mfd: kempld-core: Constify variables that point to const structure
[linux-2.6-block.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         struct gpio_desc *gpiod;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130         if (!rdev->constraints) {
131                 rdev_err(rdev, "no constraints\n");
132                 return false;
133         }
134
135         if (rdev->constraints->valid_ops_mask & ops)
136                 return true;
137
138         return false;
139 }
140
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143         if (rdev && rdev->supply)
144                 return rdev->supply->rdev;
145
146         return NULL;
147 }
148
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:               regulator source
152  * @subclass:           mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161                                   unsigned int subclass)
162 {
163         if (!mutex_trylock(&rdev->mutex)) {
164                 if (rdev->mutex_owner == current) {
165                         rdev->ref_cnt++;
166                         return;
167                 }
168                 mutex_lock_nested(&rdev->mutex, subclass);
169         }
170
171         rdev->ref_cnt = 1;
172         rdev->mutex_owner = current;
173 }
174
175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177         regulator_lock_nested(rdev, 0);
178 }
179
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:               regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189         if (rdev->ref_cnt != 0) {
190                 rdev->ref_cnt--;
191
192                 if (!rdev->ref_cnt) {
193                         rdev->mutex_owner = NULL;
194                         mutex_unlock(&rdev->mutex);
195                 }
196         }
197 }
198
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205         int i;
206
207         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208                 regulator_lock_nested(rdev, i);
209 }
210
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217         struct regulator *supply;
218
219         while (1) {
220                 regulator_unlock(rdev);
221                 supply = rdev->supply;
222
223                 if (!rdev->supply)
224                         return;
225
226                 rdev = supply->rdev;
227         }
228 }
229
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241         struct device_node *regnode = NULL;
242         char prop_name[32]; /* 32 is max size of property name */
243
244         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245
246         snprintf(prop_name, 32, "%s-supply", supply);
247         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248
249         if (!regnode) {
250                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251                                 prop_name, dev->of_node);
252                 return NULL;
253         }
254         return regnode;
255 }
256
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259                                    int *min_uV, int *max_uV)
260 {
261         BUG_ON(*min_uV > *max_uV);
262
263         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264                 rdev_err(rdev, "voltage operation not allowed\n");
265                 return -EPERM;
266         }
267
268         if (*max_uV > rdev->constraints->max_uV)
269                 *max_uV = rdev->constraints->max_uV;
270         if (*min_uV < rdev->constraints->min_uV)
271                 *min_uV = rdev->constraints->min_uV;
272
273         if (*min_uV > *max_uV) {
274                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275                          *min_uV, *max_uV);
276                 return -EINVAL;
277         }
278
279         return 0;
280 }
281
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
284 {
285         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292                                      int *min_uV, int *max_uV,
293                                      suspend_state_t state)
294 {
295         struct regulator *regulator;
296         struct regulator_voltage *voltage;
297
298         list_for_each_entry(regulator, &rdev->consumer_list, list) {
299                 voltage = &regulator->voltage[state];
300                 /*
301                  * Assume consumers that didn't say anything are OK
302                  * with anything in the constraint range.
303                  */
304                 if (!voltage->min_uV && !voltage->max_uV)
305                         continue;
306
307                 if (*max_uV > voltage->max_uV)
308                         *max_uV = voltage->max_uV;
309                 if (*min_uV < voltage->min_uV)
310                         *min_uV = voltage->min_uV;
311         }
312
313         if (*min_uV > *max_uV) {
314                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315                         *min_uV, *max_uV);
316                 return -EINVAL;
317         }
318
319         return 0;
320 }
321
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324                                         int *min_uA, int *max_uA)
325 {
326         BUG_ON(*min_uA > *max_uA);
327
328         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329                 rdev_err(rdev, "current operation not allowed\n");
330                 return -EPERM;
331         }
332
333         if (*max_uA > rdev->constraints->max_uA)
334                 *max_uA = rdev->constraints->max_uA;
335         if (*min_uA < rdev->constraints->min_uA)
336                 *min_uA = rdev->constraints->min_uA;
337
338         if (*min_uA > *max_uA) {
339                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340                          *min_uA, *max_uA);
341                 return -EINVAL;
342         }
343
344         return 0;
345 }
346
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349                                     unsigned int *mode)
350 {
351         switch (*mode) {
352         case REGULATOR_MODE_FAST:
353         case REGULATOR_MODE_NORMAL:
354         case REGULATOR_MODE_IDLE:
355         case REGULATOR_MODE_STANDBY:
356                 break;
357         default:
358                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359                 return -EINVAL;
360         }
361
362         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363                 rdev_err(rdev, "mode operation not allowed\n");
364                 return -EPERM;
365         }
366
367         /* The modes are bitmasks, the most power hungry modes having
368          * the lowest values. If the requested mode isn't supported
369          * try higher modes. */
370         while (*mode) {
371                 if (rdev->constraints->valid_modes_mask & *mode)
372                         return 0;
373                 *mode /= 2;
374         }
375
376         return -EINVAL;
377 }
378
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382         if (rdev->constraints == NULL)
383                 return NULL;
384
385         switch (state) {
386         case PM_SUSPEND_STANDBY:
387                 return &rdev->constraints->state_standby;
388         case PM_SUSPEND_MEM:
389                 return &rdev->constraints->state_mem;
390         case PM_SUSPEND_MAX:
391                 return &rdev->constraints->state_disk;
392         default:
393                 return NULL;
394         }
395 }
396
397 static ssize_t regulator_uV_show(struct device *dev,
398                                 struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         ssize_t ret;
402
403         regulator_lock(rdev);
404         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405         regulator_unlock(rdev);
406
407         return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410
411 static ssize_t regulator_uA_show(struct device *dev,
412                                 struct device_attribute *attr, char *buf)
413 {
414         struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421                          char *buf)
422 {
423         struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425         return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428
429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431         switch (mode) {
432         case REGULATOR_MODE_FAST:
433                 return sprintf(buf, "fast\n");
434         case REGULATOR_MODE_NORMAL:
435                 return sprintf(buf, "normal\n");
436         case REGULATOR_MODE_IDLE:
437                 return sprintf(buf, "idle\n");
438         case REGULATOR_MODE_STANDBY:
439                 return sprintf(buf, "standby\n");
440         }
441         return sprintf(buf, "unknown\n");
442 }
443
444 static ssize_t regulator_opmode_show(struct device *dev,
445                                     struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452
453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455         if (state > 0)
456                 return sprintf(buf, "enabled\n");
457         else if (state == 0)
458                 return sprintf(buf, "disabled\n");
459         else
460                 return sprintf(buf, "unknown\n");
461 }
462
463 static ssize_t regulator_state_show(struct device *dev,
464                                    struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         ssize_t ret;
468
469         regulator_lock(rdev);
470         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471         regulator_unlock(rdev);
472
473         return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476
477 static ssize_t regulator_status_show(struct device *dev,
478                                    struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         int status;
482         char *label;
483
484         status = rdev->desc->ops->get_status(rdev);
485         if (status < 0)
486                 return status;
487
488         switch (status) {
489         case REGULATOR_STATUS_OFF:
490                 label = "off";
491                 break;
492         case REGULATOR_STATUS_ON:
493                 label = "on";
494                 break;
495         case REGULATOR_STATUS_ERROR:
496                 label = "error";
497                 break;
498         case REGULATOR_STATUS_FAST:
499                 label = "fast";
500                 break;
501         case REGULATOR_STATUS_NORMAL:
502                 label = "normal";
503                 break;
504         case REGULATOR_STATUS_IDLE:
505                 label = "idle";
506                 break;
507         case REGULATOR_STATUS_STANDBY:
508                 label = "standby";
509                 break;
510         case REGULATOR_STATUS_BYPASS:
511                 label = "bypass";
512                 break;
513         case REGULATOR_STATUS_UNDEFINED:
514                 label = "undefined";
515                 break;
516         default:
517                 return -ERANGE;
518         }
519
520         return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523
524 static ssize_t regulator_min_uA_show(struct device *dev,
525                                     struct device_attribute *attr, char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         if (!rdev->constraints)
530                 return sprintf(buf, "constraint not defined\n");
531
532         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535
536 static ssize_t regulator_max_uA_show(struct device *dev,
537                                     struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         if (!rdev->constraints)
542                 return sprintf(buf, "constraint not defined\n");
543
544         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547
548 static ssize_t regulator_min_uV_show(struct device *dev,
549                                     struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         if (!rdev->constraints)
554                 return sprintf(buf, "constraint not defined\n");
555
556         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559
560 static ssize_t regulator_max_uV_show(struct device *dev,
561                                     struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         if (!rdev->constraints)
566                 return sprintf(buf, "constraint not defined\n");
567
568         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571
572 static ssize_t regulator_total_uA_show(struct device *dev,
573                                       struct device_attribute *attr, char *buf)
574 {
575         struct regulator_dev *rdev = dev_get_drvdata(dev);
576         struct regulator *regulator;
577         int uA = 0;
578
579         regulator_lock(rdev);
580         list_for_each_entry(regulator, &rdev->consumer_list, list)
581                 uA += regulator->uA_load;
582         regulator_unlock(rdev);
583         return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588                               char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591         return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596                          char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599
600         switch (rdev->desc->type) {
601         case REGULATOR_VOLTAGE:
602                 return sprintf(buf, "voltage\n");
603         case REGULATOR_CURRENT:
604                 return sprintf(buf, "current\n");
605         }
606         return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611                                 struct device_attribute *attr, char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618                 regulator_suspend_mem_uV_show, NULL);
619
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621                                 struct device_attribute *attr, char *buf)
622 {
623         struct regulator_dev *rdev = dev_get_drvdata(dev);
624
625         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628                 regulator_suspend_disk_uV_show, NULL);
629
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631                                 struct device_attribute *attr, char *buf)
632 {
633         struct regulator_dev *rdev = dev_get_drvdata(dev);
634
635         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638                 regulator_suspend_standby_uV_show, NULL);
639
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641                                 struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644
645         return regulator_print_opmode(buf,
646                 rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649                 regulator_suspend_mem_mode_show, NULL);
650
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652                                 struct device_attribute *attr, char *buf)
653 {
654         struct regulator_dev *rdev = dev_get_drvdata(dev);
655
656         return regulator_print_opmode(buf,
657                 rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660                 regulator_suspend_disk_mode_show, NULL);
661
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663                                 struct device_attribute *attr, char *buf)
664 {
665         struct regulator_dev *rdev = dev_get_drvdata(dev);
666
667         return regulator_print_opmode(buf,
668                 rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671                 regulator_suspend_standby_mode_show, NULL);
672
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674                                    struct device_attribute *attr, char *buf)
675 {
676         struct regulator_dev *rdev = dev_get_drvdata(dev);
677
678         return regulator_print_state(buf,
679                         rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682                 regulator_suspend_mem_state_show, NULL);
683
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685                                    struct device_attribute *attr, char *buf)
686 {
687         struct regulator_dev *rdev = dev_get_drvdata(dev);
688
689         return regulator_print_state(buf,
690                         rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693                 regulator_suspend_disk_state_show, NULL);
694
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696                                    struct device_attribute *attr, char *buf)
697 {
698         struct regulator_dev *rdev = dev_get_drvdata(dev);
699
700         return regulator_print_state(buf,
701                         rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704                 regulator_suspend_standby_state_show, NULL);
705
706 static ssize_t regulator_bypass_show(struct device *dev,
707                                      struct device_attribute *attr, char *buf)
708 {
709         struct regulator_dev *rdev = dev_get_drvdata(dev);
710         const char *report;
711         bool bypass;
712         int ret;
713
714         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715
716         if (ret != 0)
717                 report = "unknown";
718         else if (bypass)
719                 report = "enabled";
720         else
721                 report = "disabled";
722
723         return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726                    regulator_bypass_show, NULL);
727
728 /* Calculate the new optimum regulator operating mode based on the new total
729  * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732         struct regulator *sibling;
733         int current_uA = 0, output_uV, input_uV, err;
734         unsigned int mode;
735
736         lockdep_assert_held_once(&rdev->mutex);
737
738         /*
739          * first check to see if we can set modes at all, otherwise just
740          * tell the consumer everything is OK.
741          */
742         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743                 return 0;
744
745         if (!rdev->desc->ops->get_optimum_mode &&
746             !rdev->desc->ops->set_load)
747                 return 0;
748
749         if (!rdev->desc->ops->set_mode &&
750             !rdev->desc->ops->set_load)
751                 return -EINVAL;
752
753         /* calc total requested load */
754         list_for_each_entry(sibling, &rdev->consumer_list, list)
755                 current_uA += sibling->uA_load;
756
757         current_uA += rdev->constraints->system_load;
758
759         if (rdev->desc->ops->set_load) {
760                 /* set the optimum mode for our new total regulator load */
761                 err = rdev->desc->ops->set_load(rdev, current_uA);
762                 if (err < 0)
763                         rdev_err(rdev, "failed to set load %d\n", current_uA);
764         } else {
765                 /* get output voltage */
766                 output_uV = _regulator_get_voltage(rdev);
767                 if (output_uV <= 0) {
768                         rdev_err(rdev, "invalid output voltage found\n");
769                         return -EINVAL;
770                 }
771
772                 /* get input voltage */
773                 input_uV = 0;
774                 if (rdev->supply)
775                         input_uV = regulator_get_voltage(rdev->supply);
776                 if (input_uV <= 0)
777                         input_uV = rdev->constraints->input_uV;
778                 if (input_uV <= 0) {
779                         rdev_err(rdev, "invalid input voltage found\n");
780                         return -EINVAL;
781                 }
782
783                 /* now get the optimum mode for our new total regulator load */
784                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785                                                          output_uV, current_uA);
786
787                 /* check the new mode is allowed */
788                 err = regulator_mode_constrain(rdev, &mode);
789                 if (err < 0) {
790                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791                                  current_uA, input_uV, output_uV);
792                         return err;
793                 }
794
795                 err = rdev->desc->ops->set_mode(rdev, mode);
796                 if (err < 0)
797                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798         }
799
800         return err;
801 }
802
803 static int suspend_set_state(struct regulator_dev *rdev,
804                                     suspend_state_t state)
805 {
806         int ret = 0;
807         struct regulator_state *rstate;
808
809         rstate = regulator_get_suspend_state(rdev, state);
810         if (rstate == NULL)
811                 return 0;
812
813         /* If we have no suspend mode configration don't set anything;
814          * only warn if the driver implements set_suspend_voltage or
815          * set_suspend_mode callback.
816          */
817         if (rstate->enabled != ENABLE_IN_SUSPEND &&
818             rstate->enabled != DISABLE_IN_SUSPEND) {
819                 if (rdev->desc->ops->set_suspend_voltage ||
820                     rdev->desc->ops->set_suspend_mode)
821                         rdev_warn(rdev, "No configuration\n");
822                 return 0;
823         }
824
825         if (rstate->enabled == ENABLE_IN_SUSPEND &&
826                 rdev->desc->ops->set_suspend_enable)
827                 ret = rdev->desc->ops->set_suspend_enable(rdev);
828         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829                 rdev->desc->ops->set_suspend_disable)
830                 ret = rdev->desc->ops->set_suspend_disable(rdev);
831         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832                 ret = 0;
833
834         if (ret < 0) {
835                 rdev_err(rdev, "failed to enabled/disable\n");
836                 return ret;
837         }
838
839         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841                 if (ret < 0) {
842                         rdev_err(rdev, "failed to set voltage\n");
843                         return ret;
844                 }
845         }
846
847         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849                 if (ret < 0) {
850                         rdev_err(rdev, "failed to set mode\n");
851                         return ret;
852                 }
853         }
854
855         return ret;
856 }
857
858 static void print_constraints(struct regulator_dev *rdev)
859 {
860         struct regulation_constraints *constraints = rdev->constraints;
861         char buf[160] = "";
862         size_t len = sizeof(buf) - 1;
863         int count = 0;
864         int ret;
865
866         if (constraints->min_uV && constraints->max_uV) {
867                 if (constraints->min_uV == constraints->max_uV)
868                         count += scnprintf(buf + count, len - count, "%d mV ",
869                                            constraints->min_uV / 1000);
870                 else
871                         count += scnprintf(buf + count, len - count,
872                                            "%d <--> %d mV ",
873                                            constraints->min_uV / 1000,
874                                            constraints->max_uV / 1000);
875         }
876
877         if (!constraints->min_uV ||
878             constraints->min_uV != constraints->max_uV) {
879                 ret = _regulator_get_voltage(rdev);
880                 if (ret > 0)
881                         count += scnprintf(buf + count, len - count,
882                                            "at %d mV ", ret / 1000);
883         }
884
885         if (constraints->uV_offset)
886                 count += scnprintf(buf + count, len - count, "%dmV offset ",
887                                    constraints->uV_offset / 1000);
888
889         if (constraints->min_uA && constraints->max_uA) {
890                 if (constraints->min_uA == constraints->max_uA)
891                         count += scnprintf(buf + count, len - count, "%d mA ",
892                                            constraints->min_uA / 1000);
893                 else
894                         count += scnprintf(buf + count, len - count,
895                                            "%d <--> %d mA ",
896                                            constraints->min_uA / 1000,
897                                            constraints->max_uA / 1000);
898         }
899
900         if (!constraints->min_uA ||
901             constraints->min_uA != constraints->max_uA) {
902                 ret = _regulator_get_current_limit(rdev);
903                 if (ret > 0)
904                         count += scnprintf(buf + count, len - count,
905                                            "at %d mA ", ret / 1000);
906         }
907
908         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909                 count += scnprintf(buf + count, len - count, "fast ");
910         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911                 count += scnprintf(buf + count, len - count, "normal ");
912         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913                 count += scnprintf(buf + count, len - count, "idle ");
914         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915                 count += scnprintf(buf + count, len - count, "standby");
916
917         if (!count)
918                 scnprintf(buf, len, "no parameters");
919
920         rdev_dbg(rdev, "%s\n", buf);
921
922         if ((constraints->min_uV != constraints->max_uV) &&
923             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924                 rdev_warn(rdev,
925                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929         struct regulation_constraints *constraints)
930 {
931         const struct regulator_ops *ops = rdev->desc->ops;
932         int ret;
933
934         /* do we need to apply the constraint voltage */
935         if (rdev->constraints->apply_uV &&
936             rdev->constraints->min_uV && rdev->constraints->max_uV) {
937                 int target_min, target_max;
938                 int current_uV = _regulator_get_voltage(rdev);
939
940                 if (current_uV == -ENOTRECOVERABLE) {
941                         /* This regulator can't be read and must be initted */
942                         rdev_info(rdev, "Setting %d-%duV\n",
943                                   rdev->constraints->min_uV,
944                                   rdev->constraints->max_uV);
945                         _regulator_do_set_voltage(rdev,
946                                                   rdev->constraints->min_uV,
947                                                   rdev->constraints->max_uV);
948                         current_uV = _regulator_get_voltage(rdev);
949                 }
950
951                 if (current_uV < 0) {
952                         rdev_err(rdev,
953                                  "failed to get the current voltage(%d)\n",
954                                  current_uV);
955                         return current_uV;
956                 }
957
958                 /*
959                  * If we're below the minimum voltage move up to the
960                  * minimum voltage, if we're above the maximum voltage
961                  * then move down to the maximum.
962                  */
963                 target_min = current_uV;
964                 target_max = current_uV;
965
966                 if (current_uV < rdev->constraints->min_uV) {
967                         target_min = rdev->constraints->min_uV;
968                         target_max = rdev->constraints->min_uV;
969                 }
970
971                 if (current_uV > rdev->constraints->max_uV) {
972                         target_min = rdev->constraints->max_uV;
973                         target_max = rdev->constraints->max_uV;
974                 }
975
976                 if (target_min != current_uV || target_max != current_uV) {
977                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978                                   current_uV, target_min, target_max);
979                         ret = _regulator_do_set_voltage(
980                                 rdev, target_min, target_max);
981                         if (ret < 0) {
982                                 rdev_err(rdev,
983                                         "failed to apply %d-%duV constraint(%d)\n",
984                                         target_min, target_max, ret);
985                                 return ret;
986                         }
987                 }
988         }
989
990         /* constrain machine-level voltage specs to fit
991          * the actual range supported by this regulator.
992          */
993         if (ops->list_voltage && rdev->desc->n_voltages) {
994                 int     count = rdev->desc->n_voltages;
995                 int     i;
996                 int     min_uV = INT_MAX;
997                 int     max_uV = INT_MIN;
998                 int     cmin = constraints->min_uV;
999                 int     cmax = constraints->max_uV;
1000
1001                 /* it's safe to autoconfigure fixed-voltage supplies
1002                    and the constraints are used by list_voltage. */
1003                 if (count == 1 && !cmin) {
1004                         cmin = 1;
1005                         cmax = INT_MAX;
1006                         constraints->min_uV = cmin;
1007                         constraints->max_uV = cmax;
1008                 }
1009
1010                 /* voltage constraints are optional */
1011                 if ((cmin == 0) && (cmax == 0))
1012                         return 0;
1013
1014                 /* else require explicit machine-level constraints */
1015                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016                         rdev_err(rdev, "invalid voltage constraints\n");
1017                         return -EINVAL;
1018                 }
1019
1020                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021                 for (i = 0; i < count; i++) {
1022                         int     value;
1023
1024                         value = ops->list_voltage(rdev, i);
1025                         if (value <= 0)
1026                                 continue;
1027
1028                         /* maybe adjust [min_uV..max_uV] */
1029                         if (value >= cmin && value < min_uV)
1030                                 min_uV = value;
1031                         if (value <= cmax && value > max_uV)
1032                                 max_uV = value;
1033                 }
1034
1035                 /* final: [min_uV..max_uV] valid iff constraints valid */
1036                 if (max_uV < min_uV) {
1037                         rdev_err(rdev,
1038                                  "unsupportable voltage constraints %u-%uuV\n",
1039                                  min_uV, max_uV);
1040                         return -EINVAL;
1041                 }
1042
1043                 /* use regulator's subset of machine constraints */
1044                 if (constraints->min_uV < min_uV) {
1045                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046                                  constraints->min_uV, min_uV);
1047                         constraints->min_uV = min_uV;
1048                 }
1049                 if (constraints->max_uV > max_uV) {
1050                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051                                  constraints->max_uV, max_uV);
1052                         constraints->max_uV = max_uV;
1053                 }
1054         }
1055
1056         return 0;
1057 }
1058
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060         struct regulation_constraints *constraints)
1061 {
1062         const struct regulator_ops *ops = rdev->desc->ops;
1063         int ret;
1064
1065         if (!constraints->min_uA && !constraints->max_uA)
1066                 return 0;
1067
1068         if (constraints->min_uA > constraints->max_uA) {
1069                 rdev_err(rdev, "Invalid current constraints\n");
1070                 return -EINVAL;
1071         }
1072
1073         if (!ops->set_current_limit || !ops->get_current_limit) {
1074                 rdev_warn(rdev, "Operation of current configuration missing\n");
1075                 return 0;
1076         }
1077
1078         /* Set regulator current in constraints range */
1079         ret = ops->set_current_limit(rdev, constraints->min_uA,
1080                         constraints->max_uA);
1081         if (ret < 0) {
1082                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083                 return ret;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090
1091 /**
1092  * set_machine_constraints - sets regulator constraints
1093  * @rdev: regulator source
1094  * @constraints: constraints to apply
1095  *
1096  * Allows platform initialisation code to define and constrain
1097  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1098  * Constraints *must* be set by platform code in order for some
1099  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100  * set_mode.
1101  */
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103         const struct regulation_constraints *constraints)
1104 {
1105         int ret = 0;
1106         const struct regulator_ops *ops = rdev->desc->ops;
1107
1108         if (constraints)
1109                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110                                             GFP_KERNEL);
1111         else
1112                 rdev->constraints = kzalloc(sizeof(*constraints),
1113                                             GFP_KERNEL);
1114         if (!rdev->constraints)
1115                 return -ENOMEM;
1116
1117         ret = machine_constraints_voltage(rdev, rdev->constraints);
1118         if (ret != 0)
1119                 return ret;
1120
1121         ret = machine_constraints_current(rdev, rdev->constraints);
1122         if (ret != 0)
1123                 return ret;
1124
1125         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126                 ret = ops->set_input_current_limit(rdev,
1127                                                    rdev->constraints->ilim_uA);
1128                 if (ret < 0) {
1129                         rdev_err(rdev, "failed to set input limit\n");
1130                         return ret;
1131                 }
1132         }
1133
1134         /* do we need to setup our suspend state */
1135         if (rdev->constraints->initial_state) {
1136                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137                 if (ret < 0) {
1138                         rdev_err(rdev, "failed to set suspend state\n");
1139                         return ret;
1140                 }
1141         }
1142
1143         if (rdev->constraints->initial_mode) {
1144                 if (!ops->set_mode) {
1145                         rdev_err(rdev, "no set_mode operation\n");
1146                         return -EINVAL;
1147                 }
1148
1149                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150                 if (ret < 0) {
1151                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152                         return ret;
1153                 }
1154         }
1155
1156         /* If the constraints say the regulator should be on at this point
1157          * and we have control then make sure it is enabled.
1158          */
1159         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160                 ret = _regulator_do_enable(rdev);
1161                 if (ret < 0 && ret != -EINVAL) {
1162                         rdev_err(rdev, "failed to enable\n");
1163                         return ret;
1164                 }
1165         }
1166
1167         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168                 && ops->set_ramp_delay) {
1169                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170                 if (ret < 0) {
1171                         rdev_err(rdev, "failed to set ramp_delay\n");
1172                         return ret;
1173                 }
1174         }
1175
1176         if (rdev->constraints->pull_down && ops->set_pull_down) {
1177                 ret = ops->set_pull_down(rdev);
1178                 if (ret < 0) {
1179                         rdev_err(rdev, "failed to set pull down\n");
1180                         return ret;
1181                 }
1182         }
1183
1184         if (rdev->constraints->soft_start && ops->set_soft_start) {
1185                 ret = ops->set_soft_start(rdev);
1186                 if (ret < 0) {
1187                         rdev_err(rdev, "failed to set soft start\n");
1188                         return ret;
1189                 }
1190         }
1191
1192         if (rdev->constraints->over_current_protection
1193                 && ops->set_over_current_protection) {
1194                 ret = ops->set_over_current_protection(rdev);
1195                 if (ret < 0) {
1196                         rdev_err(rdev, "failed to set over current protection\n");
1197                         return ret;
1198                 }
1199         }
1200
1201         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202                 bool ad_state = (rdev->constraints->active_discharge ==
1203                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1204
1205                 ret = ops->set_active_discharge(rdev, ad_state);
1206                 if (ret < 0) {
1207                         rdev_err(rdev, "failed to set active discharge\n");
1208                         return ret;
1209                 }
1210         }
1211
1212         print_constraints(rdev);
1213         return 0;
1214 }
1215
1216 /**
1217  * set_supply - set regulator supply regulator
1218  * @rdev: regulator name
1219  * @supply_rdev: supply regulator name
1220  *
1221  * Called by platform initialisation code to set the supply regulator for this
1222  * regulator. This ensures that a regulators supply will also be enabled by the
1223  * core if it's child is enabled.
1224  */
1225 static int set_supply(struct regulator_dev *rdev,
1226                       struct regulator_dev *supply_rdev)
1227 {
1228         int err;
1229
1230         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1231
1232         if (!try_module_get(supply_rdev->owner))
1233                 return -ENODEV;
1234
1235         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236         if (rdev->supply == NULL) {
1237                 err = -ENOMEM;
1238                 return err;
1239         }
1240         supply_rdev->open_count++;
1241
1242         return 0;
1243 }
1244
1245 /**
1246  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247  * @rdev:         regulator source
1248  * @consumer_dev_name: dev_name() string for device supply applies to
1249  * @supply:       symbolic name for supply
1250  *
1251  * Allows platform initialisation code to map physical regulator
1252  * sources to symbolic names for supplies for use by devices.  Devices
1253  * should use these symbolic names to request regulators, avoiding the
1254  * need to provide board-specific regulator names as platform data.
1255  */
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257                                       const char *consumer_dev_name,
1258                                       const char *supply)
1259 {
1260         struct regulator_map *node;
1261         int has_dev;
1262
1263         if (supply == NULL)
1264                 return -EINVAL;
1265
1266         if (consumer_dev_name != NULL)
1267                 has_dev = 1;
1268         else
1269                 has_dev = 0;
1270
1271         list_for_each_entry(node, &regulator_map_list, list) {
1272                 if (node->dev_name && consumer_dev_name) {
1273                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274                                 continue;
1275                 } else if (node->dev_name || consumer_dev_name) {
1276                         continue;
1277                 }
1278
1279                 if (strcmp(node->supply, supply) != 0)
1280                         continue;
1281
1282                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283                          consumer_dev_name,
1284                          dev_name(&node->regulator->dev),
1285                          node->regulator->desc->name,
1286                          supply,
1287                          dev_name(&rdev->dev), rdev_get_name(rdev));
1288                 return -EBUSY;
1289         }
1290
1291         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292         if (node == NULL)
1293                 return -ENOMEM;
1294
1295         node->regulator = rdev;
1296         node->supply = supply;
1297
1298         if (has_dev) {
1299                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300                 if (node->dev_name == NULL) {
1301                         kfree(node);
1302                         return -ENOMEM;
1303                 }
1304         }
1305
1306         list_add(&node->list, &regulator_map_list);
1307         return 0;
1308 }
1309
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1311 {
1312         struct regulator_map *node, *n;
1313
1314         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315                 if (rdev == node->regulator) {
1316                         list_del(&node->list);
1317                         kfree(node->dev_name);
1318                         kfree(node);
1319                 }
1320         }
1321 }
1322
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325                                           char __user *user_buf,
1326                                           size_t count, loff_t *ppos)
1327 {
1328         const struct regulator *regulator = file->private_data;
1329         const struct regulation_constraints *c = regulator->rdev->constraints;
1330         char *buf;
1331         ssize_t ret;
1332
1333         if (!c)
1334                 return 0;
1335
1336         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337         if (!buf)
1338                 return -ENOMEM;
1339
1340         ret = snprintf(buf, PAGE_SIZE,
1341                         "always_on: %u\n"
1342                         "boot_on: %u\n"
1343                         "apply_uV: %u\n"
1344                         "ramp_disable: %u\n"
1345                         "soft_start: %u\n"
1346                         "pull_down: %u\n"
1347                         "over_current_protection: %u\n",
1348                         c->always_on,
1349                         c->boot_on,
1350                         c->apply_uV,
1351                         c->ramp_disable,
1352                         c->soft_start,
1353                         c->pull_down,
1354                         c->over_current_protection);
1355
1356         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357         kfree(buf);
1358
1359         return ret;
1360 }
1361
1362 #endif
1363
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366         .open = simple_open,
1367         .read = constraint_flags_read_file,
1368         .llseek = default_llseek,
1369 #endif
1370 };
1371
1372 #define REG_STR_SIZE    64
1373
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375                                           struct device *dev,
1376                                           const char *supply_name)
1377 {
1378         struct regulator *regulator;
1379         char buf[REG_STR_SIZE];
1380         int err, size;
1381
1382         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383         if (regulator == NULL)
1384                 return NULL;
1385
1386         regulator_lock(rdev);
1387         regulator->rdev = rdev;
1388         list_add(&regulator->list, &rdev->consumer_list);
1389
1390         if (dev) {
1391                 regulator->dev = dev;
1392
1393                 /* Add a link to the device sysfs entry */
1394                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395                                 dev->kobj.name, supply_name);
1396                 if (size >= REG_STR_SIZE)
1397                         goto overflow_err;
1398
1399                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400                 if (regulator->supply_name == NULL)
1401                         goto overflow_err;
1402
1403                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404                                         buf);
1405                 if (err) {
1406                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1407                                   dev->kobj.name, err);
1408                         /* non-fatal */
1409                 }
1410         } else {
1411                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412                 if (regulator->supply_name == NULL)
1413                         goto overflow_err;
1414         }
1415
1416         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417                                                 rdev->debugfs);
1418         if (!regulator->debugfs) {
1419                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420         } else {
1421                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422                                    &regulator->uA_load);
1423                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427                 debugfs_create_file("constraint_flags", 0444,
1428                                     regulator->debugfs, regulator,
1429                                     &constraint_flags_fops);
1430         }
1431
1432         /*
1433          * Check now if the regulator is an always on regulator - if
1434          * it is then we don't need to do nearly so much work for
1435          * enable/disable calls.
1436          */
1437         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438             _regulator_is_enabled(rdev))
1439                 regulator->always_on = true;
1440
1441         regulator_unlock(rdev);
1442         return regulator;
1443 overflow_err:
1444         list_del(&regulator->list);
1445         kfree(regulator);
1446         regulator_unlock(rdev);
1447         return NULL;
1448 }
1449
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1451 {
1452         if (rdev->constraints && rdev->constraints->enable_time)
1453                 return rdev->constraints->enable_time;
1454         if (!rdev->desc->ops->enable_time)
1455                 return rdev->desc->enable_time;
1456         return rdev->desc->ops->enable_time(rdev);
1457 }
1458
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460                 struct device *dev, const char *supply)
1461 {
1462         struct regulator_supply_alias *map;
1463
1464         list_for_each_entry(map, &regulator_supply_alias_list, list)
1465                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466                         return map;
1467
1468         return NULL;
1469 }
1470
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1472 {
1473         struct regulator_supply_alias *map;
1474
1475         map = regulator_find_supply_alias(*dev, *supply);
1476         if (map) {
1477                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478                                 *supply, map->alias_supply,
1479                                 dev_name(map->alias_dev));
1480                 *dev = map->alias_dev;
1481                 *supply = map->alias_supply;
1482         }
1483 }
1484
1485 static int regulator_match(struct device *dev, const void *data)
1486 {
1487         struct regulator_dev *r = dev_to_rdev(dev);
1488
1489         return strcmp(rdev_get_name(r), data) == 0;
1490 }
1491
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1493 {
1494         struct device *dev;
1495
1496         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1497
1498         return dev ? dev_to_rdev(dev) : NULL;
1499 }
1500
1501 /**
1502  * regulator_dev_lookup - lookup a regulator device.
1503  * @dev: device for regulator "consumer".
1504  * @supply: Supply name or regulator ID.
1505  *
1506  * If successful, returns a struct regulator_dev that corresponds to the name
1507  * @supply and with the embedded struct device refcount incremented by one.
1508  * The refcount must be dropped by calling put_device().
1509  * On failure one of the following ERR-PTR-encoded values is returned:
1510  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511  * in the future.
1512  */
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514                                                   const char *supply)
1515 {
1516         struct regulator_dev *r = NULL;
1517         struct device_node *node;
1518         struct regulator_map *map;
1519         const char *devname = NULL;
1520
1521         regulator_supply_alias(&dev, &supply);
1522
1523         /* first do a dt based lookup */
1524         if (dev && dev->of_node) {
1525                 node = of_get_regulator(dev, supply);
1526                 if (node) {
1527                         r = of_find_regulator_by_node(node);
1528                         if (r)
1529                                 return r;
1530
1531                         /*
1532                          * We have a node, but there is no device.
1533                          * assume it has not registered yet.
1534                          */
1535                         return ERR_PTR(-EPROBE_DEFER);
1536                 }
1537         }
1538
1539         /* if not found, try doing it non-dt way */
1540         if (dev)
1541                 devname = dev_name(dev);
1542
1543         mutex_lock(&regulator_list_mutex);
1544         list_for_each_entry(map, &regulator_map_list, list) {
1545                 /* If the mapping has a device set up it must match */
1546                 if (map->dev_name &&
1547                     (!devname || strcmp(map->dev_name, devname)))
1548                         continue;
1549
1550                 if (strcmp(map->supply, supply) == 0 &&
1551                     get_device(&map->regulator->dev)) {
1552                         r = map->regulator;
1553                         break;
1554                 }
1555         }
1556         mutex_unlock(&regulator_list_mutex);
1557
1558         if (r)
1559                 return r;
1560
1561         r = regulator_lookup_by_name(supply);
1562         if (r)
1563                 return r;
1564
1565         return ERR_PTR(-ENODEV);
1566 }
1567
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1569 {
1570         struct regulator_dev *r;
1571         struct device *dev = rdev->dev.parent;
1572         int ret;
1573
1574         /* No supply to resovle? */
1575         if (!rdev->supply_name)
1576                 return 0;
1577
1578         /* Supply already resolved? */
1579         if (rdev->supply)
1580                 return 0;
1581
1582         r = regulator_dev_lookup(dev, rdev->supply_name);
1583         if (IS_ERR(r)) {
1584                 ret = PTR_ERR(r);
1585
1586                 /* Did the lookup explicitly defer for us? */
1587                 if (ret == -EPROBE_DEFER)
1588                         return ret;
1589
1590                 if (have_full_constraints()) {
1591                         r = dummy_regulator_rdev;
1592                         get_device(&r->dev);
1593                 } else {
1594                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595                                 rdev->supply_name, rdev->desc->name);
1596                         return -EPROBE_DEFER;
1597                 }
1598         }
1599
1600         /*
1601          * If the supply's parent device is not the same as the
1602          * regulator's parent device, then ensure the parent device
1603          * is bound before we resolve the supply, in case the parent
1604          * device get probe deferred and unregisters the supply.
1605          */
1606         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607                 if (!device_is_bound(r->dev.parent)) {
1608                         put_device(&r->dev);
1609                         return -EPROBE_DEFER;
1610                 }
1611         }
1612
1613         /* Recursively resolve the supply of the supply */
1614         ret = regulator_resolve_supply(r);
1615         if (ret < 0) {
1616                 put_device(&r->dev);
1617                 return ret;
1618         }
1619
1620         ret = set_supply(rdev, r);
1621         if (ret < 0) {
1622                 put_device(&r->dev);
1623                 return ret;
1624         }
1625
1626         /* Cascade always-on state to supply */
1627         if (_regulator_is_enabled(rdev)) {
1628                 ret = regulator_enable(rdev->supply);
1629                 if (ret < 0) {
1630                         _regulator_put(rdev->supply);
1631                         rdev->supply = NULL;
1632                         return ret;
1633                 }
1634         }
1635
1636         return 0;
1637 }
1638
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641                                  enum regulator_get_type get_type)
1642 {
1643         struct regulator_dev *rdev;
1644         struct regulator *regulator;
1645         const char *devname = dev ? dev_name(dev) : "deviceless";
1646         int ret;
1647
1648         if (get_type >= MAX_GET_TYPE) {
1649                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650                 return ERR_PTR(-EINVAL);
1651         }
1652
1653         if (id == NULL) {
1654                 pr_err("get() with no identifier\n");
1655                 return ERR_PTR(-EINVAL);
1656         }
1657
1658         rdev = regulator_dev_lookup(dev, id);
1659         if (IS_ERR(rdev)) {
1660                 ret = PTR_ERR(rdev);
1661
1662                 /*
1663                  * If regulator_dev_lookup() fails with error other
1664                  * than -ENODEV our job here is done, we simply return it.
1665                  */
1666                 if (ret != -ENODEV)
1667                         return ERR_PTR(ret);
1668
1669                 if (!have_full_constraints()) {
1670                         dev_warn(dev,
1671                                  "incomplete constraints, dummy supplies not allowed\n");
1672                         return ERR_PTR(-ENODEV);
1673                 }
1674
1675                 switch (get_type) {
1676                 case NORMAL_GET:
1677                         /*
1678                          * Assume that a regulator is physically present and
1679                          * enabled, even if it isn't hooked up, and just
1680                          * provide a dummy.
1681                          */
1682                         dev_warn(dev,
1683                                  "%s supply %s not found, using dummy regulator\n",
1684                                  devname, id);
1685                         rdev = dummy_regulator_rdev;
1686                         get_device(&rdev->dev);
1687                         break;
1688
1689                 case EXCLUSIVE_GET:
1690                         dev_warn(dev,
1691                                  "dummy supplies not allowed for exclusive requests\n");
1692                         /* fall through */
1693
1694                 default:
1695                         return ERR_PTR(-ENODEV);
1696                 }
1697         }
1698
1699         if (rdev->exclusive) {
1700                 regulator = ERR_PTR(-EPERM);
1701                 put_device(&rdev->dev);
1702                 return regulator;
1703         }
1704
1705         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706                 regulator = ERR_PTR(-EBUSY);
1707                 put_device(&rdev->dev);
1708                 return regulator;
1709         }
1710
1711         ret = regulator_resolve_supply(rdev);
1712         if (ret < 0) {
1713                 regulator = ERR_PTR(ret);
1714                 put_device(&rdev->dev);
1715                 return regulator;
1716         }
1717
1718         if (!try_module_get(rdev->owner)) {
1719                 regulator = ERR_PTR(-EPROBE_DEFER);
1720                 put_device(&rdev->dev);
1721                 return regulator;
1722         }
1723
1724         regulator = create_regulator(rdev, dev, id);
1725         if (regulator == NULL) {
1726                 regulator = ERR_PTR(-ENOMEM);
1727                 put_device(&rdev->dev);
1728                 module_put(rdev->owner);
1729                 return regulator;
1730         }
1731
1732         rdev->open_count++;
1733         if (get_type == EXCLUSIVE_GET) {
1734                 rdev->exclusive = 1;
1735
1736                 ret = _regulator_is_enabled(rdev);
1737                 if (ret > 0)
1738                         rdev->use_count = 1;
1739                 else
1740                         rdev->use_count = 0;
1741         }
1742
1743         return regulator;
1744 }
1745
1746 /**
1747  * regulator_get - lookup and obtain a reference to a regulator.
1748  * @dev: device for regulator "consumer"
1749  * @id: Supply name or regulator ID.
1750  *
1751  * Returns a struct regulator corresponding to the regulator producer,
1752  * or IS_ERR() condition containing errno.
1753  *
1754  * Use of supply names configured via regulator_set_device_supply() is
1755  * strongly encouraged.  It is recommended that the supply name used
1756  * should match the name used for the supply and/or the relevant
1757  * device pins in the datasheet.
1758  */
1759 struct regulator *regulator_get(struct device *dev, const char *id)
1760 {
1761         return _regulator_get(dev, id, NORMAL_GET);
1762 }
1763 EXPORT_SYMBOL_GPL(regulator_get);
1764
1765 /**
1766  * regulator_get_exclusive - obtain exclusive access to a regulator.
1767  * @dev: device for regulator "consumer"
1768  * @id: Supply name or regulator ID.
1769  *
1770  * Returns a struct regulator corresponding to the regulator producer,
1771  * or IS_ERR() condition containing errno.  Other consumers will be
1772  * unable to obtain this regulator while this reference is held and the
1773  * use count for the regulator will be initialised to reflect the current
1774  * state of the regulator.
1775  *
1776  * This is intended for use by consumers which cannot tolerate shared
1777  * use of the regulator such as those which need to force the
1778  * regulator off for correct operation of the hardware they are
1779  * controlling.
1780  *
1781  * Use of supply names configured via regulator_set_device_supply() is
1782  * strongly encouraged.  It is recommended that the supply name used
1783  * should match the name used for the supply and/or the relevant
1784  * device pins in the datasheet.
1785  */
1786 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1787 {
1788         return _regulator_get(dev, id, EXCLUSIVE_GET);
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1791
1792 /**
1793  * regulator_get_optional - obtain optional access to a regulator.
1794  * @dev: device for regulator "consumer"
1795  * @id: Supply name or regulator ID.
1796  *
1797  * Returns a struct regulator corresponding to the regulator producer,
1798  * or IS_ERR() condition containing errno.
1799  *
1800  * This is intended for use by consumers for devices which can have
1801  * some supplies unconnected in normal use, such as some MMC devices.
1802  * It can allow the regulator core to provide stub supplies for other
1803  * supplies requested using normal regulator_get() calls without
1804  * disrupting the operation of drivers that can handle absent
1805  * supplies.
1806  *
1807  * Use of supply names configured via regulator_set_device_supply() is
1808  * strongly encouraged.  It is recommended that the supply name used
1809  * should match the name used for the supply and/or the relevant
1810  * device pins in the datasheet.
1811  */
1812 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1813 {
1814         return _regulator_get(dev, id, OPTIONAL_GET);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_get_optional);
1817
1818 /* regulator_list_mutex lock held by regulator_put() */
1819 static void _regulator_put(struct regulator *regulator)
1820 {
1821         struct regulator_dev *rdev;
1822
1823         if (IS_ERR_OR_NULL(regulator))
1824                 return;
1825
1826         lockdep_assert_held_once(&regulator_list_mutex);
1827
1828         rdev = regulator->rdev;
1829
1830         debugfs_remove_recursive(regulator->debugfs);
1831
1832         /* remove any sysfs entries */
1833         if (regulator->dev)
1834                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1835         regulator_lock(rdev);
1836         list_del(&regulator->list);
1837
1838         rdev->open_count--;
1839         rdev->exclusive = 0;
1840         put_device(&rdev->dev);
1841         regulator_unlock(rdev);
1842
1843         kfree_const(regulator->supply_name);
1844         kfree(regulator);
1845
1846         module_put(rdev->owner);
1847 }
1848
1849 /**
1850  * regulator_put - "free" the regulator source
1851  * @regulator: regulator source
1852  *
1853  * Note: drivers must ensure that all regulator_enable calls made on this
1854  * regulator source are balanced by regulator_disable calls prior to calling
1855  * this function.
1856  */
1857 void regulator_put(struct regulator *regulator)
1858 {
1859         mutex_lock(&regulator_list_mutex);
1860         _regulator_put(regulator);
1861         mutex_unlock(&regulator_list_mutex);
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_put);
1864
1865 /**
1866  * regulator_register_supply_alias - Provide device alias for supply lookup
1867  *
1868  * @dev: device that will be given as the regulator "consumer"
1869  * @id: Supply name or regulator ID
1870  * @alias_dev: device that should be used to lookup the supply
1871  * @alias_id: Supply name or regulator ID that should be used to lookup the
1872  * supply
1873  *
1874  * All lookups for id on dev will instead be conducted for alias_id on
1875  * alias_dev.
1876  */
1877 int regulator_register_supply_alias(struct device *dev, const char *id,
1878                                     struct device *alias_dev,
1879                                     const char *alias_id)
1880 {
1881         struct regulator_supply_alias *map;
1882
1883         map = regulator_find_supply_alias(dev, id);
1884         if (map)
1885                 return -EEXIST;
1886
1887         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1888         if (!map)
1889                 return -ENOMEM;
1890
1891         map->src_dev = dev;
1892         map->src_supply = id;
1893         map->alias_dev = alias_dev;
1894         map->alias_supply = alias_id;
1895
1896         list_add(&map->list, &regulator_supply_alias_list);
1897
1898         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1899                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1900
1901         return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1904
1905 /**
1906  * regulator_unregister_supply_alias - Remove device alias
1907  *
1908  * @dev: device that will be given as the regulator "consumer"
1909  * @id: Supply name or regulator ID
1910  *
1911  * Remove a lookup alias if one exists for id on dev.
1912  */
1913 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1914 {
1915         struct regulator_supply_alias *map;
1916
1917         map = regulator_find_supply_alias(dev, id);
1918         if (map) {
1919                 list_del(&map->list);
1920                 kfree(map);
1921         }
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1924
1925 /**
1926  * regulator_bulk_register_supply_alias - register multiple aliases
1927  *
1928  * @dev: device that will be given as the regulator "consumer"
1929  * @id: List of supply names or regulator IDs
1930  * @alias_dev: device that should be used to lookup the supply
1931  * @alias_id: List of supply names or regulator IDs that should be used to
1932  * lookup the supply
1933  * @num_id: Number of aliases to register
1934  *
1935  * @return 0 on success, an errno on failure.
1936  *
1937  * This helper function allows drivers to register several supply
1938  * aliases in one operation.  If any of the aliases cannot be
1939  * registered any aliases that were registered will be removed
1940  * before returning to the caller.
1941  */
1942 int regulator_bulk_register_supply_alias(struct device *dev,
1943                                          const char *const *id,
1944                                          struct device *alias_dev,
1945                                          const char *const *alias_id,
1946                                          int num_id)
1947 {
1948         int i;
1949         int ret;
1950
1951         for (i = 0; i < num_id; ++i) {
1952                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1953                                                       alias_id[i]);
1954                 if (ret < 0)
1955                         goto err;
1956         }
1957
1958         return 0;
1959
1960 err:
1961         dev_err(dev,
1962                 "Failed to create supply alias %s,%s -> %s,%s\n",
1963                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1964
1965         while (--i >= 0)
1966                 regulator_unregister_supply_alias(dev, id[i]);
1967
1968         return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1971
1972 /**
1973  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1974  *
1975  * @dev: device that will be given as the regulator "consumer"
1976  * @id: List of supply names or regulator IDs
1977  * @num_id: Number of aliases to unregister
1978  *
1979  * This helper function allows drivers to unregister several supply
1980  * aliases in one operation.
1981  */
1982 void regulator_bulk_unregister_supply_alias(struct device *dev,
1983                                             const char *const *id,
1984                                             int num_id)
1985 {
1986         int i;
1987
1988         for (i = 0; i < num_id; ++i)
1989                 regulator_unregister_supply_alias(dev, id[i]);
1990 }
1991 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1992
1993
1994 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1995 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1996                                 const struct regulator_config *config)
1997 {
1998         struct regulator_enable_gpio *pin;
1999         struct gpio_desc *gpiod;
2000         int ret;
2001
2002         if (config->ena_gpiod)
2003                 gpiod = config->ena_gpiod;
2004         else
2005                 gpiod = gpio_to_desc(config->ena_gpio);
2006
2007         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2008                 if (pin->gpiod == gpiod) {
2009                         rdev_dbg(rdev, "GPIO %d is already used\n",
2010                                 config->ena_gpio);
2011                         goto update_ena_gpio_to_rdev;
2012                 }
2013         }
2014
2015         if (!config->ena_gpiod) {
2016                 ret = gpio_request_one(config->ena_gpio,
2017                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
2018                                        rdev_get_name(rdev));
2019                 if (ret)
2020                         return ret;
2021         }
2022
2023         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2024         if (pin == NULL) {
2025                 if (!config->ena_gpiod)
2026                         gpio_free(config->ena_gpio);
2027                 return -ENOMEM;
2028         }
2029
2030         pin->gpiod = gpiod;
2031         pin->ena_gpio_invert = config->ena_gpio_invert;
2032         list_add(&pin->list, &regulator_ena_gpio_list);
2033
2034 update_ena_gpio_to_rdev:
2035         pin->request_count++;
2036         rdev->ena_pin = pin;
2037         return 0;
2038 }
2039
2040 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2041 {
2042         struct regulator_enable_gpio *pin, *n;
2043
2044         if (!rdev->ena_pin)
2045                 return;
2046
2047         /* Free the GPIO only in case of no use */
2048         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2049                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2050                         if (pin->request_count <= 1) {
2051                                 pin->request_count = 0;
2052                                 gpiod_put(pin->gpiod);
2053                                 list_del(&pin->list);
2054                                 kfree(pin);
2055                                 rdev->ena_pin = NULL;
2056                                 return;
2057                         } else {
2058                                 pin->request_count--;
2059                         }
2060                 }
2061         }
2062 }
2063
2064 /**
2065  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2066  * @rdev: regulator_dev structure
2067  * @enable: enable GPIO at initial use?
2068  *
2069  * GPIO is enabled in case of initial use. (enable_count is 0)
2070  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2071  */
2072 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2073 {
2074         struct regulator_enable_gpio *pin = rdev->ena_pin;
2075
2076         if (!pin)
2077                 return -EINVAL;
2078
2079         if (enable) {
2080                 /* Enable GPIO at initial use */
2081                 if (pin->enable_count == 0)
2082                         gpiod_set_value_cansleep(pin->gpiod,
2083                                                  !pin->ena_gpio_invert);
2084
2085                 pin->enable_count++;
2086         } else {
2087                 if (pin->enable_count > 1) {
2088                         pin->enable_count--;
2089                         return 0;
2090                 }
2091
2092                 /* Disable GPIO if not used */
2093                 if (pin->enable_count <= 1) {
2094                         gpiod_set_value_cansleep(pin->gpiod,
2095                                                  pin->ena_gpio_invert);
2096                         pin->enable_count = 0;
2097                 }
2098         }
2099
2100         return 0;
2101 }
2102
2103 /**
2104  * _regulator_enable_delay - a delay helper function
2105  * @delay: time to delay in microseconds
2106  *
2107  * Delay for the requested amount of time as per the guidelines in:
2108  *
2109  *     Documentation/timers/timers-howto.txt
2110  *
2111  * The assumption here is that regulators will never be enabled in
2112  * atomic context and therefore sleeping functions can be used.
2113  */
2114 static void _regulator_enable_delay(unsigned int delay)
2115 {
2116         unsigned int ms = delay / 1000;
2117         unsigned int us = delay % 1000;
2118
2119         if (ms > 0) {
2120                 /*
2121                  * For small enough values, handle super-millisecond
2122                  * delays in the usleep_range() call below.
2123                  */
2124                 if (ms < 20)
2125                         us += ms * 1000;
2126                 else
2127                         msleep(ms);
2128         }
2129
2130         /*
2131          * Give the scheduler some room to coalesce with any other
2132          * wakeup sources. For delays shorter than 10 us, don't even
2133          * bother setting up high-resolution timers and just busy-
2134          * loop.
2135          */
2136         if (us >= 10)
2137                 usleep_range(us, us + 100);
2138         else
2139                 udelay(us);
2140 }
2141
2142 static int _regulator_do_enable(struct regulator_dev *rdev)
2143 {
2144         int ret, delay;
2145
2146         /* Query before enabling in case configuration dependent.  */
2147         ret = _regulator_get_enable_time(rdev);
2148         if (ret >= 0) {
2149                 delay = ret;
2150         } else {
2151                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2152                 delay = 0;
2153         }
2154
2155         trace_regulator_enable(rdev_get_name(rdev));
2156
2157         if (rdev->desc->off_on_delay) {
2158                 /* if needed, keep a distance of off_on_delay from last time
2159                  * this regulator was disabled.
2160                  */
2161                 unsigned long start_jiffy = jiffies;
2162                 unsigned long intended, max_delay, remaining;
2163
2164                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2165                 intended = rdev->last_off_jiffy + max_delay;
2166
2167                 if (time_before(start_jiffy, intended)) {
2168                         /* calc remaining jiffies to deal with one-time
2169                          * timer wrapping.
2170                          * in case of multiple timer wrapping, either it can be
2171                          * detected by out-of-range remaining, or it cannot be
2172                          * detected and we gets a panelty of
2173                          * _regulator_enable_delay().
2174                          */
2175                         remaining = intended - start_jiffy;
2176                         if (remaining <= max_delay)
2177                                 _regulator_enable_delay(
2178                                                 jiffies_to_usecs(remaining));
2179                 }
2180         }
2181
2182         if (rdev->ena_pin) {
2183                 if (!rdev->ena_gpio_state) {
2184                         ret = regulator_ena_gpio_ctrl(rdev, true);
2185                         if (ret < 0)
2186                                 return ret;
2187                         rdev->ena_gpio_state = 1;
2188                 }
2189         } else if (rdev->desc->ops->enable) {
2190                 ret = rdev->desc->ops->enable(rdev);
2191                 if (ret < 0)
2192                         return ret;
2193         } else {
2194                 return -EINVAL;
2195         }
2196
2197         /* Allow the regulator to ramp; it would be useful to extend
2198          * this for bulk operations so that the regulators can ramp
2199          * together.  */
2200         trace_regulator_enable_delay(rdev_get_name(rdev));
2201
2202         _regulator_enable_delay(delay);
2203
2204         trace_regulator_enable_complete(rdev_get_name(rdev));
2205
2206         return 0;
2207 }
2208
2209 /* locks held by regulator_enable() */
2210 static int _regulator_enable(struct regulator_dev *rdev)
2211 {
2212         int ret;
2213
2214         lockdep_assert_held_once(&rdev->mutex);
2215
2216         /* check voltage and requested load before enabling */
2217         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2218                 drms_uA_update(rdev);
2219
2220         if (rdev->use_count == 0) {
2221                 /* The regulator may on if it's not switchable or left on */
2222                 ret = _regulator_is_enabled(rdev);
2223                 if (ret == -EINVAL || ret == 0) {
2224                         if (!regulator_ops_is_valid(rdev,
2225                                         REGULATOR_CHANGE_STATUS))
2226                                 return -EPERM;
2227
2228                         ret = _regulator_do_enable(rdev);
2229                         if (ret < 0)
2230                                 return ret;
2231
2232                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2233                                              NULL);
2234                 } else if (ret < 0) {
2235                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2236                         return ret;
2237                 }
2238                 /* Fallthrough on positive return values - already enabled */
2239         }
2240
2241         rdev->use_count++;
2242
2243         return 0;
2244 }
2245
2246 /**
2247  * regulator_enable - enable regulator output
2248  * @regulator: regulator source
2249  *
2250  * Request that the regulator be enabled with the regulator output at
2251  * the predefined voltage or current value.  Calls to regulator_enable()
2252  * must be balanced with calls to regulator_disable().
2253  *
2254  * NOTE: the output value can be set by other drivers, boot loader or may be
2255  * hardwired in the regulator.
2256  */
2257 int regulator_enable(struct regulator *regulator)
2258 {
2259         struct regulator_dev *rdev = regulator->rdev;
2260         int ret = 0;
2261
2262         if (regulator->always_on)
2263                 return 0;
2264
2265         if (rdev->supply) {
2266                 ret = regulator_enable(rdev->supply);
2267                 if (ret != 0)
2268                         return ret;
2269         }
2270
2271         mutex_lock(&rdev->mutex);
2272         ret = _regulator_enable(rdev);
2273         mutex_unlock(&rdev->mutex);
2274
2275         if (ret != 0 && rdev->supply)
2276                 regulator_disable(rdev->supply);
2277
2278         return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_enable);
2281
2282 static int _regulator_do_disable(struct regulator_dev *rdev)
2283 {
2284         int ret;
2285
2286         trace_regulator_disable(rdev_get_name(rdev));
2287
2288         if (rdev->ena_pin) {
2289                 if (rdev->ena_gpio_state) {
2290                         ret = regulator_ena_gpio_ctrl(rdev, false);
2291                         if (ret < 0)
2292                                 return ret;
2293                         rdev->ena_gpio_state = 0;
2294                 }
2295
2296         } else if (rdev->desc->ops->disable) {
2297                 ret = rdev->desc->ops->disable(rdev);
2298                 if (ret != 0)
2299                         return ret;
2300         }
2301
2302         /* cares about last_off_jiffy only if off_on_delay is required by
2303          * device.
2304          */
2305         if (rdev->desc->off_on_delay)
2306                 rdev->last_off_jiffy = jiffies;
2307
2308         trace_regulator_disable_complete(rdev_get_name(rdev));
2309
2310         return 0;
2311 }
2312
2313 /* locks held by regulator_disable() */
2314 static int _regulator_disable(struct regulator_dev *rdev)
2315 {
2316         int ret = 0;
2317
2318         lockdep_assert_held_once(&rdev->mutex);
2319
2320         if (WARN(rdev->use_count <= 0,
2321                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2322                 return -EIO;
2323
2324         /* are we the last user and permitted to disable ? */
2325         if (rdev->use_count == 1 &&
2326             (rdev->constraints && !rdev->constraints->always_on)) {
2327
2328                 /* we are last user */
2329                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2330                         ret = _notifier_call_chain(rdev,
2331                                                    REGULATOR_EVENT_PRE_DISABLE,
2332                                                    NULL);
2333                         if (ret & NOTIFY_STOP_MASK)
2334                                 return -EINVAL;
2335
2336                         ret = _regulator_do_disable(rdev);
2337                         if (ret < 0) {
2338                                 rdev_err(rdev, "failed to disable\n");
2339                                 _notifier_call_chain(rdev,
2340                                                 REGULATOR_EVENT_ABORT_DISABLE,
2341                                                 NULL);
2342                                 return ret;
2343                         }
2344                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2345                                         NULL);
2346                 }
2347
2348                 rdev->use_count = 0;
2349         } else if (rdev->use_count > 1) {
2350                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2351                         drms_uA_update(rdev);
2352
2353                 rdev->use_count--;
2354         }
2355
2356         return ret;
2357 }
2358
2359 /**
2360  * regulator_disable - disable regulator output
2361  * @regulator: regulator source
2362  *
2363  * Disable the regulator output voltage or current.  Calls to
2364  * regulator_enable() must be balanced with calls to
2365  * regulator_disable().
2366  *
2367  * NOTE: this will only disable the regulator output if no other consumer
2368  * devices have it enabled, the regulator device supports disabling and
2369  * machine constraints permit this operation.
2370  */
2371 int regulator_disable(struct regulator *regulator)
2372 {
2373         struct regulator_dev *rdev = regulator->rdev;
2374         int ret = 0;
2375
2376         if (regulator->always_on)
2377                 return 0;
2378
2379         mutex_lock(&rdev->mutex);
2380         ret = _regulator_disable(rdev);
2381         mutex_unlock(&rdev->mutex);
2382
2383         if (ret == 0 && rdev->supply)
2384                 regulator_disable(rdev->supply);
2385
2386         return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(regulator_disable);
2389
2390 /* locks held by regulator_force_disable() */
2391 static int _regulator_force_disable(struct regulator_dev *rdev)
2392 {
2393         int ret = 0;
2394
2395         lockdep_assert_held_once(&rdev->mutex);
2396
2397         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2398                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2399         if (ret & NOTIFY_STOP_MASK)
2400                 return -EINVAL;
2401
2402         ret = _regulator_do_disable(rdev);
2403         if (ret < 0) {
2404                 rdev_err(rdev, "failed to force disable\n");
2405                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2406                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2407                 return ret;
2408         }
2409
2410         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2411                         REGULATOR_EVENT_DISABLE, NULL);
2412
2413         return 0;
2414 }
2415
2416 /**
2417  * regulator_force_disable - force disable regulator output
2418  * @regulator: regulator source
2419  *
2420  * Forcibly disable the regulator output voltage or current.
2421  * NOTE: this *will* disable the regulator output even if other consumer
2422  * devices have it enabled. This should be used for situations when device
2423  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2424  */
2425 int regulator_force_disable(struct regulator *regulator)
2426 {
2427         struct regulator_dev *rdev = regulator->rdev;
2428         int ret;
2429
2430         mutex_lock(&rdev->mutex);
2431         regulator->uA_load = 0;
2432         ret = _regulator_force_disable(regulator->rdev);
2433         mutex_unlock(&rdev->mutex);
2434
2435         if (rdev->supply)
2436                 while (rdev->open_count--)
2437                         regulator_disable(rdev->supply);
2438
2439         return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(regulator_force_disable);
2442
2443 static void regulator_disable_work(struct work_struct *work)
2444 {
2445         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2446                                                   disable_work.work);
2447         int count, i, ret;
2448
2449         regulator_lock(rdev);
2450
2451         BUG_ON(!rdev->deferred_disables);
2452
2453         count = rdev->deferred_disables;
2454         rdev->deferred_disables = 0;
2455
2456         /*
2457          * Workqueue functions queue the new work instance while the previous
2458          * work instance is being processed. Cancel the queued work instance
2459          * as the work instance under processing does the job of the queued
2460          * work instance.
2461          */
2462         cancel_delayed_work(&rdev->disable_work);
2463
2464         for (i = 0; i < count; i++) {
2465                 ret = _regulator_disable(rdev);
2466                 if (ret != 0)
2467                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2468         }
2469
2470         regulator_unlock(rdev);
2471
2472         if (rdev->supply) {
2473                 for (i = 0; i < count; i++) {
2474                         ret = regulator_disable(rdev->supply);
2475                         if (ret != 0) {
2476                                 rdev_err(rdev,
2477                                          "Supply disable failed: %d\n", ret);
2478                         }
2479                 }
2480         }
2481 }
2482
2483 /**
2484  * regulator_disable_deferred - disable regulator output with delay
2485  * @regulator: regulator source
2486  * @ms: miliseconds until the regulator is disabled
2487  *
2488  * Execute regulator_disable() on the regulator after a delay.  This
2489  * is intended for use with devices that require some time to quiesce.
2490  *
2491  * NOTE: this will only disable the regulator output if no other consumer
2492  * devices have it enabled, the regulator device supports disabling and
2493  * machine constraints permit this operation.
2494  */
2495 int regulator_disable_deferred(struct regulator *regulator, int ms)
2496 {
2497         struct regulator_dev *rdev = regulator->rdev;
2498
2499         if (regulator->always_on)
2500                 return 0;
2501
2502         if (!ms)
2503                 return regulator_disable(regulator);
2504
2505         regulator_lock(rdev);
2506         rdev->deferred_disables++;
2507         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2508                          msecs_to_jiffies(ms));
2509         regulator_unlock(rdev);
2510
2511         return 0;
2512 }
2513 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2514
2515 static int _regulator_is_enabled(struct regulator_dev *rdev)
2516 {
2517         /* A GPIO control always takes precedence */
2518         if (rdev->ena_pin)
2519                 return rdev->ena_gpio_state;
2520
2521         /* If we don't know then assume that the regulator is always on */
2522         if (!rdev->desc->ops->is_enabled)
2523                 return 1;
2524
2525         return rdev->desc->ops->is_enabled(rdev);
2526 }
2527
2528 static int _regulator_list_voltage(struct regulator_dev *rdev,
2529                                    unsigned selector, int lock)
2530 {
2531         const struct regulator_ops *ops = rdev->desc->ops;
2532         int ret;
2533
2534         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2535                 return rdev->desc->fixed_uV;
2536
2537         if (ops->list_voltage) {
2538                 if (selector >= rdev->desc->n_voltages)
2539                         return -EINVAL;
2540                 if (lock)
2541                         regulator_lock(rdev);
2542                 ret = ops->list_voltage(rdev, selector);
2543                 if (lock)
2544                         regulator_unlock(rdev);
2545         } else if (rdev->is_switch && rdev->supply) {
2546                 ret = _regulator_list_voltage(rdev->supply->rdev,
2547                                               selector, lock);
2548         } else {
2549                 return -EINVAL;
2550         }
2551
2552         if (ret > 0) {
2553                 if (ret < rdev->constraints->min_uV)
2554                         ret = 0;
2555                 else if (ret > rdev->constraints->max_uV)
2556                         ret = 0;
2557         }
2558
2559         return ret;
2560 }
2561
2562 /**
2563  * regulator_is_enabled - is the regulator output enabled
2564  * @regulator: regulator source
2565  *
2566  * Returns positive if the regulator driver backing the source/client
2567  * has requested that the device be enabled, zero if it hasn't, else a
2568  * negative errno code.
2569  *
2570  * Note that the device backing this regulator handle can have multiple
2571  * users, so it might be enabled even if regulator_enable() was never
2572  * called for this particular source.
2573  */
2574 int regulator_is_enabled(struct regulator *regulator)
2575 {
2576         int ret;
2577
2578         if (regulator->always_on)
2579                 return 1;
2580
2581         mutex_lock(&regulator->rdev->mutex);
2582         ret = _regulator_is_enabled(regulator->rdev);
2583         mutex_unlock(&regulator->rdev->mutex);
2584
2585         return ret;
2586 }
2587 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2588
2589 /**
2590  * regulator_count_voltages - count regulator_list_voltage() selectors
2591  * @regulator: regulator source
2592  *
2593  * Returns number of selectors, or negative errno.  Selectors are
2594  * numbered starting at zero, and typically correspond to bitfields
2595  * in hardware registers.
2596  */
2597 int regulator_count_voltages(struct regulator *regulator)
2598 {
2599         struct regulator_dev    *rdev = regulator->rdev;
2600
2601         if (rdev->desc->n_voltages)
2602                 return rdev->desc->n_voltages;
2603
2604         if (!rdev->is_switch || !rdev->supply)
2605                 return -EINVAL;
2606
2607         return regulator_count_voltages(rdev->supply);
2608 }
2609 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2610
2611 /**
2612  * regulator_list_voltage - enumerate supported voltages
2613  * @regulator: regulator source
2614  * @selector: identify voltage to list
2615  * Context: can sleep
2616  *
2617  * Returns a voltage that can be passed to @regulator_set_voltage(),
2618  * zero if this selector code can't be used on this system, or a
2619  * negative errno.
2620  */
2621 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2622 {
2623         return _regulator_list_voltage(regulator->rdev, selector, 1);
2624 }
2625 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2626
2627 /**
2628  * regulator_get_regmap - get the regulator's register map
2629  * @regulator: regulator source
2630  *
2631  * Returns the register map for the given regulator, or an ERR_PTR value
2632  * if the regulator doesn't use regmap.
2633  */
2634 struct regmap *regulator_get_regmap(struct regulator *regulator)
2635 {
2636         struct regmap *map = regulator->rdev->regmap;
2637
2638         return map ? map : ERR_PTR(-EOPNOTSUPP);
2639 }
2640
2641 /**
2642  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2643  * @regulator: regulator source
2644  * @vsel_reg: voltage selector register, output parameter
2645  * @vsel_mask: mask for voltage selector bitfield, output parameter
2646  *
2647  * Returns the hardware register offset and bitmask used for setting the
2648  * regulator voltage. This might be useful when configuring voltage-scaling
2649  * hardware or firmware that can make I2C requests behind the kernel's back,
2650  * for example.
2651  *
2652  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2653  * and 0 is returned, otherwise a negative errno is returned.
2654  */
2655 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2656                                          unsigned *vsel_reg,
2657                                          unsigned *vsel_mask)
2658 {
2659         struct regulator_dev *rdev = regulator->rdev;
2660         const struct regulator_ops *ops = rdev->desc->ops;
2661
2662         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2663                 return -EOPNOTSUPP;
2664
2665         *vsel_reg = rdev->desc->vsel_reg;
2666         *vsel_mask = rdev->desc->vsel_mask;
2667
2668          return 0;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2671
2672 /**
2673  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2674  * @regulator: regulator source
2675  * @selector: identify voltage to list
2676  *
2677  * Converts the selector to a hardware-specific voltage selector that can be
2678  * directly written to the regulator registers. The address of the voltage
2679  * register can be determined by calling @regulator_get_hardware_vsel_register.
2680  *
2681  * On error a negative errno is returned.
2682  */
2683 int regulator_list_hardware_vsel(struct regulator *regulator,
2684                                  unsigned selector)
2685 {
2686         struct regulator_dev *rdev = regulator->rdev;
2687         const struct regulator_ops *ops = rdev->desc->ops;
2688
2689         if (selector >= rdev->desc->n_voltages)
2690                 return -EINVAL;
2691         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2692                 return -EOPNOTSUPP;
2693
2694         return selector;
2695 }
2696 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2697
2698 /**
2699  * regulator_get_linear_step - return the voltage step size between VSEL values
2700  * @regulator: regulator source
2701  *
2702  * Returns the voltage step size between VSEL values for linear
2703  * regulators, or return 0 if the regulator isn't a linear regulator.
2704  */
2705 unsigned int regulator_get_linear_step(struct regulator *regulator)
2706 {
2707         struct regulator_dev *rdev = regulator->rdev;
2708
2709         return rdev->desc->uV_step;
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2712
2713 /**
2714  * regulator_is_supported_voltage - check if a voltage range can be supported
2715  *
2716  * @regulator: Regulator to check.
2717  * @min_uV: Minimum required voltage in uV.
2718  * @max_uV: Maximum required voltage in uV.
2719  *
2720  * Returns a boolean or a negative error code.
2721  */
2722 int regulator_is_supported_voltage(struct regulator *regulator,
2723                                    int min_uV, int max_uV)
2724 {
2725         struct regulator_dev *rdev = regulator->rdev;
2726         int i, voltages, ret;
2727
2728         /* If we can't change voltage check the current voltage */
2729         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2730                 ret = regulator_get_voltage(regulator);
2731                 if (ret >= 0)
2732                         return min_uV <= ret && ret <= max_uV;
2733                 else
2734                         return ret;
2735         }
2736
2737         /* Any voltage within constrains range is fine? */
2738         if (rdev->desc->continuous_voltage_range)
2739                 return min_uV >= rdev->constraints->min_uV &&
2740                                 max_uV <= rdev->constraints->max_uV;
2741
2742         ret = regulator_count_voltages(regulator);
2743         if (ret < 0)
2744                 return ret;
2745         voltages = ret;
2746
2747         for (i = 0; i < voltages; i++) {
2748                 ret = regulator_list_voltage(regulator, i);
2749
2750                 if (ret >= min_uV && ret <= max_uV)
2751                         return 1;
2752         }
2753
2754         return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2757
2758 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2759                                  int max_uV)
2760 {
2761         const struct regulator_desc *desc = rdev->desc;
2762
2763         if (desc->ops->map_voltage)
2764                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2765
2766         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2767                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2768
2769         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2770                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2771
2772         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2773 }
2774
2775 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2776                                        int min_uV, int max_uV,
2777                                        unsigned *selector)
2778 {
2779         struct pre_voltage_change_data data;
2780         int ret;
2781
2782         data.old_uV = _regulator_get_voltage(rdev);
2783         data.min_uV = min_uV;
2784         data.max_uV = max_uV;
2785         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2786                                    &data);
2787         if (ret & NOTIFY_STOP_MASK)
2788                 return -EINVAL;
2789
2790         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2791         if (ret >= 0)
2792                 return ret;
2793
2794         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2795                              (void *)data.old_uV);
2796
2797         return ret;
2798 }
2799
2800 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2801                                            int uV, unsigned selector)
2802 {
2803         struct pre_voltage_change_data data;
2804         int ret;
2805
2806         data.old_uV = _regulator_get_voltage(rdev);
2807         data.min_uV = uV;
2808         data.max_uV = uV;
2809         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2810                                    &data);
2811         if (ret & NOTIFY_STOP_MASK)
2812                 return -EINVAL;
2813
2814         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2815         if (ret >= 0)
2816                 return ret;
2817
2818         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2819                              (void *)data.old_uV);
2820
2821         return ret;
2822 }
2823
2824 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2825                                        int old_uV, int new_uV)
2826 {
2827         unsigned int ramp_delay = 0;
2828
2829         if (rdev->constraints->ramp_delay)
2830                 ramp_delay = rdev->constraints->ramp_delay;
2831         else if (rdev->desc->ramp_delay)
2832                 ramp_delay = rdev->desc->ramp_delay;
2833         else if (rdev->constraints->settling_time)
2834                 return rdev->constraints->settling_time;
2835         else if (rdev->constraints->settling_time_up &&
2836                  (new_uV > old_uV))
2837                 return rdev->constraints->settling_time_up;
2838         else if (rdev->constraints->settling_time_down &&
2839                  (new_uV < old_uV))
2840                 return rdev->constraints->settling_time_down;
2841
2842         if (ramp_delay == 0) {
2843                 rdev_dbg(rdev, "ramp_delay not set\n");
2844                 return 0;
2845         }
2846
2847         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2848 }
2849
2850 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2851                                      int min_uV, int max_uV)
2852 {
2853         int ret;
2854         int delay = 0;
2855         int best_val = 0;
2856         unsigned int selector;
2857         int old_selector = -1;
2858         const struct regulator_ops *ops = rdev->desc->ops;
2859         int old_uV = _regulator_get_voltage(rdev);
2860
2861         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2862
2863         min_uV += rdev->constraints->uV_offset;
2864         max_uV += rdev->constraints->uV_offset;
2865
2866         /*
2867          * If we can't obtain the old selector there is not enough
2868          * info to call set_voltage_time_sel().
2869          */
2870         if (_regulator_is_enabled(rdev) &&
2871             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2872                 old_selector = ops->get_voltage_sel(rdev);
2873                 if (old_selector < 0)
2874                         return old_selector;
2875         }
2876
2877         if (ops->set_voltage) {
2878                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2879                                                   &selector);
2880
2881                 if (ret >= 0) {
2882                         if (ops->list_voltage)
2883                                 best_val = ops->list_voltage(rdev,
2884                                                              selector);
2885                         else
2886                                 best_val = _regulator_get_voltage(rdev);
2887                 }
2888
2889         } else if (ops->set_voltage_sel) {
2890                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2891                 if (ret >= 0) {
2892                         best_val = ops->list_voltage(rdev, ret);
2893                         if (min_uV <= best_val && max_uV >= best_val) {
2894                                 selector = ret;
2895                                 if (old_selector == selector)
2896                                         ret = 0;
2897                                 else
2898                                         ret = _regulator_call_set_voltage_sel(
2899                                                 rdev, best_val, selector);
2900                         } else {
2901                                 ret = -EINVAL;
2902                         }
2903                 }
2904         } else {
2905                 ret = -EINVAL;
2906         }
2907
2908         if (ret)
2909                 goto out;
2910
2911         if (ops->set_voltage_time_sel) {
2912                 /*
2913                  * Call set_voltage_time_sel if successfully obtained
2914                  * old_selector
2915                  */
2916                 if (old_selector >= 0 && old_selector != selector)
2917                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2918                                                           selector);
2919         } else {
2920                 if (old_uV != best_val) {
2921                         if (ops->set_voltage_time)
2922                                 delay = ops->set_voltage_time(rdev, old_uV,
2923                                                               best_val);
2924                         else
2925                                 delay = _regulator_set_voltage_time(rdev,
2926                                                                     old_uV,
2927                                                                     best_val);
2928                 }
2929         }
2930
2931         if (delay < 0) {
2932                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2933                 delay = 0;
2934         }
2935
2936         /* Insert any necessary delays */
2937         if (delay >= 1000) {
2938                 mdelay(delay / 1000);
2939                 udelay(delay % 1000);
2940         } else if (delay) {
2941                 udelay(delay);
2942         }
2943
2944         if (best_val >= 0) {
2945                 unsigned long data = best_val;
2946
2947                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2948                                      (void *)data);
2949         }
2950
2951 out:
2952         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2953
2954         return ret;
2955 }
2956
2957 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2958                                   int min_uV, int max_uV, suspend_state_t state)
2959 {
2960         struct regulator_state *rstate;
2961         int uV, sel;
2962
2963         rstate = regulator_get_suspend_state(rdev, state);
2964         if (rstate == NULL)
2965                 return -EINVAL;
2966
2967         if (min_uV < rstate->min_uV)
2968                 min_uV = rstate->min_uV;
2969         if (max_uV > rstate->max_uV)
2970                 max_uV = rstate->max_uV;
2971
2972         sel = regulator_map_voltage(rdev, min_uV, max_uV);
2973         if (sel < 0)
2974                 return sel;
2975
2976         uV = rdev->desc->ops->list_voltage(rdev, sel);
2977         if (uV >= min_uV && uV <= max_uV)
2978                 rstate->uV = uV;
2979
2980         return 0;
2981 }
2982
2983 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2984                                           int min_uV, int max_uV,
2985                                           suspend_state_t state)
2986 {
2987         struct regulator_dev *rdev = regulator->rdev;
2988         struct regulator_voltage *voltage = &regulator->voltage[state];
2989         int ret = 0;
2990         int old_min_uV, old_max_uV;
2991         int current_uV;
2992         int best_supply_uV = 0;
2993         int supply_change_uV = 0;
2994
2995         /* If we're setting the same range as last time the change
2996          * should be a noop (some cpufreq implementations use the same
2997          * voltage for multiple frequencies, for example).
2998          */
2999         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3000                 goto out;
3001
3002         /* If we're trying to set a range that overlaps the current voltage,
3003          * return successfully even though the regulator does not support
3004          * changing the voltage.
3005          */
3006         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3007                 current_uV = _regulator_get_voltage(rdev);
3008                 if (min_uV <= current_uV && current_uV <= max_uV) {
3009                         voltage->min_uV = min_uV;
3010                         voltage->max_uV = max_uV;
3011                         goto out;
3012                 }
3013         }
3014
3015         /* sanity check */
3016         if (!rdev->desc->ops->set_voltage &&
3017             !rdev->desc->ops->set_voltage_sel) {
3018                 ret = -EINVAL;
3019                 goto out;
3020         }
3021
3022         /* constraints check */
3023         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3024         if (ret < 0)
3025                 goto out;
3026
3027         /* restore original values in case of error */
3028         old_min_uV = voltage->min_uV;
3029         old_max_uV = voltage->max_uV;
3030         voltage->min_uV = min_uV;
3031         voltage->max_uV = max_uV;
3032
3033         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3034         if (ret < 0)
3035                 goto out2;
3036
3037         if (rdev->supply &&
3038             regulator_ops_is_valid(rdev->supply->rdev,
3039                                    REGULATOR_CHANGE_VOLTAGE) &&
3040             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3041                                            rdev->desc->ops->get_voltage_sel))) {
3042                 int current_supply_uV;
3043                 int selector;
3044
3045                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3046                 if (selector < 0) {
3047                         ret = selector;
3048                         goto out2;
3049                 }
3050
3051                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3052                 if (best_supply_uV < 0) {
3053                         ret = best_supply_uV;
3054                         goto out2;
3055                 }
3056
3057                 best_supply_uV += rdev->desc->min_dropout_uV;
3058
3059                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3060                 if (current_supply_uV < 0) {
3061                         ret = current_supply_uV;
3062                         goto out2;
3063                 }
3064
3065                 supply_change_uV = best_supply_uV - current_supply_uV;
3066         }
3067
3068         if (supply_change_uV > 0) {
3069                 ret = regulator_set_voltage_unlocked(rdev->supply,
3070                                 best_supply_uV, INT_MAX, state);
3071                 if (ret) {
3072                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3073                                         ret);
3074                         goto out2;
3075                 }
3076         }
3077
3078         if (state == PM_SUSPEND_ON)
3079                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3080         else
3081                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3082                                                         max_uV, state);
3083         if (ret < 0)
3084                 goto out2;
3085
3086         if (supply_change_uV < 0) {
3087                 ret = regulator_set_voltage_unlocked(rdev->supply,
3088                                 best_supply_uV, INT_MAX, state);
3089                 if (ret)
3090                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3091                                         ret);
3092                 /* No need to fail here */
3093                 ret = 0;
3094         }
3095
3096 out:
3097         return ret;
3098 out2:
3099         voltage->min_uV = old_min_uV;
3100         voltage->max_uV = old_max_uV;
3101
3102         return ret;
3103 }
3104
3105 /**
3106  * regulator_set_voltage - set regulator output voltage
3107  * @regulator: regulator source
3108  * @min_uV: Minimum required voltage in uV
3109  * @max_uV: Maximum acceptable voltage in uV
3110  *
3111  * Sets a voltage regulator to the desired output voltage. This can be set
3112  * during any regulator state. IOW, regulator can be disabled or enabled.
3113  *
3114  * If the regulator is enabled then the voltage will change to the new value
3115  * immediately otherwise if the regulator is disabled the regulator will
3116  * output at the new voltage when enabled.
3117  *
3118  * NOTE: If the regulator is shared between several devices then the lowest
3119  * request voltage that meets the system constraints will be used.
3120  * Regulator system constraints must be set for this regulator before
3121  * calling this function otherwise this call will fail.
3122  */
3123 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3124 {
3125         int ret = 0;
3126
3127         regulator_lock_supply(regulator->rdev);
3128
3129         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3130                                              PM_SUSPEND_ON);
3131
3132         regulator_unlock_supply(regulator->rdev);
3133
3134         return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3137
3138 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3139                                            suspend_state_t state, bool en)
3140 {
3141         struct regulator_state *rstate;
3142
3143         rstate = regulator_get_suspend_state(rdev, state);
3144         if (rstate == NULL)
3145                 return -EINVAL;
3146
3147         if (!rstate->changeable)
3148                 return -EPERM;
3149
3150         rstate->enabled = en;
3151
3152         return 0;
3153 }
3154
3155 int regulator_suspend_enable(struct regulator_dev *rdev,
3156                                     suspend_state_t state)
3157 {
3158         return regulator_suspend_toggle(rdev, state, true);
3159 }
3160 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3161
3162 int regulator_suspend_disable(struct regulator_dev *rdev,
3163                                      suspend_state_t state)
3164 {
3165         struct regulator *regulator;
3166         struct regulator_voltage *voltage;
3167
3168         /*
3169          * if any consumer wants this regulator device keeping on in
3170          * suspend states, don't set it as disabled.
3171          */
3172         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3173                 voltage = &regulator->voltage[state];
3174                 if (voltage->min_uV || voltage->max_uV)
3175                         return 0;
3176         }
3177
3178         return regulator_suspend_toggle(rdev, state, false);
3179 }
3180 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3181
3182 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3183                                           int min_uV, int max_uV,
3184                                           suspend_state_t state)
3185 {
3186         struct regulator_dev *rdev = regulator->rdev;
3187         struct regulator_state *rstate;
3188
3189         rstate = regulator_get_suspend_state(rdev, state);
3190         if (rstate == NULL)
3191                 return -EINVAL;
3192
3193         if (rstate->min_uV == rstate->max_uV) {
3194                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3195                 return -EPERM;
3196         }
3197
3198         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3199 }
3200
3201 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3202                                   int max_uV, suspend_state_t state)
3203 {
3204         int ret = 0;
3205
3206         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3207         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3208                 return -EINVAL;
3209
3210         regulator_lock_supply(regulator->rdev);
3211
3212         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3213                                              max_uV, state);
3214
3215         regulator_unlock_supply(regulator->rdev);
3216
3217         return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3220
3221 /**
3222  * regulator_set_voltage_time - get raise/fall time
3223  * @regulator: regulator source
3224  * @old_uV: starting voltage in microvolts
3225  * @new_uV: target voltage in microvolts
3226  *
3227  * Provided with the starting and ending voltage, this function attempts to
3228  * calculate the time in microseconds required to rise or fall to this new
3229  * voltage.
3230  */
3231 int regulator_set_voltage_time(struct regulator *regulator,
3232                                int old_uV, int new_uV)
3233 {
3234         struct regulator_dev *rdev = regulator->rdev;
3235         const struct regulator_ops *ops = rdev->desc->ops;
3236         int old_sel = -1;
3237         int new_sel = -1;
3238         int voltage;
3239         int i;
3240
3241         if (ops->set_voltage_time)
3242                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3243         else if (!ops->set_voltage_time_sel)
3244                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3245
3246         /* Currently requires operations to do this */
3247         if (!ops->list_voltage || !rdev->desc->n_voltages)
3248                 return -EINVAL;
3249
3250         for (i = 0; i < rdev->desc->n_voltages; i++) {
3251                 /* We only look for exact voltage matches here */
3252                 voltage = regulator_list_voltage(regulator, i);
3253                 if (voltage < 0)
3254                         return -EINVAL;
3255                 if (voltage == 0)
3256                         continue;
3257                 if (voltage == old_uV)
3258                         old_sel = i;
3259                 if (voltage == new_uV)
3260                         new_sel = i;
3261         }
3262
3263         if (old_sel < 0 || new_sel < 0)
3264                 return -EINVAL;
3265
3266         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3267 }
3268 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3269
3270 /**
3271  * regulator_set_voltage_time_sel - get raise/fall time
3272  * @rdev: regulator source device
3273  * @old_selector: selector for starting voltage
3274  * @new_selector: selector for target voltage
3275  *
3276  * Provided with the starting and target voltage selectors, this function
3277  * returns time in microseconds required to rise or fall to this new voltage
3278  *
3279  * Drivers providing ramp_delay in regulation_constraints can use this as their
3280  * set_voltage_time_sel() operation.
3281  */
3282 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3283                                    unsigned int old_selector,
3284                                    unsigned int new_selector)
3285 {
3286         int old_volt, new_volt;
3287
3288         /* sanity check */
3289         if (!rdev->desc->ops->list_voltage)
3290                 return -EINVAL;
3291
3292         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3293         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3294
3295         if (rdev->desc->ops->set_voltage_time)
3296                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3297                                                          new_volt);
3298         else
3299                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3302
3303 /**
3304  * regulator_sync_voltage - re-apply last regulator output voltage
3305  * @regulator: regulator source
3306  *
3307  * Re-apply the last configured voltage.  This is intended to be used
3308  * where some external control source the consumer is cooperating with
3309  * has caused the configured voltage to change.
3310  */
3311 int regulator_sync_voltage(struct regulator *regulator)
3312 {
3313         struct regulator_dev *rdev = regulator->rdev;
3314         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3315         int ret, min_uV, max_uV;
3316
3317         regulator_lock(rdev);
3318
3319         if (!rdev->desc->ops->set_voltage &&
3320             !rdev->desc->ops->set_voltage_sel) {
3321                 ret = -EINVAL;
3322                 goto out;
3323         }
3324
3325         /* This is only going to work if we've had a voltage configured. */
3326         if (!voltage->min_uV && !voltage->max_uV) {
3327                 ret = -EINVAL;
3328                 goto out;
3329         }
3330
3331         min_uV = voltage->min_uV;
3332         max_uV = voltage->max_uV;
3333
3334         /* This should be a paranoia check... */
3335         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3336         if (ret < 0)
3337                 goto out;
3338
3339         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3340         if (ret < 0)
3341                 goto out;
3342
3343         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3344
3345 out:
3346         regulator_unlock(rdev);
3347         return ret;
3348 }
3349 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3350
3351 static int _regulator_get_voltage(struct regulator_dev *rdev)
3352 {
3353         int sel, ret;
3354         bool bypassed;
3355
3356         if (rdev->desc->ops->get_bypass) {
3357                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3358                 if (ret < 0)
3359                         return ret;
3360                 if (bypassed) {
3361                         /* if bypassed the regulator must have a supply */
3362                         if (!rdev->supply) {
3363                                 rdev_err(rdev,
3364                                          "bypassed regulator has no supply!\n");
3365                                 return -EPROBE_DEFER;
3366                         }
3367
3368                         return _regulator_get_voltage(rdev->supply->rdev);
3369                 }
3370         }
3371
3372         if (rdev->desc->ops->get_voltage_sel) {
3373                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3374                 if (sel < 0)
3375                         return sel;
3376                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3377         } else if (rdev->desc->ops->get_voltage) {
3378                 ret = rdev->desc->ops->get_voltage(rdev);
3379         } else if (rdev->desc->ops->list_voltage) {
3380                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3381         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3382                 ret = rdev->desc->fixed_uV;
3383         } else if (rdev->supply) {
3384                 ret = _regulator_get_voltage(rdev->supply->rdev);
3385         } else {
3386                 return -EINVAL;
3387         }
3388
3389         if (ret < 0)
3390                 return ret;
3391         return ret - rdev->constraints->uV_offset;
3392 }
3393
3394 /**
3395  * regulator_get_voltage - get regulator output voltage
3396  * @regulator: regulator source
3397  *
3398  * This returns the current regulator voltage in uV.
3399  *
3400  * NOTE: If the regulator is disabled it will return the voltage value. This
3401  * function should not be used to determine regulator state.
3402  */
3403 int regulator_get_voltage(struct regulator *regulator)
3404 {
3405         int ret;
3406
3407         regulator_lock_supply(regulator->rdev);
3408
3409         ret = _regulator_get_voltage(regulator->rdev);
3410
3411         regulator_unlock_supply(regulator->rdev);
3412
3413         return ret;
3414 }
3415 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3416
3417 /**
3418  * regulator_set_current_limit - set regulator output current limit
3419  * @regulator: regulator source
3420  * @min_uA: Minimum supported current in uA
3421  * @max_uA: Maximum supported current in uA
3422  *
3423  * Sets current sink to the desired output current. This can be set during
3424  * any regulator state. IOW, regulator can be disabled or enabled.
3425  *
3426  * If the regulator is enabled then the current will change to the new value
3427  * immediately otherwise if the regulator is disabled the regulator will
3428  * output at the new current when enabled.
3429  *
3430  * NOTE: Regulator system constraints must be set for this regulator before
3431  * calling this function otherwise this call will fail.
3432  */
3433 int regulator_set_current_limit(struct regulator *regulator,
3434                                int min_uA, int max_uA)
3435 {
3436         struct regulator_dev *rdev = regulator->rdev;
3437         int ret;
3438
3439         regulator_lock(rdev);
3440
3441         /* sanity check */
3442         if (!rdev->desc->ops->set_current_limit) {
3443                 ret = -EINVAL;
3444                 goto out;
3445         }
3446
3447         /* constraints check */
3448         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3449         if (ret < 0)
3450                 goto out;
3451
3452         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3453 out:
3454         regulator_unlock(rdev);
3455         return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3458
3459 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3460 {
3461         int ret;
3462
3463         regulator_lock(rdev);
3464
3465         /* sanity check */
3466         if (!rdev->desc->ops->get_current_limit) {
3467                 ret = -EINVAL;
3468                 goto out;
3469         }
3470
3471         ret = rdev->desc->ops->get_current_limit(rdev);
3472 out:
3473         regulator_unlock(rdev);
3474         return ret;
3475 }
3476
3477 /**
3478  * regulator_get_current_limit - get regulator output current
3479  * @regulator: regulator source
3480  *
3481  * This returns the current supplied by the specified current sink in uA.
3482  *
3483  * NOTE: If the regulator is disabled it will return the current value. This
3484  * function should not be used to determine regulator state.
3485  */
3486 int regulator_get_current_limit(struct regulator *regulator)
3487 {
3488         return _regulator_get_current_limit(regulator->rdev);
3489 }
3490 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3491
3492 /**
3493  * regulator_set_mode - set regulator operating mode
3494  * @regulator: regulator source
3495  * @mode: operating mode - one of the REGULATOR_MODE constants
3496  *
3497  * Set regulator operating mode to increase regulator efficiency or improve
3498  * regulation performance.
3499  *
3500  * NOTE: Regulator system constraints must be set for this regulator before
3501  * calling this function otherwise this call will fail.
3502  */
3503 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3504 {
3505         struct regulator_dev *rdev = regulator->rdev;
3506         int ret;
3507         int regulator_curr_mode;
3508
3509         regulator_lock(rdev);
3510
3511         /* sanity check */
3512         if (!rdev->desc->ops->set_mode) {
3513                 ret = -EINVAL;
3514                 goto out;
3515         }
3516
3517         /* return if the same mode is requested */
3518         if (rdev->desc->ops->get_mode) {
3519                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3520                 if (regulator_curr_mode == mode) {
3521                         ret = 0;
3522                         goto out;
3523                 }
3524         }
3525
3526         /* constraints check */
3527         ret = regulator_mode_constrain(rdev, &mode);
3528         if (ret < 0)
3529                 goto out;
3530
3531         ret = rdev->desc->ops->set_mode(rdev, mode);
3532 out:
3533         regulator_unlock(rdev);
3534         return ret;
3535 }
3536 EXPORT_SYMBOL_GPL(regulator_set_mode);
3537
3538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3539 {
3540         int ret;
3541
3542         regulator_lock(rdev);
3543
3544         /* sanity check */
3545         if (!rdev->desc->ops->get_mode) {
3546                 ret = -EINVAL;
3547                 goto out;
3548         }
3549
3550         ret = rdev->desc->ops->get_mode(rdev);
3551 out:
3552         regulator_unlock(rdev);
3553         return ret;
3554 }
3555
3556 /**
3557  * regulator_get_mode - get regulator operating mode
3558  * @regulator: regulator source
3559  *
3560  * Get the current regulator operating mode.
3561  */
3562 unsigned int regulator_get_mode(struct regulator *regulator)
3563 {
3564         return _regulator_get_mode(regulator->rdev);
3565 }
3566 EXPORT_SYMBOL_GPL(regulator_get_mode);
3567
3568 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3569                                         unsigned int *flags)
3570 {
3571         int ret;
3572
3573         regulator_lock(rdev);
3574
3575         /* sanity check */
3576         if (!rdev->desc->ops->get_error_flags) {
3577                 ret = -EINVAL;
3578                 goto out;
3579         }
3580
3581         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3582 out:
3583         regulator_unlock(rdev);
3584         return ret;
3585 }
3586
3587 /**
3588  * regulator_get_error_flags - get regulator error information
3589  * @regulator: regulator source
3590  * @flags: pointer to store error flags
3591  *
3592  * Get the current regulator error information.
3593  */
3594 int regulator_get_error_flags(struct regulator *regulator,
3595                                 unsigned int *flags)
3596 {
3597         return _regulator_get_error_flags(regulator->rdev, flags);
3598 }
3599 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3600
3601 /**
3602  * regulator_set_load - set regulator load
3603  * @regulator: regulator source
3604  * @uA_load: load current
3605  *
3606  * Notifies the regulator core of a new device load. This is then used by
3607  * DRMS (if enabled by constraints) to set the most efficient regulator
3608  * operating mode for the new regulator loading.
3609  *
3610  * Consumer devices notify their supply regulator of the maximum power
3611  * they will require (can be taken from device datasheet in the power
3612  * consumption tables) when they change operational status and hence power
3613  * state. Examples of operational state changes that can affect power
3614  * consumption are :-
3615  *
3616  *    o Device is opened / closed.
3617  *    o Device I/O is about to begin or has just finished.
3618  *    o Device is idling in between work.
3619  *
3620  * This information is also exported via sysfs to userspace.
3621  *
3622  * DRMS will sum the total requested load on the regulator and change
3623  * to the most efficient operating mode if platform constraints allow.
3624  *
3625  * On error a negative errno is returned.
3626  */
3627 int regulator_set_load(struct regulator *regulator, int uA_load)
3628 {
3629         struct regulator_dev *rdev = regulator->rdev;
3630         int ret;
3631
3632         regulator_lock(rdev);
3633         regulator->uA_load = uA_load;
3634         ret = drms_uA_update(rdev);
3635         regulator_unlock(rdev);
3636
3637         return ret;
3638 }
3639 EXPORT_SYMBOL_GPL(regulator_set_load);
3640
3641 /**
3642  * regulator_allow_bypass - allow the regulator to go into bypass mode
3643  *
3644  * @regulator: Regulator to configure
3645  * @enable: enable or disable bypass mode
3646  *
3647  * Allow the regulator to go into bypass mode if all other consumers
3648  * for the regulator also enable bypass mode and the machine
3649  * constraints allow this.  Bypass mode means that the regulator is
3650  * simply passing the input directly to the output with no regulation.
3651  */
3652 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3653 {
3654         struct regulator_dev *rdev = regulator->rdev;
3655         int ret = 0;
3656
3657         if (!rdev->desc->ops->set_bypass)
3658                 return 0;
3659
3660         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3661                 return 0;
3662
3663         regulator_lock(rdev);
3664
3665         if (enable && !regulator->bypass) {
3666                 rdev->bypass_count++;
3667
3668                 if (rdev->bypass_count == rdev->open_count) {
3669                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3670                         if (ret != 0)
3671                                 rdev->bypass_count--;
3672                 }
3673
3674         } else if (!enable && regulator->bypass) {
3675                 rdev->bypass_count--;
3676
3677                 if (rdev->bypass_count != rdev->open_count) {
3678                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3679                         if (ret != 0)
3680                                 rdev->bypass_count++;
3681                 }
3682         }
3683
3684         if (ret == 0)
3685                 regulator->bypass = enable;
3686
3687         regulator_unlock(rdev);
3688
3689         return ret;
3690 }
3691 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3692
3693 /**
3694  * regulator_register_notifier - register regulator event notifier
3695  * @regulator: regulator source
3696  * @nb: notifier block
3697  *
3698  * Register notifier block to receive regulator events.
3699  */
3700 int regulator_register_notifier(struct regulator *regulator,
3701                               struct notifier_block *nb)
3702 {
3703         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3704                                                 nb);
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3707
3708 /**
3709  * regulator_unregister_notifier - unregister regulator event notifier
3710  * @regulator: regulator source
3711  * @nb: notifier block
3712  *
3713  * Unregister regulator event notifier block.
3714  */
3715 int regulator_unregister_notifier(struct regulator *regulator,
3716                                 struct notifier_block *nb)
3717 {
3718         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3719                                                   nb);
3720 }
3721 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3722
3723 /* notify regulator consumers and downstream regulator consumers.
3724  * Note mutex must be held by caller.
3725  */
3726 static int _notifier_call_chain(struct regulator_dev *rdev,
3727                                   unsigned long event, void *data)
3728 {
3729         /* call rdev chain first */
3730         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3731 }
3732
3733 /**
3734  * regulator_bulk_get - get multiple regulator consumers
3735  *
3736  * @dev:           Device to supply
3737  * @num_consumers: Number of consumers to register
3738  * @consumers:     Configuration of consumers; clients are stored here.
3739  *
3740  * @return 0 on success, an errno on failure.
3741  *
3742  * This helper function allows drivers to get several regulator
3743  * consumers in one operation.  If any of the regulators cannot be
3744  * acquired then any regulators that were allocated will be freed
3745  * before returning to the caller.
3746  */
3747 int regulator_bulk_get(struct device *dev, int num_consumers,
3748                        struct regulator_bulk_data *consumers)
3749 {
3750         int i;
3751         int ret;
3752
3753         for (i = 0; i < num_consumers; i++)
3754                 consumers[i].consumer = NULL;
3755
3756         for (i = 0; i < num_consumers; i++) {
3757                 consumers[i].consumer = regulator_get(dev,
3758                                                       consumers[i].supply);
3759                 if (IS_ERR(consumers[i].consumer)) {
3760                         ret = PTR_ERR(consumers[i].consumer);
3761                         dev_err(dev, "Failed to get supply '%s': %d\n",
3762                                 consumers[i].supply, ret);
3763                         consumers[i].consumer = NULL;
3764                         goto err;
3765                 }
3766         }
3767
3768         return 0;
3769
3770 err:
3771         while (--i >= 0)
3772                 regulator_put(consumers[i].consumer);
3773
3774         return ret;
3775 }
3776 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3777
3778 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3779 {
3780         struct regulator_bulk_data *bulk = data;
3781
3782         bulk->ret = regulator_enable(bulk->consumer);
3783 }
3784
3785 /**
3786  * regulator_bulk_enable - enable multiple regulator consumers
3787  *
3788  * @num_consumers: Number of consumers
3789  * @consumers:     Consumer data; clients are stored here.
3790  * @return         0 on success, an errno on failure
3791  *
3792  * This convenience API allows consumers to enable multiple regulator
3793  * clients in a single API call.  If any consumers cannot be enabled
3794  * then any others that were enabled will be disabled again prior to
3795  * return.
3796  */
3797 int regulator_bulk_enable(int num_consumers,
3798                           struct regulator_bulk_data *consumers)
3799 {
3800         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3801         int i;
3802         int ret = 0;
3803
3804         for (i = 0; i < num_consumers; i++) {
3805                 if (consumers[i].consumer->always_on)
3806                         consumers[i].ret = 0;
3807                 else
3808                         async_schedule_domain(regulator_bulk_enable_async,
3809                                               &consumers[i], &async_domain);
3810         }
3811
3812         async_synchronize_full_domain(&async_domain);
3813
3814         /* If any consumer failed we need to unwind any that succeeded */
3815         for (i = 0; i < num_consumers; i++) {
3816                 if (consumers[i].ret != 0) {
3817                         ret = consumers[i].ret;
3818                         goto err;
3819                 }
3820         }
3821
3822         return 0;
3823
3824 err:
3825         for (i = 0; i < num_consumers; i++) {
3826                 if (consumers[i].ret < 0)
3827                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3828                                consumers[i].ret);
3829                 else
3830                         regulator_disable(consumers[i].consumer);
3831         }
3832
3833         return ret;
3834 }
3835 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3836
3837 /**
3838  * regulator_bulk_disable - disable multiple regulator consumers
3839  *
3840  * @num_consumers: Number of consumers
3841  * @consumers:     Consumer data; clients are stored here.
3842  * @return         0 on success, an errno on failure
3843  *
3844  * This convenience API allows consumers to disable multiple regulator
3845  * clients in a single API call.  If any consumers cannot be disabled
3846  * then any others that were disabled will be enabled again prior to
3847  * return.
3848  */
3849 int regulator_bulk_disable(int num_consumers,
3850                            struct regulator_bulk_data *consumers)
3851 {
3852         int i;
3853         int ret, r;
3854
3855         for (i = num_consumers - 1; i >= 0; --i) {
3856                 ret = regulator_disable(consumers[i].consumer);
3857                 if (ret != 0)
3858                         goto err;
3859         }
3860
3861         return 0;
3862
3863 err:
3864         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3865         for (++i; i < num_consumers; ++i) {
3866                 r = regulator_enable(consumers[i].consumer);
3867                 if (r != 0)
3868                         pr_err("Failed to re-enable %s: %d\n",
3869                                consumers[i].supply, r);
3870         }
3871
3872         return ret;
3873 }
3874 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3875
3876 /**
3877  * regulator_bulk_force_disable - force disable multiple regulator consumers
3878  *
3879  * @num_consumers: Number of consumers
3880  * @consumers:     Consumer data; clients are stored here.
3881  * @return         0 on success, an errno on failure
3882  *
3883  * This convenience API allows consumers to forcibly disable multiple regulator
3884  * clients in a single API call.
3885  * NOTE: This should be used for situations when device damage will
3886  * likely occur if the regulators are not disabled (e.g. over temp).
3887  * Although regulator_force_disable function call for some consumers can
3888  * return error numbers, the function is called for all consumers.
3889  */
3890 int regulator_bulk_force_disable(int num_consumers,
3891                            struct regulator_bulk_data *consumers)
3892 {
3893         int i;
3894         int ret = 0;
3895
3896         for (i = 0; i < num_consumers; i++) {
3897                 consumers[i].ret =
3898                             regulator_force_disable(consumers[i].consumer);
3899
3900                 /* Store first error for reporting */
3901                 if (consumers[i].ret && !ret)
3902                         ret = consumers[i].ret;
3903         }
3904
3905         return ret;
3906 }
3907 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3908
3909 /**
3910  * regulator_bulk_free - free multiple regulator consumers
3911  *
3912  * @num_consumers: Number of consumers
3913  * @consumers:     Consumer data; clients are stored here.
3914  *
3915  * This convenience API allows consumers to free multiple regulator
3916  * clients in a single API call.
3917  */
3918 void regulator_bulk_free(int num_consumers,
3919                          struct regulator_bulk_data *consumers)
3920 {
3921         int i;
3922
3923         for (i = 0; i < num_consumers; i++) {
3924                 regulator_put(consumers[i].consumer);
3925                 consumers[i].consumer = NULL;
3926         }
3927 }
3928 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3929
3930 /**
3931  * regulator_notifier_call_chain - call regulator event notifier
3932  * @rdev: regulator source
3933  * @event: notifier block
3934  * @data: callback-specific data.
3935  *
3936  * Called by regulator drivers to notify clients a regulator event has
3937  * occurred. We also notify regulator clients downstream.
3938  * Note lock must be held by caller.
3939  */
3940 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3941                                   unsigned long event, void *data)
3942 {
3943         lockdep_assert_held_once(&rdev->mutex);
3944
3945         _notifier_call_chain(rdev, event, data);
3946         return NOTIFY_DONE;
3947
3948 }
3949 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3950
3951 /**
3952  * regulator_mode_to_status - convert a regulator mode into a status
3953  *
3954  * @mode: Mode to convert
3955  *
3956  * Convert a regulator mode into a status.
3957  */
3958 int regulator_mode_to_status(unsigned int mode)
3959 {
3960         switch (mode) {
3961         case REGULATOR_MODE_FAST:
3962                 return REGULATOR_STATUS_FAST;
3963         case REGULATOR_MODE_NORMAL:
3964                 return REGULATOR_STATUS_NORMAL;
3965         case REGULATOR_MODE_IDLE:
3966                 return REGULATOR_STATUS_IDLE;
3967         case REGULATOR_MODE_STANDBY:
3968                 return REGULATOR_STATUS_STANDBY;
3969         default:
3970                 return REGULATOR_STATUS_UNDEFINED;
3971         }
3972 }
3973 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3974
3975 static struct attribute *regulator_dev_attrs[] = {
3976         &dev_attr_name.attr,
3977         &dev_attr_num_users.attr,
3978         &dev_attr_type.attr,
3979         &dev_attr_microvolts.attr,
3980         &dev_attr_microamps.attr,
3981         &dev_attr_opmode.attr,
3982         &dev_attr_state.attr,
3983         &dev_attr_status.attr,
3984         &dev_attr_bypass.attr,
3985         &dev_attr_requested_microamps.attr,
3986         &dev_attr_min_microvolts.attr,
3987         &dev_attr_max_microvolts.attr,
3988         &dev_attr_min_microamps.attr,
3989         &dev_attr_max_microamps.attr,
3990         &dev_attr_suspend_standby_state.attr,
3991         &dev_attr_suspend_mem_state.attr,
3992         &dev_attr_suspend_disk_state.attr,
3993         &dev_attr_suspend_standby_microvolts.attr,
3994         &dev_attr_suspend_mem_microvolts.attr,
3995         &dev_attr_suspend_disk_microvolts.attr,
3996         &dev_attr_suspend_standby_mode.attr,
3997         &dev_attr_suspend_mem_mode.attr,
3998         &dev_attr_suspend_disk_mode.attr,
3999         NULL
4000 };
4001
4002 /*
4003  * To avoid cluttering sysfs (and memory) with useless state, only
4004  * create attributes that can be meaningfully displayed.
4005  */
4006 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4007                                          struct attribute *attr, int idx)
4008 {
4009         struct device *dev = kobj_to_dev(kobj);
4010         struct regulator_dev *rdev = dev_to_rdev(dev);
4011         const struct regulator_ops *ops = rdev->desc->ops;
4012         umode_t mode = attr->mode;
4013
4014         /* these three are always present */
4015         if (attr == &dev_attr_name.attr ||
4016             attr == &dev_attr_num_users.attr ||
4017             attr == &dev_attr_type.attr)
4018                 return mode;
4019
4020         /* some attributes need specific methods to be displayed */
4021         if (attr == &dev_attr_microvolts.attr) {
4022                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4023                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4024                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4025                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4026                         return mode;
4027                 return 0;
4028         }
4029
4030         if (attr == &dev_attr_microamps.attr)
4031                 return ops->get_current_limit ? mode : 0;
4032
4033         if (attr == &dev_attr_opmode.attr)
4034                 return ops->get_mode ? mode : 0;
4035
4036         if (attr == &dev_attr_state.attr)
4037                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4038
4039         if (attr == &dev_attr_status.attr)
4040                 return ops->get_status ? mode : 0;
4041
4042         if (attr == &dev_attr_bypass.attr)
4043                 return ops->get_bypass ? mode : 0;
4044
4045         /* some attributes are type-specific */
4046         if (attr == &dev_attr_requested_microamps.attr)
4047                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4048
4049         /* constraints need specific supporting methods */
4050         if (attr == &dev_attr_min_microvolts.attr ||
4051             attr == &dev_attr_max_microvolts.attr)
4052                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4053
4054         if (attr == &dev_attr_min_microamps.attr ||
4055             attr == &dev_attr_max_microamps.attr)
4056                 return ops->set_current_limit ? mode : 0;
4057
4058         if (attr == &dev_attr_suspend_standby_state.attr ||
4059             attr == &dev_attr_suspend_mem_state.attr ||
4060             attr == &dev_attr_suspend_disk_state.attr)
4061                 return mode;
4062
4063         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4064             attr == &dev_attr_suspend_mem_microvolts.attr ||
4065             attr == &dev_attr_suspend_disk_microvolts.attr)
4066                 return ops->set_suspend_voltage ? mode : 0;
4067
4068         if (attr == &dev_attr_suspend_standby_mode.attr ||
4069             attr == &dev_attr_suspend_mem_mode.attr ||
4070             attr == &dev_attr_suspend_disk_mode.attr)
4071                 return ops->set_suspend_mode ? mode : 0;
4072
4073         return mode;
4074 }
4075
4076 static const struct attribute_group regulator_dev_group = {
4077         .attrs = regulator_dev_attrs,
4078         .is_visible = regulator_attr_is_visible,
4079 };
4080
4081 static const struct attribute_group *regulator_dev_groups[] = {
4082         &regulator_dev_group,
4083         NULL
4084 };
4085
4086 static void regulator_dev_release(struct device *dev)
4087 {
4088         struct regulator_dev *rdev = dev_get_drvdata(dev);
4089
4090         kfree(rdev->constraints);
4091         of_node_put(rdev->dev.of_node);
4092         kfree(rdev);
4093 }
4094
4095 static void rdev_init_debugfs(struct regulator_dev *rdev)
4096 {
4097         struct device *parent = rdev->dev.parent;
4098         const char *rname = rdev_get_name(rdev);
4099         char name[NAME_MAX];
4100
4101         /* Avoid duplicate debugfs directory names */
4102         if (parent && rname == rdev->desc->name) {
4103                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4104                          rname);
4105                 rname = name;
4106         }
4107
4108         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4109         if (!rdev->debugfs) {
4110                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4111                 return;
4112         }
4113
4114         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4115                            &rdev->use_count);
4116         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4117                            &rdev->open_count);
4118         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4119                            &rdev->bypass_count);
4120 }
4121
4122 static int regulator_register_resolve_supply(struct device *dev, void *data)
4123 {
4124         struct regulator_dev *rdev = dev_to_rdev(dev);
4125
4126         if (regulator_resolve_supply(rdev))
4127                 rdev_dbg(rdev, "unable to resolve supply\n");
4128
4129         return 0;
4130 }
4131
4132 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4133 {
4134         struct coupling_desc *c_desc = &rdev->coupling_desc;
4135         int n_coupled = c_desc->n_coupled;
4136         struct regulator_dev *c_rdev;
4137         int i;
4138
4139         for (i = 1; i < n_coupled; i++) {
4140                 /* already resolved */
4141                 if (c_desc->coupled_rdevs[i])
4142                         continue;
4143
4144                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4145
4146                 if (c_rdev) {
4147                         c_desc->coupled_rdevs[i] = c_rdev;
4148                         c_desc->n_resolved++;
4149                 }
4150         }
4151
4152         if (rdev->coupling_desc.n_resolved < n_coupled)
4153                 return -1;
4154         else
4155                 return 0;
4156 }
4157
4158 static int regulator_register_fill_coupling_array(struct device *dev,
4159                                                   void *data)
4160 {
4161         struct regulator_dev *rdev = dev_to_rdev(dev);
4162
4163         if (!IS_ENABLED(CONFIG_OF))
4164                 return 0;
4165
4166         if (regulator_fill_coupling_array(rdev))
4167                 rdev_dbg(rdev, "unable to resolve coupling\n");
4168
4169         return 0;
4170 }
4171
4172 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4173 {
4174         int n_phandles;
4175
4176         if (!IS_ENABLED(CONFIG_OF))
4177                 n_phandles = 0;
4178         else
4179                 n_phandles = of_get_n_coupled(rdev);
4180
4181         if (n_phandles + 1 > MAX_COUPLED) {
4182                 rdev_err(rdev, "too many regulators coupled\n");
4183                 return -EPERM;
4184         }
4185
4186         /*
4187          * Every regulator should always have coupling descriptor filled with
4188          * at least pointer to itself.
4189          */
4190         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4191         rdev->coupling_desc.n_coupled = n_phandles + 1;
4192         rdev->coupling_desc.n_resolved++;
4193
4194         /* regulator isn't coupled */
4195         if (n_phandles == 0)
4196                 return 0;
4197
4198         /* regulator, which can't change its voltage, can't be coupled */
4199         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4200                 rdev_err(rdev, "voltage operation not allowed\n");
4201                 return -EPERM;
4202         }
4203
4204         if (rdev->constraints->max_spread <= 0) {
4205                 rdev_err(rdev, "wrong max_spread value\n");
4206                 return -EPERM;
4207         }
4208
4209         if (!of_check_coupling_data(rdev))
4210                 return -EPERM;
4211
4212         /*
4213          * After everything has been checked, try to fill rdevs array
4214          * with pointers to regulators parsed from device tree. If some
4215          * regulators are not registered yet, retry in late init call
4216          */
4217         regulator_fill_coupling_array(rdev);
4218
4219         return 0;
4220 }
4221
4222 /**
4223  * regulator_register - register regulator
4224  * @regulator_desc: regulator to register
4225  * @cfg: runtime configuration for regulator
4226  *
4227  * Called by regulator drivers to register a regulator.
4228  * Returns a valid pointer to struct regulator_dev on success
4229  * or an ERR_PTR() on error.
4230  */
4231 struct regulator_dev *
4232 regulator_register(const struct regulator_desc *regulator_desc,
4233                    const struct regulator_config *cfg)
4234 {
4235         const struct regulation_constraints *constraints = NULL;
4236         const struct regulator_init_data *init_data;
4237         struct regulator_config *config = NULL;
4238         static atomic_t regulator_no = ATOMIC_INIT(-1);
4239         struct regulator_dev *rdev;
4240         struct device *dev;
4241         int ret, i;
4242
4243         if (regulator_desc == NULL || cfg == NULL)
4244                 return ERR_PTR(-EINVAL);
4245
4246         dev = cfg->dev;
4247         WARN_ON(!dev);
4248
4249         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4250                 return ERR_PTR(-EINVAL);
4251
4252         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4253             regulator_desc->type != REGULATOR_CURRENT)
4254                 return ERR_PTR(-EINVAL);
4255
4256         /* Only one of each should be implemented */
4257         WARN_ON(regulator_desc->ops->get_voltage &&
4258                 regulator_desc->ops->get_voltage_sel);
4259         WARN_ON(regulator_desc->ops->set_voltage &&
4260                 regulator_desc->ops->set_voltage_sel);
4261
4262         /* If we're using selectors we must implement list_voltage. */
4263         if (regulator_desc->ops->get_voltage_sel &&
4264             !regulator_desc->ops->list_voltage) {
4265                 return ERR_PTR(-EINVAL);
4266         }
4267         if (regulator_desc->ops->set_voltage_sel &&
4268             !regulator_desc->ops->list_voltage) {
4269                 return ERR_PTR(-EINVAL);
4270         }
4271
4272         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4273         if (rdev == NULL)
4274                 return ERR_PTR(-ENOMEM);
4275
4276         /*
4277          * Duplicate the config so the driver could override it after
4278          * parsing init data.
4279          */
4280         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4281         if (config == NULL) {
4282                 kfree(rdev);
4283                 return ERR_PTR(-ENOMEM);
4284         }
4285
4286         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4287                                                &rdev->dev.of_node);
4288         if (!init_data) {
4289                 init_data = config->init_data;
4290                 rdev->dev.of_node = of_node_get(config->of_node);
4291         }
4292
4293         mutex_init(&rdev->mutex);
4294         rdev->reg_data = config->driver_data;
4295         rdev->owner = regulator_desc->owner;
4296         rdev->desc = regulator_desc;
4297         if (config->regmap)
4298                 rdev->regmap = config->regmap;
4299         else if (dev_get_regmap(dev, NULL))
4300                 rdev->regmap = dev_get_regmap(dev, NULL);
4301         else if (dev->parent)
4302                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4303         INIT_LIST_HEAD(&rdev->consumer_list);
4304         INIT_LIST_HEAD(&rdev->list);
4305         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4306         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4307
4308         /* preform any regulator specific init */
4309         if (init_data && init_data->regulator_init) {
4310                 ret = init_data->regulator_init(rdev->reg_data);
4311                 if (ret < 0)
4312                         goto clean;
4313         }
4314
4315         if (config->ena_gpiod ||
4316             ((config->ena_gpio || config->ena_gpio_initialized) &&
4317              gpio_is_valid(config->ena_gpio))) {
4318                 mutex_lock(&regulator_list_mutex);
4319                 ret = regulator_ena_gpio_request(rdev, config);
4320                 mutex_unlock(&regulator_list_mutex);
4321                 if (ret != 0) {
4322                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4323                                  config->ena_gpio, ret);
4324                         goto clean;
4325                 }
4326         }
4327
4328         /* register with sysfs */
4329         rdev->dev.class = &regulator_class;
4330         rdev->dev.parent = dev;
4331         dev_set_name(&rdev->dev, "regulator.%lu",
4332                     (unsigned long) atomic_inc_return(&regulator_no));
4333
4334         /* set regulator constraints */
4335         if (init_data)
4336                 constraints = &init_data->constraints;
4337
4338         if (init_data && init_data->supply_regulator)
4339                 rdev->supply_name = init_data->supply_regulator;
4340         else if (regulator_desc->supply_name)
4341                 rdev->supply_name = regulator_desc->supply_name;
4342
4343         /*
4344          * Attempt to resolve the regulator supply, if specified,
4345          * but don't return an error if we fail because we will try
4346          * to resolve it again later as more regulators are added.
4347          */
4348         if (regulator_resolve_supply(rdev))
4349                 rdev_dbg(rdev, "unable to resolve supply\n");
4350
4351         ret = set_machine_constraints(rdev, constraints);
4352         if (ret < 0)
4353                 goto wash;
4354
4355         mutex_lock(&regulator_list_mutex);
4356         ret = regulator_resolve_coupling(rdev);
4357         mutex_unlock(&regulator_list_mutex);
4358
4359         if (ret != 0)
4360                 goto wash;
4361
4362         /* add consumers devices */
4363         if (init_data) {
4364                 mutex_lock(&regulator_list_mutex);
4365                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4366                         ret = set_consumer_device_supply(rdev,
4367                                 init_data->consumer_supplies[i].dev_name,
4368                                 init_data->consumer_supplies[i].supply);
4369                         if (ret < 0) {
4370                                 mutex_unlock(&regulator_list_mutex);
4371                                 dev_err(dev, "Failed to set supply %s\n",
4372                                         init_data->consumer_supplies[i].supply);
4373                                 goto unset_supplies;
4374                         }
4375                 }
4376                 mutex_unlock(&regulator_list_mutex);
4377         }
4378
4379         if (!rdev->desc->ops->get_voltage &&
4380             !rdev->desc->ops->list_voltage &&
4381             !rdev->desc->fixed_uV)
4382                 rdev->is_switch = true;
4383
4384         ret = device_register(&rdev->dev);
4385         if (ret != 0) {
4386                 put_device(&rdev->dev);
4387                 goto unset_supplies;
4388         }
4389
4390         dev_set_drvdata(&rdev->dev, rdev);
4391         rdev_init_debugfs(rdev);
4392
4393         /* try to resolve regulators supply since a new one was registered */
4394         class_for_each_device(&regulator_class, NULL, NULL,
4395                               regulator_register_resolve_supply);
4396         kfree(config);
4397         return rdev;
4398
4399 unset_supplies:
4400         mutex_lock(&regulator_list_mutex);
4401         unset_regulator_supplies(rdev);
4402         mutex_unlock(&regulator_list_mutex);
4403 wash:
4404         kfree(rdev->constraints);
4405         mutex_lock(&regulator_list_mutex);
4406         regulator_ena_gpio_free(rdev);
4407         mutex_unlock(&regulator_list_mutex);
4408 clean:
4409         kfree(rdev);
4410         kfree(config);
4411         return ERR_PTR(ret);
4412 }
4413 EXPORT_SYMBOL_GPL(regulator_register);
4414
4415 /**
4416  * regulator_unregister - unregister regulator
4417  * @rdev: regulator to unregister
4418  *
4419  * Called by regulator drivers to unregister a regulator.
4420  */
4421 void regulator_unregister(struct regulator_dev *rdev)
4422 {
4423         if (rdev == NULL)
4424                 return;
4425
4426         if (rdev->supply) {
4427                 while (rdev->use_count--)
4428                         regulator_disable(rdev->supply);
4429                 regulator_put(rdev->supply);
4430         }
4431         mutex_lock(&regulator_list_mutex);
4432         debugfs_remove_recursive(rdev->debugfs);
4433         flush_work(&rdev->disable_work.work);
4434         WARN_ON(rdev->open_count);
4435         unset_regulator_supplies(rdev);
4436         list_del(&rdev->list);
4437         regulator_ena_gpio_free(rdev);
4438         mutex_unlock(&regulator_list_mutex);
4439         device_unregister(&rdev->dev);
4440 }
4441 EXPORT_SYMBOL_GPL(regulator_unregister);
4442
4443 #ifdef CONFIG_SUSPEND
4444 static int _regulator_suspend_late(struct device *dev, void *data)
4445 {
4446         struct regulator_dev *rdev = dev_to_rdev(dev);
4447         suspend_state_t *state = data;
4448         int ret;
4449
4450         regulator_lock(rdev);
4451         ret = suspend_set_state(rdev, *state);
4452         regulator_unlock(rdev);
4453
4454         return ret;
4455 }
4456
4457 /**
4458  * regulator_suspend_late - prepare regulators for system wide suspend
4459  * @state: system suspend state
4460  *
4461  * Configure each regulator with it's suspend operating parameters for state.
4462  */
4463 static int regulator_suspend_late(struct device *dev)
4464 {
4465         suspend_state_t state = pm_suspend_target_state;
4466
4467         return class_for_each_device(&regulator_class, NULL, &state,
4468                                      _regulator_suspend_late);
4469 }
4470
4471 static int _regulator_resume_early(struct device *dev, void *data)
4472 {
4473         int ret = 0;
4474         struct regulator_dev *rdev = dev_to_rdev(dev);
4475         suspend_state_t *state = data;
4476         struct regulator_state *rstate;
4477
4478         rstate = regulator_get_suspend_state(rdev, *state);
4479         if (rstate == NULL)
4480                 return 0;
4481
4482         regulator_lock(rdev);
4483
4484         if (rdev->desc->ops->resume_early &&
4485             (rstate->enabled == ENABLE_IN_SUSPEND ||
4486              rstate->enabled == DISABLE_IN_SUSPEND))
4487                 ret = rdev->desc->ops->resume_early(rdev);
4488
4489         regulator_unlock(rdev);
4490
4491         return ret;
4492 }
4493
4494 static int regulator_resume_early(struct device *dev)
4495 {
4496         suspend_state_t state = pm_suspend_target_state;
4497
4498         return class_for_each_device(&regulator_class, NULL, &state,
4499                                      _regulator_resume_early);
4500 }
4501
4502 #else /* !CONFIG_SUSPEND */
4503
4504 #define regulator_suspend_late  NULL
4505 #define regulator_resume_early  NULL
4506
4507 #endif /* !CONFIG_SUSPEND */
4508
4509 #ifdef CONFIG_PM
4510 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4511         .suspend_late   = regulator_suspend_late,
4512         .resume_early   = regulator_resume_early,
4513 };
4514 #endif
4515
4516 struct class regulator_class = {
4517         .name = "regulator",
4518         .dev_release = regulator_dev_release,
4519         .dev_groups = regulator_dev_groups,
4520 #ifdef CONFIG_PM
4521         .pm = &regulator_pm_ops,
4522 #endif
4523 };
4524 /**
4525  * regulator_has_full_constraints - the system has fully specified constraints
4526  *
4527  * Calling this function will cause the regulator API to disable all
4528  * regulators which have a zero use count and don't have an always_on
4529  * constraint in a late_initcall.
4530  *
4531  * The intention is that this will become the default behaviour in a
4532  * future kernel release so users are encouraged to use this facility
4533  * now.
4534  */
4535 void regulator_has_full_constraints(void)
4536 {
4537         has_full_constraints = 1;
4538 }
4539 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4540
4541 /**
4542  * rdev_get_drvdata - get rdev regulator driver data
4543  * @rdev: regulator
4544  *
4545  * Get rdev regulator driver private data. This call can be used in the
4546  * regulator driver context.
4547  */
4548 void *rdev_get_drvdata(struct regulator_dev *rdev)
4549 {
4550         return rdev->reg_data;
4551 }
4552 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4553
4554 /**
4555  * regulator_get_drvdata - get regulator driver data
4556  * @regulator: regulator
4557  *
4558  * Get regulator driver private data. This call can be used in the consumer
4559  * driver context when non API regulator specific functions need to be called.
4560  */
4561 void *regulator_get_drvdata(struct regulator *regulator)
4562 {
4563         return regulator->rdev->reg_data;
4564 }
4565 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4566
4567 /**
4568  * regulator_set_drvdata - set regulator driver data
4569  * @regulator: regulator
4570  * @data: data
4571  */
4572 void regulator_set_drvdata(struct regulator *regulator, void *data)
4573 {
4574         regulator->rdev->reg_data = data;
4575 }
4576 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4577
4578 /**
4579  * regulator_get_id - get regulator ID
4580  * @rdev: regulator
4581  */
4582 int rdev_get_id(struct regulator_dev *rdev)
4583 {
4584         return rdev->desc->id;
4585 }
4586 EXPORT_SYMBOL_GPL(rdev_get_id);
4587
4588 struct device *rdev_get_dev(struct regulator_dev *rdev)
4589 {
4590         return &rdev->dev;
4591 }
4592 EXPORT_SYMBOL_GPL(rdev_get_dev);
4593
4594 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4595 {
4596         return reg_init_data->driver_data;
4597 }
4598 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4599
4600 #ifdef CONFIG_DEBUG_FS
4601 static int supply_map_show(struct seq_file *sf, void *data)
4602 {
4603         struct regulator_map *map;
4604
4605         list_for_each_entry(map, &regulator_map_list, list) {
4606                 seq_printf(sf, "%s -> %s.%s\n",
4607                                 rdev_get_name(map->regulator), map->dev_name,
4608                                 map->supply);
4609         }
4610
4611         return 0;
4612 }
4613
4614 static int supply_map_open(struct inode *inode, struct file *file)
4615 {
4616         return single_open(file, supply_map_show, inode->i_private);
4617 }
4618 #endif
4619
4620 static const struct file_operations supply_map_fops = {
4621 #ifdef CONFIG_DEBUG_FS
4622         .open = supply_map_open,
4623         .read = seq_read,
4624         .llseek = seq_lseek,
4625         .release = single_release,
4626 #endif
4627 };
4628
4629 #ifdef CONFIG_DEBUG_FS
4630 struct summary_data {
4631         struct seq_file *s;
4632         struct regulator_dev *parent;
4633         int level;
4634 };
4635
4636 static void regulator_summary_show_subtree(struct seq_file *s,
4637                                            struct regulator_dev *rdev,
4638                                            int level);
4639
4640 static int regulator_summary_show_children(struct device *dev, void *data)
4641 {
4642         struct regulator_dev *rdev = dev_to_rdev(dev);
4643         struct summary_data *summary_data = data;
4644
4645         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4646                 regulator_summary_show_subtree(summary_data->s, rdev,
4647                                                summary_data->level + 1);
4648
4649         return 0;
4650 }
4651
4652 static void regulator_summary_show_subtree(struct seq_file *s,
4653                                            struct regulator_dev *rdev,
4654                                            int level)
4655 {
4656         struct regulation_constraints *c;
4657         struct regulator *consumer;
4658         struct summary_data summary_data;
4659
4660         if (!rdev)
4661                 return;
4662
4663         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4664                    level * 3 + 1, "",
4665                    30 - level * 3, rdev_get_name(rdev),
4666                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4667
4668         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4669         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4670
4671         c = rdev->constraints;
4672         if (c) {
4673                 switch (rdev->desc->type) {
4674                 case REGULATOR_VOLTAGE:
4675                         seq_printf(s, "%5dmV %5dmV ",
4676                                    c->min_uV / 1000, c->max_uV / 1000);
4677                         break;
4678                 case REGULATOR_CURRENT:
4679                         seq_printf(s, "%5dmA %5dmA ",
4680                                    c->min_uA / 1000, c->max_uA / 1000);
4681                         break;
4682                 }
4683         }
4684
4685         seq_puts(s, "\n");
4686
4687         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4688                 if (consumer->dev && consumer->dev->class == &regulator_class)
4689                         continue;
4690
4691                 seq_printf(s, "%*s%-*s ",
4692                            (level + 1) * 3 + 1, "",
4693                            30 - (level + 1) * 3,
4694                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4695
4696                 switch (rdev->desc->type) {
4697                 case REGULATOR_VOLTAGE:
4698                         seq_printf(s, "%37dmV %5dmV",
4699                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4700                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4701                         break;
4702                 case REGULATOR_CURRENT:
4703                         break;
4704                 }
4705
4706                 seq_puts(s, "\n");
4707         }
4708
4709         summary_data.s = s;
4710         summary_data.level = level;
4711         summary_data.parent = rdev;
4712
4713         class_for_each_device(&regulator_class, NULL, &summary_data,
4714                               regulator_summary_show_children);
4715 }
4716
4717 static int regulator_summary_show_roots(struct device *dev, void *data)
4718 {
4719         struct regulator_dev *rdev = dev_to_rdev(dev);
4720         struct seq_file *s = data;
4721
4722         if (!rdev->supply)
4723                 regulator_summary_show_subtree(s, rdev, 0);
4724
4725         return 0;
4726 }
4727
4728 static int regulator_summary_show(struct seq_file *s, void *data)
4729 {
4730         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4731         seq_puts(s, "-------------------------------------------------------------------------------\n");
4732
4733         class_for_each_device(&regulator_class, NULL, s,
4734                               regulator_summary_show_roots);
4735
4736         return 0;
4737 }
4738
4739 static int regulator_summary_open(struct inode *inode, struct file *file)
4740 {
4741         return single_open(file, regulator_summary_show, inode->i_private);
4742 }
4743 #endif
4744
4745 static const struct file_operations regulator_summary_fops = {
4746 #ifdef CONFIG_DEBUG_FS
4747         .open           = regulator_summary_open,
4748         .read           = seq_read,
4749         .llseek         = seq_lseek,
4750         .release        = single_release,
4751 #endif
4752 };
4753
4754 static int __init regulator_init(void)
4755 {
4756         int ret;
4757
4758         ret = class_register(&regulator_class);
4759
4760         debugfs_root = debugfs_create_dir("regulator", NULL);
4761         if (!debugfs_root)
4762                 pr_warn("regulator: Failed to create debugfs directory\n");
4763
4764         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4765                             &supply_map_fops);
4766
4767         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4768                             NULL, &regulator_summary_fops);
4769
4770         regulator_dummy_init();
4771
4772         return ret;
4773 }
4774
4775 /* init early to allow our consumers to complete system booting */
4776 core_initcall(regulator_init);
4777
4778 static int __init regulator_late_cleanup(struct device *dev, void *data)
4779 {
4780         struct regulator_dev *rdev = dev_to_rdev(dev);
4781         const struct regulator_ops *ops = rdev->desc->ops;
4782         struct regulation_constraints *c = rdev->constraints;
4783         int enabled, ret;
4784
4785         if (c && c->always_on)
4786                 return 0;
4787
4788         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4789                 return 0;
4790
4791         regulator_lock(rdev);
4792
4793         if (rdev->use_count)
4794                 goto unlock;
4795
4796         /* If we can't read the status assume it's on. */
4797         if (ops->is_enabled)
4798                 enabled = ops->is_enabled(rdev);
4799         else
4800                 enabled = 1;
4801
4802         if (!enabled)
4803                 goto unlock;
4804
4805         if (have_full_constraints()) {
4806                 /* We log since this may kill the system if it goes
4807                  * wrong. */
4808                 rdev_info(rdev, "disabling\n");
4809                 ret = _regulator_do_disable(rdev);
4810                 if (ret != 0)
4811                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4812         } else {
4813                 /* The intention is that in future we will
4814                  * assume that full constraints are provided
4815                  * so warn even if we aren't going to do
4816                  * anything here.
4817                  */
4818                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4819         }
4820
4821 unlock:
4822         regulator_unlock(rdev);
4823
4824         return 0;
4825 }
4826
4827 static int __init regulator_init_complete(void)
4828 {
4829         /*
4830          * Since DT doesn't provide an idiomatic mechanism for
4831          * enabling full constraints and since it's much more natural
4832          * with DT to provide them just assume that a DT enabled
4833          * system has full constraints.
4834          */
4835         if (of_have_populated_dt())
4836                 has_full_constraints = true;
4837
4838         /*
4839          * Regulators may had failed to resolve their input supplies
4840          * when were registered, either because the input supply was
4841          * not registered yet or because its parent device was not
4842          * bound yet. So attempt to resolve the input supplies for
4843          * pending regulators before trying to disable unused ones.
4844          */
4845         class_for_each_device(&regulator_class, NULL, NULL,
4846                               regulator_register_resolve_supply);
4847
4848         /* If we have a full configuration then disable any regulators
4849          * we have permission to change the status for and which are
4850          * not in use or always_on.  This is effectively the default
4851          * for DT and ACPI as they have full constraints.
4852          */
4853         class_for_each_device(&regulator_class, NULL, NULL,
4854                               regulator_late_cleanup);
4855
4856         class_for_each_device(&regulator_class, NULL, NULL,
4857                               regulator_register_fill_coupling_array);
4858
4859         return 0;
4860 }
4861 late_initcall_sync(regulator_init_complete);