Merge branches 'powercap', 'pm-x86', 'pm-opp' and 'pm-misc'
[linux-2.6-block.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94                                      suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
112 static bool have_full_constraints(void)
113 {
114         return has_full_constraints || of_have_populated_dt();
115 }
116
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119         if (!rdev->constraints) {
120                 rdev_err(rdev, "no constraints\n");
121                 return false;
122         }
123
124         if (rdev->constraints->valid_ops_mask & ops)
125                 return true;
126
127         return false;
128 }
129
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:               regulator source
133  * @ww_ctx:             w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142                                         struct ww_acquire_ctx *ww_ctx)
143 {
144         bool lock = false;
145         int ret = 0;
146
147         mutex_lock(&regulator_nesting_mutex);
148
149         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150                 if (rdev->mutex_owner == current)
151                         rdev->ref_cnt++;
152                 else
153                         lock = true;
154
155                 if (lock) {
156                         mutex_unlock(&regulator_nesting_mutex);
157                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158                         mutex_lock(&regulator_nesting_mutex);
159                 }
160         } else {
161                 lock = true;
162         }
163
164         if (lock && ret != -EDEADLK) {
165                 rdev->ref_cnt++;
166                 rdev->mutex_owner = current;
167         }
168
169         mutex_unlock(&regulator_nesting_mutex);
170
171         return ret;
172 }
173
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:               regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186         regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:               regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198         mutex_lock(&regulator_nesting_mutex);
199
200         if (--rdev->ref_cnt == 0) {
201                 rdev->mutex_owner = NULL;
202                 ww_mutex_unlock(&rdev->mutex);
203         }
204
205         WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207         mutex_unlock(&regulator_nesting_mutex);
208 }
209
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212         struct regulator_dev *c_rdev;
213         int i;
214
215         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218                 if (rdev->supply->rdev == c_rdev)
219                         return true;
220         }
221
222         return false;
223 }
224
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226                                        unsigned int n_coupled)
227 {
228         struct regulator_dev *c_rdev, *supply_rdev;
229         int i, supply_n_coupled;
230
231         for (i = n_coupled; i > 0; i--) {
232                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234                 if (!c_rdev)
235                         continue;
236
237                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238                         supply_rdev = c_rdev->supply->rdev;
239                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241                         regulator_unlock_recursive(supply_rdev,
242                                                    supply_n_coupled);
243                 }
244
245                 regulator_unlock(c_rdev);
246         }
247 }
248
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250                                     struct regulator_dev **new_contended_rdev,
251                                     struct regulator_dev **old_contended_rdev,
252                                     struct ww_acquire_ctx *ww_ctx)
253 {
254         struct regulator_dev *c_rdev;
255         int i, err;
256
257         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260                 if (!c_rdev)
261                         continue;
262
263                 if (c_rdev != *old_contended_rdev) {
264                         err = regulator_lock_nested(c_rdev, ww_ctx);
265                         if (err) {
266                                 if (err == -EDEADLK) {
267                                         *new_contended_rdev = c_rdev;
268                                         goto err_unlock;
269                                 }
270
271                                 /* shouldn't happen */
272                                 WARN_ON_ONCE(err != -EALREADY);
273                         }
274                 } else {
275                         *old_contended_rdev = NULL;
276                 }
277
278                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279                         err = regulator_lock_recursive(c_rdev->supply->rdev,
280                                                        new_contended_rdev,
281                                                        old_contended_rdev,
282                                                        ww_ctx);
283                         if (err) {
284                                 regulator_unlock(c_rdev);
285                                 goto err_unlock;
286                         }
287                 }
288         }
289
290         return 0;
291
292 err_unlock:
293         regulator_unlock_recursive(rdev, i);
294
295         return err;
296 }
297
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *                              regulators
301  * @rdev:                       regulator source
302  * @ww_ctx:                     w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307                                        struct ww_acquire_ctx *ww_ctx)
308 {
309         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310         ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:                       regulator source
316  * @ww_ctx:                     w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322                                      struct ww_acquire_ctx *ww_ctx)
323 {
324         struct regulator_dev *new_contended_rdev = NULL;
325         struct regulator_dev *old_contended_rdev = NULL;
326         int err;
327
328         mutex_lock(&regulator_list_mutex);
329
330         ww_acquire_init(ww_ctx, &regulator_ww_class);
331
332         do {
333                 if (new_contended_rdev) {
334                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335                         old_contended_rdev = new_contended_rdev;
336                         old_contended_rdev->ref_cnt++;
337                 }
338
339                 err = regulator_lock_recursive(rdev,
340                                                &new_contended_rdev,
341                                                &old_contended_rdev,
342                                                ww_ctx);
343
344                 if (old_contended_rdev)
345                         regulator_unlock(old_contended_rdev);
346
347         } while (err == -EDEADLK);
348
349         ww_acquire_done(ww_ctx);
350
351         mutex_unlock(&regulator_list_mutex);
352 }
353
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366                                                   const char *prop_name)
367 {
368         struct device_node *regnode = NULL;
369         struct device_node *child = NULL;
370
371         for_each_child_of_node(parent, child) {
372                 regnode = of_parse_phandle(child, prop_name, 0);
373
374                 if (!regnode) {
375                         regnode = of_get_child_regulator(child, prop_name);
376                         if (regnode)
377                                 goto err_node_put;
378                 } else {
379                         goto err_node_put;
380                 }
381         }
382         return NULL;
383
384 err_node_put:
385         of_node_put(child);
386         return regnode;
387 }
388
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400         struct device_node *regnode = NULL;
401         char prop_name[64]; /* 64 is max size of property name */
402
403         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405         snprintf(prop_name, 64, "%s-supply", supply);
406         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408         if (!regnode) {
409                 regnode = of_get_child_regulator(dev->of_node, prop_name);
410                 if (regnode)
411                         return regnode;
412
413                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414                                 prop_name, dev->of_node);
415                 return NULL;
416         }
417         return regnode;
418 }
419
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422                             int *min_uV, int *max_uV)
423 {
424         BUG_ON(*min_uV > *max_uV);
425
426         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427                 rdev_err(rdev, "voltage operation not allowed\n");
428                 return -EPERM;
429         }
430
431         if (*max_uV > rdev->constraints->max_uV)
432                 *max_uV = rdev->constraints->max_uV;
433         if (*min_uV < rdev->constraints->min_uV)
434                 *min_uV = rdev->constraints->min_uV;
435
436         if (*min_uV > *max_uV) {
437                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438                          *min_uV, *max_uV);
439                 return -EINVAL;
440         }
441
442         return 0;
443 }
444
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455                               int *min_uV, int *max_uV,
456                               suspend_state_t state)
457 {
458         struct regulator *regulator;
459         struct regulator_voltage *voltage;
460
461         list_for_each_entry(regulator, &rdev->consumer_list, list) {
462                 voltage = &regulator->voltage[state];
463                 /*
464                  * Assume consumers that didn't say anything are OK
465                  * with anything in the constraint range.
466                  */
467                 if (!voltage->min_uV && !voltage->max_uV)
468                         continue;
469
470                 if (*max_uV > voltage->max_uV)
471                         *max_uV = voltage->max_uV;
472                 if (*min_uV < voltage->min_uV)
473                         *min_uV = voltage->min_uV;
474         }
475
476         if (*min_uV > *max_uV) {
477                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478                         *min_uV, *max_uV);
479                 return -EINVAL;
480         }
481
482         return 0;
483 }
484
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487                                         int *min_uA, int *max_uA)
488 {
489         BUG_ON(*min_uA > *max_uA);
490
491         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492                 rdev_err(rdev, "current operation not allowed\n");
493                 return -EPERM;
494         }
495
496         if (*max_uA > rdev->constraints->max_uA)
497                 *max_uA = rdev->constraints->max_uA;
498         if (*min_uA < rdev->constraints->min_uA)
499                 *min_uA = rdev->constraints->min_uA;
500
501         if (*min_uA > *max_uA) {
502                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503                          *min_uA, *max_uA);
504                 return -EINVAL;
505         }
506
507         return 0;
508 }
509
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512                                     unsigned int *mode)
513 {
514         switch (*mode) {
515         case REGULATOR_MODE_FAST:
516         case REGULATOR_MODE_NORMAL:
517         case REGULATOR_MODE_IDLE:
518         case REGULATOR_MODE_STANDBY:
519                 break;
520         default:
521                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522                 return -EINVAL;
523         }
524
525         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526                 rdev_err(rdev, "mode operation not allowed\n");
527                 return -EPERM;
528         }
529
530         /* The modes are bitmasks, the most power hungry modes having
531          * the lowest values. If the requested mode isn't supported
532          * try higher modes.
533          */
534         while (*mode) {
535                 if (rdev->constraints->valid_modes_mask & *mode)
536                         return 0;
537                 *mode /= 2;
538         }
539
540         return -EINVAL;
541 }
542
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546         if (rdev->constraints == NULL)
547                 return NULL;
548
549         switch (state) {
550         case PM_SUSPEND_STANDBY:
551                 return &rdev->constraints->state_standby;
552         case PM_SUSPEND_MEM:
553                 return &rdev->constraints->state_mem;
554         case PM_SUSPEND_MAX:
555                 return &rdev->constraints->state_disk;
556         default:
557                 return NULL;
558         }
559 }
560
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564         const struct regulator_state *rstate;
565
566         rstate = regulator_get_suspend_state(rdev, state);
567         if (rstate == NULL)
568                 return NULL;
569
570         /* If we have no suspend mode configuration don't set anything;
571          * only warn if the driver implements set_suspend_voltage or
572          * set_suspend_mode callback.
573          */
574         if (rstate->enabled != ENABLE_IN_SUSPEND &&
575             rstate->enabled != DISABLE_IN_SUSPEND) {
576                 if (rdev->desc->ops->set_suspend_voltage ||
577                     rdev->desc->ops->set_suspend_mode)
578                         rdev_warn(rdev, "No configuration\n");
579                 return NULL;
580         }
581
582         return rstate;
583 }
584
585 static ssize_t microvolts_show(struct device *dev,
586                                struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589         int uV;
590
591         regulator_lock(rdev);
592         uV = regulator_get_voltage_rdev(rdev);
593         regulator_unlock(rdev);
594
595         if (uV < 0)
596                 return uV;
597         return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
601 static ssize_t microamps_show(struct device *dev,
602                               struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
619 static const char *regulator_opmode_to_str(int mode)
620 {
621         switch (mode) {
622         case REGULATOR_MODE_FAST:
623                 return "fast";
624         case REGULATOR_MODE_NORMAL:
625                 return "normal";
626         case REGULATOR_MODE_IDLE:
627                 return "idle";
628         case REGULATOR_MODE_STANDBY:
629                 return "standby";
630         }
631         return "unknown";
632 }
633
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
639 static ssize_t opmode_show(struct device *dev,
640                            struct device_attribute *attr, char *buf)
641 {
642         struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650         if (state > 0)
651                 return sprintf(buf, "enabled\n");
652         else if (state == 0)
653                 return sprintf(buf, "disabled\n");
654         else
655                 return sprintf(buf, "unknown\n");
656 }
657
658 static ssize_t state_show(struct device *dev,
659                           struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         ssize_t ret;
663
664         regulator_lock(rdev);
665         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666         regulator_unlock(rdev);
667
668         return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
672 static ssize_t status_show(struct device *dev,
673                            struct device_attribute *attr, char *buf)
674 {
675         struct regulator_dev *rdev = dev_get_drvdata(dev);
676         int status;
677         char *label;
678
679         status = rdev->desc->ops->get_status(rdev);
680         if (status < 0)
681                 return status;
682
683         switch (status) {
684         case REGULATOR_STATUS_OFF:
685                 label = "off";
686                 break;
687         case REGULATOR_STATUS_ON:
688                 label = "on";
689                 break;
690         case REGULATOR_STATUS_ERROR:
691                 label = "error";
692                 break;
693         case REGULATOR_STATUS_FAST:
694                 label = "fast";
695                 break;
696         case REGULATOR_STATUS_NORMAL:
697                 label = "normal";
698                 break;
699         case REGULATOR_STATUS_IDLE:
700                 label = "idle";
701                 break;
702         case REGULATOR_STATUS_STANDBY:
703                 label = "standby";
704                 break;
705         case REGULATOR_STATUS_BYPASS:
706                 label = "bypass";
707                 break;
708         case REGULATOR_STATUS_UNDEFINED:
709                 label = "undefined";
710                 break;
711         default:
712                 return -ERANGE;
713         }
714
715         return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
719 static ssize_t min_microamps_show(struct device *dev,
720                                   struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
731 static ssize_t max_microamps_show(struct device *dev,
732                                   struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
743 static ssize_t min_microvolts_show(struct device *dev,
744                                    struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748         if (!rdev->constraints)
749                 return sprintf(buf, "constraint not defined\n");
750
751         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
755 static ssize_t max_microvolts_show(struct device *dev,
756                                    struct device_attribute *attr, char *buf)
757 {
758         struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760         if (!rdev->constraints)
761                 return sprintf(buf, "constraint not defined\n");
762
763         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
767 static ssize_t requested_microamps_show(struct device *dev,
768                                         struct device_attribute *attr, char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         struct regulator *regulator;
772         int uA = 0;
773
774         regulator_lock(rdev);
775         list_for_each_entry(regulator, &rdev->consumer_list, list) {
776                 if (regulator->enable_count)
777                         uA += regulator->uA_load;
778         }
779         regulator_unlock(rdev);
780         return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785                               char *buf)
786 {
787         struct regulator_dev *rdev = dev_get_drvdata(dev);
788         return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793                          char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797         switch (rdev->desc->type) {
798         case REGULATOR_VOLTAGE:
799                 return sprintf(buf, "voltage\n");
800         case REGULATOR_CURRENT:
801                 return sprintf(buf, "current\n");
802         }
803         return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808                                            struct device_attribute *attr, char *buf)
809 {
810         struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817                                             struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826                                                struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835                                      struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845                                       struct device_attribute *attr, char *buf)
846 {
847         struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849         return regulator_print_opmode(buf,
850                 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855                                          struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_opmode(buf,
860                 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
864 static ssize_t suspend_mem_state_show(struct device *dev,
865                                       struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
874 static ssize_t suspend_disk_state_show(struct device *dev,
875                                        struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
884 static ssize_t suspend_standby_state_show(struct device *dev,
885                                           struct device_attribute *attr, char *buf)
886 {
887         struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889         return regulator_print_state(buf,
890                         rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
894 static ssize_t bypass_show(struct device *dev,
895                            struct device_attribute *attr, char *buf)
896 {
897         struct regulator_dev *rdev = dev_get_drvdata(dev);
898         const char *report;
899         bool bypass;
900         int ret;
901
902         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904         if (ret != 0)
905                 report = "unknown";
906         else if (bypass)
907                 report = "enabled";
908         else
909                 report = "disabled";
910
911         return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit)                                                 \
916         static ssize_t name##_show(struct device *dev, struct device_attribute *attr,   \
917                                    char *buf)                                           \
918         {                                                                               \
919                 int ret;                                                                \
920                 unsigned int flags;                                                     \
921                 struct regulator_dev *rdev = dev_get_drvdata(dev);                      \
922                 ret = _regulator_get_error_flags(rdev, &flags);                         \
923                 if (ret)                                                                \
924                         return ret;                                                     \
925                 return sysfs_emit(buf, "%d\n", !!(flags & (bit)));                      \
926         }                                                                               \
927         static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944         struct regulator *sibling;
945         int current_uA = 0, output_uV, input_uV, err;
946         unsigned int mode;
947
948         /*
949          * first check to see if we can set modes at all, otherwise just
950          * tell the consumer everything is OK.
951          */
952         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953                 rdev_dbg(rdev, "DRMS operation not allowed\n");
954                 return 0;
955         }
956
957         if (!rdev->desc->ops->get_optimum_mode &&
958             !rdev->desc->ops->set_load)
959                 return 0;
960
961         if (!rdev->desc->ops->set_mode &&
962             !rdev->desc->ops->set_load)
963                 return -EINVAL;
964
965         /* calc total requested load */
966         list_for_each_entry(sibling, &rdev->consumer_list, list) {
967                 if (sibling->enable_count)
968                         current_uA += sibling->uA_load;
969         }
970
971         current_uA += rdev->constraints->system_load;
972
973         if (rdev->desc->ops->set_load) {
974                 /* set the optimum mode for our new total regulator load */
975                 err = rdev->desc->ops->set_load(rdev, current_uA);
976                 if (err < 0)
977                         rdev_err(rdev, "failed to set load %d: %pe\n",
978                                  current_uA, ERR_PTR(err));
979         } else {
980                 /*
981                  * Unfortunately in some cases the constraints->valid_ops has
982                  * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
983                  * That's not really legit but we won't consider it a fatal
984                  * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
985                  * wasn't set.
986                  */
987                 if (!rdev->constraints->valid_modes_mask) {
988                         rdev_dbg(rdev, "Can change modes; but no valid mode\n");
989                         return 0;
990                 }
991
992                 /* get output voltage */
993                 output_uV = regulator_get_voltage_rdev(rdev);
994
995                 /*
996                  * Don't return an error; if regulator driver cares about
997                  * output_uV then it's up to the driver to validate.
998                  */
999                 if (output_uV <= 0)
1000                         rdev_dbg(rdev, "invalid output voltage found\n");
1001
1002                 /* get input voltage */
1003                 input_uV = 0;
1004                 if (rdev->supply)
1005                         input_uV = regulator_get_voltage(rdev->supply);
1006                 if (input_uV <= 0)
1007                         input_uV = rdev->constraints->input_uV;
1008
1009                 /*
1010                  * Don't return an error; if regulator driver cares about
1011                  * input_uV then it's up to the driver to validate.
1012                  */
1013                 if (input_uV <= 0)
1014                         rdev_dbg(rdev, "invalid input voltage found\n");
1015
1016                 /* now get the optimum mode for our new total regulator load */
1017                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1018                                                          output_uV, current_uA);
1019
1020                 /* check the new mode is allowed */
1021                 err = regulator_mode_constrain(rdev, &mode);
1022                 if (err < 0) {
1023                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1024                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1025                         return err;
1026                 }
1027
1028                 err = rdev->desc->ops->set_mode(rdev, mode);
1029                 if (err < 0)
1030                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1031                                  mode, ERR_PTR(err));
1032         }
1033
1034         return err;
1035 }
1036
1037 static int __suspend_set_state(struct regulator_dev *rdev,
1038                                const struct regulator_state *rstate)
1039 {
1040         int ret = 0;
1041
1042         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1043                 rdev->desc->ops->set_suspend_enable)
1044                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1045         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1046                 rdev->desc->ops->set_suspend_disable)
1047                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1048         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1049                 ret = 0;
1050
1051         if (ret < 0) {
1052                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1053                 return ret;
1054         }
1055
1056         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1057                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1058                 if (ret < 0) {
1059                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1060                         return ret;
1061                 }
1062         }
1063
1064         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1065                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1066                 if (ret < 0) {
1067                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1068                         return ret;
1069                 }
1070         }
1071
1072         return ret;
1073 }
1074
1075 static int suspend_set_initial_state(struct regulator_dev *rdev)
1076 {
1077         const struct regulator_state *rstate;
1078
1079         rstate = regulator_get_suspend_state_check(rdev,
1080                         rdev->constraints->initial_state);
1081         if (!rstate)
1082                 return 0;
1083
1084         return __suspend_set_state(rdev, rstate);
1085 }
1086
1087 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1088 static void print_constraints_debug(struct regulator_dev *rdev)
1089 {
1090         struct regulation_constraints *constraints = rdev->constraints;
1091         char buf[160] = "";
1092         size_t len = sizeof(buf) - 1;
1093         int count = 0;
1094         int ret;
1095
1096         if (constraints->min_uV && constraints->max_uV) {
1097                 if (constraints->min_uV == constraints->max_uV)
1098                         count += scnprintf(buf + count, len - count, "%d mV ",
1099                                            constraints->min_uV / 1000);
1100                 else
1101                         count += scnprintf(buf + count, len - count,
1102                                            "%d <--> %d mV ",
1103                                            constraints->min_uV / 1000,
1104                                            constraints->max_uV / 1000);
1105         }
1106
1107         if (!constraints->min_uV ||
1108             constraints->min_uV != constraints->max_uV) {
1109                 ret = regulator_get_voltage_rdev(rdev);
1110                 if (ret > 0)
1111                         count += scnprintf(buf + count, len - count,
1112                                            "at %d mV ", ret / 1000);
1113         }
1114
1115         if (constraints->uV_offset)
1116                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1117                                    constraints->uV_offset / 1000);
1118
1119         if (constraints->min_uA && constraints->max_uA) {
1120                 if (constraints->min_uA == constraints->max_uA)
1121                         count += scnprintf(buf + count, len - count, "%d mA ",
1122                                            constraints->min_uA / 1000);
1123                 else
1124                         count += scnprintf(buf + count, len - count,
1125                                            "%d <--> %d mA ",
1126                                            constraints->min_uA / 1000,
1127                                            constraints->max_uA / 1000);
1128         }
1129
1130         if (!constraints->min_uA ||
1131             constraints->min_uA != constraints->max_uA) {
1132                 ret = _regulator_get_current_limit(rdev);
1133                 if (ret > 0)
1134                         count += scnprintf(buf + count, len - count,
1135                                            "at %d mA ", ret / 1000);
1136         }
1137
1138         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1139                 count += scnprintf(buf + count, len - count, "fast ");
1140         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1141                 count += scnprintf(buf + count, len - count, "normal ");
1142         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1143                 count += scnprintf(buf + count, len - count, "idle ");
1144         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1145                 count += scnprintf(buf + count, len - count, "standby ");
1146
1147         if (!count)
1148                 count = scnprintf(buf, len, "no parameters");
1149         else
1150                 --count;
1151
1152         count += scnprintf(buf + count, len - count, ", %s",
1153                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1154
1155         rdev_dbg(rdev, "%s\n", buf);
1156 }
1157 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1158 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1159 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1160
1161 static void print_constraints(struct regulator_dev *rdev)
1162 {
1163         struct regulation_constraints *constraints = rdev->constraints;
1164
1165         print_constraints_debug(rdev);
1166
1167         if ((constraints->min_uV != constraints->max_uV) &&
1168             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1169                 rdev_warn(rdev,
1170                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1171 }
1172
1173 static int machine_constraints_voltage(struct regulator_dev *rdev,
1174         struct regulation_constraints *constraints)
1175 {
1176         const struct regulator_ops *ops = rdev->desc->ops;
1177         int ret;
1178
1179         /* do we need to apply the constraint voltage */
1180         if (rdev->constraints->apply_uV &&
1181             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1182                 int target_min, target_max;
1183                 int current_uV = regulator_get_voltage_rdev(rdev);
1184
1185                 if (current_uV == -ENOTRECOVERABLE) {
1186                         /* This regulator can't be read and must be initialized */
1187                         rdev_info(rdev, "Setting %d-%duV\n",
1188                                   rdev->constraints->min_uV,
1189                                   rdev->constraints->max_uV);
1190                         _regulator_do_set_voltage(rdev,
1191                                                   rdev->constraints->min_uV,
1192                                                   rdev->constraints->max_uV);
1193                         current_uV = regulator_get_voltage_rdev(rdev);
1194                 }
1195
1196                 if (current_uV < 0) {
1197                         if (current_uV != -EPROBE_DEFER)
1198                                 rdev_err(rdev,
1199                                          "failed to get the current voltage: %pe\n",
1200                                          ERR_PTR(current_uV));
1201                         return current_uV;
1202                 }
1203
1204                 /*
1205                  * If we're below the minimum voltage move up to the
1206                  * minimum voltage, if we're above the maximum voltage
1207                  * then move down to the maximum.
1208                  */
1209                 target_min = current_uV;
1210                 target_max = current_uV;
1211
1212                 if (current_uV < rdev->constraints->min_uV) {
1213                         target_min = rdev->constraints->min_uV;
1214                         target_max = rdev->constraints->min_uV;
1215                 }
1216
1217                 if (current_uV > rdev->constraints->max_uV) {
1218                         target_min = rdev->constraints->max_uV;
1219                         target_max = rdev->constraints->max_uV;
1220                 }
1221
1222                 if (target_min != current_uV || target_max != current_uV) {
1223                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1224                                   current_uV, target_min, target_max);
1225                         ret = _regulator_do_set_voltage(
1226                                 rdev, target_min, target_max);
1227                         if (ret < 0) {
1228                                 rdev_err(rdev,
1229                                         "failed to apply %d-%duV constraint: %pe\n",
1230                                         target_min, target_max, ERR_PTR(ret));
1231                                 return ret;
1232                         }
1233                 }
1234         }
1235
1236         /* constrain machine-level voltage specs to fit
1237          * the actual range supported by this regulator.
1238          */
1239         if (ops->list_voltage && rdev->desc->n_voltages) {
1240                 int     count = rdev->desc->n_voltages;
1241                 int     i;
1242                 int     min_uV = INT_MAX;
1243                 int     max_uV = INT_MIN;
1244                 int     cmin = constraints->min_uV;
1245                 int     cmax = constraints->max_uV;
1246
1247                 /* it's safe to autoconfigure fixed-voltage supplies
1248                  * and the constraints are used by list_voltage.
1249                  */
1250                 if (count == 1 && !cmin) {
1251                         cmin = 1;
1252                         cmax = INT_MAX;
1253                         constraints->min_uV = cmin;
1254                         constraints->max_uV = cmax;
1255                 }
1256
1257                 /* voltage constraints are optional */
1258                 if ((cmin == 0) && (cmax == 0))
1259                         return 0;
1260
1261                 /* else require explicit machine-level constraints */
1262                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1263                         rdev_err(rdev, "invalid voltage constraints\n");
1264                         return -EINVAL;
1265                 }
1266
1267                 /* no need to loop voltages if range is continuous */
1268                 if (rdev->desc->continuous_voltage_range)
1269                         return 0;
1270
1271                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1272                 for (i = 0; i < count; i++) {
1273                         int     value;
1274
1275                         value = ops->list_voltage(rdev, i);
1276                         if (value <= 0)
1277                                 continue;
1278
1279                         /* maybe adjust [min_uV..max_uV] */
1280                         if (value >= cmin && value < min_uV)
1281                                 min_uV = value;
1282                         if (value <= cmax && value > max_uV)
1283                                 max_uV = value;
1284                 }
1285
1286                 /* final: [min_uV..max_uV] valid iff constraints valid */
1287                 if (max_uV < min_uV) {
1288                         rdev_err(rdev,
1289                                  "unsupportable voltage constraints %u-%uuV\n",
1290                                  min_uV, max_uV);
1291                         return -EINVAL;
1292                 }
1293
1294                 /* use regulator's subset of machine constraints */
1295                 if (constraints->min_uV < min_uV) {
1296                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1297                                  constraints->min_uV, min_uV);
1298                         constraints->min_uV = min_uV;
1299                 }
1300                 if (constraints->max_uV > max_uV) {
1301                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1302                                  constraints->max_uV, max_uV);
1303                         constraints->max_uV = max_uV;
1304                 }
1305         }
1306
1307         return 0;
1308 }
1309
1310 static int machine_constraints_current(struct regulator_dev *rdev,
1311         struct regulation_constraints *constraints)
1312 {
1313         const struct regulator_ops *ops = rdev->desc->ops;
1314         int ret;
1315
1316         if (!constraints->min_uA && !constraints->max_uA)
1317                 return 0;
1318
1319         if (constraints->min_uA > constraints->max_uA) {
1320                 rdev_err(rdev, "Invalid current constraints\n");
1321                 return -EINVAL;
1322         }
1323
1324         if (!ops->set_current_limit || !ops->get_current_limit) {
1325                 rdev_warn(rdev, "Operation of current configuration missing\n");
1326                 return 0;
1327         }
1328
1329         /* Set regulator current in constraints range */
1330         ret = ops->set_current_limit(rdev, constraints->min_uA,
1331                         constraints->max_uA);
1332         if (ret < 0) {
1333                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1334                 return ret;
1335         }
1336
1337         return 0;
1338 }
1339
1340 static int _regulator_do_enable(struct regulator_dev *rdev);
1341
1342 static int notif_set_limit(struct regulator_dev *rdev,
1343                            int (*set)(struct regulator_dev *, int, int, bool),
1344                            int limit, int severity)
1345 {
1346         bool enable;
1347
1348         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1349                 enable = false;
1350                 limit = 0;
1351         } else {
1352                 enable = true;
1353         }
1354
1355         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1356                 limit = 0;
1357
1358         return set(rdev, limit, severity, enable);
1359 }
1360
1361 static int handle_notify_limits(struct regulator_dev *rdev,
1362                         int (*set)(struct regulator_dev *, int, int, bool),
1363                         struct notification_limit *limits)
1364 {
1365         int ret = 0;
1366
1367         if (!set)
1368                 return -EOPNOTSUPP;
1369
1370         if (limits->prot)
1371                 ret = notif_set_limit(rdev, set, limits->prot,
1372                                       REGULATOR_SEVERITY_PROT);
1373         if (ret)
1374                 return ret;
1375
1376         if (limits->err)
1377                 ret = notif_set_limit(rdev, set, limits->err,
1378                                       REGULATOR_SEVERITY_ERR);
1379         if (ret)
1380                 return ret;
1381
1382         if (limits->warn)
1383                 ret = notif_set_limit(rdev, set, limits->warn,
1384                                       REGULATOR_SEVERITY_WARN);
1385
1386         return ret;
1387 }
1388 /**
1389  * set_machine_constraints - sets regulator constraints
1390  * @rdev: regulator source
1391  *
1392  * Allows platform initialisation code to define and constrain
1393  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1394  * Constraints *must* be set by platform code in order for some
1395  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1396  * set_mode.
1397  */
1398 static int set_machine_constraints(struct regulator_dev *rdev)
1399 {
1400         int ret = 0;
1401         const struct regulator_ops *ops = rdev->desc->ops;
1402
1403         ret = machine_constraints_voltage(rdev, rdev->constraints);
1404         if (ret != 0)
1405                 return ret;
1406
1407         ret = machine_constraints_current(rdev, rdev->constraints);
1408         if (ret != 0)
1409                 return ret;
1410
1411         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1412                 ret = ops->set_input_current_limit(rdev,
1413                                                    rdev->constraints->ilim_uA);
1414                 if (ret < 0) {
1415                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1416                         return ret;
1417                 }
1418         }
1419
1420         /* do we need to setup our suspend state */
1421         if (rdev->constraints->initial_state) {
1422                 ret = suspend_set_initial_state(rdev);
1423                 if (ret < 0) {
1424                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1425                         return ret;
1426                 }
1427         }
1428
1429         if (rdev->constraints->initial_mode) {
1430                 if (!ops->set_mode) {
1431                         rdev_err(rdev, "no set_mode operation\n");
1432                         return -EINVAL;
1433                 }
1434
1435                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1436                 if (ret < 0) {
1437                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1438                         return ret;
1439                 }
1440         } else if (rdev->constraints->system_load) {
1441                 /*
1442                  * We'll only apply the initial system load if an
1443                  * initial mode wasn't specified.
1444                  */
1445                 drms_uA_update(rdev);
1446         }
1447
1448         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1449                 && ops->set_ramp_delay) {
1450                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1451                 if (ret < 0) {
1452                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1453                         return ret;
1454                 }
1455         }
1456
1457         if (rdev->constraints->pull_down && ops->set_pull_down) {
1458                 ret = ops->set_pull_down(rdev);
1459                 if (ret < 0) {
1460                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1461                         return ret;
1462                 }
1463         }
1464
1465         if (rdev->constraints->soft_start && ops->set_soft_start) {
1466                 ret = ops->set_soft_start(rdev);
1467                 if (ret < 0) {
1468                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1469                         return ret;
1470                 }
1471         }
1472
1473         /*
1474          * Existing logic does not warn if over_current_protection is given as
1475          * a constraint but driver does not support that. I think we should
1476          * warn about this type of issues as it is possible someone changes
1477          * PMIC on board to another type - and the another PMIC's driver does
1478          * not support setting protection. Board composer may happily believe
1479          * the DT limits are respected - especially if the new PMIC HW also
1480          * supports protection but the driver does not. I won't change the logic
1481          * without hearing more experienced opinion on this though.
1482          *
1483          * If warning is seen as a good idea then we can merge handling the
1484          * over-curret protection and detection and get rid of this special
1485          * handling.
1486          */
1487         if (rdev->constraints->over_current_protection
1488                 && ops->set_over_current_protection) {
1489                 int lim = rdev->constraints->over_curr_limits.prot;
1490
1491                 ret = ops->set_over_current_protection(rdev, lim,
1492                                                        REGULATOR_SEVERITY_PROT,
1493                                                        true);
1494                 if (ret < 0) {
1495                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1496                                  ERR_PTR(ret));
1497                         return ret;
1498                 }
1499         }
1500
1501         if (rdev->constraints->over_current_detection)
1502                 ret = handle_notify_limits(rdev,
1503                                            ops->set_over_current_protection,
1504                                            &rdev->constraints->over_curr_limits);
1505         if (ret) {
1506                 if (ret != -EOPNOTSUPP) {
1507                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1508                                  ERR_PTR(ret));
1509                         return ret;
1510                 }
1511                 rdev_warn(rdev,
1512                           "IC does not support requested over-current limits\n");
1513         }
1514
1515         if (rdev->constraints->over_voltage_detection)
1516                 ret = handle_notify_limits(rdev,
1517                                            ops->set_over_voltage_protection,
1518                                            &rdev->constraints->over_voltage_limits);
1519         if (ret) {
1520                 if (ret != -EOPNOTSUPP) {
1521                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1522                                  ERR_PTR(ret));
1523                         return ret;
1524                 }
1525                 rdev_warn(rdev,
1526                           "IC does not support requested over voltage limits\n");
1527         }
1528
1529         if (rdev->constraints->under_voltage_detection)
1530                 ret = handle_notify_limits(rdev,
1531                                            ops->set_under_voltage_protection,
1532                                            &rdev->constraints->under_voltage_limits);
1533         if (ret) {
1534                 if (ret != -EOPNOTSUPP) {
1535                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1536                                  ERR_PTR(ret));
1537                         return ret;
1538                 }
1539                 rdev_warn(rdev,
1540                           "IC does not support requested under voltage limits\n");
1541         }
1542
1543         if (rdev->constraints->over_temp_detection)
1544                 ret = handle_notify_limits(rdev,
1545                                            ops->set_thermal_protection,
1546                                            &rdev->constraints->temp_limits);
1547         if (ret) {
1548                 if (ret != -EOPNOTSUPP) {
1549                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1550                                  ERR_PTR(ret));
1551                         return ret;
1552                 }
1553                 rdev_warn(rdev,
1554                           "IC does not support requested temperature limits\n");
1555         }
1556
1557         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1558                 bool ad_state = (rdev->constraints->active_discharge ==
1559                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1560
1561                 ret = ops->set_active_discharge(rdev, ad_state);
1562                 if (ret < 0) {
1563                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1564                         return ret;
1565                 }
1566         }
1567
1568         /*
1569          * If there is no mechanism for controlling the regulator then
1570          * flag it as always_on so we don't end up duplicating checks
1571          * for this so much.  Note that we could control the state of
1572          * a supply to control the output on a regulator that has no
1573          * direct control.
1574          */
1575         if (!rdev->ena_pin && !ops->enable) {
1576                 if (rdev->supply_name && !rdev->supply)
1577                         return -EPROBE_DEFER;
1578
1579                 if (rdev->supply)
1580                         rdev->constraints->always_on =
1581                                 rdev->supply->rdev->constraints->always_on;
1582                 else
1583                         rdev->constraints->always_on = true;
1584         }
1585
1586         if (rdev->desc->off_on_delay)
1587                 rdev->last_off = ktime_get();
1588
1589         /* If the constraints say the regulator should be on at this point
1590          * and we have control then make sure it is enabled.
1591          */
1592         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1593                 /* If we want to enable this regulator, make sure that we know
1594                  * the supplying regulator.
1595                  */
1596                 if (rdev->supply_name && !rdev->supply)
1597                         return -EPROBE_DEFER;
1598
1599                 if (rdev->supply) {
1600                         ret = regulator_enable(rdev->supply);
1601                         if (ret < 0) {
1602                                 _regulator_put(rdev->supply);
1603                                 rdev->supply = NULL;
1604                                 return ret;
1605                         }
1606                 }
1607
1608                 ret = _regulator_do_enable(rdev);
1609                 if (ret < 0 && ret != -EINVAL) {
1610                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1611                         return ret;
1612                 }
1613
1614                 if (rdev->constraints->always_on)
1615                         rdev->use_count++;
1616         }
1617
1618         print_constraints(rdev);
1619         return 0;
1620 }
1621
1622 /**
1623  * set_supply - set regulator supply regulator
1624  * @rdev: regulator name
1625  * @supply_rdev: supply regulator name
1626  *
1627  * Called by platform initialisation code to set the supply regulator for this
1628  * regulator. This ensures that a regulators supply will also be enabled by the
1629  * core if it's child is enabled.
1630  */
1631 static int set_supply(struct regulator_dev *rdev,
1632                       struct regulator_dev *supply_rdev)
1633 {
1634         int err;
1635
1636         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1637
1638         if (!try_module_get(supply_rdev->owner))
1639                 return -ENODEV;
1640
1641         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1642         if (rdev->supply == NULL) {
1643                 err = -ENOMEM;
1644                 return err;
1645         }
1646         supply_rdev->open_count++;
1647
1648         return 0;
1649 }
1650
1651 /**
1652  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1653  * @rdev:         regulator source
1654  * @consumer_dev_name: dev_name() string for device supply applies to
1655  * @supply:       symbolic name for supply
1656  *
1657  * Allows platform initialisation code to map physical regulator
1658  * sources to symbolic names for supplies for use by devices.  Devices
1659  * should use these symbolic names to request regulators, avoiding the
1660  * need to provide board-specific regulator names as platform data.
1661  */
1662 static int set_consumer_device_supply(struct regulator_dev *rdev,
1663                                       const char *consumer_dev_name,
1664                                       const char *supply)
1665 {
1666         struct regulator_map *node, *new_node;
1667         int has_dev;
1668
1669         if (supply == NULL)
1670                 return -EINVAL;
1671
1672         if (consumer_dev_name != NULL)
1673                 has_dev = 1;
1674         else
1675                 has_dev = 0;
1676
1677         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1678         if (new_node == NULL)
1679                 return -ENOMEM;
1680
1681         new_node->regulator = rdev;
1682         new_node->supply = supply;
1683
1684         if (has_dev) {
1685                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1686                 if (new_node->dev_name == NULL) {
1687                         kfree(new_node);
1688                         return -ENOMEM;
1689                 }
1690         }
1691
1692         mutex_lock(&regulator_list_mutex);
1693         list_for_each_entry(node, &regulator_map_list, list) {
1694                 if (node->dev_name && consumer_dev_name) {
1695                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1696                                 continue;
1697                 } else if (node->dev_name || consumer_dev_name) {
1698                         continue;
1699                 }
1700
1701                 if (strcmp(node->supply, supply) != 0)
1702                         continue;
1703
1704                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1705                          consumer_dev_name,
1706                          dev_name(&node->regulator->dev),
1707                          node->regulator->desc->name,
1708                          supply,
1709                          dev_name(&rdev->dev), rdev_get_name(rdev));
1710                 goto fail;
1711         }
1712
1713         list_add(&new_node->list, &regulator_map_list);
1714         mutex_unlock(&regulator_list_mutex);
1715
1716         return 0;
1717
1718 fail:
1719         mutex_unlock(&regulator_list_mutex);
1720         kfree(new_node->dev_name);
1721         kfree(new_node);
1722         return -EBUSY;
1723 }
1724
1725 static void unset_regulator_supplies(struct regulator_dev *rdev)
1726 {
1727         struct regulator_map *node, *n;
1728
1729         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1730                 if (rdev == node->regulator) {
1731                         list_del(&node->list);
1732                         kfree(node->dev_name);
1733                         kfree(node);
1734                 }
1735         }
1736 }
1737
1738 #ifdef CONFIG_DEBUG_FS
1739 static ssize_t constraint_flags_read_file(struct file *file,
1740                                           char __user *user_buf,
1741                                           size_t count, loff_t *ppos)
1742 {
1743         const struct regulator *regulator = file->private_data;
1744         const struct regulation_constraints *c = regulator->rdev->constraints;
1745         char *buf;
1746         ssize_t ret;
1747
1748         if (!c)
1749                 return 0;
1750
1751         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1752         if (!buf)
1753                 return -ENOMEM;
1754
1755         ret = snprintf(buf, PAGE_SIZE,
1756                         "always_on: %u\n"
1757                         "boot_on: %u\n"
1758                         "apply_uV: %u\n"
1759                         "ramp_disable: %u\n"
1760                         "soft_start: %u\n"
1761                         "pull_down: %u\n"
1762                         "over_current_protection: %u\n",
1763                         c->always_on,
1764                         c->boot_on,
1765                         c->apply_uV,
1766                         c->ramp_disable,
1767                         c->soft_start,
1768                         c->pull_down,
1769                         c->over_current_protection);
1770
1771         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1772         kfree(buf);
1773
1774         return ret;
1775 }
1776
1777 #endif
1778
1779 static const struct file_operations constraint_flags_fops = {
1780 #ifdef CONFIG_DEBUG_FS
1781         .open = simple_open,
1782         .read = constraint_flags_read_file,
1783         .llseek = default_llseek,
1784 #endif
1785 };
1786
1787 #define REG_STR_SIZE    64
1788
1789 static struct regulator *create_regulator(struct regulator_dev *rdev,
1790                                           struct device *dev,
1791                                           const char *supply_name)
1792 {
1793         struct regulator *regulator;
1794         int err = 0;
1795
1796         if (dev) {
1797                 char buf[REG_STR_SIZE];
1798                 int size;
1799
1800                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1801                                 dev->kobj.name, supply_name);
1802                 if (size >= REG_STR_SIZE)
1803                         return NULL;
1804
1805                 supply_name = kstrdup(buf, GFP_KERNEL);
1806                 if (supply_name == NULL)
1807                         return NULL;
1808         } else {
1809                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1810                 if (supply_name == NULL)
1811                         return NULL;
1812         }
1813
1814         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1815         if (regulator == NULL) {
1816                 kfree(supply_name);
1817                 return NULL;
1818         }
1819
1820         regulator->rdev = rdev;
1821         regulator->supply_name = supply_name;
1822
1823         regulator_lock(rdev);
1824         list_add(&regulator->list, &rdev->consumer_list);
1825         regulator_unlock(rdev);
1826
1827         if (dev) {
1828                 regulator->dev = dev;
1829
1830                 /* Add a link to the device sysfs entry */
1831                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1832                                                supply_name);
1833                 if (err) {
1834                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1835                                   dev->kobj.name, ERR_PTR(err));
1836                         /* non-fatal */
1837                 }
1838         }
1839
1840         if (err != -EEXIST)
1841                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1842         if (!regulator->debugfs) {
1843                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1844         } else {
1845                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1846                                    &regulator->uA_load);
1847                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1848                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1849                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1850                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1851                 debugfs_create_file("constraint_flags", 0444,
1852                                     regulator->debugfs, regulator,
1853                                     &constraint_flags_fops);
1854         }
1855
1856         /*
1857          * Check now if the regulator is an always on regulator - if
1858          * it is then we don't need to do nearly so much work for
1859          * enable/disable calls.
1860          */
1861         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1862             _regulator_is_enabled(rdev))
1863                 regulator->always_on = true;
1864
1865         return regulator;
1866 }
1867
1868 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1869 {
1870         if (rdev->constraints && rdev->constraints->enable_time)
1871                 return rdev->constraints->enable_time;
1872         if (rdev->desc->ops->enable_time)
1873                 return rdev->desc->ops->enable_time(rdev);
1874         return rdev->desc->enable_time;
1875 }
1876
1877 static struct regulator_supply_alias *regulator_find_supply_alias(
1878                 struct device *dev, const char *supply)
1879 {
1880         struct regulator_supply_alias *map;
1881
1882         list_for_each_entry(map, &regulator_supply_alias_list, list)
1883                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1884                         return map;
1885
1886         return NULL;
1887 }
1888
1889 static void regulator_supply_alias(struct device **dev, const char **supply)
1890 {
1891         struct regulator_supply_alias *map;
1892
1893         map = regulator_find_supply_alias(*dev, *supply);
1894         if (map) {
1895                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1896                                 *supply, map->alias_supply,
1897                                 dev_name(map->alias_dev));
1898                 *dev = map->alias_dev;
1899                 *supply = map->alias_supply;
1900         }
1901 }
1902
1903 static int regulator_match(struct device *dev, const void *data)
1904 {
1905         struct regulator_dev *r = dev_to_rdev(dev);
1906
1907         return strcmp(rdev_get_name(r), data) == 0;
1908 }
1909
1910 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1911 {
1912         struct device *dev;
1913
1914         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1915
1916         return dev ? dev_to_rdev(dev) : NULL;
1917 }
1918
1919 /**
1920  * regulator_dev_lookup - lookup a regulator device.
1921  * @dev: device for regulator "consumer".
1922  * @supply: Supply name or regulator ID.
1923  *
1924  * If successful, returns a struct regulator_dev that corresponds to the name
1925  * @supply and with the embedded struct device refcount incremented by one.
1926  * The refcount must be dropped by calling put_device().
1927  * On failure one of the following ERR-PTR-encoded values is returned:
1928  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1929  * in the future.
1930  */
1931 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1932                                                   const char *supply)
1933 {
1934         struct regulator_dev *r = NULL;
1935         struct device_node *node;
1936         struct regulator_map *map;
1937         const char *devname = NULL;
1938
1939         regulator_supply_alias(&dev, &supply);
1940
1941         /* first do a dt based lookup */
1942         if (dev && dev->of_node) {
1943                 node = of_get_regulator(dev, supply);
1944                 if (node) {
1945                         r = of_find_regulator_by_node(node);
1946                         if (r)
1947                                 return r;
1948
1949                         /*
1950                          * We have a node, but there is no device.
1951                          * assume it has not registered yet.
1952                          */
1953                         return ERR_PTR(-EPROBE_DEFER);
1954                 }
1955         }
1956
1957         /* if not found, try doing it non-dt way */
1958         if (dev)
1959                 devname = dev_name(dev);
1960
1961         mutex_lock(&regulator_list_mutex);
1962         list_for_each_entry(map, &regulator_map_list, list) {
1963                 /* If the mapping has a device set up it must match */
1964                 if (map->dev_name &&
1965                     (!devname || strcmp(map->dev_name, devname)))
1966                         continue;
1967
1968                 if (strcmp(map->supply, supply) == 0 &&
1969                     get_device(&map->regulator->dev)) {
1970                         r = map->regulator;
1971                         break;
1972                 }
1973         }
1974         mutex_unlock(&regulator_list_mutex);
1975
1976         if (r)
1977                 return r;
1978
1979         r = regulator_lookup_by_name(supply);
1980         if (r)
1981                 return r;
1982
1983         return ERR_PTR(-ENODEV);
1984 }
1985
1986 static int regulator_resolve_supply(struct regulator_dev *rdev)
1987 {
1988         struct regulator_dev *r;
1989         struct device *dev = rdev->dev.parent;
1990         int ret = 0;
1991
1992         /* No supply to resolve? */
1993         if (!rdev->supply_name)
1994                 return 0;
1995
1996         /* Supply already resolved? (fast-path without locking contention) */
1997         if (rdev->supply)
1998                 return 0;
1999
2000         r = regulator_dev_lookup(dev, rdev->supply_name);
2001         if (IS_ERR(r)) {
2002                 ret = PTR_ERR(r);
2003
2004                 /* Did the lookup explicitly defer for us? */
2005                 if (ret == -EPROBE_DEFER)
2006                         goto out;
2007
2008                 if (have_full_constraints()) {
2009                         r = dummy_regulator_rdev;
2010                         get_device(&r->dev);
2011                 } else {
2012                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
2013                                 rdev->supply_name, rdev->desc->name);
2014                         ret = -EPROBE_DEFER;
2015                         goto out;
2016                 }
2017         }
2018
2019         if (r == rdev) {
2020                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2021                         rdev->desc->name, rdev->supply_name);
2022                 if (!have_full_constraints()) {
2023                         ret = -EINVAL;
2024                         goto out;
2025                 }
2026                 r = dummy_regulator_rdev;
2027                 get_device(&r->dev);
2028         }
2029
2030         /*
2031          * If the supply's parent device is not the same as the
2032          * regulator's parent device, then ensure the parent device
2033          * is bound before we resolve the supply, in case the parent
2034          * device get probe deferred and unregisters the supply.
2035          */
2036         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2037                 if (!device_is_bound(r->dev.parent)) {
2038                         put_device(&r->dev);
2039                         ret = -EPROBE_DEFER;
2040                         goto out;
2041                 }
2042         }
2043
2044         /* Recursively resolve the supply of the supply */
2045         ret = regulator_resolve_supply(r);
2046         if (ret < 0) {
2047                 put_device(&r->dev);
2048                 goto out;
2049         }
2050
2051         /*
2052          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2053          * between rdev->supply null check and setting rdev->supply in
2054          * set_supply() from concurrent tasks.
2055          */
2056         regulator_lock(rdev);
2057
2058         /* Supply just resolved by a concurrent task? */
2059         if (rdev->supply) {
2060                 regulator_unlock(rdev);
2061                 put_device(&r->dev);
2062                 goto out;
2063         }
2064
2065         ret = set_supply(rdev, r);
2066         if (ret < 0) {
2067                 regulator_unlock(rdev);
2068                 put_device(&r->dev);
2069                 goto out;
2070         }
2071
2072         regulator_unlock(rdev);
2073
2074         /*
2075          * In set_machine_constraints() we may have turned this regulator on
2076          * but we couldn't propagate to the supply if it hadn't been resolved
2077          * yet.  Do it now.
2078          */
2079         if (rdev->use_count) {
2080                 ret = regulator_enable(rdev->supply);
2081                 if (ret < 0) {
2082                         _regulator_put(rdev->supply);
2083                         rdev->supply = NULL;
2084                         goto out;
2085                 }
2086         }
2087
2088 out:
2089         return ret;
2090 }
2091
2092 /* Internal regulator request function */
2093 struct regulator *_regulator_get(struct device *dev, const char *id,
2094                                  enum regulator_get_type get_type)
2095 {
2096         struct regulator_dev *rdev;
2097         struct regulator *regulator;
2098         struct device_link *link;
2099         int ret;
2100
2101         if (get_type >= MAX_GET_TYPE) {
2102                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2103                 return ERR_PTR(-EINVAL);
2104         }
2105
2106         if (id == NULL) {
2107                 pr_err("get() with no identifier\n");
2108                 return ERR_PTR(-EINVAL);
2109         }
2110
2111         rdev = regulator_dev_lookup(dev, id);
2112         if (IS_ERR(rdev)) {
2113                 ret = PTR_ERR(rdev);
2114
2115                 /*
2116                  * If regulator_dev_lookup() fails with error other
2117                  * than -ENODEV our job here is done, we simply return it.
2118                  */
2119                 if (ret != -ENODEV)
2120                         return ERR_PTR(ret);
2121
2122                 if (!have_full_constraints()) {
2123                         dev_warn(dev,
2124                                  "incomplete constraints, dummy supplies not allowed\n");
2125                         return ERR_PTR(-ENODEV);
2126                 }
2127
2128                 switch (get_type) {
2129                 case NORMAL_GET:
2130                         /*
2131                          * Assume that a regulator is physically present and
2132                          * enabled, even if it isn't hooked up, and just
2133                          * provide a dummy.
2134                          */
2135                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2136                         rdev = dummy_regulator_rdev;
2137                         get_device(&rdev->dev);
2138                         break;
2139
2140                 case EXCLUSIVE_GET:
2141                         dev_warn(dev,
2142                                  "dummy supplies not allowed for exclusive requests\n");
2143                         fallthrough;
2144
2145                 default:
2146                         return ERR_PTR(-ENODEV);
2147                 }
2148         }
2149
2150         if (rdev->exclusive) {
2151                 regulator = ERR_PTR(-EPERM);
2152                 put_device(&rdev->dev);
2153                 return regulator;
2154         }
2155
2156         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2157                 regulator = ERR_PTR(-EBUSY);
2158                 put_device(&rdev->dev);
2159                 return regulator;
2160         }
2161
2162         mutex_lock(&regulator_list_mutex);
2163         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2164         mutex_unlock(&regulator_list_mutex);
2165
2166         if (ret != 0) {
2167                 regulator = ERR_PTR(-EPROBE_DEFER);
2168                 put_device(&rdev->dev);
2169                 return regulator;
2170         }
2171
2172         ret = regulator_resolve_supply(rdev);
2173         if (ret < 0) {
2174                 regulator = ERR_PTR(ret);
2175                 put_device(&rdev->dev);
2176                 return regulator;
2177         }
2178
2179         if (!try_module_get(rdev->owner)) {
2180                 regulator = ERR_PTR(-EPROBE_DEFER);
2181                 put_device(&rdev->dev);
2182                 return regulator;
2183         }
2184
2185         regulator = create_regulator(rdev, dev, id);
2186         if (regulator == NULL) {
2187                 regulator = ERR_PTR(-ENOMEM);
2188                 module_put(rdev->owner);
2189                 put_device(&rdev->dev);
2190                 return regulator;
2191         }
2192
2193         rdev->open_count++;
2194         if (get_type == EXCLUSIVE_GET) {
2195                 rdev->exclusive = 1;
2196
2197                 ret = _regulator_is_enabled(rdev);
2198                 if (ret > 0) {
2199                         rdev->use_count = 1;
2200                         regulator->enable_count = 1;
2201                 } else {
2202                         rdev->use_count = 0;
2203                         regulator->enable_count = 0;
2204                 }
2205         }
2206
2207         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2208         if (!IS_ERR_OR_NULL(link))
2209                 regulator->device_link = true;
2210
2211         return regulator;
2212 }
2213
2214 /**
2215  * regulator_get - lookup and obtain a reference to a regulator.
2216  * @dev: device for regulator "consumer"
2217  * @id: Supply name or regulator ID.
2218  *
2219  * Returns a struct regulator corresponding to the regulator producer,
2220  * or IS_ERR() condition containing errno.
2221  *
2222  * Use of supply names configured via set_consumer_device_supply() is
2223  * strongly encouraged.  It is recommended that the supply name used
2224  * should match the name used for the supply and/or the relevant
2225  * device pins in the datasheet.
2226  */
2227 struct regulator *regulator_get(struct device *dev, const char *id)
2228 {
2229         return _regulator_get(dev, id, NORMAL_GET);
2230 }
2231 EXPORT_SYMBOL_GPL(regulator_get);
2232
2233 /**
2234  * regulator_get_exclusive - obtain exclusive access to a regulator.
2235  * @dev: device for regulator "consumer"
2236  * @id: Supply name or regulator ID.
2237  *
2238  * Returns a struct regulator corresponding to the regulator producer,
2239  * or IS_ERR() condition containing errno.  Other consumers will be
2240  * unable to obtain this regulator while this reference is held and the
2241  * use count for the regulator will be initialised to reflect the current
2242  * state of the regulator.
2243  *
2244  * This is intended for use by consumers which cannot tolerate shared
2245  * use of the regulator such as those which need to force the
2246  * regulator off for correct operation of the hardware they are
2247  * controlling.
2248  *
2249  * Use of supply names configured via set_consumer_device_supply() is
2250  * strongly encouraged.  It is recommended that the supply name used
2251  * should match the name used for the supply and/or the relevant
2252  * device pins in the datasheet.
2253  */
2254 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2255 {
2256         return _regulator_get(dev, id, EXCLUSIVE_GET);
2257 }
2258 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2259
2260 /**
2261  * regulator_get_optional - obtain optional access to a regulator.
2262  * @dev: device for regulator "consumer"
2263  * @id: Supply name or regulator ID.
2264  *
2265  * Returns a struct regulator corresponding to the regulator producer,
2266  * or IS_ERR() condition containing errno.
2267  *
2268  * This is intended for use by consumers for devices which can have
2269  * some supplies unconnected in normal use, such as some MMC devices.
2270  * It can allow the regulator core to provide stub supplies for other
2271  * supplies requested using normal regulator_get() calls without
2272  * disrupting the operation of drivers that can handle absent
2273  * supplies.
2274  *
2275  * Use of supply names configured via set_consumer_device_supply() is
2276  * strongly encouraged.  It is recommended that the supply name used
2277  * should match the name used for the supply and/or the relevant
2278  * device pins in the datasheet.
2279  */
2280 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2281 {
2282         return _regulator_get(dev, id, OPTIONAL_GET);
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_get_optional);
2285
2286 static void destroy_regulator(struct regulator *regulator)
2287 {
2288         struct regulator_dev *rdev = regulator->rdev;
2289
2290         debugfs_remove_recursive(regulator->debugfs);
2291
2292         if (regulator->dev) {
2293                 if (regulator->device_link)
2294                         device_link_remove(regulator->dev, &rdev->dev);
2295
2296                 /* remove any sysfs entries */
2297                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2298         }
2299
2300         regulator_lock(rdev);
2301         list_del(&regulator->list);
2302
2303         rdev->open_count--;
2304         rdev->exclusive = 0;
2305         regulator_unlock(rdev);
2306
2307         kfree_const(regulator->supply_name);
2308         kfree(regulator);
2309 }
2310
2311 /* regulator_list_mutex lock held by regulator_put() */
2312 static void _regulator_put(struct regulator *regulator)
2313 {
2314         struct regulator_dev *rdev;
2315
2316         if (IS_ERR_OR_NULL(regulator))
2317                 return;
2318
2319         lockdep_assert_held_once(&regulator_list_mutex);
2320
2321         /* Docs say you must disable before calling regulator_put() */
2322         WARN_ON(regulator->enable_count);
2323
2324         rdev = regulator->rdev;
2325
2326         destroy_regulator(regulator);
2327
2328         module_put(rdev->owner);
2329         put_device(&rdev->dev);
2330 }
2331
2332 /**
2333  * regulator_put - "free" the regulator source
2334  * @regulator: regulator source
2335  *
2336  * Note: drivers must ensure that all regulator_enable calls made on this
2337  * regulator source are balanced by regulator_disable calls prior to calling
2338  * this function.
2339  */
2340 void regulator_put(struct regulator *regulator)
2341 {
2342         mutex_lock(&regulator_list_mutex);
2343         _regulator_put(regulator);
2344         mutex_unlock(&regulator_list_mutex);
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_put);
2347
2348 /**
2349  * regulator_register_supply_alias - Provide device alias for supply lookup
2350  *
2351  * @dev: device that will be given as the regulator "consumer"
2352  * @id: Supply name or regulator ID
2353  * @alias_dev: device that should be used to lookup the supply
2354  * @alias_id: Supply name or regulator ID that should be used to lookup the
2355  * supply
2356  *
2357  * All lookups for id on dev will instead be conducted for alias_id on
2358  * alias_dev.
2359  */
2360 int regulator_register_supply_alias(struct device *dev, const char *id,
2361                                     struct device *alias_dev,
2362                                     const char *alias_id)
2363 {
2364         struct regulator_supply_alias *map;
2365
2366         map = regulator_find_supply_alias(dev, id);
2367         if (map)
2368                 return -EEXIST;
2369
2370         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2371         if (!map)
2372                 return -ENOMEM;
2373
2374         map->src_dev = dev;
2375         map->src_supply = id;
2376         map->alias_dev = alias_dev;
2377         map->alias_supply = alias_id;
2378
2379         list_add(&map->list, &regulator_supply_alias_list);
2380
2381         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2382                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2387
2388 /**
2389  * regulator_unregister_supply_alias - Remove device alias
2390  *
2391  * @dev: device that will be given as the regulator "consumer"
2392  * @id: Supply name or regulator ID
2393  *
2394  * Remove a lookup alias if one exists for id on dev.
2395  */
2396 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2397 {
2398         struct regulator_supply_alias *map;
2399
2400         map = regulator_find_supply_alias(dev, id);
2401         if (map) {
2402                 list_del(&map->list);
2403                 kfree(map);
2404         }
2405 }
2406 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2407
2408 /**
2409  * regulator_bulk_register_supply_alias - register multiple aliases
2410  *
2411  * @dev: device that will be given as the regulator "consumer"
2412  * @id: List of supply names or regulator IDs
2413  * @alias_dev: device that should be used to lookup the supply
2414  * @alias_id: List of supply names or regulator IDs that should be used to
2415  * lookup the supply
2416  * @num_id: Number of aliases to register
2417  *
2418  * @return 0 on success, an errno on failure.
2419  *
2420  * This helper function allows drivers to register several supply
2421  * aliases in one operation.  If any of the aliases cannot be
2422  * registered any aliases that were registered will be removed
2423  * before returning to the caller.
2424  */
2425 int regulator_bulk_register_supply_alias(struct device *dev,
2426                                          const char *const *id,
2427                                          struct device *alias_dev,
2428                                          const char *const *alias_id,
2429                                          int num_id)
2430 {
2431         int i;
2432         int ret;
2433
2434         for (i = 0; i < num_id; ++i) {
2435                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2436                                                       alias_id[i]);
2437                 if (ret < 0)
2438                         goto err;
2439         }
2440
2441         return 0;
2442
2443 err:
2444         dev_err(dev,
2445                 "Failed to create supply alias %s,%s -> %s,%s\n",
2446                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2447
2448         while (--i >= 0)
2449                 regulator_unregister_supply_alias(dev, id[i]);
2450
2451         return ret;
2452 }
2453 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2454
2455 /**
2456  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2457  *
2458  * @dev: device that will be given as the regulator "consumer"
2459  * @id: List of supply names or regulator IDs
2460  * @num_id: Number of aliases to unregister
2461  *
2462  * This helper function allows drivers to unregister several supply
2463  * aliases in one operation.
2464  */
2465 void regulator_bulk_unregister_supply_alias(struct device *dev,
2466                                             const char *const *id,
2467                                             int num_id)
2468 {
2469         int i;
2470
2471         for (i = 0; i < num_id; ++i)
2472                 regulator_unregister_supply_alias(dev, id[i]);
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2475
2476
2477 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2478 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2479                                 const struct regulator_config *config)
2480 {
2481         struct regulator_enable_gpio *pin, *new_pin;
2482         struct gpio_desc *gpiod;
2483
2484         gpiod = config->ena_gpiod;
2485         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2486
2487         mutex_lock(&regulator_list_mutex);
2488
2489         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2490                 if (pin->gpiod == gpiod) {
2491                         rdev_dbg(rdev, "GPIO is already used\n");
2492                         goto update_ena_gpio_to_rdev;
2493                 }
2494         }
2495
2496         if (new_pin == NULL) {
2497                 mutex_unlock(&regulator_list_mutex);
2498                 return -ENOMEM;
2499         }
2500
2501         pin = new_pin;
2502         new_pin = NULL;
2503
2504         pin->gpiod = gpiod;
2505         list_add(&pin->list, &regulator_ena_gpio_list);
2506
2507 update_ena_gpio_to_rdev:
2508         pin->request_count++;
2509         rdev->ena_pin = pin;
2510
2511         mutex_unlock(&regulator_list_mutex);
2512         kfree(new_pin);
2513
2514         return 0;
2515 }
2516
2517 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2518 {
2519         struct regulator_enable_gpio *pin, *n;
2520
2521         if (!rdev->ena_pin)
2522                 return;
2523
2524         /* Free the GPIO only in case of no use */
2525         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2526                 if (pin != rdev->ena_pin)
2527                         continue;
2528
2529                 if (--pin->request_count)
2530                         break;
2531
2532                 gpiod_put(pin->gpiod);
2533                 list_del(&pin->list);
2534                 kfree(pin);
2535                 break;
2536         }
2537
2538         rdev->ena_pin = NULL;
2539 }
2540
2541 /**
2542  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2543  * @rdev: regulator_dev structure
2544  * @enable: enable GPIO at initial use?
2545  *
2546  * GPIO is enabled in case of initial use. (enable_count is 0)
2547  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2548  */
2549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2550 {
2551         struct regulator_enable_gpio *pin = rdev->ena_pin;
2552
2553         if (!pin)
2554                 return -EINVAL;
2555
2556         if (enable) {
2557                 /* Enable GPIO at initial use */
2558                 if (pin->enable_count == 0)
2559                         gpiod_set_value_cansleep(pin->gpiod, 1);
2560
2561                 pin->enable_count++;
2562         } else {
2563                 if (pin->enable_count > 1) {
2564                         pin->enable_count--;
2565                         return 0;
2566                 }
2567
2568                 /* Disable GPIO if not used */
2569                 if (pin->enable_count <= 1) {
2570                         gpiod_set_value_cansleep(pin->gpiod, 0);
2571                         pin->enable_count = 0;
2572                 }
2573         }
2574
2575         return 0;
2576 }
2577
2578 /**
2579  * _regulator_delay_helper - a delay helper function
2580  * @delay: time to delay in microseconds
2581  *
2582  * Delay for the requested amount of time as per the guidelines in:
2583  *
2584  *     Documentation/timers/timers-howto.rst
2585  *
2586  * The assumption here is that these regulator operations will never used in
2587  * atomic context and therefore sleeping functions can be used.
2588  */
2589 static void _regulator_delay_helper(unsigned int delay)
2590 {
2591         unsigned int ms = delay / 1000;
2592         unsigned int us = delay % 1000;
2593
2594         if (ms > 0) {
2595                 /*
2596                  * For small enough values, handle super-millisecond
2597                  * delays in the usleep_range() call below.
2598                  */
2599                 if (ms < 20)
2600                         us += ms * 1000;
2601                 else
2602                         msleep(ms);
2603         }
2604
2605         /*
2606          * Give the scheduler some room to coalesce with any other
2607          * wakeup sources. For delays shorter than 10 us, don't even
2608          * bother setting up high-resolution timers and just busy-
2609          * loop.
2610          */
2611         if (us >= 10)
2612                 usleep_range(us, us + 100);
2613         else
2614                 udelay(us);
2615 }
2616
2617 /**
2618  * _regulator_check_status_enabled
2619  *
2620  * A helper function to check if the regulator status can be interpreted
2621  * as 'regulator is enabled'.
2622  * @rdev: the regulator device to check
2623  *
2624  * Return:
2625  * * 1                  - if status shows regulator is in enabled state
2626  * * 0                  - if not enabled state
2627  * * Error Value        - as received from ops->get_status()
2628  */
2629 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2630 {
2631         int ret = rdev->desc->ops->get_status(rdev);
2632
2633         if (ret < 0) {
2634                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2635                 return ret;
2636         }
2637
2638         switch (ret) {
2639         case REGULATOR_STATUS_OFF:
2640         case REGULATOR_STATUS_ERROR:
2641         case REGULATOR_STATUS_UNDEFINED:
2642                 return 0;
2643         default:
2644                 return 1;
2645         }
2646 }
2647
2648 static int _regulator_do_enable(struct regulator_dev *rdev)
2649 {
2650         int ret, delay;
2651
2652         /* Query before enabling in case configuration dependent.  */
2653         ret = _regulator_get_enable_time(rdev);
2654         if (ret >= 0) {
2655                 delay = ret;
2656         } else {
2657                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2658                 delay = 0;
2659         }
2660
2661         trace_regulator_enable(rdev_get_name(rdev));
2662
2663         if (rdev->desc->off_on_delay && rdev->last_off) {
2664                 /* if needed, keep a distance of off_on_delay from last time
2665                  * this regulator was disabled.
2666                  */
2667                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2668                 s64 remaining = ktime_us_delta(end, ktime_get());
2669
2670                 if (remaining > 0)
2671                         _regulator_delay_helper(remaining);
2672         }
2673
2674         if (rdev->ena_pin) {
2675                 if (!rdev->ena_gpio_state) {
2676                         ret = regulator_ena_gpio_ctrl(rdev, true);
2677                         if (ret < 0)
2678                                 return ret;
2679                         rdev->ena_gpio_state = 1;
2680                 }
2681         } else if (rdev->desc->ops->enable) {
2682                 ret = rdev->desc->ops->enable(rdev);
2683                 if (ret < 0)
2684                         return ret;
2685         } else {
2686                 return -EINVAL;
2687         }
2688
2689         /* Allow the regulator to ramp; it would be useful to extend
2690          * this for bulk operations so that the regulators can ramp
2691          * together.
2692          */
2693         trace_regulator_enable_delay(rdev_get_name(rdev));
2694
2695         /* If poll_enabled_time is set, poll upto the delay calculated
2696          * above, delaying poll_enabled_time uS to check if the regulator
2697          * actually got enabled.
2698          * If the regulator isn't enabled after our delay helper has expired,
2699          * return -ETIMEDOUT.
2700          */
2701         if (rdev->desc->poll_enabled_time) {
2702                 int time_remaining = delay;
2703
2704                 while (time_remaining > 0) {
2705                         _regulator_delay_helper(rdev->desc->poll_enabled_time);
2706
2707                         if (rdev->desc->ops->get_status) {
2708                                 ret = _regulator_check_status_enabled(rdev);
2709                                 if (ret < 0)
2710                                         return ret;
2711                                 else if (ret)
2712                                         break;
2713                         } else if (rdev->desc->ops->is_enabled(rdev))
2714                                 break;
2715
2716                         time_remaining -= rdev->desc->poll_enabled_time;
2717                 }
2718
2719                 if (time_remaining <= 0) {
2720                         rdev_err(rdev, "Enabled check timed out\n");
2721                         return -ETIMEDOUT;
2722                 }
2723         } else {
2724                 _regulator_delay_helper(delay);
2725         }
2726
2727         trace_regulator_enable_complete(rdev_get_name(rdev));
2728
2729         return 0;
2730 }
2731
2732 /**
2733  * _regulator_handle_consumer_enable - handle that a consumer enabled
2734  * @regulator: regulator source
2735  *
2736  * Some things on a regulator consumer (like the contribution towards total
2737  * load on the regulator) only have an effect when the consumer wants the
2738  * regulator enabled.  Explained in example with two consumers of the same
2739  * regulator:
2740  *   consumer A: set_load(100);       => total load = 0
2741  *   consumer A: regulator_enable();  => total load = 100
2742  *   consumer B: set_load(1000);      => total load = 100
2743  *   consumer B: regulator_enable();  => total load = 1100
2744  *   consumer A: regulator_disable(); => total_load = 1000
2745  *
2746  * This function (together with _regulator_handle_consumer_disable) is
2747  * responsible for keeping track of the refcount for a given regulator consumer
2748  * and applying / unapplying these things.
2749  *
2750  * Returns 0 upon no error; -error upon error.
2751  */
2752 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2753 {
2754         int ret;
2755         struct regulator_dev *rdev = regulator->rdev;
2756
2757         lockdep_assert_held_once(&rdev->mutex.base);
2758
2759         regulator->enable_count++;
2760         if (regulator->uA_load && regulator->enable_count == 1) {
2761                 ret = drms_uA_update(rdev);
2762                 if (ret)
2763                         regulator->enable_count--;
2764                 return ret;
2765         }
2766
2767         return 0;
2768 }
2769
2770 /**
2771  * _regulator_handle_consumer_disable - handle that a consumer disabled
2772  * @regulator: regulator source
2773  *
2774  * The opposite of _regulator_handle_consumer_enable().
2775  *
2776  * Returns 0 upon no error; -error upon error.
2777  */
2778 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2779 {
2780         struct regulator_dev *rdev = regulator->rdev;
2781
2782         lockdep_assert_held_once(&rdev->mutex.base);
2783
2784         if (!regulator->enable_count) {
2785                 rdev_err(rdev, "Underflow of regulator enable count\n");
2786                 return -EINVAL;
2787         }
2788
2789         regulator->enable_count--;
2790         if (regulator->uA_load && regulator->enable_count == 0)
2791                 return drms_uA_update(rdev);
2792
2793         return 0;
2794 }
2795
2796 /* locks held by regulator_enable() */
2797 static int _regulator_enable(struct regulator *regulator)
2798 {
2799         struct regulator_dev *rdev = regulator->rdev;
2800         int ret;
2801
2802         lockdep_assert_held_once(&rdev->mutex.base);
2803
2804         if (rdev->use_count == 0 && rdev->supply) {
2805                 ret = _regulator_enable(rdev->supply);
2806                 if (ret < 0)
2807                         return ret;
2808         }
2809
2810         /* balance only if there are regulators coupled */
2811         if (rdev->coupling_desc.n_coupled > 1) {
2812                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2813                 if (ret < 0)
2814                         goto err_disable_supply;
2815         }
2816
2817         ret = _regulator_handle_consumer_enable(regulator);
2818         if (ret < 0)
2819                 goto err_disable_supply;
2820
2821         if (rdev->use_count == 0) {
2822                 /*
2823                  * The regulator may already be enabled if it's not switchable
2824                  * or was left on
2825                  */
2826                 ret = _regulator_is_enabled(rdev);
2827                 if (ret == -EINVAL || ret == 0) {
2828                         if (!regulator_ops_is_valid(rdev,
2829                                         REGULATOR_CHANGE_STATUS)) {
2830                                 ret = -EPERM;
2831                                 goto err_consumer_disable;
2832                         }
2833
2834                         ret = _regulator_do_enable(rdev);
2835                         if (ret < 0)
2836                                 goto err_consumer_disable;
2837
2838                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2839                                              NULL);
2840                 } else if (ret < 0) {
2841                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2842                         goto err_consumer_disable;
2843                 }
2844                 /* Fallthrough on positive return values - already enabled */
2845         }
2846
2847         rdev->use_count++;
2848
2849         return 0;
2850
2851 err_consumer_disable:
2852         _regulator_handle_consumer_disable(regulator);
2853
2854 err_disable_supply:
2855         if (rdev->use_count == 0 && rdev->supply)
2856                 _regulator_disable(rdev->supply);
2857
2858         return ret;
2859 }
2860
2861 /**
2862  * regulator_enable - enable regulator output
2863  * @regulator: regulator source
2864  *
2865  * Request that the regulator be enabled with the regulator output at
2866  * the predefined voltage or current value.  Calls to regulator_enable()
2867  * must be balanced with calls to regulator_disable().
2868  *
2869  * NOTE: the output value can be set by other drivers, boot loader or may be
2870  * hardwired in the regulator.
2871  */
2872 int regulator_enable(struct regulator *regulator)
2873 {
2874         struct regulator_dev *rdev = regulator->rdev;
2875         struct ww_acquire_ctx ww_ctx;
2876         int ret;
2877
2878         regulator_lock_dependent(rdev, &ww_ctx);
2879         ret = _regulator_enable(regulator);
2880         regulator_unlock_dependent(rdev, &ww_ctx);
2881
2882         return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_enable);
2885
2886 static int _regulator_do_disable(struct regulator_dev *rdev)
2887 {
2888         int ret;
2889
2890         trace_regulator_disable(rdev_get_name(rdev));
2891
2892         if (rdev->ena_pin) {
2893                 if (rdev->ena_gpio_state) {
2894                         ret = regulator_ena_gpio_ctrl(rdev, false);
2895                         if (ret < 0)
2896                                 return ret;
2897                         rdev->ena_gpio_state = 0;
2898                 }
2899
2900         } else if (rdev->desc->ops->disable) {
2901                 ret = rdev->desc->ops->disable(rdev);
2902                 if (ret != 0)
2903                         return ret;
2904         }
2905
2906         if (rdev->desc->off_on_delay)
2907                 rdev->last_off = ktime_get();
2908
2909         trace_regulator_disable_complete(rdev_get_name(rdev));
2910
2911         return 0;
2912 }
2913
2914 /* locks held by regulator_disable() */
2915 static int _regulator_disable(struct regulator *regulator)
2916 {
2917         struct regulator_dev *rdev = regulator->rdev;
2918         int ret = 0;
2919
2920         lockdep_assert_held_once(&rdev->mutex.base);
2921
2922         if (WARN(rdev->use_count <= 0,
2923                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2924                 return -EIO;
2925
2926         /* are we the last user and permitted to disable ? */
2927         if (rdev->use_count == 1 &&
2928             (rdev->constraints && !rdev->constraints->always_on)) {
2929
2930                 /* we are last user */
2931                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2932                         ret = _notifier_call_chain(rdev,
2933                                                    REGULATOR_EVENT_PRE_DISABLE,
2934                                                    NULL);
2935                         if (ret & NOTIFY_STOP_MASK)
2936                                 return -EINVAL;
2937
2938                         ret = _regulator_do_disable(rdev);
2939                         if (ret < 0) {
2940                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2941                                 _notifier_call_chain(rdev,
2942                                                 REGULATOR_EVENT_ABORT_DISABLE,
2943                                                 NULL);
2944                                 return ret;
2945                         }
2946                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2947                                         NULL);
2948                 }
2949
2950                 rdev->use_count = 0;
2951         } else if (rdev->use_count > 1) {
2952                 rdev->use_count--;
2953         }
2954
2955         if (ret == 0)
2956                 ret = _regulator_handle_consumer_disable(regulator);
2957
2958         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2959                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2960
2961         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2962                 ret = _regulator_disable(rdev->supply);
2963
2964         return ret;
2965 }
2966
2967 /**
2968  * regulator_disable - disable regulator output
2969  * @regulator: regulator source
2970  *
2971  * Disable the regulator output voltage or current.  Calls to
2972  * regulator_enable() must be balanced with calls to
2973  * regulator_disable().
2974  *
2975  * NOTE: this will only disable the regulator output if no other consumer
2976  * devices have it enabled, the regulator device supports disabling and
2977  * machine constraints permit this operation.
2978  */
2979 int regulator_disable(struct regulator *regulator)
2980 {
2981         struct regulator_dev *rdev = regulator->rdev;
2982         struct ww_acquire_ctx ww_ctx;
2983         int ret;
2984
2985         regulator_lock_dependent(rdev, &ww_ctx);
2986         ret = _regulator_disable(regulator);
2987         regulator_unlock_dependent(rdev, &ww_ctx);
2988
2989         return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_disable);
2992
2993 /* locks held by regulator_force_disable() */
2994 static int _regulator_force_disable(struct regulator_dev *rdev)
2995 {
2996         int ret = 0;
2997
2998         lockdep_assert_held_once(&rdev->mutex.base);
2999
3000         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3001                         REGULATOR_EVENT_PRE_DISABLE, NULL);
3002         if (ret & NOTIFY_STOP_MASK)
3003                 return -EINVAL;
3004
3005         ret = _regulator_do_disable(rdev);
3006         if (ret < 0) {
3007                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3008                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3009                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3010                 return ret;
3011         }
3012
3013         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3014                         REGULATOR_EVENT_DISABLE, NULL);
3015
3016         return 0;
3017 }
3018
3019 /**
3020  * regulator_force_disable - force disable regulator output
3021  * @regulator: regulator source
3022  *
3023  * Forcibly disable the regulator output voltage or current.
3024  * NOTE: this *will* disable the regulator output even if other consumer
3025  * devices have it enabled. This should be used for situations when device
3026  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3027  */
3028 int regulator_force_disable(struct regulator *regulator)
3029 {
3030         struct regulator_dev *rdev = regulator->rdev;
3031         struct ww_acquire_ctx ww_ctx;
3032         int ret;
3033
3034         regulator_lock_dependent(rdev, &ww_ctx);
3035
3036         ret = _regulator_force_disable(regulator->rdev);
3037
3038         if (rdev->coupling_desc.n_coupled > 1)
3039                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041         if (regulator->uA_load) {
3042                 regulator->uA_load = 0;
3043                 ret = drms_uA_update(rdev);
3044         }
3045
3046         if (rdev->use_count != 0 && rdev->supply)
3047                 _regulator_disable(rdev->supply);
3048
3049         regulator_unlock_dependent(rdev, &ww_ctx);
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_force_disable);
3054
3055 static void regulator_disable_work(struct work_struct *work)
3056 {
3057         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3058                                                   disable_work.work);
3059         struct ww_acquire_ctx ww_ctx;
3060         int count, i, ret;
3061         struct regulator *regulator;
3062         int total_count = 0;
3063
3064         regulator_lock_dependent(rdev, &ww_ctx);
3065
3066         /*
3067          * Workqueue functions queue the new work instance while the previous
3068          * work instance is being processed. Cancel the queued work instance
3069          * as the work instance under processing does the job of the queued
3070          * work instance.
3071          */
3072         cancel_delayed_work(&rdev->disable_work);
3073
3074         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3075                 count = regulator->deferred_disables;
3076
3077                 if (!count)
3078                         continue;
3079
3080                 total_count += count;
3081                 regulator->deferred_disables = 0;
3082
3083                 for (i = 0; i < count; i++) {
3084                         ret = _regulator_disable(regulator);
3085                         if (ret != 0)
3086                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3087                                          ERR_PTR(ret));
3088                 }
3089         }
3090         WARN_ON(!total_count);
3091
3092         if (rdev->coupling_desc.n_coupled > 1)
3093                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3094
3095         regulator_unlock_dependent(rdev, &ww_ctx);
3096 }
3097
3098 /**
3099  * regulator_disable_deferred - disable regulator output with delay
3100  * @regulator: regulator source
3101  * @ms: milliseconds until the regulator is disabled
3102  *
3103  * Execute regulator_disable() on the regulator after a delay.  This
3104  * is intended for use with devices that require some time to quiesce.
3105  *
3106  * NOTE: this will only disable the regulator output if no other consumer
3107  * devices have it enabled, the regulator device supports disabling and
3108  * machine constraints permit this operation.
3109  */
3110 int regulator_disable_deferred(struct regulator *regulator, int ms)
3111 {
3112         struct regulator_dev *rdev = regulator->rdev;
3113
3114         if (!ms)
3115                 return regulator_disable(regulator);
3116
3117         regulator_lock(rdev);
3118         regulator->deferred_disables++;
3119         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3120                          msecs_to_jiffies(ms));
3121         regulator_unlock(rdev);
3122
3123         return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3126
3127 static int _regulator_is_enabled(struct regulator_dev *rdev)
3128 {
3129         /* A GPIO control always takes precedence */
3130         if (rdev->ena_pin)
3131                 return rdev->ena_gpio_state;
3132
3133         /* If we don't know then assume that the regulator is always on */
3134         if (!rdev->desc->ops->is_enabled)
3135                 return 1;
3136
3137         return rdev->desc->ops->is_enabled(rdev);
3138 }
3139
3140 static int _regulator_list_voltage(struct regulator_dev *rdev,
3141                                    unsigned selector, int lock)
3142 {
3143         const struct regulator_ops *ops = rdev->desc->ops;
3144         int ret;
3145
3146         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3147                 return rdev->desc->fixed_uV;
3148
3149         if (ops->list_voltage) {
3150                 if (selector >= rdev->desc->n_voltages)
3151                         return -EINVAL;
3152                 if (selector < rdev->desc->linear_min_sel)
3153                         return 0;
3154                 if (lock)
3155                         regulator_lock(rdev);
3156                 ret = ops->list_voltage(rdev, selector);
3157                 if (lock)
3158                         regulator_unlock(rdev);
3159         } else if (rdev->is_switch && rdev->supply) {
3160                 ret = _regulator_list_voltage(rdev->supply->rdev,
3161                                               selector, lock);
3162         } else {
3163                 return -EINVAL;
3164         }
3165
3166         if (ret > 0) {
3167                 if (ret < rdev->constraints->min_uV)
3168                         ret = 0;
3169                 else if (ret > rdev->constraints->max_uV)
3170                         ret = 0;
3171         }
3172
3173         return ret;
3174 }
3175
3176 /**
3177  * regulator_is_enabled - is the regulator output enabled
3178  * @regulator: regulator source
3179  *
3180  * Returns positive if the regulator driver backing the source/client
3181  * has requested that the device be enabled, zero if it hasn't, else a
3182  * negative errno code.
3183  *
3184  * Note that the device backing this regulator handle can have multiple
3185  * users, so it might be enabled even if regulator_enable() was never
3186  * called for this particular source.
3187  */
3188 int regulator_is_enabled(struct regulator *regulator)
3189 {
3190         int ret;
3191
3192         if (regulator->always_on)
3193                 return 1;
3194
3195         regulator_lock(regulator->rdev);
3196         ret = _regulator_is_enabled(regulator->rdev);
3197         regulator_unlock(regulator->rdev);
3198
3199         return ret;
3200 }
3201 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3202
3203 /**
3204  * regulator_count_voltages - count regulator_list_voltage() selectors
3205  * @regulator: regulator source
3206  *
3207  * Returns number of selectors, or negative errno.  Selectors are
3208  * numbered starting at zero, and typically correspond to bitfields
3209  * in hardware registers.
3210  */
3211 int regulator_count_voltages(struct regulator *regulator)
3212 {
3213         struct regulator_dev    *rdev = regulator->rdev;
3214
3215         if (rdev->desc->n_voltages)
3216                 return rdev->desc->n_voltages;
3217
3218         if (!rdev->is_switch || !rdev->supply)
3219                 return -EINVAL;
3220
3221         return regulator_count_voltages(rdev->supply);
3222 }
3223 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3224
3225 /**
3226  * regulator_list_voltage - enumerate supported voltages
3227  * @regulator: regulator source
3228  * @selector: identify voltage to list
3229  * Context: can sleep
3230  *
3231  * Returns a voltage that can be passed to @regulator_set_voltage(),
3232  * zero if this selector code can't be used on this system, or a
3233  * negative errno.
3234  */
3235 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3236 {
3237         return _regulator_list_voltage(regulator->rdev, selector, 1);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3240
3241 /**
3242  * regulator_get_regmap - get the regulator's register map
3243  * @regulator: regulator source
3244  *
3245  * Returns the register map for the given regulator, or an ERR_PTR value
3246  * if the regulator doesn't use regmap.
3247  */
3248 struct regmap *regulator_get_regmap(struct regulator *regulator)
3249 {
3250         struct regmap *map = regulator->rdev->regmap;
3251
3252         return map ? map : ERR_PTR(-EOPNOTSUPP);
3253 }
3254
3255 /**
3256  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3257  * @regulator: regulator source
3258  * @vsel_reg: voltage selector register, output parameter
3259  * @vsel_mask: mask for voltage selector bitfield, output parameter
3260  *
3261  * Returns the hardware register offset and bitmask used for setting the
3262  * regulator voltage. This might be useful when configuring voltage-scaling
3263  * hardware or firmware that can make I2C requests behind the kernel's back,
3264  * for example.
3265  *
3266  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3267  * and 0 is returned, otherwise a negative errno is returned.
3268  */
3269 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3270                                          unsigned *vsel_reg,
3271                                          unsigned *vsel_mask)
3272 {
3273         struct regulator_dev *rdev = regulator->rdev;
3274         const struct regulator_ops *ops = rdev->desc->ops;
3275
3276         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3277                 return -EOPNOTSUPP;
3278
3279         *vsel_reg = rdev->desc->vsel_reg;
3280         *vsel_mask = rdev->desc->vsel_mask;
3281
3282         return 0;
3283 }
3284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3285
3286 /**
3287  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3288  * @regulator: regulator source
3289  * @selector: identify voltage to list
3290  *
3291  * Converts the selector to a hardware-specific voltage selector that can be
3292  * directly written to the regulator registers. The address of the voltage
3293  * register can be determined by calling @regulator_get_hardware_vsel_register.
3294  *
3295  * On error a negative errno is returned.
3296  */
3297 int regulator_list_hardware_vsel(struct regulator *regulator,
3298                                  unsigned selector)
3299 {
3300         struct regulator_dev *rdev = regulator->rdev;
3301         const struct regulator_ops *ops = rdev->desc->ops;
3302
3303         if (selector >= rdev->desc->n_voltages)
3304                 return -EINVAL;
3305         if (selector < rdev->desc->linear_min_sel)
3306                 return 0;
3307         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3308                 return -EOPNOTSUPP;
3309
3310         return selector;
3311 }
3312 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3313
3314 /**
3315  * regulator_get_linear_step - return the voltage step size between VSEL values
3316  * @regulator: regulator source
3317  *
3318  * Returns the voltage step size between VSEL values for linear
3319  * regulators, or return 0 if the regulator isn't a linear regulator.
3320  */
3321 unsigned int regulator_get_linear_step(struct regulator *regulator)
3322 {
3323         struct regulator_dev *rdev = regulator->rdev;
3324
3325         return rdev->desc->uV_step;
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3328
3329 /**
3330  * regulator_is_supported_voltage - check if a voltage range can be supported
3331  *
3332  * @regulator: Regulator to check.
3333  * @min_uV: Minimum required voltage in uV.
3334  * @max_uV: Maximum required voltage in uV.
3335  *
3336  * Returns a boolean.
3337  */
3338 int regulator_is_supported_voltage(struct regulator *regulator,
3339                                    int min_uV, int max_uV)
3340 {
3341         struct regulator_dev *rdev = regulator->rdev;
3342         int i, voltages, ret;
3343
3344         /* If we can't change voltage check the current voltage */
3345         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3346                 ret = regulator_get_voltage(regulator);
3347                 if (ret >= 0)
3348                         return min_uV <= ret && ret <= max_uV;
3349                 else
3350                         return ret;
3351         }
3352
3353         /* Any voltage within constrains range is fine? */
3354         if (rdev->desc->continuous_voltage_range)
3355                 return min_uV >= rdev->constraints->min_uV &&
3356                                 max_uV <= rdev->constraints->max_uV;
3357
3358         ret = regulator_count_voltages(regulator);
3359         if (ret < 0)
3360                 return 0;
3361         voltages = ret;
3362
3363         for (i = 0; i < voltages; i++) {
3364                 ret = regulator_list_voltage(regulator, i);
3365
3366                 if (ret >= min_uV && ret <= max_uV)
3367                         return 1;
3368         }
3369
3370         return 0;
3371 }
3372 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3373
3374 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3375                                  int max_uV)
3376 {
3377         const struct regulator_desc *desc = rdev->desc;
3378
3379         if (desc->ops->map_voltage)
3380                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3381
3382         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3383                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3384
3385         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3386                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3387
3388         if (desc->ops->list_voltage ==
3389                 regulator_list_voltage_pickable_linear_range)
3390                 return regulator_map_voltage_pickable_linear_range(rdev,
3391                                                         min_uV, max_uV);
3392
3393         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3394 }
3395
3396 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3397                                        int min_uV, int max_uV,
3398                                        unsigned *selector)
3399 {
3400         struct pre_voltage_change_data data;
3401         int ret;
3402
3403         data.old_uV = regulator_get_voltage_rdev(rdev);
3404         data.min_uV = min_uV;
3405         data.max_uV = max_uV;
3406         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3407                                    &data);
3408         if (ret & NOTIFY_STOP_MASK)
3409                 return -EINVAL;
3410
3411         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3412         if (ret >= 0)
3413                 return ret;
3414
3415         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3416                              (void *)data.old_uV);
3417
3418         return ret;
3419 }
3420
3421 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3422                                            int uV, unsigned selector)
3423 {
3424         struct pre_voltage_change_data data;
3425         int ret;
3426
3427         data.old_uV = regulator_get_voltage_rdev(rdev);
3428         data.min_uV = uV;
3429         data.max_uV = uV;
3430         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3431                                    &data);
3432         if (ret & NOTIFY_STOP_MASK)
3433                 return -EINVAL;
3434
3435         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3436         if (ret >= 0)
3437                 return ret;
3438
3439         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3440                              (void *)data.old_uV);
3441
3442         return ret;
3443 }
3444
3445 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3446                                            int uV, int new_selector)
3447 {
3448         const struct regulator_ops *ops = rdev->desc->ops;
3449         int diff, old_sel, curr_sel, ret;
3450
3451         /* Stepping is only needed if the regulator is enabled. */
3452         if (!_regulator_is_enabled(rdev))
3453                 goto final_set;
3454
3455         if (!ops->get_voltage_sel)
3456                 return -EINVAL;
3457
3458         old_sel = ops->get_voltage_sel(rdev);
3459         if (old_sel < 0)
3460                 return old_sel;
3461
3462         diff = new_selector - old_sel;
3463         if (diff == 0)
3464                 return 0; /* No change needed. */
3465
3466         if (diff > 0) {
3467                 /* Stepping up. */
3468                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3469                      curr_sel < new_selector;
3470                      curr_sel += rdev->desc->vsel_step) {
3471                         /*
3472                          * Call the callback directly instead of using
3473                          * _regulator_call_set_voltage_sel() as we don't
3474                          * want to notify anyone yet. Same in the branch
3475                          * below.
3476                          */
3477                         ret = ops->set_voltage_sel(rdev, curr_sel);
3478                         if (ret)
3479                                 goto try_revert;
3480                 }
3481         } else {
3482                 /* Stepping down. */
3483                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3484                      curr_sel > new_selector;
3485                      curr_sel -= rdev->desc->vsel_step) {
3486                         ret = ops->set_voltage_sel(rdev, curr_sel);
3487                         if (ret)
3488                                 goto try_revert;
3489                 }
3490         }
3491
3492 final_set:
3493         /* The final selector will trigger the notifiers. */
3494         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3495
3496 try_revert:
3497         /*
3498          * At least try to return to the previous voltage if setting a new
3499          * one failed.
3500          */
3501         (void)ops->set_voltage_sel(rdev, old_sel);
3502         return ret;
3503 }
3504
3505 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3506                                        int old_uV, int new_uV)
3507 {
3508         unsigned int ramp_delay = 0;
3509
3510         if (rdev->constraints->ramp_delay)
3511                 ramp_delay = rdev->constraints->ramp_delay;
3512         else if (rdev->desc->ramp_delay)
3513                 ramp_delay = rdev->desc->ramp_delay;
3514         else if (rdev->constraints->settling_time)
3515                 return rdev->constraints->settling_time;
3516         else if (rdev->constraints->settling_time_up &&
3517                  (new_uV > old_uV))
3518                 return rdev->constraints->settling_time_up;
3519         else if (rdev->constraints->settling_time_down &&
3520                  (new_uV < old_uV))
3521                 return rdev->constraints->settling_time_down;
3522
3523         if (ramp_delay == 0)
3524                 return 0;
3525
3526         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3527 }
3528
3529 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3530                                      int min_uV, int max_uV)
3531 {
3532         int ret;
3533         int delay = 0;
3534         int best_val = 0;
3535         unsigned int selector;
3536         int old_selector = -1;
3537         const struct regulator_ops *ops = rdev->desc->ops;
3538         int old_uV = regulator_get_voltage_rdev(rdev);
3539
3540         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3541
3542         min_uV += rdev->constraints->uV_offset;
3543         max_uV += rdev->constraints->uV_offset;
3544
3545         /*
3546          * If we can't obtain the old selector there is not enough
3547          * info to call set_voltage_time_sel().
3548          */
3549         if (_regulator_is_enabled(rdev) &&
3550             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3551                 old_selector = ops->get_voltage_sel(rdev);
3552                 if (old_selector < 0)
3553                         return old_selector;
3554         }
3555
3556         if (ops->set_voltage) {
3557                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3558                                                   &selector);
3559
3560                 if (ret >= 0) {
3561                         if (ops->list_voltage)
3562                                 best_val = ops->list_voltage(rdev,
3563                                                              selector);
3564                         else
3565                                 best_val = regulator_get_voltage_rdev(rdev);
3566                 }
3567
3568         } else if (ops->set_voltage_sel) {
3569                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3570                 if (ret >= 0) {
3571                         best_val = ops->list_voltage(rdev, ret);
3572                         if (min_uV <= best_val && max_uV >= best_val) {
3573                                 selector = ret;
3574                                 if (old_selector == selector)
3575                                         ret = 0;
3576                                 else if (rdev->desc->vsel_step)
3577                                         ret = _regulator_set_voltage_sel_step(
3578                                                 rdev, best_val, selector);
3579                                 else
3580                                         ret = _regulator_call_set_voltage_sel(
3581                                                 rdev, best_val, selector);
3582                         } else {
3583                                 ret = -EINVAL;
3584                         }
3585                 }
3586         } else {
3587                 ret = -EINVAL;
3588         }
3589
3590         if (ret)
3591                 goto out;
3592
3593         if (ops->set_voltage_time_sel) {
3594                 /*
3595                  * Call set_voltage_time_sel if successfully obtained
3596                  * old_selector
3597                  */
3598                 if (old_selector >= 0 && old_selector != selector)
3599                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3600                                                           selector);
3601         } else {
3602                 if (old_uV != best_val) {
3603                         if (ops->set_voltage_time)
3604                                 delay = ops->set_voltage_time(rdev, old_uV,
3605                                                               best_val);
3606                         else
3607                                 delay = _regulator_set_voltage_time(rdev,
3608                                                                     old_uV,
3609                                                                     best_val);
3610                 }
3611         }
3612
3613         if (delay < 0) {
3614                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3615                 delay = 0;
3616         }
3617
3618         /* Insert any necessary delays */
3619         _regulator_delay_helper(delay);
3620
3621         if (best_val >= 0) {
3622                 unsigned long data = best_val;
3623
3624                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3625                                      (void *)data);
3626         }
3627
3628 out:
3629         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3630
3631         return ret;
3632 }
3633
3634 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3635                                   int min_uV, int max_uV, suspend_state_t state)
3636 {
3637         struct regulator_state *rstate;
3638         int uV, sel;
3639
3640         rstate = regulator_get_suspend_state(rdev, state);
3641         if (rstate == NULL)
3642                 return -EINVAL;
3643
3644         if (min_uV < rstate->min_uV)
3645                 min_uV = rstate->min_uV;
3646         if (max_uV > rstate->max_uV)
3647                 max_uV = rstate->max_uV;
3648
3649         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3650         if (sel < 0)
3651                 return sel;
3652
3653         uV = rdev->desc->ops->list_voltage(rdev, sel);
3654         if (uV >= min_uV && uV <= max_uV)
3655                 rstate->uV = uV;
3656
3657         return 0;
3658 }
3659
3660 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3661                                           int min_uV, int max_uV,
3662                                           suspend_state_t state)
3663 {
3664         struct regulator_dev *rdev = regulator->rdev;
3665         struct regulator_voltage *voltage = &regulator->voltage[state];
3666         int ret = 0;
3667         int old_min_uV, old_max_uV;
3668         int current_uV;
3669
3670         /* If we're setting the same range as last time the change
3671          * should be a noop (some cpufreq implementations use the same
3672          * voltage for multiple frequencies, for example).
3673          */
3674         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3675                 goto out;
3676
3677         /* If we're trying to set a range that overlaps the current voltage,
3678          * return successfully even though the regulator does not support
3679          * changing the voltage.
3680          */
3681         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3682                 current_uV = regulator_get_voltage_rdev(rdev);
3683                 if (min_uV <= current_uV && current_uV <= max_uV) {
3684                         voltage->min_uV = min_uV;
3685                         voltage->max_uV = max_uV;
3686                         goto out;
3687                 }
3688         }
3689
3690         /* sanity check */
3691         if (!rdev->desc->ops->set_voltage &&
3692             !rdev->desc->ops->set_voltage_sel) {
3693                 ret = -EINVAL;
3694                 goto out;
3695         }
3696
3697         /* constraints check */
3698         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3699         if (ret < 0)
3700                 goto out;
3701
3702         /* restore original values in case of error */
3703         old_min_uV = voltage->min_uV;
3704         old_max_uV = voltage->max_uV;
3705         voltage->min_uV = min_uV;
3706         voltage->max_uV = max_uV;
3707
3708         /* for not coupled regulators this will just set the voltage */
3709         ret = regulator_balance_voltage(rdev, state);
3710         if (ret < 0) {
3711                 voltage->min_uV = old_min_uV;
3712                 voltage->max_uV = old_max_uV;
3713         }
3714
3715 out:
3716         return ret;
3717 }
3718
3719 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3720                                int max_uV, suspend_state_t state)
3721 {
3722         int best_supply_uV = 0;
3723         int supply_change_uV = 0;
3724         int ret;
3725
3726         if (rdev->supply &&
3727             regulator_ops_is_valid(rdev->supply->rdev,
3728                                    REGULATOR_CHANGE_VOLTAGE) &&
3729             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3730                                            rdev->desc->ops->get_voltage_sel))) {
3731                 int current_supply_uV;
3732                 int selector;
3733
3734                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3735                 if (selector < 0) {
3736                         ret = selector;
3737                         goto out;
3738                 }
3739
3740                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3741                 if (best_supply_uV < 0) {
3742                         ret = best_supply_uV;
3743                         goto out;
3744                 }
3745
3746                 best_supply_uV += rdev->desc->min_dropout_uV;
3747
3748                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3749                 if (current_supply_uV < 0) {
3750                         ret = current_supply_uV;
3751                         goto out;
3752                 }
3753
3754                 supply_change_uV = best_supply_uV - current_supply_uV;
3755         }
3756
3757         if (supply_change_uV > 0) {
3758                 ret = regulator_set_voltage_unlocked(rdev->supply,
3759                                 best_supply_uV, INT_MAX, state);
3760                 if (ret) {
3761                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3762                                 ERR_PTR(ret));
3763                         goto out;
3764                 }
3765         }
3766
3767         if (state == PM_SUSPEND_ON)
3768                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3769         else
3770                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3771                                                         max_uV, state);
3772         if (ret < 0)
3773                 goto out;
3774
3775         if (supply_change_uV < 0) {
3776                 ret = regulator_set_voltage_unlocked(rdev->supply,
3777                                 best_supply_uV, INT_MAX, state);
3778                 if (ret)
3779                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3780                                  ERR_PTR(ret));
3781                 /* No need to fail here */
3782                 ret = 0;
3783         }
3784
3785 out:
3786         return ret;
3787 }
3788 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3789
3790 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3791                                         int *current_uV, int *min_uV)
3792 {
3793         struct regulation_constraints *constraints = rdev->constraints;
3794
3795         /* Limit voltage change only if necessary */
3796         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3797                 return 1;
3798
3799         if (*current_uV < 0) {
3800                 *current_uV = regulator_get_voltage_rdev(rdev);
3801
3802                 if (*current_uV < 0)
3803                         return *current_uV;
3804         }
3805
3806         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3807                 return 1;
3808
3809         /* Clamp target voltage within the given step */
3810         if (*current_uV < *min_uV)
3811                 *min_uV = min(*current_uV + constraints->max_uV_step,
3812                               *min_uV);
3813         else
3814                 *min_uV = max(*current_uV - constraints->max_uV_step,
3815                               *min_uV);
3816
3817         return 0;
3818 }
3819
3820 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3821                                          int *current_uV,
3822                                          int *min_uV, int *max_uV,
3823                                          suspend_state_t state,
3824                                          int n_coupled)
3825 {
3826         struct coupling_desc *c_desc = &rdev->coupling_desc;
3827         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3828         struct regulation_constraints *constraints = rdev->constraints;
3829         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3830         int max_current_uV = 0, min_current_uV = INT_MAX;
3831         int highest_min_uV = 0, target_uV, possible_uV;
3832         int i, ret, max_spread;
3833         bool done;
3834
3835         *current_uV = -1;
3836
3837         /*
3838          * If there are no coupled regulators, simply set the voltage
3839          * demanded by consumers.
3840          */
3841         if (n_coupled == 1) {
3842                 /*
3843                  * If consumers don't provide any demands, set voltage
3844                  * to min_uV
3845                  */
3846                 desired_min_uV = constraints->min_uV;
3847                 desired_max_uV = constraints->max_uV;
3848
3849                 ret = regulator_check_consumers(rdev,
3850                                                 &desired_min_uV,
3851                                                 &desired_max_uV, state);
3852                 if (ret < 0)
3853                         return ret;
3854
3855                 possible_uV = desired_min_uV;
3856                 done = true;
3857
3858                 goto finish;
3859         }
3860
3861         /* Find highest min desired voltage */
3862         for (i = 0; i < n_coupled; i++) {
3863                 int tmp_min = 0;
3864                 int tmp_max = INT_MAX;
3865
3866                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3867
3868                 ret = regulator_check_consumers(c_rdevs[i],
3869                                                 &tmp_min,
3870                                                 &tmp_max, state);
3871                 if (ret < 0)
3872                         return ret;
3873
3874                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3875                 if (ret < 0)
3876                         return ret;
3877
3878                 highest_min_uV = max(highest_min_uV, tmp_min);
3879
3880                 if (i == 0) {
3881                         desired_min_uV = tmp_min;
3882                         desired_max_uV = tmp_max;
3883                 }
3884         }
3885
3886         max_spread = constraints->max_spread[0];
3887
3888         /*
3889          * Let target_uV be equal to the desired one if possible.
3890          * If not, set it to minimum voltage, allowed by other coupled
3891          * regulators.
3892          */
3893         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3894
3895         /*
3896          * Find min and max voltages, which currently aren't violating
3897          * max_spread.
3898          */
3899         for (i = 1; i < n_coupled; i++) {
3900                 int tmp_act;
3901
3902                 if (!_regulator_is_enabled(c_rdevs[i]))
3903                         continue;
3904
3905                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3906                 if (tmp_act < 0)
3907                         return tmp_act;
3908
3909                 min_current_uV = min(tmp_act, min_current_uV);
3910                 max_current_uV = max(tmp_act, max_current_uV);
3911         }
3912
3913         /* There aren't any other regulators enabled */
3914         if (max_current_uV == 0) {
3915                 possible_uV = target_uV;
3916         } else {
3917                 /*
3918                  * Correct target voltage, so as it currently isn't
3919                  * violating max_spread
3920                  */
3921                 possible_uV = max(target_uV, max_current_uV - max_spread);
3922                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3923         }
3924
3925         if (possible_uV > desired_max_uV)
3926                 return -EINVAL;
3927
3928         done = (possible_uV == target_uV);
3929         desired_min_uV = possible_uV;
3930
3931 finish:
3932         /* Apply max_uV_step constraint if necessary */
3933         if (state == PM_SUSPEND_ON) {
3934                 ret = regulator_limit_voltage_step(rdev, current_uV,
3935                                                    &desired_min_uV);
3936                 if (ret < 0)
3937                         return ret;
3938
3939                 if (ret == 0)
3940                         done = false;
3941         }
3942
3943         /* Set current_uV if wasn't done earlier in the code and if necessary */
3944         if (n_coupled > 1 && *current_uV == -1) {
3945
3946                 if (_regulator_is_enabled(rdev)) {
3947                         ret = regulator_get_voltage_rdev(rdev);
3948                         if (ret < 0)
3949                                 return ret;
3950
3951                         *current_uV = ret;
3952                 } else {
3953                         *current_uV = desired_min_uV;
3954                 }
3955         }
3956
3957         *min_uV = desired_min_uV;
3958         *max_uV = desired_max_uV;
3959
3960         return done;
3961 }
3962
3963 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3964                                  suspend_state_t state, bool skip_coupled)
3965 {
3966         struct regulator_dev **c_rdevs;
3967         struct regulator_dev *best_rdev;
3968         struct coupling_desc *c_desc = &rdev->coupling_desc;
3969         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3970         unsigned int delta, best_delta;
3971         unsigned long c_rdev_done = 0;
3972         bool best_c_rdev_done;
3973
3974         c_rdevs = c_desc->coupled_rdevs;
3975         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3976
3977         /*
3978          * Find the best possible voltage change on each loop. Leave the loop
3979          * if there isn't any possible change.
3980          */
3981         do {
3982                 best_c_rdev_done = false;
3983                 best_delta = 0;
3984                 best_min_uV = 0;
3985                 best_max_uV = 0;
3986                 best_c_rdev = 0;
3987                 best_rdev = NULL;
3988
3989                 /*
3990                  * Find highest difference between optimal voltage
3991                  * and current voltage.
3992                  */
3993                 for (i = 0; i < n_coupled; i++) {
3994                         /*
3995                          * optimal_uV is the best voltage that can be set for
3996                          * i-th regulator at the moment without violating
3997                          * max_spread constraint in order to balance
3998                          * the coupled voltages.
3999                          */
4000                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4001
4002                         if (test_bit(i, &c_rdev_done))
4003                                 continue;
4004
4005                         ret = regulator_get_optimal_voltage(c_rdevs[i],
4006                                                             &current_uV,
4007                                                             &optimal_uV,
4008                                                             &optimal_max_uV,
4009                                                             state, n_coupled);
4010                         if (ret < 0)
4011                                 goto out;
4012
4013                         delta = abs(optimal_uV - current_uV);
4014
4015                         if (delta && best_delta <= delta) {
4016                                 best_c_rdev_done = ret;
4017                                 best_delta = delta;
4018                                 best_rdev = c_rdevs[i];
4019                                 best_min_uV = optimal_uV;
4020                                 best_max_uV = optimal_max_uV;
4021                                 best_c_rdev = i;
4022                         }
4023                 }
4024
4025                 /* Nothing to change, return successfully */
4026                 if (!best_rdev) {
4027                         ret = 0;
4028                         goto out;
4029                 }
4030
4031                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4032                                                  best_max_uV, state);
4033
4034                 if (ret < 0)
4035                         goto out;
4036
4037                 if (best_c_rdev_done)
4038                         set_bit(best_c_rdev, &c_rdev_done);
4039
4040         } while (n_coupled > 1);
4041
4042 out:
4043         return ret;
4044 }
4045
4046 static int regulator_balance_voltage(struct regulator_dev *rdev,
4047                                      suspend_state_t state)
4048 {
4049         struct coupling_desc *c_desc = &rdev->coupling_desc;
4050         struct regulator_coupler *coupler = c_desc->coupler;
4051         bool skip_coupled = false;
4052
4053         /*
4054          * If system is in a state other than PM_SUSPEND_ON, don't check
4055          * other coupled regulators.
4056          */
4057         if (state != PM_SUSPEND_ON)
4058                 skip_coupled = true;
4059
4060         if (c_desc->n_resolved < c_desc->n_coupled) {
4061                 rdev_err(rdev, "Not all coupled regulators registered\n");
4062                 return -EPERM;
4063         }
4064
4065         /* Invoke custom balancer for customized couplers */
4066         if (coupler && coupler->balance_voltage)
4067                 return coupler->balance_voltage(coupler, rdev, state);
4068
4069         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4070 }
4071
4072 /**
4073  * regulator_set_voltage - set regulator output voltage
4074  * @regulator: regulator source
4075  * @min_uV: Minimum required voltage in uV
4076  * @max_uV: Maximum acceptable voltage in uV
4077  *
4078  * Sets a voltage regulator to the desired output voltage. This can be set
4079  * during any regulator state. IOW, regulator can be disabled or enabled.
4080  *
4081  * If the regulator is enabled then the voltage will change to the new value
4082  * immediately otherwise if the regulator is disabled the regulator will
4083  * output at the new voltage when enabled.
4084  *
4085  * NOTE: If the regulator is shared between several devices then the lowest
4086  * request voltage that meets the system constraints will be used.
4087  * Regulator system constraints must be set for this regulator before
4088  * calling this function otherwise this call will fail.
4089  */
4090 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4091 {
4092         struct ww_acquire_ctx ww_ctx;
4093         int ret;
4094
4095         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4096
4097         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4098                                              PM_SUSPEND_ON);
4099
4100         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4101
4102         return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4105
4106 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4107                                            suspend_state_t state, bool en)
4108 {
4109         struct regulator_state *rstate;
4110
4111         rstate = regulator_get_suspend_state(rdev, state);
4112         if (rstate == NULL)
4113                 return -EINVAL;
4114
4115         if (!rstate->changeable)
4116                 return -EPERM;
4117
4118         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4119
4120         return 0;
4121 }
4122
4123 int regulator_suspend_enable(struct regulator_dev *rdev,
4124                                     suspend_state_t state)
4125 {
4126         return regulator_suspend_toggle(rdev, state, true);
4127 }
4128 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4129
4130 int regulator_suspend_disable(struct regulator_dev *rdev,
4131                                      suspend_state_t state)
4132 {
4133         struct regulator *regulator;
4134         struct regulator_voltage *voltage;
4135
4136         /*
4137          * if any consumer wants this regulator device keeping on in
4138          * suspend states, don't set it as disabled.
4139          */
4140         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4141                 voltage = &regulator->voltage[state];
4142                 if (voltage->min_uV || voltage->max_uV)
4143                         return 0;
4144         }
4145
4146         return regulator_suspend_toggle(rdev, state, false);
4147 }
4148 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4149
4150 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4151                                           int min_uV, int max_uV,
4152                                           suspend_state_t state)
4153 {
4154         struct regulator_dev *rdev = regulator->rdev;
4155         struct regulator_state *rstate;
4156
4157         rstate = regulator_get_suspend_state(rdev, state);
4158         if (rstate == NULL)
4159                 return -EINVAL;
4160
4161         if (rstate->min_uV == rstate->max_uV) {
4162                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4163                 return -EPERM;
4164         }
4165
4166         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4167 }
4168
4169 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4170                                   int max_uV, suspend_state_t state)
4171 {
4172         struct ww_acquire_ctx ww_ctx;
4173         int ret;
4174
4175         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4176         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4177                 return -EINVAL;
4178
4179         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4180
4181         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4182                                              max_uV, state);
4183
4184         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4185
4186         return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4189
4190 /**
4191  * regulator_set_voltage_time - get raise/fall time
4192  * @regulator: regulator source
4193  * @old_uV: starting voltage in microvolts
4194  * @new_uV: target voltage in microvolts
4195  *
4196  * Provided with the starting and ending voltage, this function attempts to
4197  * calculate the time in microseconds required to rise or fall to this new
4198  * voltage.
4199  */
4200 int regulator_set_voltage_time(struct regulator *regulator,
4201                                int old_uV, int new_uV)
4202 {
4203         struct regulator_dev *rdev = regulator->rdev;
4204         const struct regulator_ops *ops = rdev->desc->ops;
4205         int old_sel = -1;
4206         int new_sel = -1;
4207         int voltage;
4208         int i;
4209
4210         if (ops->set_voltage_time)
4211                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4212         else if (!ops->set_voltage_time_sel)
4213                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4214
4215         /* Currently requires operations to do this */
4216         if (!ops->list_voltage || !rdev->desc->n_voltages)
4217                 return -EINVAL;
4218
4219         for (i = 0; i < rdev->desc->n_voltages; i++) {
4220                 /* We only look for exact voltage matches here */
4221                 if (i < rdev->desc->linear_min_sel)
4222                         continue;
4223
4224                 if (old_sel >= 0 && new_sel >= 0)
4225                         break;
4226
4227                 voltage = regulator_list_voltage(regulator, i);
4228                 if (voltage < 0)
4229                         return -EINVAL;
4230                 if (voltage == 0)
4231                         continue;
4232                 if (voltage == old_uV)
4233                         old_sel = i;
4234                 if (voltage == new_uV)
4235                         new_sel = i;
4236         }
4237
4238         if (old_sel < 0 || new_sel < 0)
4239                 return -EINVAL;
4240
4241         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4242 }
4243 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4244
4245 /**
4246  * regulator_set_voltage_time_sel - get raise/fall time
4247  * @rdev: regulator source device
4248  * @old_selector: selector for starting voltage
4249  * @new_selector: selector for target voltage
4250  *
4251  * Provided with the starting and target voltage selectors, this function
4252  * returns time in microseconds required to rise or fall to this new voltage
4253  *
4254  * Drivers providing ramp_delay in regulation_constraints can use this as their
4255  * set_voltage_time_sel() operation.
4256  */
4257 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4258                                    unsigned int old_selector,
4259                                    unsigned int new_selector)
4260 {
4261         int old_volt, new_volt;
4262
4263         /* sanity check */
4264         if (!rdev->desc->ops->list_voltage)
4265                 return -EINVAL;
4266
4267         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4268         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4269
4270         if (rdev->desc->ops->set_voltage_time)
4271                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4272                                                          new_volt);
4273         else
4274                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4275 }
4276 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4277
4278 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4279 {
4280         int ret;
4281
4282         regulator_lock(rdev);
4283
4284         if (!rdev->desc->ops->set_voltage &&
4285             !rdev->desc->ops->set_voltage_sel) {
4286                 ret = -EINVAL;
4287                 goto out;
4288         }
4289
4290         /* balance only, if regulator is coupled */
4291         if (rdev->coupling_desc.n_coupled > 1)
4292                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4293         else
4294                 ret = -EOPNOTSUPP;
4295
4296 out:
4297         regulator_unlock(rdev);
4298         return ret;
4299 }
4300
4301 /**
4302  * regulator_sync_voltage - re-apply last regulator output voltage
4303  * @regulator: regulator source
4304  *
4305  * Re-apply the last configured voltage.  This is intended to be used
4306  * where some external control source the consumer is cooperating with
4307  * has caused the configured voltage to change.
4308  */
4309 int regulator_sync_voltage(struct regulator *regulator)
4310 {
4311         struct regulator_dev *rdev = regulator->rdev;
4312         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4313         int ret, min_uV, max_uV;
4314
4315         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4316                 return 0;
4317
4318         regulator_lock(rdev);
4319
4320         if (!rdev->desc->ops->set_voltage &&
4321             !rdev->desc->ops->set_voltage_sel) {
4322                 ret = -EINVAL;
4323                 goto out;
4324         }
4325
4326         /* This is only going to work if we've had a voltage configured. */
4327         if (!voltage->min_uV && !voltage->max_uV) {
4328                 ret = -EINVAL;
4329                 goto out;
4330         }
4331
4332         min_uV = voltage->min_uV;
4333         max_uV = voltage->max_uV;
4334
4335         /* This should be a paranoia check... */
4336         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4337         if (ret < 0)
4338                 goto out;
4339
4340         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4341         if (ret < 0)
4342                 goto out;
4343
4344         /* balance only, if regulator is coupled */
4345         if (rdev->coupling_desc.n_coupled > 1)
4346                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4347         else
4348                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4349
4350 out:
4351         regulator_unlock(rdev);
4352         return ret;
4353 }
4354 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4355
4356 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4357 {
4358         int sel, ret;
4359         bool bypassed;
4360
4361         if (rdev->desc->ops->get_bypass) {
4362                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4363                 if (ret < 0)
4364                         return ret;
4365                 if (bypassed) {
4366                         /* if bypassed the regulator must have a supply */
4367                         if (!rdev->supply) {
4368                                 rdev_err(rdev,
4369                                          "bypassed regulator has no supply!\n");
4370                                 return -EPROBE_DEFER;
4371                         }
4372
4373                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4374                 }
4375         }
4376
4377         if (rdev->desc->ops->get_voltage_sel) {
4378                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4379                 if (sel < 0)
4380                         return sel;
4381                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4382         } else if (rdev->desc->ops->get_voltage) {
4383                 ret = rdev->desc->ops->get_voltage(rdev);
4384         } else if (rdev->desc->ops->list_voltage) {
4385                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4386         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4387                 ret = rdev->desc->fixed_uV;
4388         } else if (rdev->supply) {
4389                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4390         } else if (rdev->supply_name) {
4391                 return -EPROBE_DEFER;
4392         } else {
4393                 return -EINVAL;
4394         }
4395
4396         if (ret < 0)
4397                 return ret;
4398         return ret - rdev->constraints->uV_offset;
4399 }
4400 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4401
4402 /**
4403  * regulator_get_voltage - get regulator output voltage
4404  * @regulator: regulator source
4405  *
4406  * This returns the current regulator voltage in uV.
4407  *
4408  * NOTE: If the regulator is disabled it will return the voltage value. This
4409  * function should not be used to determine regulator state.
4410  */
4411 int regulator_get_voltage(struct regulator *regulator)
4412 {
4413         struct ww_acquire_ctx ww_ctx;
4414         int ret;
4415
4416         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4417         ret = regulator_get_voltage_rdev(regulator->rdev);
4418         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4419
4420         return ret;
4421 }
4422 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4423
4424 /**
4425  * regulator_set_current_limit - set regulator output current limit
4426  * @regulator: regulator source
4427  * @min_uA: Minimum supported current in uA
4428  * @max_uA: Maximum supported current in uA
4429  *
4430  * Sets current sink to the desired output current. This can be set during
4431  * any regulator state. IOW, regulator can be disabled or enabled.
4432  *
4433  * If the regulator is enabled then the current will change to the new value
4434  * immediately otherwise if the regulator is disabled the regulator will
4435  * output at the new current when enabled.
4436  *
4437  * NOTE: Regulator system constraints must be set for this regulator before
4438  * calling this function otherwise this call will fail.
4439  */
4440 int regulator_set_current_limit(struct regulator *regulator,
4441                                int min_uA, int max_uA)
4442 {
4443         struct regulator_dev *rdev = regulator->rdev;
4444         int ret;
4445
4446         regulator_lock(rdev);
4447
4448         /* sanity check */
4449         if (!rdev->desc->ops->set_current_limit) {
4450                 ret = -EINVAL;
4451                 goto out;
4452         }
4453
4454         /* constraints check */
4455         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4456         if (ret < 0)
4457                 goto out;
4458
4459         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4460 out:
4461         regulator_unlock(rdev);
4462         return ret;
4463 }
4464 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4465
4466 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4467 {
4468         /* sanity check */
4469         if (!rdev->desc->ops->get_current_limit)
4470                 return -EINVAL;
4471
4472         return rdev->desc->ops->get_current_limit(rdev);
4473 }
4474
4475 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4476 {
4477         int ret;
4478
4479         regulator_lock(rdev);
4480         ret = _regulator_get_current_limit_unlocked(rdev);
4481         regulator_unlock(rdev);
4482
4483         return ret;
4484 }
4485
4486 /**
4487  * regulator_get_current_limit - get regulator output current
4488  * @regulator: regulator source
4489  *
4490  * This returns the current supplied by the specified current sink in uA.
4491  *
4492  * NOTE: If the regulator is disabled it will return the current value. This
4493  * function should not be used to determine regulator state.
4494  */
4495 int regulator_get_current_limit(struct regulator *regulator)
4496 {
4497         return _regulator_get_current_limit(regulator->rdev);
4498 }
4499 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4500
4501 /**
4502  * regulator_set_mode - set regulator operating mode
4503  * @regulator: regulator source
4504  * @mode: operating mode - one of the REGULATOR_MODE constants
4505  *
4506  * Set regulator operating mode to increase regulator efficiency or improve
4507  * regulation performance.
4508  *
4509  * NOTE: Regulator system constraints must be set for this regulator before
4510  * calling this function otherwise this call will fail.
4511  */
4512 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4513 {
4514         struct regulator_dev *rdev = regulator->rdev;
4515         int ret;
4516         int regulator_curr_mode;
4517
4518         regulator_lock(rdev);
4519
4520         /* sanity check */
4521         if (!rdev->desc->ops->set_mode) {
4522                 ret = -EINVAL;
4523                 goto out;
4524         }
4525
4526         /* return if the same mode is requested */
4527         if (rdev->desc->ops->get_mode) {
4528                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4529                 if (regulator_curr_mode == mode) {
4530                         ret = 0;
4531                         goto out;
4532                 }
4533         }
4534
4535         /* constraints check */
4536         ret = regulator_mode_constrain(rdev, &mode);
4537         if (ret < 0)
4538                 goto out;
4539
4540         ret = rdev->desc->ops->set_mode(rdev, mode);
4541 out:
4542         regulator_unlock(rdev);
4543         return ret;
4544 }
4545 EXPORT_SYMBOL_GPL(regulator_set_mode);
4546
4547 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4548 {
4549         /* sanity check */
4550         if (!rdev->desc->ops->get_mode)
4551                 return -EINVAL;
4552
4553         return rdev->desc->ops->get_mode(rdev);
4554 }
4555
4556 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4557 {
4558         int ret;
4559
4560         regulator_lock(rdev);
4561         ret = _regulator_get_mode_unlocked(rdev);
4562         regulator_unlock(rdev);
4563
4564         return ret;
4565 }
4566
4567 /**
4568  * regulator_get_mode - get regulator operating mode
4569  * @regulator: regulator source
4570  *
4571  * Get the current regulator operating mode.
4572  */
4573 unsigned int regulator_get_mode(struct regulator *regulator)
4574 {
4575         return _regulator_get_mode(regulator->rdev);
4576 }
4577 EXPORT_SYMBOL_GPL(regulator_get_mode);
4578
4579 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4580 {
4581         int ret = 0;
4582
4583         if (rdev->use_cached_err) {
4584                 spin_lock(&rdev->err_lock);
4585                 ret = rdev->cached_err;
4586                 spin_unlock(&rdev->err_lock);
4587         }
4588         return ret;
4589 }
4590
4591 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4592                                         unsigned int *flags)
4593 {
4594         int cached_flags, ret = 0;
4595
4596         regulator_lock(rdev);
4597
4598         cached_flags = rdev_get_cached_err_flags(rdev);
4599
4600         if (rdev->desc->ops->get_error_flags)
4601                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4602         else if (!rdev->use_cached_err)
4603                 ret = -EINVAL;
4604
4605         *flags |= cached_flags;
4606
4607         regulator_unlock(rdev);
4608
4609         return ret;
4610 }
4611
4612 /**
4613  * regulator_get_error_flags - get regulator error information
4614  * @regulator: regulator source
4615  * @flags: pointer to store error flags
4616  *
4617  * Get the current regulator error information.
4618  */
4619 int regulator_get_error_flags(struct regulator *regulator,
4620                                 unsigned int *flags)
4621 {
4622         return _regulator_get_error_flags(regulator->rdev, flags);
4623 }
4624 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4625
4626 /**
4627  * regulator_set_load - set regulator load
4628  * @regulator: regulator source
4629  * @uA_load: load current
4630  *
4631  * Notifies the regulator core of a new device load. This is then used by
4632  * DRMS (if enabled by constraints) to set the most efficient regulator
4633  * operating mode for the new regulator loading.
4634  *
4635  * Consumer devices notify their supply regulator of the maximum power
4636  * they will require (can be taken from device datasheet in the power
4637  * consumption tables) when they change operational status and hence power
4638  * state. Examples of operational state changes that can affect power
4639  * consumption are :-
4640  *
4641  *    o Device is opened / closed.
4642  *    o Device I/O is about to begin or has just finished.
4643  *    o Device is idling in between work.
4644  *
4645  * This information is also exported via sysfs to userspace.
4646  *
4647  * DRMS will sum the total requested load on the regulator and change
4648  * to the most efficient operating mode if platform constraints allow.
4649  *
4650  * NOTE: when a regulator consumer requests to have a regulator
4651  * disabled then any load that consumer requested no longer counts
4652  * toward the total requested load.  If the regulator is re-enabled
4653  * then the previously requested load will start counting again.
4654  *
4655  * If a regulator is an always-on regulator then an individual consumer's
4656  * load will still be removed if that consumer is fully disabled.
4657  *
4658  * On error a negative errno is returned.
4659  */
4660 int regulator_set_load(struct regulator *regulator, int uA_load)
4661 {
4662         struct regulator_dev *rdev = regulator->rdev;
4663         int old_uA_load;
4664         int ret = 0;
4665
4666         regulator_lock(rdev);
4667         old_uA_load = regulator->uA_load;
4668         regulator->uA_load = uA_load;
4669         if (regulator->enable_count && old_uA_load != uA_load) {
4670                 ret = drms_uA_update(rdev);
4671                 if (ret < 0)
4672                         regulator->uA_load = old_uA_load;
4673         }
4674         regulator_unlock(rdev);
4675
4676         return ret;
4677 }
4678 EXPORT_SYMBOL_GPL(regulator_set_load);
4679
4680 /**
4681  * regulator_allow_bypass - allow the regulator to go into bypass mode
4682  *
4683  * @regulator: Regulator to configure
4684  * @enable: enable or disable bypass mode
4685  *
4686  * Allow the regulator to go into bypass mode if all other consumers
4687  * for the regulator also enable bypass mode and the machine
4688  * constraints allow this.  Bypass mode means that the regulator is
4689  * simply passing the input directly to the output with no regulation.
4690  */
4691 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4692 {
4693         struct regulator_dev *rdev = regulator->rdev;
4694         const char *name = rdev_get_name(rdev);
4695         int ret = 0;
4696
4697         if (!rdev->desc->ops->set_bypass)
4698                 return 0;
4699
4700         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4701                 return 0;
4702
4703         regulator_lock(rdev);
4704
4705         if (enable && !regulator->bypass) {
4706                 rdev->bypass_count++;
4707
4708                 if (rdev->bypass_count == rdev->open_count) {
4709                         trace_regulator_bypass_enable(name);
4710
4711                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4712                         if (ret != 0)
4713                                 rdev->bypass_count--;
4714                         else
4715                                 trace_regulator_bypass_enable_complete(name);
4716                 }
4717
4718         } else if (!enable && regulator->bypass) {
4719                 rdev->bypass_count--;
4720
4721                 if (rdev->bypass_count != rdev->open_count) {
4722                         trace_regulator_bypass_disable(name);
4723
4724                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4725                         if (ret != 0)
4726                                 rdev->bypass_count++;
4727                         else
4728                                 trace_regulator_bypass_disable_complete(name);
4729                 }
4730         }
4731
4732         if (ret == 0)
4733                 regulator->bypass = enable;
4734
4735         regulator_unlock(rdev);
4736
4737         return ret;
4738 }
4739 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4740
4741 /**
4742  * regulator_register_notifier - register regulator event notifier
4743  * @regulator: regulator source
4744  * @nb: notifier block
4745  *
4746  * Register notifier block to receive regulator events.
4747  */
4748 int regulator_register_notifier(struct regulator *regulator,
4749                               struct notifier_block *nb)
4750 {
4751         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4752                                                 nb);
4753 }
4754 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4755
4756 /**
4757  * regulator_unregister_notifier - unregister regulator event notifier
4758  * @regulator: regulator source
4759  * @nb: notifier block
4760  *
4761  * Unregister regulator event notifier block.
4762  */
4763 int regulator_unregister_notifier(struct regulator *regulator,
4764                                 struct notifier_block *nb)
4765 {
4766         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4767                                                   nb);
4768 }
4769 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4770
4771 /* notify regulator consumers and downstream regulator consumers.
4772  * Note mutex must be held by caller.
4773  */
4774 static int _notifier_call_chain(struct regulator_dev *rdev,
4775                                   unsigned long event, void *data)
4776 {
4777         /* call rdev chain first */
4778         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4779 }
4780
4781 /**
4782  * regulator_bulk_get - get multiple regulator consumers
4783  *
4784  * @dev:           Device to supply
4785  * @num_consumers: Number of consumers to register
4786  * @consumers:     Configuration of consumers; clients are stored here.
4787  *
4788  * @return 0 on success, an errno on failure.
4789  *
4790  * This helper function allows drivers to get several regulator
4791  * consumers in one operation.  If any of the regulators cannot be
4792  * acquired then any regulators that were allocated will be freed
4793  * before returning to the caller.
4794  */
4795 int regulator_bulk_get(struct device *dev, int num_consumers,
4796                        struct regulator_bulk_data *consumers)
4797 {
4798         int i;
4799         int ret;
4800
4801         for (i = 0; i < num_consumers; i++)
4802                 consumers[i].consumer = NULL;
4803
4804         for (i = 0; i < num_consumers; i++) {
4805                 consumers[i].consumer = regulator_get(dev,
4806                                                       consumers[i].supply);
4807                 if (IS_ERR(consumers[i].consumer)) {
4808                         ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4809                                             "Failed to get supply '%s'",
4810                                             consumers[i].supply);
4811                         consumers[i].consumer = NULL;
4812                         goto err;
4813                 }
4814
4815                 if (consumers[i].init_load_uA > 0) {
4816                         ret = regulator_set_load(consumers[i].consumer,
4817                                                  consumers[i].init_load_uA);
4818                         if (ret) {
4819                                 i++;
4820                                 goto err;
4821                         }
4822                 }
4823         }
4824
4825         return 0;
4826
4827 err:
4828         while (--i >= 0)
4829                 regulator_put(consumers[i].consumer);
4830
4831         return ret;
4832 }
4833 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4834
4835 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4836 {
4837         struct regulator_bulk_data *bulk = data;
4838
4839         bulk->ret = regulator_enable(bulk->consumer);
4840 }
4841
4842 /**
4843  * regulator_bulk_enable - enable multiple regulator consumers
4844  *
4845  * @num_consumers: Number of consumers
4846  * @consumers:     Consumer data; clients are stored here.
4847  * @return         0 on success, an errno on failure
4848  *
4849  * This convenience API allows consumers to enable multiple regulator
4850  * clients in a single API call.  If any consumers cannot be enabled
4851  * then any others that were enabled will be disabled again prior to
4852  * return.
4853  */
4854 int regulator_bulk_enable(int num_consumers,
4855                           struct regulator_bulk_data *consumers)
4856 {
4857         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4858         int i;
4859         int ret = 0;
4860
4861         for (i = 0; i < num_consumers; i++) {
4862                 async_schedule_domain(regulator_bulk_enable_async,
4863                                       &consumers[i], &async_domain);
4864         }
4865
4866         async_synchronize_full_domain(&async_domain);
4867
4868         /* If any consumer failed we need to unwind any that succeeded */
4869         for (i = 0; i < num_consumers; i++) {
4870                 if (consumers[i].ret != 0) {
4871                         ret = consumers[i].ret;
4872                         goto err;
4873                 }
4874         }
4875
4876         return 0;
4877
4878 err:
4879         for (i = 0; i < num_consumers; i++) {
4880                 if (consumers[i].ret < 0)
4881                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4882                                ERR_PTR(consumers[i].ret));
4883                 else
4884                         regulator_disable(consumers[i].consumer);
4885         }
4886
4887         return ret;
4888 }
4889 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4890
4891 /**
4892  * regulator_bulk_disable - disable multiple regulator consumers
4893  *
4894  * @num_consumers: Number of consumers
4895  * @consumers:     Consumer data; clients are stored here.
4896  * @return         0 on success, an errno on failure
4897  *
4898  * This convenience API allows consumers to disable multiple regulator
4899  * clients in a single API call.  If any consumers cannot be disabled
4900  * then any others that were disabled will be enabled again prior to
4901  * return.
4902  */
4903 int regulator_bulk_disable(int num_consumers,
4904                            struct regulator_bulk_data *consumers)
4905 {
4906         int i;
4907         int ret, r;
4908
4909         for (i = num_consumers - 1; i >= 0; --i) {
4910                 ret = regulator_disable(consumers[i].consumer);
4911                 if (ret != 0)
4912                         goto err;
4913         }
4914
4915         return 0;
4916
4917 err:
4918         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4919         for (++i; i < num_consumers; ++i) {
4920                 r = regulator_enable(consumers[i].consumer);
4921                 if (r != 0)
4922                         pr_err("Failed to re-enable %s: %pe\n",
4923                                consumers[i].supply, ERR_PTR(r));
4924         }
4925
4926         return ret;
4927 }
4928 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4929
4930 /**
4931  * regulator_bulk_force_disable - force disable multiple regulator consumers
4932  *
4933  * @num_consumers: Number of consumers
4934  * @consumers:     Consumer data; clients are stored here.
4935  * @return         0 on success, an errno on failure
4936  *
4937  * This convenience API allows consumers to forcibly disable multiple regulator
4938  * clients in a single API call.
4939  * NOTE: This should be used for situations when device damage will
4940  * likely occur if the regulators are not disabled (e.g. over temp).
4941  * Although regulator_force_disable function call for some consumers can
4942  * return error numbers, the function is called for all consumers.
4943  */
4944 int regulator_bulk_force_disable(int num_consumers,
4945                            struct regulator_bulk_data *consumers)
4946 {
4947         int i;
4948         int ret = 0;
4949
4950         for (i = 0; i < num_consumers; i++) {
4951                 consumers[i].ret =
4952                             regulator_force_disable(consumers[i].consumer);
4953
4954                 /* Store first error for reporting */
4955                 if (consumers[i].ret && !ret)
4956                         ret = consumers[i].ret;
4957         }
4958
4959         return ret;
4960 }
4961 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4962
4963 /**
4964  * regulator_bulk_free - free multiple regulator consumers
4965  *
4966  * @num_consumers: Number of consumers
4967  * @consumers:     Consumer data; clients are stored here.
4968  *
4969  * This convenience API allows consumers to free multiple regulator
4970  * clients in a single API call.
4971  */
4972 void regulator_bulk_free(int num_consumers,
4973                          struct regulator_bulk_data *consumers)
4974 {
4975         int i;
4976
4977         for (i = 0; i < num_consumers; i++) {
4978                 regulator_put(consumers[i].consumer);
4979                 consumers[i].consumer = NULL;
4980         }
4981 }
4982 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4983
4984 /**
4985  * regulator_notifier_call_chain - call regulator event notifier
4986  * @rdev: regulator source
4987  * @event: notifier block
4988  * @data: callback-specific data.
4989  *
4990  * Called by regulator drivers to notify clients a regulator event has
4991  * occurred.
4992  */
4993 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4994                                   unsigned long event, void *data)
4995 {
4996         _notifier_call_chain(rdev, event, data);
4997         return NOTIFY_DONE;
4998
4999 }
5000 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5001
5002 /**
5003  * regulator_mode_to_status - convert a regulator mode into a status
5004  *
5005  * @mode: Mode to convert
5006  *
5007  * Convert a regulator mode into a status.
5008  */
5009 int regulator_mode_to_status(unsigned int mode)
5010 {
5011         switch (mode) {
5012         case REGULATOR_MODE_FAST:
5013                 return REGULATOR_STATUS_FAST;
5014         case REGULATOR_MODE_NORMAL:
5015                 return REGULATOR_STATUS_NORMAL;
5016         case REGULATOR_MODE_IDLE:
5017                 return REGULATOR_STATUS_IDLE;
5018         case REGULATOR_MODE_STANDBY:
5019                 return REGULATOR_STATUS_STANDBY;
5020         default:
5021                 return REGULATOR_STATUS_UNDEFINED;
5022         }
5023 }
5024 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5025
5026 static struct attribute *regulator_dev_attrs[] = {
5027         &dev_attr_name.attr,
5028         &dev_attr_num_users.attr,
5029         &dev_attr_type.attr,
5030         &dev_attr_microvolts.attr,
5031         &dev_attr_microamps.attr,
5032         &dev_attr_opmode.attr,
5033         &dev_attr_state.attr,
5034         &dev_attr_status.attr,
5035         &dev_attr_bypass.attr,
5036         &dev_attr_requested_microamps.attr,
5037         &dev_attr_min_microvolts.attr,
5038         &dev_attr_max_microvolts.attr,
5039         &dev_attr_min_microamps.attr,
5040         &dev_attr_max_microamps.attr,
5041         &dev_attr_under_voltage.attr,
5042         &dev_attr_over_current.attr,
5043         &dev_attr_regulation_out.attr,
5044         &dev_attr_fail.attr,
5045         &dev_attr_over_temp.attr,
5046         &dev_attr_under_voltage_warn.attr,
5047         &dev_attr_over_current_warn.attr,
5048         &dev_attr_over_voltage_warn.attr,
5049         &dev_attr_over_temp_warn.attr,
5050         &dev_attr_suspend_standby_state.attr,
5051         &dev_attr_suspend_mem_state.attr,
5052         &dev_attr_suspend_disk_state.attr,
5053         &dev_attr_suspend_standby_microvolts.attr,
5054         &dev_attr_suspend_mem_microvolts.attr,
5055         &dev_attr_suspend_disk_microvolts.attr,
5056         &dev_attr_suspend_standby_mode.attr,
5057         &dev_attr_suspend_mem_mode.attr,
5058         &dev_attr_suspend_disk_mode.attr,
5059         NULL
5060 };
5061
5062 /*
5063  * To avoid cluttering sysfs (and memory) with useless state, only
5064  * create attributes that can be meaningfully displayed.
5065  */
5066 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5067                                          struct attribute *attr, int idx)
5068 {
5069         struct device *dev = kobj_to_dev(kobj);
5070         struct regulator_dev *rdev = dev_to_rdev(dev);
5071         const struct regulator_ops *ops = rdev->desc->ops;
5072         umode_t mode = attr->mode;
5073
5074         /* these three are always present */
5075         if (attr == &dev_attr_name.attr ||
5076             attr == &dev_attr_num_users.attr ||
5077             attr == &dev_attr_type.attr)
5078                 return mode;
5079
5080         /* some attributes need specific methods to be displayed */
5081         if (attr == &dev_attr_microvolts.attr) {
5082                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5083                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5084                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5085                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5086                         return mode;
5087                 return 0;
5088         }
5089
5090         if (attr == &dev_attr_microamps.attr)
5091                 return ops->get_current_limit ? mode : 0;
5092
5093         if (attr == &dev_attr_opmode.attr)
5094                 return ops->get_mode ? mode : 0;
5095
5096         if (attr == &dev_attr_state.attr)
5097                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5098
5099         if (attr == &dev_attr_status.attr)
5100                 return ops->get_status ? mode : 0;
5101
5102         if (attr == &dev_attr_bypass.attr)
5103                 return ops->get_bypass ? mode : 0;
5104
5105         if (attr == &dev_attr_under_voltage.attr ||
5106             attr == &dev_attr_over_current.attr ||
5107             attr == &dev_attr_regulation_out.attr ||
5108             attr == &dev_attr_fail.attr ||
5109             attr == &dev_attr_over_temp.attr ||
5110             attr == &dev_attr_under_voltage_warn.attr ||
5111             attr == &dev_attr_over_current_warn.attr ||
5112             attr == &dev_attr_over_voltage_warn.attr ||
5113             attr == &dev_attr_over_temp_warn.attr)
5114                 return ops->get_error_flags ? mode : 0;
5115
5116         /* constraints need specific supporting methods */
5117         if (attr == &dev_attr_min_microvolts.attr ||
5118             attr == &dev_attr_max_microvolts.attr)
5119                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5120
5121         if (attr == &dev_attr_min_microamps.attr ||
5122             attr == &dev_attr_max_microamps.attr)
5123                 return ops->set_current_limit ? mode : 0;
5124
5125         if (attr == &dev_attr_suspend_standby_state.attr ||
5126             attr == &dev_attr_suspend_mem_state.attr ||
5127             attr == &dev_attr_suspend_disk_state.attr)
5128                 return mode;
5129
5130         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5131             attr == &dev_attr_suspend_mem_microvolts.attr ||
5132             attr == &dev_attr_suspend_disk_microvolts.attr)
5133                 return ops->set_suspend_voltage ? mode : 0;
5134
5135         if (attr == &dev_attr_suspend_standby_mode.attr ||
5136             attr == &dev_attr_suspend_mem_mode.attr ||
5137             attr == &dev_attr_suspend_disk_mode.attr)
5138                 return ops->set_suspend_mode ? mode : 0;
5139
5140         return mode;
5141 }
5142
5143 static const struct attribute_group regulator_dev_group = {
5144         .attrs = regulator_dev_attrs,
5145         .is_visible = regulator_attr_is_visible,
5146 };
5147
5148 static const struct attribute_group *regulator_dev_groups[] = {
5149         &regulator_dev_group,
5150         NULL
5151 };
5152
5153 static void regulator_dev_release(struct device *dev)
5154 {
5155         struct regulator_dev *rdev = dev_get_drvdata(dev);
5156
5157         debugfs_remove_recursive(rdev->debugfs);
5158         kfree(rdev->constraints);
5159         of_node_put(rdev->dev.of_node);
5160         kfree(rdev);
5161 }
5162
5163 static void rdev_init_debugfs(struct regulator_dev *rdev)
5164 {
5165         struct device *parent = rdev->dev.parent;
5166         const char *rname = rdev_get_name(rdev);
5167         char name[NAME_MAX];
5168
5169         /* Avoid duplicate debugfs directory names */
5170         if (parent && rname == rdev->desc->name) {
5171                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5172                          rname);
5173                 rname = name;
5174         }
5175
5176         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5177         if (!rdev->debugfs) {
5178                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5179                 return;
5180         }
5181
5182         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5183                            &rdev->use_count);
5184         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5185                            &rdev->open_count);
5186         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5187                            &rdev->bypass_count);
5188 }
5189
5190 static int regulator_register_resolve_supply(struct device *dev, void *data)
5191 {
5192         struct regulator_dev *rdev = dev_to_rdev(dev);
5193
5194         if (regulator_resolve_supply(rdev))
5195                 rdev_dbg(rdev, "unable to resolve supply\n");
5196
5197         return 0;
5198 }
5199
5200 int regulator_coupler_register(struct regulator_coupler *coupler)
5201 {
5202         mutex_lock(&regulator_list_mutex);
5203         list_add_tail(&coupler->list, &regulator_coupler_list);
5204         mutex_unlock(&regulator_list_mutex);
5205
5206         return 0;
5207 }
5208
5209 static struct regulator_coupler *
5210 regulator_find_coupler(struct regulator_dev *rdev)
5211 {
5212         struct regulator_coupler *coupler;
5213         int err;
5214
5215         /*
5216          * Note that regulators are appended to the list and the generic
5217          * coupler is registered first, hence it will be attached at last
5218          * if nobody cared.
5219          */
5220         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5221                 err = coupler->attach_regulator(coupler, rdev);
5222                 if (!err) {
5223                         if (!coupler->balance_voltage &&
5224                             rdev->coupling_desc.n_coupled > 2)
5225                                 goto err_unsupported;
5226
5227                         return coupler;
5228                 }
5229
5230                 if (err < 0)
5231                         return ERR_PTR(err);
5232
5233                 if (err == 1)
5234                         continue;
5235
5236                 break;
5237         }
5238
5239         return ERR_PTR(-EINVAL);
5240
5241 err_unsupported:
5242         if (coupler->detach_regulator)
5243                 coupler->detach_regulator(coupler, rdev);
5244
5245         rdev_err(rdev,
5246                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5247
5248         return ERR_PTR(-EPERM);
5249 }
5250
5251 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5252 {
5253         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5254         struct coupling_desc *c_desc = &rdev->coupling_desc;
5255         int n_coupled = c_desc->n_coupled;
5256         struct regulator_dev *c_rdev;
5257         int i;
5258
5259         for (i = 1; i < n_coupled; i++) {
5260                 /* already resolved */
5261                 if (c_desc->coupled_rdevs[i])
5262                         continue;
5263
5264                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5265
5266                 if (!c_rdev)
5267                         continue;
5268
5269                 if (c_rdev->coupling_desc.coupler != coupler) {
5270                         rdev_err(rdev, "coupler mismatch with %s\n",
5271                                  rdev_get_name(c_rdev));
5272                         return;
5273                 }
5274
5275                 c_desc->coupled_rdevs[i] = c_rdev;
5276                 c_desc->n_resolved++;
5277
5278                 regulator_resolve_coupling(c_rdev);
5279         }
5280 }
5281
5282 static void regulator_remove_coupling(struct regulator_dev *rdev)
5283 {
5284         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5285         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5286         struct regulator_dev *__c_rdev, *c_rdev;
5287         unsigned int __n_coupled, n_coupled;
5288         int i, k;
5289         int err;
5290
5291         n_coupled = c_desc->n_coupled;
5292
5293         for (i = 1; i < n_coupled; i++) {
5294                 c_rdev = c_desc->coupled_rdevs[i];
5295
5296                 if (!c_rdev)
5297                         continue;
5298
5299                 regulator_lock(c_rdev);
5300
5301                 __c_desc = &c_rdev->coupling_desc;
5302                 __n_coupled = __c_desc->n_coupled;
5303
5304                 for (k = 1; k < __n_coupled; k++) {
5305                         __c_rdev = __c_desc->coupled_rdevs[k];
5306
5307                         if (__c_rdev == rdev) {
5308                                 __c_desc->coupled_rdevs[k] = NULL;
5309                                 __c_desc->n_resolved--;
5310                                 break;
5311                         }
5312                 }
5313
5314                 regulator_unlock(c_rdev);
5315
5316                 c_desc->coupled_rdevs[i] = NULL;
5317                 c_desc->n_resolved--;
5318         }
5319
5320         if (coupler && coupler->detach_regulator) {
5321                 err = coupler->detach_regulator(coupler, rdev);
5322                 if (err)
5323                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5324                                  ERR_PTR(err));
5325         }
5326
5327         kfree(rdev->coupling_desc.coupled_rdevs);
5328         rdev->coupling_desc.coupled_rdevs = NULL;
5329 }
5330
5331 static int regulator_init_coupling(struct regulator_dev *rdev)
5332 {
5333         struct regulator_dev **coupled;
5334         int err, n_phandles;
5335
5336         if (!IS_ENABLED(CONFIG_OF))
5337                 n_phandles = 0;
5338         else
5339                 n_phandles = of_get_n_coupled(rdev);
5340
5341         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5342         if (!coupled)
5343                 return -ENOMEM;
5344
5345         rdev->coupling_desc.coupled_rdevs = coupled;
5346
5347         /*
5348          * Every regulator should always have coupling descriptor filled with
5349          * at least pointer to itself.
5350          */
5351         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5352         rdev->coupling_desc.n_coupled = n_phandles + 1;
5353         rdev->coupling_desc.n_resolved++;
5354
5355         /* regulator isn't coupled */
5356         if (n_phandles == 0)
5357                 return 0;
5358
5359         if (!of_check_coupling_data(rdev))
5360                 return -EPERM;
5361
5362         mutex_lock(&regulator_list_mutex);
5363         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5364         mutex_unlock(&regulator_list_mutex);
5365
5366         if (IS_ERR(rdev->coupling_desc.coupler)) {
5367                 err = PTR_ERR(rdev->coupling_desc.coupler);
5368                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5369                 return err;
5370         }
5371
5372         return 0;
5373 }
5374
5375 static int generic_coupler_attach(struct regulator_coupler *coupler,
5376                                   struct regulator_dev *rdev)
5377 {
5378         if (rdev->coupling_desc.n_coupled > 2) {
5379                 rdev_err(rdev,
5380                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5381                 return -EPERM;
5382         }
5383
5384         if (!rdev->constraints->always_on) {
5385                 rdev_err(rdev,
5386                          "Coupling of a non always-on regulator is unimplemented\n");
5387                 return -ENOTSUPP;
5388         }
5389
5390         return 0;
5391 }
5392
5393 static struct regulator_coupler generic_regulator_coupler = {
5394         .attach_regulator = generic_coupler_attach,
5395 };
5396
5397 /**
5398  * regulator_register - register regulator
5399  * @regulator_desc: regulator to register
5400  * @cfg: runtime configuration for regulator
5401  *
5402  * Called by regulator drivers to register a regulator.
5403  * Returns a valid pointer to struct regulator_dev on success
5404  * or an ERR_PTR() on error.
5405  */
5406 struct regulator_dev *
5407 regulator_register(const struct regulator_desc *regulator_desc,
5408                    const struct regulator_config *cfg)
5409 {
5410         const struct regulator_init_data *init_data;
5411         struct regulator_config *config = NULL;
5412         static atomic_t regulator_no = ATOMIC_INIT(-1);
5413         struct regulator_dev *rdev;
5414         bool dangling_cfg_gpiod = false;
5415         bool dangling_of_gpiod = false;
5416         struct device *dev;
5417         int ret, i;
5418         bool resolved_early = false;
5419
5420         if (cfg == NULL)
5421                 return ERR_PTR(-EINVAL);
5422         if (cfg->ena_gpiod)
5423                 dangling_cfg_gpiod = true;
5424         if (regulator_desc == NULL) {
5425                 ret = -EINVAL;
5426                 goto rinse;
5427         }
5428
5429         dev = cfg->dev;
5430         WARN_ON(!dev);
5431
5432         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5433                 ret = -EINVAL;
5434                 goto rinse;
5435         }
5436
5437         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5438             regulator_desc->type != REGULATOR_CURRENT) {
5439                 ret = -EINVAL;
5440                 goto rinse;
5441         }
5442
5443         /* Only one of each should be implemented */
5444         WARN_ON(regulator_desc->ops->get_voltage &&
5445                 regulator_desc->ops->get_voltage_sel);
5446         WARN_ON(regulator_desc->ops->set_voltage &&
5447                 regulator_desc->ops->set_voltage_sel);
5448
5449         /* If we're using selectors we must implement list_voltage. */
5450         if (regulator_desc->ops->get_voltage_sel &&
5451             !regulator_desc->ops->list_voltage) {
5452                 ret = -EINVAL;
5453                 goto rinse;
5454         }
5455         if (regulator_desc->ops->set_voltage_sel &&
5456             !regulator_desc->ops->list_voltage) {
5457                 ret = -EINVAL;
5458                 goto rinse;
5459         }
5460
5461         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5462         if (rdev == NULL) {
5463                 ret = -ENOMEM;
5464                 goto rinse;
5465         }
5466         device_initialize(&rdev->dev);
5467         spin_lock_init(&rdev->err_lock);
5468
5469         /*
5470          * Duplicate the config so the driver could override it after
5471          * parsing init data.
5472          */
5473         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5474         if (config == NULL) {
5475                 ret = -ENOMEM;
5476                 goto clean;
5477         }
5478
5479         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5480                                                &rdev->dev.of_node);
5481
5482         /*
5483          * Sometimes not all resources are probed already so we need to take
5484          * that into account. This happens most the time if the ena_gpiod comes
5485          * from a gpio extender or something else.
5486          */
5487         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5488                 ret = -EPROBE_DEFER;
5489                 goto clean;
5490         }
5491
5492         /*
5493          * We need to keep track of any GPIO descriptor coming from the
5494          * device tree until we have handled it over to the core. If the
5495          * config that was passed in to this function DOES NOT contain
5496          * a descriptor, and the config after this call DOES contain
5497          * a descriptor, we definitely got one from parsing the device
5498          * tree.
5499          */
5500         if (!cfg->ena_gpiod && config->ena_gpiod)
5501                 dangling_of_gpiod = true;
5502         if (!init_data) {
5503                 init_data = config->init_data;
5504                 rdev->dev.of_node = of_node_get(config->of_node);
5505         }
5506
5507         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5508         rdev->reg_data = config->driver_data;
5509         rdev->owner = regulator_desc->owner;
5510         rdev->desc = regulator_desc;
5511         if (config->regmap)
5512                 rdev->regmap = config->regmap;
5513         else if (dev_get_regmap(dev, NULL))
5514                 rdev->regmap = dev_get_regmap(dev, NULL);
5515         else if (dev->parent)
5516                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5517         INIT_LIST_HEAD(&rdev->consumer_list);
5518         INIT_LIST_HEAD(&rdev->list);
5519         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5520         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5521
5522         if (init_data && init_data->supply_regulator)
5523                 rdev->supply_name = init_data->supply_regulator;
5524         else if (regulator_desc->supply_name)
5525                 rdev->supply_name = regulator_desc->supply_name;
5526
5527         /* register with sysfs */
5528         rdev->dev.class = &regulator_class;
5529         rdev->dev.parent = dev;
5530         dev_set_name(&rdev->dev, "regulator.%lu",
5531                     (unsigned long) atomic_inc_return(&regulator_no));
5532         dev_set_drvdata(&rdev->dev, rdev);
5533
5534         /* set regulator constraints */
5535         if (init_data)
5536                 rdev->constraints = kmemdup(&init_data->constraints,
5537                                             sizeof(*rdev->constraints),
5538                                             GFP_KERNEL);
5539         else
5540                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5541                                             GFP_KERNEL);
5542         if (!rdev->constraints) {
5543                 ret = -ENOMEM;
5544                 goto wash;
5545         }
5546
5547         if ((rdev->supply_name && !rdev->supply) &&
5548                 (rdev->constraints->always_on ||
5549                  rdev->constraints->boot_on)) {
5550                 ret = regulator_resolve_supply(rdev);
5551                 if (ret)
5552                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5553                                          ERR_PTR(ret));
5554
5555                 resolved_early = true;
5556         }
5557
5558         /* perform any regulator specific init */
5559         if (init_data && init_data->regulator_init) {
5560                 ret = init_data->regulator_init(rdev->reg_data);
5561                 if (ret < 0)
5562                         goto wash;
5563         }
5564
5565         if (config->ena_gpiod) {
5566                 ret = regulator_ena_gpio_request(rdev, config);
5567                 if (ret != 0) {
5568                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5569                                  ERR_PTR(ret));
5570                         goto wash;
5571                 }
5572                 /* The regulator core took over the GPIO descriptor */
5573                 dangling_cfg_gpiod = false;
5574                 dangling_of_gpiod = false;
5575         }
5576
5577         ret = set_machine_constraints(rdev);
5578         if (ret == -EPROBE_DEFER && !resolved_early) {
5579                 /* Regulator might be in bypass mode and so needs its supply
5580                  * to set the constraints
5581                  */
5582                 /* FIXME: this currently triggers a chicken-and-egg problem
5583                  * when creating -SUPPLY symlink in sysfs to a regulator
5584                  * that is just being created
5585                  */
5586                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5587                          rdev->supply_name);
5588                 ret = regulator_resolve_supply(rdev);
5589                 if (!ret)
5590                         ret = set_machine_constraints(rdev);
5591                 else
5592                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5593                                  ERR_PTR(ret));
5594         }
5595         if (ret < 0)
5596                 goto wash;
5597
5598         ret = regulator_init_coupling(rdev);
5599         if (ret < 0)
5600                 goto wash;
5601
5602         /* add consumers devices */
5603         if (init_data) {
5604                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5605                         ret = set_consumer_device_supply(rdev,
5606                                 init_data->consumer_supplies[i].dev_name,
5607                                 init_data->consumer_supplies[i].supply);
5608                         if (ret < 0) {
5609                                 dev_err(dev, "Failed to set supply %s\n",
5610                                         init_data->consumer_supplies[i].supply);
5611                                 goto unset_supplies;
5612                         }
5613                 }
5614         }
5615
5616         if (!rdev->desc->ops->get_voltage &&
5617             !rdev->desc->ops->list_voltage &&
5618             !rdev->desc->fixed_uV)
5619                 rdev->is_switch = true;
5620
5621         ret = device_add(&rdev->dev);
5622         if (ret != 0)
5623                 goto unset_supplies;
5624
5625         rdev_init_debugfs(rdev);
5626
5627         /* try to resolve regulators coupling since a new one was registered */
5628         mutex_lock(&regulator_list_mutex);
5629         regulator_resolve_coupling(rdev);
5630         mutex_unlock(&regulator_list_mutex);
5631
5632         /* try to resolve regulators supply since a new one was registered */
5633         class_for_each_device(&regulator_class, NULL, NULL,
5634                               regulator_register_resolve_supply);
5635         kfree(config);
5636         return rdev;
5637
5638 unset_supplies:
5639         mutex_lock(&regulator_list_mutex);
5640         unset_regulator_supplies(rdev);
5641         regulator_remove_coupling(rdev);
5642         mutex_unlock(&regulator_list_mutex);
5643 wash:
5644         kfree(rdev->coupling_desc.coupled_rdevs);
5645         mutex_lock(&regulator_list_mutex);
5646         regulator_ena_gpio_free(rdev);
5647         mutex_unlock(&regulator_list_mutex);
5648         put_device(&rdev->dev);
5649         rdev = NULL;
5650 clean:
5651         if (dangling_of_gpiod)
5652                 gpiod_put(config->ena_gpiod);
5653         if (rdev && rdev->dev.of_node)
5654                 of_node_put(rdev->dev.of_node);
5655         kfree(rdev);
5656         kfree(config);
5657 rinse:
5658         if (dangling_cfg_gpiod)
5659                 gpiod_put(cfg->ena_gpiod);
5660         return ERR_PTR(ret);
5661 }
5662 EXPORT_SYMBOL_GPL(regulator_register);
5663
5664 /**
5665  * regulator_unregister - unregister regulator
5666  * @rdev: regulator to unregister
5667  *
5668  * Called by regulator drivers to unregister a regulator.
5669  */
5670 void regulator_unregister(struct regulator_dev *rdev)
5671 {
5672         if (rdev == NULL)
5673                 return;
5674
5675         if (rdev->supply) {
5676                 while (rdev->use_count--)
5677                         regulator_disable(rdev->supply);
5678                 regulator_put(rdev->supply);
5679         }
5680
5681         flush_work(&rdev->disable_work.work);
5682
5683         mutex_lock(&regulator_list_mutex);
5684
5685         WARN_ON(rdev->open_count);
5686         regulator_remove_coupling(rdev);
5687         unset_regulator_supplies(rdev);
5688         list_del(&rdev->list);
5689         regulator_ena_gpio_free(rdev);
5690         device_unregister(&rdev->dev);
5691
5692         mutex_unlock(&regulator_list_mutex);
5693 }
5694 EXPORT_SYMBOL_GPL(regulator_unregister);
5695
5696 #ifdef CONFIG_SUSPEND
5697 /**
5698  * regulator_suspend - prepare regulators for system wide suspend
5699  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5700  *
5701  * Configure each regulator with it's suspend operating parameters for state.
5702  */
5703 static int regulator_suspend(struct device *dev)
5704 {
5705         struct regulator_dev *rdev = dev_to_rdev(dev);
5706         suspend_state_t state = pm_suspend_target_state;
5707         int ret;
5708         const struct regulator_state *rstate;
5709
5710         rstate = regulator_get_suspend_state_check(rdev, state);
5711         if (!rstate)
5712                 return 0;
5713
5714         regulator_lock(rdev);
5715         ret = __suspend_set_state(rdev, rstate);
5716         regulator_unlock(rdev);
5717
5718         return ret;
5719 }
5720
5721 static int regulator_resume(struct device *dev)
5722 {
5723         suspend_state_t state = pm_suspend_target_state;
5724         struct regulator_dev *rdev = dev_to_rdev(dev);
5725         struct regulator_state *rstate;
5726         int ret = 0;
5727
5728         rstate = regulator_get_suspend_state(rdev, state);
5729         if (rstate == NULL)
5730                 return 0;
5731
5732         /* Avoid grabbing the lock if we don't need to */
5733         if (!rdev->desc->ops->resume)
5734                 return 0;
5735
5736         regulator_lock(rdev);
5737
5738         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5739             rstate->enabled == DISABLE_IN_SUSPEND)
5740                 ret = rdev->desc->ops->resume(rdev);
5741
5742         regulator_unlock(rdev);
5743
5744         return ret;
5745 }
5746 #else /* !CONFIG_SUSPEND */
5747
5748 #define regulator_suspend       NULL
5749 #define regulator_resume        NULL
5750
5751 #endif /* !CONFIG_SUSPEND */
5752
5753 #ifdef CONFIG_PM
5754 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5755         .suspend        = regulator_suspend,
5756         .resume         = regulator_resume,
5757 };
5758 #endif
5759
5760 struct class regulator_class = {
5761         .name = "regulator",
5762         .dev_release = regulator_dev_release,
5763         .dev_groups = regulator_dev_groups,
5764 #ifdef CONFIG_PM
5765         .pm = &regulator_pm_ops,
5766 #endif
5767 };
5768 /**
5769  * regulator_has_full_constraints - the system has fully specified constraints
5770  *
5771  * Calling this function will cause the regulator API to disable all
5772  * regulators which have a zero use count and don't have an always_on
5773  * constraint in a late_initcall.
5774  *
5775  * The intention is that this will become the default behaviour in a
5776  * future kernel release so users are encouraged to use this facility
5777  * now.
5778  */
5779 void regulator_has_full_constraints(void)
5780 {
5781         has_full_constraints = 1;
5782 }
5783 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5784
5785 /**
5786  * rdev_get_drvdata - get rdev regulator driver data
5787  * @rdev: regulator
5788  *
5789  * Get rdev regulator driver private data. This call can be used in the
5790  * regulator driver context.
5791  */
5792 void *rdev_get_drvdata(struct regulator_dev *rdev)
5793 {
5794         return rdev->reg_data;
5795 }
5796 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5797
5798 /**
5799  * regulator_get_drvdata - get regulator driver data
5800  * @regulator: regulator
5801  *
5802  * Get regulator driver private data. This call can be used in the consumer
5803  * driver context when non API regulator specific functions need to be called.
5804  */
5805 void *regulator_get_drvdata(struct regulator *regulator)
5806 {
5807         return regulator->rdev->reg_data;
5808 }
5809 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5810
5811 /**
5812  * regulator_set_drvdata - set regulator driver data
5813  * @regulator: regulator
5814  * @data: data
5815  */
5816 void regulator_set_drvdata(struct regulator *regulator, void *data)
5817 {
5818         regulator->rdev->reg_data = data;
5819 }
5820 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5821
5822 /**
5823  * rdev_get_id - get regulator ID
5824  * @rdev: regulator
5825  */
5826 int rdev_get_id(struct regulator_dev *rdev)
5827 {
5828         return rdev->desc->id;
5829 }
5830 EXPORT_SYMBOL_GPL(rdev_get_id);
5831
5832 struct device *rdev_get_dev(struct regulator_dev *rdev)
5833 {
5834         return &rdev->dev;
5835 }
5836 EXPORT_SYMBOL_GPL(rdev_get_dev);
5837
5838 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5839 {
5840         return rdev->regmap;
5841 }
5842 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5843
5844 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5845 {
5846         return reg_init_data->driver_data;
5847 }
5848 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5849
5850 #ifdef CONFIG_DEBUG_FS
5851 static int supply_map_show(struct seq_file *sf, void *data)
5852 {
5853         struct regulator_map *map;
5854
5855         list_for_each_entry(map, &regulator_map_list, list) {
5856                 seq_printf(sf, "%s -> %s.%s\n",
5857                                 rdev_get_name(map->regulator), map->dev_name,
5858                                 map->supply);
5859         }
5860
5861         return 0;
5862 }
5863 DEFINE_SHOW_ATTRIBUTE(supply_map);
5864
5865 struct summary_data {
5866         struct seq_file *s;
5867         struct regulator_dev *parent;
5868         int level;
5869 };
5870
5871 static void regulator_summary_show_subtree(struct seq_file *s,
5872                                            struct regulator_dev *rdev,
5873                                            int level);
5874
5875 static int regulator_summary_show_children(struct device *dev, void *data)
5876 {
5877         struct regulator_dev *rdev = dev_to_rdev(dev);
5878         struct summary_data *summary_data = data;
5879
5880         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5881                 regulator_summary_show_subtree(summary_data->s, rdev,
5882                                                summary_data->level + 1);
5883
5884         return 0;
5885 }
5886
5887 static void regulator_summary_show_subtree(struct seq_file *s,
5888                                            struct regulator_dev *rdev,
5889                                            int level)
5890 {
5891         struct regulation_constraints *c;
5892         struct regulator *consumer;
5893         struct summary_data summary_data;
5894         unsigned int opmode;
5895
5896         if (!rdev)
5897                 return;
5898
5899         opmode = _regulator_get_mode_unlocked(rdev);
5900         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5901                    level * 3 + 1, "",
5902                    30 - level * 3, rdev_get_name(rdev),
5903                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5904                    regulator_opmode_to_str(opmode));
5905
5906         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5907         seq_printf(s, "%5dmA ",
5908                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5909
5910         c = rdev->constraints;
5911         if (c) {
5912                 switch (rdev->desc->type) {
5913                 case REGULATOR_VOLTAGE:
5914                         seq_printf(s, "%5dmV %5dmV ",
5915                                    c->min_uV / 1000, c->max_uV / 1000);
5916                         break;
5917                 case REGULATOR_CURRENT:
5918                         seq_printf(s, "%5dmA %5dmA ",
5919                                    c->min_uA / 1000, c->max_uA / 1000);
5920                         break;
5921                 }
5922         }
5923
5924         seq_puts(s, "\n");
5925
5926         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5927                 if (consumer->dev && consumer->dev->class == &regulator_class)
5928                         continue;
5929
5930                 seq_printf(s, "%*s%-*s ",
5931                            (level + 1) * 3 + 1, "",
5932                            30 - (level + 1) * 3,
5933                            consumer->supply_name ? consumer->supply_name :
5934                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5935
5936                 switch (rdev->desc->type) {
5937                 case REGULATOR_VOLTAGE:
5938                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5939                                    consumer->enable_count,
5940                                    consumer->uA_load / 1000,
5941                                    consumer->uA_load && !consumer->enable_count ?
5942                                    '*' : ' ',
5943                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5944                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5945                         break;
5946                 case REGULATOR_CURRENT:
5947                         break;
5948                 }
5949
5950                 seq_puts(s, "\n");
5951         }
5952
5953         summary_data.s = s;
5954         summary_data.level = level;
5955         summary_data.parent = rdev;
5956
5957         class_for_each_device(&regulator_class, NULL, &summary_data,
5958                               regulator_summary_show_children);
5959 }
5960
5961 struct summary_lock_data {
5962         struct ww_acquire_ctx *ww_ctx;
5963         struct regulator_dev **new_contended_rdev;
5964         struct regulator_dev **old_contended_rdev;
5965 };
5966
5967 static int regulator_summary_lock_one(struct device *dev, void *data)
5968 {
5969         struct regulator_dev *rdev = dev_to_rdev(dev);
5970         struct summary_lock_data *lock_data = data;
5971         int ret = 0;
5972
5973         if (rdev != *lock_data->old_contended_rdev) {
5974                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5975
5976                 if (ret == -EDEADLK)
5977                         *lock_data->new_contended_rdev = rdev;
5978                 else
5979                         WARN_ON_ONCE(ret);
5980         } else {
5981                 *lock_data->old_contended_rdev = NULL;
5982         }
5983
5984         return ret;
5985 }
5986
5987 static int regulator_summary_unlock_one(struct device *dev, void *data)
5988 {
5989         struct regulator_dev *rdev = dev_to_rdev(dev);
5990         struct summary_lock_data *lock_data = data;
5991
5992         if (lock_data) {
5993                 if (rdev == *lock_data->new_contended_rdev)
5994                         return -EDEADLK;
5995         }
5996
5997         regulator_unlock(rdev);
5998
5999         return 0;
6000 }
6001
6002 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6003                                       struct regulator_dev **new_contended_rdev,
6004                                       struct regulator_dev **old_contended_rdev)
6005 {
6006         struct summary_lock_data lock_data;
6007         int ret;
6008
6009         lock_data.ww_ctx = ww_ctx;
6010         lock_data.new_contended_rdev = new_contended_rdev;
6011         lock_data.old_contended_rdev = old_contended_rdev;
6012
6013         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6014                                     regulator_summary_lock_one);
6015         if (ret)
6016                 class_for_each_device(&regulator_class, NULL, &lock_data,
6017                                       regulator_summary_unlock_one);
6018
6019         return ret;
6020 }
6021
6022 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6023 {
6024         struct regulator_dev *new_contended_rdev = NULL;
6025         struct regulator_dev *old_contended_rdev = NULL;
6026         int err;
6027
6028         mutex_lock(&regulator_list_mutex);
6029
6030         ww_acquire_init(ww_ctx, &regulator_ww_class);
6031
6032         do {
6033                 if (new_contended_rdev) {
6034                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6035                         old_contended_rdev = new_contended_rdev;
6036                         old_contended_rdev->ref_cnt++;
6037                 }
6038
6039                 err = regulator_summary_lock_all(ww_ctx,
6040                                                  &new_contended_rdev,
6041                                                  &old_contended_rdev);
6042
6043                 if (old_contended_rdev)
6044                         regulator_unlock(old_contended_rdev);
6045
6046         } while (err == -EDEADLK);
6047
6048         ww_acquire_done(ww_ctx);
6049 }
6050
6051 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6052 {
6053         class_for_each_device(&regulator_class, NULL, NULL,
6054                               regulator_summary_unlock_one);
6055         ww_acquire_fini(ww_ctx);
6056
6057         mutex_unlock(&regulator_list_mutex);
6058 }
6059
6060 static int regulator_summary_show_roots(struct device *dev, void *data)
6061 {
6062         struct regulator_dev *rdev = dev_to_rdev(dev);
6063         struct seq_file *s = data;
6064
6065         if (!rdev->supply)
6066                 regulator_summary_show_subtree(s, rdev, 0);
6067
6068         return 0;
6069 }
6070
6071 static int regulator_summary_show(struct seq_file *s, void *data)
6072 {
6073         struct ww_acquire_ctx ww_ctx;
6074
6075         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6076         seq_puts(s, "---------------------------------------------------------------------------------------\n");
6077
6078         regulator_summary_lock(&ww_ctx);
6079
6080         class_for_each_device(&regulator_class, NULL, s,
6081                               regulator_summary_show_roots);
6082
6083         regulator_summary_unlock(&ww_ctx);
6084
6085         return 0;
6086 }
6087 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6088 #endif /* CONFIG_DEBUG_FS */
6089
6090 static int __init regulator_init(void)
6091 {
6092         int ret;
6093
6094         ret = class_register(&regulator_class);
6095
6096         debugfs_root = debugfs_create_dir("regulator", NULL);
6097         if (!debugfs_root)
6098                 pr_warn("regulator: Failed to create debugfs directory\n");
6099
6100 #ifdef CONFIG_DEBUG_FS
6101         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6102                             &supply_map_fops);
6103
6104         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6105                             NULL, &regulator_summary_fops);
6106 #endif
6107         regulator_dummy_init();
6108
6109         regulator_coupler_register(&generic_regulator_coupler);
6110
6111         return ret;
6112 }
6113
6114 /* init early to allow our consumers to complete system booting */
6115 core_initcall(regulator_init);
6116
6117 static int regulator_late_cleanup(struct device *dev, void *data)
6118 {
6119         struct regulator_dev *rdev = dev_to_rdev(dev);
6120         struct regulation_constraints *c = rdev->constraints;
6121         int ret;
6122
6123         if (c && c->always_on)
6124                 return 0;
6125
6126         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6127                 return 0;
6128
6129         regulator_lock(rdev);
6130
6131         if (rdev->use_count)
6132                 goto unlock;
6133
6134         /* If reading the status failed, assume that it's off. */
6135         if (_regulator_is_enabled(rdev) <= 0)
6136                 goto unlock;
6137
6138         if (have_full_constraints()) {
6139                 /* We log since this may kill the system if it goes
6140                  * wrong.
6141                  */
6142                 rdev_info(rdev, "disabling\n");
6143                 ret = _regulator_do_disable(rdev);
6144                 if (ret != 0)
6145                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6146         } else {
6147                 /* The intention is that in future we will
6148                  * assume that full constraints are provided
6149                  * so warn even if we aren't going to do
6150                  * anything here.
6151                  */
6152                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6153         }
6154
6155 unlock:
6156         regulator_unlock(rdev);
6157
6158         return 0;
6159 }
6160
6161 static void regulator_init_complete_work_function(struct work_struct *work)
6162 {
6163         /*
6164          * Regulators may had failed to resolve their input supplies
6165          * when were registered, either because the input supply was
6166          * not registered yet or because its parent device was not
6167          * bound yet. So attempt to resolve the input supplies for
6168          * pending regulators before trying to disable unused ones.
6169          */
6170         class_for_each_device(&regulator_class, NULL, NULL,
6171                               regulator_register_resolve_supply);
6172
6173         /* If we have a full configuration then disable any regulators
6174          * we have permission to change the status for and which are
6175          * not in use or always_on.  This is effectively the default
6176          * for DT and ACPI as they have full constraints.
6177          */
6178         class_for_each_device(&regulator_class, NULL, NULL,
6179                               regulator_late_cleanup);
6180 }
6181
6182 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6183                             regulator_init_complete_work_function);
6184
6185 static int __init regulator_init_complete(void)
6186 {
6187         /*
6188          * Since DT doesn't provide an idiomatic mechanism for
6189          * enabling full constraints and since it's much more natural
6190          * with DT to provide them just assume that a DT enabled
6191          * system has full constraints.
6192          */
6193         if (of_have_populated_dt())
6194                 has_full_constraints = true;
6195
6196         /*
6197          * We punt completion for an arbitrary amount of time since
6198          * systems like distros will load many drivers from userspace
6199          * so consumers might not always be ready yet, this is
6200          * particularly an issue with laptops where this might bounce
6201          * the display off then on.  Ideally we'd get a notification
6202          * from userspace when this happens but we don't so just wait
6203          * a bit and hope we waited long enough.  It'd be better if
6204          * we'd only do this on systems that need it, and a kernel
6205          * command line option might be useful.
6206          */
6207         schedule_delayed_work(&regulator_init_complete_work,
6208                               msecs_to_jiffies(30000));
6209
6210         return 0;
6211 }
6212 late_initcall_sync(regulator_init_complete);