_delta = INT_MAX;
1278
1279         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1280                 delta = time - s->timer_val[i];
1281                 if (delta < 0)
1282                         delta = -delta;
1283                 if (delta < min_delta) {
1284                         min_delta = delta;
1285                         match = i;
1286                 }
1287         }
1288         return match;
1289 }
1290
1291 static int
1292 csio_closest_thresh(struct csio_sge *s, int cnt)
1293 {
1294         int i, delta, match = 0, min_delta = INT_MAX;
1295
1296         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1297                 delta = cnt - s->counter_val[i];
1298                 if (delta < 0)
1299                         delta = -delta;
1300                 if (delta < min_delta) {
1301                         min_delta = delta;
1302                         match = i;
1303                 }
1304         }
1305         return match;
1306 }
1307
1308 static void
1309 csio_wr_fixup_host_params(struct csio_hw *hw)
1310 {
1311         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1312         struct csio_sge *sge = &wrm->sge;
1313         uint32_t clsz = L1_CACHE_BYTES;
1314         uint32_t s_hps = PAGE_SHIFT - 10;
1315         uint32_t stat_len = clsz > 64 ? 128 : 64;
1316         u32 fl_align = clsz < 32 ? 32 : clsz;
1317         u32 pack_align;
1318         u32 ingpad, ingpack;
1319
1320         csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1321                       HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1322                       HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1323                       HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1324                       SGE_HOST_PAGE_SIZE_A);
1325
1326         /* T5 introduced the separation of the Free List Padding and
1327          * Packing Boundaries.  Thus, we can select a smaller Padding
1328          * Boundary to avoid uselessly chewing up PCIe Link and Memory
1329          * Bandwidth, and use a Packing Boundary which is large enough
1330          * to avoid false sharing between CPUs, etc.
1331          *
1332          * For the PCI Link, the smaller the Padding Boundary the
1333          * better.  For the Memory Controller, a smaller Padding
1334          * Boundary is better until we cross under the Memory Line
1335          * Size (the minimum unit of transfer to/from Memory).  If we
1336          * have a Padding Boundary which is smaller than the Memory
1337          * Line Size, that'll involve a Read-Modify-Write cycle on the
1338          * Memory Controller which is never good.
1339          */
1340
1341         /* We want the Packing Boundary to be based on the Cache Line
1342          * Size in order to help avoid False Sharing performance
1343          * issues between CPUs, etc.  We also want the Packing
1344          * Boundary to incorporate the PCI-E Maximum Payload Size.  We
1345          * get best performance when the Packing Boundary is a
1346          * multiple of the Maximum Payload Size.
1347          */
1348         pack_align = fl_align;
1349         if (pci_is_pcie(hw->pdev)) {
1350                 u32 mps, mps_log;
1351                 u16 devctl;
1352
1353                 /* The PCIe Device Control Maximum Payload Size field
1354                  * [bits 7:5] encodes sizes as powers of 2 starting at
1355                  * 128 bytes.
1356                  */
1357                 pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
1358                 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1359                 mps = 1 << mps_log;
1360                 if (mps > pack_align)
1361                         pack_align = mps;
1362         }
1363
1364         /* T5/T6 have a special interpretation of the "0"
1365          * value for the Packing Boundary.  This corresponds to 16
1366          * bytes instead of the expected 32 bytes.
1367          */
1368         if (pack_align <= 16) {
1369                 ingpack = INGPACKBOUNDARY_16B_X;
1370                 fl_align = 16;
1371         } else if (pack_align == 32) {
1372                 ingpack = INGPACKBOUNDARY_64B_X;
1373                 fl_align = 64;
1374         } else {
1375                 u32 pack_align_log = fls(pack_align) - 1;
1376
1377                 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1378                 fl_align = pack_align;
1379         }
1380
1381         /* Use the smallest Ingress Padding which isn't smaller than
1382          * the Memory Controller Read/Write Size.  We'll take that as
1383          * being 8 bytes since we don't know of any system with a
1384          * wider Memory Controller Bus Width.
1385          */
1386         if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1387                 ingpad = INGPADBOUNDARY_32B_X;
1388         else
1389                 ingpad = T6_INGPADBOUNDARY_8B_X;
1390
1391         csio_set_reg_field(hw, SGE_CONTROL_A,
1392                            INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1393                            EGRSTATUSPAGESIZE_F,
1394                            INGPADBOUNDARY_V(ingpad) |
1395                            EGRSTATUSPAGESIZE_V(stat_len != 64));
1396         csio_set_reg_field(hw, SGE_CONTROL2_A,
1397                            INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1398                            INGPACKBOUNDARY_V(ingpack));
1399
1400         /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1401         csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1402
1403         /*
1404          * If using hard params, the following will get set correctly
1405          * in csio_wr_set_sge().
1406          */
1407         if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1408                 csio_wr_reg32(hw,
1409                         (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1410                         fl_align - 1) & ~(fl_align - 1),
1411                         SGE_FL_BUFFER_SIZE2_A);
1412                 csio_wr_reg32(hw,
1413                         (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1414                         fl_align - 1) & ~(fl_align - 1),
1415                         SGE_FL_BUFFER_SIZE3_A);
1416         }
1417
1418         sge->csio_fl_align = fl_align;
1419
1420         csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1421
1422         /* default value of rx_dma_offset of the NIC driver */
1423         csio_set_reg_field(hw, SGE_CONTROL_A,
1424                            PKTSHIFT_V(PKTSHIFT_M),
1425                            PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1426
1427         csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1428                                     CSUM_HAS_PSEUDO_HDR_F, 0);
1429 }
1430
1431 static void
1432 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1433 {
1434         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1435         struct csio_sge *sge = &wrm->sge;
1436
1437         csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1438         if (csio_intr_coalesce_cnt) {
1439                 csio_sge_thresh_reg = 0;
1440                 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1441                 return;
1442         }
1443
1444         csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1445 }
1446
1447 /*
1448  * csio_wr_get_sge - Get SGE register values.
1449  * @hw: HW module.
1450  *
1451  * Used by non-master functions and by master-functions relying on config file.
1452  */
1453 static void
1454 csio_wr_get_sge(struct csio_hw *hw)
1455 {
1456         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1457         struct csio_sge *sge = &wrm->sge;
1458         uint32_t ingpad;
1459         int i;
1460         u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1461         u32 ingress_rx_threshold;
1462
1463         sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1464
1465         ingpad = INGPADBOUNDARY_G(sge->sge_control);
1466
1467         switch (ingpad) {
1468         case X_INGPCIEBOUNDARY_32B:
1469                 sge->csio_fl_align = 32; break;
1470         case X_INGPCIEBOUNDARY_64B:
1471                 sge->csio_fl_align = 64; break;
1472         case X_INGPCIEBOUNDARY_128B:
1473                 sge->csio_fl_align = 128; break;
1474         case X_INGPCIEBOUNDARY_256B:
1475                 sge->csio_fl_align = 256; break;
1476         case X_INGPCIEBOUNDARY_512B:
1477                 sge->csio_fl_align = 512; break;
1478         case X_INGPCIEBOUNDARY_1024B:
1479                 sge->csio_fl_align = 1024; break;
1480         case X_INGPCIEBOUNDARY_2048B:
1481                 sge->csio_fl_align = 2048; break;
1482         case X_INGPCIEBOUNDARY_4096B:
1483                 sge->csio_fl_align = 4096; break;
1484         }
1485
1486         for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1487                 csio_get_flbuf_size(hw, sge, i);
1488
1489         timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1490         timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1491         timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1492
1493         sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1494                                         TIMERVALUE0_G(timer_value_0_and_1));
1495         sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1496                                         TIMERVALUE1_G(timer_value_0_and_1));
1497         sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1498                                         TIMERVALUE2_G(timer_value_2_and_3));
1499         sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1500                                         TIMERVALUE3_G(timer_value_2_and_3));
1501         sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1502                                         TIMERVALUE4_G(timer_value_4_and_5));
1503         sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1504                                         TIMERVALUE5_G(timer_value_4_and_5));
1505
1506         ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1507         sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1508         sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1509         sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1510         sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1511
1512         csio_init_intr_coalesce_parms(hw);
1513 }
1514
1515 /*
1516  * csio_wr_set_sge - Initialize SGE registers
1517  * @hw: HW module.
1518  *
1519  * Used by Master function to initialize SGE registers in the absence
1520  * of a config file.
1521  */
1522 static void
1523 csio_wr_set_sge(struct csio_hw *hw)
1524 {
1525         struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1526         struct csio_sge *sge = &wrm->sge;
1527         int i;
1528
1529         /*
1530          * Set up our basic SGE mode to deliver CPL messages to our Ingress
1531          * Queue and Packet Date to the Free List.
1532          */
1533         csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1534
1535         sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1536
1537         /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1538
1539         /*
1540          * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1541          * and generate an interrupt when this occurs so we can recover.
1542          */
1543         csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1544                            LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1545                            LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1546         csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1547                            HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1548                            HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1549
1550         csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1551                            ENABLE_DROP_F);
1552
1553         /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1554
1555         CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1556         csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1557                       & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1558         csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1559                       & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1560         CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1561         CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1562         CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1563         CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1564         CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1565
1566         for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1567                 csio_get_flbuf_size(hw, sge, i);
1568
1569         /* Initialize interrupt coalescing attributes */
1570         sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1571         sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1572         sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1573         sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1574         sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1575         sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1576
1577         sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1578         sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1579         sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1580         sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1581
1582         csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1583                       THRESHOLD_1_V(sge->counter_val[1]) |
1584                       THRESHOLD_2_V(sge->counter_val[2]) |
1585                       THRESHOLD_3_V(sge->counter_val[3]),
1586                       SGE_INGRESS_RX_THRESHOLD_A);
1587
1588         csio_wr_reg32(hw,
1589                    TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1590                    TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1591                    SGE_TIMER_VALUE_0_AND_1_A);
1592
1593         csio_wr_reg32(hw,
1594                    TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1595                    TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1596                    SGE_TIMER_VALUE_2_AND_3_A);
1597
1598         csio_wr_reg32(hw,
1599                    TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1600                    TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1601                    SGE_TIMER_VALUE_4_AND_5_A);
1602
1603         csio_init_intr_coalesce_parms(hw);
1604 }
1605
1606 void
1607 csio_wr_sge_init(struct csio_hw *hw)
1608 {
1609         /*
1610          * If we are master and chip is not initialized:
1611          *    - If we plan to use the config file, we need to fixup some
1612          *      host specific registers, and read the rest of the SGE
1613          *      configuration.
1614          *    - If we dont plan to use the config file, we need to initialize
1615          *      SGE entirely, including fixing the host specific registers.
1616          * If we are master and chip is initialized, just read and work off of
1617          *      the already initialized SGE values.
1618          * If we arent the master, we are only allowed to read and work off of
1619          *      the already initialized SGE values.
1620          *
1621          * Therefore, before calling this function, we assume that the master-
1622          * ship of the card, state and whether to use config file or not, have
1623          * already been decided.
1624          */
1625         if (csio_is_hw_master(hw)) {
1626                 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1627                         csio_wr_fixup_host_params(hw);
1628
1629                 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1630                         csio_wr_get_sge(hw);
1631                 else
1632                         csio_wr_set_sge(hw);
1633         } else
1634                 csio_wr_get_sge(hw);
1635 }
1636
1637 /*
1638  * csio_wrm_init - Initialize Work request module.
1639  * @wrm: WR module
1640  * @hw: HW pointer
1641  *
1642  * Allocates memory for an array of queue pointers starting at q_arr.
1643  */
1644 int
1645 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1646 {
1647         int i;
1648
1649         if (!wrm->num_q) {
1650                 csio_err(hw, "Num queues is not set\n");
1651                 return -EINVAL;
1652         }
1653
1654         wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1655         if (!wrm->q_arr)
1656                 goto err;
1657
1658         for (i = 0; i < wrm->num_q; i++) {
1659                 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1660                 if (!wrm->q_arr[i]) {
1661                         while (--i >= 0)
1662                                 kfree(wrm->q_arr[i]);
1663                         goto err_free_arr;
1664                 }
1665         }
1666         wrm->free_qidx  = 0;
1667
1668         return 0;
1669
1670 err_free_arr:
1671         kfree(wrm->q_arr);
1672 err:
1673         return -ENOMEM;
1674 }
1675
1676 /*
1677  * csio_wrm_exit - Initialize Work request module.
1678  * @wrm: WR module
1679  * @hw: HW module
1680  *
1681  * Uninitialize WR module. Free q_arr and pointers in it.
1682  * We have the additional job of freeing the DMA memory associated
1683  * with the queues.
1684  */
1685 void
1686 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1687 {
1688         int i;
1689         uint32_t j;
1690         struct csio_q *q;
1691         struct csio_dma_buf *buf;
1692
1693         for (i = 0; i < wrm->num_q; i++) {
1694                 q = wrm->q_arr[i];
1695
1696                 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1697                         if (q->type == CSIO_FREELIST) {
1698                                 if (!q->un.fl.bufs)
1699                                         continue;
1700                                 for (j = 0; j < q->credits; j++) {
1701                                         buf = &q->un.fl.bufs[j];
1702                                         if (!buf->vaddr)
1703                                                 continue;
1704                                         dma_free_coherent(&hw->pdev->dev,
1705                                                         buf->len, buf->vaddr,
1706                                                         buf->paddr);
1707                                 }
1708                                 kfree(q->un.fl.bufs);
1709                         }
1710                         dma_free_coherent(&hw->pdev->dev, q->size,
1711                                         q->vstart, q->pstart);
1712                 }
1713                 kfree(q);
1714         }
1715
1716         hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1717
1718         kfree(wrm->q_arr);
1719 }