cgroup: Fix race condition at rebind_subsystems()
[linux-2.6-block.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static int _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93 static int regulator_balance_voltage(struct regulator_dev *rdev,
94                                      suspend_state_t state);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96                                           struct device *dev,
97                                           const char *supply_name);
98 static void destroy_regulator(struct regulator *regulator);
99 static void _regulator_put(struct regulator *regulator);
100
101 const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110 EXPORT_SYMBOL_GPL(rdev_get_name);
111
112 static bool have_full_constraints(void)
113 {
114         return has_full_constraints || of_have_populated_dt();
115 }
116
117 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 {
119         if (!rdev->constraints) {
120                 rdev_err(rdev, "no constraints\n");
121                 return false;
122         }
123
124         if (rdev->constraints->valid_ops_mask & ops)
125                 return true;
126
127         return false;
128 }
129
130 /**
131  * regulator_lock_nested - lock a single regulator
132  * @rdev:               regulator source
133  * @ww_ctx:             w/w mutex acquire context
134  *
135  * This function can be called many times by one task on
136  * a single regulator and its mutex will be locked only
137  * once. If a task, which is calling this function is other
138  * than the one, which initially locked the mutex, it will
139  * wait on mutex.
140  */
141 static inline int regulator_lock_nested(struct regulator_dev *rdev,
142                                         struct ww_acquire_ctx *ww_ctx)
143 {
144         bool lock = false;
145         int ret = 0;
146
147         mutex_lock(&regulator_nesting_mutex);
148
149         if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150                 if (rdev->mutex_owner == current)
151                         rdev->ref_cnt++;
152                 else
153                         lock = true;
154
155                 if (lock) {
156                         mutex_unlock(&regulator_nesting_mutex);
157                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158                         mutex_lock(&regulator_nesting_mutex);
159                 }
160         } else {
161                 lock = true;
162         }
163
164         if (lock && ret != -EDEADLK) {
165                 rdev->ref_cnt++;
166                 rdev->mutex_owner = current;
167         }
168
169         mutex_unlock(&regulator_nesting_mutex);
170
171         return ret;
172 }
173
174 /**
175  * regulator_lock - lock a single regulator
176  * @rdev:               regulator source
177  *
178  * This function can be called many times by one task on
179  * a single regulator and its mutex will be locked only
180  * once. If a task, which is calling this function is other
181  * than the one, which initially locked the mutex, it will
182  * wait on mutex.
183  */
184 static void regulator_lock(struct regulator_dev *rdev)
185 {
186         regulator_lock_nested(rdev, NULL);
187 }
188
189 /**
190  * regulator_unlock - unlock a single regulator
191  * @rdev:               regulator_source
192  *
193  * This function unlocks the mutex when the
194  * reference counter reaches 0.
195  */
196 static void regulator_unlock(struct regulator_dev *rdev)
197 {
198         mutex_lock(&regulator_nesting_mutex);
199
200         if (--rdev->ref_cnt == 0) {
201                 rdev->mutex_owner = NULL;
202                 ww_mutex_unlock(&rdev->mutex);
203         }
204
205         WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207         mutex_unlock(&regulator_nesting_mutex);
208 }
209
210 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 {
212         struct regulator_dev *c_rdev;
213         int i;
214
215         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
216                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217
218                 if (rdev->supply->rdev == c_rdev)
219                         return true;
220         }
221
222         return false;
223 }
224
225 static void regulator_unlock_recursive(struct regulator_dev *rdev,
226                                        unsigned int n_coupled)
227 {
228         struct regulator_dev *c_rdev, *supply_rdev;
229         int i, supply_n_coupled;
230
231         for (i = n_coupled; i > 0; i--) {
232                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
233
234                 if (!c_rdev)
235                         continue;
236
237                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
238                         supply_rdev = c_rdev->supply->rdev;
239                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240
241                         regulator_unlock_recursive(supply_rdev,
242                                                    supply_n_coupled);
243                 }
244
245                 regulator_unlock(c_rdev);
246         }
247 }
248
249 static int regulator_lock_recursive(struct regulator_dev *rdev,
250                                     struct regulator_dev **new_contended_rdev,
251                                     struct regulator_dev **old_contended_rdev,
252                                     struct ww_acquire_ctx *ww_ctx)
253 {
254         struct regulator_dev *c_rdev;
255         int i, err;
256
257         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
258                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
259
260                 if (!c_rdev)
261                         continue;
262
263                 if (c_rdev != *old_contended_rdev) {
264                         err = regulator_lock_nested(c_rdev, ww_ctx);
265                         if (err) {
266                                 if (err == -EDEADLK) {
267                                         *new_contended_rdev = c_rdev;
268                                         goto err_unlock;
269                                 }
270
271                                 /* shouldn't happen */
272                                 WARN_ON_ONCE(err != -EALREADY);
273                         }
274                 } else {
275                         *old_contended_rdev = NULL;
276                 }
277
278                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
279                         err = regulator_lock_recursive(c_rdev->supply->rdev,
280                                                        new_contended_rdev,
281                                                        old_contended_rdev,
282                                                        ww_ctx);
283                         if (err) {
284                                 regulator_unlock(c_rdev);
285                                 goto err_unlock;
286                         }
287                 }
288         }
289
290         return 0;
291
292 err_unlock:
293         regulator_unlock_recursive(rdev, i);
294
295         return err;
296 }
297
298 /**
299  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300  *                              regulators
301  * @rdev:                       regulator source
302  * @ww_ctx:                     w/w mutex acquire context
303  *
304  * Unlock all regulators related with rdev by coupling or supplying.
305  */
306 static void regulator_unlock_dependent(struct regulator_dev *rdev,
307                                        struct ww_acquire_ctx *ww_ctx)
308 {
309         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
310         ww_acquire_fini(ww_ctx);
311 }
312
313 /**
314  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
315  * @rdev:                       regulator source
316  * @ww_ctx:                     w/w mutex acquire context
317  *
318  * This function as a wrapper on regulator_lock_recursive(), which locks
319  * all regulators related with rdev by coupling or supplying.
320  */
321 static void regulator_lock_dependent(struct regulator_dev *rdev,
322                                      struct ww_acquire_ctx *ww_ctx)
323 {
324         struct regulator_dev *new_contended_rdev = NULL;
325         struct regulator_dev *old_contended_rdev = NULL;
326         int err;
327
328         mutex_lock(&regulator_list_mutex);
329
330         ww_acquire_init(ww_ctx, &regulator_ww_class);
331
332         do {
333                 if (new_contended_rdev) {
334                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
335                         old_contended_rdev = new_contended_rdev;
336                         old_contended_rdev->ref_cnt++;
337                 }
338
339                 err = regulator_lock_recursive(rdev,
340                                                &new_contended_rdev,
341                                                &old_contended_rdev,
342                                                ww_ctx);
343
344                 if (old_contended_rdev)
345                         regulator_unlock(old_contended_rdev);
346
347         } while (err == -EDEADLK);
348
349         ww_acquire_done(ww_ctx);
350
351         mutex_unlock(&regulator_list_mutex);
352 }
353
354 /**
355  * of_get_child_regulator - get a child regulator device node
356  * based on supply name
357  * @parent: Parent device node
358  * @prop_name: Combination regulator supply name and "-supply"
359  *
360  * Traverse all child nodes.
361  * Extract the child regulator device node corresponding to the supply name.
362  * returns the device node corresponding to the regulator if found, else
363  * returns NULL.
364  */
365 static struct device_node *of_get_child_regulator(struct device_node *parent,
366                                                   const char *prop_name)
367 {
368         struct device_node *regnode = NULL;
369         struct device_node *child = NULL;
370
371         for_each_child_of_node(parent, child) {
372                 regnode = of_parse_phandle(child, prop_name, 0);
373
374                 if (!regnode) {
375                         regnode = of_get_child_regulator(child, prop_name);
376                         if (regnode)
377                                 goto err_node_put;
378                 } else {
379                         goto err_node_put;
380                 }
381         }
382         return NULL;
383
384 err_node_put:
385         of_node_put(child);
386         return regnode;
387 }
388
389 /**
390  * of_get_regulator - get a regulator device node based on supply name
391  * @dev: Device pointer for the consumer (of regulator) device
392  * @supply: regulator supply name
393  *
394  * Extract the regulator device node corresponding to the supply name.
395  * returns the device node corresponding to the regulator if found, else
396  * returns NULL.
397  */
398 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 {
400         struct device_node *regnode = NULL;
401         char prop_name[64]; /* 64 is max size of property name */
402
403         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404
405         snprintf(prop_name, 64, "%s-supply", supply);
406         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
407
408         if (!regnode) {
409                 regnode = of_get_child_regulator(dev->of_node, prop_name);
410                 if (regnode)
411                         return regnode;
412
413                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
414                                 prop_name, dev->of_node);
415                 return NULL;
416         }
417         return regnode;
418 }
419
420 /* Platform voltage constraint check */
421 int regulator_check_voltage(struct regulator_dev *rdev,
422                             int *min_uV, int *max_uV)
423 {
424         BUG_ON(*min_uV > *max_uV);
425
426         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
427                 rdev_err(rdev, "voltage operation not allowed\n");
428                 return -EPERM;
429         }
430
431         if (*max_uV > rdev->constraints->max_uV)
432                 *max_uV = rdev->constraints->max_uV;
433         if (*min_uV < rdev->constraints->min_uV)
434                 *min_uV = rdev->constraints->min_uV;
435
436         if (*min_uV > *max_uV) {
437                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
438                          *min_uV, *max_uV);
439                 return -EINVAL;
440         }
441
442         return 0;
443 }
444
445 /* return 0 if the state is valid */
446 static int regulator_check_states(suspend_state_t state)
447 {
448         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
449 }
450
451 /* Make sure we select a voltage that suits the needs of all
452  * regulator consumers
453  */
454 int regulator_check_consumers(struct regulator_dev *rdev,
455                               int *min_uV, int *max_uV,
456                               suspend_state_t state)
457 {
458         struct regulator *regulator;
459         struct regulator_voltage *voltage;
460
461         list_for_each_entry(regulator, &rdev->consumer_list, list) {
462                 voltage = &regulator->voltage[state];
463                 /*
464                  * Assume consumers that didn't say anything are OK
465                  * with anything in the constraint range.
466                  */
467                 if (!voltage->min_uV && !voltage->max_uV)
468                         continue;
469
470                 if (*max_uV > voltage->max_uV)
471                         *max_uV = voltage->max_uV;
472                 if (*min_uV < voltage->min_uV)
473                         *min_uV = voltage->min_uV;
474         }
475
476         if (*min_uV > *max_uV) {
477                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
478                         *min_uV, *max_uV);
479                 return -EINVAL;
480         }
481
482         return 0;
483 }
484
485 /* current constraint check */
486 static int regulator_check_current_limit(struct regulator_dev *rdev,
487                                         int *min_uA, int *max_uA)
488 {
489         BUG_ON(*min_uA > *max_uA);
490
491         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
492                 rdev_err(rdev, "current operation not allowed\n");
493                 return -EPERM;
494         }
495
496         if (*max_uA > rdev->constraints->max_uA)
497                 *max_uA = rdev->constraints->max_uA;
498         if (*min_uA < rdev->constraints->min_uA)
499                 *min_uA = rdev->constraints->min_uA;
500
501         if (*min_uA > *max_uA) {
502                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
503                          *min_uA, *max_uA);
504                 return -EINVAL;
505         }
506
507         return 0;
508 }
509
510 /* operating mode constraint check */
511 static int regulator_mode_constrain(struct regulator_dev *rdev,
512                                     unsigned int *mode)
513 {
514         switch (*mode) {
515         case REGULATOR_MODE_FAST:
516         case REGULATOR_MODE_NORMAL:
517         case REGULATOR_MODE_IDLE:
518         case REGULATOR_MODE_STANDBY:
519                 break;
520         default:
521                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
522                 return -EINVAL;
523         }
524
525         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
526                 rdev_err(rdev, "mode operation not allowed\n");
527                 return -EPERM;
528         }
529
530         /* The modes are bitmasks, the most power hungry modes having
531          * the lowest values. If the requested mode isn't supported
532          * try higher modes.
533          */
534         while (*mode) {
535                 if (rdev->constraints->valid_modes_mask & *mode)
536                         return 0;
537                 *mode /= 2;
538         }
539
540         return -EINVAL;
541 }
542
543 static inline struct regulator_state *
544 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 {
546         if (rdev->constraints == NULL)
547                 return NULL;
548
549         switch (state) {
550         case PM_SUSPEND_STANDBY:
551                 return &rdev->constraints->state_standby;
552         case PM_SUSPEND_MEM:
553                 return &rdev->constraints->state_mem;
554         case PM_SUSPEND_MAX:
555                 return &rdev->constraints->state_disk;
556         default:
557                 return NULL;
558         }
559 }
560
561 static const struct regulator_state *
562 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 {
564         const struct regulator_state *rstate;
565
566         rstate = regulator_get_suspend_state(rdev, state);
567         if (rstate == NULL)
568                 return NULL;
569
570         /* If we have no suspend mode configuration don't set anything;
571          * only warn if the driver implements set_suspend_voltage or
572          * set_suspend_mode callback.
573          */
574         if (rstate->enabled != ENABLE_IN_SUSPEND &&
575             rstate->enabled != DISABLE_IN_SUSPEND) {
576                 if (rdev->desc->ops->set_suspend_voltage ||
577                     rdev->desc->ops->set_suspend_mode)
578                         rdev_warn(rdev, "No configuration\n");
579                 return NULL;
580         }
581
582         return rstate;
583 }
584
585 static ssize_t microvolts_show(struct device *dev,
586                                struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589         int uV;
590
591         regulator_lock(rdev);
592         uV = regulator_get_voltage_rdev(rdev);
593         regulator_unlock(rdev);
594
595         if (uV < 0)
596                 return uV;
597         return sprintf(buf, "%d\n", uV);
598 }
599 static DEVICE_ATTR_RO(microvolts);
600
601 static ssize_t microamps_show(struct device *dev,
602                               struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 }
608 static DEVICE_ATTR_RO(microamps);
609
610 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 }
617 static DEVICE_ATTR_RO(name);
618
619 static const char *regulator_opmode_to_str(int mode)
620 {
621         switch (mode) {
622         case REGULATOR_MODE_FAST:
623                 return "fast";
624         case REGULATOR_MODE_NORMAL:
625                 return "normal";
626         case REGULATOR_MODE_IDLE:
627                 return "idle";
628         case REGULATOR_MODE_STANDBY:
629                 return "standby";
630         }
631         return "unknown";
632 }
633
634 static ssize_t regulator_print_opmode(char *buf, int mode)
635 {
636         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
637 }
638
639 static ssize_t opmode_show(struct device *dev,
640                            struct device_attribute *attr, char *buf)
641 {
642         struct regulator_dev *rdev = dev_get_drvdata(dev);
643
644         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 }
646 static DEVICE_ATTR_RO(opmode);
647
648 static ssize_t regulator_print_state(char *buf, int state)
649 {
650         if (state > 0)
651                 return sprintf(buf, "enabled\n");
652         else if (state == 0)
653                 return sprintf(buf, "disabled\n");
654         else
655                 return sprintf(buf, "unknown\n");
656 }
657
658 static ssize_t state_show(struct device *dev,
659                           struct device_attribute *attr, char *buf)
660 {
661         struct regulator_dev *rdev = dev_get_drvdata(dev);
662         ssize_t ret;
663
664         regulator_lock(rdev);
665         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
666         regulator_unlock(rdev);
667
668         return ret;
669 }
670 static DEVICE_ATTR_RO(state);
671
672 static ssize_t status_show(struct device *dev,
673                            struct device_attribute *attr, char *buf)
674 {
675         struct regulator_dev *rdev = dev_get_drvdata(dev);
676         int status;
677         char *label;
678
679         status = rdev->desc->ops->get_status(rdev);
680         if (status < 0)
681                 return status;
682
683         switch (status) {
684         case REGULATOR_STATUS_OFF:
685                 label = "off";
686                 break;
687         case REGULATOR_STATUS_ON:
688                 label = "on";
689                 break;
690         case REGULATOR_STATUS_ERROR:
691                 label = "error";
692                 break;
693         case REGULATOR_STATUS_FAST:
694                 label = "fast";
695                 break;
696         case REGULATOR_STATUS_NORMAL:
697                 label = "normal";
698                 break;
699         case REGULATOR_STATUS_IDLE:
700                 label = "idle";
701                 break;
702         case REGULATOR_STATUS_STANDBY:
703                 label = "standby";
704                 break;
705         case REGULATOR_STATUS_BYPASS:
706                 label = "bypass";
707                 break;
708         case REGULATOR_STATUS_UNDEFINED:
709                 label = "undefined";
710                 break;
711         default:
712                 return -ERANGE;
713         }
714
715         return sprintf(buf, "%s\n", label);
716 }
717 static DEVICE_ATTR_RO(status);
718
719 static ssize_t min_microamps_show(struct device *dev,
720                                   struct device_attribute *attr, char *buf)
721 {
722         struct regulator_dev *rdev = dev_get_drvdata(dev);
723
724         if (!rdev->constraints)
725                 return sprintf(buf, "constraint not defined\n");
726
727         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 }
729 static DEVICE_ATTR_RO(min_microamps);
730
731 static ssize_t max_microamps_show(struct device *dev,
732                                   struct device_attribute *attr, char *buf)
733 {
734         struct regulator_dev *rdev = dev_get_drvdata(dev);
735
736         if (!rdev->constraints)
737                 return sprintf(buf, "constraint not defined\n");
738
739         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 }
741 static DEVICE_ATTR_RO(max_microamps);
742
743 static ssize_t min_microvolts_show(struct device *dev,
744                                    struct device_attribute *attr, char *buf)
745 {
746         struct regulator_dev *rdev = dev_get_drvdata(dev);
747
748         if (!rdev->constraints)
749                 return sprintf(buf, "constraint not defined\n");
750
751         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 }
753 static DEVICE_ATTR_RO(min_microvolts);
754
755 static ssize_t max_microvolts_show(struct device *dev,
756                                    struct device_attribute *attr, char *buf)
757 {
758         struct regulator_dev *rdev = dev_get_drvdata(dev);
759
760         if (!rdev->constraints)
761                 return sprintf(buf, "constraint not defined\n");
762
763         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 }
765 static DEVICE_ATTR_RO(max_microvolts);
766
767 static ssize_t requested_microamps_show(struct device *dev,
768                                         struct device_attribute *attr, char *buf)
769 {
770         struct regulator_dev *rdev = dev_get_drvdata(dev);
771         struct regulator *regulator;
772         int uA = 0;
773
774         regulator_lock(rdev);
775         list_for_each_entry(regulator, &rdev->consumer_list, list) {
776                 if (regulator->enable_count)
777                         uA += regulator->uA_load;
778         }
779         regulator_unlock(rdev);
780         return sprintf(buf, "%d\n", uA);
781 }
782 static DEVICE_ATTR_RO(requested_microamps);
783
784 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
785                               char *buf)
786 {
787         struct regulator_dev *rdev = dev_get_drvdata(dev);
788         return sprintf(buf, "%d\n", rdev->use_count);
789 }
790 static DEVICE_ATTR_RO(num_users);
791
792 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
793                          char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796
797         switch (rdev->desc->type) {
798         case REGULATOR_VOLTAGE:
799                 return sprintf(buf, "voltage\n");
800         case REGULATOR_CURRENT:
801                 return sprintf(buf, "current\n");
802         }
803         return sprintf(buf, "unknown\n");
804 }
805 static DEVICE_ATTR_RO(type);
806
807 static ssize_t suspend_mem_microvolts_show(struct device *dev,
808                                            struct device_attribute *attr, char *buf)
809 {
810         struct regulator_dev *rdev = dev_get_drvdata(dev);
811
812         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 }
814 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815
816 static ssize_t suspend_disk_microvolts_show(struct device *dev,
817                                             struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 }
823 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824
825 static ssize_t suspend_standby_microvolts_show(struct device *dev,
826                                                struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 }
832 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833
834 static ssize_t suspend_mem_mode_show(struct device *dev,
835                                      struct device_attribute *attr, char *buf)
836 {
837         struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839         return regulator_print_opmode(buf,
840                 rdev->constraints->state_mem.mode);
841 }
842 static DEVICE_ATTR_RO(suspend_mem_mode);
843
844 static ssize_t suspend_disk_mode_show(struct device *dev,
845                                       struct device_attribute *attr, char *buf)
846 {
847         struct regulator_dev *rdev = dev_get_drvdata(dev);
848
849         return regulator_print_opmode(buf,
850                 rdev->constraints->state_disk.mode);
851 }
852 static DEVICE_ATTR_RO(suspend_disk_mode);
853
854 static ssize_t suspend_standby_mode_show(struct device *dev,
855                                          struct device_attribute *attr, char *buf)
856 {
857         struct regulator_dev *rdev = dev_get_drvdata(dev);
858
859         return regulator_print_opmode(buf,
860                 rdev->constraints->state_standby.mode);
861 }
862 static DEVICE_ATTR_RO(suspend_standby_mode);
863
864 static ssize_t suspend_mem_state_show(struct device *dev,
865                                       struct device_attribute *attr, char *buf)
866 {
867         struct regulator_dev *rdev = dev_get_drvdata(dev);
868
869         return regulator_print_state(buf,
870                         rdev->constraints->state_mem.enabled);
871 }
872 static DEVICE_ATTR_RO(suspend_mem_state);
873
874 static ssize_t suspend_disk_state_show(struct device *dev,
875                                        struct device_attribute *attr, char *buf)
876 {
877         struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879         return regulator_print_state(buf,
880                         rdev->constraints->state_disk.enabled);
881 }
882 static DEVICE_ATTR_RO(suspend_disk_state);
883
884 static ssize_t suspend_standby_state_show(struct device *dev,
885                                           struct device_attribute *attr, char *buf)
886 {
887         struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889         return regulator_print_state(buf,
890                         rdev->constraints->state_standby.enabled);
891 }
892 static DEVICE_ATTR_RO(suspend_standby_state);
893
894 static ssize_t bypass_show(struct device *dev,
895                            struct device_attribute *attr, char *buf)
896 {
897         struct regulator_dev *rdev = dev_get_drvdata(dev);
898         const char *report;
899         bool bypass;
900         int ret;
901
902         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
903
904         if (ret != 0)
905                 report = "unknown";
906         else if (bypass)
907                 report = "enabled";
908         else
909                 report = "disabled";
910
911         return sprintf(buf, "%s\n", report);
912 }
913 static DEVICE_ATTR_RO(bypass);
914
915 #define REGULATOR_ERROR_ATTR(name, bit)                                                 \
916         static ssize_t name##_show(struct device *dev, struct device_attribute *attr,   \
917                                    char *buf)                                           \
918         {                                                                               \
919                 int ret;                                                                \
920                 unsigned int flags;                                                     \
921                 struct regulator_dev *rdev = dev_get_drvdata(dev);                      \
922                 ret = _regulator_get_error_flags(rdev, &flags);                         \
923                 if (ret)                                                                \
924                         return ret;                                                     \
925                 return sysfs_emit(buf, "%d\n", !!(flags & (bit)));                      \
926         }                                                                               \
927         static DEVICE_ATTR_RO(name)
928
929 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
930 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
931 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
932 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
933 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
934 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
935 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
936 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
937 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940  * consumer load. All locks held by caller
941  */
942 static int drms_uA_update(struct regulator_dev *rdev)
943 {
944         struct regulator *sibling;
945         int current_uA = 0, output_uV, input_uV, err;
946         unsigned int mode;
947
948         /*
949          * first check to see if we can set modes at all, otherwise just
950          * tell the consumer everything is OK.
951          */
952         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
953                 rdev_dbg(rdev, "DRMS operation not allowed\n");
954                 return 0;
955         }
956
957         if (!rdev->desc->ops->get_optimum_mode &&
958             !rdev->desc->ops->set_load)
959                 return 0;
960
961         if (!rdev->desc->ops->set_mode &&
962             !rdev->desc->ops->set_load)
963                 return -EINVAL;
964
965         /* calc total requested load */
966         list_for_each_entry(sibling, &rdev->consumer_list, list) {
967                 if (sibling->enable_count)
968                         current_uA += sibling->uA_load;
969         }
970
971         current_uA += rdev->constraints->system_load;
972
973         if (rdev->desc->ops->set_load) {
974                 /* set the optimum mode for our new total regulator load */
975                 err = rdev->desc->ops->set_load(rdev, current_uA);
976                 if (err < 0)
977                         rdev_err(rdev, "failed to set load %d: %pe\n",
978                                  current_uA, ERR_PTR(err));
979         } else {
980                 /* get output voltage */
981                 output_uV = regulator_get_voltage_rdev(rdev);
982                 if (output_uV <= 0) {
983                         rdev_err(rdev, "invalid output voltage found\n");
984                         return -EINVAL;
985                 }
986
987                 /* get input voltage */
988                 input_uV = 0;
989                 if (rdev->supply)
990                         input_uV = regulator_get_voltage(rdev->supply);
991                 if (input_uV <= 0)
992                         input_uV = rdev->constraints->input_uV;
993                 if (input_uV <= 0) {
994                         rdev_err(rdev, "invalid input voltage found\n");
995                         return -EINVAL;
996                 }
997
998                 /* now get the optimum mode for our new total regulator load */
999                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1000                                                          output_uV, current_uA);
1001
1002                 /* check the new mode is allowed */
1003                 err = regulator_mode_constrain(rdev, &mode);
1004                 if (err < 0) {
1005                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1006                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1007                         return err;
1008                 }
1009
1010                 err = rdev->desc->ops->set_mode(rdev, mode);
1011                 if (err < 0)
1012                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1013                                  mode, ERR_PTR(err));
1014         }
1015
1016         return err;
1017 }
1018
1019 static int __suspend_set_state(struct regulator_dev *rdev,
1020                                const struct regulator_state *rstate)
1021 {
1022         int ret = 0;
1023
1024         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1025                 rdev->desc->ops->set_suspend_enable)
1026                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1027         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1028                 rdev->desc->ops->set_suspend_disable)
1029                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1030         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1031                 ret = 0;
1032
1033         if (ret < 0) {
1034                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1035                 return ret;
1036         }
1037
1038         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1039                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1040                 if (ret < 0) {
1041                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1042                         return ret;
1043                 }
1044         }
1045
1046         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1047                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1048                 if (ret < 0) {
1049                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050                         return ret;
1051                 }
1052         }
1053
1054         return ret;
1055 }
1056
1057 static int suspend_set_initial_state(struct regulator_dev *rdev)
1058 {
1059         const struct regulator_state *rstate;
1060
1061         rstate = regulator_get_suspend_state_check(rdev,
1062                         rdev->constraints->initial_state);
1063         if (!rstate)
1064                 return 0;
1065
1066         return __suspend_set_state(rdev, rstate);
1067 }
1068
1069 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1070 static void print_constraints_debug(struct regulator_dev *rdev)
1071 {
1072         struct regulation_constraints *constraints = rdev->constraints;
1073         char buf[160] = "";
1074         size_t len = sizeof(buf) - 1;
1075         int count = 0;
1076         int ret;
1077
1078         if (constraints->min_uV && constraints->max_uV) {
1079                 if (constraints->min_uV == constraints->max_uV)
1080                         count += scnprintf(buf + count, len - count, "%d mV ",
1081                                            constraints->min_uV / 1000);
1082                 else
1083                         count += scnprintf(buf + count, len - count,
1084                                            "%d <--> %d mV ",
1085                                            constraints->min_uV / 1000,
1086                                            constraints->max_uV / 1000);
1087         }
1088
1089         if (!constraints->min_uV ||
1090             constraints->min_uV != constraints->max_uV) {
1091                 ret = regulator_get_voltage_rdev(rdev);
1092                 if (ret > 0)
1093                         count += scnprintf(buf + count, len - count,
1094                                            "at %d mV ", ret / 1000);
1095         }
1096
1097         if (constraints->uV_offset)
1098                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1099                                    constraints->uV_offset / 1000);
1100
1101         if (constraints->min_uA && constraints->max_uA) {
1102                 if (constraints->min_uA == constraints->max_uA)
1103                         count += scnprintf(buf + count, len - count, "%d mA ",
1104                                            constraints->min_uA / 1000);
1105                 else
1106                         count += scnprintf(buf + count, len - count,
1107                                            "%d <--> %d mA ",
1108                                            constraints->min_uA / 1000,
1109                                            constraints->max_uA / 1000);
1110         }
1111
1112         if (!constraints->min_uA ||
1113             constraints->min_uA != constraints->max_uA) {
1114                 ret = _regulator_get_current_limit(rdev);
1115                 if (ret > 0)
1116                         count += scnprintf(buf + count, len - count,
1117                                            "at %d mA ", ret / 1000);
1118         }
1119
1120         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1121                 count += scnprintf(buf + count, len - count, "fast ");
1122         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1123                 count += scnprintf(buf + count, len - count, "normal ");
1124         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1125                 count += scnprintf(buf + count, len - count, "idle ");
1126         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1127                 count += scnprintf(buf + count, len - count, "standby ");
1128
1129         if (!count)
1130                 count = scnprintf(buf, len, "no parameters");
1131         else
1132                 --count;
1133
1134         count += scnprintf(buf + count, len - count, ", %s",
1135                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1136
1137         rdev_dbg(rdev, "%s\n", buf);
1138 }
1139 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1140 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1141 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1142
1143 static void print_constraints(struct regulator_dev *rdev)
1144 {
1145         struct regulation_constraints *constraints = rdev->constraints;
1146
1147         print_constraints_debug(rdev);
1148
1149         if ((constraints->min_uV != constraints->max_uV) &&
1150             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1151                 rdev_warn(rdev,
1152                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1153 }
1154
1155 static int machine_constraints_voltage(struct regulator_dev *rdev,
1156         struct regulation_constraints *constraints)
1157 {
1158         const struct regulator_ops *ops = rdev->desc->ops;
1159         int ret;
1160
1161         /* do we need to apply the constraint voltage */
1162         if (rdev->constraints->apply_uV &&
1163             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1164                 int target_min, target_max;
1165                 int current_uV = regulator_get_voltage_rdev(rdev);
1166
1167                 if (current_uV == -ENOTRECOVERABLE) {
1168                         /* This regulator can't be read and must be initialized */
1169                         rdev_info(rdev, "Setting %d-%duV\n",
1170                                   rdev->constraints->min_uV,
1171                                   rdev->constraints->max_uV);
1172                         _regulator_do_set_voltage(rdev,
1173                                                   rdev->constraints->min_uV,
1174                                                   rdev->constraints->max_uV);
1175                         current_uV = regulator_get_voltage_rdev(rdev);
1176                 }
1177
1178                 if (current_uV < 0) {
1179                         if (current_uV != -EPROBE_DEFER)
1180                                 rdev_err(rdev,
1181                                          "failed to get the current voltage: %pe\n",
1182                                          ERR_PTR(current_uV));
1183                         return current_uV;
1184                 }
1185
1186                 /*
1187                  * If we're below the minimum voltage move up to the
1188                  * minimum voltage, if we're above the maximum voltage
1189                  * then move down to the maximum.
1190                  */
1191                 target_min = current_uV;
1192                 target_max = current_uV;
1193
1194                 if (current_uV < rdev->constraints->min_uV) {
1195                         target_min = rdev->constraints->min_uV;
1196                         target_max = rdev->constraints->min_uV;
1197                 }
1198
1199                 if (current_uV > rdev->constraints->max_uV) {
1200                         target_min = rdev->constraints->max_uV;
1201                         target_max = rdev->constraints->max_uV;
1202                 }
1203
1204                 if (target_min != current_uV || target_max != current_uV) {
1205                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1206                                   current_uV, target_min, target_max);
1207                         ret = _regulator_do_set_voltage(
1208                                 rdev, target_min, target_max);
1209                         if (ret < 0) {
1210                                 rdev_err(rdev,
1211                                         "failed to apply %d-%duV constraint: %pe\n",
1212                                         target_min, target_max, ERR_PTR(ret));
1213                                 return ret;
1214                         }
1215                 }
1216         }
1217
1218         /* constrain machine-level voltage specs to fit
1219          * the actual range supported by this regulator.
1220          */
1221         if (ops->list_voltage && rdev->desc->n_voltages) {
1222                 int     count = rdev->desc->n_voltages;
1223                 int     i;
1224                 int     min_uV = INT_MAX;
1225                 int     max_uV = INT_MIN;
1226                 int     cmin = constraints->min_uV;
1227                 int     cmax = constraints->max_uV;
1228
1229                 /* it's safe to autoconfigure fixed-voltage supplies
1230                  * and the constraints are used by list_voltage.
1231                  */
1232                 if (count == 1 && !cmin) {
1233                         cmin = 1;
1234                         cmax = INT_MAX;
1235                         constraints->min_uV = cmin;
1236                         constraints->max_uV = cmax;
1237                 }
1238
1239                 /* voltage constraints are optional */
1240                 if ((cmin == 0) && (cmax == 0))
1241                         return 0;
1242
1243                 /* else require explicit machine-level constraints */
1244                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1245                         rdev_err(rdev, "invalid voltage constraints\n");
1246                         return -EINVAL;
1247                 }
1248
1249                 /* no need to loop voltages if range is continuous */
1250                 if (rdev->desc->continuous_voltage_range)
1251                         return 0;
1252
1253                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1254                 for (i = 0; i < count; i++) {
1255                         int     value;
1256
1257                         value = ops->list_voltage(rdev, i);
1258                         if (value <= 0)
1259                                 continue;
1260
1261                         /* maybe adjust [min_uV..max_uV] */
1262                         if (value >= cmin && value < min_uV)
1263                                 min_uV = value;
1264                         if (value <= cmax && value > max_uV)
1265                                 max_uV = value;
1266                 }
1267
1268                 /* final: [min_uV..max_uV] valid iff constraints valid */
1269                 if (max_uV < min_uV) {
1270                         rdev_err(rdev,
1271                                  "unsupportable voltage constraints %u-%uuV\n",
1272                                  min_uV, max_uV);
1273                         return -EINVAL;
1274                 }
1275
1276                 /* use regulator's subset of machine constraints */
1277                 if (constraints->min_uV < min_uV) {
1278                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1279                                  constraints->min_uV, min_uV);
1280                         constraints->min_uV = min_uV;
1281                 }
1282                 if (constraints->max_uV > max_uV) {
1283                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1284                                  constraints->max_uV, max_uV);
1285                         constraints->max_uV = max_uV;
1286                 }
1287         }
1288
1289         return 0;
1290 }
1291
1292 static int machine_constraints_current(struct regulator_dev *rdev,
1293         struct regulation_constraints *constraints)
1294 {
1295         const struct regulator_ops *ops = rdev->desc->ops;
1296         int ret;
1297
1298         if (!constraints->min_uA && !constraints->max_uA)
1299                 return 0;
1300
1301         if (constraints->min_uA > constraints->max_uA) {
1302                 rdev_err(rdev, "Invalid current constraints\n");
1303                 return -EINVAL;
1304         }
1305
1306         if (!ops->set_current_limit || !ops->get_current_limit) {
1307                 rdev_warn(rdev, "Operation of current configuration missing\n");
1308                 return 0;
1309         }
1310
1311         /* Set regulator current in constraints range */
1312         ret = ops->set_current_limit(rdev, constraints->min_uA,
1313                         constraints->max_uA);
1314         if (ret < 0) {
1315                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1316                 return ret;
1317         }
1318
1319         return 0;
1320 }
1321
1322 static int _regulator_do_enable(struct regulator_dev *rdev);
1323
1324 static int notif_set_limit(struct regulator_dev *rdev,
1325                            int (*set)(struct regulator_dev *, int, int, bool),
1326                            int limit, int severity)
1327 {
1328         bool enable;
1329
1330         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1331                 enable = false;
1332                 limit = 0;
1333         } else {
1334                 enable = true;
1335         }
1336
1337         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1338                 limit = 0;
1339
1340         return set(rdev, limit, severity, enable);
1341 }
1342
1343 static int handle_notify_limits(struct regulator_dev *rdev,
1344                         int (*set)(struct regulator_dev *, int, int, bool),
1345                         struct notification_limit *limits)
1346 {
1347         int ret = 0;
1348
1349         if (!set)
1350                 return -EOPNOTSUPP;
1351
1352         if (limits->prot)
1353                 ret = notif_set_limit(rdev, set, limits->prot,
1354                                       REGULATOR_SEVERITY_PROT);
1355         if (ret)
1356                 return ret;
1357
1358         if (limits->err)
1359                 ret = notif_set_limit(rdev, set, limits->err,
1360                                       REGULATOR_SEVERITY_ERR);
1361         if (ret)
1362                 return ret;
1363
1364         if (limits->warn)
1365                 ret = notif_set_limit(rdev, set, limits->warn,
1366                                       REGULATOR_SEVERITY_WARN);
1367
1368         return ret;
1369 }
1370 /**
1371  * set_machine_constraints - sets regulator constraints
1372  * @rdev: regulator source
1373  *
1374  * Allows platform initialisation code to define and constrain
1375  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1376  * Constraints *must* be set by platform code in order for some
1377  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1378  * set_mode.
1379  */
1380 static int set_machine_constraints(struct regulator_dev *rdev)
1381 {
1382         int ret = 0;
1383         const struct regulator_ops *ops = rdev->desc->ops;
1384
1385         ret = machine_constraints_voltage(rdev, rdev->constraints);
1386         if (ret != 0)
1387                 return ret;
1388
1389         ret = machine_constraints_current(rdev, rdev->constraints);
1390         if (ret != 0)
1391                 return ret;
1392
1393         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1394                 ret = ops->set_input_current_limit(rdev,
1395                                                    rdev->constraints->ilim_uA);
1396                 if (ret < 0) {
1397                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1398                         return ret;
1399                 }
1400         }
1401
1402         /* do we need to setup our suspend state */
1403         if (rdev->constraints->initial_state) {
1404                 ret = suspend_set_initial_state(rdev);
1405                 if (ret < 0) {
1406                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1407                         return ret;
1408                 }
1409         }
1410
1411         if (rdev->constraints->initial_mode) {
1412                 if (!ops->set_mode) {
1413                         rdev_err(rdev, "no set_mode operation\n");
1414                         return -EINVAL;
1415                 }
1416
1417                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1418                 if (ret < 0) {
1419                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1420                         return ret;
1421                 }
1422         } else if (rdev->constraints->system_load) {
1423                 /*
1424                  * We'll only apply the initial system load if an
1425                  * initial mode wasn't specified.
1426                  */
1427                 drms_uA_update(rdev);
1428         }
1429
1430         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1431                 && ops->set_ramp_delay) {
1432                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1433                 if (ret < 0) {
1434                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1435                         return ret;
1436                 }
1437         }
1438
1439         if (rdev->constraints->pull_down && ops->set_pull_down) {
1440                 ret = ops->set_pull_down(rdev);
1441                 if (ret < 0) {
1442                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1443                         return ret;
1444                 }
1445         }
1446
1447         if (rdev->constraints->soft_start && ops->set_soft_start) {
1448                 ret = ops->set_soft_start(rdev);
1449                 if (ret < 0) {
1450                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1451                         return ret;
1452                 }
1453         }
1454
1455         /*
1456          * Existing logic does not warn if over_current_protection is given as
1457          * a constraint but driver does not support that. I think we should
1458          * warn about this type of issues as it is possible someone changes
1459          * PMIC on board to another type - and the another PMIC's driver does
1460          * not support setting protection. Board composer may happily believe
1461          * the DT limits are respected - especially if the new PMIC HW also
1462          * supports protection but the driver does not. I won't change the logic
1463          * without hearing more experienced opinion on this though.
1464          *
1465          * If warning is seen as a good idea then we can merge handling the
1466          * over-curret protection and detection and get rid of this special
1467          * handling.
1468          */
1469         if (rdev->constraints->over_current_protection
1470                 && ops->set_over_current_protection) {
1471                 int lim = rdev->constraints->over_curr_limits.prot;
1472
1473                 ret = ops->set_over_current_protection(rdev, lim,
1474                                                        REGULATOR_SEVERITY_PROT,
1475                                                        true);
1476                 if (ret < 0) {
1477                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481         }
1482
1483         if (rdev->constraints->over_current_detection)
1484                 ret = handle_notify_limits(rdev,
1485                                            ops->set_over_current_protection,
1486                                            &rdev->constraints->over_curr_limits);
1487         if (ret) {
1488                 if (ret != -EOPNOTSUPP) {
1489                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1490                                  ERR_PTR(ret));
1491                         return ret;
1492                 }
1493                 rdev_warn(rdev,
1494                           "IC does not support requested over-current limits\n");
1495         }
1496
1497         if (rdev->constraints->over_voltage_detection)
1498                 ret = handle_notify_limits(rdev,
1499                                            ops->set_over_voltage_protection,
1500                                            &rdev->constraints->over_voltage_limits);
1501         if (ret) {
1502                 if (ret != -EOPNOTSUPP) {
1503                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1504                                  ERR_PTR(ret));
1505                         return ret;
1506                 }
1507                 rdev_warn(rdev,
1508                           "IC does not support requested over voltage limits\n");
1509         }
1510
1511         if (rdev->constraints->under_voltage_detection)
1512                 ret = handle_notify_limits(rdev,
1513                                            ops->set_under_voltage_protection,
1514                                            &rdev->constraints->under_voltage_limits);
1515         if (ret) {
1516                 if (ret != -EOPNOTSUPP) {
1517                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1518                                  ERR_PTR(ret));
1519                         return ret;
1520                 }
1521                 rdev_warn(rdev,
1522                           "IC does not support requested under voltage limits\n");
1523         }
1524
1525         if (rdev->constraints->over_temp_detection)
1526                 ret = handle_notify_limits(rdev,
1527                                            ops->set_thermal_protection,
1528                                            &rdev->constraints->temp_limits);
1529         if (ret) {
1530                 if (ret != -EOPNOTSUPP) {
1531                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1532                                  ERR_PTR(ret));
1533                         return ret;
1534                 }
1535                 rdev_warn(rdev,
1536                           "IC does not support requested temperature limits\n");
1537         }
1538
1539         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1540                 bool ad_state = (rdev->constraints->active_discharge ==
1541                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1542
1543                 ret = ops->set_active_discharge(rdev, ad_state);
1544                 if (ret < 0) {
1545                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1546                         return ret;
1547                 }
1548         }
1549
1550         /*
1551          * If there is no mechanism for controlling the regulator then
1552          * flag it as always_on so we don't end up duplicating checks
1553          * for this so much.  Note that we could control the state of
1554          * a supply to control the output on a regulator that has no
1555          * direct control.
1556          */
1557         if (!rdev->ena_pin && !ops->enable) {
1558                 if (rdev->supply_name && !rdev->supply)
1559                         return -EPROBE_DEFER;
1560
1561                 if (rdev->supply)
1562                         rdev->constraints->always_on =
1563                                 rdev->supply->rdev->constraints->always_on;
1564                 else
1565                         rdev->constraints->always_on = true;
1566         }
1567
1568         if (rdev->desc->off_on_delay)
1569                 rdev->last_off = ktime_get();
1570
1571         /* If the constraints say the regulator should be on at this point
1572          * and we have control then make sure it is enabled.
1573          */
1574         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1575                 /* If we want to enable this regulator, make sure that we know
1576                  * the supplying regulator.
1577                  */
1578                 if (rdev->supply_name && !rdev->supply)
1579                         return -EPROBE_DEFER;
1580
1581                 if (rdev->supply) {
1582                         ret = regulator_enable(rdev->supply);
1583                         if (ret < 0) {
1584                                 _regulator_put(rdev->supply);
1585                                 rdev->supply = NULL;
1586                                 return ret;
1587                         }
1588                 }
1589
1590                 ret = _regulator_do_enable(rdev);
1591                 if (ret < 0 && ret != -EINVAL) {
1592                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1593                         return ret;
1594                 }
1595
1596                 if (rdev->constraints->always_on)
1597                         rdev->use_count++;
1598         }
1599
1600         print_constraints(rdev);
1601         return 0;
1602 }
1603
1604 /**
1605  * set_supply - set regulator supply regulator
1606  * @rdev: regulator name
1607  * @supply_rdev: supply regulator name
1608  *
1609  * Called by platform initialisation code to set the supply regulator for this
1610  * regulator. This ensures that a regulators supply will also be enabled by the
1611  * core if it's child is enabled.
1612  */
1613 static int set_supply(struct regulator_dev *rdev,
1614                       struct regulator_dev *supply_rdev)
1615 {
1616         int err;
1617
1618         rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1619
1620         if (!try_module_get(supply_rdev->owner))
1621                 return -ENODEV;
1622
1623         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1624         if (rdev->supply == NULL) {
1625                 err = -ENOMEM;
1626                 return err;
1627         }
1628         supply_rdev->open_count++;
1629
1630         return 0;
1631 }
1632
1633 /**
1634  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1635  * @rdev:         regulator source
1636  * @consumer_dev_name: dev_name() string for device supply applies to
1637  * @supply:       symbolic name for supply
1638  *
1639  * Allows platform initialisation code to map physical regulator
1640  * sources to symbolic names for supplies for use by devices.  Devices
1641  * should use these symbolic names to request regulators, avoiding the
1642  * need to provide board-specific regulator names as platform data.
1643  */
1644 static int set_consumer_device_supply(struct regulator_dev *rdev,
1645                                       const char *consumer_dev_name,
1646                                       const char *supply)
1647 {
1648         struct regulator_map *node, *new_node;
1649         int has_dev;
1650
1651         if (supply == NULL)
1652                 return -EINVAL;
1653
1654         if (consumer_dev_name != NULL)
1655                 has_dev = 1;
1656         else
1657                 has_dev = 0;
1658
1659         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1660         if (new_node == NULL)
1661                 return -ENOMEM;
1662
1663         new_node->regulator = rdev;
1664         new_node->supply = supply;
1665
1666         if (has_dev) {
1667                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1668                 if (new_node->dev_name == NULL) {
1669                         kfree(new_node);
1670                         return -ENOMEM;
1671                 }
1672         }
1673
1674         mutex_lock(&regulator_list_mutex);
1675         list_for_each_entry(node, &regulator_map_list, list) {
1676                 if (node->dev_name && consumer_dev_name) {
1677                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1678                                 continue;
1679                 } else if (node->dev_name || consumer_dev_name) {
1680                         continue;
1681                 }
1682
1683                 if (strcmp(node->supply, supply) != 0)
1684                         continue;
1685
1686                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1687                          consumer_dev_name,
1688                          dev_name(&node->regulator->dev),
1689                          node->regulator->desc->name,
1690                          supply,
1691                          dev_name(&rdev->dev), rdev_get_name(rdev));
1692                 goto fail;
1693         }
1694
1695         list_add(&new_node->list, &regulator_map_list);
1696         mutex_unlock(&regulator_list_mutex);
1697
1698         return 0;
1699
1700 fail:
1701         mutex_unlock(&regulator_list_mutex);
1702         kfree(new_node->dev_name);
1703         kfree(new_node);
1704         return -EBUSY;
1705 }
1706
1707 static void unset_regulator_supplies(struct regulator_dev *rdev)
1708 {
1709         struct regulator_map *node, *n;
1710
1711         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1712                 if (rdev == node->regulator) {
1713                         list_del(&node->list);
1714                         kfree(node->dev_name);
1715                         kfree(node);
1716                 }
1717         }
1718 }
1719
1720 #ifdef CONFIG_DEBUG_FS
1721 static ssize_t constraint_flags_read_file(struct file *file,
1722                                           char __user *user_buf,
1723                                           size_t count, loff_t *ppos)
1724 {
1725         const struct regulator *regulator = file->private_data;
1726         const struct regulation_constraints *c = regulator->rdev->constraints;
1727         char *buf;
1728         ssize_t ret;
1729
1730         if (!c)
1731                 return 0;
1732
1733         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1734         if (!buf)
1735                 return -ENOMEM;
1736
1737         ret = snprintf(buf, PAGE_SIZE,
1738                         "always_on: %u\n"
1739                         "boot_on: %u\n"
1740                         "apply_uV: %u\n"
1741                         "ramp_disable: %u\n"
1742                         "soft_start: %u\n"
1743                         "pull_down: %u\n"
1744                         "over_current_protection: %u\n",
1745                         c->always_on,
1746                         c->boot_on,
1747                         c->apply_uV,
1748                         c->ramp_disable,
1749                         c->soft_start,
1750                         c->pull_down,
1751                         c->over_current_protection);
1752
1753         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1754         kfree(buf);
1755
1756         return ret;
1757 }
1758
1759 #endif
1760
1761 static const struct file_operations constraint_flags_fops = {
1762 #ifdef CONFIG_DEBUG_FS
1763         .open = simple_open,
1764         .read = constraint_flags_read_file,
1765         .llseek = default_llseek,
1766 #endif
1767 };
1768
1769 #define REG_STR_SIZE    64
1770
1771 static struct regulator *create_regulator(struct regulator_dev *rdev,
1772                                           struct device *dev,
1773                                           const char *supply_name)
1774 {
1775         struct regulator *regulator;
1776         int err = 0;
1777
1778         if (dev) {
1779                 char buf[REG_STR_SIZE];
1780                 int size;
1781
1782                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1783                                 dev->kobj.name, supply_name);
1784                 if (size >= REG_STR_SIZE)
1785                         return NULL;
1786
1787                 supply_name = kstrdup(buf, GFP_KERNEL);
1788                 if (supply_name == NULL)
1789                         return NULL;
1790         } else {
1791                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1792                 if (supply_name == NULL)
1793                         return NULL;
1794         }
1795
1796         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1797         if (regulator == NULL) {
1798                 kfree(supply_name);
1799                 return NULL;
1800         }
1801
1802         regulator->rdev = rdev;
1803         regulator->supply_name = supply_name;
1804
1805         regulator_lock(rdev);
1806         list_add(&regulator->list, &rdev->consumer_list);
1807         regulator_unlock(rdev);
1808
1809         if (dev) {
1810                 regulator->dev = dev;
1811
1812                 /* Add a link to the device sysfs entry */
1813                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1814                                                supply_name);
1815                 if (err) {
1816                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1817                                   dev->kobj.name, ERR_PTR(err));
1818                         /* non-fatal */
1819                 }
1820         }
1821
1822         if (err != -EEXIST)
1823                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1824         if (!regulator->debugfs) {
1825                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1826         } else {
1827                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1828                                    &regulator->uA_load);
1829                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1830                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1831                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1832                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1833                 debugfs_create_file("constraint_flags", 0444,
1834                                     regulator->debugfs, regulator,
1835                                     &constraint_flags_fops);
1836         }
1837
1838         /*
1839          * Check now if the regulator is an always on regulator - if
1840          * it is then we don't need to do nearly so much work for
1841          * enable/disable calls.
1842          */
1843         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1844             _regulator_is_enabled(rdev))
1845                 regulator->always_on = true;
1846
1847         return regulator;
1848 }
1849
1850 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1851 {
1852         if (rdev->constraints && rdev->constraints->enable_time)
1853                 return rdev->constraints->enable_time;
1854         if (rdev->desc->ops->enable_time)
1855                 return rdev->desc->ops->enable_time(rdev);
1856         return rdev->desc->enable_time;
1857 }
1858
1859 static struct regulator_supply_alias *regulator_find_supply_alias(
1860                 struct device *dev, const char *supply)
1861 {
1862         struct regulator_supply_alias *map;
1863
1864         list_for_each_entry(map, &regulator_supply_alias_list, list)
1865                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1866                         return map;
1867
1868         return NULL;
1869 }
1870
1871 static void regulator_supply_alias(struct device **dev, const char **supply)
1872 {
1873         struct regulator_supply_alias *map;
1874
1875         map = regulator_find_supply_alias(*dev, *supply);
1876         if (map) {
1877                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1878                                 *supply, map->alias_supply,
1879                                 dev_name(map->alias_dev));
1880                 *dev = map->alias_dev;
1881                 *supply = map->alias_supply;
1882         }
1883 }
1884
1885 static int regulator_match(struct device *dev, const void *data)
1886 {
1887         struct regulator_dev *r = dev_to_rdev(dev);
1888
1889         return strcmp(rdev_get_name(r), data) == 0;
1890 }
1891
1892 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1893 {
1894         struct device *dev;
1895
1896         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1897
1898         return dev ? dev_to_rdev(dev) : NULL;
1899 }
1900
1901 /**
1902  * regulator_dev_lookup - lookup a regulator device.
1903  * @dev: device for regulator "consumer".
1904  * @supply: Supply name or regulator ID.
1905  *
1906  * If successful, returns a struct regulator_dev that corresponds to the name
1907  * @supply and with the embedded struct device refcount incremented by one.
1908  * The refcount must be dropped by calling put_device().
1909  * On failure one of the following ERR-PTR-encoded values is returned:
1910  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1911  * in the future.
1912  */
1913 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1914                                                   const char *supply)
1915 {
1916         struct regulator_dev *r = NULL;
1917         struct device_node *node;
1918         struct regulator_map *map;
1919         const char *devname = NULL;
1920
1921         regulator_supply_alias(&dev, &supply);
1922
1923         /* first do a dt based lookup */
1924         if (dev && dev->of_node) {
1925                 node = of_get_regulator(dev, supply);
1926                 if (node) {
1927                         r = of_find_regulator_by_node(node);
1928                         if (r)
1929                                 return r;
1930
1931                         /*
1932                          * We have a node, but there is no device.
1933                          * assume it has not registered yet.
1934                          */
1935                         return ERR_PTR(-EPROBE_DEFER);
1936                 }
1937         }
1938
1939         /* if not found, try doing it non-dt way */
1940         if (dev)
1941                 devname = dev_name(dev);
1942
1943         mutex_lock(&regulator_list_mutex);
1944         list_for_each_entry(map, &regulator_map_list, list) {
1945                 /* If the mapping has a device set up it must match */
1946                 if (map->dev_name &&
1947                     (!devname || strcmp(map->dev_name, devname)))
1948                         continue;
1949
1950                 if (strcmp(map->supply, supply) == 0 &&
1951                     get_device(&map->regulator->dev)) {
1952                         r = map->regulator;
1953                         break;
1954                 }
1955         }
1956         mutex_unlock(&regulator_list_mutex);
1957
1958         if (r)
1959                 return r;
1960
1961         r = regulator_lookup_by_name(supply);
1962         if (r)
1963                 return r;
1964
1965         return ERR_PTR(-ENODEV);
1966 }
1967
1968 static int regulator_resolve_supply(struct regulator_dev *rdev)
1969 {
1970         struct regulator_dev *r;
1971         struct device *dev = rdev->dev.parent;
1972         int ret = 0;
1973
1974         /* No supply to resolve? */
1975         if (!rdev->supply_name)
1976                 return 0;
1977
1978         /* Supply already resolved? (fast-path without locking contention) */
1979         if (rdev->supply)
1980                 return 0;
1981
1982         r = regulator_dev_lookup(dev, rdev->supply_name);
1983         if (IS_ERR(r)) {
1984                 ret = PTR_ERR(r);
1985
1986                 /* Did the lookup explicitly defer for us? */
1987                 if (ret == -EPROBE_DEFER)
1988                         goto out;
1989
1990                 if (have_full_constraints()) {
1991                         r = dummy_regulator_rdev;
1992                         get_device(&r->dev);
1993                 } else {
1994                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1995                                 rdev->supply_name, rdev->desc->name);
1996                         ret = -EPROBE_DEFER;
1997                         goto out;
1998                 }
1999         }
2000
2001         if (r == rdev) {
2002                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2003                         rdev->desc->name, rdev->supply_name);
2004                 if (!have_full_constraints()) {
2005                         ret = -EINVAL;
2006                         goto out;
2007                 }
2008                 r = dummy_regulator_rdev;
2009                 get_device(&r->dev);
2010         }
2011
2012         /*
2013          * If the supply's parent device is not the same as the
2014          * regulator's parent device, then ensure the parent device
2015          * is bound before we resolve the supply, in case the parent
2016          * device get probe deferred and unregisters the supply.
2017          */
2018         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2019                 if (!device_is_bound(r->dev.parent)) {
2020                         put_device(&r->dev);
2021                         ret = -EPROBE_DEFER;
2022                         goto out;
2023                 }
2024         }
2025
2026         /* Recursively resolve the supply of the supply */
2027         ret = regulator_resolve_supply(r);
2028         if (ret < 0) {
2029                 put_device(&r->dev);
2030                 goto out;
2031         }
2032
2033         /*
2034          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2035          * between rdev->supply null check and setting rdev->supply in
2036          * set_supply() from concurrent tasks.
2037          */
2038         regulator_lock(rdev);
2039
2040         /* Supply just resolved by a concurrent task? */
2041         if (rdev->supply) {
2042                 regulator_unlock(rdev);
2043                 put_device(&r->dev);
2044                 goto out;
2045         }
2046
2047         ret = set_supply(rdev, r);
2048         if (ret < 0) {
2049                 regulator_unlock(rdev);
2050                 put_device(&r->dev);
2051                 goto out;
2052         }
2053
2054         regulator_unlock(rdev);
2055
2056         /*
2057          * In set_machine_constraints() we may have turned this regulator on
2058          * but we couldn't propagate to the supply if it hadn't been resolved
2059          * yet.  Do it now.
2060          */
2061         if (rdev->use_count) {
2062                 ret = regulator_enable(rdev->supply);
2063                 if (ret < 0) {
2064                         _regulator_put(rdev->supply);
2065                         rdev->supply = NULL;
2066                         goto out;
2067                 }
2068         }
2069
2070 out:
2071         return ret;
2072 }
2073
2074 /* Internal regulator request function */
2075 struct regulator *_regulator_get(struct device *dev, const char *id,
2076                                  enum regulator_get_type get_type)
2077 {
2078         struct regulator_dev *rdev;
2079         struct regulator *regulator;
2080         struct device_link *link;
2081         int ret;
2082
2083         if (get_type >= MAX_GET_TYPE) {
2084                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2085                 return ERR_PTR(-EINVAL);
2086         }
2087
2088         if (id == NULL) {
2089                 pr_err("get() with no identifier\n");
2090                 return ERR_PTR(-EINVAL);
2091         }
2092
2093         rdev = regulator_dev_lookup(dev, id);
2094         if (IS_ERR(rdev)) {
2095                 ret = PTR_ERR(rdev);
2096
2097                 /*
2098                  * If regulator_dev_lookup() fails with error other
2099                  * than -ENODEV our job here is done, we simply return it.
2100                  */
2101                 if (ret != -ENODEV)
2102                         return ERR_PTR(ret);
2103
2104                 if (!have_full_constraints()) {
2105                         dev_warn(dev,
2106                                  "incomplete constraints, dummy supplies not allowed\n");
2107                         return ERR_PTR(-ENODEV);
2108                 }
2109
2110                 switch (get_type) {
2111                 case NORMAL_GET:
2112                         /*
2113                          * Assume that a regulator is physically present and
2114                          * enabled, even if it isn't hooked up, and just
2115                          * provide a dummy.
2116                          */
2117                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2118                         rdev = dummy_regulator_rdev;
2119                         get_device(&rdev->dev);
2120                         break;
2121
2122                 case EXCLUSIVE_GET:
2123                         dev_warn(dev,
2124                                  "dummy supplies not allowed for exclusive requests\n");
2125                         fallthrough;
2126
2127                 default:
2128                         return ERR_PTR(-ENODEV);
2129                 }
2130         }
2131
2132         if (rdev->exclusive) {
2133                 regulator = ERR_PTR(-EPERM);
2134                 put_device(&rdev->dev);
2135                 return regulator;
2136         }
2137
2138         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2139                 regulator = ERR_PTR(-EBUSY);
2140                 put_device(&rdev->dev);
2141                 return regulator;
2142         }
2143
2144         mutex_lock(&regulator_list_mutex);
2145         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2146         mutex_unlock(&regulator_list_mutex);
2147
2148         if (ret != 0) {
2149                 regulator = ERR_PTR(-EPROBE_DEFER);
2150                 put_device(&rdev->dev);
2151                 return regulator;
2152         }
2153
2154         ret = regulator_resolve_supply(rdev);
2155         if (ret < 0) {
2156                 regulator = ERR_PTR(ret);
2157                 put_device(&rdev->dev);
2158                 return regulator;
2159         }
2160
2161         if (!try_module_get(rdev->owner)) {
2162                 regulator = ERR_PTR(-EPROBE_DEFER);
2163                 put_device(&rdev->dev);
2164                 return regulator;
2165         }
2166
2167         regulator = create_regulator(rdev, dev, id);
2168         if (regulator == NULL) {
2169                 regulator = ERR_PTR(-ENOMEM);
2170                 module_put(rdev->owner);
2171                 put_device(&rdev->dev);
2172                 return regulator;
2173         }
2174
2175         rdev->open_count++;
2176         if (get_type == EXCLUSIVE_GET) {
2177                 rdev->exclusive = 1;
2178
2179                 ret = _regulator_is_enabled(rdev);
2180                 if (ret > 0) {
2181                         rdev->use_count = 1;
2182                         regulator->enable_count = 1;
2183                 } else {
2184                         rdev->use_count = 0;
2185                         regulator->enable_count = 0;
2186                 }
2187         }
2188
2189         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2190         if (!IS_ERR_OR_NULL(link))
2191                 regulator->device_link = true;
2192
2193         return regulator;
2194 }
2195
2196 /**
2197  * regulator_get - lookup and obtain a reference to a regulator.
2198  * @dev: device for regulator "consumer"
2199  * @id: Supply name or regulator ID.
2200  *
2201  * Returns a struct regulator corresponding to the regulator producer,
2202  * or IS_ERR() condition containing errno.
2203  *
2204  * Use of supply names configured via set_consumer_device_supply() is
2205  * strongly encouraged.  It is recommended that the supply name used
2206  * should match the name used for the supply and/or the relevant
2207  * device pins in the datasheet.
2208  */
2209 struct regulator *regulator_get(struct device *dev, const char *id)
2210 {
2211         return _regulator_get(dev, id, NORMAL_GET);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_get);
2214
2215 /**
2216  * regulator_get_exclusive - obtain exclusive access to a regulator.
2217  * @dev: device for regulator "consumer"
2218  * @id: Supply name or regulator ID.
2219  *
2220  * Returns a struct regulator corresponding to the regulator producer,
2221  * or IS_ERR() condition containing errno.  Other consumers will be
2222  * unable to obtain this regulator while this reference is held and the
2223  * use count for the regulator will be initialised to reflect the current
2224  * state of the regulator.
2225  *
2226  * This is intended for use by consumers which cannot tolerate shared
2227  * use of the regulator such as those which need to force the
2228  * regulator off for correct operation of the hardware they are
2229  * controlling.
2230  *
2231  * Use of supply names configured via set_consumer_device_supply() is
2232  * strongly encouraged.  It is recommended that the supply name used
2233  * should match the name used for the supply and/or the relevant
2234  * device pins in the datasheet.
2235  */
2236 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2237 {
2238         return _regulator_get(dev, id, EXCLUSIVE_GET);
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2241
2242 /**
2243  * regulator_get_optional - obtain optional access to a regulator.
2244  * @dev: device for regulator "consumer"
2245  * @id: Supply name or regulator ID.
2246  *
2247  * Returns a struct regulator corresponding to the regulator producer,
2248  * or IS_ERR() condition containing errno.
2249  *
2250  * This is intended for use by consumers for devices which can have
2251  * some supplies unconnected in normal use, such as some MMC devices.
2252  * It can allow the regulator core to provide stub supplies for other
2253  * supplies requested using normal regulator_get() calls without
2254  * disrupting the operation of drivers that can handle absent
2255  * supplies.
2256  *
2257  * Use of supply names configured via set_consumer_device_supply() is
2258  * strongly encouraged.  It is recommended that the supply name used
2259  * should match the name used for the supply and/or the relevant
2260  * device pins in the datasheet.
2261  */
2262 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2263 {
2264         return _regulator_get(dev, id, OPTIONAL_GET);
2265 }
2266 EXPORT_SYMBOL_GPL(regulator_get_optional);
2267
2268 static void destroy_regulator(struct regulator *regulator)
2269 {
2270         struct regulator_dev *rdev = regulator->rdev;
2271
2272         debugfs_remove_recursive(regulator->debugfs);
2273
2274         if (regulator->dev) {
2275                 if (regulator->device_link)
2276                         device_link_remove(regulator->dev, &rdev->dev);
2277
2278                 /* remove any sysfs entries */
2279                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2280         }
2281
2282         regulator_lock(rdev);
2283         list_del(&regulator->list);
2284
2285         rdev->open_count--;
2286         rdev->exclusive = 0;
2287         regulator_unlock(rdev);
2288
2289         kfree_const(regulator->supply_name);
2290         kfree(regulator);
2291 }
2292
2293 /* regulator_list_mutex lock held by regulator_put() */
2294 static void _regulator_put(struct regulator *regulator)
2295 {
2296         struct regulator_dev *rdev;
2297
2298         if (IS_ERR_OR_NULL(regulator))
2299                 return;
2300
2301         lockdep_assert_held_once(&regulator_list_mutex);
2302
2303         /* Docs say you must disable before calling regulator_put() */
2304         WARN_ON(regulator->enable_count);
2305
2306         rdev = regulator->rdev;
2307
2308         destroy_regulator(regulator);
2309
2310         module_put(rdev->owner);
2311         put_device(&rdev->dev);
2312 }
2313
2314 /**
2315  * regulator_put - "free" the regulator source
2316  * @regulator: regulator source
2317  *
2318  * Note: drivers must ensure that all regulator_enable calls made on this
2319  * regulator source are balanced by regulator_disable calls prior to calling
2320  * this function.
2321  */
2322 void regulator_put(struct regulator *regulator)
2323 {
2324         mutex_lock(&regulator_list_mutex);
2325         _regulator_put(regulator);
2326         mutex_unlock(&regulator_list_mutex);
2327 }
2328 EXPORT_SYMBOL_GPL(regulator_put);
2329
2330 /**
2331  * regulator_register_supply_alias - Provide device alias for supply lookup
2332  *
2333  * @dev: device that will be given as the regulator "consumer"
2334  * @id: Supply name or regulator ID
2335  * @alias_dev: device that should be used to lookup the supply
2336  * @alias_id: Supply name or regulator ID that should be used to lookup the
2337  * supply
2338  *
2339  * All lookups for id on dev will instead be conducted for alias_id on
2340  * alias_dev.
2341  */
2342 int regulator_register_supply_alias(struct device *dev, const char *id,
2343                                     struct device *alias_dev,
2344                                     const char *alias_id)
2345 {
2346         struct regulator_supply_alias *map;
2347
2348         map = regulator_find_supply_alias(dev, id);
2349         if (map)
2350                 return -EEXIST;
2351
2352         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2353         if (!map)
2354                 return -ENOMEM;
2355
2356         map->src_dev = dev;
2357         map->src_supply = id;
2358         map->alias_dev = alias_dev;
2359         map->alias_supply = alias_id;
2360
2361         list_add(&map->list, &regulator_supply_alias_list);
2362
2363         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2364                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2365
2366         return 0;
2367 }
2368 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2369
2370 /**
2371  * regulator_unregister_supply_alias - Remove device alias
2372  *
2373  * @dev: device that will be given as the regulator "consumer"
2374  * @id: Supply name or regulator ID
2375  *
2376  * Remove a lookup alias if one exists for id on dev.
2377  */
2378 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2379 {
2380         struct regulator_supply_alias *map;
2381
2382         map = regulator_find_supply_alias(dev, id);
2383         if (map) {
2384                 list_del(&map->list);
2385                 kfree(map);
2386         }
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2389
2390 /**
2391  * regulator_bulk_register_supply_alias - register multiple aliases
2392  *
2393  * @dev: device that will be given as the regulator "consumer"
2394  * @id: List of supply names or regulator IDs
2395  * @alias_dev: device that should be used to lookup the supply
2396  * @alias_id: List of supply names or regulator IDs that should be used to
2397  * lookup the supply
2398  * @num_id: Number of aliases to register
2399  *
2400  * @return 0 on success, an errno on failure.
2401  *
2402  * This helper function allows drivers to register several supply
2403  * aliases in one operation.  If any of the aliases cannot be
2404  * registered any aliases that were registered will be removed
2405  * before returning to the caller.
2406  */
2407 int regulator_bulk_register_supply_alias(struct device *dev,
2408                                          const char *const *id,
2409                                          struct device *alias_dev,
2410                                          const char *const *alias_id,
2411                                          int num_id)
2412 {
2413         int i;
2414         int ret;
2415
2416         for (i = 0; i < num_id; ++i) {
2417                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2418                                                       alias_id[i]);
2419                 if (ret < 0)
2420                         goto err;
2421         }
2422
2423         return 0;
2424
2425 err:
2426         dev_err(dev,
2427                 "Failed to create supply alias %s,%s -> %s,%s\n",
2428                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2429
2430         while (--i >= 0)
2431                 regulator_unregister_supply_alias(dev, id[i]);
2432
2433         return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2436
2437 /**
2438  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2439  *
2440  * @dev: device that will be given as the regulator "consumer"
2441  * @id: List of supply names or regulator IDs
2442  * @num_id: Number of aliases to unregister
2443  *
2444  * This helper function allows drivers to unregister several supply
2445  * aliases in one operation.
2446  */
2447 void regulator_bulk_unregister_supply_alias(struct device *dev,
2448                                             const char *const *id,
2449                                             int num_id)
2450 {
2451         int i;
2452
2453         for (i = 0; i < num_id; ++i)
2454                 regulator_unregister_supply_alias(dev, id[i]);
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2457
2458
2459 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2460 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2461                                 const struct regulator_config *config)
2462 {
2463         struct regulator_enable_gpio *pin, *new_pin;
2464         struct gpio_desc *gpiod;
2465
2466         gpiod = config->ena_gpiod;
2467         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2468
2469         mutex_lock(&regulator_list_mutex);
2470
2471         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2472                 if (pin->gpiod == gpiod) {
2473                         rdev_dbg(rdev, "GPIO is already used\n");
2474                         goto update_ena_gpio_to_rdev;
2475                 }
2476         }
2477
2478         if (new_pin == NULL) {
2479                 mutex_unlock(&regulator_list_mutex);
2480                 return -ENOMEM;
2481         }
2482
2483         pin = new_pin;
2484         new_pin = NULL;
2485
2486         pin->gpiod = gpiod;
2487         list_add(&pin->list, &regulator_ena_gpio_list);
2488
2489 update_ena_gpio_to_rdev:
2490         pin->request_count++;
2491         rdev->ena_pin = pin;
2492
2493         mutex_unlock(&regulator_list_mutex);
2494         kfree(new_pin);
2495
2496         return 0;
2497 }
2498
2499 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2500 {
2501         struct regulator_enable_gpio *pin, *n;
2502
2503         if (!rdev->ena_pin)
2504                 return;
2505
2506         /* Free the GPIO only in case of no use */
2507         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2508                 if (pin != rdev->ena_pin)
2509                         continue;
2510
2511                 if (--pin->request_count)
2512                         break;
2513
2514                 gpiod_put(pin->gpiod);
2515                 list_del(&pin->list);
2516                 kfree(pin);
2517                 break;
2518         }
2519
2520         rdev->ena_pin = NULL;
2521 }
2522
2523 /**
2524  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2525  * @rdev: regulator_dev structure
2526  * @enable: enable GPIO at initial use?
2527  *
2528  * GPIO is enabled in case of initial use. (enable_count is 0)
2529  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2530  */
2531 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2532 {
2533         struct regulator_enable_gpio *pin = rdev->ena_pin;
2534
2535         if (!pin)
2536                 return -EINVAL;
2537
2538         if (enable) {
2539                 /* Enable GPIO at initial use */
2540                 if (pin->enable_count == 0)
2541                         gpiod_set_value_cansleep(pin->gpiod, 1);
2542
2543                 pin->enable_count++;
2544         } else {
2545                 if (pin->enable_count > 1) {
2546                         pin->enable_count--;
2547                         return 0;
2548                 }
2549
2550                 /* Disable GPIO if not used */
2551                 if (pin->enable_count <= 1) {
2552                         gpiod_set_value_cansleep(pin->gpiod, 0);
2553                         pin->enable_count = 0;
2554                 }
2555         }
2556
2557         return 0;
2558 }
2559
2560 /**
2561  * _regulator_delay_helper - a delay helper function
2562  * @delay: time to delay in microseconds
2563  *
2564  * Delay for the requested amount of time as per the guidelines in:
2565  *
2566  *     Documentation/timers/timers-howto.rst
2567  *
2568  * The assumption here is that these regulator operations will never used in
2569  * atomic context and therefore sleeping functions can be used.
2570  */
2571 static void _regulator_delay_helper(unsigned int delay)
2572 {
2573         unsigned int ms = delay / 1000;
2574         unsigned int us = delay % 1000;
2575
2576         if (ms > 0) {
2577                 /*
2578                  * For small enough values, handle super-millisecond
2579                  * delays in the usleep_range() call below.
2580                  */
2581                 if (ms < 20)
2582                         us += ms * 1000;
2583                 else
2584                         msleep(ms);
2585         }
2586
2587         /*
2588          * Give the scheduler some room to coalesce with any other
2589          * wakeup sources. For delays shorter than 10 us, don't even
2590          * bother setting up high-resolution timers and just busy-
2591          * loop.
2592          */
2593         if (us >= 10)
2594                 usleep_range(us, us + 100);
2595         else
2596                 udelay(us);
2597 }
2598
2599 /**
2600  * _regulator_check_status_enabled
2601  *
2602  * A helper function to check if the regulator status can be interpreted
2603  * as 'regulator is enabled'.
2604  * @rdev: the regulator device to check
2605  *
2606  * Return:
2607  * * 1                  - if status shows regulator is in enabled state
2608  * * 0                  - if not enabled state
2609  * * Error Value        - as received from ops->get_status()
2610  */
2611 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2612 {
2613         int ret = rdev->desc->ops->get_status(rdev);
2614
2615         if (ret < 0) {
2616                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2617                 return ret;
2618         }
2619
2620         switch (ret) {
2621         case REGULATOR_STATUS_OFF:
2622         case REGULATOR_STATUS_ERROR:
2623         case REGULATOR_STATUS_UNDEFINED:
2624                 return 0;
2625         default:
2626                 return 1;
2627         }
2628 }
2629
2630 static int _regulator_do_enable(struct regulator_dev *rdev)
2631 {
2632         int ret, delay;
2633
2634         /* Query before enabling in case configuration dependent.  */
2635         ret = _regulator_get_enable_time(rdev);
2636         if (ret >= 0) {
2637                 delay = ret;
2638         } else {
2639                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2640                 delay = 0;
2641         }
2642
2643         trace_regulator_enable(rdev_get_name(rdev));
2644
2645         if (rdev->desc->off_on_delay && rdev->last_off) {
2646                 /* if needed, keep a distance of off_on_delay from last time
2647                  * this regulator was disabled.
2648                  */
2649                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2650                 s64 remaining = ktime_us_delta(end, ktime_get());
2651
2652                 if (remaining > 0)
2653                         _regulator_delay_helper(remaining);
2654         }
2655
2656         if (rdev->ena_pin) {
2657                 if (!rdev->ena_gpio_state) {
2658                         ret = regulator_ena_gpio_ctrl(rdev, true);
2659                         if (ret < 0)
2660                                 return ret;
2661                         rdev->ena_gpio_state = 1;
2662                 }
2663         } else if (rdev->desc->ops->enable) {
2664                 ret = rdev->desc->ops->enable(rdev);
2665                 if (ret < 0)
2666                         return ret;
2667         } else {
2668                 return -EINVAL;
2669         }
2670
2671         /* Allow the regulator to ramp; it would be useful to extend
2672          * this for bulk operations so that the regulators can ramp
2673          * together.
2674          */
2675         trace_regulator_enable_delay(rdev_get_name(rdev));
2676
2677         /* If poll_enabled_time is set, poll upto the delay calculated
2678          * above, delaying poll_enabled_time uS to check if the regulator
2679          * actually got enabled.
2680          * If the regulator isn't enabled after our delay helper has expired,
2681          * return -ETIMEDOUT.
2682          */
2683         if (rdev->desc->poll_enabled_time) {
2684                 unsigned int time_remaining = delay;
2685
2686                 while (time_remaining > 0) {
2687                         _regulator_delay_helper(rdev->desc->poll_enabled_time);
2688
2689                         if (rdev->desc->ops->get_status) {
2690                                 ret = _regulator_check_status_enabled(rdev);
2691                                 if (ret < 0)
2692                                         return ret;
2693                                 else if (ret)
2694                                         break;
2695                         } else if (rdev->desc->ops->is_enabled(rdev))
2696                                 break;
2697
2698                         time_remaining -= rdev->desc->poll_enabled_time;
2699                 }
2700
2701                 if (time_remaining <= 0) {
2702                         rdev_err(rdev, "Enabled check timed out\n");
2703                         return -ETIMEDOUT;
2704                 }
2705         } else {
2706                 _regulator_delay_helper(delay);
2707         }
2708
2709         trace_regulator_enable_complete(rdev_get_name(rdev));
2710
2711         return 0;
2712 }
2713
2714 /**
2715  * _regulator_handle_consumer_enable - handle that a consumer enabled
2716  * @regulator: regulator source
2717  *
2718  * Some things on a regulator consumer (like the contribution towards total
2719  * load on the regulator) only have an effect when the consumer wants the
2720  * regulator enabled.  Explained in example with two consumers of the same
2721  * regulator:
2722  *   consumer A: set_load(100);       => total load = 0
2723  *   consumer A: regulator_enable();  => total load = 100
2724  *   consumer B: set_load(1000);      => total load = 100
2725  *   consumer B: regulator_enable();  => total load = 1100
2726  *   consumer A: regulator_disable(); => total_load = 1000
2727  *
2728  * This function (together with _regulator_handle_consumer_disable) is
2729  * responsible for keeping track of the refcount for a given regulator consumer
2730  * and applying / unapplying these things.
2731  *
2732  * Returns 0 upon no error; -error upon error.
2733  */
2734 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2735 {
2736         struct regulator_dev *rdev = regulator->rdev;
2737
2738         lockdep_assert_held_once(&rdev->mutex.base);
2739
2740         regulator->enable_count++;
2741         if (regulator->uA_load && regulator->enable_count == 1)
2742                 return drms_uA_update(rdev);
2743
2744         return 0;
2745 }
2746
2747 /**
2748  * _regulator_handle_consumer_disable - handle that a consumer disabled
2749  * @regulator: regulator source
2750  *
2751  * The opposite of _regulator_handle_consumer_enable().
2752  *
2753  * Returns 0 upon no error; -error upon error.
2754  */
2755 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2756 {
2757         struct regulator_dev *rdev = regulator->rdev;
2758
2759         lockdep_assert_held_once(&rdev->mutex.base);
2760
2761         if (!regulator->enable_count) {
2762                 rdev_err(rdev, "Underflow of regulator enable count\n");
2763                 return -EINVAL;
2764         }
2765
2766         regulator->enable_count--;
2767         if (regulator->uA_load && regulator->enable_count == 0)
2768                 return drms_uA_update(rdev);
2769
2770         return 0;
2771 }
2772
2773 /* locks held by regulator_enable() */
2774 static int _regulator_enable(struct regulator *regulator)
2775 {
2776         struct regulator_dev *rdev = regulator->rdev;
2777         int ret;
2778
2779         lockdep_assert_held_once(&rdev->mutex.base);
2780
2781         if (rdev->use_count == 0 && rdev->supply) {
2782                 ret = _regulator_enable(rdev->supply);
2783                 if (ret < 0)
2784                         return ret;
2785         }
2786
2787         /* balance only if there are regulators coupled */
2788         if (rdev->coupling_desc.n_coupled > 1) {
2789                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2790                 if (ret < 0)
2791                         goto err_disable_supply;
2792         }
2793
2794         ret = _regulator_handle_consumer_enable(regulator);
2795         if (ret < 0)
2796                 goto err_disable_supply;
2797
2798         if (rdev->use_count == 0) {
2799                 /*
2800                  * The regulator may already be enabled if it's not switchable
2801                  * or was left on
2802                  */
2803                 ret = _regulator_is_enabled(rdev);
2804                 if (ret == -EINVAL || ret == 0) {
2805                         if (!regulator_ops_is_valid(rdev,
2806                                         REGULATOR_CHANGE_STATUS)) {
2807                                 ret = -EPERM;
2808                                 goto err_consumer_disable;
2809                         }
2810
2811                         ret = _regulator_do_enable(rdev);
2812                         if (ret < 0)
2813                                 goto err_consumer_disable;
2814
2815                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2816                                              NULL);
2817                 } else if (ret < 0) {
2818                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2819                         goto err_consumer_disable;
2820                 }
2821                 /* Fallthrough on positive return values - already enabled */
2822         }
2823
2824         rdev->use_count++;
2825
2826         return 0;
2827
2828 err_consumer_disable:
2829         _regulator_handle_consumer_disable(regulator);
2830
2831 err_disable_supply:
2832         if (rdev->use_count == 0 && rdev->supply)
2833                 _regulator_disable(rdev->supply);
2834
2835         return ret;
2836 }
2837
2838 /**
2839  * regulator_enable - enable regulator output
2840  * @regulator: regulator source
2841  *
2842  * Request that the regulator be enabled with the regulator output at
2843  * the predefined voltage or current value.  Calls to regulator_enable()
2844  * must be balanced with calls to regulator_disable().
2845  *
2846  * NOTE: the output value can be set by other drivers, boot loader or may be
2847  * hardwired in the regulator.
2848  */
2849 int regulator_enable(struct regulator *regulator)
2850 {
2851         struct regulator_dev *rdev = regulator->rdev;
2852         struct ww_acquire_ctx ww_ctx;
2853         int ret;
2854
2855         regulator_lock_dependent(rdev, &ww_ctx);
2856         ret = _regulator_enable(regulator);
2857         regulator_unlock_dependent(rdev, &ww_ctx);
2858
2859         return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(regulator_enable);
2862
2863 static int _regulator_do_disable(struct regulator_dev *rdev)
2864 {
2865         int ret;
2866
2867         trace_regulator_disable(rdev_get_name(rdev));
2868
2869         if (rdev->ena_pin) {
2870                 if (rdev->ena_gpio_state) {
2871                         ret = regulator_ena_gpio_ctrl(rdev, false);
2872                         if (ret < 0)
2873                                 return ret;
2874                         rdev->ena_gpio_state = 0;
2875                 }
2876
2877         } else if (rdev->desc->ops->disable) {
2878                 ret = rdev->desc->ops->disable(rdev);
2879                 if (ret != 0)
2880                         return ret;
2881         }
2882
2883         if (rdev->desc->off_on_delay)
2884                 rdev->last_off = ktime_get();
2885
2886         trace_regulator_disable_complete(rdev_get_name(rdev));
2887
2888         return 0;
2889 }
2890
2891 /* locks held by regulator_disable() */
2892 static int _regulator_disable(struct regulator *regulator)
2893 {
2894         struct regulator_dev *rdev = regulator->rdev;
2895         int ret = 0;
2896
2897         lockdep_assert_held_once(&rdev->mutex.base);
2898
2899         if (WARN(rdev->use_count <= 0,
2900                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2901                 return -EIO;
2902
2903         /* are we the last user and permitted to disable ? */
2904         if (rdev->use_count == 1 &&
2905             (rdev->constraints && !rdev->constraints->always_on)) {
2906
2907                 /* we are last user */
2908                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2909                         ret = _notifier_call_chain(rdev,
2910                                                    REGULATOR_EVENT_PRE_DISABLE,
2911                                                    NULL);
2912                         if (ret & NOTIFY_STOP_MASK)
2913                                 return -EINVAL;
2914
2915                         ret = _regulator_do_disable(rdev);
2916                         if (ret < 0) {
2917                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2918                                 _notifier_call_chain(rdev,
2919                                                 REGULATOR_EVENT_ABORT_DISABLE,
2920                                                 NULL);
2921                                 return ret;
2922                         }
2923                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2924                                         NULL);
2925                 }
2926
2927                 rdev->use_count = 0;
2928         } else if (rdev->use_count > 1) {
2929                 rdev->use_count--;
2930         }
2931
2932         if (ret == 0)
2933                 ret = _regulator_handle_consumer_disable(regulator);
2934
2935         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2936                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2937
2938         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2939                 ret = _regulator_disable(rdev->supply);
2940
2941         return ret;
2942 }
2943
2944 /**
2945  * regulator_disable - disable regulator output
2946  * @regulator: regulator source
2947  *
2948  * Disable the regulator output voltage or current.  Calls to
2949  * regulator_enable() must be balanced with calls to
2950  * regulator_disable().
2951  *
2952  * NOTE: this will only disable the regulator output if no other consumer
2953  * devices have it enabled, the regulator device supports disabling and
2954  * machine constraints permit this operation.
2955  */
2956 int regulator_disable(struct regulator *regulator)
2957 {
2958         struct regulator_dev *rdev = regulator->rdev;
2959         struct ww_acquire_ctx ww_ctx;
2960         int ret;
2961
2962         regulator_lock_dependent(rdev, &ww_ctx);
2963         ret = _regulator_disable(regulator);
2964         regulator_unlock_dependent(rdev, &ww_ctx);
2965
2966         return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(regulator_disable);
2969
2970 /* locks held by regulator_force_disable() */
2971 static int _regulator_force_disable(struct regulator_dev *rdev)
2972 {
2973         int ret = 0;
2974
2975         lockdep_assert_held_once(&rdev->mutex.base);
2976
2977         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2978                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2979         if (ret & NOTIFY_STOP_MASK)
2980                 return -EINVAL;
2981
2982         ret = _regulator_do_disable(rdev);
2983         if (ret < 0) {
2984                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2985                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2986                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2987                 return ret;
2988         }
2989
2990         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2991                         REGULATOR_EVENT_DISABLE, NULL);
2992
2993         return 0;
2994 }
2995
2996 /**
2997  * regulator_force_disable - force disable regulator output
2998  * @regulator: regulator source
2999  *
3000  * Forcibly disable the regulator output voltage or current.
3001  * NOTE: this *will* disable the regulator output even if other consumer
3002  * devices have it enabled. This should be used for situations when device
3003  * damage will likely occur if the regulator is not disabled (e.g. over temp).
3004  */
3005 int regulator_force_disable(struct regulator *regulator)
3006 {
3007         struct regulator_dev *rdev = regulator->rdev;
3008         struct ww_acquire_ctx ww_ctx;
3009         int ret;
3010
3011         regulator_lock_dependent(rdev, &ww_ctx);
3012
3013         ret = _regulator_force_disable(regulator->rdev);
3014
3015         if (rdev->coupling_desc.n_coupled > 1)
3016                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3017
3018         if (regulator->uA_load) {
3019                 regulator->uA_load = 0;
3020                 ret = drms_uA_update(rdev);
3021         }
3022
3023         if (rdev->use_count != 0 && rdev->supply)
3024                 _regulator_disable(rdev->supply);
3025
3026         regulator_unlock_dependent(rdev, &ww_ctx);
3027
3028         return ret;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_force_disable);
3031
3032 static void regulator_disable_work(struct work_struct *work)
3033 {
3034         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3035                                                   disable_work.work);
3036         struct ww_acquire_ctx ww_ctx;
3037         int count, i, ret;
3038         struct regulator *regulator;
3039         int total_count = 0;
3040
3041         regulator_lock_dependent(rdev, &ww_ctx);
3042
3043         /*
3044          * Workqueue functions queue the new work instance while the previous
3045          * work instance is being processed. Cancel the queued work instance
3046          * as the work instance under processing does the job of the queued
3047          * work instance.
3048          */
3049         cancel_delayed_work(&rdev->disable_work);
3050
3051         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3052                 count = regulator->deferred_disables;
3053
3054                 if (!count)
3055                         continue;
3056
3057                 total_count += count;
3058                 regulator->deferred_disables = 0;
3059
3060                 for (i = 0; i < count; i++) {
3061                         ret = _regulator_disable(regulator);
3062                         if (ret != 0)
3063                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3064                                          ERR_PTR(ret));
3065                 }
3066         }
3067         WARN_ON(!total_count);
3068
3069         if (rdev->coupling_desc.n_coupled > 1)
3070                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3071
3072         regulator_unlock_dependent(rdev, &ww_ctx);
3073 }
3074
3075 /**
3076  * regulator_disable_deferred - disable regulator output with delay
3077  * @regulator: regulator source
3078  * @ms: milliseconds until the regulator is disabled
3079  *
3080  * Execute regulator_disable() on the regulator after a delay.  This
3081  * is intended for use with devices that require some time to quiesce.
3082  *
3083  * NOTE: this will only disable the regulator output if no other consumer
3084  * devices have it enabled, the regulator device supports disabling and
3085  * machine constraints permit this operation.
3086  */
3087 int regulator_disable_deferred(struct regulator *regulator, int ms)
3088 {
3089         struct regulator_dev *rdev = regulator->rdev;
3090
3091         if (!ms)
3092                 return regulator_disable(regulator);
3093
3094         regulator_lock(rdev);
3095         regulator->deferred_disables++;
3096         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3097                          msecs_to_jiffies(ms));
3098         regulator_unlock(rdev);
3099
3100         return 0;
3101 }
3102 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3103
3104 static int _regulator_is_enabled(struct regulator_dev *rdev)
3105 {
3106         /* A GPIO control always takes precedence */
3107         if (rdev->ena_pin)
3108                 return rdev->ena_gpio_state;
3109
3110         /* If we don't know then assume that the regulator is always on */
3111         if (!rdev->desc->ops->is_enabled)
3112                 return 1;
3113
3114         return rdev->desc->ops->is_enabled(rdev);
3115 }
3116
3117 static int _regulator_list_voltage(struct regulator_dev *rdev,
3118                                    unsigned selector, int lock)
3119 {
3120         const struct regulator_ops *ops = rdev->desc->ops;
3121         int ret;
3122
3123         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3124                 return rdev->desc->fixed_uV;
3125
3126         if (ops->list_voltage) {
3127                 if (selector >= rdev->desc->n_voltages)
3128                         return -EINVAL;
3129                 if (selector < rdev->desc->linear_min_sel)
3130                         return 0;
3131                 if (lock)
3132                         regulator_lock(rdev);
3133                 ret = ops->list_voltage(rdev, selector);
3134                 if (lock)
3135                         regulator_unlock(rdev);
3136         } else if (rdev->is_switch && rdev->supply) {
3137                 ret = _regulator_list_voltage(rdev->supply->rdev,
3138                                               selector, lock);
3139         } else {
3140                 return -EINVAL;
3141         }
3142
3143         if (ret > 0) {
3144                 if (ret < rdev->constraints->min_uV)
3145                         ret = 0;
3146                 else if (ret > rdev->constraints->max_uV)
3147                         ret = 0;
3148         }
3149
3150         return ret;
3151 }
3152
3153 /**
3154  * regulator_is_enabled - is the regulator output enabled
3155  * @regulator: regulator source
3156  *
3157  * Returns positive if the regulator driver backing the source/client
3158  * has requested that the device be enabled, zero if it hasn't, else a
3159  * negative errno code.
3160  *
3161  * Note that the device backing this regulator handle can have multiple
3162  * users, so it might be enabled even if regulator_enable() was never
3163  * called for this particular source.
3164  */
3165 int regulator_is_enabled(struct regulator *regulator)
3166 {
3167         int ret;
3168
3169         if (regulator->always_on)
3170                 return 1;
3171
3172         regulator_lock(regulator->rdev);
3173         ret = _regulator_is_enabled(regulator->rdev);
3174         regulator_unlock(regulator->rdev);
3175
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3179
3180 /**
3181  * regulator_count_voltages - count regulator_list_voltage() selectors
3182  * @regulator: regulator source
3183  *
3184  * Returns number of selectors, or negative errno.  Selectors are
3185  * numbered starting at zero, and typically correspond to bitfields
3186  * in hardware registers.
3187  */
3188 int regulator_count_voltages(struct regulator *regulator)
3189 {
3190         struct regulator_dev    *rdev = regulator->rdev;
3191
3192         if (rdev->desc->n_voltages)
3193                 return rdev->desc->n_voltages;
3194
3195         if (!rdev->is_switch || !rdev->supply)
3196                 return -EINVAL;
3197
3198         return regulator_count_voltages(rdev->supply);
3199 }
3200 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3201
3202 /**
3203  * regulator_list_voltage - enumerate supported voltages
3204  * @regulator: regulator source
3205  * @selector: identify voltage to list
3206  * Context: can sleep
3207  *
3208  * Returns a voltage that can be passed to @regulator_set_voltage(),
3209  * zero if this selector code can't be used on this system, or a
3210  * negative errno.
3211  */
3212 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3213 {
3214         return _regulator_list_voltage(regulator->rdev, selector, 1);
3215 }
3216 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3217
3218 /**
3219  * regulator_get_regmap - get the regulator's register map
3220  * @regulator: regulator source
3221  *
3222  * Returns the register map for the given regulator, or an ERR_PTR value
3223  * if the regulator doesn't use regmap.
3224  */
3225 struct regmap *regulator_get_regmap(struct regulator *regulator)
3226 {
3227         struct regmap *map = regulator->rdev->regmap;
3228
3229         return map ? map : ERR_PTR(-EOPNOTSUPP);
3230 }
3231
3232 /**
3233  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3234  * @regulator: regulator source
3235  * @vsel_reg: voltage selector register, output parameter
3236  * @vsel_mask: mask for voltage selector bitfield, output parameter
3237  *
3238  * Returns the hardware register offset and bitmask used for setting the
3239  * regulator voltage. This might be useful when configuring voltage-scaling
3240  * hardware or firmware that can make I2C requests behind the kernel's back,
3241  * for example.
3242  *
3243  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3244  * and 0 is returned, otherwise a negative errno is returned.
3245  */
3246 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3247                                          unsigned *vsel_reg,
3248                                          unsigned *vsel_mask)
3249 {
3250         struct regulator_dev *rdev = regulator->rdev;
3251         const struct regulator_ops *ops = rdev->desc->ops;
3252
3253         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3254                 return -EOPNOTSUPP;
3255
3256         *vsel_reg = rdev->desc->vsel_reg;
3257         *vsel_mask = rdev->desc->vsel_mask;
3258
3259         return 0;
3260 }
3261 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3262
3263 /**
3264  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3265  * @regulator: regulator source
3266  * @selector: identify voltage to list
3267  *
3268  * Converts the selector to a hardware-specific voltage selector that can be
3269  * directly written to the regulator registers. The address of the voltage
3270  * register can be determined by calling @regulator_get_hardware_vsel_register.
3271  *
3272  * On error a negative errno is returned.
3273  */
3274 int regulator_list_hardware_vsel(struct regulator *regulator,
3275                                  unsigned selector)
3276 {
3277         struct regulator_dev *rdev = regulator->rdev;
3278         const struct regulator_ops *ops = rdev->desc->ops;
3279
3280         if (selector >= rdev->desc->n_voltages)
3281                 return -EINVAL;
3282         if (selector < rdev->desc->linear_min_sel)
3283                 return 0;
3284         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3285                 return -EOPNOTSUPP;
3286
3287         return selector;
3288 }
3289 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3290
3291 /**
3292  * regulator_get_linear_step - return the voltage step size between VSEL values
3293  * @regulator: regulator source
3294  *
3295  * Returns the voltage step size between VSEL values for linear
3296  * regulators, or return 0 if the regulator isn't a linear regulator.
3297  */
3298 unsigned int regulator_get_linear_step(struct regulator *regulator)
3299 {
3300         struct regulator_dev *rdev = regulator->rdev;
3301
3302         return rdev->desc->uV_step;
3303 }
3304 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3305
3306 /**
3307  * regulator_is_supported_voltage - check if a voltage range can be supported
3308  *
3309  * @regulator: Regulator to check.
3310  * @min_uV: Minimum required voltage in uV.
3311  * @max_uV: Maximum required voltage in uV.
3312  *
3313  * Returns a boolean.
3314  */
3315 int regulator_is_supported_voltage(struct regulator *regulator,
3316                                    int min_uV, int max_uV)
3317 {
3318         struct regulator_dev *rdev = regulator->rdev;
3319         int i, voltages, ret;
3320
3321         /* If we can't change voltage check the current voltage */
3322         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3323                 ret = regulator_get_voltage(regulator);
3324                 if (ret >= 0)
3325                         return min_uV <= ret && ret <= max_uV;
3326                 else
3327                         return ret;
3328         }
3329
3330         /* Any voltage within constrains range is fine? */
3331         if (rdev->desc->continuous_voltage_range)
3332                 return min_uV >= rdev->constraints->min_uV &&
3333                                 max_uV <= rdev->constraints->max_uV;
3334
3335         ret = regulator_count_voltages(regulator);
3336         if (ret < 0)
3337                 return 0;
3338         voltages = ret;
3339
3340         for (i = 0; i < voltages; i++) {
3341                 ret = regulator_list_voltage(regulator, i);
3342
3343                 if (ret >= min_uV && ret <= max_uV)
3344                         return 1;
3345         }
3346
3347         return 0;
3348 }
3349 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3350
3351 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3352                                  int max_uV)
3353 {
3354         const struct regulator_desc *desc = rdev->desc;
3355
3356         if (desc->ops->map_voltage)
3357                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3358
3359         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3360                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3361
3362         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3363                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3364
3365         if (desc->ops->list_voltage ==
3366                 regulator_list_voltage_pickable_linear_range)
3367                 return regulator_map_voltage_pickable_linear_range(rdev,
3368                                                         min_uV, max_uV);
3369
3370         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3371 }
3372
3373 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3374                                        int min_uV, int max_uV,
3375                                        unsigned *selector)
3376 {
3377         struct pre_voltage_change_data data;
3378         int ret;
3379
3380         data.old_uV = regulator_get_voltage_rdev(rdev);
3381         data.min_uV = min_uV;
3382         data.max_uV = max_uV;
3383         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3384                                    &data);
3385         if (ret & NOTIFY_STOP_MASK)
3386                 return -EINVAL;
3387
3388         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3389         if (ret >= 0)
3390                 return ret;
3391
3392         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3393                              (void *)data.old_uV);
3394
3395         return ret;
3396 }
3397
3398 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3399                                            int uV, unsigned selector)
3400 {
3401         struct pre_voltage_change_data data;
3402         int ret;
3403
3404         data.old_uV = regulator_get_voltage_rdev(rdev);
3405         data.min_uV = uV;
3406         data.max_uV = uV;
3407         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3408                                    &data);
3409         if (ret & NOTIFY_STOP_MASK)
3410                 return -EINVAL;
3411
3412         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3413         if (ret >= 0)
3414                 return ret;
3415
3416         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3417                              (void *)data.old_uV);
3418
3419         return ret;
3420 }
3421
3422 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3423                                            int uV, int new_selector)
3424 {
3425         const struct regulator_ops *ops = rdev->desc->ops;
3426         int diff, old_sel, curr_sel, ret;
3427
3428         /* Stepping is only needed if the regulator is enabled. */
3429         if (!_regulator_is_enabled(rdev))
3430                 goto final_set;
3431
3432         if (!ops->get_voltage_sel)
3433                 return -EINVAL;
3434
3435         old_sel = ops->get_voltage_sel(rdev);
3436         if (old_sel < 0)
3437                 return old_sel;
3438
3439         diff = new_selector - old_sel;
3440         if (diff == 0)
3441                 return 0; /* No change needed. */
3442
3443         if (diff > 0) {
3444                 /* Stepping up. */
3445                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3446                      curr_sel < new_selector;
3447                      curr_sel += rdev->desc->vsel_step) {
3448                         /*
3449                          * Call the callback directly instead of using
3450                          * _regulator_call_set_voltage_sel() as we don't
3451                          * want to notify anyone yet. Same in the branch
3452                          * below.
3453                          */
3454                         ret = ops->set_voltage_sel(rdev, curr_sel);
3455                         if (ret)
3456                                 goto try_revert;
3457                 }
3458         } else {
3459                 /* Stepping down. */
3460                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3461                      curr_sel > new_selector;
3462                      curr_sel -= rdev->desc->vsel_step) {
3463                         ret = ops->set_voltage_sel(rdev, curr_sel);
3464                         if (ret)
3465                                 goto try_revert;
3466                 }
3467         }
3468
3469 final_set:
3470         /* The final selector will trigger the notifiers. */
3471         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3472
3473 try_revert:
3474         /*
3475          * At least try to return to the previous voltage if setting a new
3476          * one failed.
3477          */
3478         (void)ops->set_voltage_sel(rdev, old_sel);
3479         return ret;
3480 }
3481
3482 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3483                                        int old_uV, int new_uV)
3484 {
3485         unsigned int ramp_delay = 0;
3486
3487         if (rdev->constraints->ramp_delay)
3488                 ramp_delay = rdev->constraints->ramp_delay;
3489         else if (rdev->desc->ramp_delay)
3490                 ramp_delay = rdev->desc->ramp_delay;
3491         else if (rdev->constraints->settling_time)
3492                 return rdev->constraints->settling_time;
3493         else if (rdev->constraints->settling_time_up &&
3494                  (new_uV > old_uV))
3495                 return rdev->constraints->settling_time_up;
3496         else if (rdev->constraints->settling_time_down &&
3497                  (new_uV < old_uV))
3498                 return rdev->constraints->settling_time_down;
3499
3500         if (ramp_delay == 0) {
3501                 rdev_dbg(rdev, "ramp_delay not set\n");
3502                 return 0;
3503         }
3504
3505         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3506 }
3507
3508 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3509                                      int min_uV, int max_uV)
3510 {
3511         int ret;
3512         int delay = 0;
3513         int best_val = 0;
3514         unsigned int selector;
3515         int old_selector = -1;
3516         const struct regulator_ops *ops = rdev->desc->ops;
3517         int old_uV = regulator_get_voltage_rdev(rdev);
3518
3519         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3520
3521         min_uV += rdev->constraints->uV_offset;
3522         max_uV += rdev->constraints->uV_offset;
3523
3524         /*
3525          * If we can't obtain the old selector there is not enough
3526          * info to call set_voltage_time_sel().
3527          */
3528         if (_regulator_is_enabled(rdev) &&
3529             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3530                 old_selector = ops->get_voltage_sel(rdev);
3531                 if (old_selector < 0)
3532                         return old_selector;
3533         }
3534
3535         if (ops->set_voltage) {
3536                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3537                                                   &selector);
3538
3539                 if (ret >= 0) {
3540                         if (ops->list_voltage)
3541                                 best_val = ops->list_voltage(rdev,
3542                                                              selector);
3543                         else
3544                                 best_val = regulator_get_voltage_rdev(rdev);
3545                 }
3546
3547         } else if (ops->set_voltage_sel) {
3548                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3549                 if (ret >= 0) {
3550                         best_val = ops->list_voltage(rdev, ret);
3551                         if (min_uV <= best_val && max_uV >= best_val) {
3552                                 selector = ret;
3553                                 if (old_selector == selector)
3554                                         ret = 0;
3555                                 else if (rdev->desc->vsel_step)
3556                                         ret = _regulator_set_voltage_sel_step(
3557                                                 rdev, best_val, selector);
3558                                 else
3559                                         ret = _regulator_call_set_voltage_sel(
3560                                                 rdev, best_val, selector);
3561                         } else {
3562                                 ret = -EINVAL;
3563                         }
3564                 }
3565         } else {
3566                 ret = -EINVAL;
3567         }
3568
3569         if (ret)
3570                 goto out;
3571
3572         if (ops->set_voltage_time_sel) {
3573                 /*
3574                  * Call set_voltage_time_sel if successfully obtained
3575                  * old_selector
3576                  */
3577                 if (old_selector >= 0 && old_selector != selector)
3578                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3579                                                           selector);
3580         } else {
3581                 if (old_uV != best_val) {
3582                         if (ops->set_voltage_time)
3583                                 delay = ops->set_voltage_time(rdev, old_uV,
3584                                                               best_val);
3585                         else
3586                                 delay = _regulator_set_voltage_time(rdev,
3587                                                                     old_uV,
3588                                                                     best_val);
3589                 }
3590         }
3591
3592         if (delay < 0) {
3593                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3594                 delay = 0;
3595         }
3596
3597         /* Insert any necessary delays */
3598         _regulator_delay_helper(delay);
3599
3600         if (best_val >= 0) {
3601                 unsigned long data = best_val;
3602
3603                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3604                                      (void *)data);
3605         }
3606
3607 out:
3608         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3609
3610         return ret;
3611 }
3612
3613 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3614                                   int min_uV, int max_uV, suspend_state_t state)
3615 {
3616         struct regulator_state *rstate;
3617         int uV, sel;
3618
3619         rstate = regulator_get_suspend_state(rdev, state);
3620         if (rstate == NULL)
3621                 return -EINVAL;
3622
3623         if (min_uV < rstate->min_uV)
3624                 min_uV = rstate->min_uV;
3625         if (max_uV > rstate->max_uV)
3626                 max_uV = rstate->max_uV;
3627
3628         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3629         if (sel < 0)
3630                 return sel;
3631
3632         uV = rdev->desc->ops->list_voltage(rdev, sel);
3633         if (uV >= min_uV && uV <= max_uV)
3634                 rstate->uV = uV;
3635
3636         return 0;
3637 }
3638
3639 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3640                                           int min_uV, int max_uV,
3641                                           suspend_state_t state)
3642 {
3643         struct regulator_dev *rdev = regulator->rdev;
3644         struct regulator_voltage *voltage = &regulator->voltage[state];
3645         int ret = 0;
3646         int old_min_uV, old_max_uV;
3647         int current_uV;
3648
3649         /* If we're setting the same range as last time the change
3650          * should be a noop (some cpufreq implementations use the same
3651          * voltage for multiple frequencies, for example).
3652          */
3653         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3654                 goto out;
3655
3656         /* If we're trying to set a range that overlaps the current voltage,
3657          * return successfully even though the regulator does not support
3658          * changing the voltage.
3659          */
3660         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3661                 current_uV = regulator_get_voltage_rdev(rdev);
3662                 if (min_uV <= current_uV && current_uV <= max_uV) {
3663                         voltage->min_uV = min_uV;
3664                         voltage->max_uV = max_uV;
3665                         goto out;
3666                 }
3667         }
3668
3669         /* sanity check */
3670         if (!rdev->desc->ops->set_voltage &&
3671             !rdev->desc->ops->set_voltage_sel) {
3672                 ret = -EINVAL;
3673                 goto out;
3674         }
3675
3676         /* constraints check */
3677         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3678         if (ret < 0)
3679                 goto out;
3680
3681         /* restore original values in case of error */
3682         old_min_uV = voltage->min_uV;
3683         old_max_uV = voltage->max_uV;
3684         voltage->min_uV = min_uV;
3685         voltage->max_uV = max_uV;
3686
3687         /* for not coupled regulators this will just set the voltage */
3688         ret = regulator_balance_voltage(rdev, state);
3689         if (ret < 0) {
3690                 voltage->min_uV = old_min_uV;
3691                 voltage->max_uV = old_max_uV;
3692         }
3693
3694 out:
3695         return ret;
3696 }
3697
3698 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3699                                int max_uV, suspend_state_t state)
3700 {
3701         int best_supply_uV = 0;
3702         int supply_change_uV = 0;
3703         int ret;
3704
3705         if (rdev->supply &&
3706             regulator_ops_is_valid(rdev->supply->rdev,
3707                                    REGULATOR_CHANGE_VOLTAGE) &&
3708             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3709                                            rdev->desc->ops->get_voltage_sel))) {
3710                 int current_supply_uV;
3711                 int selector;
3712
3713                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3714                 if (selector < 0) {
3715                         ret = selector;
3716                         goto out;
3717                 }
3718
3719                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3720                 if (best_supply_uV < 0) {
3721                         ret = best_supply_uV;
3722                         goto out;
3723                 }
3724
3725                 best_supply_uV += rdev->desc->min_dropout_uV;
3726
3727                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3728                 if (current_supply_uV < 0) {
3729                         ret = current_supply_uV;
3730                         goto out;
3731                 }
3732
3733                 supply_change_uV = best_supply_uV - current_supply_uV;
3734         }
3735
3736         if (supply_change_uV > 0) {
3737                 ret = regulator_set_voltage_unlocked(rdev->supply,
3738                                 best_supply_uV, INT_MAX, state);
3739                 if (ret) {
3740                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3741                                 ERR_PTR(ret));
3742                         goto out;
3743                 }
3744         }
3745
3746         if (state == PM_SUSPEND_ON)
3747                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3748         else
3749                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3750                                                         max_uV, state);
3751         if (ret < 0)
3752                 goto out;
3753
3754         if (supply_change_uV < 0) {
3755                 ret = regulator_set_voltage_unlocked(rdev->supply,
3756                                 best_supply_uV, INT_MAX, state);
3757                 if (ret)
3758                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3759                                  ERR_PTR(ret));
3760                 /* No need to fail here */
3761                 ret = 0;
3762         }
3763
3764 out:
3765         return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3768
3769 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3770                                         int *current_uV, int *min_uV)
3771 {
3772         struct regulation_constraints *constraints = rdev->constraints;
3773
3774         /* Limit voltage change only if necessary */
3775         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3776                 return 1;
3777
3778         if (*current_uV < 0) {
3779                 *current_uV = regulator_get_voltage_rdev(rdev);
3780
3781                 if (*current_uV < 0)
3782                         return *current_uV;
3783         }
3784
3785         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3786                 return 1;
3787
3788         /* Clamp target voltage within the given step */
3789         if (*current_uV < *min_uV)
3790                 *min_uV = min(*current_uV + constraints->max_uV_step,
3791                               *min_uV);
3792         else
3793                 *min_uV = max(*current_uV - constraints->max_uV_step,
3794                               *min_uV);
3795
3796         return 0;
3797 }
3798
3799 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3800                                          int *current_uV,
3801                                          int *min_uV, int *max_uV,
3802                                          suspend_state_t state,
3803                                          int n_coupled)
3804 {
3805         struct coupling_desc *c_desc = &rdev->coupling_desc;
3806         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3807         struct regulation_constraints *constraints = rdev->constraints;
3808         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3809         int max_current_uV = 0, min_current_uV = INT_MAX;
3810         int highest_min_uV = 0, target_uV, possible_uV;
3811         int i, ret, max_spread;
3812         bool done;
3813
3814         *current_uV = -1;
3815
3816         /*
3817          * If there are no coupled regulators, simply set the voltage
3818          * demanded by consumers.
3819          */
3820         if (n_coupled == 1) {
3821                 /*
3822                  * If consumers don't provide any demands, set voltage
3823                  * to min_uV
3824                  */
3825                 desired_min_uV = constraints->min_uV;
3826                 desired_max_uV = constraints->max_uV;
3827
3828                 ret = regulator_check_consumers(rdev,
3829                                                 &desired_min_uV,
3830                                                 &desired_max_uV, state);
3831                 if (ret < 0)
3832                         return ret;
3833
3834                 possible_uV = desired_min_uV;
3835                 done = true;
3836
3837                 goto finish;
3838         }
3839
3840         /* Find highest min desired voltage */
3841         for (i = 0; i < n_coupled; i++) {
3842                 int tmp_min = 0;
3843                 int tmp_max = INT_MAX;
3844
3845                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3846
3847                 ret = regulator_check_consumers(c_rdevs[i],
3848                                                 &tmp_min,
3849                                                 &tmp_max, state);
3850                 if (ret < 0)
3851                         return ret;
3852
3853                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3854                 if (ret < 0)
3855                         return ret;
3856
3857                 highest_min_uV = max(highest_min_uV, tmp_min);
3858
3859                 if (i == 0) {
3860                         desired_min_uV = tmp_min;
3861                         desired_max_uV = tmp_max;
3862                 }
3863         }
3864
3865         max_spread = constraints->max_spread[0];
3866
3867         /*
3868          * Let target_uV be equal to the desired one if possible.
3869          * If not, set it to minimum voltage, allowed by other coupled
3870          * regulators.
3871          */
3872         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3873
3874         /*
3875          * Find min and max voltages, which currently aren't violating
3876          * max_spread.
3877          */
3878         for (i = 1; i < n_coupled; i++) {
3879                 int tmp_act;
3880
3881                 if (!_regulator_is_enabled(c_rdevs[i]))
3882                         continue;
3883
3884                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3885                 if (tmp_act < 0)
3886                         return tmp_act;
3887
3888                 min_current_uV = min(tmp_act, min_current_uV);
3889                 max_current_uV = max(tmp_act, max_current_uV);
3890         }
3891
3892         /* There aren't any other regulators enabled */
3893         if (max_current_uV == 0) {
3894                 possible_uV = target_uV;
3895         } else {
3896                 /*
3897                  * Correct target voltage, so as it currently isn't
3898                  * violating max_spread
3899                  */
3900                 possible_uV = max(target_uV, max_current_uV - max_spread);
3901                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3902         }
3903
3904         if (possible_uV > desired_max_uV)
3905                 return -EINVAL;
3906
3907         done = (possible_uV == target_uV);
3908         desired_min_uV = possible_uV;
3909
3910 finish:
3911         /* Apply max_uV_step constraint if necessary */
3912         if (state == PM_SUSPEND_ON) {
3913                 ret = regulator_limit_voltage_step(rdev, current_uV,
3914                                                    &desired_min_uV);
3915                 if (ret < 0)
3916                         return ret;
3917
3918                 if (ret == 0)
3919                         done = false;
3920         }
3921
3922         /* Set current_uV if wasn't done earlier in the code and if necessary */
3923         if (n_coupled > 1 && *current_uV == -1) {
3924
3925                 if (_regulator_is_enabled(rdev)) {
3926                         ret = regulator_get_voltage_rdev(rdev);
3927                         if (ret < 0)
3928                                 return ret;
3929
3930                         *current_uV = ret;
3931                 } else {
3932                         *current_uV = desired_min_uV;
3933                 }
3934         }
3935
3936         *min_uV = desired_min_uV;
3937         *max_uV = desired_max_uV;
3938
3939         return done;
3940 }
3941
3942 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3943                                  suspend_state_t state, bool skip_coupled)
3944 {
3945         struct regulator_dev **c_rdevs;
3946         struct regulator_dev *best_rdev;
3947         struct coupling_desc *c_desc = &rdev->coupling_desc;
3948         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3949         unsigned int delta, best_delta;
3950         unsigned long c_rdev_done = 0;
3951         bool best_c_rdev_done;
3952
3953         c_rdevs = c_desc->coupled_rdevs;
3954         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3955
3956         /*
3957          * Find the best possible voltage change on each loop. Leave the loop
3958          * if there isn't any possible change.
3959          */
3960         do {
3961                 best_c_rdev_done = false;
3962                 best_delta = 0;
3963                 best_min_uV = 0;
3964                 best_max_uV = 0;
3965                 best_c_rdev = 0;
3966                 best_rdev = NULL;
3967
3968                 /*
3969                  * Find highest difference between optimal voltage
3970                  * and current voltage.
3971                  */
3972                 for (i = 0; i < n_coupled; i++) {
3973                         /*
3974                          * optimal_uV is the best voltage that can be set for
3975                          * i-th regulator at the moment without violating
3976                          * max_spread constraint in order to balance
3977                          * the coupled voltages.
3978                          */
3979                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3980
3981                         if (test_bit(i, &c_rdev_done))
3982                                 continue;
3983
3984                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3985                                                             &current_uV,
3986                                                             &optimal_uV,
3987                                                             &optimal_max_uV,
3988                                                             state, n_coupled);
3989                         if (ret < 0)
3990                                 goto out;
3991
3992                         delta = abs(optimal_uV - current_uV);
3993
3994                         if (delta && best_delta <= delta) {
3995                                 best_c_rdev_done = ret;
3996                                 best_delta = delta;
3997                                 best_rdev = c_rdevs[i];
3998                                 best_min_uV = optimal_uV;
3999                                 best_max_uV = optimal_max_uV;
4000                                 best_c_rdev = i;
4001                         }
4002                 }
4003
4004                 /* Nothing to change, return successfully */
4005                 if (!best_rdev) {
4006                         ret = 0;
4007                         goto out;
4008                 }
4009
4010                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4011                                                  best_max_uV, state);
4012
4013                 if (ret < 0)
4014                         goto out;
4015
4016                 if (best_c_rdev_done)
4017                         set_bit(best_c_rdev, &c_rdev_done);
4018
4019         } while (n_coupled > 1);
4020
4021 out:
4022         return ret;
4023 }
4024
4025 static int regulator_balance_voltage(struct regulator_dev *rdev,
4026                                      suspend_state_t state)
4027 {
4028         struct coupling_desc *c_desc = &rdev->coupling_desc;
4029         struct regulator_coupler *coupler = c_desc->coupler;
4030         bool skip_coupled = false;
4031
4032         /*
4033          * If system is in a state other than PM_SUSPEND_ON, don't check
4034          * other coupled regulators.
4035          */
4036         if (state != PM_SUSPEND_ON)
4037                 skip_coupled = true;
4038
4039         if (c_desc->n_resolved < c_desc->n_coupled) {
4040                 rdev_err(rdev, "Not all coupled regulators registered\n");
4041                 return -EPERM;
4042         }
4043
4044         /* Invoke custom balancer for customized couplers */
4045         if (coupler && coupler->balance_voltage)
4046                 return coupler->balance_voltage(coupler, rdev, state);
4047
4048         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4049 }
4050
4051 /**
4052  * regulator_set_voltage - set regulator output voltage
4053  * @regulator: regulator source
4054  * @min_uV: Minimum required voltage in uV
4055  * @max_uV: Maximum acceptable voltage in uV
4056  *
4057  * Sets a voltage regulator to the desired output voltage. This can be set
4058  * during any regulator state. IOW, regulator can be disabled or enabled.
4059  *
4060  * If the regulator is enabled then the voltage will change to the new value
4061  * immediately otherwise if the regulator is disabled the regulator will
4062  * output at the new voltage when enabled.
4063  *
4064  * NOTE: If the regulator is shared between several devices then the lowest
4065  * request voltage that meets the system constraints will be used.
4066  * Regulator system constraints must be set for this regulator before
4067  * calling this function otherwise this call will fail.
4068  */
4069 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4070 {
4071         struct ww_acquire_ctx ww_ctx;
4072         int ret;
4073
4074         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4075
4076         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4077                                              PM_SUSPEND_ON);
4078
4079         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4080
4081         return ret;
4082 }
4083 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4084
4085 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4086                                            suspend_state_t state, bool en)
4087 {
4088         struct regulator_state *rstate;
4089
4090         rstate = regulator_get_suspend_state(rdev, state);
4091         if (rstate == NULL)
4092                 return -EINVAL;
4093
4094         if (!rstate->changeable)
4095                 return -EPERM;
4096
4097         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4098
4099         return 0;
4100 }
4101
4102 int regulator_suspend_enable(struct regulator_dev *rdev,
4103                                     suspend_state_t state)
4104 {
4105         return regulator_suspend_toggle(rdev, state, true);
4106 }
4107 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4108
4109 int regulator_suspend_disable(struct regulator_dev *rdev,
4110                                      suspend_state_t state)
4111 {
4112         struct regulator *regulator;
4113         struct regulator_voltage *voltage;
4114
4115         /*
4116          * if any consumer wants this regulator device keeping on in
4117          * suspend states, don't set it as disabled.
4118          */
4119         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4120                 voltage = &regulator->voltage[state];
4121                 if (voltage->min_uV || voltage->max_uV)
4122                         return 0;
4123         }
4124
4125         return regulator_suspend_toggle(rdev, state, false);
4126 }
4127 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4128
4129 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4130                                           int min_uV, int max_uV,
4131                                           suspend_state_t state)
4132 {
4133         struct regulator_dev *rdev = regulator->rdev;
4134         struct regulator_state *rstate;
4135
4136         rstate = regulator_get_suspend_state(rdev, state);
4137         if (rstate == NULL)
4138                 return -EINVAL;
4139
4140         if (rstate->min_uV == rstate->max_uV) {
4141                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4142                 return -EPERM;
4143         }
4144
4145         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4146 }
4147
4148 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4149                                   int max_uV, suspend_state_t state)
4150 {
4151         struct ww_acquire_ctx ww_ctx;
4152         int ret;
4153
4154         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4155         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4156                 return -EINVAL;
4157
4158         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4159
4160         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4161                                              max_uV, state);
4162
4163         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4164
4165         return ret;
4166 }
4167 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4168
4169 /**
4170  * regulator_set_voltage_time - get raise/fall time
4171  * @regulator: regulator source
4172  * @old_uV: starting voltage in microvolts
4173  * @new_uV: target voltage in microvolts
4174  *
4175  * Provided with the starting and ending voltage, this function attempts to
4176  * calculate the time in microseconds required to rise or fall to this new
4177  * voltage.
4178  */
4179 int regulator_set_voltage_time(struct regulator *regulator,
4180                                int old_uV, int new_uV)
4181 {
4182         struct regulator_dev *rdev = regulator->rdev;
4183         const struct regulator_ops *ops = rdev->desc->ops;
4184         int old_sel = -1;
4185         int new_sel = -1;
4186         int voltage;
4187         int i;
4188
4189         if (ops->set_voltage_time)
4190                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4191         else if (!ops->set_voltage_time_sel)
4192                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4193
4194         /* Currently requires operations to do this */
4195         if (!ops->list_voltage || !rdev->desc->n_voltages)
4196                 return -EINVAL;
4197
4198         for (i = 0; i < rdev->desc->n_voltages; i++) {
4199                 /* We only look for exact voltage matches here */
4200                 if (i < rdev->desc->linear_min_sel)
4201                         continue;
4202
4203                 if (old_sel >= 0 && new_sel >= 0)
4204                         break;
4205
4206                 voltage = regulator_list_voltage(regulator, i);
4207                 if (voltage < 0)
4208                         return -EINVAL;
4209                 if (voltage == 0)
4210                         continue;
4211                 if (voltage == old_uV)
4212                         old_sel = i;
4213                 if (voltage == new_uV)
4214                         new_sel = i;
4215         }
4216
4217         if (old_sel < 0 || new_sel < 0)
4218                 return -EINVAL;
4219
4220         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4221 }
4222 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4223
4224 /**
4225  * regulator_set_voltage_time_sel - get raise/fall time
4226  * @rdev: regulator source device
4227  * @old_selector: selector for starting voltage
4228  * @new_selector: selector for target voltage
4229  *
4230  * Provided with the starting and target voltage selectors, this function
4231  * returns time in microseconds required to rise or fall to this new voltage
4232  *
4233  * Drivers providing ramp_delay in regulation_constraints can use this as their
4234  * set_voltage_time_sel() operation.
4235  */
4236 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4237                                    unsigned int old_selector,
4238                                    unsigned int new_selector)
4239 {
4240         int old_volt, new_volt;
4241
4242         /* sanity check */
4243         if (!rdev->desc->ops->list_voltage)
4244                 return -EINVAL;
4245
4246         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4247         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4248
4249         if (rdev->desc->ops->set_voltage_time)
4250                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4251                                                          new_volt);
4252         else
4253                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4254 }
4255 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4256
4257 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4258 {
4259         int ret;
4260
4261         regulator_lock(rdev);
4262
4263         if (!rdev->desc->ops->set_voltage &&
4264             !rdev->desc->ops->set_voltage_sel) {
4265                 ret = -EINVAL;
4266                 goto out;
4267         }
4268
4269         /* balance only, if regulator is coupled */
4270         if (rdev->coupling_desc.n_coupled > 1)
4271                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4272         else
4273                 ret = -EOPNOTSUPP;
4274
4275 out:
4276         regulator_unlock(rdev);
4277         return ret;
4278 }
4279
4280 /**
4281  * regulator_sync_voltage - re-apply last regulator output voltage
4282  * @regulator: regulator source
4283  *
4284  * Re-apply the last configured voltage.  This is intended to be used
4285  * where some external control source the consumer is cooperating with
4286  * has caused the configured voltage to change.
4287  */
4288 int regulator_sync_voltage(struct regulator *regulator)
4289 {
4290         struct regulator_dev *rdev = regulator->rdev;
4291         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4292         int ret, min_uV, max_uV;
4293
4294         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4295                 return 0;
4296
4297         regulator_lock(rdev);
4298
4299         if (!rdev->desc->ops->set_voltage &&
4300             !rdev->desc->ops->set_voltage_sel) {
4301                 ret = -EINVAL;
4302                 goto out;
4303         }
4304
4305         /* This is only going to work if we've had a voltage configured. */
4306         if (!voltage->min_uV && !voltage->max_uV) {
4307                 ret = -EINVAL;
4308                 goto out;
4309         }
4310
4311         min_uV = voltage->min_uV;
4312         max_uV = voltage->max_uV;
4313
4314         /* This should be a paranoia check... */
4315         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4316         if (ret < 0)
4317                 goto out;
4318
4319         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4320         if (ret < 0)
4321                 goto out;
4322
4323         /* balance only, if regulator is coupled */
4324         if (rdev->coupling_desc.n_coupled > 1)
4325                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4326         else
4327                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4328
4329 out:
4330         regulator_unlock(rdev);
4331         return ret;
4332 }
4333 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4334
4335 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4336 {
4337         int sel, ret;
4338         bool bypassed;
4339
4340         if (rdev->desc->ops->get_bypass) {
4341                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4342                 if (ret < 0)
4343                         return ret;
4344                 if (bypassed) {
4345                         /* if bypassed the regulator must have a supply */
4346                         if (!rdev->supply) {
4347                                 rdev_err(rdev,
4348                                          "bypassed regulator has no supply!\n");
4349                                 return -EPROBE_DEFER;
4350                         }
4351
4352                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4353                 }
4354         }
4355
4356         if (rdev->desc->ops->get_voltage_sel) {
4357                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4358                 if (sel < 0)
4359                         return sel;
4360                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4361         } else if (rdev->desc->ops->get_voltage) {
4362                 ret = rdev->desc->ops->get_voltage(rdev);
4363         } else if (rdev->desc->ops->list_voltage) {
4364                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4365         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4366                 ret = rdev->desc->fixed_uV;
4367         } else if (rdev->supply) {
4368                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4369         } else if (rdev->supply_name) {
4370                 return -EPROBE_DEFER;
4371         } else {
4372                 return -EINVAL;
4373         }
4374
4375         if (ret < 0)
4376                 return ret;
4377         return ret - rdev->constraints->uV_offset;
4378 }
4379 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4380
4381 /**
4382  * regulator_get_voltage - get regulator output voltage
4383  * @regulator: regulator source
4384  *
4385  * This returns the current regulator voltage in uV.
4386  *
4387  * NOTE: If the regulator is disabled it will return the voltage value. This
4388  * function should not be used to determine regulator state.
4389  */
4390 int regulator_get_voltage(struct regulator *regulator)
4391 {
4392         struct ww_acquire_ctx ww_ctx;
4393         int ret;
4394
4395         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4396         ret = regulator_get_voltage_rdev(regulator->rdev);
4397         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4398
4399         return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4402
4403 /**
4404  * regulator_set_current_limit - set regulator output current limit
4405  * @regulator: regulator source
4406  * @min_uA: Minimum supported current in uA
4407  * @max_uA: Maximum supported current in uA
4408  *
4409  * Sets current sink to the desired output current. This can be set during
4410  * any regulator state. IOW, regulator can be disabled or enabled.
4411  *
4412  * If the regulator is enabled then the current will change to the new value
4413  * immediately otherwise if the regulator is disabled the regulator will
4414  * output at the new current when enabled.
4415  *
4416  * NOTE: Regulator system constraints must be set for this regulator before
4417  * calling this function otherwise this call will fail.
4418  */
4419 int regulator_set_current_limit(struct regulator *regulator,
4420                                int min_uA, int max_uA)
4421 {
4422         struct regulator_dev *rdev = regulator->rdev;
4423         int ret;
4424
4425         regulator_lock(rdev);
4426
4427         /* sanity check */
4428         if (!rdev->desc->ops->set_current_limit) {
4429                 ret = -EINVAL;
4430                 goto out;
4431         }
4432
4433         /* constraints check */
4434         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4435         if (ret < 0)
4436                 goto out;
4437
4438         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4439 out:
4440         regulator_unlock(rdev);
4441         return ret;
4442 }
4443 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4444
4445 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4446 {
4447         /* sanity check */
4448         if (!rdev->desc->ops->get_current_limit)
4449                 return -EINVAL;
4450
4451         return rdev->desc->ops->get_current_limit(rdev);
4452 }
4453
4454 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4455 {
4456         int ret;
4457
4458         regulator_lock(rdev);
4459         ret = _regulator_get_current_limit_unlocked(rdev);
4460         regulator_unlock(rdev);
4461
4462         return ret;
4463 }
4464
4465 /**
4466  * regulator_get_current_limit - get regulator output current
4467  * @regulator: regulator source
4468  *
4469  * This returns the current supplied by the specified current sink in uA.
4470  *
4471  * NOTE: If the regulator is disabled it will return the current value. This
4472  * function should not be used to determine regulator state.
4473  */
4474 int regulator_get_current_limit(struct regulator *regulator)
4475 {
4476         return _regulator_get_current_limit(regulator->rdev);
4477 }
4478 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4479
4480 /**
4481  * regulator_set_mode - set regulator operating mode
4482  * @regulator: regulator source
4483  * @mode: operating mode - one of the REGULATOR_MODE constants
4484  *
4485  * Set regulator operating mode to increase regulator efficiency or improve
4486  * regulation performance.
4487  *
4488  * NOTE: Regulator system constraints must be set for this regulator before
4489  * calling this function otherwise this call will fail.
4490  */
4491 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4492 {
4493         struct regulator_dev *rdev = regulator->rdev;
4494         int ret;
4495         int regulator_curr_mode;
4496
4497         regulator_lock(rdev);
4498
4499         /* sanity check */
4500         if (!rdev->desc->ops->set_mode) {
4501                 ret = -EINVAL;
4502                 goto out;
4503         }
4504
4505         /* return if the same mode is requested */
4506         if (rdev->desc->ops->get_mode) {
4507                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4508                 if (regulator_curr_mode == mode) {
4509                         ret = 0;
4510                         goto out;
4511                 }
4512         }
4513
4514         /* constraints check */
4515         ret = regulator_mode_constrain(rdev, &mode);
4516         if (ret < 0)
4517                 goto out;
4518
4519         ret = rdev->desc->ops->set_mode(rdev, mode);
4520 out:
4521         regulator_unlock(rdev);
4522         return ret;
4523 }
4524 EXPORT_SYMBOL_GPL(regulator_set_mode);
4525
4526 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4527 {
4528         /* sanity check */
4529         if (!rdev->desc->ops->get_mode)
4530                 return -EINVAL;
4531
4532         return rdev->desc->ops->get_mode(rdev);
4533 }
4534
4535 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4536 {
4537         int ret;
4538
4539         regulator_lock(rdev);
4540         ret = _regulator_get_mode_unlocked(rdev);
4541         regulator_unlock(rdev);
4542
4543         return ret;
4544 }
4545
4546 /**
4547  * regulator_get_mode - get regulator operating mode
4548  * @regulator: regulator source
4549  *
4550  * Get the current regulator operating mode.
4551  */
4552 unsigned int regulator_get_mode(struct regulator *regulator)
4553 {
4554         return _regulator_get_mode(regulator->rdev);
4555 }
4556 EXPORT_SYMBOL_GPL(regulator_get_mode);
4557
4558 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4559 {
4560         int ret = 0;
4561
4562         if (rdev->use_cached_err) {
4563                 spin_lock(&rdev->err_lock);
4564                 ret = rdev->cached_err;
4565                 spin_unlock(&rdev->err_lock);
4566         }
4567         return ret;
4568 }
4569
4570 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4571                                         unsigned int *flags)
4572 {
4573         int cached_flags, ret = 0;
4574
4575         regulator_lock(rdev);
4576
4577         cached_flags = rdev_get_cached_err_flags(rdev);
4578
4579         if (rdev->desc->ops->get_error_flags)
4580                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4581         else if (!rdev->use_cached_err)
4582                 ret = -EINVAL;
4583
4584         *flags |= cached_flags;
4585
4586         regulator_unlock(rdev);
4587
4588         return ret;
4589 }
4590
4591 /**
4592  * regulator_get_error_flags - get regulator error information
4593  * @regulator: regulator source
4594  * @flags: pointer to store error flags
4595  *
4596  * Get the current regulator error information.
4597  */
4598 int regulator_get_error_flags(struct regulator *regulator,
4599                                 unsigned int *flags)
4600 {
4601         return _regulator_get_error_flags(regulator->rdev, flags);
4602 }
4603 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4604
4605 /**
4606  * regulator_set_load - set regulator load
4607  * @regulator: regulator source
4608  * @uA_load: load current
4609  *
4610  * Notifies the regulator core of a new device load. This is then used by
4611  * DRMS (if enabled by constraints) to set the most efficient regulator
4612  * operating mode for the new regulator loading.
4613  *
4614  * Consumer devices notify their supply regulator of the maximum power
4615  * they will require (can be taken from device datasheet in the power
4616  * consumption tables) when they change operational status and hence power
4617  * state. Examples of operational state changes that can affect power
4618  * consumption are :-
4619  *
4620  *    o Device is opened / closed.
4621  *    o Device I/O is about to begin or has just finished.
4622  *    o Device is idling in between work.
4623  *
4624  * This information is also exported via sysfs to userspace.
4625  *
4626  * DRMS will sum the total requested load on the regulator and change
4627  * to the most efficient operating mode if platform constraints allow.
4628  *
4629  * NOTE: when a regulator consumer requests to have a regulator
4630  * disabled then any load that consumer requested no longer counts
4631  * toward the total requested load.  If the regulator is re-enabled
4632  * then the previously requested load will start counting again.
4633  *
4634  * If a regulator is an always-on regulator then an individual consumer's
4635  * load will still be removed if that consumer is fully disabled.
4636  *
4637  * On error a negative errno is returned.
4638  */
4639 int regulator_set_load(struct regulator *regulator, int uA_load)
4640 {
4641         struct regulator_dev *rdev = regulator->rdev;
4642         int old_uA_load;
4643         int ret = 0;
4644
4645         regulator_lock(rdev);
4646         old_uA_load = regulator->uA_load;
4647         regulator->uA_load = uA_load;
4648         if (regulator->enable_count && old_uA_load != uA_load) {
4649                 ret = drms_uA_update(rdev);
4650                 if (ret < 0)
4651                         regulator->uA_load = old_uA_load;
4652         }
4653         regulator_unlock(rdev);
4654
4655         return ret;
4656 }
4657 EXPORT_SYMBOL_GPL(regulator_set_load);
4658
4659 /**
4660  * regulator_allow_bypass - allow the regulator to go into bypass mode
4661  *
4662  * @regulator: Regulator to configure
4663  * @enable: enable or disable bypass mode
4664  *
4665  * Allow the regulator to go into bypass mode if all other consumers
4666  * for the regulator also enable bypass mode and the machine
4667  * constraints allow this.  Bypass mode means that the regulator is
4668  * simply passing the input directly to the output with no regulation.
4669  */
4670 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4671 {
4672         struct regulator_dev *rdev = regulator->rdev;
4673         const char *name = rdev_get_name(rdev);
4674         int ret = 0;
4675
4676         if (!rdev->desc->ops->set_bypass)
4677                 return 0;
4678
4679         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4680                 return 0;
4681
4682         regulator_lock(rdev);
4683
4684         if (enable && !regulator->bypass) {
4685                 rdev->bypass_count++;
4686
4687                 if (rdev->bypass_count == rdev->open_count) {
4688                         trace_regulator_bypass_enable(name);
4689
4690                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4691                         if (ret != 0)
4692                                 rdev->bypass_count--;
4693                         else
4694                                 trace_regulator_bypass_enable_complete(name);
4695                 }
4696
4697         } else if (!enable && regulator->bypass) {
4698                 rdev->bypass_count--;
4699
4700                 if (rdev->bypass_count != rdev->open_count) {
4701                         trace_regulator_bypass_disable(name);
4702
4703                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4704                         if (ret != 0)
4705                                 rdev->bypass_count++;
4706                         else
4707                                 trace_regulator_bypass_disable_complete(name);
4708                 }
4709         }
4710
4711         if (ret == 0)
4712                 regulator->bypass = enable;
4713
4714         regulator_unlock(rdev);
4715
4716         return ret;
4717 }
4718 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4719
4720 /**
4721  * regulator_register_notifier - register regulator event notifier
4722  * @regulator: regulator source
4723  * @nb: notifier block
4724  *
4725  * Register notifier block to receive regulator events.
4726  */
4727 int regulator_register_notifier(struct regulator *regulator,
4728                               struct notifier_block *nb)
4729 {
4730         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4731                                                 nb);
4732 }
4733 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4734
4735 /**
4736  * regulator_unregister_notifier - unregister regulator event notifier
4737  * @regulator: regulator source
4738  * @nb: notifier block
4739  *
4740  * Unregister regulator event notifier block.
4741  */
4742 int regulator_unregister_notifier(struct regulator *regulator,
4743                                 struct notifier_block *nb)
4744 {
4745         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4746                                                   nb);
4747 }
4748 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4749
4750 /* notify regulator consumers and downstream regulator consumers.
4751  * Note mutex must be held by caller.
4752  */
4753 static int _notifier_call_chain(struct regulator_dev *rdev,
4754                                   unsigned long event, void *data)
4755 {
4756         /* call rdev chain first */
4757         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4758 }
4759
4760 /**
4761  * regulator_bulk_get - get multiple regulator consumers
4762  *
4763  * @dev:           Device to supply
4764  * @num_consumers: Number of consumers to register
4765  * @consumers:     Configuration of consumers; clients are stored here.
4766  *
4767  * @return 0 on success, an errno on failure.
4768  *
4769  * This helper function allows drivers to get several regulator
4770  * consumers in one operation.  If any of the regulators cannot be
4771  * acquired then any regulators that were allocated will be freed
4772  * before returning to the caller.
4773  */
4774 int regulator_bulk_get(struct device *dev, int num_consumers,
4775                        struct regulator_bulk_data *consumers)
4776 {
4777         int i;
4778         int ret;
4779
4780         for (i = 0; i < num_consumers; i++)
4781                 consumers[i].consumer = NULL;
4782
4783         for (i = 0; i < num_consumers; i++) {
4784                 consumers[i].consumer = regulator_get(dev,
4785                                                       consumers[i].supply);
4786                 if (IS_ERR(consumers[i].consumer)) {
4787                         consumers[i].consumer = NULL;
4788                         ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4789                                             "Failed to get supply '%s'",
4790                                             consumers[i].supply);
4791                         goto err;
4792                 }
4793
4794                 if (consumers[i].init_load_uA > 0) {
4795                         ret = regulator_set_load(consumers[i].consumer,
4796                                                  consumers[i].init_load_uA);
4797                         if (ret) {
4798                                 i++;
4799                                 goto err;
4800                         }
4801                 }
4802         }
4803
4804         return 0;
4805
4806 err:
4807         while (--i >= 0)
4808                 regulator_put(consumers[i].consumer);
4809
4810         return ret;
4811 }
4812 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4813
4814 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4815 {
4816         struct regulator_bulk_data *bulk = data;
4817
4818         bulk->ret = regulator_enable(bulk->consumer);
4819 }
4820
4821 /**
4822  * regulator_bulk_enable - enable multiple regulator consumers
4823  *
4824  * @num_consumers: Number of consumers
4825  * @consumers:     Consumer data; clients are stored here.
4826  * @return         0 on success, an errno on failure
4827  *
4828  * This convenience API allows consumers to enable multiple regulator
4829  * clients in a single API call.  If any consumers cannot be enabled
4830  * then any others that were enabled will be disabled again prior to
4831  * return.
4832  */
4833 int regulator_bulk_enable(int num_consumers,
4834                           struct regulator_bulk_data *consumers)
4835 {
4836         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4837         int i;
4838         int ret = 0;
4839
4840         for (i = 0; i < num_consumers; i++) {
4841                 async_schedule_domain(regulator_bulk_enable_async,
4842                                       &consumers[i], &async_domain);
4843         }
4844
4845         async_synchronize_full_domain(&async_domain);
4846
4847         /* If any consumer failed we need to unwind any that succeeded */
4848         for (i = 0; i < num_consumers; i++) {
4849                 if (consumers[i].ret != 0) {
4850                         ret = consumers[i].ret;
4851                         goto err;
4852                 }
4853         }
4854
4855         return 0;
4856
4857 err:
4858         for (i = 0; i < num_consumers; i++) {
4859                 if (consumers[i].ret < 0)
4860                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4861                                ERR_PTR(consumers[i].ret));
4862                 else
4863                         regulator_disable(consumers[i].consumer);
4864         }
4865
4866         return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4869
4870 /**
4871  * regulator_bulk_disable - disable multiple regulator consumers
4872  *
4873  * @num_consumers: Number of consumers
4874  * @consumers:     Consumer data; clients are stored here.
4875  * @return         0 on success, an errno on failure
4876  *
4877  * This convenience API allows consumers to disable multiple regulator
4878  * clients in a single API call.  If any consumers cannot be disabled
4879  * then any others that were disabled will be enabled again prior to
4880  * return.
4881  */
4882 int regulator_bulk_disable(int num_consumers,
4883                            struct regulator_bulk_data *consumers)
4884 {
4885         int i;
4886         int ret, r;
4887
4888         for (i = num_consumers - 1; i >= 0; --i) {
4889                 ret = regulator_disable(consumers[i].consumer);
4890                 if (ret != 0)
4891                         goto err;
4892         }
4893
4894         return 0;
4895
4896 err:
4897         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4898         for (++i; i < num_consumers; ++i) {
4899                 r = regulator_enable(consumers[i].consumer);
4900                 if (r != 0)
4901                         pr_err("Failed to re-enable %s: %pe\n",
4902                                consumers[i].supply, ERR_PTR(r));
4903         }
4904
4905         return ret;
4906 }
4907 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4908
4909 /**
4910  * regulator_bulk_force_disable - force disable multiple regulator consumers
4911  *
4912  * @num_consumers: Number of consumers
4913  * @consumers:     Consumer data; clients are stored here.
4914  * @return         0 on success, an errno on failure
4915  *
4916  * This convenience API allows consumers to forcibly disable multiple regulator
4917  * clients in a single API call.
4918  * NOTE: This should be used for situations when device damage will
4919  * likely occur if the regulators are not disabled (e.g. over temp).
4920  * Although regulator_force_disable function call for some consumers can
4921  * return error numbers, the function is called for all consumers.
4922  */
4923 int regulator_bulk_force_disable(int num_consumers,
4924                            struct regulator_bulk_data *consumers)
4925 {
4926         int i;
4927         int ret = 0;
4928
4929         for (i = 0; i < num_consumers; i++) {
4930                 consumers[i].ret =
4931                             regulator_force_disable(consumers[i].consumer);
4932
4933                 /* Store first error for reporting */
4934                 if (consumers[i].ret && !ret)
4935                         ret = consumers[i].ret;
4936         }
4937
4938         return ret;
4939 }
4940 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4941
4942 /**
4943  * regulator_bulk_free - free multiple regulator consumers
4944  *
4945  * @num_consumers: Number of consumers
4946  * @consumers:     Consumer data; clients are stored here.
4947  *
4948  * This convenience API allows consumers to free multiple regulator
4949  * clients in a single API call.
4950  */
4951 void regulator_bulk_free(int num_consumers,
4952                          struct regulator_bulk_data *consumers)
4953 {
4954         int i;
4955
4956         for (i = 0; i < num_consumers; i++) {
4957                 regulator_put(consumers[i].consumer);
4958                 consumers[i].consumer = NULL;
4959         }
4960 }
4961 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4962
4963 /**
4964  * regulator_notifier_call_chain - call regulator event notifier
4965  * @rdev: regulator source
4966  * @event: notifier block
4967  * @data: callback-specific data.
4968  *
4969  * Called by regulator drivers to notify clients a regulator event has
4970  * occurred.
4971  */
4972 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4973                                   unsigned long event, void *data)
4974 {
4975         _notifier_call_chain(rdev, event, data);
4976         return NOTIFY_DONE;
4977
4978 }
4979 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4980
4981 /**
4982  * regulator_mode_to_status - convert a regulator mode into a status
4983  *
4984  * @mode: Mode to convert
4985  *
4986  * Convert a regulator mode into a status.
4987  */
4988 int regulator_mode_to_status(unsigned int mode)
4989 {
4990         switch (mode) {
4991         case REGULATOR_MODE_FAST:
4992                 return REGULATOR_STATUS_FAST;
4993         case REGULATOR_MODE_NORMAL:
4994                 return REGULATOR_STATUS_NORMAL;
4995         case REGULATOR_MODE_IDLE:
4996                 return REGULATOR_STATUS_IDLE;
4997         case REGULATOR_MODE_STANDBY:
4998                 return REGULATOR_STATUS_STANDBY;
4999         default:
5000                 return REGULATOR_STATUS_UNDEFINED;
5001         }
5002 }
5003 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5004
5005 static struct attribute *regulator_dev_attrs[] = {
5006         &dev_attr_name.attr,
5007         &dev_attr_num_users.attr,
5008         &dev_attr_type.attr,
5009         &dev_attr_microvolts.attr,
5010         &dev_attr_microamps.attr,
5011         &dev_attr_opmode.attr,
5012         &dev_attr_state.attr,
5013         &dev_attr_status.attr,
5014         &dev_attr_bypass.attr,
5015         &dev_attr_requested_microamps.attr,
5016         &dev_attr_min_microvolts.attr,
5017         &dev_attr_max_microvolts.attr,
5018         &dev_attr_min_microamps.attr,
5019         &dev_attr_max_microamps.attr,
5020         &dev_attr_under_voltage.attr,
5021         &dev_attr_over_current.attr,
5022         &dev_attr_regulation_out.attr,
5023         &dev_attr_fail.attr,
5024         &dev_attr_over_temp.attr,
5025         &dev_attr_under_voltage_warn.attr,
5026         &dev_attr_over_current_warn.attr,
5027         &dev_attr_over_voltage_warn.attr,
5028         &dev_attr_over_temp_warn.attr,
5029         &dev_attr_suspend_standby_state.attr,
5030         &dev_attr_suspend_mem_state.attr,
5031         &dev_attr_suspend_disk_state.attr,
5032         &dev_attr_suspend_standby_microvolts.attr,
5033         &dev_attr_suspend_mem_microvolts.attr,
5034         &dev_attr_suspend_disk_microvolts.attr,
5035         &dev_attr_suspend_standby_mode.attr,
5036         &dev_attr_suspend_mem_mode.attr,
5037         &dev_attr_suspend_disk_mode.attr,
5038         NULL
5039 };
5040
5041 /*
5042  * To avoid cluttering sysfs (and memory) with useless state, only
5043  * create attributes that can be meaningfully displayed.
5044  */
5045 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5046                                          struct attribute *attr, int idx)
5047 {
5048         struct device *dev = kobj_to_dev(kobj);
5049         struct regulator_dev *rdev = dev_to_rdev(dev);
5050         const struct regulator_ops *ops = rdev->desc->ops;
5051         umode_t mode = attr->mode;
5052
5053         /* these three are always present */
5054         if (attr == &dev_attr_name.attr ||
5055             attr == &dev_attr_num_users.attr ||
5056             attr == &dev_attr_type.attr)
5057                 return mode;
5058
5059         /* some attributes need specific methods to be displayed */
5060         if (attr == &dev_attr_microvolts.attr) {
5061                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5062                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5063                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5064                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5065                         return mode;
5066                 return 0;
5067         }
5068
5069         if (attr == &dev_attr_microamps.attr)
5070                 return ops->get_current_limit ? mode : 0;
5071
5072         if (attr == &dev_attr_opmode.attr)
5073                 return ops->get_mode ? mode : 0;
5074
5075         if (attr == &dev_attr_state.attr)
5076                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5077
5078         if (attr == &dev_attr_status.attr)
5079                 return ops->get_status ? mode : 0;
5080
5081         if (attr == &dev_attr_bypass.attr)
5082                 return ops->get_bypass ? mode : 0;
5083
5084         if (attr == &dev_attr_under_voltage.attr ||
5085             attr == &dev_attr_over_current.attr ||
5086             attr == &dev_attr_regulation_out.attr ||
5087             attr == &dev_attr_fail.attr ||
5088             attr == &dev_attr_over_temp.attr ||
5089             attr == &dev_attr_under_voltage_warn.attr ||
5090             attr == &dev_attr_over_current_warn.attr ||
5091             attr == &dev_attr_over_voltage_warn.attr ||
5092             attr == &dev_attr_over_temp_warn.attr)
5093                 return ops->get_error_flags ? mode : 0;
5094
5095         /* constraints need specific supporting methods */
5096         if (attr == &dev_attr_min_microvolts.attr ||
5097             attr == &dev_attr_max_microvolts.attr)
5098                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5099
5100         if (attr == &dev_attr_min_microamps.attr ||
5101             attr == &dev_attr_max_microamps.attr)
5102                 return ops->set_current_limit ? mode : 0;
5103
5104         if (attr == &dev_attr_suspend_standby_state.attr ||
5105             attr == &dev_attr_suspend_mem_state.attr ||
5106             attr == &dev_attr_suspend_disk_state.attr)
5107                 return mode;
5108
5109         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5110             attr == &dev_attr_suspend_mem_microvolts.attr ||
5111             attr == &dev_attr_suspend_disk_microvolts.attr)
5112                 return ops->set_suspend_voltage ? mode : 0;
5113
5114         if (attr == &dev_attr_suspend_standby_mode.attr ||
5115             attr == &dev_attr_suspend_mem_mode.attr ||
5116             attr == &dev_attr_suspend_disk_mode.attr)
5117                 return ops->set_suspend_mode ? mode : 0;
5118
5119         return mode;
5120 }
5121
5122 static const struct attribute_group regulator_dev_group = {
5123         .attrs = regulator_dev_attrs,
5124         .is_visible = regulator_attr_is_visible,
5125 };
5126
5127 static const struct attribute_group *regulator_dev_groups[] = {
5128         &regulator_dev_group,
5129         NULL
5130 };
5131
5132 static void regulator_dev_release(struct device *dev)
5133 {
5134         struct regulator_dev *rdev = dev_get_drvdata(dev);
5135
5136         kfree(rdev->constraints);
5137         of_node_put(rdev->dev.of_node);
5138         kfree(rdev);
5139 }
5140
5141 static void rdev_init_debugfs(struct regulator_dev *rdev)
5142 {
5143         struct device *parent = rdev->dev.parent;
5144         const char *rname = rdev_get_name(rdev);
5145         char name[NAME_MAX];
5146
5147         /* Avoid duplicate debugfs directory names */
5148         if (parent && rname == rdev->desc->name) {
5149                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5150                          rname);
5151                 rname = name;
5152         }
5153
5154         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5155         if (!rdev->debugfs) {
5156                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5157                 return;
5158         }
5159
5160         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5161                            &rdev->use_count);
5162         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5163                            &rdev->open_count);
5164         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5165                            &rdev->bypass_count);
5166 }
5167
5168 static int regulator_register_resolve_supply(struct device *dev, void *data)
5169 {
5170         struct regulator_dev *rdev = dev_to_rdev(dev);
5171
5172         if (regulator_resolve_supply(rdev))
5173                 rdev_dbg(rdev, "unable to resolve supply\n");
5174
5175         return 0;
5176 }
5177
5178 int regulator_coupler_register(struct regulator_coupler *coupler)
5179 {
5180         mutex_lock(&regulator_list_mutex);
5181         list_add_tail(&coupler->list, &regulator_coupler_list);
5182         mutex_unlock(&regulator_list_mutex);
5183
5184         return 0;
5185 }
5186
5187 static struct regulator_coupler *
5188 regulator_find_coupler(struct regulator_dev *rdev)
5189 {
5190         struct regulator_coupler *coupler;
5191         int err;
5192
5193         /*
5194          * Note that regulators are appended to the list and the generic
5195          * coupler is registered first, hence it will be attached at last
5196          * if nobody cared.
5197          */
5198         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5199                 err = coupler->attach_regulator(coupler, rdev);
5200                 if (!err) {
5201                         if (!coupler->balance_voltage &&
5202                             rdev->coupling_desc.n_coupled > 2)
5203                                 goto err_unsupported;
5204
5205                         return coupler;
5206                 }
5207
5208                 if (err < 0)
5209                         return ERR_PTR(err);
5210
5211                 if (err == 1)
5212                         continue;
5213
5214                 break;
5215         }
5216
5217         return ERR_PTR(-EINVAL);
5218
5219 err_unsupported:
5220         if (coupler->detach_regulator)
5221                 coupler->detach_regulator(coupler, rdev);
5222
5223         rdev_err(rdev,
5224                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5225
5226         return ERR_PTR(-EPERM);
5227 }
5228
5229 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5230 {
5231         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5232         struct coupling_desc *c_desc = &rdev->coupling_desc;
5233         int n_coupled = c_desc->n_coupled;
5234         struct regulator_dev *c_rdev;
5235         int i;
5236
5237         for (i = 1; i < n_coupled; i++) {
5238                 /* already resolved */
5239                 if (c_desc->coupled_rdevs[i])
5240                         continue;
5241
5242                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5243
5244                 if (!c_rdev)
5245                         continue;
5246
5247                 if (c_rdev->coupling_desc.coupler != coupler) {
5248                         rdev_err(rdev, "coupler mismatch with %s\n",
5249                                  rdev_get_name(c_rdev));
5250                         return;
5251                 }
5252
5253                 c_desc->coupled_rdevs[i] = c_rdev;
5254                 c_desc->n_resolved++;
5255
5256                 regulator_resolve_coupling(c_rdev);
5257         }
5258 }
5259
5260 static void regulator_remove_coupling(struct regulator_dev *rdev)
5261 {
5262         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5263         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5264         struct regulator_dev *__c_rdev, *c_rdev;
5265         unsigned int __n_coupled, n_coupled;
5266         int i, k;
5267         int err;
5268
5269         n_coupled = c_desc->n_coupled;
5270
5271         for (i = 1; i < n_coupled; i++) {
5272                 c_rdev = c_desc->coupled_rdevs[i];
5273
5274                 if (!c_rdev)
5275                         continue;
5276
5277                 regulator_lock(c_rdev);
5278
5279                 __c_desc = &c_rdev->coupling_desc;
5280                 __n_coupled = __c_desc->n_coupled;
5281
5282                 for (k = 1; k < __n_coupled; k++) {
5283                         __c_rdev = __c_desc->coupled_rdevs[k];
5284
5285                         if (__c_rdev == rdev) {
5286                                 __c_desc->coupled_rdevs[k] = NULL;
5287                                 __c_desc->n_resolved--;
5288                                 break;
5289                         }
5290                 }
5291
5292                 regulator_unlock(c_rdev);
5293
5294                 c_desc->coupled_rdevs[i] = NULL;
5295                 c_desc->n_resolved--;
5296         }
5297
5298         if (coupler && coupler->detach_regulator) {
5299                 err = coupler->detach_regulator(coupler, rdev);
5300                 if (err)
5301                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5302                                  ERR_PTR(err));
5303         }
5304
5305         kfree(rdev->coupling_desc.coupled_rdevs);
5306         rdev->coupling_desc.coupled_rdevs = NULL;
5307 }
5308
5309 static int regulator_init_coupling(struct regulator_dev *rdev)
5310 {
5311         struct regulator_dev **coupled;
5312         int err, n_phandles;
5313
5314         if (!IS_ENABLED(CONFIG_OF))
5315                 n_phandles = 0;
5316         else
5317                 n_phandles = of_get_n_coupled(rdev);
5318
5319         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5320         if (!coupled)
5321                 return -ENOMEM;
5322
5323         rdev->coupling_desc.coupled_rdevs = coupled;
5324
5325         /*
5326          * Every regulator should always have coupling descriptor filled with
5327          * at least pointer to itself.
5328          */
5329         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5330         rdev->coupling_desc.n_coupled = n_phandles + 1;
5331         rdev->coupling_desc.n_resolved++;
5332
5333         /* regulator isn't coupled */
5334         if (n_phandles == 0)
5335                 return 0;
5336
5337         if (!of_check_coupling_data(rdev))
5338                 return -EPERM;
5339
5340         mutex_lock(&regulator_list_mutex);
5341         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5342         mutex_unlock(&regulator_list_mutex);
5343
5344         if (IS_ERR(rdev->coupling_desc.coupler)) {
5345                 err = PTR_ERR(rdev->coupling_desc.coupler);
5346                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5347                 return err;
5348         }
5349
5350         return 0;
5351 }
5352
5353 static int generic_coupler_attach(struct regulator_coupler *coupler,
5354                                   struct regulator_dev *rdev)
5355 {
5356         if (rdev->coupling_desc.n_coupled > 2) {
5357                 rdev_err(rdev,
5358                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5359                 return -EPERM;
5360         }
5361
5362         if (!rdev->constraints->always_on) {
5363                 rdev_err(rdev,
5364                          "Coupling of a non always-on regulator is unimplemented\n");
5365                 return -ENOTSUPP;
5366         }
5367
5368         return 0;
5369 }
5370
5371 static struct regulator_coupler generic_regulator_coupler = {
5372         .attach_regulator = generic_coupler_attach,
5373 };
5374
5375 /**
5376  * regulator_register - register regulator
5377  * @regulator_desc: regulator to register
5378  * @cfg: runtime configuration for regulator
5379  *
5380  * Called by regulator drivers to register a regulator.
5381  * Returns a valid pointer to struct regulator_dev on success
5382  * or an ERR_PTR() on error.
5383  */
5384 struct regulator_dev *
5385 regulator_register(const struct regulator_desc *regulator_desc,
5386                    const struct regulator_config *cfg)
5387 {
5388         const struct regulator_init_data *init_data;
5389         struct regulator_config *config = NULL;
5390         static atomic_t regulator_no = ATOMIC_INIT(-1);
5391         struct regulator_dev *rdev;
5392         bool dangling_cfg_gpiod = false;
5393         bool dangling_of_gpiod = false;
5394         struct device *dev;
5395         int ret, i;
5396
5397         if (cfg == NULL)
5398                 return ERR_PTR(-EINVAL);
5399         if (cfg->ena_gpiod)
5400                 dangling_cfg_gpiod = true;
5401         if (regulator_desc == NULL) {
5402                 ret = -EINVAL;
5403                 goto rinse;
5404         }
5405
5406         dev = cfg->dev;
5407         WARN_ON(!dev);
5408
5409         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5410                 ret = -EINVAL;
5411                 goto rinse;
5412         }
5413
5414         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5415             regulator_desc->type != REGULATOR_CURRENT) {
5416                 ret = -EINVAL;
5417                 goto rinse;
5418         }
5419
5420         /* Only one of each should be implemented */
5421         WARN_ON(regulator_desc->ops->get_voltage &&
5422                 regulator_desc->ops->get_voltage_sel);
5423         WARN_ON(regulator_desc->ops->set_voltage &&
5424                 regulator_desc->ops->set_voltage_sel);
5425
5426         /* If we're using selectors we must implement list_voltage. */
5427         if (regulator_desc->ops->get_voltage_sel &&
5428             !regulator_desc->ops->list_voltage) {
5429                 ret = -EINVAL;
5430                 goto rinse;
5431         }
5432         if (regulator_desc->ops->set_voltage_sel &&
5433             !regulator_desc->ops->list_voltage) {
5434                 ret = -EINVAL;
5435                 goto rinse;
5436         }
5437
5438         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5439         if (rdev == NULL) {
5440                 ret = -ENOMEM;
5441                 goto rinse;
5442         }
5443         device_initialize(&rdev->dev);
5444         spin_lock_init(&rdev->err_lock);
5445
5446         /*
5447          * Duplicate the config so the driver could override it after
5448          * parsing init data.
5449          */
5450         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5451         if (config == NULL) {
5452                 ret = -ENOMEM;
5453                 goto clean;
5454         }
5455
5456         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5457                                                &rdev->dev.of_node);
5458
5459         /*
5460          * Sometimes not all resources are probed already so we need to take
5461          * that into account. This happens most the time if the ena_gpiod comes
5462          * from a gpio extender or something else.
5463          */
5464         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5465                 ret = -EPROBE_DEFER;
5466                 goto clean;
5467         }
5468
5469         /*
5470          * We need to keep track of any GPIO descriptor coming from the
5471          * device tree until we have handled it over to the core. If the
5472          * config that was passed in to this function DOES NOT contain
5473          * a descriptor, and the config after this call DOES contain
5474          * a descriptor, we definitely got one from parsing the device
5475          * tree.
5476          */
5477         if (!cfg->ena_gpiod && config->ena_gpiod)
5478                 dangling_of_gpiod = true;
5479         if (!init_data) {
5480                 init_data = config->init_data;
5481                 rdev->dev.of_node = of_node_get(config->of_node);
5482         }
5483
5484         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5485         rdev->reg_data = config->driver_data;
5486         rdev->owner = regulator_desc->owner;
5487         rdev->desc = regulator_desc;
5488         if (config->regmap)
5489                 rdev->regmap = config->regmap;
5490         else if (dev_get_regmap(dev, NULL))
5491                 rdev->regmap = dev_get_regmap(dev, NULL);
5492         else if (dev->parent)
5493                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5494         INIT_LIST_HEAD(&rdev->consumer_list);
5495         INIT_LIST_HEAD(&rdev->list);
5496         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5497         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5498
5499         /* preform any regulator specific init */
5500         if (init_data && init_data->regulator_init) {
5501                 ret = init_data->regulator_init(rdev->reg_data);
5502                 if (ret < 0)
5503                         goto clean;
5504         }
5505
5506         if (config->ena_gpiod) {
5507                 ret = regulator_ena_gpio_request(rdev, config);
5508                 if (ret != 0) {
5509                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5510                                  ERR_PTR(ret));
5511                         goto clean;
5512                 }
5513                 /* The regulator core took over the GPIO descriptor */
5514                 dangling_cfg_gpiod = false;
5515                 dangling_of_gpiod = false;
5516         }
5517
5518         /* register with sysfs */
5519         rdev->dev.class = &regulator_class;
5520         rdev->dev.parent = dev;
5521         dev_set_name(&rdev->dev, "regulator.%lu",
5522                     (unsigned long) atomic_inc_return(&regulator_no));
5523         dev_set_drvdata(&rdev->dev, rdev);
5524
5525         /* set regulator constraints */
5526         if (init_data)
5527                 rdev->constraints = kmemdup(&init_data->constraints,
5528                                             sizeof(*rdev->constraints),
5529                                             GFP_KERNEL);
5530         else
5531                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5532                                             GFP_KERNEL);
5533         if (!rdev->constraints) {
5534                 ret = -ENOMEM;
5535                 goto wash;
5536         }
5537
5538         if (init_data && init_data->supply_regulator)
5539                 rdev->supply_name = init_data->supply_regulator;
5540         else if (regulator_desc->supply_name)
5541                 rdev->supply_name = regulator_desc->supply_name;
5542
5543         ret = set_machine_constraints(rdev);
5544         if (ret == -EPROBE_DEFER) {
5545                 /* Regulator might be in bypass mode and so needs its supply
5546                  * to set the constraints
5547                  */
5548                 /* FIXME: this currently triggers a chicken-and-egg problem
5549                  * when creating -SUPPLY symlink in sysfs to a regulator
5550                  * that is just being created
5551                  */
5552                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5553                          rdev->supply_name);
5554                 ret = regulator_resolve_supply(rdev);
5555                 if (!ret)
5556                         ret = set_machine_constraints(rdev);
5557                 else
5558                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5559                                  ERR_PTR(ret));
5560         }
5561         if (ret < 0)
5562                 goto wash;
5563
5564         ret = regulator_init_coupling(rdev);
5565         if (ret < 0)
5566                 goto wash;
5567
5568         /* add consumers devices */
5569         if (init_data) {
5570                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5571                         ret = set_consumer_device_supply(rdev,
5572                                 init_data->consumer_supplies[i].dev_name,
5573                                 init_data->consumer_supplies[i].supply);
5574                         if (ret < 0) {
5575                                 dev_err(dev, "Failed to set supply %s\n",
5576                                         init_data->consumer_supplies[i].supply);
5577                                 goto unset_supplies;
5578                         }
5579                 }
5580         }
5581
5582         if (!rdev->desc->ops->get_voltage &&
5583             !rdev->desc->ops->list_voltage &&
5584             !rdev->desc->fixed_uV)
5585                 rdev->is_switch = true;
5586
5587         ret = device_add(&rdev->dev);
5588         if (ret != 0)
5589                 goto unset_supplies;
5590
5591         rdev_init_debugfs(rdev);
5592
5593         /* try to resolve regulators coupling since a new one was registered */
5594         mutex_lock(&regulator_list_mutex);
5595         regulator_resolve_coupling(rdev);
5596         mutex_unlock(&regulator_list_mutex);
5597
5598         /* try to resolve regulators supply since a new one was registered */
5599         class_for_each_device(&regulator_class, NULL, NULL,
5600                               regulator_register_resolve_supply);
5601         kfree(config);
5602         return rdev;
5603
5604 unset_supplies:
5605         mutex_lock(&regulator_list_mutex);
5606         unset_regulator_supplies(rdev);
5607         regulator_remove_coupling(rdev);
5608         mutex_unlock(&regulator_list_mutex);
5609 wash:
5610         kfree(rdev->coupling_desc.coupled_rdevs);
5611         mutex_lock(&regulator_list_mutex);
5612         regulator_ena_gpio_free(rdev);
5613         mutex_unlock(&regulator_list_mutex);
5614 clean:
5615         if (dangling_of_gpiod)
5616                 gpiod_put(config->ena_gpiod);
5617         kfree(config);
5618         put_device(&rdev->dev);
5619 rinse:
5620         if (dangling_cfg_gpiod)
5621                 gpiod_put(cfg->ena_gpiod);
5622         return ERR_PTR(ret);
5623 }
5624 EXPORT_SYMBOL_GPL(regulator_register);
5625
5626 /**
5627  * regulator_unregister - unregister regulator
5628  * @rdev: regulator to unregister
5629  *
5630  * Called by regulator drivers to unregister a regulator.
5631  */
5632 void regulator_unregister(struct regulator_dev *rdev)
5633 {
5634         if (rdev == NULL)
5635                 return;
5636
5637         if (rdev->supply) {
5638                 while (rdev->use_count--)
5639                         regulator_disable(rdev->supply);
5640                 regulator_put(rdev->supply);
5641         }
5642
5643         flush_work(&rdev->disable_work.work);
5644
5645         mutex_lock(&regulator_list_mutex);
5646
5647         debugfs_remove_recursive(rdev->debugfs);
5648         WARN_ON(rdev->open_count);
5649         regulator_remove_coupling(rdev);
5650         unset_regulator_supplies(rdev);
5651         list_del(&rdev->list);
5652         regulator_ena_gpio_free(rdev);
5653         device_unregister(&rdev->dev);
5654
5655         mutex_unlock(&regulator_list_mutex);
5656 }
5657 EXPORT_SYMBOL_GPL(regulator_unregister);
5658
5659 #ifdef CONFIG_SUSPEND
5660 /**
5661  * regulator_suspend - prepare regulators for system wide suspend
5662  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5663  *
5664  * Configure each regulator with it's suspend operating parameters for state.
5665  */
5666 static int regulator_suspend(struct device *dev)
5667 {
5668         struct regulator_dev *rdev = dev_to_rdev(dev);
5669         suspend_state_t state = pm_suspend_target_state;
5670         int ret;
5671         const struct regulator_state *rstate;
5672
5673         rstate = regulator_get_suspend_state_check(rdev, state);
5674         if (!rstate)
5675                 return 0;
5676
5677         regulator_lock(rdev);
5678         ret = __suspend_set_state(rdev, rstate);
5679         regulator_unlock(rdev);
5680
5681         return ret;
5682 }
5683
5684 static int regulator_resume(struct device *dev)
5685 {
5686         suspend_state_t state = pm_suspend_target_state;
5687         struct regulator_dev *rdev = dev_to_rdev(dev);
5688         struct regulator_state *rstate;
5689         int ret = 0;
5690
5691         rstate = regulator_get_suspend_state(rdev, state);
5692         if (rstate == NULL)
5693                 return 0;
5694
5695         /* Avoid grabbing the lock if we don't need to */
5696         if (!rdev->desc->ops->resume)
5697                 return 0;
5698
5699         regulator_lock(rdev);
5700
5701         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5702             rstate->enabled == DISABLE_IN_SUSPEND)
5703                 ret = rdev->desc->ops->resume(rdev);
5704
5705         regulator_unlock(rdev);
5706
5707         return ret;
5708 }
5709 #else /* !CONFIG_SUSPEND */
5710
5711 #define regulator_suspend       NULL
5712 #define regulator_resume        NULL
5713
5714 #endif /* !CONFIG_SUSPEND */
5715
5716 #ifdef CONFIG_PM
5717 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5718         .suspend        = regulator_suspend,
5719         .resume         = regulator_resume,
5720 };
5721 #endif
5722
5723 struct class regulator_class = {
5724         .name = "regulator",
5725         .dev_release = regulator_dev_release,
5726         .dev_groups = regulator_dev_groups,
5727 #ifdef CONFIG_PM
5728         .pm = &regulator_pm_ops,
5729 #endif
5730 };
5731 /**
5732  * regulator_has_full_constraints - the system has fully specified constraints
5733  *
5734  * Calling this function will cause the regulator API to disable all
5735  * regulators which have a zero use count and don't have an always_on
5736  * constraint in a late_initcall.
5737  *
5738  * The intention is that this will become the default behaviour in a
5739  * future kernel release so users are encouraged to use this facility
5740  * now.
5741  */
5742 void regulator_has_full_constraints(void)
5743 {
5744         has_full_constraints = 1;
5745 }
5746 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5747
5748 /**
5749  * rdev_get_drvdata - get rdev regulator driver data
5750  * @rdev: regulator
5751  *
5752  * Get rdev regulator driver private data. This call can be used in the
5753  * regulator driver context.
5754  */
5755 void *rdev_get_drvdata(struct regulator_dev *rdev)
5756 {
5757         return rdev->reg_data;
5758 }
5759 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5760
5761 /**
5762  * regulator_get_drvdata - get regulator driver data
5763  * @regulator: regulator
5764  *
5765  * Get regulator driver private data. This call can be used in the consumer
5766  * driver context when non API regulator specific functions need to be called.
5767  */
5768 void *regulator_get_drvdata(struct regulator *regulator)
5769 {
5770         return regulator->rdev->reg_data;
5771 }
5772 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5773
5774 /**
5775  * regulator_set_drvdata - set regulator driver data
5776  * @regulator: regulator
5777  * @data: data
5778  */
5779 void regulator_set_drvdata(struct regulator *regulator, void *data)
5780 {
5781         regulator->rdev->reg_data = data;
5782 }
5783 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5784
5785 /**
5786  * rdev_get_id - get regulator ID
5787  * @rdev: regulator
5788  */
5789 int rdev_get_id(struct regulator_dev *rdev)
5790 {
5791         return rdev->desc->id;
5792 }
5793 EXPORT_SYMBOL_GPL(rdev_get_id);
5794
5795 struct device *rdev_get_dev(struct regulator_dev *rdev)
5796 {
5797         return &rdev->dev;
5798 }
5799 EXPORT_SYMBOL_GPL(rdev_get_dev);
5800
5801 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5802 {
5803         return rdev->regmap;
5804 }
5805 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5806
5807 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5808 {
5809         return reg_init_data->driver_data;
5810 }
5811 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5812
5813 #ifdef CONFIG_DEBUG_FS
5814 static int supply_map_show(struct seq_file *sf, void *data)
5815 {
5816         struct regulator_map *map;
5817
5818         list_for_each_entry(map, &regulator_map_list, list) {
5819                 seq_printf(sf, "%s -> %s.%s\n",
5820                                 rdev_get_name(map->regulator), map->dev_name,
5821                                 map->supply);
5822         }
5823
5824         return 0;
5825 }
5826 DEFINE_SHOW_ATTRIBUTE(supply_map);
5827
5828 struct summary_data {
5829         struct seq_file *s;
5830         struct regulator_dev *parent;
5831         int level;
5832 };
5833
5834 static void regulator_summary_show_subtree(struct seq_file *s,
5835                                            struct regulator_dev *rdev,
5836                                            int level);
5837
5838 static int regulator_summary_show_children(struct device *dev, void *data)
5839 {
5840         struct regulator_dev *rdev = dev_to_rdev(dev);
5841         struct summary_data *summary_data = data;
5842
5843         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5844                 regulator_summary_show_subtree(summary_data->s, rdev,
5845                                                summary_data->level + 1);
5846
5847         return 0;
5848 }
5849
5850 static void regulator_summary_show_subtree(struct seq_file *s,
5851                                            struct regulator_dev *rdev,
5852                                            int level)
5853 {
5854         struct regulation_constraints *c;
5855         struct regulator *consumer;
5856         struct summary_data summary_data;
5857         unsigned int opmode;
5858
5859         if (!rdev)
5860                 return;
5861
5862         opmode = _regulator_get_mode_unlocked(rdev);
5863         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5864                    level * 3 + 1, "",
5865                    30 - level * 3, rdev_get_name(rdev),
5866                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5867                    regulator_opmode_to_str(opmode));
5868
5869         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5870         seq_printf(s, "%5dmA ",
5871                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5872
5873         c = rdev->constraints;
5874         if (c) {
5875                 switch (rdev->desc->type) {
5876                 case REGULATOR_VOLTAGE:
5877                         seq_printf(s, "%5dmV %5dmV ",
5878                                    c->min_uV / 1000, c->max_uV / 1000);
5879                         break;
5880                 case REGULATOR_CURRENT:
5881                         seq_printf(s, "%5dmA %5dmA ",
5882                                    c->min_uA / 1000, c->max_uA / 1000);
5883                         break;
5884                 }
5885         }
5886
5887         seq_puts(s, "\n");
5888
5889         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5890                 if (consumer->dev && consumer->dev->class == &regulator_class)
5891                         continue;
5892
5893                 seq_printf(s, "%*s%-*s ",
5894                            (level + 1) * 3 + 1, "",
5895                            30 - (level + 1) * 3,
5896                            consumer->supply_name ? consumer->supply_name :
5897                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5898
5899                 switch (rdev->desc->type) {
5900                 case REGULATOR_VOLTAGE:
5901                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5902                                    consumer->enable_count,
5903                                    consumer->uA_load / 1000,
5904                                    consumer->uA_load && !consumer->enable_count ?
5905                                    '*' : ' ',
5906                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5907                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5908                         break;
5909                 case REGULATOR_CURRENT:
5910                         break;
5911                 }
5912
5913                 seq_puts(s, "\n");
5914         }
5915
5916         summary_data.s = s;
5917         summary_data.level = level;
5918         summary_data.parent = rdev;
5919
5920         class_for_each_device(&regulator_class, NULL, &summary_data,
5921                               regulator_summary_show_children);
5922 }
5923
5924 struct summary_lock_data {
5925         struct ww_acquire_ctx *ww_ctx;
5926         struct regulator_dev **new_contended_rdev;
5927         struct regulator_dev **old_contended_rdev;
5928 };
5929
5930 static int regulator_summary_lock_one(struct device *dev, void *data)
5931 {
5932         struct regulator_dev *rdev = dev_to_rdev(dev);
5933         struct summary_lock_data *lock_data = data;
5934         int ret = 0;
5935
5936         if (rdev != *lock_data->old_contended_rdev) {
5937                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5938
5939                 if (ret == -EDEADLK)
5940                         *lock_data->new_contended_rdev = rdev;
5941                 else
5942                         WARN_ON_ONCE(ret);
5943         } else {
5944                 *lock_data->old_contended_rdev = NULL;
5945         }
5946
5947         return ret;
5948 }
5949
5950 static int regulator_summary_unlock_one(struct device *dev, void *data)
5951 {
5952         struct regulator_dev *rdev = dev_to_rdev(dev);
5953         struct summary_lock_data *lock_data = data;
5954
5955         if (lock_data) {
5956                 if (rdev == *lock_data->new_contended_rdev)
5957                         return -EDEADLK;
5958         }
5959
5960         regulator_unlock(rdev);
5961
5962         return 0;
5963 }
5964
5965 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5966                                       struct regulator_dev **new_contended_rdev,
5967                                       struct regulator_dev **old_contended_rdev)
5968 {
5969         struct summary_lock_data lock_data;
5970         int ret;
5971
5972         lock_data.ww_ctx = ww_ctx;
5973         lock_data.new_contended_rdev = new_contended_rdev;
5974         lock_data.old_contended_rdev = old_contended_rdev;
5975
5976         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5977                                     regulator_summary_lock_one);
5978         if (ret)
5979                 class_for_each_device(&regulator_class, NULL, &lock_data,
5980                                       regulator_summary_unlock_one);
5981
5982         return ret;
5983 }
5984
5985 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5986 {
5987         struct regulator_dev *new_contended_rdev = NULL;
5988         struct regulator_dev *old_contended_rdev = NULL;
5989         int err;
5990
5991         mutex_lock(&regulator_list_mutex);
5992
5993         ww_acquire_init(ww_ctx, &regulator_ww_class);
5994
5995         do {
5996                 if (new_contended_rdev) {
5997                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5998                         old_contended_rdev = new_contended_rdev;
5999                         old_contended_rdev->ref_cnt++;
6000                 }
6001
6002                 err = regulator_summary_lock_all(ww_ctx,
6003                                                  &new_contended_rdev,
6004                                                  &old_contended_rdev);
6005
6006                 if (old_contended_rdev)
6007                         regulator_unlock(old_contended_rdev);
6008
6009         } while (err == -EDEADLK);
6010
6011         ww_acquire_done(ww_ctx);
6012 }
6013
6014 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6015 {
6016         class_for_each_device(&regulator_class, NULL, NULL,
6017                               regulator_summary_unlock_one);
6018         ww_acquire_fini(ww_ctx);
6019
6020         mutex_unlock(&regulator_list_mutex);
6021 }
6022
6023 static int regulator_summary_show_roots(struct device *dev, void *data)
6024 {
6025         struct regulator_dev *rdev = dev_to_rdev(dev);
6026         struct seq_file *s = data;
6027
6028         if (!rdev->supply)
6029                 regulator_summary_show_subtree(s, rdev, 0);
6030
6031         return 0;
6032 }
6033
6034 static int regulator_summary_show(struct seq_file *s, void *data)
6035 {
6036         struct ww_acquire_ctx ww_ctx;
6037
6038         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6039         seq_puts(s, "---------------------------------------------------------------------------------------\n");
6040
6041         regulator_summary_lock(&ww_ctx);
6042
6043         class_for_each_device(&regulator_class, NULL, s,
6044                               regulator_summary_show_roots);
6045
6046         regulator_summary_unlock(&ww_ctx);
6047
6048         return 0;
6049 }
6050 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6051 #endif /* CONFIG_DEBUG_FS */
6052
6053 static int __init regulator_init(void)
6054 {
6055         int ret;
6056
6057         ret = class_register(&regulator_class);
6058
6059         debugfs_root = debugfs_create_dir("regulator", NULL);
6060         if (!debugfs_root)
6061                 pr_warn("regulator: Failed to create debugfs directory\n");
6062
6063 #ifdef CONFIG_DEBUG_FS
6064         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6065                             &supply_map_fops);
6066
6067         debugfs_create_file("regulator_summary", 0444, debugfs_root,
6068                             NULL, &regulator_summary_fops);
6069 #endif
6070         regulator_dummy_init();
6071
6072         regulator_coupler_register(&generic_regulator_coupler);
6073
6074         return ret;
6075 }
6076
6077 /* init early to allow our consumers to complete system booting */
6078 core_initcall(regulator_init);
6079
6080 static int regulator_late_cleanup(struct device *dev, void *data)
6081 {
6082         struct regulator_dev *rdev = dev_to_rdev(dev);
6083         struct regulation_constraints *c = rdev->constraints;
6084         int ret;
6085
6086         if (c && c->always_on)
6087                 return 0;
6088
6089         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6090                 return 0;
6091
6092         regulator_lock(rdev);
6093
6094         if (rdev->use_count)
6095                 goto unlock;
6096
6097         /* If reading the status failed, assume that it's off. */
6098         if (_regulator_is_enabled(rdev) <= 0)
6099                 goto unlock;
6100
6101         if (have_full_constraints()) {
6102                 /* We log since this may kill the system if it goes
6103                  * wrong.
6104                  */
6105                 rdev_info(rdev, "disabling\n");
6106                 ret = _regulator_do_disable(rdev);
6107                 if (ret != 0)
6108                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6109         } else {
6110                 /* The intention is that in future we will
6111                  * assume that full constraints are provided
6112                  * so warn even if we aren't going to do
6113                  * anything here.
6114                  */
6115                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6116         }
6117
6118 unlock:
6119         regulator_unlock(rdev);
6120
6121         return 0;
6122 }
6123
6124 static void regulator_init_complete_work_function(struct work_struct *work)
6125 {
6126         /*
6127          * Regulators may had failed to resolve their input supplies
6128          * when were registered, either because the input supply was
6129          * not registered yet or because its parent device was not
6130          * bound yet. So attempt to resolve the input supplies for
6131          * pending regulators before trying to disable unused ones.
6132          */
6133         class_for_each_device(&regulator_class, NULL, NULL,
6134                               regulator_register_resolve_supply);
6135
6136         /* If we have a full configuration then disable any regulators
6137          * we have permission to change the status for and which are
6138          * not in use or always_on.  This is effectively the default
6139          * for DT and ACPI as they have full constraints.
6140          */
6141         class_for_each_device(&regulator_class, NULL, NULL,
6142                               regulator_late_cleanup);
6143 }
6144
6145 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6146                             regulator_init_complete_work_function);
6147
6148 static int __init regulator_init_complete(void)
6149 {
6150         /*
6151          * Since DT doesn't provide an idiomatic mechanism for
6152          * enabling full constraints and since it's much more natural
6153          * with DT to provide them just assume that a DT enabled
6154          * system has full constraints.
6155          */
6156         if (of_have_populated_dt())
6157                 has_full_constraints = true;
6158
6159         /*
6160          * We punt completion for an arbitrary amount of time since
6161          * systems like distros will load many drivers from userspace
6162          * so consumers might not always be ready yet, this is
6163          * particularly an issue with laptops where this might bounce
6164          * the display off then on.  Ideally we'd get a notification
6165          * from userspace when this happens but we don't so just wait
6166          * a bit and hope we waited long enough.  It'd be better if
6167          * we'd only do this on systems that need it, and a kernel
6168          * command line option might be useful.
6169          */
6170         schedule_delayed_work(&regulator_init_complete_work,
6171                               msecs_to_jiffies(30000));
6172
6173         return 0;
6174 }
6175 late_initcall_sync(regulator_init_complete);