libnvdimm/altmap: Track namespace boundaries in altmap
[linux-2.6-block.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void _regulator_put(struct regulator *regulator);
109
110 const char *rdev_get_name(struct regulator_dev *rdev)
111 {
112         if (rdev->constraints && rdev->constraints->name)
113                 return rdev->constraints->name;
114         else if (rdev->desc->name)
115                 return rdev->desc->name;
116         else
117                 return "";
118 }
119
120 static bool have_full_constraints(void)
121 {
122         return has_full_constraints || of_have_populated_dt();
123 }
124
125 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126 {
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return false;
130         }
131
132         if (rdev->constraints->valid_ops_mask & ops)
133                 return true;
134
135         return false;
136 }
137
138 /**
139  * regulator_lock_nested - lock a single regulator
140  * @rdev:               regulator source
141  * @ww_ctx:             w/w mutex acquire context
142  *
143  * This function can be called many times by one task on
144  * a single regulator and its mutex will be locked only
145  * once. If a task, which is calling this function is other
146  * than the one, which initially locked the mutex, it will
147  * wait on mutex.
148  */
149 static inline int regulator_lock_nested(struct regulator_dev *rdev,
150                                         struct ww_acquire_ctx *ww_ctx)
151 {
152         bool lock = false;
153         int ret = 0;
154
155         mutex_lock(&regulator_nesting_mutex);
156
157         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158                 if (rdev->mutex_owner == current)
159                         rdev->ref_cnt++;
160                 else
161                         lock = true;
162
163                 if (lock) {
164                         mutex_unlock(&regulator_nesting_mutex);
165                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166                         mutex_lock(&regulator_nesting_mutex);
167                 }
168         } else {
169                 lock = true;
170         }
171
172         if (lock && ret != -EDEADLK) {
173                 rdev->ref_cnt++;
174                 rdev->mutex_owner = current;
175         }
176
177         mutex_unlock(&regulator_nesting_mutex);
178
179         return ret;
180 }
181
182 /**
183  * regulator_lock - lock a single regulator
184  * @rdev:               regulator source
185  *
186  * This function can be called many times by one task on
187  * a single regulator and its mutex will be locked only
188  * once. If a task, which is calling this function is other
189  * than the one, which initially locked the mutex, it will
190  * wait on mutex.
191  */
192 void regulator_lock(struct regulator_dev *rdev)
193 {
194         regulator_lock_nested(rdev, NULL);
195 }
196 EXPORT_SYMBOL_GPL(regulator_lock);
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218 EXPORT_SYMBOL_GPL(regulator_unlock);
219
220 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 {
222         struct regulator_dev *c_rdev;
223         int i;
224
225         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228                 if (rdev->supply->rdev == c_rdev)
229                         return true;
230         }
231
232         return false;
233 }
234
235 static void regulator_unlock_recursive(struct regulator_dev *rdev,
236                                        unsigned int n_coupled)
237 {
238         struct regulator_dev *c_rdev;
239         int i;
240
241         for (i = n_coupled; i > 0; i--) {
242                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244                 if (!c_rdev)
245                         continue;
246
247                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248                         regulator_unlock_recursive(
249                                         c_rdev->supply->rdev,
250                                         c_rdev->coupling_desc.n_coupled);
251
252                 regulator_unlock(c_rdev);
253         }
254 }
255
256 static int regulator_lock_recursive(struct regulator_dev *rdev,
257                                     struct regulator_dev **new_contended_rdev,
258                                     struct regulator_dev **old_contended_rdev,
259                                     struct ww_acquire_ctx *ww_ctx)
260 {
261         struct regulator_dev *c_rdev;
262         int i, err;
263
264         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267                 if (!c_rdev)
268                         continue;
269
270                 if (c_rdev != *old_contended_rdev) {
271                         err = regulator_lock_nested(c_rdev, ww_ctx);
272                         if (err) {
273                                 if (err == -EDEADLK) {
274                                         *new_contended_rdev = c_rdev;
275                                         goto err_unlock;
276                                 }
277
278                                 /* shouldn't happen */
279                                 WARN_ON_ONCE(err != -EALREADY);
280                         }
281                 } else {
282                         *old_contended_rdev = NULL;
283                 }
284
285                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286                         err = regulator_lock_recursive(c_rdev->supply->rdev,
287                                                        new_contended_rdev,
288                                                        old_contended_rdev,
289                                                        ww_ctx);
290                         if (err) {
291                                 regulator_unlock(c_rdev);
292                                 goto err_unlock;
293                         }
294                 }
295         }
296
297         return 0;
298
299 err_unlock:
300         regulator_unlock_recursive(rdev, i);
301
302         return err;
303 }
304
305 /**
306  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307  *                              regulators
308  * @rdev:                       regulator source
309  * @ww_ctx:                     w/w mutex acquire context
310  *
311  * Unlock all regulators related with rdev by coupling or supplying.
312  */
313 static void regulator_unlock_dependent(struct regulator_dev *rdev,
314                                        struct ww_acquire_ctx *ww_ctx)
315 {
316         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317         ww_acquire_fini(ww_ctx);
318 }
319
320 /**
321  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322  * @rdev:                       regulator source
323  * @ww_ctx:                     w/w mutex acquire context
324  *
325  * This function as a wrapper on regulator_lock_recursive(), which locks
326  * all regulators related with rdev by coupling or supplying.
327  */
328 static void regulator_lock_dependent(struct regulator_dev *rdev,
329                                      struct ww_acquire_ctx *ww_ctx)
330 {
331         struct regulator_dev *new_contended_rdev = NULL;
332         struct regulator_dev *old_contended_rdev = NULL;
333         int err;
334
335         mutex_lock(&regulator_list_mutex);
336
337         ww_acquire_init(ww_ctx, &regulator_ww_class);
338
339         do {
340                 if (new_contended_rdev) {
341                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342                         old_contended_rdev = new_contended_rdev;
343                         old_contended_rdev->ref_cnt++;
344                 }
345
346                 err = regulator_lock_recursive(rdev,
347                                                &new_contended_rdev,
348                                                &old_contended_rdev,
349                                                ww_ctx);
350
351                 if (old_contended_rdev)
352                         regulator_unlock(old_contended_rdev);
353
354         } while (err == -EDEADLK);
355
356         ww_acquire_done(ww_ctx);
357
358         mutex_unlock(&regulator_list_mutex);
359 }
360
361 /**
362  * of_get_child_regulator - get a child regulator device node
363  * based on supply name
364  * @parent: Parent device node
365  * @prop_name: Combination regulator supply name and "-supply"
366  *
367  * Traverse all child nodes.
368  * Extract the child regulator device node corresponding to the supply name.
369  * returns the device node corresponding to the regulator if found, else
370  * returns NULL.
371  */
372 static struct device_node *of_get_child_regulator(struct device_node *parent,
373                                                   const char *prop_name)
374 {
375         struct device_node *regnode = NULL;
376         struct device_node *child = NULL;
377
378         for_each_child_of_node(parent, child) {
379                 regnode = of_parse_phandle(child, prop_name, 0);
380
381                 if (!regnode) {
382                         regnode = of_get_child_regulator(child, prop_name);
383                         if (regnode)
384                                 return regnode;
385                 } else {
386                         return regnode;
387                 }
388         }
389         return NULL;
390 }
391
392 /**
393  * of_get_regulator - get a regulator device node based on supply name
394  * @dev: Device pointer for the consumer (of regulator) device
395  * @supply: regulator supply name
396  *
397  * Extract the regulator device node corresponding to the supply name.
398  * returns the device node corresponding to the regulator if found, else
399  * returns NULL.
400  */
401 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
402 {
403         struct device_node *regnode = NULL;
404         char prop_name[32]; /* 32 is max size of property name */
405
406         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
407
408         snprintf(prop_name, 32, "%s-supply", supply);
409         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
410
411         if (!regnode) {
412                 regnode = of_get_child_regulator(dev->of_node, prop_name);
413                 if (regnode)
414                         return regnode;
415
416                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
417                                 prop_name, dev->of_node);
418                 return NULL;
419         }
420         return regnode;
421 }
422
423 /* Platform voltage constraint check */
424 int regulator_check_voltage(struct regulator_dev *rdev,
425                             int *min_uV, int *max_uV)
426 {
427         BUG_ON(*min_uV > *max_uV);
428
429         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
430                 rdev_err(rdev, "voltage operation not allowed\n");
431                 return -EPERM;
432         }
433
434         if (*max_uV > rdev->constraints->max_uV)
435                 *max_uV = rdev->constraints->max_uV;
436         if (*min_uV < rdev->constraints->min_uV)
437                 *min_uV = rdev->constraints->min_uV;
438
439         if (*min_uV > *max_uV) {
440                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
441                          *min_uV, *max_uV);
442                 return -EINVAL;
443         }
444
445         return 0;
446 }
447
448 /* return 0 if the state is valid */
449 static int regulator_check_states(suspend_state_t state)
450 {
451         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
452 }
453
454 /* Make sure we select a voltage that suits the needs of all
455  * regulator consumers
456  */
457 int regulator_check_consumers(struct regulator_dev *rdev,
458                               int *min_uV, int *max_uV,
459                               suspend_state_t state)
460 {
461         struct regulator *regulator;
462         struct regulator_voltage *voltage;
463
464         list_for_each_entry(regulator, &rdev->consumer_list, list) {
465                 voltage = &regulator->voltage[state];
466                 /*
467                  * Assume consumers that didn't say anything are OK
468                  * with anything in the constraint range.
469                  */
470                 if (!voltage->min_uV && !voltage->max_uV)
471                         continue;
472
473                 if (*max_uV > voltage->max_uV)
474                         *max_uV = voltage->max_uV;
475                 if (*min_uV < voltage->min_uV)
476                         *min_uV = voltage->min_uV;
477         }
478
479         if (*min_uV > *max_uV) {
480                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
481                         *min_uV, *max_uV);
482                 return -EINVAL;
483         }
484
485         return 0;
486 }
487
488 /* current constraint check */
489 static int regulator_check_current_limit(struct regulator_dev *rdev,
490                                         int *min_uA, int *max_uA)
491 {
492         BUG_ON(*min_uA > *max_uA);
493
494         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
495                 rdev_err(rdev, "current operation not allowed\n");
496                 return -EPERM;
497         }
498
499         if (*max_uA > rdev->constraints->max_uA)
500                 *max_uA = rdev->constraints->max_uA;
501         if (*min_uA < rdev->constraints->min_uA)
502                 *min_uA = rdev->constraints->min_uA;
503
504         if (*min_uA > *max_uA) {
505                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
506                          *min_uA, *max_uA);
507                 return -EINVAL;
508         }
509
510         return 0;
511 }
512
513 /* operating mode constraint check */
514 static int regulator_mode_constrain(struct regulator_dev *rdev,
515                                     unsigned int *mode)
516 {
517         switch (*mode) {
518         case REGULATOR_MODE_FAST:
519         case REGULATOR_MODE_NORMAL:
520         case REGULATOR_MODE_IDLE:
521         case REGULATOR_MODE_STANDBY:
522                 break;
523         default:
524                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
525                 return -EINVAL;
526         }
527
528         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
529                 rdev_err(rdev, "mode operation not allowed\n");
530                 return -EPERM;
531         }
532
533         /* The modes are bitmasks, the most power hungry modes having
534          * the lowest values. If the requested mode isn't supported
535          * try higher modes. */
536         while (*mode) {
537                 if (rdev->constraints->valid_modes_mask & *mode)
538                         return 0;
539                 *mode /= 2;
540         }
541
542         return -EINVAL;
543 }
544
545 static inline struct regulator_state *
546 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
547 {
548         if (rdev->constraints == NULL)
549                 return NULL;
550
551         switch (state) {
552         case PM_SUSPEND_STANDBY:
553                 return &rdev->constraints->state_standby;
554         case PM_SUSPEND_MEM:
555                 return &rdev->constraints->state_mem;
556         case PM_SUSPEND_MAX:
557                 return &rdev->constraints->state_disk;
558         default:
559                 return NULL;
560         }
561 }
562
563 static ssize_t regulator_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567         ssize_t ret;
568
569         regulator_lock(rdev);
570         ret = sprintf(buf, "%d\n", regulator_get_voltage_rdev(rdev));
571         regulator_unlock(rdev);
572
573         return ret;
574 }
575 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
576
577 static ssize_t regulator_uA_show(struct device *dev,
578                                 struct device_attribute *attr, char *buf)
579 {
580         struct regulator_dev *rdev = dev_get_drvdata(dev);
581
582         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
583 }
584 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
585
586 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
587                          char *buf)
588 {
589         struct regulator_dev *rdev = dev_get_drvdata(dev);
590
591         return sprintf(buf, "%s\n", rdev_get_name(rdev));
592 }
593 static DEVICE_ATTR_RO(name);
594
595 static const char *regulator_opmode_to_str(int mode)
596 {
597         switch (mode) {
598         case REGULATOR_MODE_FAST:
599                 return "fast";
600         case REGULATOR_MODE_NORMAL:
601                 return "normal";
602         case REGULATOR_MODE_IDLE:
603                 return "idle";
604         case REGULATOR_MODE_STANDBY:
605                 return "standby";
606         }
607         return "unknown";
608 }
609
610 static ssize_t regulator_print_opmode(char *buf, int mode)
611 {
612         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
613 }
614
615 static ssize_t regulator_opmode_show(struct device *dev,
616                                     struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
621 }
622 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
623
624 static ssize_t regulator_print_state(char *buf, int state)
625 {
626         if (state > 0)
627                 return sprintf(buf, "enabled\n");
628         else if (state == 0)
629                 return sprintf(buf, "disabled\n");
630         else
631                 return sprintf(buf, "unknown\n");
632 }
633
634 static ssize_t regulator_state_show(struct device *dev,
635                                    struct device_attribute *attr, char *buf)
636 {
637         struct regulator_dev *rdev = dev_get_drvdata(dev);
638         ssize_t ret;
639
640         regulator_lock(rdev);
641         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
642         regulator_unlock(rdev);
643
644         return ret;
645 }
646 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
647
648 static ssize_t regulator_status_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652         int status;
653         char *label;
654
655         status = rdev->desc->ops->get_status(rdev);
656         if (status < 0)
657                 return status;
658
659         switch (status) {
660         case REGULATOR_STATUS_OFF:
661                 label = "off";
662                 break;
663         case REGULATOR_STATUS_ON:
664                 label = "on";
665                 break;
666         case REGULATOR_STATUS_ERROR:
667                 label = "error";
668                 break;
669         case REGULATOR_STATUS_FAST:
670                 label = "fast";
671                 break;
672         case REGULATOR_STATUS_NORMAL:
673                 label = "normal";
674                 break;
675         case REGULATOR_STATUS_IDLE:
676                 label = "idle";
677                 break;
678         case REGULATOR_STATUS_STANDBY:
679                 label = "standby";
680                 break;
681         case REGULATOR_STATUS_BYPASS:
682                 label = "bypass";
683                 break;
684         case REGULATOR_STATUS_UNDEFINED:
685                 label = "undefined";
686                 break;
687         default:
688                 return -ERANGE;
689         }
690
691         return sprintf(buf, "%s\n", label);
692 }
693 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
694
695 static ssize_t regulator_min_uA_show(struct device *dev,
696                                     struct device_attribute *attr, char *buf)
697 {
698         struct regulator_dev *rdev = dev_get_drvdata(dev);
699
700         if (!rdev->constraints)
701                 return sprintf(buf, "constraint not defined\n");
702
703         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
704 }
705 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
706
707 static ssize_t regulator_max_uA_show(struct device *dev,
708                                     struct device_attribute *attr, char *buf)
709 {
710         struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712         if (!rdev->constraints)
713                 return sprintf(buf, "constraint not defined\n");
714
715         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
716 }
717 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
718
719 static ssize_t regulator_min_uV_show(struct device *dev,
720                                     struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
728 }
729 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
730
731 static ssize_t regulator_max_uV_show(struct device *dev,
732                                     struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
740 }
741 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
742
743 static ssize_t regulator_total_uA_show(struct device *dev,
744                                       struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747         struct regulator *regulator;
748         int uA = 0;
749
750         regulator_lock(rdev);
751         list_for_each_entry(regulator, &rdev->consumer_list, list) {
752                 if (regulator->enable_count)
753                         uA += regulator->uA_load;
754         }
755         regulator_unlock(rdev);
756         return sprintf(buf, "%d\n", uA);
757 }
758 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
759
760 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
761                               char *buf)
762 {
763         struct regulator_dev *rdev = dev_get_drvdata(dev);
764         return sprintf(buf, "%d\n", rdev->use_count);
765 }
766 static DEVICE_ATTR_RO(num_users);
767
768 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
769                          char *buf)
770 {
771         struct regulator_dev *rdev = dev_get_drvdata(dev);
772
773         switch (rdev->desc->type) {
774         case REGULATOR_VOLTAGE:
775                 return sprintf(buf, "voltage\n");
776         case REGULATOR_CURRENT:
777                 return sprintf(buf, "current\n");
778         }
779         return sprintf(buf, "unknown\n");
780 }
781 static DEVICE_ATTR_RO(type);
782
783 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
784                                 struct device_attribute *attr, char *buf)
785 {
786         struct regulator_dev *rdev = dev_get_drvdata(dev);
787
788         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
789 }
790 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
791                 regulator_suspend_mem_uV_show, NULL);
792
793 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
794                                 struct device_attribute *attr, char *buf)
795 {
796         struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
799 }
800 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
801                 regulator_suspend_disk_uV_show, NULL);
802
803 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
804                                 struct device_attribute *attr, char *buf)
805 {
806         struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
809 }
810 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
811                 regulator_suspend_standby_uV_show, NULL);
812
813 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
814                                 struct device_attribute *attr, char *buf)
815 {
816         struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818         return regulator_print_opmode(buf,
819                 rdev->constraints->state_mem.mode);
820 }
821 static DEVICE_ATTR(suspend_mem_mode, 0444,
822                 regulator_suspend_mem_mode_show, NULL);
823
824 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
825                                 struct device_attribute *attr, char *buf)
826 {
827         struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829         return regulator_print_opmode(buf,
830                 rdev->constraints->state_disk.mode);
831 }
832 static DEVICE_ATTR(suspend_disk_mode, 0444,
833                 regulator_suspend_disk_mode_show, NULL);
834
835 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
836                                 struct device_attribute *attr, char *buf)
837 {
838         struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840         return regulator_print_opmode(buf,
841                 rdev->constraints->state_standby.mode);
842 }
843 static DEVICE_ATTR(suspend_standby_mode, 0444,
844                 regulator_suspend_standby_mode_show, NULL);
845
846 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
847                                    struct device_attribute *attr, char *buf)
848 {
849         struct regulator_dev *rdev = dev_get_drvdata(dev);
850
851         return regulator_print_state(buf,
852                         rdev->constraints->state_mem.enabled);
853 }
854 static DEVICE_ATTR(suspend_mem_state, 0444,
855                 regulator_suspend_mem_state_show, NULL);
856
857 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
858                                    struct device_attribute *attr, char *buf)
859 {
860         struct regulator_dev *rdev = dev_get_drvdata(dev);
861
862         return regulator_print_state(buf,
863                         rdev->constraints->state_disk.enabled);
864 }
865 static DEVICE_ATTR(suspend_disk_state, 0444,
866                 regulator_suspend_disk_state_show, NULL);
867
868 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
869                                    struct device_attribute *attr, char *buf)
870 {
871         struct regulator_dev *rdev = dev_get_drvdata(dev);
872
873         return regulator_print_state(buf,
874                         rdev->constraints->state_standby.enabled);
875 }
876 static DEVICE_ATTR(suspend_standby_state, 0444,
877                 regulator_suspend_standby_state_show, NULL);
878
879 static ssize_t regulator_bypass_show(struct device *dev,
880                                      struct device_attribute *attr, char *buf)
881 {
882         struct regulator_dev *rdev = dev_get_drvdata(dev);
883         const char *report;
884         bool bypass;
885         int ret;
886
887         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
888
889         if (ret != 0)
890                 report = "unknown";
891         else if (bypass)
892                 report = "enabled";
893         else
894                 report = "disabled";
895
896         return sprintf(buf, "%s\n", report);
897 }
898 static DEVICE_ATTR(bypass, 0444,
899                    regulator_bypass_show, NULL);
900
901 /* Calculate the new optimum regulator operating mode based on the new total
902  * consumer load. All locks held by caller */
903 static int drms_uA_update(struct regulator_dev *rdev)
904 {
905         struct regulator *sibling;
906         int current_uA = 0, output_uV, input_uV, err;
907         unsigned int mode;
908
909         /*
910          * first check to see if we can set modes at all, otherwise just
911          * tell the consumer everything is OK.
912          */
913         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
914                 rdev_dbg(rdev, "DRMS operation not allowed\n");
915                 return 0;
916         }
917
918         if (!rdev->desc->ops->get_optimum_mode &&
919             !rdev->desc->ops->set_load)
920                 return 0;
921
922         if (!rdev->desc->ops->set_mode &&
923             !rdev->desc->ops->set_load)
924                 return -EINVAL;
925
926         /* calc total requested load */
927         list_for_each_entry(sibling, &rdev->consumer_list, list) {
928                 if (sibling->enable_count)
929                         current_uA += sibling->uA_load;
930         }
931
932         current_uA += rdev->constraints->system_load;
933
934         if (rdev->desc->ops->set_load) {
935                 /* set the optimum mode for our new total regulator load */
936                 err = rdev->desc->ops->set_load(rdev, current_uA);
937                 if (err < 0)
938                         rdev_err(rdev, "failed to set load %d\n", current_uA);
939         } else {
940                 /* get output voltage */
941                 output_uV = regulator_get_voltage_rdev(rdev);
942                 if (output_uV <= 0) {
943                         rdev_err(rdev, "invalid output voltage found\n");
944                         return -EINVAL;
945                 }
946
947                 /* get input voltage */
948                 input_uV = 0;
949                 if (rdev->supply)
950                         input_uV = regulator_get_voltage(rdev->supply);
951                 if (input_uV <= 0)
952                         input_uV = rdev->constraints->input_uV;
953                 if (input_uV <= 0) {
954                         rdev_err(rdev, "invalid input voltage found\n");
955                         return -EINVAL;
956                 }
957
958                 /* now get the optimum mode for our new total regulator load */
959                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
960                                                          output_uV, current_uA);
961
962                 /* check the new mode is allowed */
963                 err = regulator_mode_constrain(rdev, &mode);
964                 if (err < 0) {
965                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
966                                  current_uA, input_uV, output_uV);
967                         return err;
968                 }
969
970                 err = rdev->desc->ops->set_mode(rdev, mode);
971                 if (err < 0)
972                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
973         }
974
975         return err;
976 }
977
978 static int suspend_set_state(struct regulator_dev *rdev,
979                                     suspend_state_t state)
980 {
981         int ret = 0;
982         struct regulator_state *rstate;
983
984         rstate = regulator_get_suspend_state(rdev, state);
985         if (rstate == NULL)
986                 return 0;
987
988         /* If we have no suspend mode configuration don't set anything;
989          * only warn if the driver implements set_suspend_voltage or
990          * set_suspend_mode callback.
991          */
992         if (rstate->enabled != ENABLE_IN_SUSPEND &&
993             rstate->enabled != DISABLE_IN_SUSPEND) {
994                 if (rdev->desc->ops->set_suspend_voltage ||
995                     rdev->desc->ops->set_suspend_mode)
996                         rdev_warn(rdev, "No configuration\n");
997                 return 0;
998         }
999
1000         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1001                 rdev->desc->ops->set_suspend_enable)
1002                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1003         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1004                 rdev->desc->ops->set_suspend_disable)
1005                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1006         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1007                 ret = 0;
1008
1009         if (ret < 0) {
1010                 rdev_err(rdev, "failed to enabled/disable\n");
1011                 return ret;
1012         }
1013
1014         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1015                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1016                 if (ret < 0) {
1017                         rdev_err(rdev, "failed to set voltage\n");
1018                         return ret;
1019                 }
1020         }
1021
1022         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1023                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1024                 if (ret < 0) {
1025                         rdev_err(rdev, "failed to set mode\n");
1026                         return ret;
1027                 }
1028         }
1029
1030         return ret;
1031 }
1032
1033 static void print_constraints(struct regulator_dev *rdev)
1034 {
1035         struct regulation_constraints *constraints = rdev->constraints;
1036         char buf[160] = "";
1037         size_t len = sizeof(buf) - 1;
1038         int count = 0;
1039         int ret;
1040
1041         if (constraints->min_uV && constraints->max_uV) {
1042                 if (constraints->min_uV == constraints->max_uV)
1043                         count += scnprintf(buf + count, len - count, "%d mV ",
1044                                            constraints->min_uV / 1000);
1045                 else
1046                         count += scnprintf(buf + count, len - count,
1047                                            "%d <--> %d mV ",
1048                                            constraints->min_uV / 1000,
1049                                            constraints->max_uV / 1000);
1050         }
1051
1052         if (!constraints->min_uV ||
1053             constraints->min_uV != constraints->max_uV) {
1054                 ret = regulator_get_voltage_rdev(rdev);
1055                 if (ret > 0)
1056                         count += scnprintf(buf + count, len - count,
1057                                            "at %d mV ", ret / 1000);
1058         }
1059
1060         if (constraints->uV_offset)
1061                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1062                                    constraints->uV_offset / 1000);
1063
1064         if (constraints->min_uA && constraints->max_uA) {
1065                 if (constraints->min_uA == constraints->max_uA)
1066                         count += scnprintf(buf + count, len - count, "%d mA ",
1067                                            constraints->min_uA / 1000);
1068                 else
1069                         count += scnprintf(buf + count, len - count,
1070                                            "%d <--> %d mA ",
1071                                            constraints->min_uA / 1000,
1072                                            constraints->max_uA / 1000);
1073         }
1074
1075         if (!constraints->min_uA ||
1076             constraints->min_uA != constraints->max_uA) {
1077                 ret = _regulator_get_current_limit(rdev);
1078                 if (ret > 0)
1079                         count += scnprintf(buf + count, len - count,
1080                                            "at %d mA ", ret / 1000);
1081         }
1082
1083         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1084                 count += scnprintf(buf + count, len - count, "fast ");
1085         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1086                 count += scnprintf(buf + count, len - count, "normal ");
1087         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1088                 count += scnprintf(buf + count, len - count, "idle ");
1089         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1090                 count += scnprintf(buf + count, len - count, "standby");
1091
1092         if (!count)
1093                 scnprintf(buf, len, "no parameters");
1094
1095         rdev_dbg(rdev, "%s\n", buf);
1096
1097         if ((constraints->min_uV != constraints->max_uV) &&
1098             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1099                 rdev_warn(rdev,
1100                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1101 }
1102
1103 static int machine_constraints_voltage(struct regulator_dev *rdev,
1104         struct regulation_constraints *constraints)
1105 {
1106         const struct regulator_ops *ops = rdev->desc->ops;
1107         int ret;
1108
1109         /* do we need to apply the constraint voltage */
1110         if (rdev->constraints->apply_uV &&
1111             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1112                 int target_min, target_max;
1113                 int current_uV = regulator_get_voltage_rdev(rdev);
1114
1115                 if (current_uV == -ENOTRECOVERABLE) {
1116                         /* This regulator can't be read and must be initialized */
1117                         rdev_info(rdev, "Setting %d-%duV\n",
1118                                   rdev->constraints->min_uV,
1119                                   rdev->constraints->max_uV);
1120                         _regulator_do_set_voltage(rdev,
1121                                                   rdev->constraints->min_uV,
1122                                                   rdev->constraints->max_uV);
1123                         current_uV = regulator_get_voltage_rdev(rdev);
1124                 }
1125
1126                 if (current_uV < 0) {
1127                         rdev_err(rdev,
1128                                  "failed to get the current voltage(%d)\n",
1129                                  current_uV);
1130                         return current_uV;
1131                 }
1132
1133                 /*
1134                  * If we're below the minimum voltage move up to the
1135                  * minimum voltage, if we're above the maximum voltage
1136                  * then move down to the maximum.
1137                  */
1138                 target_min = current_uV;
1139                 target_max = current_uV;
1140
1141                 if (current_uV < rdev->constraints->min_uV) {
1142                         target_min = rdev->constraints->min_uV;
1143                         target_max = rdev->constraints->min_uV;
1144                 }
1145
1146                 if (current_uV > rdev->constraints->max_uV) {
1147                         target_min = rdev->constraints->max_uV;
1148                         target_max = rdev->constraints->max_uV;
1149                 }
1150
1151                 if (target_min != current_uV || target_max != current_uV) {
1152                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1153                                   current_uV, target_min, target_max);
1154                         ret = _regulator_do_set_voltage(
1155                                 rdev, target_min, target_max);
1156                         if (ret < 0) {
1157                                 rdev_err(rdev,
1158                                         "failed to apply %d-%duV constraint(%d)\n",
1159                                         target_min, target_max, ret);
1160                                 return ret;
1161                         }
1162                 }
1163         }
1164
1165         /* constrain machine-level voltage specs to fit
1166          * the actual range supported by this regulator.
1167          */
1168         if (ops->list_voltage && rdev->desc->n_voltages) {
1169                 int     count = rdev->desc->n_voltages;
1170                 int     i;
1171                 int     min_uV = INT_MAX;
1172                 int     max_uV = INT_MIN;
1173                 int     cmin = constraints->min_uV;
1174                 int     cmax = constraints->max_uV;
1175
1176                 /* it's safe to autoconfigure fixed-voltage supplies
1177                    and the constraints are used by list_voltage. */
1178                 if (count == 1 && !cmin) {
1179                         cmin = 1;
1180                         cmax = INT_MAX;
1181                         constraints->min_uV = cmin;
1182                         constraints->max_uV = cmax;
1183                 }
1184
1185                 /* voltage constraints are optional */
1186                 if ((cmin == 0) && (cmax == 0))
1187                         return 0;
1188
1189                 /* else require explicit machine-level constraints */
1190                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1191                         rdev_err(rdev, "invalid voltage constraints\n");
1192                         return -EINVAL;
1193                 }
1194
1195                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1196                 for (i = 0; i < count; i++) {
1197                         int     value;
1198
1199                         value = ops->list_voltage(rdev, i);
1200                         if (value <= 0)
1201                                 continue;
1202
1203                         /* maybe adjust [min_uV..max_uV] */
1204                         if (value >= cmin && value < min_uV)
1205                                 min_uV = value;
1206                         if (value <= cmax && value > max_uV)
1207                                 max_uV = value;
1208                 }
1209
1210                 /* final: [min_uV..max_uV] valid iff constraints valid */
1211                 if (max_uV < min_uV) {
1212                         rdev_err(rdev,
1213                                  "unsupportable voltage constraints %u-%uuV\n",
1214                                  min_uV, max_uV);
1215                         return -EINVAL;
1216                 }
1217
1218                 /* use regulator's subset of machine constraints */
1219                 if (constraints->min_uV < min_uV) {
1220                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1221                                  constraints->min_uV, min_uV);
1222                         constraints->min_uV = min_uV;
1223                 }
1224                 if (constraints->max_uV > max_uV) {
1225                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1226                                  constraints->max_uV, max_uV);
1227                         constraints->max_uV = max_uV;
1228                 }
1229         }
1230
1231         return 0;
1232 }
1233
1234 static int machine_constraints_current(struct regulator_dev *rdev,
1235         struct regulation_constraints *constraints)
1236 {
1237         const struct regulator_ops *ops = rdev->desc->ops;
1238         int ret;
1239
1240         if (!constraints->min_uA && !constraints->max_uA)
1241                 return 0;
1242
1243         if (constraints->min_uA > constraints->max_uA) {
1244                 rdev_err(rdev, "Invalid current constraints\n");
1245                 return -EINVAL;
1246         }
1247
1248         if (!ops->set_current_limit || !ops->get_current_limit) {
1249                 rdev_warn(rdev, "Operation of current configuration missing\n");
1250                 return 0;
1251         }
1252
1253         /* Set regulator current in constraints range */
1254         ret = ops->set_current_limit(rdev, constraints->min_uA,
1255                         constraints->max_uA);
1256         if (ret < 0) {
1257                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1258                 return ret;
1259         }
1260
1261         return 0;
1262 }
1263
1264 static int _regulator_do_enable(struct regulator_dev *rdev);
1265
1266 /**
1267  * set_machine_constraints - sets regulator constraints
1268  * @rdev: regulator source
1269  * @constraints: constraints to apply
1270  *
1271  * Allows platform initialisation code to define and constrain
1272  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1273  * Constraints *must* be set by platform code in order for some
1274  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1275  * set_mode.
1276  */
1277 static int set_machine_constraints(struct regulator_dev *rdev,
1278         const struct regulation_constraints *constraints)
1279 {
1280         int ret = 0;
1281         const struct regulator_ops *ops = rdev->desc->ops;
1282
1283         if (constraints)
1284                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1285                                             GFP_KERNEL);
1286         else
1287                 rdev->constraints = kzalloc(sizeof(*constraints),
1288                                             GFP_KERNEL);
1289         if (!rdev->constraints)
1290                 return -ENOMEM;
1291
1292         ret = machine_constraints_voltage(rdev, rdev->constraints);
1293         if (ret != 0)
1294                 return ret;
1295
1296         ret = machine_constraints_current(rdev, rdev->constraints);
1297         if (ret != 0)
1298                 return ret;
1299
1300         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1301                 ret = ops->set_input_current_limit(rdev,
1302                                                    rdev->constraints->ilim_uA);
1303                 if (ret < 0) {
1304                         rdev_err(rdev, "failed to set input limit\n");
1305                         return ret;
1306                 }
1307         }
1308
1309         /* do we need to setup our suspend state */
1310         if (rdev->constraints->initial_state) {
1311                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1312                 if (ret < 0) {
1313                         rdev_err(rdev, "failed to set suspend state\n");
1314                         return ret;
1315                 }
1316         }
1317
1318         if (rdev->constraints->initial_mode) {
1319                 if (!ops->set_mode) {
1320                         rdev_err(rdev, "no set_mode operation\n");
1321                         return -EINVAL;
1322                 }
1323
1324                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1325                 if (ret < 0) {
1326                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1327                         return ret;
1328                 }
1329         } else if (rdev->constraints->system_load) {
1330                 /*
1331                  * We'll only apply the initial system load if an
1332                  * initial mode wasn't specified.
1333                  */
1334                 drms_uA_update(rdev);
1335         }
1336
1337         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1338                 && ops->set_ramp_delay) {
1339                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1340                 if (ret < 0) {
1341                         rdev_err(rdev, "failed to set ramp_delay\n");
1342                         return ret;
1343                 }
1344         }
1345
1346         if (rdev->constraints->pull_down && ops->set_pull_down) {
1347                 ret = ops->set_pull_down(rdev);
1348                 if (ret < 0) {
1349                         rdev_err(rdev, "failed to set pull down\n");
1350                         return ret;
1351                 }
1352         }
1353
1354         if (rdev->constraints->soft_start && ops->set_soft_start) {
1355                 ret = ops->set_soft_start(rdev);
1356                 if (ret < 0) {
1357                         rdev_err(rdev, "failed to set soft start\n");
1358                         return ret;
1359                 }
1360         }
1361
1362         if (rdev->constraints->over_current_protection
1363                 && ops->set_over_current_protection) {
1364                 ret = ops->set_over_current_protection(rdev);
1365                 if (ret < 0) {
1366                         rdev_err(rdev, "failed to set over current protection\n");
1367                         return ret;
1368                 }
1369         }
1370
1371         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1372                 bool ad_state = (rdev->constraints->active_discharge ==
1373                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1374
1375                 ret = ops->set_active_discharge(rdev, ad_state);
1376                 if (ret < 0) {
1377                         rdev_err(rdev, "failed to set active discharge\n");
1378                         return ret;
1379                 }
1380         }
1381
1382         /* If the constraints say the regulator should be on at this point
1383          * and we have control then make sure it is enabled.
1384          */
1385         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1386                 if (rdev->supply) {
1387                         ret = regulator_enable(rdev->supply);
1388                         if (ret < 0) {
1389                                 _regulator_put(rdev->supply);
1390                                 rdev->supply = NULL;
1391                                 return ret;
1392                         }
1393                 }
1394
1395                 ret = _regulator_do_enable(rdev);
1396                 if (ret < 0 && ret != -EINVAL) {
1397                         rdev_err(rdev, "failed to enable\n");
1398                         return ret;
1399                 }
1400                 rdev->use_count++;
1401         }
1402
1403         print_constraints(rdev);
1404         return 0;
1405 }
1406
1407 /**
1408  * set_supply - set regulator supply regulator
1409  * @rdev: regulator name
1410  * @supply_rdev: supply regulator name
1411  *
1412  * Called by platform initialisation code to set the supply regulator for this
1413  * regulator. This ensures that a regulators supply will also be enabled by the
1414  * core if it's child is enabled.
1415  */
1416 static int set_supply(struct regulator_dev *rdev,
1417                       struct regulator_dev *supply_rdev)
1418 {
1419         int err;
1420
1421         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1422
1423         if (!try_module_get(supply_rdev->owner))
1424                 return -ENODEV;
1425
1426         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1427         if (rdev->supply == NULL) {
1428                 err = -ENOMEM;
1429                 return err;
1430         }
1431         supply_rdev->open_count++;
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1438  * @rdev:         regulator source
1439  * @consumer_dev_name: dev_name() string for device supply applies to
1440  * @supply:       symbolic name for supply
1441  *
1442  * Allows platform initialisation code to map physical regulator
1443  * sources to symbolic names for supplies for use by devices.  Devices
1444  * should use these symbolic names to request regulators, avoiding the
1445  * need to provide board-specific regulator names as platform data.
1446  */
1447 static int set_consumer_device_supply(struct regulator_dev *rdev,
1448                                       const char *consumer_dev_name,
1449                                       const char *supply)
1450 {
1451         struct regulator_map *node;
1452         int has_dev;
1453
1454         if (supply == NULL)
1455                 return -EINVAL;
1456
1457         if (consumer_dev_name != NULL)
1458                 has_dev = 1;
1459         else
1460                 has_dev = 0;
1461
1462         list_for_each_entry(node, &regulator_map_list, list) {
1463                 if (node->dev_name && consumer_dev_name) {
1464                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1465                                 continue;
1466                 } else if (node->dev_name || consumer_dev_name) {
1467                         continue;
1468                 }
1469
1470                 if (strcmp(node->supply, supply) != 0)
1471                         continue;
1472
1473                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1474                          consumer_dev_name,
1475                          dev_name(&node->regulator->dev),
1476                          node->regulator->desc->name,
1477                          supply,
1478                          dev_name(&rdev->dev), rdev_get_name(rdev));
1479                 return -EBUSY;
1480         }
1481
1482         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1483         if (node == NULL)
1484                 return -ENOMEM;
1485
1486         node->regulator = rdev;
1487         node->supply = supply;
1488
1489         if (has_dev) {
1490                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1491                 if (node->dev_name == NULL) {
1492                         kfree(node);
1493                         return -ENOMEM;
1494                 }
1495         }
1496
1497         list_add(&node->list, &regulator_map_list);
1498         return 0;
1499 }
1500
1501 static void unset_regulator_supplies(struct regulator_dev *rdev)
1502 {
1503         struct regulator_map *node, *n;
1504
1505         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1506                 if (rdev == node->regulator) {
1507                         list_del(&node->list);
1508                         kfree(node->dev_name);
1509                         kfree(node);
1510                 }
1511         }
1512 }
1513
1514 #ifdef CONFIG_DEBUG_FS
1515 static ssize_t constraint_flags_read_file(struct file *file,
1516                                           char __user *user_buf,
1517                                           size_t count, loff_t *ppos)
1518 {
1519         const struct regulator *regulator = file->private_data;
1520         const struct regulation_constraints *c = regulator->rdev->constraints;
1521         char *buf;
1522         ssize_t ret;
1523
1524         if (!c)
1525                 return 0;
1526
1527         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1528         if (!buf)
1529                 return -ENOMEM;
1530
1531         ret = snprintf(buf, PAGE_SIZE,
1532                         "always_on: %u\n"
1533                         "boot_on: %u\n"
1534                         "apply_uV: %u\n"
1535                         "ramp_disable: %u\n"
1536                         "soft_start: %u\n"
1537                         "pull_down: %u\n"
1538                         "over_current_protection: %u\n",
1539                         c->always_on,
1540                         c->boot_on,
1541                         c->apply_uV,
1542                         c->ramp_disable,
1543                         c->soft_start,
1544                         c->pull_down,
1545                         c->over_current_protection);
1546
1547         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1548         kfree(buf);
1549
1550         return ret;
1551 }
1552
1553 #endif
1554
1555 static const struct file_operations constraint_flags_fops = {
1556 #ifdef CONFIG_DEBUG_FS
1557         .open = simple_open,
1558         .read = constraint_flags_read_file,
1559         .llseek = default_llseek,
1560 #endif
1561 };
1562
1563 #define REG_STR_SIZE    64
1564
1565 static struct regulator *create_regulator(struct regulator_dev *rdev,
1566                                           struct device *dev,
1567                                           const char *supply_name)
1568 {
1569         struct regulator *regulator;
1570         char buf[REG_STR_SIZE];
1571         int err, size;
1572
1573         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1574         if (regulator == NULL)
1575                 return NULL;
1576
1577         regulator_lock(rdev);
1578         regulator->rdev = rdev;
1579         list_add(&regulator->list, &rdev->consumer_list);
1580
1581         if (dev) {
1582                 regulator->dev = dev;
1583
1584                 /* Add a link to the device sysfs entry */
1585                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1586                                 dev->kobj.name, supply_name);
1587                 if (size >= REG_STR_SIZE)
1588                         goto overflow_err;
1589
1590                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1591                 if (regulator->supply_name == NULL)
1592                         goto overflow_err;
1593
1594                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1595                                         buf);
1596                 if (err) {
1597                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1598                                   dev->kobj.name, err);
1599                         /* non-fatal */
1600                 }
1601         } else {
1602                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1603                 if (regulator->supply_name == NULL)
1604                         goto overflow_err;
1605         }
1606
1607         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1608                                                 rdev->debugfs);
1609         if (!regulator->debugfs) {
1610                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1611         } else {
1612                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1613                                    &regulator->uA_load);
1614                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1615                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1616                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1617                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1618                 debugfs_create_file("constraint_flags", 0444,
1619                                     regulator->debugfs, regulator,
1620                                     &constraint_flags_fops);
1621         }
1622
1623         /*
1624          * Check now if the regulator is an always on regulator - if
1625          * it is then we don't need to do nearly so much work for
1626          * enable/disable calls.
1627          */
1628         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1629             _regulator_is_enabled(rdev))
1630                 regulator->always_on = true;
1631
1632         regulator_unlock(rdev);
1633         return regulator;
1634 overflow_err:
1635         list_del(&regulator->list);
1636         kfree(regulator);
1637         regulator_unlock(rdev);
1638         return NULL;
1639 }
1640
1641 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1642 {
1643         if (rdev->constraints && rdev->constraints->enable_time)
1644                 return rdev->constraints->enable_time;
1645         if (rdev->desc->ops->enable_time)
1646                 return rdev->desc->ops->enable_time(rdev);
1647         return rdev->desc->enable_time;
1648 }
1649
1650 static struct regulator_supply_alias *regulator_find_supply_alias(
1651                 struct device *dev, const char *supply)
1652 {
1653         struct regulator_supply_alias *map;
1654
1655         list_for_each_entry(map, &regulator_supply_alias_list, list)
1656                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1657                         return map;
1658
1659         return NULL;
1660 }
1661
1662 static void regulator_supply_alias(struct device **dev, const char **supply)
1663 {
1664         struct regulator_supply_alias *map;
1665
1666         map = regulator_find_supply_alias(*dev, *supply);
1667         if (map) {
1668                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1669                                 *supply, map->alias_supply,
1670                                 dev_name(map->alias_dev));
1671                 *dev = map->alias_dev;
1672                 *supply = map->alias_supply;
1673         }
1674 }
1675
1676 static int regulator_match(struct device *dev, const void *data)
1677 {
1678         struct regulator_dev *r = dev_to_rdev(dev);
1679
1680         return strcmp(rdev_get_name(r), data) == 0;
1681 }
1682
1683 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1684 {
1685         struct device *dev;
1686
1687         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1688
1689         return dev ? dev_to_rdev(dev) : NULL;
1690 }
1691
1692 /**
1693  * regulator_dev_lookup - lookup a regulator device.
1694  * @dev: device for regulator "consumer".
1695  * @supply: Supply name or regulator ID.
1696  *
1697  * If successful, returns a struct regulator_dev that corresponds to the name
1698  * @supply and with the embedded struct device refcount incremented by one.
1699  * The refcount must be dropped by calling put_device().
1700  * On failure one of the following ERR-PTR-encoded values is returned:
1701  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1702  * in the future.
1703  */
1704 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1705                                                   const char *supply)
1706 {
1707         struct regulator_dev *r = NULL;
1708         struct device_node *node;
1709         struct regulator_map *map;
1710         const char *devname = NULL;
1711
1712         regulator_supply_alias(&dev, &supply);
1713
1714         /* first do a dt based lookup */
1715         if (dev && dev->of_node) {
1716                 node = of_get_regulator(dev, supply);
1717                 if (node) {
1718                         r = of_find_regulator_by_node(node);
1719                         if (r)
1720                                 return r;
1721
1722                         /*
1723                          * We have a node, but there is no device.
1724                          * assume it has not registered yet.
1725                          */
1726                         return ERR_PTR(-EPROBE_DEFER);
1727                 }
1728         }
1729
1730         /* if not found, try doing it non-dt way */
1731         if (dev)
1732                 devname = dev_name(dev);
1733
1734         mutex_lock(&regulator_list_mutex);
1735         list_for_each_entry(map, &regulator_map_list, list) {
1736                 /* If the mapping has a device set up it must match */
1737                 if (map->dev_name &&
1738                     (!devname || strcmp(map->dev_name, devname)))
1739                         continue;
1740
1741                 if (strcmp(map->supply, supply) == 0 &&
1742                     get_device(&map->regulator->dev)) {
1743                         r = map->regulator;
1744                         break;
1745                 }
1746         }
1747         mutex_unlock(&regulator_list_mutex);
1748
1749         if (r)
1750                 return r;
1751
1752         r = regulator_lookup_by_name(supply);
1753         if (r)
1754                 return r;
1755
1756         return ERR_PTR(-ENODEV);
1757 }
1758
1759 static int regulator_resolve_supply(struct regulator_dev *rdev)
1760 {
1761         struct regulator_dev *r;
1762         struct device *dev = rdev->dev.parent;
1763         int ret;
1764
1765         /* No supply to resolve? */
1766         if (!rdev->supply_name)
1767                 return 0;
1768
1769         /* Supply already resolved? */
1770         if (rdev->supply)
1771                 return 0;
1772
1773         r = regulator_dev_lookup(dev, rdev->supply_name);
1774         if (IS_ERR(r)) {
1775                 ret = PTR_ERR(r);
1776
1777                 /* Did the lookup explicitly defer for us? */
1778                 if (ret == -EPROBE_DEFER)
1779                         return ret;
1780
1781                 if (have_full_constraints()) {
1782                         r = dummy_regulator_rdev;
1783                         get_device(&r->dev);
1784                 } else {
1785                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1786                                 rdev->supply_name, rdev->desc->name);
1787                         return -EPROBE_DEFER;
1788                 }
1789         }
1790
1791         /*
1792          * If the supply's parent device is not the same as the
1793          * regulator's parent device, then ensure the parent device
1794          * is bound before we resolve the supply, in case the parent
1795          * device get probe deferred and unregisters the supply.
1796          */
1797         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1798                 if (!device_is_bound(r->dev.parent)) {
1799                         put_device(&r->dev);
1800                         return -EPROBE_DEFER;
1801                 }
1802         }
1803
1804         /* Recursively resolve the supply of the supply */
1805         ret = regulator_resolve_supply(r);
1806         if (ret < 0) {
1807                 put_device(&r->dev);
1808                 return ret;
1809         }
1810
1811         ret = set_supply(rdev, r);
1812         if (ret < 0) {
1813                 put_device(&r->dev);
1814                 return ret;
1815         }
1816
1817         /*
1818          * In set_machine_constraints() we may have turned this regulator on
1819          * but we couldn't propagate to the supply if it hadn't been resolved
1820          * yet.  Do it now.
1821          */
1822         if (rdev->use_count) {
1823                 ret = regulator_enable(rdev->supply);
1824                 if (ret < 0) {
1825                         _regulator_put(rdev->supply);
1826                         rdev->supply = NULL;
1827                         return ret;
1828                 }
1829         }
1830
1831         return 0;
1832 }
1833
1834 /* Internal regulator request function */
1835 struct regulator *_regulator_get(struct device *dev, const char *id,
1836                                  enum regulator_get_type get_type)
1837 {
1838         struct regulator_dev *rdev;
1839         struct regulator *regulator;
1840         const char *devname = dev ? dev_name(dev) : "deviceless";
1841         int ret;
1842
1843         if (get_type >= MAX_GET_TYPE) {
1844                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1845                 return ERR_PTR(-EINVAL);
1846         }
1847
1848         if (id == NULL) {
1849                 pr_err("get() with no identifier\n");
1850                 return ERR_PTR(-EINVAL);
1851         }
1852
1853         rdev = regulator_dev_lookup(dev, id);
1854         if (IS_ERR(rdev)) {
1855                 ret = PTR_ERR(rdev);
1856
1857                 /*
1858                  * If regulator_dev_lookup() fails with error other
1859                  * than -ENODEV our job here is done, we simply return it.
1860                  */
1861                 if (ret != -ENODEV)
1862                         return ERR_PTR(ret);
1863
1864                 if (!have_full_constraints()) {
1865                         dev_warn(dev,
1866                                  "incomplete constraints, dummy supplies not allowed\n");
1867                         return ERR_PTR(-ENODEV);
1868                 }
1869
1870                 switch (get_type) {
1871                 case NORMAL_GET:
1872                         /*
1873                          * Assume that a regulator is physically present and
1874                          * enabled, even if it isn't hooked up, and just
1875                          * provide a dummy.
1876                          */
1877                         dev_warn(dev,
1878                                  "%s supply %s not found, using dummy regulator\n",
1879                                  devname, id);
1880                         rdev = dummy_regulator_rdev;
1881                         get_device(&rdev->dev);
1882                         break;
1883
1884                 case EXCLUSIVE_GET:
1885                         dev_warn(dev,
1886                                  "dummy supplies not allowed for exclusive requests\n");
1887                         /* fall through */
1888
1889                 default:
1890                         return ERR_PTR(-ENODEV);
1891                 }
1892         }
1893
1894         if (rdev->exclusive) {
1895                 regulator = ERR_PTR(-EPERM);
1896                 put_device(&rdev->dev);
1897                 return regulator;
1898         }
1899
1900         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1901                 regulator = ERR_PTR(-EBUSY);
1902                 put_device(&rdev->dev);
1903                 return regulator;
1904         }
1905
1906         mutex_lock(&regulator_list_mutex);
1907         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1908         mutex_unlock(&regulator_list_mutex);
1909
1910         if (ret != 0) {
1911                 regulator = ERR_PTR(-EPROBE_DEFER);
1912                 put_device(&rdev->dev);
1913                 return regulator;
1914         }
1915
1916         ret = regulator_resolve_supply(rdev);
1917         if (ret < 0) {
1918                 regulator = ERR_PTR(ret);
1919                 put_device(&rdev->dev);
1920                 return regulator;
1921         }
1922
1923         if (!try_module_get(rdev->owner)) {
1924                 regulator = ERR_PTR(-EPROBE_DEFER);
1925                 put_device(&rdev->dev);
1926                 return regulator;
1927         }
1928
1929         regulator = create_regulator(rdev, dev, id);
1930         if (regulator == NULL) {
1931                 regulator = ERR_PTR(-ENOMEM);
1932                 put_device(&rdev->dev);
1933                 module_put(rdev->owner);
1934                 return regulator;
1935         }
1936
1937         rdev->open_count++;
1938         if (get_type == EXCLUSIVE_GET) {
1939                 rdev->exclusive = 1;
1940
1941                 ret = _regulator_is_enabled(rdev);
1942                 if (ret > 0)
1943                         rdev->use_count = 1;
1944                 else
1945                         rdev->use_count = 0;
1946         }
1947
1948         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1949
1950         return regulator;
1951 }
1952
1953 /**
1954  * regulator_get - lookup and obtain a reference to a regulator.
1955  * @dev: device for regulator "consumer"
1956  * @id: Supply name or regulator ID.
1957  *
1958  * Returns a struct regulator corresponding to the regulator producer,
1959  * or IS_ERR() condition containing errno.
1960  *
1961  * Use of supply names configured via regulator_set_device_supply() is
1962  * strongly encouraged.  It is recommended that the supply name used
1963  * should match the name used for the supply and/or the relevant
1964  * device pins in the datasheet.
1965  */
1966 struct regulator *regulator_get(struct device *dev, const char *id)
1967 {
1968         return _regulator_get(dev, id, NORMAL_GET);
1969 }
1970 EXPORT_SYMBOL_GPL(regulator_get);
1971
1972 /**
1973  * regulator_get_exclusive - obtain exclusive access to a regulator.
1974  * @dev: device for regulator "consumer"
1975  * @id: Supply name or regulator ID.
1976  *
1977  * Returns a struct regulator corresponding to the regulator producer,
1978  * or IS_ERR() condition containing errno.  Other consumers will be
1979  * unable to obtain this regulator while this reference is held and the
1980  * use count for the regulator will be initialised to reflect the current
1981  * state of the regulator.
1982  *
1983  * This is intended for use by consumers which cannot tolerate shared
1984  * use of the regulator such as those which need to force the
1985  * regulator off for correct operation of the hardware they are
1986  * controlling.
1987  *
1988  * Use of supply names configured via regulator_set_device_supply() is
1989  * strongly encouraged.  It is recommended that the supply name used
1990  * should match the name used for the supply and/or the relevant
1991  * device pins in the datasheet.
1992  */
1993 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1994 {
1995         return _regulator_get(dev, id, EXCLUSIVE_GET);
1996 }
1997 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1998
1999 /**
2000  * regulator_get_optional - obtain optional access to a regulator.
2001  * @dev: device for regulator "consumer"
2002  * @id: Supply name or regulator ID.
2003  *
2004  * Returns a struct regulator corresponding to the regulator producer,
2005  * or IS_ERR() condition containing errno.
2006  *
2007  * This is intended for use by consumers for devices which can have
2008  * some supplies unconnected in normal use, such as some MMC devices.
2009  * It can allow the regulator core to provide stub supplies for other
2010  * supplies requested using normal regulator_get() calls without
2011  * disrupting the operation of drivers that can handle absent
2012  * supplies.
2013  *
2014  * Use of supply names configured via regulator_set_device_supply() is
2015  * strongly encouraged.  It is recommended that the supply name used
2016  * should match the name used for the supply and/or the relevant
2017  * device pins in the datasheet.
2018  */
2019 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2020 {
2021         return _regulator_get(dev, id, OPTIONAL_GET);
2022 }
2023 EXPORT_SYMBOL_GPL(regulator_get_optional);
2024
2025 /* regulator_list_mutex lock held by regulator_put() */
2026 static void _regulator_put(struct regulator *regulator)
2027 {
2028         struct regulator_dev *rdev;
2029
2030         if (IS_ERR_OR_NULL(regulator))
2031                 return;
2032
2033         lockdep_assert_held_once(&regulator_list_mutex);
2034
2035         /* Docs say you must disable before calling regulator_put() */
2036         WARN_ON(regulator->enable_count);
2037
2038         rdev = regulator->rdev;
2039
2040         debugfs_remove_recursive(regulator->debugfs);
2041
2042         if (regulator->dev) {
2043                 device_link_remove(regulator->dev, &rdev->dev);
2044
2045                 /* remove any sysfs entries */
2046                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2047         }
2048
2049         regulator_lock(rdev);
2050         list_del(&regulator->list);
2051
2052         rdev->open_count--;
2053         rdev->exclusive = 0;
2054         put_device(&rdev->dev);
2055         regulator_unlock(rdev);
2056
2057         kfree_const(regulator->supply_name);
2058         kfree(regulator);
2059
2060         module_put(rdev->owner);
2061 }
2062
2063 /**
2064  * regulator_put - "free" the regulator source
2065  * @regulator: regulator source
2066  *
2067  * Note: drivers must ensure that all regulator_enable calls made on this
2068  * regulator source are balanced by regulator_disable calls prior to calling
2069  * this function.
2070  */
2071 void regulator_put(struct regulator *regulator)
2072 {
2073         mutex_lock(&regulator_list_mutex);
2074         _regulator_put(regulator);
2075         mutex_unlock(&regulator_list_mutex);
2076 }
2077 EXPORT_SYMBOL_GPL(regulator_put);
2078
2079 /**
2080  * regulator_register_supply_alias - Provide device alias for supply lookup
2081  *
2082  * @dev: device that will be given as the regulator "consumer"
2083  * @id: Supply name or regulator ID
2084  * @alias_dev: device that should be used to lookup the supply
2085  * @alias_id: Supply name or regulator ID that should be used to lookup the
2086  * supply
2087  *
2088  * All lookups for id on dev will instead be conducted for alias_id on
2089  * alias_dev.
2090  */
2091 int regulator_register_supply_alias(struct device *dev, const char *id,
2092                                     struct device *alias_dev,
2093                                     const char *alias_id)
2094 {
2095         struct regulator_supply_alias *map;
2096
2097         map = regulator_find_supply_alias(dev, id);
2098         if (map)
2099                 return -EEXIST;
2100
2101         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2102         if (!map)
2103                 return -ENOMEM;
2104
2105         map->src_dev = dev;
2106         map->src_supply = id;
2107         map->alias_dev = alias_dev;
2108         map->alias_supply = alias_id;
2109
2110         list_add(&map->list, &regulator_supply_alias_list);
2111
2112         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2113                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2114
2115         return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2118
2119 /**
2120  * regulator_unregister_supply_alias - Remove device alias
2121  *
2122  * @dev: device that will be given as the regulator "consumer"
2123  * @id: Supply name or regulator ID
2124  *
2125  * Remove a lookup alias if one exists for id on dev.
2126  */
2127 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2128 {
2129         struct regulator_supply_alias *map;
2130
2131         map = regulator_find_supply_alias(dev, id);
2132         if (map) {
2133                 list_del(&map->list);
2134                 kfree(map);
2135         }
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2138
2139 /**
2140  * regulator_bulk_register_supply_alias - register multiple aliases
2141  *
2142  * @dev: device that will be given as the regulator "consumer"
2143  * @id: List of supply names or regulator IDs
2144  * @alias_dev: device that should be used to lookup the supply
2145  * @alias_id: List of supply names or regulator IDs that should be used to
2146  * lookup the supply
2147  * @num_id: Number of aliases to register
2148  *
2149  * @return 0 on success, an errno on failure.
2150  *
2151  * This helper function allows drivers to register several supply
2152  * aliases in one operation.  If any of the aliases cannot be
2153  * registered any aliases that were registered will be removed
2154  * before returning to the caller.
2155  */
2156 int regulator_bulk_register_supply_alias(struct device *dev,
2157                                          const char *const *id,
2158                                          struct device *alias_dev,
2159                                          const char *const *alias_id,
2160                                          int num_id)
2161 {
2162         int i;
2163         int ret;
2164
2165         for (i = 0; i < num_id; ++i) {
2166                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2167                                                       alias_id[i]);
2168                 if (ret < 0)
2169                         goto err;
2170         }
2171
2172         return 0;
2173
2174 err:
2175         dev_err(dev,
2176                 "Failed to create supply alias %s,%s -> %s,%s\n",
2177                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2178
2179         while (--i >= 0)
2180                 regulator_unregister_supply_alias(dev, id[i]);
2181
2182         return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2185
2186 /**
2187  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2188  *
2189  * @dev: device that will be given as the regulator "consumer"
2190  * @id: List of supply names or regulator IDs
2191  * @num_id: Number of aliases to unregister
2192  *
2193  * This helper function allows drivers to unregister several supply
2194  * aliases in one operation.
2195  */
2196 void regulator_bulk_unregister_supply_alias(struct device *dev,
2197                                             const char *const *id,
2198                                             int num_id)
2199 {
2200         int i;
2201
2202         for (i = 0; i < num_id; ++i)
2203                 regulator_unregister_supply_alias(dev, id[i]);
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2206
2207
2208 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2209 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2210                                 const struct regulator_config *config)
2211 {
2212         struct regulator_enable_gpio *pin;
2213         struct gpio_desc *gpiod;
2214
2215         gpiod = config->ena_gpiod;
2216
2217         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2218                 if (pin->gpiod == gpiod) {
2219                         rdev_dbg(rdev, "GPIO is already used\n");
2220                         goto update_ena_gpio_to_rdev;
2221                 }
2222         }
2223
2224         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2225         if (pin == NULL)
2226                 return -ENOMEM;
2227
2228         pin->gpiod = gpiod;
2229         list_add(&pin->list, &regulator_ena_gpio_list);
2230
2231 update_ena_gpio_to_rdev:
2232         pin->request_count++;
2233         rdev->ena_pin = pin;
2234         return 0;
2235 }
2236
2237 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2238 {
2239         struct regulator_enable_gpio *pin, *n;
2240
2241         if (!rdev->ena_pin)
2242                 return;
2243
2244         /* Free the GPIO only in case of no use */
2245         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2246                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2247                         if (pin->request_count <= 1) {
2248                                 pin->request_count = 0;
2249                                 gpiod_put(pin->gpiod);
2250                                 list_del(&pin->list);
2251                                 kfree(pin);
2252                                 rdev->ena_pin = NULL;
2253                                 return;
2254                         } else {
2255                                 pin->request_count--;
2256                         }
2257                 }
2258         }
2259 }
2260
2261 /**
2262  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2263  * @rdev: regulator_dev structure
2264  * @enable: enable GPIO at initial use?
2265  *
2266  * GPIO is enabled in case of initial use. (enable_count is 0)
2267  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2268  */
2269 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2270 {
2271         struct regulator_enable_gpio *pin = rdev->ena_pin;
2272
2273         if (!pin)
2274                 return -EINVAL;
2275
2276         if (enable) {
2277                 /* Enable GPIO at initial use */
2278                 if (pin->enable_count == 0)
2279                         gpiod_set_value_cansleep(pin->gpiod, 1);
2280
2281                 pin->enable_count++;
2282         } else {
2283                 if (pin->enable_count > 1) {
2284                         pin->enable_count--;
2285                         return 0;
2286                 }
2287
2288                 /* Disable GPIO if not used */
2289                 if (pin->enable_count <= 1) {
2290                         gpiod_set_value_cansleep(pin->gpiod, 0);
2291                         pin->enable_count = 0;
2292                 }
2293         }
2294
2295         return 0;
2296 }
2297
2298 /**
2299  * _regulator_enable_delay - a delay helper function
2300  * @delay: time to delay in microseconds
2301  *
2302  * Delay for the requested amount of time as per the guidelines in:
2303  *
2304  *     Documentation/timers/timers-howto.rst
2305  *
2306  * The assumption here is that regulators will never be enabled in
2307  * atomic context and therefore sleeping functions can be used.
2308  */
2309 static void _regulator_enable_delay(unsigned int delay)
2310 {
2311         unsigned int ms = delay / 1000;
2312         unsigned int us = delay % 1000;
2313
2314         if (ms > 0) {
2315                 /*
2316                  * For small enough values, handle super-millisecond
2317                  * delays in the usleep_range() call below.
2318                  */
2319                 if (ms < 20)
2320                         us += ms * 1000;
2321                 else
2322                         msleep(ms);
2323         }
2324
2325         /*
2326          * Give the scheduler some room to coalesce with any other
2327          * wakeup sources. For delays shorter than 10 us, don't even
2328          * bother setting up high-resolution timers and just busy-
2329          * loop.
2330          */
2331         if (us >= 10)
2332                 usleep_range(us, us + 100);
2333         else
2334                 udelay(us);
2335 }
2336
2337 static int _regulator_do_enable(struct regulator_dev *rdev)
2338 {
2339         int ret, delay;
2340
2341         /* Query before enabling in case configuration dependent.  */
2342         ret = _regulator_get_enable_time(rdev);
2343         if (ret >= 0) {
2344                 delay = ret;
2345         } else {
2346                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2347                 delay = 0;
2348         }
2349
2350         trace_regulator_enable(rdev_get_name(rdev));
2351
2352         if (rdev->desc->off_on_delay) {
2353                 /* if needed, keep a distance of off_on_delay from last time
2354                  * this regulator was disabled.
2355                  */
2356                 unsigned long start_jiffy = jiffies;
2357                 unsigned long intended, max_delay, remaining;
2358
2359                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2360                 intended = rdev->last_off_jiffy + max_delay;
2361
2362                 if (time_before(start_jiffy, intended)) {
2363                         /* calc remaining jiffies to deal with one-time
2364                          * timer wrapping.
2365                          * in case of multiple timer wrapping, either it can be
2366                          * detected by out-of-range remaining, or it cannot be
2367                          * detected and we get a penalty of
2368                          * _regulator_enable_delay().
2369                          */
2370                         remaining = intended - start_jiffy;
2371                         if (remaining <= max_delay)
2372                                 _regulator_enable_delay(
2373                                                 jiffies_to_usecs(remaining));
2374                 }
2375         }
2376
2377         if (rdev->ena_pin) {
2378                 if (!rdev->ena_gpio_state) {
2379                         ret = regulator_ena_gpio_ctrl(rdev, true);
2380                         if (ret < 0)
2381                                 return ret;
2382                         rdev->ena_gpio_state = 1;
2383                 }
2384         } else if (rdev->desc->ops->enable) {
2385                 ret = rdev->desc->ops->enable(rdev);
2386                 if (ret < 0)
2387                         return ret;
2388         } else {
2389                 return -EINVAL;
2390         }
2391
2392         /* Allow the regulator to ramp; it would be useful to extend
2393          * this for bulk operations so that the regulators can ramp
2394          * together.  */
2395         trace_regulator_enable_delay(rdev_get_name(rdev));
2396
2397         _regulator_enable_delay(delay);
2398
2399         trace_regulator_enable_complete(rdev_get_name(rdev));
2400
2401         return 0;
2402 }
2403
2404 /**
2405  * _regulator_handle_consumer_enable - handle that a consumer enabled
2406  * @regulator: regulator source
2407  *
2408  * Some things on a regulator consumer (like the contribution towards total
2409  * load on the regulator) only have an effect when the consumer wants the
2410  * regulator enabled.  Explained in example with two consumers of the same
2411  * regulator:
2412  *   consumer A: set_load(100);       => total load = 0
2413  *   consumer A: regulator_enable();  => total load = 100
2414  *   consumer B: set_load(1000);      => total load = 100
2415  *   consumer B: regulator_enable();  => total load = 1100
2416  *   consumer A: regulator_disable(); => total_load = 1000
2417  *
2418  * This function (together with _regulator_handle_consumer_disable) is
2419  * responsible for keeping track of the refcount for a given regulator consumer
2420  * and applying / unapplying these things.
2421  *
2422  * Returns 0 upon no error; -error upon error.
2423  */
2424 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2425 {
2426         struct regulator_dev *rdev = regulator->rdev;
2427
2428         lockdep_assert_held_once(&rdev->mutex.base);
2429
2430         regulator->enable_count++;
2431         if (regulator->uA_load && regulator->enable_count == 1)
2432                 return drms_uA_update(rdev);
2433
2434         return 0;
2435 }
2436
2437 /**
2438  * _regulator_handle_consumer_disable - handle that a consumer disabled
2439  * @regulator: regulator source
2440  *
2441  * The opposite of _regulator_handle_consumer_enable().
2442  *
2443  * Returns 0 upon no error; -error upon error.
2444  */
2445 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2446 {
2447         struct regulator_dev *rdev = regulator->rdev;
2448
2449         lockdep_assert_held_once(&rdev->mutex.base);
2450
2451         if (!regulator->enable_count) {
2452                 rdev_err(rdev, "Underflow of regulator enable count\n");
2453                 return -EINVAL;
2454         }
2455
2456         regulator->enable_count--;
2457         if (regulator->uA_load && regulator->enable_count == 0)
2458                 return drms_uA_update(rdev);
2459
2460         return 0;
2461 }
2462
2463 /* locks held by regulator_enable() */
2464 static int _regulator_enable(struct regulator *regulator)
2465 {
2466         struct regulator_dev *rdev = regulator->rdev;
2467         int ret;
2468
2469         lockdep_assert_held_once(&rdev->mutex.base);
2470
2471         if (rdev->use_count == 0 && rdev->supply) {
2472                 ret = _regulator_enable(rdev->supply);
2473                 if (ret < 0)
2474                         return ret;
2475         }
2476
2477         /* balance only if there are regulators coupled */
2478         if (rdev->coupling_desc.n_coupled > 1) {
2479                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2480                 if (ret < 0)
2481                         goto err_disable_supply;
2482         }
2483
2484         ret = _regulator_handle_consumer_enable(regulator);
2485         if (ret < 0)
2486                 goto err_disable_supply;
2487
2488         if (rdev->use_count == 0) {
2489                 /* The regulator may on if it's not switchable or left on */
2490                 ret = _regulator_is_enabled(rdev);
2491                 if (ret == -EINVAL || ret == 0) {
2492                         if (!regulator_ops_is_valid(rdev,
2493                                         REGULATOR_CHANGE_STATUS)) {
2494                                 ret = -EPERM;
2495                                 goto err_consumer_disable;
2496                         }
2497
2498                         ret = _regulator_do_enable(rdev);
2499                         if (ret < 0)
2500                                 goto err_consumer_disable;
2501
2502                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2503                                              NULL);
2504                 } else if (ret < 0) {
2505                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2506                         goto err_consumer_disable;
2507                 }
2508                 /* Fallthrough on positive return values - already enabled */
2509         }
2510
2511         rdev->use_count++;
2512
2513         return 0;
2514
2515 err_consumer_disable:
2516         _regulator_handle_consumer_disable(regulator);
2517
2518 err_disable_supply:
2519         if (rdev->use_count == 0 && rdev->supply)
2520                 _regulator_disable(rdev->supply);
2521
2522         return ret;
2523 }
2524
2525 /**
2526  * regulator_enable - enable regulator output
2527  * @regulator: regulator source
2528  *
2529  * Request that the regulator be enabled with the regulator output at
2530  * the predefined voltage or current value.  Calls to regulator_enable()
2531  * must be balanced with calls to regulator_disable().
2532  *
2533  * NOTE: the output value can be set by other drivers, boot loader or may be
2534  * hardwired in the regulator.
2535  */
2536 int regulator_enable(struct regulator *regulator)
2537 {
2538         struct regulator_dev *rdev = regulator->rdev;
2539         struct ww_acquire_ctx ww_ctx;
2540         int ret;
2541
2542         regulator_lock_dependent(rdev, &ww_ctx);
2543         ret = _regulator_enable(regulator);
2544         regulator_unlock_dependent(rdev, &ww_ctx);
2545
2546         return ret;
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_enable);
2549
2550 static int _regulator_do_disable(struct regulator_dev *rdev)
2551 {
2552         int ret;
2553
2554         trace_regulator_disable(rdev_get_name(rdev));
2555
2556         if (rdev->ena_pin) {
2557                 if (rdev->ena_gpio_state) {
2558                         ret = regulator_ena_gpio_ctrl(rdev, false);
2559                         if (ret < 0)
2560                                 return ret;
2561                         rdev->ena_gpio_state = 0;
2562                 }
2563
2564         } else if (rdev->desc->ops->disable) {
2565                 ret = rdev->desc->ops->disable(rdev);
2566                 if (ret != 0)
2567                         return ret;
2568         }
2569
2570         /* cares about last_off_jiffy only if off_on_delay is required by
2571          * device.
2572          */
2573         if (rdev->desc->off_on_delay)
2574                 rdev->last_off_jiffy = jiffies;
2575
2576         trace_regulator_disable_complete(rdev_get_name(rdev));
2577
2578         return 0;
2579 }
2580
2581 /* locks held by regulator_disable() */
2582 static int _regulator_disable(struct regulator *regulator)
2583 {
2584         struct regulator_dev *rdev = regulator->rdev;
2585         int ret = 0;
2586
2587         lockdep_assert_held_once(&rdev->mutex.base);
2588
2589         if (WARN(rdev->use_count <= 0,
2590                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2591                 return -EIO;
2592
2593         /* are we the last user and permitted to disable ? */
2594         if (rdev->use_count == 1 &&
2595             (rdev->constraints && !rdev->constraints->always_on)) {
2596
2597                 /* we are last user */
2598                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2599                         ret = _notifier_call_chain(rdev,
2600                                                    REGULATOR_EVENT_PRE_DISABLE,
2601                                                    NULL);
2602                         if (ret & NOTIFY_STOP_MASK)
2603                                 return -EINVAL;
2604
2605                         ret = _regulator_do_disable(rdev);
2606                         if (ret < 0) {
2607                                 rdev_err(rdev, "failed to disable\n");
2608                                 _notifier_call_chain(rdev,
2609                                                 REGULATOR_EVENT_ABORT_DISABLE,
2610                                                 NULL);
2611                                 return ret;
2612                         }
2613                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2614                                         NULL);
2615                 }
2616
2617                 rdev->use_count = 0;
2618         } else if (rdev->use_count > 1) {
2619                 rdev->use_count--;
2620         }
2621
2622         if (ret == 0)
2623                 ret = _regulator_handle_consumer_disable(regulator);
2624
2625         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2626                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2627
2628         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2629                 ret = _regulator_disable(rdev->supply);
2630
2631         return ret;
2632 }
2633
2634 /**
2635  * regulator_disable - disable regulator output
2636  * @regulator: regulator source
2637  *
2638  * Disable the regulator output voltage or current.  Calls to
2639  * regulator_enable() must be balanced with calls to
2640  * regulator_disable().
2641  *
2642  * NOTE: this will only disable the regulator output if no other consumer
2643  * devices have it enabled, the regulator device supports disabling and
2644  * machine constraints permit this operation.
2645  */
2646 int regulator_disable(struct regulator *regulator)
2647 {
2648         struct regulator_dev *rdev = regulator->rdev;
2649         struct ww_acquire_ctx ww_ctx;
2650         int ret;
2651
2652         regulator_lock_dependent(rdev, &ww_ctx);
2653         ret = _regulator_disable(regulator);
2654         regulator_unlock_dependent(rdev, &ww_ctx);
2655
2656         return ret;
2657 }
2658 EXPORT_SYMBOL_GPL(regulator_disable);
2659
2660 /* locks held by regulator_force_disable() */
2661 static int _regulator_force_disable(struct regulator_dev *rdev)
2662 {
2663         int ret = 0;
2664
2665         lockdep_assert_held_once(&rdev->mutex.base);
2666
2667         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2668                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2669         if (ret & NOTIFY_STOP_MASK)
2670                 return -EINVAL;
2671
2672         ret = _regulator_do_disable(rdev);
2673         if (ret < 0) {
2674                 rdev_err(rdev, "failed to force disable\n");
2675                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2676                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2677                 return ret;
2678         }
2679
2680         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2681                         REGULATOR_EVENT_DISABLE, NULL);
2682
2683         return 0;
2684 }
2685
2686 /**
2687  * regulator_force_disable - force disable regulator output
2688  * @regulator: regulator source
2689  *
2690  * Forcibly disable the regulator output voltage or current.
2691  * NOTE: this *will* disable the regulator output even if other consumer
2692  * devices have it enabled. This should be used for situations when device
2693  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2694  */
2695 int regulator_force_disable(struct regulator *regulator)
2696 {
2697         struct regulator_dev *rdev = regulator->rdev;
2698         struct ww_acquire_ctx ww_ctx;
2699         int ret;
2700
2701         regulator_lock_dependent(rdev, &ww_ctx);
2702
2703         ret = _regulator_force_disable(regulator->rdev);
2704
2705         if (rdev->coupling_desc.n_coupled > 1)
2706                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2707
2708         if (regulator->uA_load) {
2709                 regulator->uA_load = 0;
2710                 ret = drms_uA_update(rdev);
2711         }
2712
2713         if (rdev->use_count != 0 && rdev->supply)
2714                 _regulator_disable(rdev->supply);
2715
2716         regulator_unlock_dependent(rdev, &ww_ctx);
2717
2718         return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(regulator_force_disable);
2721
2722 static void regulator_disable_work(struct work_struct *work)
2723 {
2724         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2725                                                   disable_work.work);
2726         struct ww_acquire_ctx ww_ctx;
2727         int count, i, ret;
2728         struct regulator *regulator;
2729         int total_count = 0;
2730
2731         regulator_lock_dependent(rdev, &ww_ctx);
2732
2733         /*
2734          * Workqueue functions queue the new work instance while the previous
2735          * work instance is being processed. Cancel the queued work instance
2736          * as the work instance under processing does the job of the queued
2737          * work instance.
2738          */
2739         cancel_delayed_work(&rdev->disable_work);
2740
2741         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2742                 count = regulator->deferred_disables;
2743
2744                 if (!count)
2745                         continue;
2746
2747                 total_count += count;
2748                 regulator->deferred_disables = 0;
2749
2750                 for (i = 0; i < count; i++) {
2751                         ret = _regulator_disable(regulator);
2752                         if (ret != 0)
2753                                 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2754                 }
2755         }
2756         WARN_ON(!total_count);
2757
2758         if (rdev->coupling_desc.n_coupled > 1)
2759                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2760
2761         regulator_unlock_dependent(rdev, &ww_ctx);
2762 }
2763
2764 /**
2765  * regulator_disable_deferred - disable regulator output with delay
2766  * @regulator: regulator source
2767  * @ms: milliseconds until the regulator is disabled
2768  *
2769  * Execute regulator_disable() on the regulator after a delay.  This
2770  * is intended for use with devices that require some time to quiesce.
2771  *
2772  * NOTE: this will only disable the regulator output if no other consumer
2773  * devices have it enabled, the regulator device supports disabling and
2774  * machine constraints permit this operation.
2775  */
2776 int regulator_disable_deferred(struct regulator *regulator, int ms)
2777 {
2778         struct regulator_dev *rdev = regulator->rdev;
2779
2780         if (!ms)
2781                 return regulator_disable(regulator);
2782
2783         regulator_lock(rdev);
2784         regulator->deferred_disables++;
2785         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2786                          msecs_to_jiffies(ms));
2787         regulator_unlock(rdev);
2788
2789         return 0;
2790 }
2791 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2792
2793 static int _regulator_is_enabled(struct regulator_dev *rdev)
2794 {
2795         /* A GPIO control always takes precedence */
2796         if (rdev->ena_pin)
2797                 return rdev->ena_gpio_state;
2798
2799         /* If we don't know then assume that the regulator is always on */
2800         if (!rdev->desc->ops->is_enabled)
2801                 return 1;
2802
2803         return rdev->desc->ops->is_enabled(rdev);
2804 }
2805
2806 static int _regulator_list_voltage(struct regulator_dev *rdev,
2807                                    unsigned selector, int lock)
2808 {
2809         const struct regulator_ops *ops = rdev->desc->ops;
2810         int ret;
2811
2812         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2813                 return rdev->desc->fixed_uV;
2814
2815         if (ops->list_voltage) {
2816                 if (selector >= rdev->desc->n_voltages)
2817                         return -EINVAL;
2818                 if (lock)
2819                         regulator_lock(rdev);
2820                 ret = ops->list_voltage(rdev, selector);
2821                 if (lock)
2822                         regulator_unlock(rdev);
2823         } else if (rdev->is_switch && rdev->supply) {
2824                 ret = _regulator_list_voltage(rdev->supply->rdev,
2825                                               selector, lock);
2826         } else {
2827                 return -EINVAL;
2828         }
2829
2830         if (ret > 0) {
2831                 if (ret < rdev->constraints->min_uV)
2832                         ret = 0;
2833                 else if (ret > rdev->constraints->max_uV)
2834                         ret = 0;
2835         }
2836
2837         return ret;
2838 }
2839
2840 /**
2841  * regulator_is_enabled - is the regulator output enabled
2842  * @regulator: regulator source
2843  *
2844  * Returns positive if the regulator driver backing the source/client
2845  * has requested that the device be enabled, zero if it hasn't, else a
2846  * negative errno code.
2847  *
2848  * Note that the device backing this regulator handle can have multiple
2849  * users, so it might be enabled even if regulator_enable() was never
2850  * called for this particular source.
2851  */
2852 int regulator_is_enabled(struct regulator *regulator)
2853 {
2854         int ret;
2855
2856         if (regulator->always_on)
2857                 return 1;
2858
2859         regulator_lock(regulator->rdev);
2860         ret = _regulator_is_enabled(regulator->rdev);
2861         regulator_unlock(regulator->rdev);
2862
2863         return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2866
2867 /**
2868  * regulator_count_voltages - count regulator_list_voltage() selectors
2869  * @regulator: regulator source
2870  *
2871  * Returns number of selectors, or negative errno.  Selectors are
2872  * numbered starting at zero, and typically correspond to bitfields
2873  * in hardware registers.
2874  */
2875 int regulator_count_voltages(struct regulator *regulator)
2876 {
2877         struct regulator_dev    *rdev = regulator->rdev;
2878
2879         if (rdev->desc->n_voltages)
2880                 return rdev->desc->n_voltages;
2881
2882         if (!rdev->is_switch || !rdev->supply)
2883                 return -EINVAL;
2884
2885         return regulator_count_voltages(rdev->supply);
2886 }
2887 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2888
2889 /**
2890  * regulator_list_voltage - enumerate supported voltages
2891  * @regulator: regulator source
2892  * @selector: identify voltage to list
2893  * Context: can sleep
2894  *
2895  * Returns a voltage that can be passed to @regulator_set_voltage(),
2896  * zero if this selector code can't be used on this system, or a
2897  * negative errno.
2898  */
2899 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2900 {
2901         return _regulator_list_voltage(regulator->rdev, selector, 1);
2902 }
2903 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2904
2905 /**
2906  * regulator_get_regmap - get the regulator's register map
2907  * @regulator: regulator source
2908  *
2909  * Returns the register map for the given regulator, or an ERR_PTR value
2910  * if the regulator doesn't use regmap.
2911  */
2912 struct regmap *regulator_get_regmap(struct regulator *regulator)
2913 {
2914         struct regmap *map = regulator->rdev->regmap;
2915
2916         return map ? map : ERR_PTR(-EOPNOTSUPP);
2917 }
2918
2919 /**
2920  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2921  * @regulator: regulator source
2922  * @vsel_reg: voltage selector register, output parameter
2923  * @vsel_mask: mask for voltage selector bitfield, output parameter
2924  *
2925  * Returns the hardware register offset and bitmask used for setting the
2926  * regulator voltage. This might be useful when configuring voltage-scaling
2927  * hardware or firmware that can make I2C requests behind the kernel's back,
2928  * for example.
2929  *
2930  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2931  * and 0 is returned, otherwise a negative errno is returned.
2932  */
2933 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2934                                          unsigned *vsel_reg,
2935                                          unsigned *vsel_mask)
2936 {
2937         struct regulator_dev *rdev = regulator->rdev;
2938         const struct regulator_ops *ops = rdev->desc->ops;
2939
2940         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2941                 return -EOPNOTSUPP;
2942
2943         *vsel_reg = rdev->desc->vsel_reg;
2944         *vsel_mask = rdev->desc->vsel_mask;
2945
2946          return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2949
2950 /**
2951  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2952  * @regulator: regulator source
2953  * @selector: identify voltage to list
2954  *
2955  * Converts the selector to a hardware-specific voltage selector that can be
2956  * directly written to the regulator registers. The address of the voltage
2957  * register can be determined by calling @regulator_get_hardware_vsel_register.
2958  *
2959  * On error a negative errno is returned.
2960  */
2961 int regulator_list_hardware_vsel(struct regulator *regulator,
2962                                  unsigned selector)
2963 {
2964         struct regulator_dev *rdev = regulator->rdev;
2965         const struct regulator_ops *ops = rdev->desc->ops;
2966
2967         if (selector >= rdev->desc->n_voltages)
2968                 return -EINVAL;
2969         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2970                 return -EOPNOTSUPP;
2971
2972         return selector;
2973 }
2974 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2975
2976 /**
2977  * regulator_get_linear_step - return the voltage step size between VSEL values
2978  * @regulator: regulator source
2979  *
2980  * Returns the voltage step size between VSEL values for linear
2981  * regulators, or return 0 if the regulator isn't a linear regulator.
2982  */
2983 unsigned int regulator_get_linear_step(struct regulator *regulator)
2984 {
2985         struct regulator_dev *rdev = regulator->rdev;
2986
2987         return rdev->desc->uV_step;
2988 }
2989 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2990
2991 /**
2992  * regulator_is_supported_voltage - check if a voltage range can be supported
2993  *
2994  * @regulator: Regulator to check.
2995  * @min_uV: Minimum required voltage in uV.
2996  * @max_uV: Maximum required voltage in uV.
2997  *
2998  * Returns a boolean.
2999  */
3000 int regulator_is_supported_voltage(struct regulator *regulator,
3001                                    int min_uV, int max_uV)
3002 {
3003         struct regulator_dev *rdev = regulator->rdev;
3004         int i, voltages, ret;
3005
3006         /* If we can't change voltage check the current voltage */
3007         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3008                 ret = regulator_get_voltage(regulator);
3009                 if (ret >= 0)
3010                         return min_uV <= ret && ret <= max_uV;
3011                 else
3012                         return ret;
3013         }
3014
3015         /* Any voltage within constrains range is fine? */
3016         if (rdev->desc->continuous_voltage_range)
3017                 return min_uV >= rdev->constraints->min_uV &&
3018                                 max_uV <= rdev->constraints->max_uV;
3019
3020         ret = regulator_count_voltages(regulator);
3021         if (ret < 0)
3022                 return 0;
3023         voltages = ret;
3024
3025         for (i = 0; i < voltages; i++) {
3026                 ret = regulator_list_voltage(regulator, i);
3027
3028                 if (ret >= min_uV && ret <= max_uV)
3029                         return 1;
3030         }
3031
3032         return 0;
3033 }
3034 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3035
3036 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3037                                  int max_uV)
3038 {
3039         const struct regulator_desc *desc = rdev->desc;
3040
3041         if (desc->ops->map_voltage)
3042                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3043
3044         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3045                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3046
3047         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3048                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3049
3050         if (desc->ops->list_voltage ==
3051                 regulator_list_voltage_pickable_linear_range)
3052                 return regulator_map_voltage_pickable_linear_range(rdev,
3053                                                         min_uV, max_uV);
3054
3055         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3056 }
3057
3058 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3059                                        int min_uV, int max_uV,
3060                                        unsigned *selector)
3061 {
3062         struct pre_voltage_change_data data;
3063         int ret;
3064
3065         data.old_uV = regulator_get_voltage_rdev(rdev);
3066         data.min_uV = min_uV;
3067         data.max_uV = max_uV;
3068         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3069                                    &data);
3070         if (ret & NOTIFY_STOP_MASK)
3071                 return -EINVAL;
3072
3073         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3074         if (ret >= 0)
3075                 return ret;
3076
3077         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3078                              (void *)data.old_uV);
3079
3080         return ret;
3081 }
3082
3083 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3084                                            int uV, unsigned selector)
3085 {
3086         struct pre_voltage_change_data data;
3087         int ret;
3088
3089         data.old_uV = regulator_get_voltage_rdev(rdev);
3090         data.min_uV = uV;
3091         data.max_uV = uV;
3092         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3093                                    &data);
3094         if (ret & NOTIFY_STOP_MASK)
3095                 return -EINVAL;
3096
3097         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3098         if (ret >= 0)
3099                 return ret;
3100
3101         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3102                              (void *)data.old_uV);
3103
3104         return ret;
3105 }
3106
3107 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3108                                            int uV, int new_selector)
3109 {
3110         const struct regulator_ops *ops = rdev->desc->ops;
3111         int diff, old_sel, curr_sel, ret;
3112
3113         /* Stepping is only needed if the regulator is enabled. */
3114         if (!_regulator_is_enabled(rdev))
3115                 goto final_set;
3116
3117         if (!ops->get_voltage_sel)
3118                 return -EINVAL;
3119
3120         old_sel = ops->get_voltage_sel(rdev);
3121         if (old_sel < 0)
3122                 return old_sel;
3123
3124         diff = new_selector - old_sel;
3125         if (diff == 0)
3126                 return 0; /* No change needed. */
3127
3128         if (diff > 0) {
3129                 /* Stepping up. */
3130                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3131                      curr_sel < new_selector;
3132                      curr_sel += rdev->desc->vsel_step) {
3133                         /*
3134                          * Call the callback directly instead of using
3135                          * _regulator_call_set_voltage_sel() as we don't
3136                          * want to notify anyone yet. Same in the branch
3137                          * below.
3138                          */
3139                         ret = ops->set_voltage_sel(rdev, curr_sel);
3140                         if (ret)
3141                                 goto try_revert;
3142                 }
3143         } else {
3144                 /* Stepping down. */
3145                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3146                      curr_sel > new_selector;
3147                      curr_sel -= rdev->desc->vsel_step) {
3148                         ret = ops->set_voltage_sel(rdev, curr_sel);
3149                         if (ret)
3150                                 goto try_revert;
3151                 }
3152         }
3153
3154 final_set:
3155         /* The final selector will trigger the notifiers. */
3156         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3157
3158 try_revert:
3159         /*
3160          * At least try to return to the previous voltage if setting a new
3161          * one failed.
3162          */
3163         (void)ops->set_voltage_sel(rdev, old_sel);
3164         return ret;
3165 }
3166
3167 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3168                                        int old_uV, int new_uV)
3169 {
3170         unsigned int ramp_delay = 0;
3171
3172         if (rdev->constraints->ramp_delay)
3173                 ramp_delay = rdev->constraints->ramp_delay;
3174         else if (rdev->desc->ramp_delay)
3175                 ramp_delay = rdev->desc->ramp_delay;
3176         else if (rdev->constraints->settling_time)
3177                 return rdev->constraints->settling_time;
3178         else if (rdev->constraints->settling_time_up &&
3179                  (new_uV > old_uV))
3180                 return rdev->constraints->settling_time_up;
3181         else if (rdev->constraints->settling_time_down &&
3182                  (new_uV < old_uV))
3183                 return rdev->constraints->settling_time_down;
3184
3185         if (ramp_delay == 0) {
3186                 rdev_dbg(rdev, "ramp_delay not set\n");
3187                 return 0;
3188         }
3189
3190         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3191 }
3192
3193 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3194                                      int min_uV, int max_uV)
3195 {
3196         int ret;
3197         int delay = 0;
3198         int best_val = 0;
3199         unsigned int selector;
3200         int old_selector = -1;
3201         const struct regulator_ops *ops = rdev->desc->ops;
3202         int old_uV = regulator_get_voltage_rdev(rdev);
3203
3204         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3205
3206         min_uV += rdev->constraints->uV_offset;
3207         max_uV += rdev->constraints->uV_offset;
3208
3209         /*
3210          * If we can't obtain the old selector there is not enough
3211          * info to call set_voltage_time_sel().
3212          */
3213         if (_regulator_is_enabled(rdev) &&
3214             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3215                 old_selector = ops->get_voltage_sel(rdev);
3216                 if (old_selector < 0)
3217                         return old_selector;
3218         }
3219
3220         if (ops->set_voltage) {
3221                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3222                                                   &selector);
3223
3224                 if (ret >= 0) {
3225                         if (ops->list_voltage)
3226                                 best_val = ops->list_voltage(rdev,
3227                                                              selector);
3228                         else
3229                                 best_val = regulator_get_voltage_rdev(rdev);
3230                 }
3231
3232         } else if (ops->set_voltage_sel) {
3233                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3234                 if (ret >= 0) {
3235                         best_val = ops->list_voltage(rdev, ret);
3236                         if (min_uV <= best_val && max_uV >= best_val) {
3237                                 selector = ret;
3238                                 if (old_selector == selector)
3239                                         ret = 0;
3240                                 else if (rdev->desc->vsel_step)
3241                                         ret = _regulator_set_voltage_sel_step(
3242                                                 rdev, best_val, selector);
3243                                 else
3244                                         ret = _regulator_call_set_voltage_sel(
3245                                                 rdev, best_val, selector);
3246                         } else {
3247                                 ret = -EINVAL;
3248                         }
3249                 }
3250         } else {
3251                 ret = -EINVAL;
3252         }
3253
3254         if (ret)
3255                 goto out;
3256
3257         if (ops->set_voltage_time_sel) {
3258                 /*
3259                  * Call set_voltage_time_sel if successfully obtained
3260                  * old_selector
3261                  */
3262                 if (old_selector >= 0 && old_selector != selector)
3263                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3264                                                           selector);
3265         } else {
3266                 if (old_uV != best_val) {
3267                         if (ops->set_voltage_time)
3268                                 delay = ops->set_voltage_time(rdev, old_uV,
3269                                                               best_val);
3270                         else
3271                                 delay = _regulator_set_voltage_time(rdev,
3272                                                                     old_uV,
3273                                                                     best_val);
3274                 }
3275         }
3276
3277         if (delay < 0) {
3278                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3279                 delay = 0;
3280         }
3281
3282         /* Insert any necessary delays */
3283         if (delay >= 1000) {
3284                 mdelay(delay / 1000);
3285                 udelay(delay % 1000);
3286         } else if (delay) {
3287                 udelay(delay);
3288         }
3289
3290         if (best_val >= 0) {
3291                 unsigned long data = best_val;
3292
3293                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3294                                      (void *)data);
3295         }
3296
3297 out:
3298         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3299
3300         return ret;
3301 }
3302
3303 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3304                                   int min_uV, int max_uV, suspend_state_t state)
3305 {
3306         struct regulator_state *rstate;
3307         int uV, sel;
3308
3309         rstate = regulator_get_suspend_state(rdev, state);
3310         if (rstate == NULL)
3311                 return -EINVAL;
3312
3313         if (min_uV < rstate->min_uV)
3314                 min_uV = rstate->min_uV;
3315         if (max_uV > rstate->max_uV)
3316                 max_uV = rstate->max_uV;
3317
3318         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3319         if (sel < 0)
3320                 return sel;
3321
3322         uV = rdev->desc->ops->list_voltage(rdev, sel);
3323         if (uV >= min_uV && uV <= max_uV)
3324                 rstate->uV = uV;
3325
3326         return 0;
3327 }
3328
3329 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3330                                           int min_uV, int max_uV,
3331                                           suspend_state_t state)
3332 {
3333         struct regulator_dev *rdev = regulator->rdev;
3334         struct regulator_voltage *voltage = &regulator->voltage[state];
3335         int ret = 0;
3336         int old_min_uV, old_max_uV;
3337         int current_uV;
3338
3339         /* If we're setting the same range as last time the change
3340          * should be a noop (some cpufreq implementations use the same
3341          * voltage for multiple frequencies, for example).
3342          */
3343         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3344                 goto out;
3345
3346         /* If we're trying to set a range that overlaps the current voltage,
3347          * return successfully even though the regulator does not support
3348          * changing the voltage.
3349          */
3350         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3351                 current_uV = regulator_get_voltage_rdev(rdev);
3352                 if (min_uV <= current_uV && current_uV <= max_uV) {
3353                         voltage->min_uV = min_uV;
3354                         voltage->max_uV = max_uV;
3355                         goto out;
3356                 }
3357         }
3358
3359         /* sanity check */
3360         if (!rdev->desc->ops->set_voltage &&
3361             !rdev->desc->ops->set_voltage_sel) {
3362                 ret = -EINVAL;
3363                 goto out;
3364         }
3365
3366         /* constraints check */
3367         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3368         if (ret < 0)
3369                 goto out;
3370
3371         /* restore original values in case of error */
3372         old_min_uV = voltage->min_uV;
3373         old_max_uV = voltage->max_uV;
3374         voltage->min_uV = min_uV;
3375         voltage->max_uV = max_uV;
3376
3377         /* for not coupled regulators this will just set the voltage */
3378         ret = regulator_balance_voltage(rdev, state);
3379         if (ret < 0) {
3380                 voltage->min_uV = old_min_uV;
3381                 voltage->max_uV = old_max_uV;
3382         }
3383
3384 out:
3385         return ret;
3386 }
3387
3388 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3389                                int max_uV, suspend_state_t state)
3390 {
3391         int best_supply_uV = 0;
3392         int supply_change_uV = 0;
3393         int ret;
3394
3395         if (rdev->supply &&
3396             regulator_ops_is_valid(rdev->supply->rdev,
3397                                    REGULATOR_CHANGE_VOLTAGE) &&
3398             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3399                                            rdev->desc->ops->get_voltage_sel))) {
3400                 int current_supply_uV;
3401                 int selector;
3402
3403                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3404                 if (selector < 0) {
3405                         ret = selector;
3406                         goto out;
3407                 }
3408
3409                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3410                 if (best_supply_uV < 0) {
3411                         ret = best_supply_uV;
3412                         goto out;
3413                 }
3414
3415                 best_supply_uV += rdev->desc->min_dropout_uV;
3416
3417                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3418                 if (current_supply_uV < 0) {
3419                         ret = current_supply_uV;
3420                         goto out;
3421                 }
3422
3423                 supply_change_uV = best_supply_uV - current_supply_uV;
3424         }
3425
3426         if (supply_change_uV > 0) {
3427                 ret = regulator_set_voltage_unlocked(rdev->supply,
3428                                 best_supply_uV, INT_MAX, state);
3429                 if (ret) {
3430                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3431                                         ret);
3432                         goto out;
3433                 }
3434         }
3435
3436         if (state == PM_SUSPEND_ON)
3437                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3438         else
3439                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3440                                                         max_uV, state);
3441         if (ret < 0)
3442                 goto out;
3443
3444         if (supply_change_uV < 0) {
3445                 ret = regulator_set_voltage_unlocked(rdev->supply,
3446                                 best_supply_uV, INT_MAX, state);
3447                 if (ret)
3448                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3449                                         ret);
3450                 /* No need to fail here */
3451                 ret = 0;
3452         }
3453
3454 out:
3455         return ret;
3456 }
3457
3458 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3459                                         int *current_uV, int *min_uV)
3460 {
3461         struct regulation_constraints *constraints = rdev->constraints;
3462
3463         /* Limit voltage change only if necessary */
3464         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3465                 return 1;
3466
3467         if (*current_uV < 0) {
3468                 *current_uV = regulator_get_voltage_rdev(rdev);
3469
3470                 if (*current_uV < 0)
3471                         return *current_uV;
3472         }
3473
3474         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3475                 return 1;
3476
3477         /* Clamp target voltage within the given step */
3478         if (*current_uV < *min_uV)
3479                 *min_uV = min(*current_uV + constraints->max_uV_step,
3480                               *min_uV);
3481         else
3482                 *min_uV = max(*current_uV - constraints->max_uV_step,
3483                               *min_uV);
3484
3485         return 0;
3486 }
3487
3488 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3489                                          int *current_uV,
3490                                          int *min_uV, int *max_uV,
3491                                          suspend_state_t state,
3492                                          int n_coupled)
3493 {
3494         struct coupling_desc *c_desc = &rdev->coupling_desc;
3495         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3496         struct regulation_constraints *constraints = rdev->constraints;
3497         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3498         int max_current_uV = 0, min_current_uV = INT_MAX;
3499         int highest_min_uV = 0, target_uV, possible_uV;
3500         int i, ret, max_spread;
3501         bool done;
3502
3503         *current_uV = -1;
3504
3505         /*
3506          * If there are no coupled regulators, simply set the voltage
3507          * demanded by consumers.
3508          */
3509         if (n_coupled == 1) {
3510                 /*
3511                  * If consumers don't provide any demands, set voltage
3512                  * to min_uV
3513                  */
3514                 desired_min_uV = constraints->min_uV;
3515                 desired_max_uV = constraints->max_uV;
3516
3517                 ret = regulator_check_consumers(rdev,
3518                                                 &desired_min_uV,
3519                                                 &desired_max_uV, state);
3520                 if (ret < 0)
3521                         return ret;
3522
3523                 possible_uV = desired_min_uV;
3524                 done = true;
3525
3526                 goto finish;
3527         }
3528
3529         /* Find highest min desired voltage */
3530         for (i = 0; i < n_coupled; i++) {
3531                 int tmp_min = 0;
3532                 int tmp_max = INT_MAX;
3533
3534                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3535
3536                 ret = regulator_check_consumers(c_rdevs[i],
3537                                                 &tmp_min,
3538                                                 &tmp_max, state);
3539                 if (ret < 0)
3540                         return ret;
3541
3542                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3543                 if (ret < 0)
3544                         return ret;
3545
3546                 highest_min_uV = max(highest_min_uV, tmp_min);
3547
3548                 if (i == 0) {
3549                         desired_min_uV = tmp_min;
3550                         desired_max_uV = tmp_max;
3551                 }
3552         }
3553
3554         max_spread = constraints->max_spread[0];
3555
3556         /*
3557          * Let target_uV be equal to the desired one if possible.
3558          * If not, set it to minimum voltage, allowed by other coupled
3559          * regulators.
3560          */
3561         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3562
3563         /*
3564          * Find min and max voltages, which currently aren't violating
3565          * max_spread.
3566          */
3567         for (i = 1; i < n_coupled; i++) {
3568                 int tmp_act;
3569
3570                 if (!_regulator_is_enabled(c_rdevs[i]))
3571                         continue;
3572
3573                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3574                 if (tmp_act < 0)
3575                         return tmp_act;
3576
3577                 min_current_uV = min(tmp_act, min_current_uV);
3578                 max_current_uV = max(tmp_act, max_current_uV);
3579         }
3580
3581         /* There aren't any other regulators enabled */
3582         if (max_current_uV == 0) {
3583                 possible_uV = target_uV;
3584         } else {
3585                 /*
3586                  * Correct target voltage, so as it currently isn't
3587                  * violating max_spread
3588                  */
3589                 possible_uV = max(target_uV, max_current_uV - max_spread);
3590                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3591         }
3592
3593         if (possible_uV > desired_max_uV)
3594                 return -EINVAL;
3595
3596         done = (possible_uV == target_uV);
3597         desired_min_uV = possible_uV;
3598
3599 finish:
3600         /* Apply max_uV_step constraint if necessary */
3601         if (state == PM_SUSPEND_ON) {
3602                 ret = regulator_limit_voltage_step(rdev, current_uV,
3603                                                    &desired_min_uV);
3604                 if (ret < 0)
3605                         return ret;
3606
3607                 if (ret == 0)
3608                         done = false;
3609         }
3610
3611         /* Set current_uV if wasn't done earlier in the code and if necessary */
3612         if (n_coupled > 1 && *current_uV == -1) {
3613
3614                 if (_regulator_is_enabled(rdev)) {
3615                         ret = regulator_get_voltage_rdev(rdev);
3616                         if (ret < 0)
3617                                 return ret;
3618
3619                         *current_uV = ret;
3620                 } else {
3621                         *current_uV = desired_min_uV;
3622                 }
3623         }
3624
3625         *min_uV = desired_min_uV;
3626         *max_uV = desired_max_uV;
3627
3628         return done;
3629 }
3630
3631 static int regulator_balance_voltage(struct regulator_dev *rdev,
3632                                      suspend_state_t state)
3633 {
3634         struct regulator_dev **c_rdevs;
3635         struct regulator_dev *best_rdev;
3636         struct coupling_desc *c_desc = &rdev->coupling_desc;
3637         struct regulator_coupler *coupler = c_desc->coupler;
3638         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3639         unsigned int delta, best_delta;
3640         unsigned long c_rdev_done = 0;
3641         bool best_c_rdev_done;
3642
3643         c_rdevs = c_desc->coupled_rdevs;
3644         n_coupled = c_desc->n_coupled;
3645
3646         /*
3647          * If system is in a state other than PM_SUSPEND_ON, don't check
3648          * other coupled regulators.
3649          */
3650         if (state != PM_SUSPEND_ON)
3651                 n_coupled = 1;
3652
3653         if (c_desc->n_resolved < n_coupled) {
3654                 rdev_err(rdev, "Not all coupled regulators registered\n");
3655                 return -EPERM;
3656         }
3657
3658         /* Invoke custom balancer for customized couplers */
3659         if (coupler && coupler->balance_voltage)
3660                 return coupler->balance_voltage(coupler, rdev, state);
3661
3662         /*
3663          * Find the best possible voltage change on each loop. Leave the loop
3664          * if there isn't any possible change.
3665          */
3666         do {
3667                 best_c_rdev_done = false;
3668                 best_delta = 0;
3669                 best_min_uV = 0;
3670                 best_max_uV = 0;
3671                 best_c_rdev = 0;
3672                 best_rdev = NULL;
3673
3674                 /*
3675                  * Find highest difference between optimal voltage
3676                  * and current voltage.
3677                  */
3678                 for (i = 0; i < n_coupled; i++) {
3679                         /*
3680                          * optimal_uV is the best voltage that can be set for
3681                          * i-th regulator at the moment without violating
3682                          * max_spread constraint in order to balance
3683                          * the coupled voltages.
3684                          */
3685                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3686
3687                         if (test_bit(i, &c_rdev_done))
3688                                 continue;
3689
3690                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3691                                                             &current_uV,
3692                                                             &optimal_uV,
3693                                                             &optimal_max_uV,
3694                                                             state, n_coupled);
3695                         if (ret < 0)
3696                                 goto out;
3697
3698                         delta = abs(optimal_uV - current_uV);
3699
3700                         if (delta && best_delta <= delta) {
3701                                 best_c_rdev_done = ret;
3702                                 best_delta = delta;
3703                                 best_rdev = c_rdevs[i];
3704                                 best_min_uV = optimal_uV;
3705                                 best_max_uV = optimal_max_uV;
3706                                 best_c_rdev = i;
3707                         }
3708                 }
3709
3710                 /* Nothing to change, return successfully */
3711                 if (!best_rdev) {
3712                         ret = 0;
3713                         goto out;
3714                 }
3715
3716                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3717                                                  best_max_uV, state);
3718
3719                 if (ret < 0)
3720                         goto out;
3721
3722                 if (best_c_rdev_done)
3723                         set_bit(best_c_rdev, &c_rdev_done);
3724
3725         } while (n_coupled > 1);
3726
3727 out:
3728         return ret;
3729 }
3730
3731 /**
3732  * regulator_set_voltage - set regulator output voltage
3733  * @regulator: regulator source
3734  * @min_uV: Minimum required voltage in uV
3735  * @max_uV: Maximum acceptable voltage in uV
3736  *
3737  * Sets a voltage regulator to the desired output voltage. This can be set
3738  * during any regulator state. IOW, regulator can be disabled or enabled.
3739  *
3740  * If the regulator is enabled then the voltage will change to the new value
3741  * immediately otherwise if the regulator is disabled the regulator will
3742  * output at the new voltage when enabled.
3743  *
3744  * NOTE: If the regulator is shared between several devices then the lowest
3745  * request voltage that meets the system constraints will be used.
3746  * Regulator system constraints must be set for this regulator before
3747  * calling this function otherwise this call will fail.
3748  */
3749 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3750 {
3751         struct ww_acquire_ctx ww_ctx;
3752         int ret;
3753
3754         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3755
3756         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3757                                              PM_SUSPEND_ON);
3758
3759         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3760
3761         return ret;
3762 }
3763 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3764
3765 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3766                                            suspend_state_t state, bool en)
3767 {
3768         struct regulator_state *rstate;
3769
3770         rstate = regulator_get_suspend_state(rdev, state);
3771         if (rstate == NULL)
3772                 return -EINVAL;
3773
3774         if (!rstate->changeable)
3775                 return -EPERM;
3776
3777         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3778
3779         return 0;
3780 }
3781
3782 int regulator_suspend_enable(struct regulator_dev *rdev,
3783                                     suspend_state_t state)
3784 {
3785         return regulator_suspend_toggle(rdev, state, true);
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3788
3789 int regulator_suspend_disable(struct regulator_dev *rdev,
3790                                      suspend_state_t state)
3791 {
3792         struct regulator *regulator;
3793         struct regulator_voltage *voltage;
3794
3795         /*
3796          * if any consumer wants this regulator device keeping on in
3797          * suspend states, don't set it as disabled.
3798          */
3799         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3800                 voltage = &regulator->voltage[state];
3801                 if (voltage->min_uV || voltage->max_uV)
3802                         return 0;
3803         }
3804
3805         return regulator_suspend_toggle(rdev, state, false);
3806 }
3807 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3808
3809 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3810                                           int min_uV, int max_uV,
3811                                           suspend_state_t state)
3812 {
3813         struct regulator_dev *rdev = regulator->rdev;
3814         struct regulator_state *rstate;
3815
3816         rstate = regulator_get_suspend_state(rdev, state);
3817         if (rstate == NULL)
3818                 return -EINVAL;
3819
3820         if (rstate->min_uV == rstate->max_uV) {
3821                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3822                 return -EPERM;
3823         }
3824
3825         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3826 }
3827
3828 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3829                                   int max_uV, suspend_state_t state)
3830 {
3831         struct ww_acquire_ctx ww_ctx;
3832         int ret;
3833
3834         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3835         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3836                 return -EINVAL;
3837
3838         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3839
3840         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3841                                              max_uV, state);
3842
3843         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3844
3845         return ret;
3846 }
3847 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3848
3849 /**
3850  * regulator_set_voltage_time - get raise/fall time
3851  * @regulator: regulator source
3852  * @old_uV: starting voltage in microvolts
3853  * @new_uV: target voltage in microvolts
3854  *
3855  * Provided with the starting and ending voltage, this function attempts to
3856  * calculate the time in microseconds required to rise or fall to this new
3857  * voltage.
3858  */
3859 int regulator_set_voltage_time(struct regulator *regulator,
3860                                int old_uV, int new_uV)
3861 {
3862         struct regulator_dev *rdev = regulator->rdev;
3863         const struct regulator_ops *ops = rdev->desc->ops;
3864         int old_sel = -1;
3865         int new_sel = -1;
3866         int voltage;
3867         int i;
3868
3869         if (ops->set_voltage_time)
3870                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3871         else if (!ops->set_voltage_time_sel)
3872                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3873
3874         /* Currently requires operations to do this */
3875         if (!ops->list_voltage || !rdev->desc->n_voltages)
3876                 return -EINVAL;
3877
3878         for (i = 0; i < rdev->desc->n_voltages; i++) {
3879                 /* We only look for exact voltage matches here */
3880                 voltage = regulator_list_voltage(regulator, i);
3881                 if (voltage < 0)
3882                         return -EINVAL;
3883                 if (voltage == 0)
3884                         continue;
3885                 if (voltage == old_uV)
3886                         old_sel = i;
3887                 if (voltage == new_uV)
3888                         new_sel = i;
3889         }
3890
3891         if (old_sel < 0 || new_sel < 0)
3892                 return -EINVAL;
3893
3894         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3895 }
3896 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3897
3898 /**
3899  * regulator_set_voltage_time_sel - get raise/fall time
3900  * @rdev: regulator source device
3901  * @old_selector: selector for starting voltage
3902  * @new_selector: selector for target voltage
3903  *
3904  * Provided with the starting and target voltage selectors, this function
3905  * returns time in microseconds required to rise or fall to this new voltage
3906  *
3907  * Drivers providing ramp_delay in regulation_constraints can use this as their
3908  * set_voltage_time_sel() operation.
3909  */
3910 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3911                                    unsigned int old_selector,
3912                                    unsigned int new_selector)
3913 {
3914         int old_volt, new_volt;
3915
3916         /* sanity check */
3917         if (!rdev->desc->ops->list_voltage)
3918                 return -EINVAL;
3919
3920         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3921         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3922
3923         if (rdev->desc->ops->set_voltage_time)
3924                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3925                                                          new_volt);
3926         else
3927                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3928 }
3929 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3930
3931 /**
3932  * regulator_sync_voltage - re-apply last regulator output voltage
3933  * @regulator: regulator source
3934  *
3935  * Re-apply the last configured voltage.  This is intended to be used
3936  * where some external control source the consumer is cooperating with
3937  * has caused the configured voltage to change.
3938  */
3939 int regulator_sync_voltage(struct regulator *regulator)
3940 {
3941         struct regulator_dev *rdev = regulator->rdev;
3942         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3943         int ret, min_uV, max_uV;
3944
3945         regulator_lock(rdev);
3946
3947         if (!rdev->desc->ops->set_voltage &&
3948             !rdev->desc->ops->set_voltage_sel) {
3949                 ret = -EINVAL;
3950                 goto out;
3951         }
3952
3953         /* This is only going to work if we've had a voltage configured. */
3954         if (!voltage->min_uV && !voltage->max_uV) {
3955                 ret = -EINVAL;
3956                 goto out;
3957         }
3958
3959         min_uV = voltage->min_uV;
3960         max_uV = voltage->max_uV;
3961
3962         /* This should be a paranoia check... */
3963         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3964         if (ret < 0)
3965                 goto out;
3966
3967         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3968         if (ret < 0)
3969                 goto out;
3970
3971         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3972
3973 out:
3974         regulator_unlock(rdev);
3975         return ret;
3976 }
3977 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3978
3979 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3980 {
3981         int sel, ret;
3982         bool bypassed;
3983
3984         if (rdev->desc->ops->get_bypass) {
3985                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3986                 if (ret < 0)
3987                         return ret;
3988                 if (bypassed) {
3989                         /* if bypassed the regulator must have a supply */
3990                         if (!rdev->supply) {
3991                                 rdev_err(rdev,
3992                                          "bypassed regulator has no supply!\n");
3993                                 return -EPROBE_DEFER;
3994                         }
3995
3996                         return regulator_get_voltage_rdev(rdev->supply->rdev);
3997                 }
3998         }
3999
4000         if (rdev->desc->ops->get_voltage_sel) {
4001                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4002                 if (sel < 0)
4003                         return sel;
4004                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4005         } else if (rdev->desc->ops->get_voltage) {
4006                 ret = rdev->desc->ops->get_voltage(rdev);
4007         } else if (rdev->desc->ops->list_voltage) {
4008                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4009         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4010                 ret = rdev->desc->fixed_uV;
4011         } else if (rdev->supply) {
4012                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4013         } else {
4014                 return -EINVAL;
4015         }
4016
4017         if (ret < 0)
4018                 return ret;
4019         return ret - rdev->constraints->uV_offset;
4020 }
4021
4022 /**
4023  * regulator_get_voltage - get regulator output voltage
4024  * @regulator: regulator source
4025  *
4026  * This returns the current regulator voltage in uV.
4027  *
4028  * NOTE: If the regulator is disabled it will return the voltage value. This
4029  * function should not be used to determine regulator state.
4030  */
4031 int regulator_get_voltage(struct regulator *regulator)
4032 {
4033         struct ww_acquire_ctx ww_ctx;
4034         int ret;
4035
4036         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4037         ret = regulator_get_voltage_rdev(regulator->rdev);
4038         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4039
4040         return ret;
4041 }
4042 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4043
4044 /**
4045  * regulator_set_current_limit - set regulator output current limit
4046  * @regulator: regulator source
4047  * @min_uA: Minimum supported current in uA
4048  * @max_uA: Maximum supported current in uA
4049  *
4050  * Sets current sink to the desired output current. This can be set during
4051  * any regulator state. IOW, regulator can be disabled or enabled.
4052  *
4053  * If the regulator is enabled then the current will change to the new value
4054  * immediately otherwise if the regulator is disabled the regulator will
4055  * output at the new current when enabled.
4056  *
4057  * NOTE: Regulator system constraints must be set for this regulator before
4058  * calling this function otherwise this call will fail.
4059  */
4060 int regulator_set_current_limit(struct regulator *regulator,
4061                                int min_uA, int max_uA)
4062 {
4063         struct regulator_dev *rdev = regulator->rdev;
4064         int ret;
4065
4066         regulator_lock(rdev);
4067
4068         /* sanity check */
4069         if (!rdev->desc->ops->set_current_limit) {
4070                 ret = -EINVAL;
4071                 goto out;
4072         }
4073
4074         /* constraints check */
4075         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4076         if (ret < 0)
4077                 goto out;
4078
4079         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4080 out:
4081         regulator_unlock(rdev);
4082         return ret;
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4085
4086 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4087 {
4088         /* sanity check */
4089         if (!rdev->desc->ops->get_current_limit)
4090                 return -EINVAL;
4091
4092         return rdev->desc->ops->get_current_limit(rdev);
4093 }
4094
4095 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4096 {
4097         int ret;
4098
4099         regulator_lock(rdev);
4100         ret = _regulator_get_current_limit_unlocked(rdev);
4101         regulator_unlock(rdev);
4102
4103         return ret;
4104 }
4105
4106 /**
4107  * regulator_get_current_limit - get regulator output current
4108  * @regulator: regulator source
4109  *
4110  * This returns the current supplied by the specified current sink in uA.
4111  *
4112  * NOTE: If the regulator is disabled it will return the current value. This
4113  * function should not be used to determine regulator state.
4114  */
4115 int regulator_get_current_limit(struct regulator *regulator)
4116 {
4117         return _regulator_get_current_limit(regulator->rdev);
4118 }
4119 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4120
4121 /**
4122  * regulator_set_mode - set regulator operating mode
4123  * @regulator: regulator source
4124  * @mode: operating mode - one of the REGULATOR_MODE constants
4125  *
4126  * Set regulator operating mode to increase regulator efficiency or improve
4127  * regulation performance.
4128  *
4129  * NOTE: Regulator system constraints must be set for this regulator before
4130  * calling this function otherwise this call will fail.
4131  */
4132 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4133 {
4134         struct regulator_dev *rdev = regulator->rdev;
4135         int ret;
4136         int regulator_curr_mode;
4137
4138         regulator_lock(rdev);
4139
4140         /* sanity check */
4141         if (!rdev->desc->ops->set_mode) {
4142                 ret = -EINVAL;
4143                 goto out;
4144         }
4145
4146         /* return if the same mode is requested */
4147         if (rdev->desc->ops->get_mode) {
4148                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4149                 if (regulator_curr_mode == mode) {
4150                         ret = 0;
4151                         goto out;
4152                 }
4153         }
4154
4155         /* constraints check */
4156         ret = regulator_mode_constrain(rdev, &mode);
4157         if (ret < 0)
4158                 goto out;
4159
4160         ret = rdev->desc->ops->set_mode(rdev, mode);
4161 out:
4162         regulator_unlock(rdev);
4163         return ret;
4164 }
4165 EXPORT_SYMBOL_GPL(regulator_set_mode);
4166
4167 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4168 {
4169         /* sanity check */
4170         if (!rdev->desc->ops->get_mode)
4171                 return -EINVAL;
4172
4173         return rdev->desc->ops->get_mode(rdev);
4174 }
4175
4176 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4177 {
4178         int ret;
4179
4180         regulator_lock(rdev);
4181         ret = _regulator_get_mode_unlocked(rdev);
4182         regulator_unlock(rdev);
4183
4184         return ret;
4185 }
4186
4187 /**
4188  * regulator_get_mode - get regulator operating mode
4189  * @regulator: regulator source
4190  *
4191  * Get the current regulator operating mode.
4192  */
4193 unsigned int regulator_get_mode(struct regulator *regulator)
4194 {
4195         return _regulator_get_mode(regulator->rdev);
4196 }
4197 EXPORT_SYMBOL_GPL(regulator_get_mode);
4198
4199 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4200                                         unsigned int *flags)
4201 {
4202         int ret;
4203
4204         regulator_lock(rdev);
4205
4206         /* sanity check */
4207         if (!rdev->desc->ops->get_error_flags) {
4208                 ret = -EINVAL;
4209                 goto out;
4210         }
4211
4212         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4213 out:
4214         regulator_unlock(rdev);
4215         return ret;
4216 }
4217
4218 /**
4219  * regulator_get_error_flags - get regulator error information
4220  * @regulator: regulator source
4221  * @flags: pointer to store error flags
4222  *
4223  * Get the current regulator error information.
4224  */
4225 int regulator_get_error_flags(struct regulator *regulator,
4226                                 unsigned int *flags)
4227 {
4228         return _regulator_get_error_flags(regulator->rdev, flags);
4229 }
4230 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4231
4232 /**
4233  * regulator_set_load - set regulator load
4234  * @regulator: regulator source
4235  * @uA_load: load current
4236  *
4237  * Notifies the regulator core of a new device load. This is then used by
4238  * DRMS (if enabled by constraints) to set the most efficient regulator
4239  * operating mode for the new regulator loading.
4240  *
4241  * Consumer devices notify their supply regulator of the maximum power
4242  * they will require (can be taken from device datasheet in the power
4243  * consumption tables) when they change operational status and hence power
4244  * state. Examples of operational state changes that can affect power
4245  * consumption are :-
4246  *
4247  *    o Device is opened / closed.
4248  *    o Device I/O is about to begin or has just finished.
4249  *    o Device is idling in between work.
4250  *
4251  * This information is also exported via sysfs to userspace.
4252  *
4253  * DRMS will sum the total requested load on the regulator and change
4254  * to the most efficient operating mode if platform constraints allow.
4255  *
4256  * NOTE: when a regulator consumer requests to have a regulator
4257  * disabled then any load that consumer requested no longer counts
4258  * toward the total requested load.  If the regulator is re-enabled
4259  * then the previously requested load will start counting again.
4260  *
4261  * If a regulator is an always-on regulator then an individual consumer's
4262  * load will still be removed if that consumer is fully disabled.
4263  *
4264  * On error a negative errno is returned.
4265  */
4266 int regulator_set_load(struct regulator *regulator, int uA_load)
4267 {
4268         struct regulator_dev *rdev = regulator->rdev;
4269         int old_uA_load;
4270         int ret = 0;
4271
4272         regulator_lock(rdev);
4273         old_uA_load = regulator->uA_load;
4274         regulator->uA_load = uA_load;
4275         if (regulator->enable_count && old_uA_load != uA_load) {
4276                 ret = drms_uA_update(rdev);
4277                 if (ret < 0)
4278                         regulator->uA_load = old_uA_load;
4279         }
4280         regulator_unlock(rdev);
4281
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(regulator_set_load);
4285
4286 /**
4287  * regulator_allow_bypass - allow the regulator to go into bypass mode
4288  *
4289  * @regulator: Regulator to configure
4290  * @enable: enable or disable bypass mode
4291  *
4292  * Allow the regulator to go into bypass mode if all other consumers
4293  * for the regulator also enable bypass mode and the machine
4294  * constraints allow this.  Bypass mode means that the regulator is
4295  * simply passing the input directly to the output with no regulation.
4296  */
4297 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4298 {
4299         struct regulator_dev *rdev = regulator->rdev;
4300         int ret = 0;
4301
4302         if (!rdev->desc->ops->set_bypass)
4303                 return 0;
4304
4305         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4306                 return 0;
4307
4308         regulator_lock(rdev);
4309
4310         if (enable && !regulator->bypass) {
4311                 rdev->bypass_count++;
4312
4313                 if (rdev->bypass_count == rdev->open_count) {
4314                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4315                         if (ret != 0)
4316                                 rdev->bypass_count--;
4317                 }
4318
4319         } else if (!enable && regulator->bypass) {
4320                 rdev->bypass_count--;
4321
4322                 if (rdev->bypass_count != rdev->open_count) {
4323                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4324                         if (ret != 0)
4325                                 rdev->bypass_count++;
4326                 }
4327         }
4328
4329         if (ret == 0)
4330                 regulator->bypass = enable;
4331
4332         regulator_unlock(rdev);
4333
4334         return ret;
4335 }
4336 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4337
4338 /**
4339  * regulator_register_notifier - register regulator event notifier
4340  * @regulator: regulator source
4341  * @nb: notifier block
4342  *
4343  * Register notifier block to receive regulator events.
4344  */
4345 int regulator_register_notifier(struct regulator *regulator,
4346                               struct notifier_block *nb)
4347 {
4348         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4349                                                 nb);
4350 }
4351 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4352
4353 /**
4354  * regulator_unregister_notifier - unregister regulator event notifier
4355  * @regulator: regulator source
4356  * @nb: notifier block
4357  *
4358  * Unregister regulator event notifier block.
4359  */
4360 int regulator_unregister_notifier(struct regulator *regulator,
4361                                 struct notifier_block *nb)
4362 {
4363         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4364                                                   nb);
4365 }
4366 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4367
4368 /* notify regulator consumers and downstream regulator consumers.
4369  * Note mutex must be held by caller.
4370  */
4371 static int _notifier_call_chain(struct regulator_dev *rdev,
4372                                   unsigned long event, void *data)
4373 {
4374         /* call rdev chain first */
4375         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4376 }
4377
4378 /**
4379  * regulator_bulk_get - get multiple regulator consumers
4380  *
4381  * @dev:           Device to supply
4382  * @num_consumers: Number of consumers to register
4383  * @consumers:     Configuration of consumers; clients are stored here.
4384  *
4385  * @return 0 on success, an errno on failure.
4386  *
4387  * This helper function allows drivers to get several regulator
4388  * consumers in one operation.  If any of the regulators cannot be
4389  * acquired then any regulators that were allocated will be freed
4390  * before returning to the caller.
4391  */
4392 int regulator_bulk_get(struct device *dev, int num_consumers,
4393                        struct regulator_bulk_data *consumers)
4394 {
4395         int i;
4396         int ret;
4397
4398         for (i = 0; i < num_consumers; i++)
4399                 consumers[i].consumer = NULL;
4400
4401         for (i = 0; i < num_consumers; i++) {
4402                 consumers[i].consumer = regulator_get(dev,
4403                                                       consumers[i].supply);
4404                 if (IS_ERR(consumers[i].consumer)) {
4405                         ret = PTR_ERR(consumers[i].consumer);
4406                         consumers[i].consumer = NULL;
4407                         goto err;
4408                 }
4409         }
4410
4411         return 0;
4412
4413 err:
4414         if (ret != -EPROBE_DEFER)
4415                 dev_err(dev, "Failed to get supply '%s': %d\n",
4416                         consumers[i].supply, ret);
4417         else
4418                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4419                         consumers[i].supply);
4420
4421         while (--i >= 0)
4422                 regulator_put(consumers[i].consumer);
4423
4424         return ret;
4425 }
4426 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4427
4428 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4429 {
4430         struct regulator_bulk_data *bulk = data;
4431
4432         bulk->ret = regulator_enable(bulk->consumer);
4433 }
4434
4435 /**
4436  * regulator_bulk_enable - enable multiple regulator consumers
4437  *
4438  * @num_consumers: Number of consumers
4439  * @consumers:     Consumer data; clients are stored here.
4440  * @return         0 on success, an errno on failure
4441  *
4442  * This convenience API allows consumers to enable multiple regulator
4443  * clients in a single API call.  If any consumers cannot be enabled
4444  * then any others that were enabled will be disabled again prior to
4445  * return.
4446  */
4447 int regulator_bulk_enable(int num_consumers,
4448                           struct regulator_bulk_data *consumers)
4449 {
4450         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4451         int i;
4452         int ret = 0;
4453
4454         for (i = 0; i < num_consumers; i++) {
4455                 async_schedule_domain(regulator_bulk_enable_async,
4456                                       &consumers[i], &async_domain);
4457         }
4458
4459         async_synchronize_full_domain(&async_domain);
4460
4461         /* If any consumer failed we need to unwind any that succeeded */
4462         for (i = 0; i < num_consumers; i++) {
4463                 if (consumers[i].ret != 0) {
4464                         ret = consumers[i].ret;
4465                         goto err;
4466                 }
4467         }
4468
4469         return 0;
4470
4471 err:
4472         for (i = 0; i < num_consumers; i++) {
4473                 if (consumers[i].ret < 0)
4474                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4475                                consumers[i].ret);
4476                 else
4477                         regulator_disable(consumers[i].consumer);
4478         }
4479
4480         return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4483
4484 /**
4485  * regulator_bulk_disable - disable multiple regulator consumers
4486  *
4487  * @num_consumers: Number of consumers
4488  * @consumers:     Consumer data; clients are stored here.
4489  * @return         0 on success, an errno on failure
4490  *
4491  * This convenience API allows consumers to disable multiple regulator
4492  * clients in a single API call.  If any consumers cannot be disabled
4493  * then any others that were disabled will be enabled again prior to
4494  * return.
4495  */
4496 int regulator_bulk_disable(int num_consumers,
4497                            struct regulator_bulk_data *consumers)
4498 {
4499         int i;
4500         int ret, r;
4501
4502         for (i = num_consumers - 1; i >= 0; --i) {
4503                 ret = regulator_disable(consumers[i].consumer);
4504                 if (ret != 0)
4505                         goto err;
4506         }
4507
4508         return 0;
4509
4510 err:
4511         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4512         for (++i; i < num_consumers; ++i) {
4513                 r = regulator_enable(consumers[i].consumer);
4514                 if (r != 0)
4515                         pr_err("Failed to re-enable %s: %d\n",
4516                                consumers[i].supply, r);
4517         }
4518
4519         return ret;
4520 }
4521 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4522
4523 /**
4524  * regulator_bulk_force_disable - force disable multiple regulator consumers
4525  *
4526  * @num_consumers: Number of consumers
4527  * @consumers:     Consumer data; clients are stored here.
4528  * @return         0 on success, an errno on failure
4529  *
4530  * This convenience API allows consumers to forcibly disable multiple regulator
4531  * clients in a single API call.
4532  * NOTE: This should be used for situations when device damage will
4533  * likely occur if the regulators are not disabled (e.g. over temp).
4534  * Although regulator_force_disable function call for some consumers can
4535  * return error numbers, the function is called for all consumers.
4536  */
4537 int regulator_bulk_force_disable(int num_consumers,
4538                            struct regulator_bulk_data *consumers)
4539 {
4540         int i;
4541         int ret = 0;
4542
4543         for (i = 0; i < num_consumers; i++) {
4544                 consumers[i].ret =
4545                             regulator_force_disable(consumers[i].consumer);
4546
4547                 /* Store first error for reporting */
4548                 if (consumers[i].ret && !ret)
4549                         ret = consumers[i].ret;
4550         }
4551
4552         return ret;
4553 }
4554 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4555
4556 /**
4557  * regulator_bulk_free - free multiple regulator consumers
4558  *
4559  * @num_consumers: Number of consumers
4560  * @consumers:     Consumer data; clients are stored here.
4561  *
4562  * This convenience API allows consumers to free multiple regulator
4563  * clients in a single API call.
4564  */
4565 void regulator_bulk_free(int num_consumers,
4566                          struct regulator_bulk_data *consumers)
4567 {
4568         int i;
4569
4570         for (i = 0; i < num_consumers; i++) {
4571                 regulator_put(consumers[i].consumer);
4572                 consumers[i].consumer = NULL;
4573         }
4574 }
4575 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4576
4577 /**
4578  * regulator_notifier_call_chain - call regulator event notifier
4579  * @rdev: regulator source
4580  * @event: notifier block
4581  * @data: callback-specific data.
4582  *
4583  * Called by regulator drivers to notify clients a regulator event has
4584  * occurred. We also notify regulator clients downstream.
4585  * Note lock must be held by caller.
4586  */
4587 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4588                                   unsigned long event, void *data)
4589 {
4590         lockdep_assert_held_once(&rdev->mutex.base);
4591
4592         _notifier_call_chain(rdev, event, data);
4593         return NOTIFY_DONE;
4594
4595 }
4596 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4597
4598 /**
4599  * regulator_mode_to_status - convert a regulator mode into a status
4600  *
4601  * @mode: Mode to convert
4602  *
4603  * Convert a regulator mode into a status.
4604  */
4605 int regulator_mode_to_status(unsigned int mode)
4606 {
4607         switch (mode) {
4608         case REGULATOR_MODE_FAST:
4609                 return REGULATOR_STATUS_FAST;
4610         case REGULATOR_MODE_NORMAL:
4611                 return REGULATOR_STATUS_NORMAL;
4612         case REGULATOR_MODE_IDLE:
4613                 return REGULATOR_STATUS_IDLE;
4614         case REGULATOR_MODE_STANDBY:
4615                 return REGULATOR_STATUS_STANDBY;
4616         default:
4617                 return REGULATOR_STATUS_UNDEFINED;
4618         }
4619 }
4620 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4621
4622 static struct attribute *regulator_dev_attrs[] = {
4623         &dev_attr_name.attr,
4624         &dev_attr_num_users.attr,
4625         &dev_attr_type.attr,
4626         &dev_attr_microvolts.attr,
4627         &dev_attr_microamps.attr,
4628         &dev_attr_opmode.attr,
4629         &dev_attr_state.attr,
4630         &dev_attr_status.attr,
4631         &dev_attr_bypass.attr,
4632         &dev_attr_requested_microamps.attr,
4633         &dev_attr_min_microvolts.attr,
4634         &dev_attr_max_microvolts.attr,
4635         &dev_attr_min_microamps.attr,
4636         &dev_attr_max_microamps.attr,
4637         &dev_attr_suspend_standby_state.attr,
4638         &dev_attr_suspend_mem_state.attr,
4639         &dev_attr_suspend_disk_state.attr,
4640         &dev_attr_suspend_standby_microvolts.attr,
4641         &dev_attr_suspend_mem_microvolts.attr,
4642         &dev_attr_suspend_disk_microvolts.attr,
4643         &dev_attr_suspend_standby_mode.attr,
4644         &dev_attr_suspend_mem_mode.attr,
4645         &dev_attr_suspend_disk_mode.attr,
4646         NULL
4647 };
4648
4649 /*
4650  * To avoid cluttering sysfs (and memory) with useless state, only
4651  * create attributes that can be meaningfully displayed.
4652  */
4653 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4654                                          struct attribute *attr, int idx)
4655 {
4656         struct device *dev = kobj_to_dev(kobj);
4657         struct regulator_dev *rdev = dev_to_rdev(dev);
4658         const struct regulator_ops *ops = rdev->desc->ops;
4659         umode_t mode = attr->mode;
4660
4661         /* these three are always present */
4662         if (attr == &dev_attr_name.attr ||
4663             attr == &dev_attr_num_users.attr ||
4664             attr == &dev_attr_type.attr)
4665                 return mode;
4666
4667         /* some attributes need specific methods to be displayed */
4668         if (attr == &dev_attr_microvolts.attr) {
4669                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4670                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4671                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4672                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4673                         return mode;
4674                 return 0;
4675         }
4676
4677         if (attr == &dev_attr_microamps.attr)
4678                 return ops->get_current_limit ? mode : 0;
4679
4680         if (attr == &dev_attr_opmode.attr)
4681                 return ops->get_mode ? mode : 0;
4682
4683         if (attr == &dev_attr_state.attr)
4684                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4685
4686         if (attr == &dev_attr_status.attr)
4687                 return ops->get_status ? mode : 0;
4688
4689         if (attr == &dev_attr_bypass.attr)
4690                 return ops->get_bypass ? mode : 0;
4691
4692         /* constraints need specific supporting methods */
4693         if (attr == &dev_attr_min_microvolts.attr ||
4694             attr == &dev_attr_max_microvolts.attr)
4695                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4696
4697         if (attr == &dev_attr_min_microamps.attr ||
4698             attr == &dev_attr_max_microamps.attr)
4699                 return ops->set_current_limit ? mode : 0;
4700
4701         if (attr == &dev_attr_suspend_standby_state.attr ||
4702             attr == &dev_attr_suspend_mem_state.attr ||
4703             attr == &dev_attr_suspend_disk_state.attr)
4704                 return mode;
4705
4706         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4707             attr == &dev_attr_suspend_mem_microvolts.attr ||
4708             attr == &dev_attr_suspend_disk_microvolts.attr)
4709                 return ops->set_suspend_voltage ? mode : 0;
4710
4711         if (attr == &dev_attr_suspend_standby_mode.attr ||
4712             attr == &dev_attr_suspend_mem_mode.attr ||
4713             attr == &dev_attr_suspend_disk_mode.attr)
4714                 return ops->set_suspend_mode ? mode : 0;
4715
4716         return mode;
4717 }
4718
4719 static const struct attribute_group regulator_dev_group = {
4720         .attrs = regulator_dev_attrs,
4721         .is_visible = regulator_attr_is_visible,
4722 };
4723
4724 static const struct attribute_group *regulator_dev_groups[] = {
4725         &regulator_dev_group,
4726         NULL
4727 };
4728
4729 static void regulator_dev_release(struct device *dev)
4730 {
4731         struct regulator_dev *rdev = dev_get_drvdata(dev);
4732
4733         kfree(rdev->constraints);
4734         of_node_put(rdev->dev.of_node);
4735         kfree(rdev);
4736 }
4737
4738 static void rdev_init_debugfs(struct regulator_dev *rdev)
4739 {
4740         struct device *parent = rdev->dev.parent;
4741         const char *rname = rdev_get_name(rdev);
4742         char name[NAME_MAX];
4743
4744         /* Avoid duplicate debugfs directory names */
4745         if (parent && rname == rdev->desc->name) {
4746                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4747                          rname);
4748                 rname = name;
4749         }
4750
4751         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4752         if (!rdev->debugfs) {
4753                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4754                 return;
4755         }
4756
4757         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4758                            &rdev->use_count);
4759         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4760                            &rdev->open_count);
4761         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4762                            &rdev->bypass_count);
4763 }
4764
4765 static int regulator_register_resolve_supply(struct device *dev, void *data)
4766 {
4767         struct regulator_dev *rdev = dev_to_rdev(dev);
4768
4769         if (regulator_resolve_supply(rdev))
4770                 rdev_dbg(rdev, "unable to resolve supply\n");
4771
4772         return 0;
4773 }
4774
4775 int regulator_coupler_register(struct regulator_coupler *coupler)
4776 {
4777         mutex_lock(&regulator_list_mutex);
4778         list_add_tail(&coupler->list, &regulator_coupler_list);
4779         mutex_unlock(&regulator_list_mutex);
4780
4781         return 0;
4782 }
4783
4784 static struct regulator_coupler *
4785 regulator_find_coupler(struct regulator_dev *rdev)
4786 {
4787         struct regulator_coupler *coupler;
4788         int err;
4789
4790         /*
4791          * Note that regulators are appended to the list and the generic
4792          * coupler is registered first, hence it will be attached at last
4793          * if nobody cared.
4794          */
4795         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4796                 err = coupler->attach_regulator(coupler, rdev);
4797                 if (!err) {
4798                         if (!coupler->balance_voltage &&
4799                             rdev->coupling_desc.n_coupled > 2)
4800                                 goto err_unsupported;
4801
4802                         return coupler;
4803                 }
4804
4805                 if (err < 0)
4806                         return ERR_PTR(err);
4807
4808                 if (err == 1)
4809                         continue;
4810
4811                 break;
4812         }
4813
4814         return ERR_PTR(-EINVAL);
4815
4816 err_unsupported:
4817         if (coupler->detach_regulator)
4818                 coupler->detach_regulator(coupler, rdev);
4819
4820         rdev_err(rdev,
4821                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4822
4823         return ERR_PTR(-EPERM);
4824 }
4825
4826 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4827 {
4828         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4829         struct coupling_desc *c_desc = &rdev->coupling_desc;
4830         int n_coupled = c_desc->n_coupled;
4831         struct regulator_dev *c_rdev;
4832         int i;
4833
4834         for (i = 1; i < n_coupled; i++) {
4835                 /* already resolved */
4836                 if (c_desc->coupled_rdevs[i])
4837                         continue;
4838
4839                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4840
4841                 if (!c_rdev)
4842                         continue;
4843
4844                 if (c_rdev->coupling_desc.coupler != coupler) {
4845                         rdev_err(rdev, "coupler mismatch with %s\n",
4846                                  rdev_get_name(c_rdev));
4847                         return;
4848                 }
4849
4850                 regulator_lock(c_rdev);
4851
4852                 c_desc->coupled_rdevs[i] = c_rdev;
4853                 c_desc->n_resolved++;
4854
4855                 regulator_unlock(c_rdev);
4856
4857                 regulator_resolve_coupling(c_rdev);
4858         }
4859 }
4860
4861 static void regulator_remove_coupling(struct regulator_dev *rdev)
4862 {
4863         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4864         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4865         struct regulator_dev *__c_rdev, *c_rdev;
4866         unsigned int __n_coupled, n_coupled;
4867         int i, k;
4868         int err;
4869
4870         n_coupled = c_desc->n_coupled;
4871
4872         for (i = 1; i < n_coupled; i++) {
4873                 c_rdev = c_desc->coupled_rdevs[i];
4874
4875                 if (!c_rdev)
4876                         continue;
4877
4878                 regulator_lock(c_rdev);
4879
4880                 __c_desc = &c_rdev->coupling_desc;
4881                 __n_coupled = __c_desc->n_coupled;
4882
4883                 for (k = 1; k < __n_coupled; k++) {
4884                         __c_rdev = __c_desc->coupled_rdevs[k];
4885
4886                         if (__c_rdev == rdev) {
4887                                 __c_desc->coupled_rdevs[k] = NULL;
4888                                 __c_desc->n_resolved--;
4889                                 break;
4890                         }
4891                 }
4892
4893                 regulator_unlock(c_rdev);
4894
4895                 c_desc->coupled_rdevs[i] = NULL;
4896                 c_desc->n_resolved--;
4897         }
4898
4899         if (coupler && coupler->detach_regulator) {
4900                 err = coupler->detach_regulator(coupler, rdev);
4901                 if (err)
4902                         rdev_err(rdev, "failed to detach from coupler: %d\n",
4903                                  err);
4904         }
4905
4906         kfree(rdev->coupling_desc.coupled_rdevs);
4907         rdev->coupling_desc.coupled_rdevs = NULL;
4908 }
4909
4910 static int regulator_init_coupling(struct regulator_dev *rdev)
4911 {
4912         int err, n_phandles;
4913         size_t alloc_size;
4914
4915         if (!IS_ENABLED(CONFIG_OF))
4916                 n_phandles = 0;
4917         else
4918                 n_phandles = of_get_n_coupled(rdev);
4919
4920         alloc_size = sizeof(*rdev) * (n_phandles + 1);
4921
4922         rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4923         if (!rdev->coupling_desc.coupled_rdevs)
4924                 return -ENOMEM;
4925
4926         /*
4927          * Every regulator should always have coupling descriptor filled with
4928          * at least pointer to itself.
4929          */
4930         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4931         rdev->coupling_desc.n_coupled = n_phandles + 1;
4932         rdev->coupling_desc.n_resolved++;
4933
4934         /* regulator isn't coupled */
4935         if (n_phandles == 0)
4936                 return 0;
4937
4938         if (!of_check_coupling_data(rdev))
4939                 return -EPERM;
4940
4941         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4942         if (IS_ERR(rdev->coupling_desc.coupler)) {
4943                 err = PTR_ERR(rdev->coupling_desc.coupler);
4944                 rdev_err(rdev, "failed to get coupler: %d\n", err);
4945                 return err;
4946         }
4947
4948         return 0;
4949 }
4950
4951 static int generic_coupler_attach(struct regulator_coupler *coupler,
4952                                   struct regulator_dev *rdev)
4953 {
4954         if (rdev->coupling_desc.n_coupled > 2) {
4955                 rdev_err(rdev,
4956                          "Voltage balancing for multiple regulator couples is unimplemented\n");
4957                 return -EPERM;
4958         }
4959
4960         return 0;
4961 }
4962
4963 static struct regulator_coupler generic_regulator_coupler = {
4964         .attach_regulator = generic_coupler_attach,
4965 };
4966
4967 /**
4968  * regulator_register - register regulator
4969  * @regulator_desc: regulator to register
4970  * @cfg: runtime configuration for regulator
4971  *
4972  * Called by regulator drivers to register a regulator.
4973  * Returns a valid pointer to struct regulator_dev on success
4974  * or an ERR_PTR() on error.
4975  */
4976 struct regulator_dev *
4977 regulator_register(const struct regulator_desc *regulator_desc,
4978                    const struct regulator_config *cfg)
4979 {
4980         const struct regulation_constraints *constraints = NULL;
4981         const struct regulator_init_data *init_data;
4982         struct regulator_config *config = NULL;
4983         static atomic_t regulator_no = ATOMIC_INIT(-1);
4984         struct regulator_dev *rdev;
4985         bool dangling_cfg_gpiod = false;
4986         bool dangling_of_gpiod = false;
4987         struct device *dev;
4988         int ret, i;
4989
4990         if (cfg == NULL)
4991                 return ERR_PTR(-EINVAL);
4992         if (cfg->ena_gpiod)
4993                 dangling_cfg_gpiod = true;
4994         if (regulator_desc == NULL) {
4995                 ret = -EINVAL;
4996                 goto rinse;
4997         }
4998
4999         dev = cfg->dev;
5000         WARN_ON(!dev);
5001
5002         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5003                 ret = -EINVAL;
5004                 goto rinse;
5005         }
5006
5007         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5008             regulator_desc->type != REGULATOR_CURRENT) {
5009                 ret = -EINVAL;
5010                 goto rinse;
5011         }
5012
5013         /* Only one of each should be implemented */
5014         WARN_ON(regulator_desc->ops->get_voltage &&
5015                 regulator_desc->ops->get_voltage_sel);
5016         WARN_ON(regulator_desc->ops->set_voltage &&
5017                 regulator_desc->ops->set_voltage_sel);
5018
5019         /* If we're using selectors we must implement list_voltage. */
5020         if (regulator_desc->ops->get_voltage_sel &&
5021             !regulator_desc->ops->list_voltage) {
5022                 ret = -EINVAL;
5023                 goto rinse;
5024         }
5025         if (regulator_desc->ops->set_voltage_sel &&
5026             !regulator_desc->ops->list_voltage) {
5027                 ret = -EINVAL;
5028                 goto rinse;
5029         }
5030
5031         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5032         if (rdev == NULL) {
5033                 ret = -ENOMEM;
5034                 goto rinse;
5035         }
5036
5037         /*
5038          * Duplicate the config so the driver could override it after
5039          * parsing init data.
5040          */
5041         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5042         if (config == NULL) {
5043                 kfree(rdev);
5044                 ret = -ENOMEM;
5045                 goto rinse;
5046         }
5047
5048         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5049                                                &rdev->dev.of_node);
5050         /*
5051          * We need to keep track of any GPIO descriptor coming from the
5052          * device tree until we have handled it over to the core. If the
5053          * config that was passed in to this function DOES NOT contain
5054          * a descriptor, and the config after this call DOES contain
5055          * a descriptor, we definitely got one from parsing the device
5056          * tree.
5057          */
5058         if (!cfg->ena_gpiod && config->ena_gpiod)
5059                 dangling_of_gpiod = true;
5060         if (!init_data) {
5061                 init_data = config->init_data;
5062                 rdev->dev.of_node = of_node_get(config->of_node);
5063         }
5064
5065         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5066         rdev->reg_data = config->driver_data;
5067         rdev->owner = regulator_desc->owner;
5068         rdev->desc = regulator_desc;
5069         if (config->regmap)
5070                 rdev->regmap = config->regmap;
5071         else if (dev_get_regmap(dev, NULL))
5072                 rdev->regmap = dev_get_regmap(dev, NULL);
5073         else if (dev->parent)
5074                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5075         INIT_LIST_HEAD(&rdev->consumer_list);
5076         INIT_LIST_HEAD(&rdev->list);
5077         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5078         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5079
5080         /* preform any regulator specific init */
5081         if (init_data && init_data->regulator_init) {
5082                 ret = init_data->regulator_init(rdev->reg_data);
5083                 if (ret < 0)
5084                         goto clean;
5085         }
5086
5087         if (config->ena_gpiod) {
5088                 mutex_lock(&regulator_list_mutex);
5089                 ret = regulator_ena_gpio_request(rdev, config);
5090                 mutex_unlock(&regulator_list_mutex);
5091                 if (ret != 0) {
5092                         rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5093                                  ret);
5094                         goto clean;
5095                 }
5096                 /* The regulator core took over the GPIO descriptor */
5097                 dangling_cfg_gpiod = false;
5098                 dangling_of_gpiod = false;
5099         }
5100
5101         /* register with sysfs */
5102         rdev->dev.class = &regulator_class;
5103         rdev->dev.parent = dev;
5104         dev_set_name(&rdev->dev, "regulator.%lu",
5105                     (unsigned long) atomic_inc_return(&regulator_no));
5106
5107         /* set regulator constraints */
5108         if (init_data)
5109                 constraints = &init_data->constraints;
5110
5111         if (init_data && init_data->supply_regulator)
5112                 rdev->supply_name = init_data->supply_regulator;
5113         else if (regulator_desc->supply_name)
5114                 rdev->supply_name = regulator_desc->supply_name;
5115
5116         /*
5117          * Attempt to resolve the regulator supply, if specified,
5118          * but don't return an error if we fail because we will try
5119          * to resolve it again later as more regulators are added.
5120          */
5121         if (regulator_resolve_supply(rdev))
5122                 rdev_dbg(rdev, "unable to resolve supply\n");
5123
5124         ret = set_machine_constraints(rdev, constraints);
5125         if (ret < 0)
5126                 goto wash;
5127
5128         mutex_lock(&regulator_list_mutex);
5129         ret = regulator_init_coupling(rdev);
5130         mutex_unlock(&regulator_list_mutex);
5131         if (ret < 0)
5132                 goto wash;
5133
5134         /* add consumers devices */
5135         if (init_data) {
5136                 mutex_lock(&regulator_list_mutex);
5137                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5138                         ret = set_consumer_device_supply(rdev,
5139                                 init_data->consumer_supplies[i].dev_name,
5140                                 init_data->consumer_supplies[i].supply);
5141                         if (ret < 0) {
5142                                 mutex_unlock(&regulator_list_mutex);
5143                                 dev_err(dev, "Failed to set supply %s\n",
5144                                         init_data->consumer_supplies[i].supply);
5145                                 goto unset_supplies;
5146                         }
5147                 }
5148                 mutex_unlock(&regulator_list_mutex);
5149         }
5150
5151         if (!rdev->desc->ops->get_voltage &&
5152             !rdev->desc->ops->list_voltage &&
5153             !rdev->desc->fixed_uV)
5154                 rdev->is_switch = true;
5155
5156         dev_set_drvdata(&rdev->dev, rdev);
5157         ret = device_register(&rdev->dev);
5158         if (ret != 0) {
5159                 put_device(&rdev->dev);
5160                 goto unset_supplies;
5161         }
5162
5163         rdev_init_debugfs(rdev);
5164
5165         /* try to resolve regulators coupling since a new one was registered */
5166         mutex_lock(&regulator_list_mutex);
5167         regulator_resolve_coupling(rdev);
5168         mutex_unlock(&regulator_list_mutex);
5169
5170         /* try to resolve regulators supply since a new one was registered */
5171         class_for_each_device(&regulator_class, NULL, NULL,
5172                               regulator_register_resolve_supply);
5173         kfree(config);
5174         return rdev;
5175
5176 unset_supplies:
5177         mutex_lock(&regulator_list_mutex);
5178         unset_regulator_supplies(rdev);
5179         regulator_remove_coupling(rdev);
5180         mutex_unlock(&regulator_list_mutex);
5181 wash:
5182         kfree(rdev->constraints);
5183         mutex_lock(&regulator_list_mutex);
5184         regulator_ena_gpio_free(rdev);
5185         mutex_unlock(&regulator_list_mutex);
5186 clean:
5187         if (dangling_of_gpiod)
5188                 gpiod_put(config->ena_gpiod);
5189         kfree(rdev);
5190         kfree(config);
5191 rinse:
5192         if (dangling_cfg_gpiod)
5193                 gpiod_put(cfg->ena_gpiod);
5194         return ERR_PTR(ret);
5195 }
5196 EXPORT_SYMBOL_GPL(regulator_register);
5197
5198 /**
5199  * regulator_unregister - unregister regulator
5200  * @rdev: regulator to unregister
5201  *
5202  * Called by regulator drivers to unregister a regulator.
5203  */
5204 void regulator_unregister(struct regulator_dev *rdev)
5205 {
5206         if (rdev == NULL)
5207                 return;
5208
5209         if (rdev->supply) {
5210                 while (rdev->use_count--)
5211                         regulator_disable(rdev->supply);
5212                 regulator_put(rdev->supply);
5213         }
5214
5215         flush_work(&rdev->disable_work.work);
5216
5217         mutex_lock(&regulator_list_mutex);
5218
5219         debugfs_remove_recursive(rdev->debugfs);
5220         WARN_ON(rdev->open_count);
5221         regulator_remove_coupling(rdev);
5222         unset_regulator_supplies(rdev);
5223         list_del(&rdev->list);
5224         regulator_ena_gpio_free(rdev);
5225         device_unregister(&rdev->dev);
5226
5227         mutex_unlock(&regulator_list_mutex);
5228 }
5229 EXPORT_SYMBOL_GPL(regulator_unregister);
5230
5231 #ifdef CONFIG_SUSPEND
5232 /**
5233  * regulator_suspend - prepare regulators for system wide suspend
5234  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5235  *
5236  * Configure each regulator with it's suspend operating parameters for state.
5237  */
5238 static int regulator_suspend(struct device *dev)
5239 {
5240         struct regulator_dev *rdev = dev_to_rdev(dev);
5241         suspend_state_t state = pm_suspend_target_state;
5242         int ret;
5243
5244         regulator_lock(rdev);
5245         ret = suspend_set_state(rdev, state);
5246         regulator_unlock(rdev);
5247
5248         return ret;
5249 }
5250
5251 static int regulator_resume(struct device *dev)
5252 {
5253         suspend_state_t state = pm_suspend_target_state;
5254         struct regulator_dev *rdev = dev_to_rdev(dev);
5255         struct regulator_state *rstate;
5256         int ret = 0;
5257
5258         rstate = regulator_get_suspend_state(rdev, state);
5259         if (rstate == NULL)
5260                 return 0;
5261
5262         regulator_lock(rdev);
5263
5264         if (rdev->desc->ops->resume &&
5265             (rstate->enabled == ENABLE_IN_SUSPEND ||
5266              rstate->enabled == DISABLE_IN_SUSPEND))
5267                 ret = rdev->desc->ops->resume(rdev);
5268
5269         regulator_unlock(rdev);
5270
5271         return ret;
5272 }
5273 #else /* !CONFIG_SUSPEND */
5274
5275 #define regulator_suspend       NULL
5276 #define regulator_resume        NULL
5277
5278 #endif /* !CONFIG_SUSPEND */
5279
5280 #ifdef CONFIG_PM
5281 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5282         .suspend        = regulator_suspend,
5283         .resume         = regulator_resume,
5284 };
5285 #endif
5286
5287 struct class regulator_class = {
5288         .name = "regulator",
5289         .dev_release = regulator_dev_release,
5290         .dev_groups = regulator_dev_groups,
5291 #ifdef CONFIG_PM
5292         .pm = &regulator_pm_ops,
5293 #endif
5294 };
5295 /**
5296  * regulator_has_full_constraints - the system has fully specified constraints
5297  *
5298  * Calling this function will cause the regulator API to disable all
5299  * regulators which have a zero use count and don't have an always_on
5300  * constraint in a late_initcall.
5301  *
5302  * The intention is that this will become the default behaviour in a
5303  * future kernel release so users are encouraged to use this facility
5304  * now.
5305  */
5306 void regulator_has_full_constraints(void)
5307 {
5308         has_full_constraints = 1;
5309 }
5310 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5311
5312 /**
5313  * rdev_get_drvdata - get rdev regulator driver data
5314  * @rdev: regulator
5315  *
5316  * Get rdev regulator driver private data. This call can be used in the
5317  * regulator driver context.
5318  */
5319 void *rdev_get_drvdata(struct regulator_dev *rdev)
5320 {
5321         return rdev->reg_data;
5322 }
5323 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5324
5325 /**
5326  * regulator_get_drvdata - get regulator driver data
5327  * @regulator: regulator
5328  *
5329  * Get regulator driver private data. This call can be used in the consumer
5330  * driver context when non API regulator specific functions need to be called.
5331  */
5332 void *regulator_get_drvdata(struct regulator *regulator)
5333 {
5334         return regulator->rdev->reg_data;
5335 }
5336 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5337
5338 /**
5339  * regulator_set_drvdata - set regulator driver data
5340  * @regulator: regulator
5341  * @data: data
5342  */
5343 void regulator_set_drvdata(struct regulator *regulator, void *data)
5344 {
5345         regulator->rdev->reg_data = data;
5346 }
5347 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5348
5349 /**
5350  * regulator_get_id - get regulator ID
5351  * @rdev: regulator
5352  */
5353 int rdev_get_id(struct regulator_dev *rdev)
5354 {
5355         return rdev->desc->id;
5356 }
5357 EXPORT_SYMBOL_GPL(rdev_get_id);
5358
5359 struct device *rdev_get_dev(struct regulator_dev *rdev)
5360 {
5361         return &rdev->dev;
5362 }
5363 EXPORT_SYMBOL_GPL(rdev_get_dev);
5364
5365 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5366 {
5367         return rdev->regmap;
5368 }
5369 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5370
5371 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5372 {
5373         return reg_init_data->driver_data;
5374 }
5375 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5376
5377 #ifdef CONFIG_DEBUG_FS
5378 static int supply_map_show(struct seq_file *sf, void *data)
5379 {
5380         struct regulator_map *map;
5381
5382         list_for_each_entry(map, &regulator_map_list, list) {
5383                 seq_printf(sf, "%s -> %s.%s\n",
5384                                 rdev_get_name(map->regulator), map->dev_name,
5385                                 map->supply);
5386         }
5387
5388         return 0;
5389 }
5390 DEFINE_SHOW_ATTRIBUTE(supply_map);
5391
5392 struct summary_data {
5393         struct seq_file *s;
5394         struct regulator_dev *parent;
5395         int level;
5396 };
5397
5398 static void regulator_summary_show_subtree(struct seq_file *s,
5399                                            struct regulator_dev *rdev,
5400                                            int level);
5401
5402 static int regulator_summary_show_children(struct device *dev, void *data)
5403 {
5404         struct regulator_dev *rdev = dev_to_rdev(dev);
5405         struct summary_data *summary_data = data;
5406
5407         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5408                 regulator_summary_show_subtree(summary_data->s, rdev,
5409                                                summary_data->level + 1);
5410
5411         return 0;
5412 }
5413
5414 static void regulator_summary_show_subtree(struct seq_file *s,
5415                                            struct regulator_dev *rdev,
5416                                            int level)
5417 {
5418         struct regulation_constraints *c;
5419         struct regulator *consumer;
5420         struct summary_data summary_data;
5421         unsigned int opmode;
5422
5423         if (!rdev)
5424                 return;
5425
5426         opmode = _regulator_get_mode_unlocked(rdev);
5427         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5428                    level * 3 + 1, "",
5429                    30 - level * 3, rdev_get_name(rdev),
5430                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5431                    regulator_opmode_to_str(opmode));
5432
5433         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5434         seq_printf(s, "%5dmA ",
5435                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5436
5437         c = rdev->constraints;
5438         if (c) {
5439                 switch (rdev->desc->type) {
5440                 case REGULATOR_VOLTAGE:
5441                         seq_printf(s, "%5dmV %5dmV ",
5442                                    c->min_uV / 1000, c->max_uV / 1000);
5443                         break;
5444                 case REGULATOR_CURRENT:
5445                         seq_printf(s, "%5dmA %5dmA ",
5446                                    c->min_uA / 1000, c->max_uA / 1000);
5447                         break;
5448                 }
5449         }
5450
5451         seq_puts(s, "\n");
5452
5453         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5454                 if (consumer->dev && consumer->dev->class == &regulator_class)
5455                         continue;
5456
5457                 seq_printf(s, "%*s%-*s ",
5458                            (level + 1) * 3 + 1, "",
5459                            30 - (level + 1) * 3,
5460                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5461
5462                 switch (rdev->desc->type) {
5463                 case REGULATOR_VOLTAGE:
5464                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5465                                    consumer->enable_count,
5466                                    consumer->uA_load / 1000,
5467                                    consumer->uA_load && !consumer->enable_count ?
5468                                    '*' : ' ',
5469                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5470                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5471                         break;
5472                 case REGULATOR_CURRENT:
5473                         break;
5474                 }
5475
5476                 seq_puts(s, "\n");
5477         }
5478
5479         summary_data.s = s;
5480         summary_data.level = level;
5481         summary_data.parent = rdev;
5482
5483         class_for_each_device(&regulator_class, NULL, &summary_data,
5484                               regulator_summary_show_children);
5485 }
5486
5487 struct summary_lock_data {
5488         struct ww_acquire_ctx *ww_ctx;
5489         struct regulator_dev **new_contended_rdev;
5490         struct regulator_dev **old_contended_rdev;
5491 };
5492
5493 static int regulator_summary_lock_one(struct device *dev, void *data)
5494 {
5495         struct regulator_dev *rdev = dev_to_rdev(dev);
5496         struct summary_lock_data *lock_data = data;
5497         int ret = 0;
5498
5499         if (rdev != *lock_data->old_contended_rdev) {
5500                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5501
5502                 if (ret == -EDEADLK)
5503                         *lock_data->new_contended_rdev = rdev;
5504                 else
5505                         WARN_ON_ONCE(ret);
5506         } else {
5507                 *lock_data->old_contended_rdev = NULL;
5508         }
5509
5510         return ret;
5511 }
5512
5513 static int regulator_summary_unlock_one(struct device *dev, void *data)
5514 {
5515         struct regulator_dev *rdev = dev_to_rdev(dev);
5516         struct summary_lock_data *lock_data = data;
5517
5518         if (lock_data) {
5519                 if (rdev == *lock_data->new_contended_rdev)
5520                         return -EDEADLK;
5521         }
5522
5523         regulator_unlock(rdev);
5524
5525         return 0;
5526 }
5527
5528 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5529                                       struct regulator_dev **new_contended_rdev,
5530                                       struct regulator_dev **old_contended_rdev)
5531 {
5532         struct summary_lock_data lock_data;
5533         int ret;
5534
5535         lock_data.ww_ctx = ww_ctx;
5536         lock_data.new_contended_rdev = new_contended_rdev;
5537         lock_data.old_contended_rdev = old_contended_rdev;
5538
5539         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5540                                     regulator_summary_lock_one);
5541         if (ret)
5542                 class_for_each_device(&regulator_class, NULL, &lock_data,
5543                                       regulator_summary_unlock_one);
5544
5545         return ret;
5546 }
5547
5548 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5549 {
5550         struct regulator_dev *new_contended_rdev = NULL;
5551         struct regulator_dev *old_contended_rdev = NULL;
5552         int err;
5553
5554         mutex_lock(&regulator_list_mutex);
5555
5556         ww_acquire_init(ww_ctx, &regulator_ww_class);
5557
5558         do {
5559                 if (new_contended_rdev) {
5560                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5561                         old_contended_rdev = new_contended_rdev;
5562                         old_contended_rdev->ref_cnt++;
5563                 }
5564
5565                 err = regulator_summary_lock_all(ww_ctx,
5566                                                  &new_contended_rdev,
5567                                                  &old_contended_rdev);
5568
5569                 if (old_contended_rdev)
5570                         regulator_unlock(old_contended_rdev);
5571
5572         } while (err == -EDEADLK);
5573
5574         ww_acquire_done(ww_ctx);
5575 }
5576
5577 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5578 {
5579         class_for_each_device(&regulator_class, NULL, NULL,
5580                               regulator_summary_unlock_one);
5581         ww_acquire_fini(ww_ctx);
5582
5583         mutex_unlock(&regulator_list_mutex);
5584 }
5585
5586 static int regulator_summary_show_roots(struct device *dev, void *data)
5587 {
5588         struct regulator_dev *rdev = dev_to_rdev(dev);
5589         struct seq_file *s = data;
5590
5591         if (!rdev->supply)
5592                 regulator_summary_show_subtree(s, rdev, 0);
5593
5594         return 0;
5595 }
5596
5597 static int regulator_summary_show(struct seq_file *s, void *data)
5598 {
5599         struct ww_acquire_ctx ww_ctx;
5600
5601         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5602         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5603
5604         regulator_summary_lock(&ww_ctx);
5605
5606         class_for_each_device(&regulator_class, NULL, s,
5607                               regulator_summary_show_roots);
5608
5609         regulator_summary_unlock(&ww_ctx);
5610
5611         return 0;
5612 }
5613 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5614 #endif /* CONFIG_DEBUG_FS */
5615
5616 static int __init regulator_init(void)
5617 {
5618         int ret;
5619
5620         ret = class_register(&regulator_class);
5621
5622         debugfs_root = debugfs_create_dir("regulator", NULL);
5623         if (!debugfs_root)
5624                 pr_warn("regulator: Failed to create debugfs directory\n");
5625
5626 #ifdef CONFIG_DEBUG_FS
5627         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5628                             &supply_map_fops);
5629
5630         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5631                             NULL, &regulator_summary_fops);
5632 #endif
5633         regulator_dummy_init();
5634
5635         regulator_coupler_register(&generic_regulator_coupler);
5636
5637         return ret;
5638 }
5639
5640 /* init early to allow our consumers to complete system booting */
5641 core_initcall(regulator_init);
5642
5643 static int __init regulator_late_cleanup(struct device *dev, void *data)
5644 {
5645         struct regulator_dev *rdev = dev_to_rdev(dev);
5646         const struct regulator_ops *ops = rdev->desc->ops;
5647         struct regulation_constraints *c = rdev->constraints;
5648         int enabled, ret;
5649
5650         if (c && c->always_on)
5651                 return 0;
5652
5653         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5654                 return 0;
5655
5656         regulator_lock(rdev);
5657
5658         if (rdev->use_count)
5659                 goto unlock;
5660
5661         /* If we can't read the status assume it's on. */
5662         if (ops->is_enabled)
5663                 enabled = ops->is_enabled(rdev);
5664         else
5665                 enabled = 1;
5666
5667         if (!enabled)
5668                 goto unlock;
5669
5670         if (have_full_constraints()) {
5671                 /* We log since this may kill the system if it goes
5672                  * wrong. */
5673                 rdev_info(rdev, "disabling\n");
5674                 ret = _regulator_do_disable(rdev);
5675                 if (ret != 0)
5676                         rdev_err(rdev, "couldn't disable: %d\n", ret);
5677         } else {
5678                 /* The intention is that in future we will
5679                  * assume that full constraints are provided
5680                  * so warn even if we aren't going to do
5681                  * anything here.
5682                  */
5683                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5684         }
5685
5686 unlock:
5687         regulator_unlock(rdev);
5688
5689         return 0;
5690 }
5691
5692 static int __init regulator_init_complete(void)
5693 {
5694         /*
5695          * Since DT doesn't provide an idiomatic mechanism for
5696          * enabling full constraints and since it's much more natural
5697          * with DT to provide them just assume that a DT enabled
5698          * system has full constraints.
5699          */
5700         if (of_have_populated_dt())
5701                 has_full_constraints = true;
5702
5703         /*
5704          * Regulators may had failed to resolve their input supplies
5705          * when were registered, either because the input supply was
5706          * not registered yet or because its parent device was not
5707          * bound yet. So attempt to resolve the input supplies for
5708          * pending regulators before trying to disable unused ones.
5709          */
5710         class_for_each_device(&regulator_class, NULL, NULL,
5711                               regulator_register_resolve_supply);
5712
5713         /* If we have a full configuration then disable any regulators
5714          * we have permission to change the status for and which are
5715          * not in use or always_on.  This is effectively the default
5716          * for DT and ACPI as they have full constraints.
5717          */
5718         class_for_each_device(&regulator_class, NULL, NULL,
5719                               regulator_late_cleanup);
5720
5721         return 0;
5722 }
5723 late_initcall_sync(regulator_init_complete);