Merge tag 'i3c/for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[linux-2.6-block.git] / drivers / powercap / dtpm_cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27
28 struct dtpm_cpu {
29         struct dtpm dtpm;
30         struct freq_qos_request qos_req;
31         int cpu;
32 };
33
34 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
35
36 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
37 {
38         return container_of(dtpm, struct dtpm_cpu, dtpm);
39 }
40
41 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
42 {
43         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
44         struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
45         struct em_perf_state *table;
46         struct cpumask cpus;
47         unsigned long freq;
48         u64 power;
49         int i, nr_cpus;
50
51         cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
52         nr_cpus = cpumask_weight(&cpus);
53
54         rcu_read_lock();
55         table = em_perf_state_from_pd(pd);
56         for (i = 0; i < pd->nr_perf_states; i++) {
57
58                 power = table[i].power * nr_cpus;
59
60                 if (power > power_limit)
61                         break;
62         }
63
64         freq = table[i - 1].frequency;
65         power_limit = table[i - 1].power * nr_cpus;
66         rcu_read_unlock();
67
68         freq_qos_update_request(&dtpm_cpu->qos_req, freq);
69
70         return power_limit;
71 }
72
73 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
74 {
75         unsigned long max, sum_util = 0;
76         int cpu;
77
78         /*
79          * The capacity is the same for all CPUs belonging to
80          * the same perf domain.
81          */
82         max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
83
84         for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
85                 sum_util += sched_cpu_util(cpu);
86
87         return (power * ((sum_util << 10) / max)) >> 10;
88 }
89
90 static u64 get_pd_power_uw(struct dtpm *dtpm)
91 {
92         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
93         struct em_perf_state *table;
94         struct em_perf_domain *pd;
95         struct cpumask *pd_mask;
96         unsigned long freq;
97         u64 power = 0;
98         int i;
99
100         pd = em_cpu_get(dtpm_cpu->cpu);
101
102         pd_mask = em_span_cpus(pd);
103
104         freq = cpufreq_quick_get(dtpm_cpu->cpu);
105
106         rcu_read_lock();
107         table = em_perf_state_from_pd(pd);
108         for (i = 0; i < pd->nr_perf_states; i++) {
109
110                 if (table[i].frequency < freq)
111                         continue;
112
113                 power = scale_pd_power_uw(pd_mask, table[i].power);
114                 break;
115         }
116         rcu_read_unlock();
117
118         return power;
119 }
120
121 static int update_pd_power_uw(struct dtpm *dtpm)
122 {
123         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
124         struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
125         struct em_perf_state *table;
126         struct cpumask cpus;
127         int nr_cpus;
128
129         cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
130         nr_cpus = cpumask_weight(&cpus);
131
132         rcu_read_lock();
133         table = em_perf_state_from_pd(em);
134
135         dtpm->power_min = table[0].power;
136         dtpm->power_min *= nr_cpus;
137
138         dtpm->power_max = table[em->nr_perf_states - 1].power;
139         dtpm->power_max *= nr_cpus;
140
141         rcu_read_unlock();
142
143         return 0;
144 }
145
146 static void pd_release(struct dtpm *dtpm)
147 {
148         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
149         struct cpufreq_policy *policy;
150
151         if (freq_qos_request_active(&dtpm_cpu->qos_req))
152                 freq_qos_remove_request(&dtpm_cpu->qos_req);
153
154         policy = cpufreq_cpu_get(dtpm_cpu->cpu);
155         if (policy) {
156                 for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
157                         per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
158
159                 cpufreq_cpu_put(policy);
160         }
161
162         kfree(dtpm_cpu);
163 }
164
165 static struct dtpm_ops dtpm_ops = {
166         .set_power_uw    = set_pd_power_limit,
167         .get_power_uw    = get_pd_power_uw,
168         .update_power_uw = update_pd_power_uw,
169         .release         = pd_release,
170 };
171
172 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
173 {
174         struct dtpm_cpu *dtpm_cpu;
175
176         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
177         if (dtpm_cpu)
178                 dtpm_update_power(&dtpm_cpu->dtpm);
179
180         return 0;
181 }
182
183 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
184 {
185         struct dtpm_cpu *dtpm_cpu;
186
187         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
188         if (dtpm_cpu)
189                 return dtpm_update_power(&dtpm_cpu->dtpm);
190
191         return 0;
192 }
193
194 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
195 {
196         struct dtpm_cpu *dtpm_cpu;
197         struct cpufreq_policy *policy;
198         struct em_perf_state *table;
199         struct em_perf_domain *pd;
200         char name[CPUFREQ_NAME_LEN];
201         int ret = -ENOMEM;
202
203         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
204         if (dtpm_cpu)
205                 return 0;
206
207         policy = cpufreq_cpu_get(cpu);
208         if (!policy)
209                 return 0;
210
211         pd = em_cpu_get(cpu);
212         if (!pd || em_is_artificial(pd)) {
213                 ret = -EINVAL;
214                 goto release_policy;
215         }
216
217         dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
218         if (!dtpm_cpu) {
219                 ret = -ENOMEM;
220                 goto release_policy;
221         }
222
223         dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
224         dtpm_cpu->cpu = cpu;
225
226         for_each_cpu(cpu, policy->related_cpus)
227                 per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
228
229         snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
230
231         ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
232         if (ret)
233                 goto out_kfree_dtpm_cpu;
234
235         rcu_read_lock();
236         table = em_perf_state_from_pd(pd);
237         ret = freq_qos_add_request(&policy->constraints,
238                                    &dtpm_cpu->qos_req, FREQ_QOS_MAX,
239                                    table[pd->nr_perf_states - 1].frequency);
240         rcu_read_unlock();
241         if (ret < 0)
242                 goto out_dtpm_unregister;
243
244         cpufreq_cpu_put(policy);
245         return 0;
246
247 out_dtpm_unregister:
248         dtpm_unregister(&dtpm_cpu->dtpm);
249         dtpm_cpu = NULL;
250
251 out_kfree_dtpm_cpu:
252         for_each_cpu(cpu, policy->related_cpus)
253                 per_cpu(dtpm_per_cpu, cpu) = NULL;
254         kfree(dtpm_cpu);
255
256 release_policy:
257         cpufreq_cpu_put(policy);
258         return ret;
259 }
260
261 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
262 {
263         int cpu;
264
265         cpu = of_cpu_node_to_id(np);
266         if (cpu < 0)
267                 return 0;
268
269         return __dtpm_cpu_setup(cpu, dtpm);
270 }
271
272 static int dtpm_cpu_init(void)
273 {
274         int ret;
275
276         /*
277          * The callbacks at CPU hotplug time are calling
278          * dtpm_update_power() which in turns calls update_pd_power().
279          *
280          * The function update_pd_power() uses the online mask to
281          * figure out the power consumption limits.
282          *
283          * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
284          * online mask when the cpuhp_dtpm_cpu_online function is
285          * called, but the CPU is still in the online mask for the
286          * tear down callback. So the power can not be updated when
287          * the CPU is unplugged.
288          *
289          * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
290          * above. The CPU online mask is not up to date when the CPU
291          * is plugged in.
292          *
293          * For this reason, we need to call the online and offline
294          * callbacks at different moments when the CPU online mask is
295          * consistent with the power numbers we want to update.
296          */
297         ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
298                                 NULL, cpuhp_dtpm_cpu_offline);
299         if (ret < 0)
300                 return ret;
301
302         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
303                                 cpuhp_dtpm_cpu_online, NULL);
304         if (ret < 0)
305                 return ret;
306
307         return 0;
308 }
309
310 static void dtpm_cpu_exit(void)
311 {
312         cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
313         cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
314 }
315
316 struct dtpm_subsys_ops dtpm_cpu_ops = {
317         .name = KBUILD_MODNAME,
318         .init = dtpm_cpu_init,
319         .exit = dtpm_cpu_exit,
320         .setup = dtpm_cpu_setup,
321 };