ASoC: mediatek: update MT2701 AFE documentation to adapt mfd device
[linux-2.6-block.git] / drivers / s390 / cio / css.c
1 /*
2  * driver for channel subsystem
3  *
4  * Copyright IBM Corp. 2002, 2010
5  *
6  * Author(s): Arnd Bergmann (arndb@de.ibm.com)
7  *            Cornelia Huck (cornelia.huck@de.ibm.com)
8  *
9  * License: GPL
10  */
11
12 #define KMSG_COMPONENT "cio"
13 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
14
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/device.h>
18 #include <linux/slab.h>
19 #include <linux/errno.h>
20 #include <linux/list.h>
21 #include <linux/reboot.h>
22 #include <linux/suspend.h>
23 #include <linux/proc_fs.h>
24 #include <asm/isc.h>
25 #include <asm/crw.h>
26
27 #include "css.h"
28 #include "cio.h"
29 #include "cio_debug.h"
30 #include "ioasm.h"
31 #include "chsc.h"
32 #include "device.h"
33 #include "idset.h"
34 #include "chp.h"
35
36 int css_init_done = 0;
37 int max_ssid;
38
39 #define MAX_CSS_IDX 0
40 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
41 static struct bus_type css_bus_type;
42
43 int
44 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
45 {
46         struct subchannel_id schid;
47         int ret;
48
49         init_subchannel_id(&schid);
50         do {
51                 do {
52                         ret = fn(schid, data);
53                         if (ret)
54                                 break;
55                 } while (schid.sch_no++ < __MAX_SUBCHANNEL);
56                 schid.sch_no = 0;
57         } while (schid.ssid++ < max_ssid);
58         return ret;
59 }
60
61 struct cb_data {
62         void *data;
63         struct idset *set;
64         int (*fn_known_sch)(struct subchannel *, void *);
65         int (*fn_unknown_sch)(struct subchannel_id, void *);
66 };
67
68 static int call_fn_known_sch(struct device *dev, void *data)
69 {
70         struct subchannel *sch = to_subchannel(dev);
71         struct cb_data *cb = data;
72         int rc = 0;
73
74         if (cb->set)
75                 idset_sch_del(cb->set, sch->schid);
76         if (cb->fn_known_sch)
77                 rc = cb->fn_known_sch(sch, cb->data);
78         return rc;
79 }
80
81 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
82 {
83         struct cb_data *cb = data;
84         int rc = 0;
85
86         if (idset_sch_contains(cb->set, schid))
87                 rc = cb->fn_unknown_sch(schid, cb->data);
88         return rc;
89 }
90
91 static int call_fn_all_sch(struct subchannel_id schid, void *data)
92 {
93         struct cb_data *cb = data;
94         struct subchannel *sch;
95         int rc = 0;
96
97         sch = get_subchannel_by_schid(schid);
98         if (sch) {
99                 if (cb->fn_known_sch)
100                         rc = cb->fn_known_sch(sch, cb->data);
101                 put_device(&sch->dev);
102         } else {
103                 if (cb->fn_unknown_sch)
104                         rc = cb->fn_unknown_sch(schid, cb->data);
105         }
106
107         return rc;
108 }
109
110 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
111                                int (*fn_unknown)(struct subchannel_id,
112                                void *), void *data)
113 {
114         struct cb_data cb;
115         int rc;
116
117         cb.data = data;
118         cb.fn_known_sch = fn_known;
119         cb.fn_unknown_sch = fn_unknown;
120
121         if (fn_known && !fn_unknown) {
122                 /* Skip idset allocation in case of known-only loop. */
123                 cb.set = NULL;
124                 return bus_for_each_dev(&css_bus_type, NULL, &cb,
125                                         call_fn_known_sch);
126         }
127
128         cb.set = idset_sch_new();
129         if (!cb.set)
130                 /* fall back to brute force scanning in case of oom */
131                 return for_each_subchannel(call_fn_all_sch, &cb);
132
133         idset_fill(cb.set);
134
135         /* Process registered subchannels. */
136         rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
137         if (rc)
138                 goto out;
139         /* Process unregistered subchannels. */
140         if (fn_unknown)
141                 rc = for_each_subchannel(call_fn_unknown_sch, &cb);
142 out:
143         idset_free(cb.set);
144
145         return rc;
146 }
147
148 static void css_sch_todo(struct work_struct *work);
149
150 static int css_sch_create_locks(struct subchannel *sch)
151 {
152         sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
153         if (!sch->lock)
154                 return -ENOMEM;
155
156         spin_lock_init(sch->lock);
157         mutex_init(&sch->reg_mutex);
158
159         return 0;
160 }
161
162 static void css_subchannel_release(struct device *dev)
163 {
164         struct subchannel *sch = to_subchannel(dev);
165
166         sch->config.intparm = 0;
167         cio_commit_config(sch);
168         kfree(sch->lock);
169         kfree(sch);
170 }
171
172 struct subchannel *css_alloc_subchannel(struct subchannel_id schid)
173 {
174         struct subchannel *sch;
175         int ret;
176
177         sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
178         if (!sch)
179                 return ERR_PTR(-ENOMEM);
180
181         ret = cio_validate_subchannel(sch, schid);
182         if (ret < 0)
183                 goto err;
184
185         ret = css_sch_create_locks(sch);
186         if (ret)
187                 goto err;
188
189         INIT_WORK(&sch->todo_work, css_sch_todo);
190         sch->dev.release = &css_subchannel_release;
191         device_initialize(&sch->dev);
192         return sch;
193
194 err:
195         kfree(sch);
196         return ERR_PTR(ret);
197 }
198
199 static int css_sch_device_register(struct subchannel *sch)
200 {
201         int ret;
202
203         mutex_lock(&sch->reg_mutex);
204         dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
205                      sch->schid.sch_no);
206         ret = device_add(&sch->dev);
207         mutex_unlock(&sch->reg_mutex);
208         return ret;
209 }
210
211 /**
212  * css_sch_device_unregister - unregister a subchannel
213  * @sch: subchannel to be unregistered
214  */
215 void css_sch_device_unregister(struct subchannel *sch)
216 {
217         mutex_lock(&sch->reg_mutex);
218         if (device_is_registered(&sch->dev))
219                 device_unregister(&sch->dev);
220         mutex_unlock(&sch->reg_mutex);
221 }
222 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
223
224 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
225 {
226         int i;
227         int mask;
228
229         memset(ssd, 0, sizeof(struct chsc_ssd_info));
230         ssd->path_mask = pmcw->pim;
231         for (i = 0; i < 8; i++) {
232                 mask = 0x80 >> i;
233                 if (pmcw->pim & mask) {
234                         chp_id_init(&ssd->chpid[i]);
235                         ssd->chpid[i].id = pmcw->chpid[i];
236                 }
237         }
238 }
239
240 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
241 {
242         int i;
243         int mask;
244
245         for (i = 0; i < 8; i++) {
246                 mask = 0x80 >> i;
247                 if (ssd->path_mask & mask)
248                         if (!chp_is_registered(ssd->chpid[i]))
249                                 chp_new(ssd->chpid[i]);
250         }
251 }
252
253 void css_update_ssd_info(struct subchannel *sch)
254 {
255         int ret;
256
257         ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
258         if (ret)
259                 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
260
261         ssd_register_chpids(&sch->ssd_info);
262 }
263
264 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
265                          char *buf)
266 {
267         struct subchannel *sch = to_subchannel(dev);
268
269         return sprintf(buf, "%01x\n", sch->st);
270 }
271
272 static DEVICE_ATTR(type, 0444, type_show, NULL);
273
274 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
275                              char *buf)
276 {
277         struct subchannel *sch = to_subchannel(dev);
278
279         return sprintf(buf, "css:t%01X\n", sch->st);
280 }
281
282 static DEVICE_ATTR(modalias, 0444, modalias_show, NULL);
283
284 static struct attribute *subch_attrs[] = {
285         &dev_attr_type.attr,
286         &dev_attr_modalias.attr,
287         NULL,
288 };
289
290 static struct attribute_group subch_attr_group = {
291         .attrs = subch_attrs,
292 };
293
294 static const struct attribute_group *default_subch_attr_groups[] = {
295         &subch_attr_group,
296         NULL,
297 };
298
299 static ssize_t chpids_show(struct device *dev,
300                            struct device_attribute *attr,
301                            char *buf)
302 {
303         struct subchannel *sch = to_subchannel(dev);
304         struct chsc_ssd_info *ssd = &sch->ssd_info;
305         ssize_t ret = 0;
306         int mask;
307         int chp;
308
309         for (chp = 0; chp < 8; chp++) {
310                 mask = 0x80 >> chp;
311                 if (ssd->path_mask & mask)
312                         ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
313                 else
314                         ret += sprintf(buf + ret, "00 ");
315         }
316         ret += sprintf(buf + ret, "\n");
317         return ret;
318 }
319 static DEVICE_ATTR(chpids, 0444, chpids_show, NULL);
320
321 static ssize_t pimpampom_show(struct device *dev,
322                               struct device_attribute *attr,
323                               char *buf)
324 {
325         struct subchannel *sch = to_subchannel(dev);
326         struct pmcw *pmcw = &sch->schib.pmcw;
327
328         return sprintf(buf, "%02x %02x %02x\n",
329                        pmcw->pim, pmcw->pam, pmcw->pom);
330 }
331 static DEVICE_ATTR(pimpampom, 0444, pimpampom_show, NULL);
332
333 static struct attribute *io_subchannel_type_attrs[] = {
334         &dev_attr_chpids.attr,
335         &dev_attr_pimpampom.attr,
336         NULL,
337 };
338 ATTRIBUTE_GROUPS(io_subchannel_type);
339
340 static const struct device_type io_subchannel_type = {
341         .groups = io_subchannel_type_groups,
342 };
343
344 int css_register_subchannel(struct subchannel *sch)
345 {
346         int ret;
347
348         /* Initialize the subchannel structure */
349         sch->dev.parent = &channel_subsystems[0]->device;
350         sch->dev.bus = &css_bus_type;
351         sch->dev.groups = default_subch_attr_groups;
352
353         if (sch->st == SUBCHANNEL_TYPE_IO)
354                 sch->dev.type = &io_subchannel_type;
355
356         /*
357          * We don't want to generate uevents for I/O subchannels that don't
358          * have a working ccw device behind them since they will be
359          * unregistered before they can be used anyway, so we delay the add
360          * uevent until after device recognition was successful.
361          * Note that we suppress the uevent for all subchannel types;
362          * the subchannel driver can decide itself when it wants to inform
363          * userspace of its existence.
364          */
365         dev_set_uevent_suppress(&sch->dev, 1);
366         css_update_ssd_info(sch);
367         /* make it known to the system */
368         ret = css_sch_device_register(sch);
369         if (ret) {
370                 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
371                               sch->schid.ssid, sch->schid.sch_no, ret);
372                 return ret;
373         }
374         if (!sch->driver) {
375                 /*
376                  * No driver matched. Generate the uevent now so that
377                  * a fitting driver module may be loaded based on the
378                  * modalias.
379                  */
380                 dev_set_uevent_suppress(&sch->dev, 0);
381                 kobject_uevent(&sch->dev.kobj, KOBJ_ADD);
382         }
383         return ret;
384 }
385
386 static int css_probe_device(struct subchannel_id schid)
387 {
388         struct subchannel *sch;
389         int ret;
390
391         sch = css_alloc_subchannel(schid);
392         if (IS_ERR(sch))
393                 return PTR_ERR(sch);
394
395         ret = css_register_subchannel(sch);
396         if (ret)
397                 put_device(&sch->dev);
398
399         return ret;
400 }
401
402 static int
403 check_subchannel(struct device * dev, void * data)
404 {
405         struct subchannel *sch;
406         struct subchannel_id *schid = data;
407
408         sch = to_subchannel(dev);
409         return schid_equal(&sch->schid, schid);
410 }
411
412 struct subchannel *
413 get_subchannel_by_schid(struct subchannel_id schid)
414 {
415         struct device *dev;
416
417         dev = bus_find_device(&css_bus_type, NULL,
418                               &schid, check_subchannel);
419
420         return dev ? to_subchannel(dev) : NULL;
421 }
422
423 /**
424  * css_sch_is_valid() - check if a subchannel is valid
425  * @schib: subchannel information block for the subchannel
426  */
427 int css_sch_is_valid(struct schib *schib)
428 {
429         if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
430                 return 0;
431         if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
432                 return 0;
433         return 1;
434 }
435 EXPORT_SYMBOL_GPL(css_sch_is_valid);
436
437 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
438 {
439         struct schib schib;
440
441         if (!slow) {
442                 /* Will be done on the slow path. */
443                 return -EAGAIN;
444         }
445         if (stsch(schid, &schib)) {
446                 /* Subchannel is not provided. */
447                 return -ENXIO;
448         }
449         if (!css_sch_is_valid(&schib)) {
450                 /* Unusable - ignore. */
451                 return 0;
452         }
453         CIO_MSG_EVENT(4, "event: sch 0.%x.%04x, new\n", schid.ssid,
454                       schid.sch_no);
455
456         return css_probe_device(schid);
457 }
458
459 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
460 {
461         int ret = 0;
462
463         if (sch->driver) {
464                 if (sch->driver->sch_event)
465                         ret = sch->driver->sch_event(sch, slow);
466                 else
467                         dev_dbg(&sch->dev,
468                                 "Got subchannel machine check but "
469                                 "no sch_event handler provided.\n");
470         }
471         if (ret != 0 && ret != -EAGAIN) {
472                 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
473                               sch->schid.ssid, sch->schid.sch_no, ret);
474         }
475         return ret;
476 }
477
478 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
479 {
480         struct subchannel *sch;
481         int ret;
482
483         sch = get_subchannel_by_schid(schid);
484         if (sch) {
485                 ret = css_evaluate_known_subchannel(sch, slow);
486                 put_device(&sch->dev);
487         } else
488                 ret = css_evaluate_new_subchannel(schid, slow);
489         if (ret == -EAGAIN)
490                 css_schedule_eval(schid);
491 }
492
493 /**
494  * css_sched_sch_todo - schedule a subchannel operation
495  * @sch: subchannel
496  * @todo: todo
497  *
498  * Schedule the operation identified by @todo to be performed on the slow path
499  * workqueue. Do nothing if another operation with higher priority is already
500  * scheduled. Needs to be called with subchannel lock held.
501  */
502 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
503 {
504         CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
505                       sch->schid.ssid, sch->schid.sch_no, todo);
506         if (sch->todo >= todo)
507                 return;
508         /* Get workqueue ref. */
509         if (!get_device(&sch->dev))
510                 return;
511         sch->todo = todo;
512         if (!queue_work(cio_work_q, &sch->todo_work)) {
513                 /* Already queued, release workqueue ref. */
514                 put_device(&sch->dev);
515         }
516 }
517 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
518
519 static void css_sch_todo(struct work_struct *work)
520 {
521         struct subchannel *sch;
522         enum sch_todo todo;
523         int ret;
524
525         sch = container_of(work, struct subchannel, todo_work);
526         /* Find out todo. */
527         spin_lock_irq(sch->lock);
528         todo = sch->todo;
529         CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
530                       sch->schid.sch_no, todo);
531         sch->todo = SCH_TODO_NOTHING;
532         spin_unlock_irq(sch->lock);
533         /* Perform todo. */
534         switch (todo) {
535         case SCH_TODO_NOTHING:
536                 break;
537         case SCH_TODO_EVAL:
538                 ret = css_evaluate_known_subchannel(sch, 1);
539                 if (ret == -EAGAIN) {
540                         spin_lock_irq(sch->lock);
541                         css_sched_sch_todo(sch, todo);
542                         spin_unlock_irq(sch->lock);
543                 }
544                 break;
545         case SCH_TODO_UNREG:
546                 css_sch_device_unregister(sch);
547                 break;
548         }
549         /* Release workqueue ref. */
550         put_device(&sch->dev);
551 }
552
553 static struct idset *slow_subchannel_set;
554 static spinlock_t slow_subchannel_lock;
555 static wait_queue_head_t css_eval_wq;
556 static atomic_t css_eval_scheduled;
557
558 static int __init slow_subchannel_init(void)
559 {
560         spin_lock_init(&slow_subchannel_lock);
561         atomic_set(&css_eval_scheduled, 0);
562         init_waitqueue_head(&css_eval_wq);
563         slow_subchannel_set = idset_sch_new();
564         if (!slow_subchannel_set) {
565                 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
566                 return -ENOMEM;
567         }
568         return 0;
569 }
570
571 static int slow_eval_known_fn(struct subchannel *sch, void *data)
572 {
573         int eval;
574         int rc;
575
576         spin_lock_irq(&slow_subchannel_lock);
577         eval = idset_sch_contains(slow_subchannel_set, sch->schid);
578         idset_sch_del(slow_subchannel_set, sch->schid);
579         spin_unlock_irq(&slow_subchannel_lock);
580         if (eval) {
581                 rc = css_evaluate_known_subchannel(sch, 1);
582                 if (rc == -EAGAIN)
583                         css_schedule_eval(sch->schid);
584         }
585         return 0;
586 }
587
588 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
589 {
590         int eval;
591         int rc = 0;
592
593         spin_lock_irq(&slow_subchannel_lock);
594         eval = idset_sch_contains(slow_subchannel_set, schid);
595         idset_sch_del(slow_subchannel_set, schid);
596         spin_unlock_irq(&slow_subchannel_lock);
597         if (eval) {
598                 rc = css_evaluate_new_subchannel(schid, 1);
599                 switch (rc) {
600                 case -EAGAIN:
601                         css_schedule_eval(schid);
602                         rc = 0;
603                         break;
604                 case -ENXIO:
605                 case -ENOMEM:
606                 case -EIO:
607                         /* These should abort looping */
608                         spin_lock_irq(&slow_subchannel_lock);
609                         idset_sch_del_subseq(slow_subchannel_set, schid);
610                         spin_unlock_irq(&slow_subchannel_lock);
611                         break;
612                 default:
613                         rc = 0;
614                 }
615                 /* Allow scheduling here since the containing loop might
616                  * take a while.  */
617                 cond_resched();
618         }
619         return rc;
620 }
621
622 static void css_slow_path_func(struct work_struct *unused)
623 {
624         unsigned long flags;
625
626         CIO_TRACE_EVENT(4, "slowpath");
627         for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
628                                    NULL);
629         spin_lock_irqsave(&slow_subchannel_lock, flags);
630         if (idset_is_empty(slow_subchannel_set)) {
631                 atomic_set(&css_eval_scheduled, 0);
632                 wake_up(&css_eval_wq);
633         }
634         spin_unlock_irqrestore(&slow_subchannel_lock, flags);
635 }
636
637 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
638 struct workqueue_struct *cio_work_q;
639
640 void css_schedule_eval(struct subchannel_id schid)
641 {
642         unsigned long flags;
643
644         spin_lock_irqsave(&slow_subchannel_lock, flags);
645         idset_sch_add(slow_subchannel_set, schid);
646         atomic_set(&css_eval_scheduled, 1);
647         queue_delayed_work(cio_work_q, &slow_path_work, 0);
648         spin_unlock_irqrestore(&slow_subchannel_lock, flags);
649 }
650
651 void css_schedule_eval_all(void)
652 {
653         unsigned long flags;
654
655         spin_lock_irqsave(&slow_subchannel_lock, flags);
656         idset_fill(slow_subchannel_set);
657         atomic_set(&css_eval_scheduled, 1);
658         queue_delayed_work(cio_work_q, &slow_path_work, 0);
659         spin_unlock_irqrestore(&slow_subchannel_lock, flags);
660 }
661
662 static int __unset_registered(struct device *dev, void *data)
663 {
664         struct idset *set = data;
665         struct subchannel *sch = to_subchannel(dev);
666
667         idset_sch_del(set, sch->schid);
668         return 0;
669 }
670
671 void css_schedule_eval_all_unreg(unsigned long delay)
672 {
673         unsigned long flags;
674         struct idset *unreg_set;
675
676         /* Find unregistered subchannels. */
677         unreg_set = idset_sch_new();
678         if (!unreg_set) {
679                 /* Fallback. */
680                 css_schedule_eval_all();
681                 return;
682         }
683         idset_fill(unreg_set);
684         bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered);
685         /* Apply to slow_subchannel_set. */
686         spin_lock_irqsave(&slow_subchannel_lock, flags);
687         idset_add_set(slow_subchannel_set, unreg_set);
688         atomic_set(&css_eval_scheduled, 1);
689         queue_delayed_work(cio_work_q, &slow_path_work, delay);
690         spin_unlock_irqrestore(&slow_subchannel_lock, flags);
691         idset_free(unreg_set);
692 }
693
694 void css_wait_for_slow_path(void)
695 {
696         flush_workqueue(cio_work_q);
697 }
698
699 /* Schedule reprobing of all unregistered subchannels. */
700 void css_schedule_reprobe(void)
701 {
702         /* Schedule with a delay to allow merging of subsequent calls. */
703         css_schedule_eval_all_unreg(1 * HZ);
704 }
705 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
706
707 /*
708  * Called from the machine check handler for subchannel report words.
709  */
710 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
711 {
712         struct subchannel_id mchk_schid;
713         struct subchannel *sch;
714
715         if (overflow) {
716                 css_schedule_eval_all();
717                 return;
718         }
719         CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
720                       "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
721                       crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
722                       crw0->erc, crw0->rsid);
723         if (crw1)
724                 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
725                               "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
726                               crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
727                               crw1->anc, crw1->erc, crw1->rsid);
728         init_subchannel_id(&mchk_schid);
729         mchk_schid.sch_no = crw0->rsid;
730         if (crw1)
731                 mchk_schid.ssid = (crw1->rsid >> 4) & 3;
732
733         if (crw0->erc == CRW_ERC_PMOD) {
734                 sch = get_subchannel_by_schid(mchk_schid);
735                 if (sch) {
736                         css_update_ssd_info(sch);
737                         put_device(&sch->dev);
738                 }
739         }
740         /*
741          * Since we are always presented with IPI in the CRW, we have to
742          * use stsch() to find out if the subchannel in question has come
743          * or gone.
744          */
745         css_evaluate_subchannel(mchk_schid, 0);
746 }
747
748 static void __init
749 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
750 {
751         struct cpuid cpu_id;
752
753         if (css_general_characteristics.mcss) {
754                 css->global_pgid.pgid_high.ext_cssid.version = 0x80;
755                 css->global_pgid.pgid_high.ext_cssid.cssid =
756                         (css->cssid < 0) ? 0 : css->cssid;
757         } else {
758                 css->global_pgid.pgid_high.cpu_addr = stap();
759         }
760         get_cpu_id(&cpu_id);
761         css->global_pgid.cpu_id = cpu_id.ident;
762         css->global_pgid.cpu_model = cpu_id.machine;
763         css->global_pgid.tod_high = tod_high;
764 }
765
766 static void channel_subsystem_release(struct device *dev)
767 {
768         struct channel_subsystem *css = to_css(dev);
769
770         mutex_destroy(&css->mutex);
771         kfree(css);
772 }
773
774 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
775                                char *buf)
776 {
777         struct channel_subsystem *css = to_css(dev);
778
779         if (css->cssid < 0)
780                 return -EINVAL;
781
782         return sprintf(buf, "%x\n", css->cssid);
783 }
784 static DEVICE_ATTR_RO(real_cssid);
785
786 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
787                               char *buf)
788 {
789         struct channel_subsystem *css = to_css(dev);
790         int ret;
791
792         mutex_lock(&css->mutex);
793         ret = sprintf(buf, "%x\n", css->cm_enabled);
794         mutex_unlock(&css->mutex);
795         return ret;
796 }
797
798 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
799                                const char *buf, size_t count)
800 {
801         struct channel_subsystem *css = to_css(dev);
802         unsigned long val;
803         int ret;
804
805         ret = kstrtoul(buf, 16, &val);
806         if (ret)
807                 return ret;
808         mutex_lock(&css->mutex);
809         switch (val) {
810         case 0:
811                 ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
812                 break;
813         case 1:
814                 ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
815                 break;
816         default:
817                 ret = -EINVAL;
818         }
819         mutex_unlock(&css->mutex);
820         return ret < 0 ? ret : count;
821 }
822 static DEVICE_ATTR_RW(cm_enable);
823
824 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
825                               int index)
826 {
827         return css_chsc_characteristics.secm ? attr->mode : 0;
828 }
829
830 static struct attribute *cssdev_attrs[] = {
831         &dev_attr_real_cssid.attr,
832         NULL,
833 };
834
835 static struct attribute_group cssdev_attr_group = {
836         .attrs = cssdev_attrs,
837 };
838
839 static struct attribute *cssdev_cm_attrs[] = {
840         &dev_attr_cm_enable.attr,
841         NULL,
842 };
843
844 static struct attribute_group cssdev_cm_attr_group = {
845         .attrs = cssdev_cm_attrs,
846         .is_visible = cm_enable_mode,
847 };
848
849 static const struct attribute_group *cssdev_attr_groups[] = {
850         &cssdev_attr_group,
851         &cssdev_cm_attr_group,
852         NULL,
853 };
854
855 static int __init setup_css(int nr)
856 {
857         struct channel_subsystem *css;
858         int ret;
859
860         css = kzalloc(sizeof(*css), GFP_KERNEL);
861         if (!css)
862                 return -ENOMEM;
863
864         channel_subsystems[nr] = css;
865         dev_set_name(&css->device, "css%x", nr);
866         css->device.groups = cssdev_attr_groups;
867         css->device.release = channel_subsystem_release;
868
869         mutex_init(&css->mutex);
870         css->cssid = chsc_get_cssid(nr);
871         css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
872
873         ret = device_register(&css->device);
874         if (ret) {
875                 put_device(&css->device);
876                 goto out_err;
877         }
878
879         css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
880                                          GFP_KERNEL);
881         if (!css->pseudo_subchannel) {
882                 device_unregister(&css->device);
883                 ret = -ENOMEM;
884                 goto out_err;
885         }
886
887         css->pseudo_subchannel->dev.parent = &css->device;
888         css->pseudo_subchannel->dev.release = css_subchannel_release;
889         mutex_init(&css->pseudo_subchannel->reg_mutex);
890         ret = css_sch_create_locks(css->pseudo_subchannel);
891         if (ret) {
892                 kfree(css->pseudo_subchannel);
893                 device_unregister(&css->device);
894                 goto out_err;
895         }
896
897         dev_set_name(&css->pseudo_subchannel->dev, "defunct");
898         ret = device_register(&css->pseudo_subchannel->dev);
899         if (ret) {
900                 put_device(&css->pseudo_subchannel->dev);
901                 device_unregister(&css->device);
902                 goto out_err;
903         }
904
905         return ret;
906 out_err:
907         channel_subsystems[nr] = NULL;
908         return ret;
909 }
910
911 static int css_reboot_event(struct notifier_block *this,
912                             unsigned long event,
913                             void *ptr)
914 {
915         struct channel_subsystem *css;
916         int ret;
917
918         ret = NOTIFY_DONE;
919         for_each_css(css) {
920                 mutex_lock(&css->mutex);
921                 if (css->cm_enabled)
922                         if (chsc_secm(css, 0))
923                                 ret = NOTIFY_BAD;
924                 mutex_unlock(&css->mutex);
925         }
926
927         return ret;
928 }
929
930 static struct notifier_block css_reboot_notifier = {
931         .notifier_call = css_reboot_event,
932 };
933
934 /*
935  * Since the css devices are neither on a bus nor have a class
936  * nor have a special device type, we cannot stop/restart channel
937  * path measurements via the normal suspend/resume callbacks, but have
938  * to use notifiers.
939  */
940 static int css_power_event(struct notifier_block *this, unsigned long event,
941                            void *ptr)
942 {
943         struct channel_subsystem *css;
944         int ret;
945
946         switch (event) {
947         case PM_HIBERNATION_PREPARE:
948         case PM_SUSPEND_PREPARE:
949                 ret = NOTIFY_DONE;
950                 for_each_css(css) {
951                         mutex_lock(&css->mutex);
952                         if (!css->cm_enabled) {
953                                 mutex_unlock(&css->mutex);
954                                 continue;
955                         }
956                         ret = __chsc_do_secm(css, 0);
957                         ret = notifier_from_errno(ret);
958                         mutex_unlock(&css->mutex);
959                 }
960                 break;
961         case PM_POST_HIBERNATION:
962         case PM_POST_SUSPEND:
963                 ret = NOTIFY_DONE;
964                 for_each_css(css) {
965                         mutex_lock(&css->mutex);
966                         if (!css->cm_enabled) {
967                                 mutex_unlock(&css->mutex);
968                                 continue;
969                         }
970                         ret = __chsc_do_secm(css, 1);
971                         ret = notifier_from_errno(ret);
972                         mutex_unlock(&css->mutex);
973                 }
974                 /* search for subchannels, which appeared during hibernation */
975                 css_schedule_reprobe();
976                 break;
977         default:
978                 ret = NOTIFY_DONE;
979         }
980         return ret;
981
982 }
983 static struct notifier_block css_power_notifier = {
984         .notifier_call = css_power_event,
985 };
986
987 /*
988  * Now that the driver core is running, we can setup our channel subsystem.
989  * The struct subchannel's are created during probing.
990  */
991 static int __init css_bus_init(void)
992 {
993         int ret, i;
994
995         ret = chsc_init();
996         if (ret)
997                 return ret;
998
999         chsc_determine_css_characteristics();
1000         /* Try to enable MSS. */
1001         ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1002         if (ret)
1003                 max_ssid = 0;
1004         else /* Success. */
1005                 max_ssid = __MAX_SSID;
1006
1007         ret = slow_subchannel_init();
1008         if (ret)
1009                 goto out;
1010
1011         ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1012         if (ret)
1013                 goto out;
1014
1015         if ((ret = bus_register(&css_bus_type)))
1016                 goto out;
1017
1018         /* Setup css structure. */
1019         for (i = 0; i <= MAX_CSS_IDX; i++) {
1020                 ret = setup_css(i);
1021                 if (ret)
1022                         goto out_unregister;
1023         }
1024         ret = register_reboot_notifier(&css_reboot_notifier);
1025         if (ret)
1026                 goto out_unregister;
1027         ret = register_pm_notifier(&css_power_notifier);
1028         if (ret) {
1029                 unregister_reboot_notifier(&css_reboot_notifier);
1030                 goto out_unregister;
1031         }
1032         css_init_done = 1;
1033
1034         /* Enable default isc for I/O subchannels. */
1035         isc_register(IO_SCH_ISC);
1036
1037         return 0;
1038 out_unregister:
1039         while (i-- > 0) {
1040                 struct channel_subsystem *css = channel_subsystems[i];
1041                 device_unregister(&css->pseudo_subchannel->dev);
1042                 device_unregister(&css->device);
1043         }
1044         bus_unregister(&css_bus_type);
1045 out:
1046         crw_unregister_handler(CRW_RSC_SCH);
1047         idset_free(slow_subchannel_set);
1048         chsc_init_cleanup();
1049         pr_alert("The CSS device driver initialization failed with "
1050                  "errno=%d\n", ret);
1051         return ret;
1052 }
1053
1054 static void __init css_bus_cleanup(void)
1055 {
1056         struct channel_subsystem *css;
1057
1058         for_each_css(css) {
1059                 device_unregister(&css->pseudo_subchannel->dev);
1060                 device_unregister(&css->device);
1061         }
1062         bus_unregister(&css_bus_type);
1063         crw_unregister_handler(CRW_RSC_SCH);
1064         idset_free(slow_subchannel_set);
1065         chsc_init_cleanup();
1066         isc_unregister(IO_SCH_ISC);
1067 }
1068
1069 static int __init channel_subsystem_init(void)
1070 {
1071         int ret;
1072
1073         ret = css_bus_init();
1074         if (ret)
1075                 return ret;
1076         cio_work_q = create_singlethread_workqueue("cio");
1077         if (!cio_work_q) {
1078                 ret = -ENOMEM;
1079                 goto out_bus;
1080         }
1081         ret = io_subchannel_init();
1082         if (ret)
1083                 goto out_wq;
1084
1085         return ret;
1086 out_wq:
1087         destroy_workqueue(cio_work_q);
1088 out_bus:
1089         css_bus_cleanup();
1090         return ret;
1091 }
1092 subsys_initcall(channel_subsystem_init);
1093
1094 static int css_settle(struct device_driver *drv, void *unused)
1095 {
1096         struct css_driver *cssdrv = to_cssdriver(drv);
1097
1098         if (cssdrv->settle)
1099                 return cssdrv->settle();
1100         return 0;
1101 }
1102
1103 int css_complete_work(void)
1104 {
1105         int ret;
1106
1107         /* Wait for the evaluation of subchannels to finish. */
1108         ret = wait_event_interruptible(css_eval_wq,
1109                                        atomic_read(&css_eval_scheduled) == 0);
1110         if (ret)
1111                 return -EINTR;
1112         flush_workqueue(cio_work_q);
1113         /* Wait for the subchannel type specific initialization to finish */
1114         return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1115 }
1116
1117
1118 /*
1119  * Wait for the initialization of devices to finish, to make sure we are
1120  * done with our setup if the search for the root device starts.
1121  */
1122 static int __init channel_subsystem_init_sync(void)
1123 {
1124         /* Register subchannels which are already in use. */
1125         cio_register_early_subchannels();
1126         /* Start initial subchannel evaluation. */
1127         css_schedule_eval_all();
1128         css_complete_work();
1129         return 0;
1130 }
1131 subsys_initcall_sync(channel_subsystem_init_sync);
1132
1133 void channel_subsystem_reinit(void)
1134 {
1135         struct channel_path *chp;
1136         struct chp_id chpid;
1137
1138         chsc_enable_facility(CHSC_SDA_OC_MSS);
1139         chp_id_for_each(&chpid) {
1140                 chp = chpid_to_chp(chpid);
1141                 if (chp)
1142                         chp_update_desc(chp);
1143         }
1144         cmf_reactivate();
1145 }
1146
1147 #ifdef CONFIG_PROC_FS
1148 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1149                                 size_t count, loff_t *ppos)
1150 {
1151         int ret;
1152
1153         /* Handle pending CRW's. */
1154         crw_wait_for_channel_report();
1155         ret = css_complete_work();
1156
1157         return ret ? ret : count;
1158 }
1159
1160 static const struct file_operations cio_settle_proc_fops = {
1161         .open = nonseekable_open,
1162         .write = cio_settle_write,
1163         .llseek = no_llseek,
1164 };
1165
1166 static int __init cio_settle_init(void)
1167 {
1168         struct proc_dir_entry *entry;
1169
1170         entry = proc_create("cio_settle", S_IWUSR, NULL,
1171                             &cio_settle_proc_fops);
1172         if (!entry)
1173                 return -ENOMEM;
1174         return 0;
1175 }
1176 device_initcall(cio_settle_init);
1177 #endif /*CONFIG_PROC_FS*/
1178
1179 int sch_is_pseudo_sch(struct subchannel *sch)
1180 {
1181         return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1182 }
1183
1184 static int css_bus_match(struct device *dev, struct device_driver *drv)
1185 {
1186         struct subchannel *sch = to_subchannel(dev);
1187         struct css_driver *driver = to_cssdriver(drv);
1188         struct css_device_id *id;
1189
1190         for (id = driver->subchannel_type; id->match_flags; id++) {
1191                 if (sch->st == id->type)
1192                         return 1;
1193         }
1194
1195         return 0;
1196 }
1197
1198 static int css_probe(struct device *dev)
1199 {
1200         struct subchannel *sch;
1201         int ret;
1202
1203         sch = to_subchannel(dev);
1204         sch->driver = to_cssdriver(dev->driver);
1205         ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1206         if (ret)
1207                 sch->driver = NULL;
1208         return ret;
1209 }
1210
1211 static int css_remove(struct device *dev)
1212 {
1213         struct subchannel *sch;
1214         int ret;
1215
1216         sch = to_subchannel(dev);
1217         ret = sch->driver->remove ? sch->driver->remove(sch) : 0;
1218         sch->driver = NULL;
1219         return ret;
1220 }
1221
1222 static void css_shutdown(struct device *dev)
1223 {
1224         struct subchannel *sch;
1225
1226         sch = to_subchannel(dev);
1227         if (sch->driver && sch->driver->shutdown)
1228                 sch->driver->shutdown(sch);
1229 }
1230
1231 static int css_uevent(struct device *dev, struct kobj_uevent_env *env)
1232 {
1233         struct subchannel *sch = to_subchannel(dev);
1234         int ret;
1235
1236         ret = add_uevent_var(env, "ST=%01X", sch->st);
1237         if (ret)
1238                 return ret;
1239         ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1240         return ret;
1241 }
1242
1243 static int css_pm_prepare(struct device *dev)
1244 {
1245         struct subchannel *sch = to_subchannel(dev);
1246         struct css_driver *drv;
1247
1248         if (mutex_is_locked(&sch->reg_mutex))
1249                 return -EAGAIN;
1250         if (!sch->dev.driver)
1251                 return 0;
1252         drv = to_cssdriver(sch->dev.driver);
1253         /* Notify drivers that they may not register children. */
1254         return drv->prepare ? drv->prepare(sch) : 0;
1255 }
1256
1257 static void css_pm_complete(struct device *dev)
1258 {
1259         struct subchannel *sch = to_subchannel(dev);
1260         struct css_driver *drv;
1261
1262         if (!sch->dev.driver)
1263                 return;
1264         drv = to_cssdriver(sch->dev.driver);
1265         if (drv->complete)
1266                 drv->complete(sch);
1267 }
1268
1269 static int css_pm_freeze(struct device *dev)
1270 {
1271         struct subchannel *sch = to_subchannel(dev);
1272         struct css_driver *drv;
1273
1274         if (!sch->dev.driver)
1275                 return 0;
1276         drv = to_cssdriver(sch->dev.driver);
1277         return drv->freeze ? drv->freeze(sch) : 0;
1278 }
1279
1280 static int css_pm_thaw(struct device *dev)
1281 {
1282         struct subchannel *sch = to_subchannel(dev);
1283         struct css_driver *drv;
1284
1285         if (!sch->dev.driver)
1286                 return 0;
1287         drv = to_cssdriver(sch->dev.driver);
1288         return drv->thaw ? drv->thaw(sch) : 0;
1289 }
1290
1291 static int css_pm_restore(struct device *dev)
1292 {
1293         struct subchannel *sch = to_subchannel(dev);
1294         struct css_driver *drv;
1295
1296         css_update_ssd_info(sch);
1297         if (!sch->dev.driver)
1298                 return 0;
1299         drv = to_cssdriver(sch->dev.driver);
1300         return drv->restore ? drv->restore(sch) : 0;
1301 }
1302
1303 static const struct dev_pm_ops css_pm_ops = {
1304         .prepare = css_pm_prepare,
1305         .complete = css_pm_complete,
1306         .freeze = css_pm_freeze,
1307         .thaw = css_pm_thaw,
1308         .restore = css_pm_restore,
1309 };
1310
1311 static struct bus_type css_bus_type = {
1312         .name     = "css",
1313         .match    = css_bus_match,
1314         .probe    = css_probe,
1315         .remove   = css_remove,
1316         .shutdown = css_shutdown,
1317         .uevent   = css_uevent,
1318         .pm = &css_pm_ops,
1319 };
1320
1321 /**
1322  * css_driver_register - register a css driver
1323  * @cdrv: css driver to register
1324  *
1325  * This is mainly a wrapper around driver_register that sets name
1326  * and bus_type in the embedded struct device_driver correctly.
1327  */
1328 int css_driver_register(struct css_driver *cdrv)
1329 {
1330         cdrv->drv.bus = &css_bus_type;
1331         return driver_register(&cdrv->drv);
1332 }
1333 EXPORT_SYMBOL_GPL(css_driver_register);
1334
1335 /**
1336  * css_driver_unregister - unregister a css driver
1337  * @cdrv: css driver to unregister
1338  *
1339  * This is a wrapper around driver_unregister.
1340  */
1341 void css_driver_unregister(struct css_driver *cdrv)
1342 {
1343         driver_unregister(&cdrv->drv);
1344 }
1345 EXPORT_SYMBOL_GPL(css_driver_unregister);