Merge tag 'input-for-v6.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / drivers / pwm / pwm-sprd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Spreadtrum Communications Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/math64.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14
15 #define SPRD_PWM_PRESCALE       0x0
16 #define SPRD_PWM_MOD            0x4
17 #define SPRD_PWM_DUTY           0x8
18 #define SPRD_PWM_ENABLE         0x18
19
20 #define SPRD_PWM_MOD_MAX        GENMASK(7, 0)
21 #define SPRD_PWM_DUTY_MSK       GENMASK(15, 0)
22 #define SPRD_PWM_PRESCALE_MSK   GENMASK(7, 0)
23 #define SPRD_PWM_ENABLE_BIT     BIT(0)
24
25 #define SPRD_PWM_CHN_NUM        4
26 #define SPRD_PWM_REGS_SHIFT     5
27 #define SPRD_PWM_CHN_CLKS_NUM   2
28 #define SPRD_PWM_CHN_OUTPUT_CLK 1
29
30 struct sprd_pwm_chn {
31         struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
32         u32 clk_rate;
33 };
34
35 struct sprd_pwm_chip {
36         void __iomem *base;
37         struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
38 };
39
40 static inline struct sprd_pwm_chip* sprd_pwm_from_chip(struct pwm_chip *chip)
41 {
42         return pwmchip_get_drvdata(chip);
43 }
44
45 /*
46  * The list of clocks required by PWM channels, and each channel has 2 clocks:
47  * enable clock and pwm clock.
48  */
49 static const char * const sprd_pwm_clks[] = {
50         "enable0", "pwm0",
51         "enable1", "pwm1",
52         "enable2", "pwm2",
53         "enable3", "pwm3",
54 };
55
56 static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
57 {
58         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
59
60         return readl_relaxed(spc->base + offset);
61 }
62
63 static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
64                            u32 reg, u32 val)
65 {
66         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
67
68         writel_relaxed(val, spc->base + offset);
69 }
70
71 static int sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
72                               struct pwm_state *state)
73 {
74         struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
75         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
76         u32 val, duty, prescale;
77         u64 tmp;
78         int ret;
79
80         /*
81          * The clocks to PWM channel has to be enabled first before
82          * reading to the registers.
83          */
84         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
85         if (ret) {
86                 dev_err(pwmchip_parent(chip), "failed to enable pwm%u clocks\n",
87                         pwm->hwpwm);
88                 return ret;
89         }
90
91         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
92         if (val & SPRD_PWM_ENABLE_BIT)
93                 state->enabled = true;
94         else
95                 state->enabled = false;
96
97         /*
98          * The hardware provides a counter that is feed by the source clock.
99          * The period length is (PRESCALE + 1) * MOD counter steps.
100          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
101          * Thus the period_ns and duty_ns calculation formula should be:
102          * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
103          * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
104          */
105         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
106         prescale = val & SPRD_PWM_PRESCALE_MSK;
107         tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
108         state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
109
110         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
111         duty = val & SPRD_PWM_DUTY_MSK;
112         tmp = (prescale + 1) * NSEC_PER_SEC * duty;
113         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
114         state->polarity = PWM_POLARITY_NORMAL;
115
116         /* Disable PWM clocks if the PWM channel is not in enable state. */
117         if (!state->enabled)
118                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
119
120         return 0;
121 }
122
123 static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
124                            int duty_ns, int period_ns)
125 {
126         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
127         u32 prescale, duty;
128         u64 tmp;
129
130         /*
131          * The hardware provides a counter that is feed by the source clock.
132          * The period length is (PRESCALE + 1) * MOD counter steps.
133          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
134          *
135          * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
136          * The value for PRESCALE is selected such that the resulting period
137          * gets the maximal length not bigger than the requested one with the
138          * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
139          */
140         duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
141
142         tmp = (u64)chn->clk_rate * period_ns;
143         do_div(tmp, NSEC_PER_SEC);
144         prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
145         if (prescale > SPRD_PWM_PRESCALE_MSK)
146                 prescale = SPRD_PWM_PRESCALE_MSK;
147
148         /*
149          * Note: Writing DUTY triggers the hardware to actually apply the
150          * values written to MOD and DUTY to the output, so must keep writing
151          * DUTY last.
152          *
153          * The hardware can ensures that current running period is completed
154          * before changing a new configuration to avoid mixed settings.
155          */
156         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
157         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
158         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
159
160         return 0;
161 }
162
163 static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
164                           const struct pwm_state *state)
165 {
166         struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
167         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
168         struct pwm_state *cstate = &pwm->state;
169         int ret;
170
171         if (state->polarity != PWM_POLARITY_NORMAL)
172                 return -EINVAL;
173
174         if (state->enabled) {
175                 if (!cstate->enabled) {
176                         /*
177                          * The clocks to PWM channel has to be enabled first
178                          * before writing to the registers.
179                          */
180                         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
181                                                       chn->clks);
182                         if (ret) {
183                                 dev_err(pwmchip_parent(chip),
184                                         "failed to enable pwm%u clocks\n",
185                                         pwm->hwpwm);
186                                 return ret;
187                         }
188                 }
189
190                 ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
191                                       state->period);
192                 if (ret)
193                         return ret;
194
195                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
196         } else if (cstate->enabled) {
197                 /*
198                  * Note: After setting SPRD_PWM_ENABLE to zero, the controller
199                  * will not wait for current period to be completed, instead it
200                  * will stop the PWM channel immediately.
201                  */
202                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
203
204                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
205         }
206
207         return 0;
208 }
209
210 static const struct pwm_ops sprd_pwm_ops = {
211         .apply = sprd_pwm_apply,
212         .get_state = sprd_pwm_get_state,
213 };
214
215 static int sprd_pwm_clk_init(struct device *dev,
216                              struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM])
217 {
218         struct clk *clk_pwm;
219         int ret, i;
220
221         for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
222                 int j;
223
224                 for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
225                         chn[i].clks[j].id =
226                                 sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
227
228                 ret = devm_clk_bulk_get(dev, SPRD_PWM_CHN_CLKS_NUM,
229                                         chn[i].clks);
230                 if (ret) {
231                         if (ret == -ENOENT)
232                                 break;
233
234                         return dev_err_probe(dev, ret,
235                                              "failed to get channel clocks\n");
236                 }
237
238                 clk_pwm = chn[i].clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
239                 chn[i].clk_rate = clk_get_rate(clk_pwm);
240         }
241
242         if (!i)
243                 return dev_err_probe(dev, -ENODEV, "no available PWM channels\n");
244
245         return i;
246 }
247
248 static int sprd_pwm_probe(struct platform_device *pdev)
249 {
250         struct pwm_chip *chip;
251         struct sprd_pwm_chip *spc;
252         struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
253         int ret, npwm;
254
255         npwm = sprd_pwm_clk_init(&pdev->dev, chn);
256         if (npwm < 0)
257                 return npwm;
258
259         chip = devm_pwmchip_alloc(&pdev->dev, npwm, sizeof(*spc));
260         if (IS_ERR(chip))
261                 return PTR_ERR(chip);
262         spc = sprd_pwm_from_chip(chip);
263
264         spc->base = devm_platform_ioremap_resource(pdev, 0);
265         if (IS_ERR(spc->base))
266                 return PTR_ERR(spc->base);
267
268         memcpy(spc->chn, chn, sizeof(chn));
269
270         chip->ops = &sprd_pwm_ops;
271
272         ret = devm_pwmchip_add(&pdev->dev, chip);
273         if (ret)
274                 dev_err(&pdev->dev, "failed to add PWM chip\n");
275
276         return ret;
277 }
278
279 static const struct of_device_id sprd_pwm_of_match[] = {
280         { .compatible = "sprd,ums512-pwm", },
281         { },
282 };
283 MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
284
285 static struct platform_driver sprd_pwm_driver = {
286         .driver = {
287                 .name = "sprd-pwm",
288                 .of_match_table = sprd_pwm_of_match,
289         },
290         .probe = sprd_pwm_probe,
291 };
292
293 module_platform_driver(sprd_pwm_driver);
294
295 MODULE_DESCRIPTION("Spreadtrum PWM Driver");
296 MODULE_LICENSE("GPL v2");