Merge remote-tracking branches 'regulator/topic/abb', 'regulator/topic/act8865',...
[linux-2.6-block.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         if (!rdev->constraints)
812                 return -EINVAL;
813
814         switch (state) {
815         case PM_SUSPEND_STANDBY:
816                 return suspend_set_state(rdev,
817                         &rdev->constraints->state_standby);
818         case PM_SUSPEND_MEM:
819                 return suspend_set_state(rdev,
820                         &rdev->constraints->state_mem);
821         case PM_SUSPEND_MAX:
822                 return suspend_set_state(rdev,
823                         &rdev->constraints->state_disk);
824         default:
825                 return -EINVAL;
826         }
827 }
828
829 static void print_constraints(struct regulator_dev *rdev)
830 {
831         struct regulation_constraints *constraints = rdev->constraints;
832         char buf[160] = "";
833         size_t len = sizeof(buf) - 1;
834         int count = 0;
835         int ret;
836
837         if (constraints->min_uV && constraints->max_uV) {
838                 if (constraints->min_uV == constraints->max_uV)
839                         count += scnprintf(buf + count, len - count, "%d mV ",
840                                            constraints->min_uV / 1000);
841                 else
842                         count += scnprintf(buf + count, len - count,
843                                            "%d <--> %d mV ",
844                                            constraints->min_uV / 1000,
845                                            constraints->max_uV / 1000);
846         }
847
848         if (!constraints->min_uV ||
849             constraints->min_uV != constraints->max_uV) {
850                 ret = _regulator_get_voltage(rdev);
851                 if (ret > 0)
852                         count += scnprintf(buf + count, len - count,
853                                            "at %d mV ", ret / 1000);
854         }
855
856         if (constraints->uV_offset)
857                 count += scnprintf(buf + count, len - count, "%dmV offset ",
858                                    constraints->uV_offset / 1000);
859
860         if (constraints->min_uA && constraints->max_uA) {
861                 if (constraints->min_uA == constraints->max_uA)
862                         count += scnprintf(buf + count, len - count, "%d mA ",
863                                            constraints->min_uA / 1000);
864                 else
865                         count += scnprintf(buf + count, len - count,
866                                            "%d <--> %d mA ",
867                                            constraints->min_uA / 1000,
868                                            constraints->max_uA / 1000);
869         }
870
871         if (!constraints->min_uA ||
872             constraints->min_uA != constraints->max_uA) {
873                 ret = _regulator_get_current_limit(rdev);
874                 if (ret > 0)
875                         count += scnprintf(buf + count, len - count,
876                                            "at %d mA ", ret / 1000);
877         }
878
879         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
880                 count += scnprintf(buf + count, len - count, "fast ");
881         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
882                 count += scnprintf(buf + count, len - count, "normal ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
884                 count += scnprintf(buf + count, len - count, "idle ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
886                 count += scnprintf(buf + count, len - count, "standby");
887
888         if (!count)
889                 scnprintf(buf, len, "no parameters");
890
891         rdev_dbg(rdev, "%s\n", buf);
892
893         if ((constraints->min_uV != constraints->max_uV) &&
894             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
895                 rdev_warn(rdev,
896                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
897 }
898
899 static int machine_constraints_voltage(struct regulator_dev *rdev,
900         struct regulation_constraints *constraints)
901 {
902         const struct regulator_ops *ops = rdev->desc->ops;
903         int ret;
904
905         /* do we need to apply the constraint voltage */
906         if (rdev->constraints->apply_uV &&
907             rdev->constraints->min_uV && rdev->constraints->max_uV) {
908                 int target_min, target_max;
909                 int current_uV = _regulator_get_voltage(rdev);
910                 if (current_uV < 0) {
911                         rdev_err(rdev,
912                                  "failed to get the current voltage(%d)\n",
913                                  current_uV);
914                         return current_uV;
915                 }
916
917                 /*
918                  * If we're below the minimum voltage move up to the
919                  * minimum voltage, if we're above the maximum voltage
920                  * then move down to the maximum.
921                  */
922                 target_min = current_uV;
923                 target_max = current_uV;
924
925                 if (current_uV < rdev->constraints->min_uV) {
926                         target_min = rdev->constraints->min_uV;
927                         target_max = rdev->constraints->min_uV;
928                 }
929
930                 if (current_uV > rdev->constraints->max_uV) {
931                         target_min = rdev->constraints->max_uV;
932                         target_max = rdev->constraints->max_uV;
933                 }
934
935                 if (target_min != current_uV || target_max != current_uV) {
936                         ret = _regulator_do_set_voltage(
937                                 rdev, target_min, target_max);
938                         if (ret < 0) {
939                                 rdev_err(rdev,
940                                         "failed to apply %d-%duV constraint(%d)\n",
941                                         target_min, target_max, ret);
942                                 return ret;
943                         }
944                 }
945         }
946
947         /* constrain machine-level voltage specs to fit
948          * the actual range supported by this regulator.
949          */
950         if (ops->list_voltage && rdev->desc->n_voltages) {
951                 int     count = rdev->desc->n_voltages;
952                 int     i;
953                 int     min_uV = INT_MAX;
954                 int     max_uV = INT_MIN;
955                 int     cmin = constraints->min_uV;
956                 int     cmax = constraints->max_uV;
957
958                 /* it's safe to autoconfigure fixed-voltage supplies
959                    and the constraints are used by list_voltage. */
960                 if (count == 1 && !cmin) {
961                         cmin = 1;
962                         cmax = INT_MAX;
963                         constraints->min_uV = cmin;
964                         constraints->max_uV = cmax;
965                 }
966
967                 /* voltage constraints are optional */
968                 if ((cmin == 0) && (cmax == 0))
969                         return 0;
970
971                 /* else require explicit machine-level constraints */
972                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
973                         rdev_err(rdev, "invalid voltage constraints\n");
974                         return -EINVAL;
975                 }
976
977                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
978                 for (i = 0; i < count; i++) {
979                         int     value;
980
981                         value = ops->list_voltage(rdev, i);
982                         if (value <= 0)
983                                 continue;
984
985                         /* maybe adjust [min_uV..max_uV] */
986                         if (value >= cmin && value < min_uV)
987                                 min_uV = value;
988                         if (value <= cmax && value > max_uV)
989                                 max_uV = value;
990                 }
991
992                 /* final: [min_uV..max_uV] valid iff constraints valid */
993                 if (max_uV < min_uV) {
994                         rdev_err(rdev,
995                                  "unsupportable voltage constraints %u-%uuV\n",
996                                  min_uV, max_uV);
997                         return -EINVAL;
998                 }
999
1000                 /* use regulator's subset of machine constraints */
1001                 if (constraints->min_uV < min_uV) {
1002                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1003                                  constraints->min_uV, min_uV);
1004                         constraints->min_uV = min_uV;
1005                 }
1006                 if (constraints->max_uV > max_uV) {
1007                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1008                                  constraints->max_uV, max_uV);
1009                         constraints->max_uV = max_uV;
1010                 }
1011         }
1012
1013         return 0;
1014 }
1015
1016 static int machine_constraints_current(struct regulator_dev *rdev,
1017         struct regulation_constraints *constraints)
1018 {
1019         const struct regulator_ops *ops = rdev->desc->ops;
1020         int ret;
1021
1022         if (!constraints->min_uA && !constraints->max_uA)
1023                 return 0;
1024
1025         if (constraints->min_uA > constraints->max_uA) {
1026                 rdev_err(rdev, "Invalid current constraints\n");
1027                 return -EINVAL;
1028         }
1029
1030         if (!ops->set_current_limit || !ops->get_current_limit) {
1031                 rdev_warn(rdev, "Operation of current configuration missing\n");
1032                 return 0;
1033         }
1034
1035         /* Set regulator current in constraints range */
1036         ret = ops->set_current_limit(rdev, constraints->min_uA,
1037                         constraints->max_uA);
1038         if (ret < 0) {
1039                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1040                 return ret;
1041         }
1042
1043         return 0;
1044 }
1045
1046 static int _regulator_do_enable(struct regulator_dev *rdev);
1047
1048 /**
1049  * set_machine_constraints - sets regulator constraints
1050  * @rdev: regulator source
1051  * @constraints: constraints to apply
1052  *
1053  * Allows platform initialisation code to define and constrain
1054  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1055  * Constraints *must* be set by platform code in order for some
1056  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1057  * set_mode.
1058  */
1059 static int set_machine_constraints(struct regulator_dev *rdev,
1060         const struct regulation_constraints *constraints)
1061 {
1062         int ret = 0;
1063         const struct regulator_ops *ops = rdev->desc->ops;
1064
1065         if (constraints)
1066                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1067                                             GFP_KERNEL);
1068         else
1069                 rdev->constraints = kzalloc(sizeof(*constraints),
1070                                             GFP_KERNEL);
1071         if (!rdev->constraints)
1072                 return -ENOMEM;
1073
1074         ret = machine_constraints_voltage(rdev, rdev->constraints);
1075         if (ret != 0)
1076                 return ret;
1077
1078         ret = machine_constraints_current(rdev, rdev->constraints);
1079         if (ret != 0)
1080                 return ret;
1081
1082         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1083                 ret = ops->set_input_current_limit(rdev,
1084                                                    rdev->constraints->ilim_uA);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set input limit\n");
1087                         return ret;
1088                 }
1089         }
1090
1091         /* do we need to setup our suspend state */
1092         if (rdev->constraints->initial_state) {
1093                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1094                 if (ret < 0) {
1095                         rdev_err(rdev, "failed to set suspend state\n");
1096                         return ret;
1097                 }
1098         }
1099
1100         if (rdev->constraints->initial_mode) {
1101                 if (!ops->set_mode) {
1102                         rdev_err(rdev, "no set_mode operation\n");
1103                         return -EINVAL;
1104                 }
1105
1106                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1107                 if (ret < 0) {
1108                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1109                         return ret;
1110                 }
1111         }
1112
1113         /* If the constraints say the regulator should be on at this point
1114          * and we have control then make sure it is enabled.
1115          */
1116         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1117                 ret = _regulator_do_enable(rdev);
1118                 if (ret < 0 && ret != -EINVAL) {
1119                         rdev_err(rdev, "failed to enable\n");
1120                         return ret;
1121                 }
1122         }
1123
1124         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1125                 && ops->set_ramp_delay) {
1126                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1127                 if (ret < 0) {
1128                         rdev_err(rdev, "failed to set ramp_delay\n");
1129                         return ret;
1130                 }
1131         }
1132
1133         if (rdev->constraints->pull_down && ops->set_pull_down) {
1134                 ret = ops->set_pull_down(rdev);
1135                 if (ret < 0) {
1136                         rdev_err(rdev, "failed to set pull down\n");
1137                         return ret;
1138                 }
1139         }
1140
1141         if (rdev->constraints->soft_start && ops->set_soft_start) {
1142                 ret = ops->set_soft_start(rdev);
1143                 if (ret < 0) {
1144                         rdev_err(rdev, "failed to set soft start\n");
1145                         return ret;
1146                 }
1147         }
1148
1149         if (rdev->constraints->over_current_protection
1150                 && ops->set_over_current_protection) {
1151                 ret = ops->set_over_current_protection(rdev);
1152                 if (ret < 0) {
1153                         rdev_err(rdev, "failed to set over current protection\n");
1154                         return ret;
1155                 }
1156         }
1157
1158         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1159                 bool ad_state = (rdev->constraints->active_discharge ==
1160                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1161
1162                 ret = ops->set_active_discharge(rdev, ad_state);
1163                 if (ret < 0) {
1164                         rdev_err(rdev, "failed to set active discharge\n");
1165                         return ret;
1166                 }
1167         }
1168
1169         print_constraints(rdev);
1170         return 0;
1171 }
1172
1173 /**
1174  * set_supply - set regulator supply regulator
1175  * @rdev: regulator name
1176  * @supply_rdev: supply regulator name
1177  *
1178  * Called by platform initialisation code to set the supply regulator for this
1179  * regulator. This ensures that a regulators supply will also be enabled by the
1180  * core if it's child is enabled.
1181  */
1182 static int set_supply(struct regulator_dev *rdev,
1183                       struct regulator_dev *supply_rdev)
1184 {
1185         int err;
1186
1187         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1188
1189         if (!try_module_get(supply_rdev->owner))
1190                 return -ENODEV;
1191
1192         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1193         if (rdev->supply == NULL) {
1194                 err = -ENOMEM;
1195                 return err;
1196         }
1197         supply_rdev->open_count++;
1198
1199         return 0;
1200 }
1201
1202 /**
1203  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1204  * @rdev:         regulator source
1205  * @consumer_dev_name: dev_name() string for device supply applies to
1206  * @supply:       symbolic name for supply
1207  *
1208  * Allows platform initialisation code to map physical regulator
1209  * sources to symbolic names for supplies for use by devices.  Devices
1210  * should use these symbolic names to request regulators, avoiding the
1211  * need to provide board-specific regulator names as platform data.
1212  */
1213 static int set_consumer_device_supply(struct regulator_dev *rdev,
1214                                       const char *consumer_dev_name,
1215                                       const char *supply)
1216 {
1217         struct regulator_map *node;
1218         int has_dev;
1219
1220         if (supply == NULL)
1221                 return -EINVAL;
1222
1223         if (consumer_dev_name != NULL)
1224                 has_dev = 1;
1225         else
1226                 has_dev = 0;
1227
1228         list_for_each_entry(node, &regulator_map_list, list) {
1229                 if (node->dev_name && consumer_dev_name) {
1230                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1231                                 continue;
1232                 } else if (node->dev_name || consumer_dev_name) {
1233                         continue;
1234                 }
1235
1236                 if (strcmp(node->supply, supply) != 0)
1237                         continue;
1238
1239                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1240                          consumer_dev_name,
1241                          dev_name(&node->regulator->dev),
1242                          node->regulator->desc->name,
1243                          supply,
1244                          dev_name(&rdev->dev), rdev_get_name(rdev));
1245                 return -EBUSY;
1246         }
1247
1248         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1249         if (node == NULL)
1250                 return -ENOMEM;
1251
1252         node->regulator = rdev;
1253         node->supply = supply;
1254
1255         if (has_dev) {
1256                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1257                 if (node->dev_name == NULL) {
1258                         kfree(node);
1259                         return -ENOMEM;
1260                 }
1261         }
1262
1263         list_add(&node->list, &regulator_map_list);
1264         return 0;
1265 }
1266
1267 static void unset_regulator_supplies(struct regulator_dev *rdev)
1268 {
1269         struct regulator_map *node, *n;
1270
1271         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1272                 if (rdev == node->regulator) {
1273                         list_del(&node->list);
1274                         kfree(node->dev_name);
1275                         kfree(node);
1276                 }
1277         }
1278 }
1279
1280 #define REG_STR_SIZE    64
1281
1282 static struct regulator *create_regulator(struct regulator_dev *rdev,
1283                                           struct device *dev,
1284                                           const char *supply_name)
1285 {
1286         struct regulator *regulator;
1287         char buf[REG_STR_SIZE];
1288         int err, size;
1289
1290         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1291         if (regulator == NULL)
1292                 return NULL;
1293
1294         mutex_lock(&rdev->mutex);
1295         regulator->rdev = rdev;
1296         list_add(&regulator->list, &rdev->consumer_list);
1297
1298         if (dev) {
1299                 regulator->dev = dev;
1300
1301                 /* Add a link to the device sysfs entry */
1302                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1303                                  dev->kobj.name, supply_name);
1304                 if (size >= REG_STR_SIZE)
1305                         goto overflow_err;
1306
1307                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1308                 if (regulator->supply_name == NULL)
1309                         goto overflow_err;
1310
1311                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1312                                         buf);
1313                 if (err) {
1314                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1315                                   dev->kobj.name, err);
1316                         /* non-fatal */
1317                 }
1318         } else {
1319                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1320                 if (regulator->supply_name == NULL)
1321                         goto overflow_err;
1322         }
1323
1324         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1325                                                 rdev->debugfs);
1326         if (!regulator->debugfs) {
1327                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1328         } else {
1329                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1330                                    &regulator->uA_load);
1331                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1332                                    &regulator->min_uV);
1333                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1334                                    &regulator->max_uV);
1335         }
1336
1337         /*
1338          * Check now if the regulator is an always on regulator - if
1339          * it is then we don't need to do nearly so much work for
1340          * enable/disable calls.
1341          */
1342         if (!_regulator_can_change_status(rdev) &&
1343             _regulator_is_enabled(rdev))
1344                 regulator->always_on = true;
1345
1346         mutex_unlock(&rdev->mutex);
1347         return regulator;
1348 overflow_err:
1349         list_del(&regulator->list);
1350         kfree(regulator);
1351         mutex_unlock(&rdev->mutex);
1352         return NULL;
1353 }
1354
1355 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1356 {
1357         if (rdev->constraints && rdev->constraints->enable_time)
1358                 return rdev->constraints->enable_time;
1359         if (!rdev->desc->ops->enable_time)
1360                 return rdev->desc->enable_time;
1361         return rdev->desc->ops->enable_time(rdev);
1362 }
1363
1364 static struct regulator_supply_alias *regulator_find_supply_alias(
1365                 struct device *dev, const char *supply)
1366 {
1367         struct regulator_supply_alias *map;
1368
1369         list_for_each_entry(map, &regulator_supply_alias_list, list)
1370                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1371                         return map;
1372
1373         return NULL;
1374 }
1375
1376 static void regulator_supply_alias(struct device **dev, const char **supply)
1377 {
1378         struct regulator_supply_alias *map;
1379
1380         map = regulator_find_supply_alias(*dev, *supply);
1381         if (map) {
1382                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1383                                 *supply, map->alias_supply,
1384                                 dev_name(map->alias_dev));
1385                 *dev = map->alias_dev;
1386                 *supply = map->alias_supply;
1387         }
1388 }
1389
1390 static int of_node_match(struct device *dev, const void *data)
1391 {
1392         return dev->of_node == data;
1393 }
1394
1395 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1396 {
1397         struct device *dev;
1398
1399         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1400
1401         return dev ? dev_to_rdev(dev) : NULL;
1402 }
1403
1404 static int regulator_match(struct device *dev, const void *data)
1405 {
1406         struct regulator_dev *r = dev_to_rdev(dev);
1407
1408         return strcmp(rdev_get_name(r), data) == 0;
1409 }
1410
1411 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1412 {
1413         struct device *dev;
1414
1415         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1416
1417         return dev ? dev_to_rdev(dev) : NULL;
1418 }
1419
1420 /**
1421  * regulator_dev_lookup - lookup a regulator device.
1422  * @dev: device for regulator "consumer".
1423  * @supply: Supply name or regulator ID.
1424  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1425  * lookup could succeed in the future.
1426  *
1427  * If successful, returns a struct regulator_dev that corresponds to the name
1428  * @supply and with the embedded struct device refcount incremented by one,
1429  * or NULL on failure. The refcount must be dropped by calling put_device().
1430  */
1431 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1432                                                   const char *supply,
1433                                                   int *ret)
1434 {
1435         struct regulator_dev *r;
1436         struct device_node *node;
1437         struct regulator_map *map;
1438         const char *devname = NULL;
1439
1440         regulator_supply_alias(&dev, &supply);
1441
1442         /* first do a dt based lookup */
1443         if (dev && dev->of_node) {
1444                 node = of_get_regulator(dev, supply);
1445                 if (node) {
1446                         r = of_find_regulator_by_node(node);
1447                         if (r)
1448                                 return r;
1449                         *ret = -EPROBE_DEFER;
1450                         return NULL;
1451                 } else {
1452                         /*
1453                          * If we couldn't even get the node then it's
1454                          * not just that the device didn't register
1455                          * yet, there's no node and we'll never
1456                          * succeed.
1457                          */
1458                         *ret = -ENODEV;
1459                 }
1460         }
1461
1462         /* if not found, try doing it non-dt way */
1463         if (dev)
1464                 devname = dev_name(dev);
1465
1466         r = regulator_lookup_by_name(supply);
1467         if (r)
1468                 return r;
1469
1470         mutex_lock(&regulator_list_mutex);
1471         list_for_each_entry(map, &regulator_map_list, list) {
1472                 /* If the mapping has a device set up it must match */
1473                 if (map->dev_name &&
1474                     (!devname || strcmp(map->dev_name, devname)))
1475                         continue;
1476
1477                 if (strcmp(map->supply, supply) == 0 &&
1478                     get_device(&map->regulator->dev)) {
1479                         mutex_unlock(&regulator_list_mutex);
1480                         return map->regulator;
1481                 }
1482         }
1483         mutex_unlock(&regulator_list_mutex);
1484
1485         return NULL;
1486 }
1487
1488 static int regulator_resolve_supply(struct regulator_dev *rdev)
1489 {
1490         struct regulator_dev *r;
1491         struct device *dev = rdev->dev.parent;
1492         int ret;
1493
1494         /* No supply to resovle? */
1495         if (!rdev->supply_name)
1496                 return 0;
1497
1498         /* Supply already resolved? */
1499         if (rdev->supply)
1500                 return 0;
1501
1502         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1503         if (!r) {
1504                 if (ret == -ENODEV) {
1505                         /*
1506                          * No supply was specified for this regulator and
1507                          * there will never be one.
1508                          */
1509                         return 0;
1510                 }
1511
1512                 /* Did the lookup explicitly defer for us? */
1513                 if (ret == -EPROBE_DEFER)
1514                         return ret;
1515
1516                 if (have_full_constraints()) {
1517                         r = dummy_regulator_rdev;
1518                         get_device(&r->dev);
1519                 } else {
1520                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1521                                 rdev->supply_name, rdev->desc->name);
1522                         return -EPROBE_DEFER;
1523                 }
1524         }
1525
1526         /* Recursively resolve the supply of the supply */
1527         ret = regulator_resolve_supply(r);
1528         if (ret < 0) {
1529                 put_device(&r->dev);
1530                 return ret;
1531         }
1532
1533         ret = set_supply(rdev, r);
1534         if (ret < 0) {
1535                 put_device(&r->dev);
1536                 return ret;
1537         }
1538
1539         /* Cascade always-on state to supply */
1540         if (_regulator_is_enabled(rdev)) {
1541                 ret = regulator_enable(rdev->supply);
1542                 if (ret < 0) {
1543                         _regulator_put(rdev->supply);
1544                         rdev->supply = NULL;
1545                         return ret;
1546                 }
1547         }
1548
1549         return 0;
1550 }
1551
1552 /* Internal regulator request function */
1553 static struct regulator *_regulator_get(struct device *dev, const char *id,
1554                                         bool exclusive, bool allow_dummy)
1555 {
1556         struct regulator_dev *rdev;
1557         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1558         const char *devname = NULL;
1559         int ret;
1560
1561         if (id == NULL) {
1562                 pr_err("get() with no identifier\n");
1563                 return ERR_PTR(-EINVAL);
1564         }
1565
1566         if (dev)
1567                 devname = dev_name(dev);
1568
1569         if (have_full_constraints())
1570                 ret = -ENODEV;
1571         else
1572                 ret = -EPROBE_DEFER;
1573
1574         rdev = regulator_dev_lookup(dev, id, &ret);
1575         if (rdev)
1576                 goto found;
1577
1578         regulator = ERR_PTR(ret);
1579
1580         /*
1581          * If we have return value from dev_lookup fail, we do not expect to
1582          * succeed, so, quit with appropriate error value
1583          */
1584         if (ret && ret != -ENODEV)
1585                 return regulator;
1586
1587         if (!devname)
1588                 devname = "deviceless";
1589
1590         /*
1591          * Assume that a regulator is physically present and enabled
1592          * even if it isn't hooked up and just provide a dummy.
1593          */
1594         if (have_full_constraints() && allow_dummy) {
1595                 pr_warn("%s supply %s not found, using dummy regulator\n",
1596                         devname, id);
1597
1598                 rdev = dummy_regulator_rdev;
1599                 get_device(&rdev->dev);
1600                 goto found;
1601         /* Don't log an error when called from regulator_get_optional() */
1602         } else if (!have_full_constraints() || exclusive) {
1603                 dev_warn(dev, "dummy supplies not allowed\n");
1604         }
1605
1606         return regulator;
1607
1608 found:
1609         if (rdev->exclusive) {
1610                 regulator = ERR_PTR(-EPERM);
1611                 put_device(&rdev->dev);
1612                 return regulator;
1613         }
1614
1615         if (exclusive && rdev->open_count) {
1616                 regulator = ERR_PTR(-EBUSY);
1617                 put_device(&rdev->dev);
1618                 return regulator;
1619         }
1620
1621         ret = regulator_resolve_supply(rdev);
1622         if (ret < 0) {
1623                 regulator = ERR_PTR(ret);
1624                 put_device(&rdev->dev);
1625                 return regulator;
1626         }
1627
1628         if (!try_module_get(rdev->owner)) {
1629                 put_device(&rdev->dev);
1630                 return regulator;
1631         }
1632
1633         regulator = create_regulator(rdev, dev, id);
1634         if (regulator == NULL) {
1635                 regulator = ERR_PTR(-ENOMEM);
1636                 put_device(&rdev->dev);
1637                 module_put(rdev->owner);
1638                 return regulator;
1639         }
1640
1641         rdev->open_count++;
1642         if (exclusive) {
1643                 rdev->exclusive = 1;
1644
1645                 ret = _regulator_is_enabled(rdev);
1646                 if (ret > 0)
1647                         rdev->use_count = 1;
1648                 else
1649                         rdev->use_count = 0;
1650         }
1651
1652         return regulator;
1653 }
1654
1655 /**
1656  * regulator_get - lookup and obtain a reference to a regulator.
1657  * @dev: device for regulator "consumer"
1658  * @id: Supply name or regulator ID.
1659  *
1660  * Returns a struct regulator corresponding to the regulator producer,
1661  * or IS_ERR() condition containing errno.
1662  *
1663  * Use of supply names configured via regulator_set_device_supply() is
1664  * strongly encouraged.  It is recommended that the supply name used
1665  * should match the name used for the supply and/or the relevant
1666  * device pins in the datasheet.
1667  */
1668 struct regulator *regulator_get(struct device *dev, const char *id)
1669 {
1670         return _regulator_get(dev, id, false, true);
1671 }
1672 EXPORT_SYMBOL_GPL(regulator_get);
1673
1674 /**
1675  * regulator_get_exclusive - obtain exclusive access to a regulator.
1676  * @dev: device for regulator "consumer"
1677  * @id: Supply name or regulator ID.
1678  *
1679  * Returns a struct regulator corresponding to the regulator producer,
1680  * or IS_ERR() condition containing errno.  Other consumers will be
1681  * unable to obtain this regulator while this reference is held and the
1682  * use count for the regulator will be initialised to reflect the current
1683  * state of the regulator.
1684  *
1685  * This is intended for use by consumers which cannot tolerate shared
1686  * use of the regulator such as those which need to force the
1687  * regulator off for correct operation of the hardware they are
1688  * controlling.
1689  *
1690  * Use of supply names configured via regulator_set_device_supply() is
1691  * strongly encouraged.  It is recommended that the supply name used
1692  * should match the name used for the supply and/or the relevant
1693  * device pins in the datasheet.
1694  */
1695 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1696 {
1697         return _regulator_get(dev, id, true, false);
1698 }
1699 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1700
1701 /**
1702  * regulator_get_optional - obtain optional access to a regulator.
1703  * @dev: device for regulator "consumer"
1704  * @id: Supply name or regulator ID.
1705  *
1706  * Returns a struct regulator corresponding to the regulator producer,
1707  * or IS_ERR() condition containing errno.
1708  *
1709  * This is intended for use by consumers for devices which can have
1710  * some supplies unconnected in normal use, such as some MMC devices.
1711  * It can allow the regulator core to provide stub supplies for other
1712  * supplies requested using normal regulator_get() calls without
1713  * disrupting the operation of drivers that can handle absent
1714  * supplies.
1715  *
1716  * Use of supply names configured via regulator_set_device_supply() is
1717  * strongly encouraged.  It is recommended that the supply name used
1718  * should match the name used for the supply and/or the relevant
1719  * device pins in the datasheet.
1720  */
1721 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1722 {
1723         return _regulator_get(dev, id, false, false);
1724 }
1725 EXPORT_SYMBOL_GPL(regulator_get_optional);
1726
1727 /* regulator_list_mutex lock held by regulator_put() */
1728 static void _regulator_put(struct regulator *regulator)
1729 {
1730         struct regulator_dev *rdev;
1731
1732         if (IS_ERR_OR_NULL(regulator))
1733                 return;
1734
1735         lockdep_assert_held_once(&regulator_list_mutex);
1736
1737         rdev = regulator->rdev;
1738
1739         debugfs_remove_recursive(regulator->debugfs);
1740
1741         /* remove any sysfs entries */
1742         if (regulator->dev)
1743                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1744         mutex_lock(&rdev->mutex);
1745         list_del(&regulator->list);
1746
1747         rdev->open_count--;
1748         rdev->exclusive = 0;
1749         put_device(&rdev->dev);
1750         mutex_unlock(&rdev->mutex);
1751
1752         kfree(regulator->supply_name);
1753         kfree(regulator);
1754
1755         module_put(rdev->owner);
1756 }
1757
1758 /**
1759  * regulator_put - "free" the regulator source
1760  * @regulator: regulator source
1761  *
1762  * Note: drivers must ensure that all regulator_enable calls made on this
1763  * regulator source are balanced by regulator_disable calls prior to calling
1764  * this function.
1765  */
1766 void regulator_put(struct regulator *regulator)
1767 {
1768         mutex_lock(&regulator_list_mutex);
1769         _regulator_put(regulator);
1770         mutex_unlock(&regulator_list_mutex);
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_put);
1773
1774 /**
1775  * regulator_register_supply_alias - Provide device alias for supply lookup
1776  *
1777  * @dev: device that will be given as the regulator "consumer"
1778  * @id: Supply name or regulator ID
1779  * @alias_dev: device that should be used to lookup the supply
1780  * @alias_id: Supply name or regulator ID that should be used to lookup the
1781  * supply
1782  *
1783  * All lookups for id on dev will instead be conducted for alias_id on
1784  * alias_dev.
1785  */
1786 int regulator_register_supply_alias(struct device *dev, const char *id,
1787                                     struct device *alias_dev,
1788                                     const char *alias_id)
1789 {
1790         struct regulator_supply_alias *map;
1791
1792         map = regulator_find_supply_alias(dev, id);
1793         if (map)
1794                 return -EEXIST;
1795
1796         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1797         if (!map)
1798                 return -ENOMEM;
1799
1800         map->src_dev = dev;
1801         map->src_supply = id;
1802         map->alias_dev = alias_dev;
1803         map->alias_supply = alias_id;
1804
1805         list_add(&map->list, &regulator_supply_alias_list);
1806
1807         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1808                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1809
1810         return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1813
1814 /**
1815  * regulator_unregister_supply_alias - Remove device alias
1816  *
1817  * @dev: device that will be given as the regulator "consumer"
1818  * @id: Supply name or regulator ID
1819  *
1820  * Remove a lookup alias if one exists for id on dev.
1821  */
1822 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1823 {
1824         struct regulator_supply_alias *map;
1825
1826         map = regulator_find_supply_alias(dev, id);
1827         if (map) {
1828                 list_del(&map->list);
1829                 kfree(map);
1830         }
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1833
1834 /**
1835  * regulator_bulk_register_supply_alias - register multiple aliases
1836  *
1837  * @dev: device that will be given as the regulator "consumer"
1838  * @id: List of supply names or regulator IDs
1839  * @alias_dev: device that should be used to lookup the supply
1840  * @alias_id: List of supply names or regulator IDs that should be used to
1841  * lookup the supply
1842  * @num_id: Number of aliases to register
1843  *
1844  * @return 0 on success, an errno on failure.
1845  *
1846  * This helper function allows drivers to register several supply
1847  * aliases in one operation.  If any of the aliases cannot be
1848  * registered any aliases that were registered will be removed
1849  * before returning to the caller.
1850  */
1851 int regulator_bulk_register_supply_alias(struct device *dev,
1852                                          const char *const *id,
1853                                          struct device *alias_dev,
1854                                          const char *const *alias_id,
1855                                          int num_id)
1856 {
1857         int i;
1858         int ret;
1859
1860         for (i = 0; i < num_id; ++i) {
1861                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1862                                                       alias_id[i]);
1863                 if (ret < 0)
1864                         goto err;
1865         }
1866
1867         return 0;
1868
1869 err:
1870         dev_err(dev,
1871                 "Failed to create supply alias %s,%s -> %s,%s\n",
1872                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1873
1874         while (--i >= 0)
1875                 regulator_unregister_supply_alias(dev, id[i]);
1876
1877         return ret;
1878 }
1879 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1880
1881 /**
1882  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1883  *
1884  * @dev: device that will be given as the regulator "consumer"
1885  * @id: List of supply names or regulator IDs
1886  * @num_id: Number of aliases to unregister
1887  *
1888  * This helper function allows drivers to unregister several supply
1889  * aliases in one operation.
1890  */
1891 void regulator_bulk_unregister_supply_alias(struct device *dev,
1892                                             const char *const *id,
1893                                             int num_id)
1894 {
1895         int i;
1896
1897         for (i = 0; i < num_id; ++i)
1898                 regulator_unregister_supply_alias(dev, id[i]);
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1901
1902
1903 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1904 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1905                                 const struct regulator_config *config)
1906 {
1907         struct regulator_enable_gpio *pin;
1908         struct gpio_desc *gpiod;
1909         int ret;
1910
1911         gpiod = gpio_to_desc(config->ena_gpio);
1912
1913         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1914                 if (pin->gpiod == gpiod) {
1915                         rdev_dbg(rdev, "GPIO %d is already used\n",
1916                                 config->ena_gpio);
1917                         goto update_ena_gpio_to_rdev;
1918                 }
1919         }
1920
1921         ret = gpio_request_one(config->ena_gpio,
1922                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1923                                 rdev_get_name(rdev));
1924         if (ret)
1925                 return ret;
1926
1927         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1928         if (pin == NULL) {
1929                 gpio_free(config->ena_gpio);
1930                 return -ENOMEM;
1931         }
1932
1933         pin->gpiod = gpiod;
1934         pin->ena_gpio_invert = config->ena_gpio_invert;
1935         list_add(&pin->list, &regulator_ena_gpio_list);
1936
1937 update_ena_gpio_to_rdev:
1938         pin->request_count++;
1939         rdev->ena_pin = pin;
1940         return 0;
1941 }
1942
1943 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1944 {
1945         struct regulator_enable_gpio *pin, *n;
1946
1947         if (!rdev->ena_pin)
1948                 return;
1949
1950         /* Free the GPIO only in case of no use */
1951         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1952                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1953                         if (pin->request_count <= 1) {
1954                                 pin->request_count = 0;
1955                                 gpiod_put(pin->gpiod);
1956                                 list_del(&pin->list);
1957                                 kfree(pin);
1958                                 rdev->ena_pin = NULL;
1959                                 return;
1960                         } else {
1961                                 pin->request_count--;
1962                         }
1963                 }
1964         }
1965 }
1966
1967 /**
1968  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1969  * @rdev: regulator_dev structure
1970  * @enable: enable GPIO at initial use?
1971  *
1972  * GPIO is enabled in case of initial use. (enable_count is 0)
1973  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1974  */
1975 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1976 {
1977         struct regulator_enable_gpio *pin = rdev->ena_pin;
1978
1979         if (!pin)
1980                 return -EINVAL;
1981
1982         if (enable) {
1983                 /* Enable GPIO at initial use */
1984                 if (pin->enable_count == 0)
1985                         gpiod_set_value_cansleep(pin->gpiod,
1986                                                  !pin->ena_gpio_invert);
1987
1988                 pin->enable_count++;
1989         } else {
1990                 if (pin->enable_count > 1) {
1991                         pin->enable_count--;
1992                         return 0;
1993                 }
1994
1995                 /* Disable GPIO if not used */
1996                 if (pin->enable_count <= 1) {
1997                         gpiod_set_value_cansleep(pin->gpiod,
1998                                                  pin->ena_gpio_invert);
1999                         pin->enable_count = 0;
2000                 }
2001         }
2002
2003         return 0;
2004 }
2005
2006 /**
2007  * _regulator_enable_delay - a delay helper function
2008  * @delay: time to delay in microseconds
2009  *
2010  * Delay for the requested amount of time as per the guidelines in:
2011  *
2012  *     Documentation/timers/timers-howto.txt
2013  *
2014  * The assumption here is that regulators will never be enabled in
2015  * atomic context and therefore sleeping functions can be used.
2016  */
2017 static void _regulator_enable_delay(unsigned int delay)
2018 {
2019         unsigned int ms = delay / 1000;
2020         unsigned int us = delay % 1000;
2021
2022         if (ms > 0) {
2023                 /*
2024                  * For small enough values, handle super-millisecond
2025                  * delays in the usleep_range() call below.
2026                  */
2027                 if (ms < 20)
2028                         us += ms * 1000;
2029                 else
2030                         msleep(ms);
2031         }
2032
2033         /*
2034          * Give the scheduler some room to coalesce with any other
2035          * wakeup sources. For delays shorter than 10 us, don't even
2036          * bother setting up high-resolution timers and just busy-
2037          * loop.
2038          */
2039         if (us >= 10)
2040                 usleep_range(us, us + 100);
2041         else
2042                 udelay(us);
2043 }
2044
2045 static int _regulator_do_enable(struct regulator_dev *rdev)
2046 {
2047         int ret, delay;
2048
2049         /* Query before enabling in case configuration dependent.  */
2050         ret = _regulator_get_enable_time(rdev);
2051         if (ret >= 0) {
2052                 delay = ret;
2053         } else {
2054                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2055                 delay = 0;
2056         }
2057
2058         trace_regulator_enable(rdev_get_name(rdev));
2059
2060         if (rdev->desc->off_on_delay) {
2061                 /* if needed, keep a distance of off_on_delay from last time
2062                  * this regulator was disabled.
2063                  */
2064                 unsigned long start_jiffy = jiffies;
2065                 unsigned long intended, max_delay, remaining;
2066
2067                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2068                 intended = rdev->last_off_jiffy + max_delay;
2069
2070                 if (time_before(start_jiffy, intended)) {
2071                         /* calc remaining jiffies to deal with one-time
2072                          * timer wrapping.
2073                          * in case of multiple timer wrapping, either it can be
2074                          * detected by out-of-range remaining, or it cannot be
2075                          * detected and we gets a panelty of
2076                          * _regulator_enable_delay().
2077                          */
2078                         remaining = intended - start_jiffy;
2079                         if (remaining <= max_delay)
2080                                 _regulator_enable_delay(
2081                                                 jiffies_to_usecs(remaining));
2082                 }
2083         }
2084
2085         if (rdev->ena_pin) {
2086                 if (!rdev->ena_gpio_state) {
2087                         ret = regulator_ena_gpio_ctrl(rdev, true);
2088                         if (ret < 0)
2089                                 return ret;
2090                         rdev->ena_gpio_state = 1;
2091                 }
2092         } else if (rdev->desc->ops->enable) {
2093                 ret = rdev->desc->ops->enable(rdev);
2094                 if (ret < 0)
2095                         return ret;
2096         } else {
2097                 return -EINVAL;
2098         }
2099
2100         /* Allow the regulator to ramp; it would be useful to extend
2101          * this for bulk operations so that the regulators can ramp
2102          * together.  */
2103         trace_regulator_enable_delay(rdev_get_name(rdev));
2104
2105         _regulator_enable_delay(delay);
2106
2107         trace_regulator_enable_complete(rdev_get_name(rdev));
2108
2109         return 0;
2110 }
2111
2112 /* locks held by regulator_enable() */
2113 static int _regulator_enable(struct regulator_dev *rdev)
2114 {
2115         int ret;
2116
2117         lockdep_assert_held_once(&rdev->mutex);
2118
2119         /* check voltage and requested load before enabling */
2120         if (rdev->constraints &&
2121             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2122                 drms_uA_update(rdev);
2123
2124         if (rdev->use_count == 0) {
2125                 /* The regulator may on if it's not switchable or left on */
2126                 ret = _regulator_is_enabled(rdev);
2127                 if (ret == -EINVAL || ret == 0) {
2128                         if (!_regulator_can_change_status(rdev))
2129                                 return -EPERM;
2130
2131                         ret = _regulator_do_enable(rdev);
2132                         if (ret < 0)
2133                                 return ret;
2134
2135                 } else if (ret < 0) {
2136                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2137                         return ret;
2138                 }
2139                 /* Fallthrough on positive return values - already enabled */
2140         }
2141
2142         rdev->use_count++;
2143
2144         return 0;
2145 }
2146
2147 /**
2148  * regulator_enable - enable regulator output
2149  * @regulator: regulator source
2150  *
2151  * Request that the regulator be enabled with the regulator output at
2152  * the predefined voltage or current value.  Calls to regulator_enable()
2153  * must be balanced with calls to regulator_disable().
2154  *
2155  * NOTE: the output value can be set by other drivers, boot loader or may be
2156  * hardwired in the regulator.
2157  */
2158 int regulator_enable(struct regulator *regulator)
2159 {
2160         struct regulator_dev *rdev = regulator->rdev;
2161         int ret = 0;
2162
2163         if (regulator->always_on)
2164                 return 0;
2165
2166         if (rdev->supply) {
2167                 ret = regulator_enable(rdev->supply);
2168                 if (ret != 0)
2169                         return ret;
2170         }
2171
2172         mutex_lock(&rdev->mutex);
2173         ret = _regulator_enable(rdev);
2174         mutex_unlock(&rdev->mutex);
2175
2176         if (ret != 0 && rdev->supply)
2177                 regulator_disable(rdev->supply);
2178
2179         return ret;
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_enable);
2182
2183 static int _regulator_do_disable(struct regulator_dev *rdev)
2184 {
2185         int ret;
2186
2187         trace_regulator_disable(rdev_get_name(rdev));
2188
2189         if (rdev->ena_pin) {
2190                 if (rdev->ena_gpio_state) {
2191                         ret = regulator_ena_gpio_ctrl(rdev, false);
2192                         if (ret < 0)
2193                                 return ret;
2194                         rdev->ena_gpio_state = 0;
2195                 }
2196
2197         } else if (rdev->desc->ops->disable) {
2198                 ret = rdev->desc->ops->disable(rdev);
2199                 if (ret != 0)
2200                         return ret;
2201         }
2202
2203         /* cares about last_off_jiffy only if off_on_delay is required by
2204          * device.
2205          */
2206         if (rdev->desc->off_on_delay)
2207                 rdev->last_off_jiffy = jiffies;
2208
2209         trace_regulator_disable_complete(rdev_get_name(rdev));
2210
2211         return 0;
2212 }
2213
2214 /* locks held by regulator_disable() */
2215 static int _regulator_disable(struct regulator_dev *rdev)
2216 {
2217         int ret = 0;
2218
2219         lockdep_assert_held_once(&rdev->mutex);
2220
2221         if (WARN(rdev->use_count <= 0,
2222                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2223                 return -EIO;
2224
2225         /* are we the last user and permitted to disable ? */
2226         if (rdev->use_count == 1 &&
2227             (rdev->constraints && !rdev->constraints->always_on)) {
2228
2229                 /* we are last user */
2230                 if (_regulator_can_change_status(rdev)) {
2231                         ret = _notifier_call_chain(rdev,
2232                                                    REGULATOR_EVENT_PRE_DISABLE,
2233                                                    NULL);
2234                         if (ret & NOTIFY_STOP_MASK)
2235                                 return -EINVAL;
2236
2237                         ret = _regulator_do_disable(rdev);
2238                         if (ret < 0) {
2239                                 rdev_err(rdev, "failed to disable\n");
2240                                 _notifier_call_chain(rdev,
2241                                                 REGULATOR_EVENT_ABORT_DISABLE,
2242                                                 NULL);
2243                                 return ret;
2244                         }
2245                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2246                                         NULL);
2247                 }
2248
2249                 rdev->use_count = 0;
2250         } else if (rdev->use_count > 1) {
2251
2252                 if (rdev->constraints &&
2253                         (rdev->constraints->valid_ops_mask &
2254                         REGULATOR_CHANGE_DRMS))
2255                         drms_uA_update(rdev);
2256
2257                 rdev->use_count--;
2258         }
2259
2260         return ret;
2261 }
2262
2263 /**
2264  * regulator_disable - disable regulator output
2265  * @regulator: regulator source
2266  *
2267  * Disable the regulator output voltage or current.  Calls to
2268  * regulator_enable() must be balanced with calls to
2269  * regulator_disable().
2270  *
2271  * NOTE: this will only disable the regulator output if no other consumer
2272  * devices have it enabled, the regulator device supports disabling and
2273  * machine constraints permit this operation.
2274  */
2275 int regulator_disable(struct regulator *regulator)
2276 {
2277         struct regulator_dev *rdev = regulator->rdev;
2278         int ret = 0;
2279
2280         if (regulator->always_on)
2281                 return 0;
2282
2283         mutex_lock(&rdev->mutex);
2284         ret = _regulator_disable(rdev);
2285         mutex_unlock(&rdev->mutex);
2286
2287         if (ret == 0 && rdev->supply)
2288                 regulator_disable(rdev->supply);
2289
2290         return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_disable);
2293
2294 /* locks held by regulator_force_disable() */
2295 static int _regulator_force_disable(struct regulator_dev *rdev)
2296 {
2297         int ret = 0;
2298
2299         lockdep_assert_held_once(&rdev->mutex);
2300
2301         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2302                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2303         if (ret & NOTIFY_STOP_MASK)
2304                 return -EINVAL;
2305
2306         ret = _regulator_do_disable(rdev);
2307         if (ret < 0) {
2308                 rdev_err(rdev, "failed to force disable\n");
2309                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2310                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2311                 return ret;
2312         }
2313
2314         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2315                         REGULATOR_EVENT_DISABLE, NULL);
2316
2317         return 0;
2318 }
2319
2320 /**
2321  * regulator_force_disable - force disable regulator output
2322  * @regulator: regulator source
2323  *
2324  * Forcibly disable the regulator output voltage or current.
2325  * NOTE: this *will* disable the regulator output even if other consumer
2326  * devices have it enabled. This should be used for situations when device
2327  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2328  */
2329 int regulator_force_disable(struct regulator *regulator)
2330 {
2331         struct regulator_dev *rdev = regulator->rdev;
2332         int ret;
2333
2334         mutex_lock(&rdev->mutex);
2335         regulator->uA_load = 0;
2336         ret = _regulator_force_disable(regulator->rdev);
2337         mutex_unlock(&rdev->mutex);
2338
2339         if (rdev->supply)
2340                 while (rdev->open_count--)
2341                         regulator_disable(rdev->supply);
2342
2343         return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(regulator_force_disable);
2346
2347 static void regulator_disable_work(struct work_struct *work)
2348 {
2349         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2350                                                   disable_work.work);
2351         int count, i, ret;
2352
2353         mutex_lock(&rdev->mutex);
2354
2355         BUG_ON(!rdev->deferred_disables);
2356
2357         count = rdev->deferred_disables;
2358         rdev->deferred_disables = 0;
2359
2360         for (i = 0; i < count; i++) {
2361                 ret = _regulator_disable(rdev);
2362                 if (ret != 0)
2363                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2364         }
2365
2366         mutex_unlock(&rdev->mutex);
2367
2368         if (rdev->supply) {
2369                 for (i = 0; i < count; i++) {
2370                         ret = regulator_disable(rdev->supply);
2371                         if (ret != 0) {
2372                                 rdev_err(rdev,
2373                                          "Supply disable failed: %d\n", ret);
2374                         }
2375                 }
2376         }
2377 }
2378
2379 /**
2380  * regulator_disable_deferred - disable regulator output with delay
2381  * @regulator: regulator source
2382  * @ms: miliseconds until the regulator is disabled
2383  *
2384  * Execute regulator_disable() on the regulator after a delay.  This
2385  * is intended for use with devices that require some time to quiesce.
2386  *
2387  * NOTE: this will only disable the regulator output if no other consumer
2388  * devices have it enabled, the regulator device supports disabling and
2389  * machine constraints permit this operation.
2390  */
2391 int regulator_disable_deferred(struct regulator *regulator, int ms)
2392 {
2393         struct regulator_dev *rdev = regulator->rdev;
2394
2395         if (regulator->always_on)
2396                 return 0;
2397
2398         if (!ms)
2399                 return regulator_disable(regulator);
2400
2401         mutex_lock(&rdev->mutex);
2402         rdev->deferred_disables++;
2403         mutex_unlock(&rdev->mutex);
2404
2405         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2406                            msecs_to_jiffies(ms));
2407         return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2410
2411 static int _regulator_is_enabled(struct regulator_dev *rdev)
2412 {
2413         /* A GPIO control always takes precedence */
2414         if (rdev->ena_pin)
2415                 return rdev->ena_gpio_state;
2416
2417         /* If we don't know then assume that the regulator is always on */
2418         if (!rdev->desc->ops->is_enabled)
2419                 return 1;
2420
2421         return rdev->desc->ops->is_enabled(rdev);
2422 }
2423
2424 static int _regulator_list_voltage(struct regulator *regulator,
2425                                     unsigned selector, int lock)
2426 {
2427         struct regulator_dev *rdev = regulator->rdev;
2428         const struct regulator_ops *ops = rdev->desc->ops;
2429         int ret;
2430
2431         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2432                 return rdev->desc->fixed_uV;
2433
2434         if (ops->list_voltage) {
2435                 if (selector >= rdev->desc->n_voltages)
2436                         return -EINVAL;
2437                 if (lock)
2438                         mutex_lock(&rdev->mutex);
2439                 ret = ops->list_voltage(rdev, selector);
2440                 if (lock)
2441                         mutex_unlock(&rdev->mutex);
2442         } else if (rdev->supply) {
2443                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2444         } else {
2445                 return -EINVAL;
2446         }
2447
2448         if (ret > 0) {
2449                 if (ret < rdev->constraints->min_uV)
2450                         ret = 0;
2451                 else if (ret > rdev->constraints->max_uV)
2452                         ret = 0;
2453         }
2454
2455         return ret;
2456 }
2457
2458 /**
2459  * regulator_is_enabled - is the regulator output enabled
2460  * @regulator: regulator source
2461  *
2462  * Returns positive if the regulator driver backing the source/client
2463  * has requested that the device be enabled, zero if it hasn't, else a
2464  * negative errno code.
2465  *
2466  * Note that the device backing this regulator handle can have multiple
2467  * users, so it might be enabled even if regulator_enable() was never
2468  * called for this particular source.
2469  */
2470 int regulator_is_enabled(struct regulator *regulator)
2471 {
2472         int ret;
2473
2474         if (regulator->always_on)
2475                 return 1;
2476
2477         mutex_lock(&regulator->rdev->mutex);
2478         ret = _regulator_is_enabled(regulator->rdev);
2479         mutex_unlock(&regulator->rdev->mutex);
2480
2481         return ret;
2482 }
2483 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2484
2485 /**
2486  * regulator_can_change_voltage - check if regulator can change voltage
2487  * @regulator: regulator source
2488  *
2489  * Returns positive if the regulator driver backing the source/client
2490  * can change its voltage, false otherwise. Useful for detecting fixed
2491  * or dummy regulators and disabling voltage change logic in the client
2492  * driver.
2493  */
2494 int regulator_can_change_voltage(struct regulator *regulator)
2495 {
2496         struct regulator_dev    *rdev = regulator->rdev;
2497
2498         if (rdev->constraints &&
2499             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2500                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2501                         return 1;
2502
2503                 if (rdev->desc->continuous_voltage_range &&
2504                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2505                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2506                         return 1;
2507         }
2508
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2512
2513 /**
2514  * regulator_count_voltages - count regulator_list_voltage() selectors
2515  * @regulator: regulator source
2516  *
2517  * Returns number of selectors, or negative errno.  Selectors are
2518  * numbered starting at zero, and typically correspond to bitfields
2519  * in hardware registers.
2520  */
2521 int regulator_count_voltages(struct regulator *regulator)
2522 {
2523         struct regulator_dev    *rdev = regulator->rdev;
2524
2525         if (rdev->desc->n_voltages)
2526                 return rdev->desc->n_voltages;
2527
2528         if (!rdev->supply)
2529                 return -EINVAL;
2530
2531         return regulator_count_voltages(rdev->supply);
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2534
2535 /**
2536  * regulator_list_voltage - enumerate supported voltages
2537  * @regulator: regulator source
2538  * @selector: identify voltage to list
2539  * Context: can sleep
2540  *
2541  * Returns a voltage that can be passed to @regulator_set_voltage(),
2542  * zero if this selector code can't be used on this system, or a
2543  * negative errno.
2544  */
2545 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2546 {
2547         return _regulator_list_voltage(regulator, selector, 1);
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2550
2551 /**
2552  * regulator_get_regmap - get the regulator's register map
2553  * @regulator: regulator source
2554  *
2555  * Returns the register map for the given regulator, or an ERR_PTR value
2556  * if the regulator doesn't use regmap.
2557  */
2558 struct regmap *regulator_get_regmap(struct regulator *regulator)
2559 {
2560         struct regmap *map = regulator->rdev->regmap;
2561
2562         return map ? map : ERR_PTR(-EOPNOTSUPP);
2563 }
2564
2565 /**
2566  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2567  * @regulator: regulator source
2568  * @vsel_reg: voltage selector register, output parameter
2569  * @vsel_mask: mask for voltage selector bitfield, output parameter
2570  *
2571  * Returns the hardware register offset and bitmask used for setting the
2572  * regulator voltage. This might be useful when configuring voltage-scaling
2573  * hardware or firmware that can make I2C requests behind the kernel's back,
2574  * for example.
2575  *
2576  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2577  * and 0 is returned, otherwise a negative errno is returned.
2578  */
2579 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2580                                          unsigned *vsel_reg,
2581                                          unsigned *vsel_mask)
2582 {
2583         struct regulator_dev *rdev = regulator->rdev;
2584         const struct regulator_ops *ops = rdev->desc->ops;
2585
2586         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2587                 return -EOPNOTSUPP;
2588
2589          *vsel_reg = rdev->desc->vsel_reg;
2590          *vsel_mask = rdev->desc->vsel_mask;
2591
2592          return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2595
2596 /**
2597  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2598  * @regulator: regulator source
2599  * @selector: identify voltage to list
2600  *
2601  * Converts the selector to a hardware-specific voltage selector that can be
2602  * directly written to the regulator registers. The address of the voltage
2603  * register can be determined by calling @regulator_get_hardware_vsel_register.
2604  *
2605  * On error a negative errno is returned.
2606  */
2607 int regulator_list_hardware_vsel(struct regulator *regulator,
2608                                  unsigned selector)
2609 {
2610         struct regulator_dev *rdev = regulator->rdev;
2611         const struct regulator_ops *ops = rdev->desc->ops;
2612
2613         if (selector >= rdev->desc->n_voltages)
2614                 return -EINVAL;
2615         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2616                 return -EOPNOTSUPP;
2617
2618         return selector;
2619 }
2620 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2621
2622 /**
2623  * regulator_get_linear_step - return the voltage step size between VSEL values
2624  * @regulator: regulator source
2625  *
2626  * Returns the voltage step size between VSEL values for linear
2627  * regulators, or return 0 if the regulator isn't a linear regulator.
2628  */
2629 unsigned int regulator_get_linear_step(struct regulator *regulator)
2630 {
2631         struct regulator_dev *rdev = regulator->rdev;
2632
2633         return rdev->desc->uV_step;
2634 }
2635 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2636
2637 /**
2638  * regulator_is_supported_voltage - check if a voltage range can be supported
2639  *
2640  * @regulator: Regulator to check.
2641  * @min_uV: Minimum required voltage in uV.
2642  * @max_uV: Maximum required voltage in uV.
2643  *
2644  * Returns a boolean or a negative error code.
2645  */
2646 int regulator_is_supported_voltage(struct regulator *regulator,
2647                                    int min_uV, int max_uV)
2648 {
2649         struct regulator_dev *rdev = regulator->rdev;
2650         int i, voltages, ret;
2651
2652         /* If we can't change voltage check the current voltage */
2653         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2654                 ret = regulator_get_voltage(regulator);
2655                 if (ret >= 0)
2656                         return min_uV <= ret && ret <= max_uV;
2657                 else
2658                         return ret;
2659         }
2660
2661         /* Any voltage within constrains range is fine? */
2662         if (rdev->desc->continuous_voltage_range)
2663                 return min_uV >= rdev->constraints->min_uV &&
2664                                 max_uV <= rdev->constraints->max_uV;
2665
2666         ret = regulator_count_voltages(regulator);
2667         if (ret < 0)
2668                 return ret;
2669         voltages = ret;
2670
2671         for (i = 0; i < voltages; i++) {
2672                 ret = regulator_list_voltage(regulator, i);
2673
2674                 if (ret >= min_uV && ret <= max_uV)
2675                         return 1;
2676         }
2677
2678         return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2681
2682 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2683                                  int max_uV)
2684 {
2685         const struct regulator_desc *desc = rdev->desc;
2686
2687         if (desc->ops->map_voltage)
2688                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2689
2690         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2691                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2692
2693         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2694                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2695
2696         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2697 }
2698
2699 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2700                                        int min_uV, int max_uV,
2701                                        unsigned *selector)
2702 {
2703         struct pre_voltage_change_data data;
2704         int ret;
2705
2706         data.old_uV = _regulator_get_voltage(rdev);
2707         data.min_uV = min_uV;
2708         data.max_uV = max_uV;
2709         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2710                                    &data);
2711         if (ret & NOTIFY_STOP_MASK)
2712                 return -EINVAL;
2713
2714         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2715         if (ret >= 0)
2716                 return ret;
2717
2718         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2719                              (void *)data.old_uV);
2720
2721         return ret;
2722 }
2723
2724 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2725                                            int uV, unsigned selector)
2726 {
2727         struct pre_voltage_change_data data;
2728         int ret;
2729
2730         data.old_uV = _regulator_get_voltage(rdev);
2731         data.min_uV = uV;
2732         data.max_uV = uV;
2733         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2734                                    &data);
2735         if (ret & NOTIFY_STOP_MASK)
2736                 return -EINVAL;
2737
2738         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2739         if (ret >= 0)
2740                 return ret;
2741
2742         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2743                              (void *)data.old_uV);
2744
2745         return ret;
2746 }
2747
2748 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2749                                      int min_uV, int max_uV)
2750 {
2751         int ret;
2752         int delay = 0;
2753         int best_val = 0;
2754         unsigned int selector;
2755         int old_selector = -1;
2756
2757         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2758
2759         min_uV += rdev->constraints->uV_offset;
2760         max_uV += rdev->constraints->uV_offset;
2761
2762         /*
2763          * If we can't obtain the old selector there is not enough
2764          * info to call set_voltage_time_sel().
2765          */
2766         if (_regulator_is_enabled(rdev) &&
2767             rdev->desc->ops->set_voltage_time_sel &&
2768             rdev->desc->ops->get_voltage_sel) {
2769                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2770                 if (old_selector < 0)
2771                         return old_selector;
2772         }
2773
2774         if (rdev->desc->ops->set_voltage) {
2775                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2776                                                   &selector);
2777
2778                 if (ret >= 0) {
2779                         if (rdev->desc->ops->list_voltage)
2780                                 best_val = rdev->desc->ops->list_voltage(rdev,
2781                                                                          selector);
2782                         else
2783                                 best_val = _regulator_get_voltage(rdev);
2784                 }
2785
2786         } else if (rdev->desc->ops->set_voltage_sel) {
2787                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2788                 if (ret >= 0) {
2789                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2790                         if (min_uV <= best_val && max_uV >= best_val) {
2791                                 selector = ret;
2792                                 if (old_selector == selector)
2793                                         ret = 0;
2794                                 else
2795                                         ret = _regulator_call_set_voltage_sel(
2796                                                 rdev, best_val, selector);
2797                         } else {
2798                                 ret = -EINVAL;
2799                         }
2800                 }
2801         } else {
2802                 ret = -EINVAL;
2803         }
2804
2805         /* Call set_voltage_time_sel if successfully obtained old_selector */
2806         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2807                 && old_selector != selector) {
2808
2809                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2810                                                 old_selector, selector);
2811                 if (delay < 0) {
2812                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2813                                   delay);
2814                         delay = 0;
2815                 }
2816
2817                 /* Insert any necessary delays */
2818                 if (delay >= 1000) {
2819                         mdelay(delay / 1000);
2820                         udelay(delay % 1000);
2821                 } else if (delay) {
2822                         udelay(delay);
2823                 }
2824         }
2825
2826         if (ret == 0 && best_val >= 0) {
2827                 unsigned long data = best_val;
2828
2829                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2830                                      (void *)data);
2831         }
2832
2833         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2834
2835         return ret;
2836 }
2837
2838 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2839                                           int min_uV, int max_uV)
2840 {
2841         struct regulator_dev *rdev = regulator->rdev;
2842         int ret = 0;
2843         int old_min_uV, old_max_uV;
2844         int current_uV;
2845         int best_supply_uV = 0;
2846         int supply_change_uV = 0;
2847
2848         /* If we're setting the same range as last time the change
2849          * should be a noop (some cpufreq implementations use the same
2850          * voltage for multiple frequencies, for example).
2851          */
2852         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2853                 goto out;
2854
2855         /* If we're trying to set a range that overlaps the current voltage,
2856          * return successfully even though the regulator does not support
2857          * changing the voltage.
2858          */
2859         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2860                 current_uV = _regulator_get_voltage(rdev);
2861                 if (min_uV <= current_uV && current_uV <= max_uV) {
2862                         regulator->min_uV = min_uV;
2863                         regulator->max_uV = max_uV;
2864                         goto out;
2865                 }
2866         }
2867
2868         /* sanity check */
2869         if (!rdev->desc->ops->set_voltage &&
2870             !rdev->desc->ops->set_voltage_sel) {
2871                 ret = -EINVAL;
2872                 goto out;
2873         }
2874
2875         /* constraints check */
2876         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2877         if (ret < 0)
2878                 goto out;
2879
2880         /* restore original values in case of error */
2881         old_min_uV = regulator->min_uV;
2882         old_max_uV = regulator->max_uV;
2883         regulator->min_uV = min_uV;
2884         regulator->max_uV = max_uV;
2885
2886         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2887         if (ret < 0)
2888                 goto out2;
2889
2890         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2891                                 !rdev->desc->ops->get_voltage)) {
2892                 int current_supply_uV;
2893                 int selector;
2894
2895                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2896                 if (selector < 0) {
2897                         ret = selector;
2898                         goto out2;
2899                 }
2900
2901                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2902                 if (best_supply_uV < 0) {
2903                         ret = best_supply_uV;
2904                         goto out2;
2905                 }
2906
2907                 best_supply_uV += rdev->desc->min_dropout_uV;
2908
2909                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2910                 if (current_supply_uV < 0) {
2911                         ret = current_supply_uV;
2912                         goto out2;
2913                 }
2914
2915                 supply_change_uV = best_supply_uV - current_supply_uV;
2916         }
2917
2918         if (supply_change_uV > 0) {
2919                 ret = regulator_set_voltage_unlocked(rdev->supply,
2920                                 best_supply_uV, INT_MAX);
2921                 if (ret) {
2922                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2923                                         ret);
2924                         goto out2;
2925                 }
2926         }
2927
2928         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2929         if (ret < 0)
2930                 goto out2;
2931
2932         if (supply_change_uV < 0) {
2933                 ret = regulator_set_voltage_unlocked(rdev->supply,
2934                                 best_supply_uV, INT_MAX);
2935                 if (ret)
2936                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2937                                         ret);
2938                 /* No need to fail here */
2939                 ret = 0;
2940         }
2941
2942 out:
2943         return ret;
2944 out2:
2945         regulator->min_uV = old_min_uV;
2946         regulator->max_uV = old_max_uV;
2947
2948         return ret;
2949 }
2950
2951 /**
2952  * regulator_set_voltage - set regulator output voltage
2953  * @regulator: regulator source
2954  * @min_uV: Minimum required voltage in uV
2955  * @max_uV: Maximum acceptable voltage in uV
2956  *
2957  * Sets a voltage regulator to the desired output voltage. This can be set
2958  * during any regulator state. IOW, regulator can be disabled or enabled.
2959  *
2960  * If the regulator is enabled then the voltage will change to the new value
2961  * immediately otherwise if the regulator is disabled the regulator will
2962  * output at the new voltage when enabled.
2963  *
2964  * NOTE: If the regulator is shared between several devices then the lowest
2965  * request voltage that meets the system constraints will be used.
2966  * Regulator system constraints must be set for this regulator before
2967  * calling this function otherwise this call will fail.
2968  */
2969 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2970 {
2971         int ret = 0;
2972
2973         regulator_lock_supply(regulator->rdev);
2974
2975         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2976
2977         regulator_unlock_supply(regulator->rdev);
2978
2979         return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2982
2983 /**
2984  * regulator_set_voltage_time - get raise/fall time
2985  * @regulator: regulator source
2986  * @old_uV: starting voltage in microvolts
2987  * @new_uV: target voltage in microvolts
2988  *
2989  * Provided with the starting and ending voltage, this function attempts to
2990  * calculate the time in microseconds required to rise or fall to this new
2991  * voltage.
2992  */
2993 int regulator_set_voltage_time(struct regulator *regulator,
2994                                int old_uV, int new_uV)
2995 {
2996         struct regulator_dev *rdev = regulator->rdev;
2997         const struct regulator_ops *ops = rdev->desc->ops;
2998         int old_sel = -1;
2999         int new_sel = -1;
3000         int voltage;
3001         int i;
3002
3003         /* Currently requires operations to do this */
3004         if (!ops->list_voltage || !ops->set_voltage_time_sel
3005             || !rdev->desc->n_voltages)
3006                 return -EINVAL;
3007
3008         for (i = 0; i < rdev->desc->n_voltages; i++) {
3009                 /* We only look for exact voltage matches here */
3010                 voltage = regulator_list_voltage(regulator, i);
3011                 if (voltage < 0)
3012                         return -EINVAL;
3013                 if (voltage == 0)
3014                         continue;
3015                 if (voltage == old_uV)
3016                         old_sel = i;
3017                 if (voltage == new_uV)
3018                         new_sel = i;
3019         }
3020
3021         if (old_sel < 0 || new_sel < 0)
3022                 return -EINVAL;
3023
3024         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3027
3028 /**
3029  * regulator_set_voltage_time_sel - get raise/fall time
3030  * @rdev: regulator source device
3031  * @old_selector: selector for starting voltage
3032  * @new_selector: selector for target voltage
3033  *
3034  * Provided with the starting and target voltage selectors, this function
3035  * returns time in microseconds required to rise or fall to this new voltage
3036  *
3037  * Drivers providing ramp_delay in regulation_constraints can use this as their
3038  * set_voltage_time_sel() operation.
3039  */
3040 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3041                                    unsigned int old_selector,
3042                                    unsigned int new_selector)
3043 {
3044         unsigned int ramp_delay = 0;
3045         int old_volt, new_volt;
3046
3047         if (rdev->constraints->ramp_delay)
3048                 ramp_delay = rdev->constraints->ramp_delay;
3049         else if (rdev->desc->ramp_delay)
3050                 ramp_delay = rdev->desc->ramp_delay;
3051
3052         if (ramp_delay == 0) {
3053                 rdev_warn(rdev, "ramp_delay not set\n");
3054                 return 0;
3055         }
3056
3057         /* sanity check */
3058         if (!rdev->desc->ops->list_voltage)
3059                 return -EINVAL;
3060
3061         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3062         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3063
3064         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3067
3068 /**
3069  * regulator_sync_voltage - re-apply last regulator output voltage
3070  * @regulator: regulator source
3071  *
3072  * Re-apply the last configured voltage.  This is intended to be used
3073  * where some external control source the consumer is cooperating with
3074  * has caused the configured voltage to change.
3075  */
3076 int regulator_sync_voltage(struct regulator *regulator)
3077 {
3078         struct regulator_dev *rdev = regulator->rdev;
3079         int ret, min_uV, max_uV;
3080
3081         mutex_lock(&rdev->mutex);
3082
3083         if (!rdev->desc->ops->set_voltage &&
3084             !rdev->desc->ops->set_voltage_sel) {
3085                 ret = -EINVAL;
3086                 goto out;
3087         }
3088
3089         /* This is only going to work if we've had a voltage configured. */
3090         if (!regulator->min_uV && !regulator->max_uV) {
3091                 ret = -EINVAL;
3092                 goto out;
3093         }
3094
3095         min_uV = regulator->min_uV;
3096         max_uV = regulator->max_uV;
3097
3098         /* This should be a paranoia check... */
3099         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3100         if (ret < 0)
3101                 goto out;
3102
3103         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3104         if (ret < 0)
3105                 goto out;
3106
3107         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3108
3109 out:
3110         mutex_unlock(&rdev->mutex);
3111         return ret;
3112 }
3113 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3114
3115 static int _regulator_get_voltage(struct regulator_dev *rdev)
3116 {
3117         int sel, ret;
3118         bool bypassed;
3119
3120         if (rdev->desc->ops->get_bypass) {
3121                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3122                 if (ret < 0)
3123                         return ret;
3124                 if (bypassed) {
3125                         /* if bypassed the regulator must have a supply */
3126                         if (!rdev->supply) {
3127                                 rdev_err(rdev,
3128                                          "bypassed regulator has no supply!\n");
3129                                 return -EPROBE_DEFER;
3130                         }
3131
3132                         return _regulator_get_voltage(rdev->supply->rdev);
3133                 }
3134         }
3135
3136         if (rdev->desc->ops->get_voltage_sel) {
3137                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3138                 if (sel < 0)
3139                         return sel;
3140                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3141         } else if (rdev->desc->ops->get_voltage) {
3142                 ret = rdev->desc->ops->get_voltage(rdev);
3143         } else if (rdev->desc->ops->list_voltage) {
3144                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3145         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3146                 ret = rdev->desc->fixed_uV;
3147         } else if (rdev->supply) {
3148                 ret = _regulator_get_voltage(rdev->supply->rdev);
3149         } else {
3150                 return -EINVAL;
3151         }
3152
3153         if (ret < 0)
3154                 return ret;
3155         return ret - rdev->constraints->uV_offset;
3156 }
3157
3158 /**
3159  * regulator_get_voltage - get regulator output voltage
3160  * @regulator: regulator source
3161  *
3162  * This returns the current regulator voltage in uV.
3163  *
3164  * NOTE: If the regulator is disabled it will return the voltage value. This
3165  * function should not be used to determine regulator state.
3166  */
3167 int regulator_get_voltage(struct regulator *regulator)
3168 {
3169         int ret;
3170
3171         regulator_lock_supply(regulator->rdev);
3172
3173         ret = _regulator_get_voltage(regulator->rdev);
3174
3175         regulator_unlock_supply(regulator->rdev);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3180
3181 /**
3182  * regulator_set_current_limit - set regulator output current limit
3183  * @regulator: regulator source
3184  * @min_uA: Minimum supported current in uA
3185  * @max_uA: Maximum supported current in uA
3186  *
3187  * Sets current sink to the desired output current. This can be set during
3188  * any regulator state. IOW, regulator can be disabled or enabled.
3189  *
3190  * If the regulator is enabled then the current will change to the new value
3191  * immediately otherwise if the regulator is disabled the regulator will
3192  * output at the new current when enabled.
3193  *
3194  * NOTE: Regulator system constraints must be set for this regulator before
3195  * calling this function otherwise this call will fail.
3196  */
3197 int regulator_set_current_limit(struct regulator *regulator,
3198                                int min_uA, int max_uA)
3199 {
3200         struct regulator_dev *rdev = regulator->rdev;
3201         int ret;
3202
3203         mutex_lock(&rdev->mutex);
3204
3205         /* sanity check */
3206         if (!rdev->desc->ops->set_current_limit) {
3207                 ret = -EINVAL;
3208                 goto out;
3209         }
3210
3211         /* constraints check */
3212         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3213         if (ret < 0)
3214                 goto out;
3215
3216         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3217 out:
3218         mutex_unlock(&rdev->mutex);
3219         return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3222
3223 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3224 {
3225         int ret;
3226
3227         mutex_lock(&rdev->mutex);
3228
3229         /* sanity check */
3230         if (!rdev->desc->ops->get_current_limit) {
3231                 ret = -EINVAL;
3232                 goto out;
3233         }
3234
3235         ret = rdev->desc->ops->get_current_limit(rdev);
3236 out:
3237         mutex_unlock(&rdev->mutex);
3238         return ret;
3239 }
3240
3241 /**
3242  * regulator_get_current_limit - get regulator output current
3243  * @regulator: regulator source
3244  *
3245  * This returns the current supplied by the specified current sink in uA.
3246  *
3247  * NOTE: If the regulator is disabled it will return the current value. This
3248  * function should not be used to determine regulator state.
3249  */
3250 int regulator_get_current_limit(struct regulator *regulator)
3251 {
3252         return _regulator_get_current_limit(regulator->rdev);
3253 }
3254 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3255
3256 /**
3257  * regulator_set_mode - set regulator operating mode
3258  * @regulator: regulator source
3259  * @mode: operating mode - one of the REGULATOR_MODE constants
3260  *
3261  * Set regulator operating mode to increase regulator efficiency or improve
3262  * regulation performance.
3263  *
3264  * NOTE: Regulator system constraints must be set for this regulator before
3265  * calling this function otherwise this call will fail.
3266  */
3267 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3268 {
3269         struct regulator_dev *rdev = regulator->rdev;
3270         int ret;
3271         int regulator_curr_mode;
3272
3273         mutex_lock(&rdev->mutex);
3274
3275         /* sanity check */
3276         if (!rdev->desc->ops->set_mode) {
3277                 ret = -EINVAL;
3278                 goto out;
3279         }
3280
3281         /* return if the same mode is requested */
3282         if (rdev->desc->ops->get_mode) {
3283                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3284                 if (regulator_curr_mode == mode) {
3285                         ret = 0;
3286                         goto out;
3287                 }
3288         }
3289
3290         /* constraints check */
3291         ret = regulator_mode_constrain(rdev, &mode);
3292         if (ret < 0)
3293                 goto out;
3294
3295         ret = rdev->desc->ops->set_mode(rdev, mode);
3296 out:
3297         mutex_unlock(&rdev->mutex);
3298         return ret;
3299 }
3300 EXPORT_SYMBOL_GPL(regulator_set_mode);
3301
3302 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3303 {
3304         int ret;
3305
3306         mutex_lock(&rdev->mutex);
3307
3308         /* sanity check */
3309         if (!rdev->desc->ops->get_mode) {
3310                 ret = -EINVAL;
3311                 goto out;
3312         }
3313
3314         ret = rdev->desc->ops->get_mode(rdev);
3315 out:
3316         mutex_unlock(&rdev->mutex);
3317         return ret;
3318 }
3319
3320 /**
3321  * regulator_get_mode - get regulator operating mode
3322  * @regulator: regulator source
3323  *
3324  * Get the current regulator operating mode.
3325  */
3326 unsigned int regulator_get_mode(struct regulator *regulator)
3327 {
3328         return _regulator_get_mode(regulator->rdev);
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_get_mode);
3331
3332 /**
3333  * regulator_set_load - set regulator load
3334  * @regulator: regulator source
3335  * @uA_load: load current
3336  *
3337  * Notifies the regulator core of a new device load. This is then used by
3338  * DRMS (if enabled by constraints) to set the most efficient regulator
3339  * operating mode for the new regulator loading.
3340  *
3341  * Consumer devices notify their supply regulator of the maximum power
3342  * they will require (can be taken from device datasheet in the power
3343  * consumption tables) when they change operational status and hence power
3344  * state. Examples of operational state changes that can affect power
3345  * consumption are :-
3346  *
3347  *    o Device is opened / closed.
3348  *    o Device I/O is about to begin or has just finished.
3349  *    o Device is idling in between work.
3350  *
3351  * This information is also exported via sysfs to userspace.
3352  *
3353  * DRMS will sum the total requested load on the regulator and change
3354  * to the most efficient operating mode if platform constraints allow.
3355  *
3356  * On error a negative errno is returned.
3357  */
3358 int regulator_set_load(struct regulator *regulator, int uA_load)
3359 {
3360         struct regulator_dev *rdev = regulator->rdev;
3361         int ret;
3362
3363         mutex_lock(&rdev->mutex);
3364         regulator->uA_load = uA_load;
3365         ret = drms_uA_update(rdev);
3366         mutex_unlock(&rdev->mutex);
3367
3368         return ret;
3369 }
3370 EXPORT_SYMBOL_GPL(regulator_set_load);
3371
3372 /**
3373  * regulator_allow_bypass - allow the regulator to go into bypass mode
3374  *
3375  * @regulator: Regulator to configure
3376  * @enable: enable or disable bypass mode
3377  *
3378  * Allow the regulator to go into bypass mode if all other consumers
3379  * for the regulator also enable bypass mode and the machine
3380  * constraints allow this.  Bypass mode means that the regulator is
3381  * simply passing the input directly to the output with no regulation.
3382  */
3383 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3384 {
3385         struct regulator_dev *rdev = regulator->rdev;
3386         int ret = 0;
3387
3388         if (!rdev->desc->ops->set_bypass)
3389                 return 0;
3390
3391         if (rdev->constraints &&
3392             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3393                 return 0;
3394
3395         mutex_lock(&rdev->mutex);
3396
3397         if (enable && !regulator->bypass) {
3398                 rdev->bypass_count++;
3399
3400                 if (rdev->bypass_count == rdev->open_count) {
3401                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3402                         if (ret != 0)
3403                                 rdev->bypass_count--;
3404                 }
3405
3406         } else if (!enable && regulator->bypass) {
3407                 rdev->bypass_count--;
3408
3409                 if (rdev->bypass_count != rdev->open_count) {
3410                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3411                         if (ret != 0)
3412                                 rdev->bypass_count++;
3413                 }
3414         }
3415
3416         if (ret == 0)
3417                 regulator->bypass = enable;
3418
3419         mutex_unlock(&rdev->mutex);
3420
3421         return ret;
3422 }
3423 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3424
3425 /**
3426  * regulator_register_notifier - register regulator event notifier
3427  * @regulator: regulator source
3428  * @nb: notifier block
3429  *
3430  * Register notifier block to receive regulator events.
3431  */
3432 int regulator_register_notifier(struct regulator *regulator,
3433                               struct notifier_block *nb)
3434 {
3435         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3436                                                 nb);
3437 }
3438 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3439
3440 /**
3441  * regulator_unregister_notifier - unregister regulator event notifier
3442  * @regulator: regulator source
3443  * @nb: notifier block
3444  *
3445  * Unregister regulator event notifier block.
3446  */
3447 int regulator_unregister_notifier(struct regulator *regulator,
3448                                 struct notifier_block *nb)
3449 {
3450         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3451                                                   nb);
3452 }
3453 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3454
3455 /* notify regulator consumers and downstream regulator consumers.
3456  * Note mutex must be held by caller.
3457  */
3458 static int _notifier_call_chain(struct regulator_dev *rdev,
3459                                   unsigned long event, void *data)
3460 {
3461         /* call rdev chain first */
3462         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3463 }
3464
3465 /**
3466  * regulator_bulk_get - get multiple regulator consumers
3467  *
3468  * @dev:           Device to supply
3469  * @num_consumers: Number of consumers to register
3470  * @consumers:     Configuration of consumers; clients are stored here.
3471  *
3472  * @return 0 on success, an errno on failure.
3473  *
3474  * This helper function allows drivers to get several regulator
3475  * consumers in one operation.  If any of the regulators cannot be
3476  * acquired then any regulators that were allocated will be freed
3477  * before returning to the caller.
3478  */
3479 int regulator_bulk_get(struct device *dev, int num_consumers,
3480                        struct regulator_bulk_data *consumers)
3481 {
3482         int i;
3483         int ret;
3484
3485         for (i = 0; i < num_consumers; i++)
3486                 consumers[i].consumer = NULL;
3487
3488         for (i = 0; i < num_consumers; i++) {
3489                 consumers[i].consumer = _regulator_get(dev,
3490                                                        consumers[i].supply,
3491                                                        false,
3492                                                        !consumers[i].optional);
3493                 if (IS_ERR(consumers[i].consumer)) {
3494                         ret = PTR_ERR(consumers[i].consumer);
3495                         dev_err(dev, "Failed to get supply '%s': %d\n",
3496                                 consumers[i].supply, ret);
3497                         consumers[i].consumer = NULL;
3498                         goto err;
3499                 }
3500         }
3501
3502         return 0;
3503
3504 err:
3505         while (--i >= 0)
3506                 regulator_put(consumers[i].consumer);
3507
3508         return ret;
3509 }
3510 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3511
3512 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3513 {
3514         struct regulator_bulk_data *bulk = data;
3515
3516         bulk->ret = regulator_enable(bulk->consumer);
3517 }
3518
3519 /**
3520  * regulator_bulk_enable - enable multiple regulator consumers
3521  *
3522  * @num_consumers: Number of consumers
3523  * @consumers:     Consumer data; clients are stored here.
3524  * @return         0 on success, an errno on failure
3525  *
3526  * This convenience API allows consumers to enable multiple regulator
3527  * clients in a single API call.  If any consumers cannot be enabled
3528  * then any others that were enabled will be disabled again prior to
3529  * return.
3530  */
3531 int regulator_bulk_enable(int num_consumers,
3532                           struct regulator_bulk_data *consumers)
3533 {
3534         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3535         int i;
3536         int ret = 0;
3537
3538         for (i = 0; i < num_consumers; i++) {
3539                 if (consumers[i].consumer->always_on)
3540                         consumers[i].ret = 0;
3541                 else
3542                         async_schedule_domain(regulator_bulk_enable_async,
3543                                               &consumers[i], &async_domain);
3544         }
3545
3546         async_synchronize_full_domain(&async_domain);
3547
3548         /* If any consumer failed we need to unwind any that succeeded */
3549         for (i = 0; i < num_consumers; i++) {
3550                 if (consumers[i].ret != 0) {
3551                         ret = consumers[i].ret;
3552                         goto err;
3553                 }
3554         }
3555
3556         return 0;
3557
3558 err:
3559         for (i = 0; i < num_consumers; i++) {
3560                 if (consumers[i].ret < 0)
3561                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3562                                consumers[i].ret);
3563                 else
3564                         regulator_disable(consumers[i].consumer);
3565         }
3566
3567         return ret;
3568 }
3569 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3570
3571 /**
3572  * regulator_bulk_disable - disable multiple regulator consumers
3573  *
3574  * @num_consumers: Number of consumers
3575  * @consumers:     Consumer data; clients are stored here.
3576  * @return         0 on success, an errno on failure
3577  *
3578  * This convenience API allows consumers to disable multiple regulator
3579  * clients in a single API call.  If any consumers cannot be disabled
3580  * then any others that were disabled will be enabled again prior to
3581  * return.
3582  */
3583 int regulator_bulk_disable(int num_consumers,
3584                            struct regulator_bulk_data *consumers)
3585 {
3586         int i;
3587         int ret, r;
3588
3589         for (i = num_consumers - 1; i >= 0; --i) {
3590                 ret = regulator_disable(consumers[i].consumer);
3591                 if (ret != 0)
3592                         goto err;
3593         }
3594
3595         return 0;
3596
3597 err:
3598         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3599         for (++i; i < num_consumers; ++i) {
3600                 r = regulator_enable(consumers[i].consumer);
3601                 if (r != 0)
3602                         pr_err("Failed to reename %s: %d\n",
3603                                consumers[i].supply, r);
3604         }
3605
3606         return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3609
3610 /**
3611  * regulator_bulk_force_disable - force disable multiple regulator consumers
3612  *
3613  * @num_consumers: Number of consumers
3614  * @consumers:     Consumer data; clients are stored here.
3615  * @return         0 on success, an errno on failure
3616  *
3617  * This convenience API allows consumers to forcibly disable multiple regulator
3618  * clients in a single API call.
3619  * NOTE: This should be used for situations when device damage will
3620  * likely occur if the regulators are not disabled (e.g. over temp).
3621  * Although regulator_force_disable function call for some consumers can
3622  * return error numbers, the function is called for all consumers.
3623  */
3624 int regulator_bulk_force_disable(int num_consumers,
3625                            struct regulator_bulk_data *consumers)
3626 {
3627         int i;
3628         int ret;
3629
3630         for (i = 0; i < num_consumers; i++)
3631                 consumers[i].ret =
3632                             regulator_force_disable(consumers[i].consumer);
3633
3634         for (i = 0; i < num_consumers; i++) {
3635                 if (consumers[i].ret != 0) {
3636                         ret = consumers[i].ret;
3637                         goto out;
3638                 }
3639         }
3640
3641         return 0;
3642 out:
3643         return ret;
3644 }
3645 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3646
3647 /**
3648  * regulator_bulk_free - free multiple regulator consumers
3649  *
3650  * @num_consumers: Number of consumers
3651  * @consumers:     Consumer data; clients are stored here.
3652  *
3653  * This convenience API allows consumers to free multiple regulator
3654  * clients in a single API call.
3655  */
3656 void regulator_bulk_free(int num_consumers,
3657                          struct regulator_bulk_data *consumers)
3658 {
3659         int i;
3660
3661         for (i = 0; i < num_consumers; i++) {
3662                 regulator_put(consumers[i].consumer);
3663                 consumers[i].consumer = NULL;
3664         }
3665 }
3666 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3667
3668 /**
3669  * regulator_notifier_call_chain - call regulator event notifier
3670  * @rdev: regulator source
3671  * @event: notifier block
3672  * @data: callback-specific data.
3673  *
3674  * Called by regulator drivers to notify clients a regulator event has
3675  * occurred. We also notify regulator clients downstream.
3676  * Note lock must be held by caller.
3677  */
3678 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3679                                   unsigned long event, void *data)
3680 {
3681         lockdep_assert_held_once(&rdev->mutex);
3682
3683         _notifier_call_chain(rdev, event, data);
3684         return NOTIFY_DONE;
3685
3686 }
3687 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3688
3689 /**
3690  * regulator_mode_to_status - convert a regulator mode into a status
3691  *
3692  * @mode: Mode to convert
3693  *
3694  * Convert a regulator mode into a status.
3695  */
3696 int regulator_mode_to_status(unsigned int mode)
3697 {
3698         switch (mode) {
3699         case REGULATOR_MODE_FAST:
3700                 return REGULATOR_STATUS_FAST;
3701         case REGULATOR_MODE_NORMAL:
3702                 return REGULATOR_STATUS_NORMAL;
3703         case REGULATOR_MODE_IDLE:
3704                 return REGULATOR_STATUS_IDLE;
3705         case REGULATOR_MODE_STANDBY:
3706                 return REGULATOR_STATUS_STANDBY;
3707         default:
3708                 return REGULATOR_STATUS_UNDEFINED;
3709         }
3710 }
3711 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3712
3713 static struct attribute *regulator_dev_attrs[] = {
3714         &dev_attr_name.attr,
3715         &dev_attr_num_users.attr,
3716         &dev_attr_type.attr,
3717         &dev_attr_microvolts.attr,
3718         &dev_attr_microamps.attr,
3719         &dev_attr_opmode.attr,
3720         &dev_attr_state.attr,
3721         &dev_attr_status.attr,
3722         &dev_attr_bypass.attr,
3723         &dev_attr_requested_microamps.attr,
3724         &dev_attr_min_microvolts.attr,
3725         &dev_attr_max_microvolts.attr,
3726         &dev_attr_min_microamps.attr,
3727         &dev_attr_max_microamps.attr,
3728         &dev_attr_suspend_standby_state.attr,
3729         &dev_attr_suspend_mem_state.attr,
3730         &dev_attr_suspend_disk_state.attr,
3731         &dev_attr_suspend_standby_microvolts.attr,
3732         &dev_attr_suspend_mem_microvolts.attr,
3733         &dev_attr_suspend_disk_microvolts.attr,
3734         &dev_attr_suspend_standby_mode.attr,
3735         &dev_attr_suspend_mem_mode.attr,
3736         &dev_attr_suspend_disk_mode.attr,
3737         NULL
3738 };
3739
3740 /*
3741  * To avoid cluttering sysfs (and memory) with useless state, only
3742  * create attributes that can be meaningfully displayed.
3743  */
3744 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3745                                          struct attribute *attr, int idx)
3746 {
3747         struct device *dev = kobj_to_dev(kobj);
3748         struct regulator_dev *rdev = dev_to_rdev(dev);
3749         const struct regulator_ops *ops = rdev->desc->ops;
3750         umode_t mode = attr->mode;
3751
3752         /* these three are always present */
3753         if (attr == &dev_attr_name.attr ||
3754             attr == &dev_attr_num_users.attr ||
3755             attr == &dev_attr_type.attr)
3756                 return mode;
3757
3758         /* some attributes need specific methods to be displayed */
3759         if (attr == &dev_attr_microvolts.attr) {
3760                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3761                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3762                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3763                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3764                         return mode;
3765                 return 0;
3766         }
3767
3768         if (attr == &dev_attr_microamps.attr)
3769                 return ops->get_current_limit ? mode : 0;
3770
3771         if (attr == &dev_attr_opmode.attr)
3772                 return ops->get_mode ? mode : 0;
3773
3774         if (attr == &dev_attr_state.attr)
3775                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3776
3777         if (attr == &dev_attr_status.attr)
3778                 return ops->get_status ? mode : 0;
3779
3780         if (attr == &dev_attr_bypass.attr)
3781                 return ops->get_bypass ? mode : 0;
3782
3783         /* some attributes are type-specific */
3784         if (attr == &dev_attr_requested_microamps.attr)
3785                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3786
3787         /* constraints need specific supporting methods */
3788         if (attr == &dev_attr_min_microvolts.attr ||
3789             attr == &dev_attr_max_microvolts.attr)
3790                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3791
3792         if (attr == &dev_attr_min_microamps.attr ||
3793             attr == &dev_attr_max_microamps.attr)
3794                 return ops->set_current_limit ? mode : 0;
3795
3796         if (attr == &dev_attr_suspend_standby_state.attr ||
3797             attr == &dev_attr_suspend_mem_state.attr ||
3798             attr == &dev_attr_suspend_disk_state.attr)
3799                 return mode;
3800
3801         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3802             attr == &dev_attr_suspend_mem_microvolts.attr ||
3803             attr == &dev_attr_suspend_disk_microvolts.attr)
3804                 return ops->set_suspend_voltage ? mode : 0;
3805
3806         if (attr == &dev_attr_suspend_standby_mode.attr ||
3807             attr == &dev_attr_suspend_mem_mode.attr ||
3808             attr == &dev_attr_suspend_disk_mode.attr)
3809                 return ops->set_suspend_mode ? mode : 0;
3810
3811         return mode;
3812 }
3813
3814 static const struct attribute_group regulator_dev_group = {
3815         .attrs = regulator_dev_attrs,
3816         .is_visible = regulator_attr_is_visible,
3817 };
3818
3819 static const struct attribute_group *regulator_dev_groups[] = {
3820         &regulator_dev_group,
3821         NULL
3822 };
3823
3824 static void regulator_dev_release(struct device *dev)
3825 {
3826         struct regulator_dev *rdev = dev_get_drvdata(dev);
3827
3828         kfree(rdev->constraints);
3829         of_node_put(rdev->dev.of_node);
3830         kfree(rdev);
3831 }
3832
3833 static struct class regulator_class = {
3834         .name = "regulator",
3835         .dev_release = regulator_dev_release,
3836         .dev_groups = regulator_dev_groups,
3837 };
3838
3839 static void rdev_init_debugfs(struct regulator_dev *rdev)
3840 {
3841         struct device *parent = rdev->dev.parent;
3842         const char *rname = rdev_get_name(rdev);
3843         char name[NAME_MAX];
3844
3845         /* Avoid duplicate debugfs directory names */
3846         if (parent && rname == rdev->desc->name) {
3847                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3848                          rname);
3849                 rname = name;
3850         }
3851
3852         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3853         if (!rdev->debugfs) {
3854                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3855                 return;
3856         }
3857
3858         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3859                            &rdev->use_count);
3860         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3861                            &rdev->open_count);
3862         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3863                            &rdev->bypass_count);
3864 }
3865
3866 static int regulator_register_resolve_supply(struct device *dev, void *data)
3867 {
3868         struct regulator_dev *rdev = dev_to_rdev(dev);
3869
3870         if (regulator_resolve_supply(rdev))
3871                 rdev_dbg(rdev, "unable to resolve supply\n");
3872
3873         return 0;
3874 }
3875
3876 /**
3877  * regulator_register - register regulator
3878  * @regulator_desc: regulator to register
3879  * @cfg: runtime configuration for regulator
3880  *
3881  * Called by regulator drivers to register a regulator.
3882  * Returns a valid pointer to struct regulator_dev on success
3883  * or an ERR_PTR() on error.
3884  */
3885 struct regulator_dev *
3886 regulator_register(const struct regulator_desc *regulator_desc,
3887                    const struct regulator_config *cfg)
3888 {
3889         const struct regulation_constraints *constraints = NULL;
3890         const struct regulator_init_data *init_data;
3891         struct regulator_config *config = NULL;
3892         static atomic_t regulator_no = ATOMIC_INIT(-1);
3893         struct regulator_dev *rdev;
3894         struct device *dev;
3895         int ret, i;
3896
3897         if (regulator_desc == NULL || cfg == NULL)
3898                 return ERR_PTR(-EINVAL);
3899
3900         dev = cfg->dev;
3901         WARN_ON(!dev);
3902
3903         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3904                 return ERR_PTR(-EINVAL);
3905
3906         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3907             regulator_desc->type != REGULATOR_CURRENT)
3908                 return ERR_PTR(-EINVAL);
3909
3910         /* Only one of each should be implemented */
3911         WARN_ON(regulator_desc->ops->get_voltage &&
3912                 regulator_desc->ops->get_voltage_sel);
3913         WARN_ON(regulator_desc->ops->set_voltage &&
3914                 regulator_desc->ops->set_voltage_sel);
3915
3916         /* If we're using selectors we must implement list_voltage. */
3917         if (regulator_desc->ops->get_voltage_sel &&
3918             !regulator_desc->ops->list_voltage) {
3919                 return ERR_PTR(-EINVAL);
3920         }
3921         if (regulator_desc->ops->set_voltage_sel &&
3922             !regulator_desc->ops->list_voltage) {
3923                 return ERR_PTR(-EINVAL);
3924         }
3925
3926         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3927         if (rdev == NULL)
3928                 return ERR_PTR(-ENOMEM);
3929
3930         /*
3931          * Duplicate the config so the driver could override it after
3932          * parsing init data.
3933          */
3934         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3935         if (config == NULL) {
3936                 kfree(rdev);
3937                 return ERR_PTR(-ENOMEM);
3938         }
3939
3940         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3941                                                &rdev->dev.of_node);
3942         if (!init_data) {
3943                 init_data = config->init_data;
3944                 rdev->dev.of_node = of_node_get(config->of_node);
3945         }
3946
3947         mutex_init(&rdev->mutex);
3948         rdev->reg_data = config->driver_data;
3949         rdev->owner = regulator_desc->owner;
3950         rdev->desc = regulator_desc;
3951         if (config->regmap)
3952                 rdev->regmap = config->regmap;
3953         else if (dev_get_regmap(dev, NULL))
3954                 rdev->regmap = dev_get_regmap(dev, NULL);
3955         else if (dev->parent)
3956                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3957         INIT_LIST_HEAD(&rdev->consumer_list);
3958         INIT_LIST_HEAD(&rdev->list);
3959         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3960         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3961
3962         /* preform any regulator specific init */
3963         if (init_data && init_data->regulator_init) {
3964                 ret = init_data->regulator_init(rdev->reg_data);
3965                 if (ret < 0)
3966                         goto clean;
3967         }
3968
3969         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3970             gpio_is_valid(config->ena_gpio)) {
3971                 mutex_lock(&regulator_list_mutex);
3972                 ret = regulator_ena_gpio_request(rdev, config);
3973                 mutex_unlock(&regulator_list_mutex);
3974                 if (ret != 0) {
3975                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3976                                  config->ena_gpio, ret);
3977                         goto clean;
3978                 }
3979         }
3980
3981         /* register with sysfs */
3982         rdev->dev.class = &regulator_class;
3983         rdev->dev.parent = dev;
3984         dev_set_name(&rdev->dev, "regulator.%lu",
3985                     (unsigned long) atomic_inc_return(&regulator_no));
3986
3987         /* set regulator constraints */
3988         if (init_data)
3989                 constraints = &init_data->constraints;
3990
3991         if (init_data && init_data->supply_regulator)
3992                 rdev->supply_name = init_data->supply_regulator;
3993         else if (regulator_desc->supply_name)
3994                 rdev->supply_name = regulator_desc->supply_name;
3995
3996         /*
3997          * Attempt to resolve the regulator supply, if specified,
3998          * but don't return an error if we fail because we will try
3999          * to resolve it again later as more regulators are added.
4000          */
4001         if (regulator_resolve_supply(rdev))
4002                 rdev_dbg(rdev, "unable to resolve supply\n");
4003
4004         ret = set_machine_constraints(rdev, constraints);
4005         if (ret < 0)
4006                 goto wash;
4007
4008         /* add consumers devices */
4009         if (init_data) {
4010                 mutex_lock(&regulator_list_mutex);
4011                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4012                         ret = set_consumer_device_supply(rdev,
4013                                 init_data->consumer_supplies[i].dev_name,
4014                                 init_data->consumer_supplies[i].supply);
4015                         if (ret < 0) {
4016                                 mutex_unlock(&regulator_list_mutex);
4017                                 dev_err(dev, "Failed to set supply %s\n",
4018                                         init_data->consumer_supplies[i].supply);
4019                                 goto unset_supplies;
4020                         }
4021                 }
4022                 mutex_unlock(&regulator_list_mutex);
4023         }
4024
4025         ret = device_register(&rdev->dev);
4026         if (ret != 0) {
4027                 put_device(&rdev->dev);
4028                 goto unset_supplies;
4029         }
4030
4031         dev_set_drvdata(&rdev->dev, rdev);
4032         rdev_init_debugfs(rdev);
4033
4034         /* try to resolve regulators supply since a new one was registered */
4035         class_for_each_device(&regulator_class, NULL, NULL,
4036                               regulator_register_resolve_supply);
4037         kfree(config);
4038         return rdev;
4039
4040 unset_supplies:
4041         mutex_lock(&regulator_list_mutex);
4042         unset_regulator_supplies(rdev);
4043         mutex_unlock(&regulator_list_mutex);
4044 wash:
4045         kfree(rdev->constraints);
4046         mutex_lock(&regulator_list_mutex);
4047         regulator_ena_gpio_free(rdev);
4048         mutex_unlock(&regulator_list_mutex);
4049 clean:
4050         kfree(rdev);
4051         kfree(config);
4052         return ERR_PTR(ret);
4053 }
4054 EXPORT_SYMBOL_GPL(regulator_register);
4055
4056 /**
4057  * regulator_unregister - unregister regulator
4058  * @rdev: regulator to unregister
4059  *
4060  * Called by regulator drivers to unregister a regulator.
4061  */
4062 void regulator_unregister(struct regulator_dev *rdev)
4063 {
4064         if (rdev == NULL)
4065                 return;
4066
4067         if (rdev->supply) {
4068                 while (rdev->use_count--)
4069                         regulator_disable(rdev->supply);
4070                 regulator_put(rdev->supply);
4071         }
4072         mutex_lock(&regulator_list_mutex);
4073         debugfs_remove_recursive(rdev->debugfs);
4074         flush_work(&rdev->disable_work.work);
4075         WARN_ON(rdev->open_count);
4076         unset_regulator_supplies(rdev);
4077         list_del(&rdev->list);
4078         regulator_ena_gpio_free(rdev);
4079         mutex_unlock(&regulator_list_mutex);
4080         device_unregister(&rdev->dev);
4081 }
4082 EXPORT_SYMBOL_GPL(regulator_unregister);
4083
4084 static int _regulator_suspend_prepare(struct device *dev, void *data)
4085 {
4086         struct regulator_dev *rdev = dev_to_rdev(dev);
4087         const suspend_state_t *state = data;
4088         int ret;
4089
4090         mutex_lock(&rdev->mutex);
4091         ret = suspend_prepare(rdev, *state);
4092         mutex_unlock(&rdev->mutex);
4093
4094         return ret;
4095 }
4096
4097 /**
4098  * regulator_suspend_prepare - prepare regulators for system wide suspend
4099  * @state: system suspend state
4100  *
4101  * Configure each regulator with it's suspend operating parameters for state.
4102  * This will usually be called by machine suspend code prior to supending.
4103  */
4104 int regulator_suspend_prepare(suspend_state_t state)
4105 {
4106         /* ON is handled by regulator active state */
4107         if (state == PM_SUSPEND_ON)
4108                 return -EINVAL;
4109
4110         return class_for_each_device(&regulator_class, NULL, &state,
4111                                      _regulator_suspend_prepare);
4112 }
4113 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4114
4115 static int _regulator_suspend_finish(struct device *dev, void *data)
4116 {
4117         struct regulator_dev *rdev = dev_to_rdev(dev);
4118         int ret;
4119
4120         mutex_lock(&rdev->mutex);
4121         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4122                 if (!_regulator_is_enabled(rdev)) {
4123                         ret = _regulator_do_enable(rdev);
4124                         if (ret)
4125                                 dev_err(dev,
4126                                         "Failed to resume regulator %d\n",
4127                                         ret);
4128                 }
4129         } else {
4130                 if (!have_full_constraints())
4131                         goto unlock;
4132                 if (!_regulator_is_enabled(rdev))
4133                         goto unlock;
4134
4135                 ret = _regulator_do_disable(rdev);
4136                 if (ret)
4137                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4138         }
4139 unlock:
4140         mutex_unlock(&rdev->mutex);
4141
4142         /* Keep processing regulators in spite of any errors */
4143         return 0;
4144 }
4145
4146 /**
4147  * regulator_suspend_finish - resume regulators from system wide suspend
4148  *
4149  * Turn on regulators that might be turned off by regulator_suspend_prepare
4150  * and that should be turned on according to the regulators properties.
4151  */
4152 int regulator_suspend_finish(void)
4153 {
4154         return class_for_each_device(&regulator_class, NULL, NULL,
4155                                      _regulator_suspend_finish);
4156 }
4157 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4158
4159 /**
4160  * regulator_has_full_constraints - the system has fully specified constraints
4161  *
4162  * Calling this function will cause the regulator API to disable all
4163  * regulators which have a zero use count and don't have an always_on
4164  * constraint in a late_initcall.
4165  *
4166  * The intention is that this will become the default behaviour in a
4167  * future kernel release so users are encouraged to use this facility
4168  * now.
4169  */
4170 void regulator_has_full_constraints(void)
4171 {
4172         has_full_constraints = 1;
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4175
4176 /**
4177  * rdev_get_drvdata - get rdev regulator driver data
4178  * @rdev: regulator
4179  *
4180  * Get rdev regulator driver private data. This call can be used in the
4181  * regulator driver context.
4182  */
4183 void *rdev_get_drvdata(struct regulator_dev *rdev)
4184 {
4185         return rdev->reg_data;
4186 }
4187 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4188
4189 /**
4190  * regulator_get_drvdata - get regulator driver data
4191  * @regulator: regulator
4192  *
4193  * Get regulator driver private data. This call can be used in the consumer
4194  * driver context when non API regulator specific functions need to be called.
4195  */
4196 void *regulator_get_drvdata(struct regulator *regulator)
4197 {
4198         return regulator->rdev->reg_data;
4199 }
4200 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4201
4202 /**
4203  * regulator_set_drvdata - set regulator driver data
4204  * @regulator: regulator
4205  * @data: data
4206  */
4207 void regulator_set_drvdata(struct regulator *regulator, void *data)
4208 {
4209         regulator->rdev->reg_data = data;
4210 }
4211 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4212
4213 /**
4214  * regulator_get_id - get regulator ID
4215  * @rdev: regulator
4216  */
4217 int rdev_get_id(struct regulator_dev *rdev)
4218 {
4219         return rdev->desc->id;
4220 }
4221 EXPORT_SYMBOL_GPL(rdev_get_id);
4222
4223 struct device *rdev_get_dev(struct regulator_dev *rdev)
4224 {
4225         return &rdev->dev;
4226 }
4227 EXPORT_SYMBOL_GPL(rdev_get_dev);
4228
4229 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4230 {
4231         return reg_init_data->driver_data;
4232 }
4233 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4234
4235 #ifdef CONFIG_DEBUG_FS
4236 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4237                                     size_t count, loff_t *ppos)
4238 {
4239         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4240         ssize_t len, ret = 0;
4241         struct regulator_map *map;
4242
4243         if (!buf)
4244                 return -ENOMEM;
4245
4246         list_for_each_entry(map, &regulator_map_list, list) {
4247                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4248                                "%s -> %s.%s\n",
4249                                rdev_get_name(map->regulator), map->dev_name,
4250                                map->supply);
4251                 if (len >= 0)
4252                         ret += len;
4253                 if (ret > PAGE_SIZE) {
4254                         ret = PAGE_SIZE;
4255                         break;
4256                 }
4257         }
4258
4259         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4260
4261         kfree(buf);
4262
4263         return ret;
4264 }
4265 #endif
4266
4267 static const struct file_operations supply_map_fops = {
4268 #ifdef CONFIG_DEBUG_FS
4269         .read = supply_map_read_file,
4270         .llseek = default_llseek,
4271 #endif
4272 };
4273
4274 #ifdef CONFIG_DEBUG_FS
4275 struct summary_data {
4276         struct seq_file *s;
4277         struct regulator_dev *parent;
4278         int level;
4279 };
4280
4281 static void regulator_summary_show_subtree(struct seq_file *s,
4282                                            struct regulator_dev *rdev,
4283                                            int level);
4284
4285 static int regulator_summary_show_children(struct device *dev, void *data)
4286 {
4287         struct regulator_dev *rdev = dev_to_rdev(dev);
4288         struct summary_data *summary_data = data;
4289
4290         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4291                 regulator_summary_show_subtree(summary_data->s, rdev,
4292                                                summary_data->level + 1);
4293
4294         return 0;
4295 }
4296
4297 static void regulator_summary_show_subtree(struct seq_file *s,
4298                                            struct regulator_dev *rdev,
4299                                            int level)
4300 {
4301         struct regulation_constraints *c;
4302         struct regulator *consumer;
4303         struct summary_data summary_data;
4304
4305         if (!rdev)
4306                 return;
4307
4308         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4309                    level * 3 + 1, "",
4310                    30 - level * 3, rdev_get_name(rdev),
4311                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4312
4313         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4314         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4315
4316         c = rdev->constraints;
4317         if (c) {
4318                 switch (rdev->desc->type) {
4319                 case REGULATOR_VOLTAGE:
4320                         seq_printf(s, "%5dmV %5dmV ",
4321                                    c->min_uV / 1000, c->max_uV / 1000);
4322                         break;
4323                 case REGULATOR_CURRENT:
4324                         seq_printf(s, "%5dmA %5dmA ",
4325                                    c->min_uA / 1000, c->max_uA / 1000);
4326                         break;
4327                 }
4328         }
4329
4330         seq_puts(s, "\n");
4331
4332         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4333                 if (consumer->dev->class == &regulator_class)
4334                         continue;
4335
4336                 seq_printf(s, "%*s%-*s ",
4337                            (level + 1) * 3 + 1, "",
4338                            30 - (level + 1) * 3, dev_name(consumer->dev));
4339
4340                 switch (rdev->desc->type) {
4341                 case REGULATOR_VOLTAGE:
4342                         seq_printf(s, "%37dmV %5dmV",
4343                                    consumer->min_uV / 1000,
4344                                    consumer->max_uV / 1000);
4345                         break;
4346                 case REGULATOR_CURRENT:
4347                         break;
4348                 }
4349
4350                 seq_puts(s, "\n");
4351         }
4352
4353         summary_data.s = s;
4354         summary_data.level = level;
4355         summary_data.parent = rdev;
4356
4357         class_for_each_device(&regulator_class, NULL, &summary_data,
4358                               regulator_summary_show_children);
4359 }
4360
4361 static int regulator_summary_show_roots(struct device *dev, void *data)
4362 {
4363         struct regulator_dev *rdev = dev_to_rdev(dev);
4364         struct seq_file *s = data;
4365
4366         if (!rdev->supply)
4367                 regulator_summary_show_subtree(s, rdev, 0);
4368
4369         return 0;
4370 }
4371
4372 static int regulator_summary_show(struct seq_file *s, void *data)
4373 {
4374         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4375         seq_puts(s, "-------------------------------------------------------------------------------\n");
4376
4377         class_for_each_device(&regulator_class, NULL, s,
4378                               regulator_summary_show_roots);
4379
4380         return 0;
4381 }
4382
4383 static int regulator_summary_open(struct inode *inode, struct file *file)
4384 {
4385         return single_open(file, regulator_summary_show, inode->i_private);
4386 }
4387 #endif
4388
4389 static const struct file_operations regulator_summary_fops = {
4390 #ifdef CONFIG_DEBUG_FS
4391         .open           = regulator_summary_open,
4392         .read           = seq_read,
4393         .llseek         = seq_lseek,
4394         .release        = single_release,
4395 #endif
4396 };
4397
4398 static int __init regulator_init(void)
4399 {
4400         int ret;
4401
4402         ret = class_register(&regulator_class);
4403
4404         debugfs_root = debugfs_create_dir("regulator", NULL);
4405         if (!debugfs_root)
4406                 pr_warn("regulator: Failed to create debugfs directory\n");
4407
4408         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4409                             &supply_map_fops);
4410
4411         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4412                             NULL, &regulator_summary_fops);
4413
4414         regulator_dummy_init();
4415
4416         return ret;
4417 }
4418
4419 /* init early to allow our consumers to complete system booting */
4420 core_initcall(regulator_init);
4421
4422 static int __init regulator_late_cleanup(struct device *dev, void *data)
4423 {
4424         struct regulator_dev *rdev = dev_to_rdev(dev);
4425         const struct regulator_ops *ops = rdev->desc->ops;
4426         struct regulation_constraints *c = rdev->constraints;
4427         int enabled, ret;
4428
4429         if (c && c->always_on)
4430                 return 0;
4431
4432         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4433                 return 0;
4434
4435         mutex_lock(&rdev->mutex);
4436
4437         if (rdev->use_count)
4438                 goto unlock;
4439
4440         /* If we can't read the status assume it's on. */
4441         if (ops->is_enabled)
4442                 enabled = ops->is_enabled(rdev);
4443         else
4444                 enabled = 1;
4445
4446         if (!enabled)
4447                 goto unlock;
4448
4449         if (have_full_constraints()) {
4450                 /* We log since this may kill the system if it goes
4451                  * wrong. */
4452                 rdev_info(rdev, "disabling\n");
4453                 ret = _regulator_do_disable(rdev);
4454                 if (ret != 0)
4455                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4456         } else {
4457                 /* The intention is that in future we will
4458                  * assume that full constraints are provided
4459                  * so warn even if we aren't going to do
4460                  * anything here.
4461                  */
4462                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4463         }
4464
4465 unlock:
4466         mutex_unlock(&rdev->mutex);
4467
4468         return 0;
4469 }
4470
4471 static int __init regulator_init_complete(void)
4472 {
4473         /*
4474          * Since DT doesn't provide an idiomatic mechanism for
4475          * enabling full constraints and since it's much more natural
4476          * with DT to provide them just assume that a DT enabled
4477          * system has full constraints.
4478          */
4479         if (of_have_populated_dt())
4480                 has_full_constraints = true;
4481
4482         /* If we have a full configuration then disable any regulators
4483          * we have permission to change the status for and which are
4484          * not in use or always_on.  This is effectively the default
4485          * for DT and ACPI as they have full constraints.
4486          */
4487         class_for_each_device(&regulator_class, NULL, NULL,
4488                               regulator_late_cleanup);
4489
4490         return 0;
4491 }
4492 late_initcall_sync(regulator_init_complete);