power: supply: ab8500: Standardize voltages
[linux-2.6-block.git] / drivers / power / supply / ab8500_fg.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson AB 2012
4  *
5  * Main and Back-up battery management driver.
6  *
7  * Note: Backup battery management is required in case of Li-Ion battery and not
8  * for capacitive battery. HREF boards have capacitive battery and hence backup
9  * battery management is not used and the supported code is available in this
10  * driver.
11  *
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/component.h>
21 #include <linux/device.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/power_supply.h>
25 #include <linux/kobject.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/time.h>
29 #include <linux/time64.h>
30 #include <linux/of.h>
31 #include <linux/completion.h>
32 #include <linux/mfd/core.h>
33 #include <linux/mfd/abx500.h>
34 #include <linux/mfd/abx500/ab8500.h>
35 #include <linux/iio/consumer.h>
36 #include <linux/kernel.h>
37 #include <linux/fixp-arith.h>
38
39 #include "ab8500-bm.h"
40
41 #define FG_LSB_IN_MA                    1627
42 #define QLSB_NANO_AMP_HOURS_X10         1071
43 #define INS_CURR_TIMEOUT                (3 * HZ)
44
45 #define SEC_TO_SAMPLE(S)                (S * 4)
46
47 #define NBR_AVG_SAMPLES                 20
48
49 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
50
51 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
52 #define BATT_OK_MIN                     2360 /* mV */
53 #define BATT_OK_INCREMENT               50 /* mV */
54 #define BATT_OK_MAX_NR_INCREMENTS       0xE
55
56 /* FG constants */
57 #define BATT_OVV                        0x01
58
59 /**
60  * struct ab8500_fg_interrupts - ab8500 fg interrupts
61  * @name:       name of the interrupt
62  * @isr         function pointer to the isr
63  */
64 struct ab8500_fg_interrupts {
65         char *name;
66         irqreturn_t (*isr)(int irq, void *data);
67 };
68
69 enum ab8500_fg_discharge_state {
70         AB8500_FG_DISCHARGE_INIT,
71         AB8500_FG_DISCHARGE_INITMEASURING,
72         AB8500_FG_DISCHARGE_INIT_RECOVERY,
73         AB8500_FG_DISCHARGE_RECOVERY,
74         AB8500_FG_DISCHARGE_READOUT_INIT,
75         AB8500_FG_DISCHARGE_READOUT,
76         AB8500_FG_DISCHARGE_WAKEUP,
77 };
78
79 static char *discharge_state[] = {
80         "DISCHARGE_INIT",
81         "DISCHARGE_INITMEASURING",
82         "DISCHARGE_INIT_RECOVERY",
83         "DISCHARGE_RECOVERY",
84         "DISCHARGE_READOUT_INIT",
85         "DISCHARGE_READOUT",
86         "DISCHARGE_WAKEUP",
87 };
88
89 enum ab8500_fg_charge_state {
90         AB8500_FG_CHARGE_INIT,
91         AB8500_FG_CHARGE_READOUT,
92 };
93
94 static char *charge_state[] = {
95         "CHARGE_INIT",
96         "CHARGE_READOUT",
97 };
98
99 enum ab8500_fg_calibration_state {
100         AB8500_FG_CALIB_INIT,
101         AB8500_FG_CALIB_WAIT,
102         AB8500_FG_CALIB_END,
103 };
104
105 struct ab8500_fg_avg_cap {
106         int avg;
107         int samples[NBR_AVG_SAMPLES];
108         time64_t time_stamps[NBR_AVG_SAMPLES];
109         int pos;
110         int nbr_samples;
111         int sum;
112 };
113
114 struct ab8500_fg_cap_scaling {
115         bool enable;
116         int cap_to_scale[2];
117         int disable_cap_level;
118         int scaled_cap;
119 };
120
121 struct ab8500_fg_battery_capacity {
122         int max_mah_design;
123         int max_mah;
124         int mah;
125         int permille;
126         int level;
127         int prev_mah;
128         int prev_percent;
129         int prev_level;
130         int user_mah;
131         struct ab8500_fg_cap_scaling cap_scale;
132 };
133
134 struct ab8500_fg_flags {
135         bool fg_enabled;
136         bool conv_done;
137         bool charging;
138         bool fully_charged;
139         bool force_full;
140         bool low_bat_delay;
141         bool low_bat;
142         bool bat_ovv;
143         bool batt_unknown;
144         bool calibrate;
145         bool user_cap;
146         bool batt_id_received;
147 };
148
149 struct inst_curr_result_list {
150         struct list_head list;
151         int *result;
152 };
153
154 /**
155  * struct ab8500_fg - ab8500 FG device information
156  * @dev:                Pointer to the structure device
157  * @node:               a list of AB8500 FGs, hence prepared for reentrance
158  * @irq                 holds the CCEOC interrupt number
159  * @vbat:               Battery voltage in mV
160  * @vbat_nom_uv:        Nominal battery voltage in uV
161  * @inst_curr:          Instantenous battery current in mA
162  * @avg_curr:           Average battery current in mA
163  * @bat_temp            battery temperature
164  * @fg_samples:         Number of samples used in the FG accumulation
165  * @accu_charge:        Accumulated charge from the last conversion
166  * @recovery_cnt:       Counter for recovery mode
167  * @high_curr_cnt:      Counter for high current mode
168  * @init_cnt:           Counter for init mode
169  * @low_bat_cnt         Counter for number of consecutive low battery measures
170  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
171  * @recovery_needed:    Indicate if recovery is needed
172  * @high_curr_mode:     Indicate if we're in high current mode
173  * @init_capacity:      Indicate if initial capacity measuring should be done
174  * @turn_off_fg:        True if fg was off before current measurement
175  * @calib_state         State during offset calibration
176  * @discharge_state:    Current discharge state
177  * @charge_state:       Current charge state
178  * @ab8500_fg_started   Completion struct used for the instant current start
179  * @ab8500_fg_complete  Completion struct used for the instant current reading
180  * @flags:              Structure for information about events triggered
181  * @bat_cap:            Structure for battery capacity specific parameters
182  * @avg_cap:            Average capacity filter
183  * @parent:             Pointer to the struct ab8500
184  * @main_bat_v:         ADC channel for the main battery voltage
185  * @bm:                 Platform specific battery management information
186  * @fg_psy:             Structure that holds the FG specific battery properties
187  * @fg_wq:              Work queue for running the FG algorithm
188  * @fg_periodic_work:   Work to run the FG algorithm periodically
189  * @fg_low_bat_work:    Work to check low bat condition
190  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
191  * @fg_work:            Work to run the FG algorithm instantly
192  * @fg_acc_cur_work:    Work to read the FG accumulator
193  * @fg_check_hw_failure_work:   Work for checking HW state
194  * @cc_lock:            Mutex for locking the CC
195  * @fg_kobject:         Structure of type kobject
196  */
197 struct ab8500_fg {
198         struct device *dev;
199         struct list_head node;
200         int irq;
201         int vbat;
202         int vbat_nom_uv;
203         int inst_curr;
204         int avg_curr;
205         int bat_temp;
206         int fg_samples;
207         int accu_charge;
208         int recovery_cnt;
209         int high_curr_cnt;
210         int init_cnt;
211         int low_bat_cnt;
212         int nbr_cceoc_irq_cnt;
213         bool recovery_needed;
214         bool high_curr_mode;
215         bool init_capacity;
216         bool turn_off_fg;
217         enum ab8500_fg_calibration_state calib_state;
218         enum ab8500_fg_discharge_state discharge_state;
219         enum ab8500_fg_charge_state charge_state;
220         struct completion ab8500_fg_started;
221         struct completion ab8500_fg_complete;
222         struct ab8500_fg_flags flags;
223         struct ab8500_fg_battery_capacity bat_cap;
224         struct ab8500_fg_avg_cap avg_cap;
225         struct ab8500 *parent;
226         struct iio_channel *main_bat_v;
227         struct ab8500_bm_data *bm;
228         struct power_supply *fg_psy;
229         struct workqueue_struct *fg_wq;
230         struct delayed_work fg_periodic_work;
231         struct delayed_work fg_low_bat_work;
232         struct delayed_work fg_reinit_work;
233         struct work_struct fg_work;
234         struct work_struct fg_acc_cur_work;
235         struct delayed_work fg_check_hw_failure_work;
236         struct mutex cc_lock;
237         struct kobject fg_kobject;
238 };
239 static LIST_HEAD(ab8500_fg_list);
240
241 /**
242  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
243  * (i.e. the first fuel gauge in the instance list)
244  */
245 struct ab8500_fg *ab8500_fg_get(void)
246 {
247         return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
248                                         node);
249 }
250
251 /* Main battery properties */
252 static enum power_supply_property ab8500_fg_props[] = {
253         POWER_SUPPLY_PROP_VOLTAGE_NOW,
254         POWER_SUPPLY_PROP_CURRENT_NOW,
255         POWER_SUPPLY_PROP_CURRENT_AVG,
256         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
257         POWER_SUPPLY_PROP_ENERGY_FULL,
258         POWER_SUPPLY_PROP_ENERGY_NOW,
259         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
260         POWER_SUPPLY_PROP_CHARGE_FULL,
261         POWER_SUPPLY_PROP_CHARGE_NOW,
262         POWER_SUPPLY_PROP_CAPACITY,
263         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
264 };
265
266 /*
267  * This array maps the raw hex value to lowbat voltage used by the AB8500
268  * Values taken from the UM0836
269  */
270 static int ab8500_fg_lowbat_voltage_map[] = {
271         2300 ,
272         2325 ,
273         2350 ,
274         2375 ,
275         2400 ,
276         2425 ,
277         2450 ,
278         2475 ,
279         2500 ,
280         2525 ,
281         2550 ,
282         2575 ,
283         2600 ,
284         2625 ,
285         2650 ,
286         2675 ,
287         2700 ,
288         2725 ,
289         2750 ,
290         2775 ,
291         2800 ,
292         2825 ,
293         2850 ,
294         2875 ,
295         2900 ,
296         2925 ,
297         2950 ,
298         2975 ,
299         3000 ,
300         3025 ,
301         3050 ,
302         3075 ,
303         3100 ,
304         3125 ,
305         3150 ,
306         3175 ,
307         3200 ,
308         3225 ,
309         3250 ,
310         3275 ,
311         3300 ,
312         3325 ,
313         3350 ,
314         3375 ,
315         3400 ,
316         3425 ,
317         3450 ,
318         3475 ,
319         3500 ,
320         3525 ,
321         3550 ,
322         3575 ,
323         3600 ,
324         3625 ,
325         3650 ,
326         3675 ,
327         3700 ,
328         3725 ,
329         3750 ,
330         3775 ,
331         3800 ,
332         3825 ,
333         3850 ,
334         3850 ,
335 };
336
337 static u8 ab8500_volt_to_regval(int voltage)
338 {
339         int i;
340
341         if (voltage < ab8500_fg_lowbat_voltage_map[0])
342                 return 0;
343
344         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
345                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
346                         return (u8) i - 1;
347         }
348
349         /* If not captured above, return index of last element */
350         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
351 }
352
353 /**
354  * ab8500_fg_is_low_curr() - Low or high current mode
355  * @di:         pointer to the ab8500_fg structure
356  * @curr:       the current to base or our decision on
357  *
358  * Low current mode if the current consumption is below a certain threshold
359  */
360 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
361 {
362         /*
363          * We want to know if we're in low current mode
364          */
365         if (curr > -di->bm->fg_params->high_curr_threshold)
366                 return true;
367         else
368                 return false;
369 }
370
371 /**
372  * ab8500_fg_add_cap_sample() - Add capacity to average filter
373  * @di:         pointer to the ab8500_fg structure
374  * @sample:     the capacity in mAh to add to the filter
375  *
376  * A capacity is added to the filter and a new mean capacity is calculated and
377  * returned
378  */
379 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
380 {
381         time64_t now = ktime_get_boottime_seconds();
382         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
383
384         do {
385                 avg->sum += sample - avg->samples[avg->pos];
386                 avg->samples[avg->pos] = sample;
387                 avg->time_stamps[avg->pos] = now;
388                 avg->pos++;
389
390                 if (avg->pos == NBR_AVG_SAMPLES)
391                         avg->pos = 0;
392
393                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
394                         avg->nbr_samples++;
395
396                 /*
397                  * Check the time stamp for each sample. If too old,
398                  * replace with latest sample
399                  */
400         } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
401
402         avg->avg = avg->sum / avg->nbr_samples;
403
404         return avg->avg;
405 }
406
407 /**
408  * ab8500_fg_clear_cap_samples() - Clear average filter
409  * @di:         pointer to the ab8500_fg structure
410  *
411  * The capacity filter is is reset to zero.
412  */
413 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
414 {
415         int i;
416         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
417
418         avg->pos = 0;
419         avg->nbr_samples = 0;
420         avg->sum = 0;
421         avg->avg = 0;
422
423         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
424                 avg->samples[i] = 0;
425                 avg->time_stamps[i] = 0;
426         }
427 }
428
429 /**
430  * ab8500_fg_fill_cap_sample() - Fill average filter
431  * @di:         pointer to the ab8500_fg structure
432  * @sample:     the capacity in mAh to fill the filter with
433  *
434  * The capacity filter is filled with a capacity in mAh
435  */
436 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
437 {
438         int i;
439         time64_t now;
440         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
441
442         now = ktime_get_boottime_seconds();
443
444         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
445                 avg->samples[i] = sample;
446                 avg->time_stamps[i] = now;
447         }
448
449         avg->pos = 0;
450         avg->nbr_samples = NBR_AVG_SAMPLES;
451         avg->sum = sample * NBR_AVG_SAMPLES;
452         avg->avg = sample;
453 }
454
455 /**
456  * ab8500_fg_coulomb_counter() - enable coulomb counter
457  * @di:         pointer to the ab8500_fg structure
458  * @enable:     enable/disable
459  *
460  * Enable/Disable coulomb counter.
461  * On failure returns negative value.
462  */
463 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
464 {
465         int ret = 0;
466         mutex_lock(&di->cc_lock);
467         if (enable) {
468                 /* To be able to reprogram the number of samples, we have to
469                  * first stop the CC and then enable it again */
470                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
471                         AB8500_RTC_CC_CONF_REG, 0x00);
472                 if (ret)
473                         goto cc_err;
474
475                 /* Program the samples */
476                 ret = abx500_set_register_interruptible(di->dev,
477                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
478                         di->fg_samples);
479                 if (ret)
480                         goto cc_err;
481
482                 /* Start the CC */
483                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
484                         AB8500_RTC_CC_CONF_REG,
485                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
486                 if (ret)
487                         goto cc_err;
488
489                 di->flags.fg_enabled = true;
490         } else {
491                 /* Clear any pending read requests */
492                 ret = abx500_mask_and_set_register_interruptible(di->dev,
493                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
494                         (RESET_ACCU | READ_REQ), 0);
495                 if (ret)
496                         goto cc_err;
497
498                 ret = abx500_set_register_interruptible(di->dev,
499                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
500                 if (ret)
501                         goto cc_err;
502
503                 /* Stop the CC */
504                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
505                         AB8500_RTC_CC_CONF_REG, 0);
506                 if (ret)
507                         goto cc_err;
508
509                 di->flags.fg_enabled = false;
510
511         }
512         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
513                 enable, di->fg_samples);
514
515         mutex_unlock(&di->cc_lock);
516
517         return ret;
518 cc_err:
519         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
520         mutex_unlock(&di->cc_lock);
521         return ret;
522 }
523
524 /**
525  * ab8500_fg_inst_curr_start() - start battery instantaneous current
526  * @di:         pointer to the ab8500_fg structure
527  *
528  * Returns 0 or error code
529  * Note: This is part "one" and has to be called before
530  * ab8500_fg_inst_curr_finalize()
531  */
532 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
533 {
534         u8 reg_val;
535         int ret;
536
537         mutex_lock(&di->cc_lock);
538
539         di->nbr_cceoc_irq_cnt = 0;
540         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
541                 AB8500_RTC_CC_CONF_REG, &reg_val);
542         if (ret < 0)
543                 goto fail;
544
545         if (!(reg_val & CC_PWR_UP_ENA)) {
546                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
547                 di->turn_off_fg = true;
548
549                 /* Program the samples */
550                 ret = abx500_set_register_interruptible(di->dev,
551                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
552                         SEC_TO_SAMPLE(10));
553                 if (ret)
554                         goto fail;
555
556                 /* Start the CC */
557                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
558                         AB8500_RTC_CC_CONF_REG,
559                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
560                 if (ret)
561                         goto fail;
562         } else {
563                 di->turn_off_fg = false;
564         }
565
566         /* Return and WFI */
567         reinit_completion(&di->ab8500_fg_started);
568         reinit_completion(&di->ab8500_fg_complete);
569         enable_irq(di->irq);
570
571         /* Note: cc_lock is still locked */
572         return 0;
573 fail:
574         mutex_unlock(&di->cc_lock);
575         return ret;
576 }
577
578 /**
579  * ab8500_fg_inst_curr_started() - check if fg conversion has started
580  * @di:         pointer to the ab8500_fg structure
581  *
582  * Returns 1 if conversion started, 0 if still waiting
583  */
584 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
585 {
586         return completion_done(&di->ab8500_fg_started);
587 }
588
589 /**
590  * ab8500_fg_inst_curr_done() - check if fg conversion is done
591  * @di:         pointer to the ab8500_fg structure
592  *
593  * Returns 1 if conversion done, 0 if still waiting
594  */
595 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
596 {
597         return completion_done(&di->ab8500_fg_complete);
598 }
599
600 /**
601  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
602  * @di:         pointer to the ab8500_fg structure
603  * @res:        battery instantenous current(on success)
604  *
605  * Returns 0 or an error code
606  * Note: This is part "two" and has to be called at earliest 250 ms
607  * after ab8500_fg_inst_curr_start()
608  */
609 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
610 {
611         u8 low, high;
612         int val;
613         int ret;
614         unsigned long timeout;
615
616         if (!completion_done(&di->ab8500_fg_complete)) {
617                 timeout = wait_for_completion_timeout(
618                         &di->ab8500_fg_complete,
619                         INS_CURR_TIMEOUT);
620                 dev_dbg(di->dev, "Finalize time: %d ms\n",
621                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
622                 if (!timeout) {
623                         ret = -ETIME;
624                         disable_irq(di->irq);
625                         di->nbr_cceoc_irq_cnt = 0;
626                         dev_err(di->dev, "completion timed out [%d]\n",
627                                 __LINE__);
628                         goto fail;
629                 }
630         }
631
632         disable_irq(di->irq);
633         di->nbr_cceoc_irq_cnt = 0;
634
635         ret = abx500_mask_and_set_register_interruptible(di->dev,
636                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
637                         READ_REQ, READ_REQ);
638
639         /* 100uS between read request and read is needed */
640         usleep_range(100, 100);
641
642         /* Read CC Sample conversion value Low and high */
643         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
644                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
645         if (ret < 0)
646                 goto fail;
647
648         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
649                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
650         if (ret < 0)
651                 goto fail;
652
653         /*
654          * negative value for Discharging
655          * convert 2's complement into decimal
656          */
657         if (high & 0x10)
658                 val = (low | (high << 8) | 0xFFFFE000);
659         else
660                 val = (low | (high << 8));
661
662         /*
663          * Convert to unit value in mA
664          * Full scale input voltage is
665          * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
666          * Given a 250ms conversion cycle time the LSB corresponds
667          * to 107.1 nAh. Convert to current by dividing by the conversion
668          * time in hours (250ms = 1 / (3600 * 4)h)
669          * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
670          */
671         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
672                 (1000 * di->bm->fg_res);
673
674         if (di->turn_off_fg) {
675                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
676
677                 /* Clear any pending read requests */
678                 ret = abx500_set_register_interruptible(di->dev,
679                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
680                 if (ret)
681                         goto fail;
682
683                 /* Stop the CC */
684                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
685                         AB8500_RTC_CC_CONF_REG, 0);
686                 if (ret)
687                         goto fail;
688         }
689         mutex_unlock(&di->cc_lock);
690         (*res) = val;
691
692         return 0;
693 fail:
694         mutex_unlock(&di->cc_lock);
695         return ret;
696 }
697
698 /**
699  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
700  * @di:         pointer to the ab8500_fg structure
701  * @res:        battery instantenous current(on success)
702  *
703  * Returns 0 else error code
704  */
705 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
706 {
707         int ret;
708         unsigned long timeout;
709         int res = 0;
710
711         ret = ab8500_fg_inst_curr_start(di);
712         if (ret) {
713                 dev_err(di->dev, "Failed to initialize fg_inst\n");
714                 return 0;
715         }
716
717         /* Wait for CC to actually start */
718         if (!completion_done(&di->ab8500_fg_started)) {
719                 timeout = wait_for_completion_timeout(
720                         &di->ab8500_fg_started,
721                         INS_CURR_TIMEOUT);
722                 dev_dbg(di->dev, "Start time: %d ms\n",
723                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
724                 if (!timeout) {
725                         ret = -ETIME;
726                         dev_err(di->dev, "completion timed out [%d]\n",
727                                 __LINE__);
728                         goto fail;
729                 }
730         }
731
732         ret = ab8500_fg_inst_curr_finalize(di, &res);
733         if (ret) {
734                 dev_err(di->dev, "Failed to finalize fg_inst\n");
735                 return 0;
736         }
737
738         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
739         return res;
740 fail:
741         disable_irq(di->irq);
742         mutex_unlock(&di->cc_lock);
743         return ret;
744 }
745
746 /**
747  * ab8500_fg_acc_cur_work() - average battery current
748  * @work:       pointer to the work_struct structure
749  *
750  * Updated the average battery current obtained from the
751  * coulomb counter.
752  */
753 static void ab8500_fg_acc_cur_work(struct work_struct *work)
754 {
755         int val;
756         int ret;
757         u8 low, med, high;
758
759         struct ab8500_fg *di = container_of(work,
760                 struct ab8500_fg, fg_acc_cur_work);
761
762         mutex_lock(&di->cc_lock);
763         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
764                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
765         if (ret)
766                 goto exit;
767
768         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
769                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
770         if (ret < 0)
771                 goto exit;
772
773         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
775         if (ret < 0)
776                 goto exit;
777
778         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
780         if (ret < 0)
781                 goto exit;
782
783         /* Check for sign bit in case of negative value, 2's complement */
784         if (high & 0x10)
785                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
786         else
787                 val = (low | (med << 8) | (high << 16));
788
789         /*
790          * Convert to uAh
791          * Given a 250ms conversion cycle time the LSB corresponds
792          * to 112.9 nAh.
793          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
794          */
795         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
796                 (100 * di->bm->fg_res);
797
798         /*
799          * Convert to unit value in mA
800          * by dividing by the conversion
801          * time in hours (= samples / (3600 * 4)h)
802          * and multiply with 1000
803          */
804         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
805                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
806
807         di->flags.conv_done = true;
808
809         mutex_unlock(&di->cc_lock);
810
811         queue_work(di->fg_wq, &di->fg_work);
812
813         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
814                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
815         return;
816 exit:
817         dev_err(di->dev,
818                 "Failed to read or write gas gauge registers\n");
819         mutex_unlock(&di->cc_lock);
820         queue_work(di->fg_wq, &di->fg_work);
821 }
822
823 /**
824  * ab8500_fg_bat_voltage() - get battery voltage
825  * @di:         pointer to the ab8500_fg structure
826  *
827  * Returns battery voltage(on success) else error code
828  */
829 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
830 {
831         int vbat, ret;
832         static int prev;
833
834         ret = iio_read_channel_processed(di->main_bat_v, &vbat);
835         if (ret < 0) {
836                 dev_err(di->dev,
837                         "%s ADC conversion failed, using previous value\n",
838                         __func__);
839                 return prev;
840         }
841
842         prev = vbat;
843         return vbat;
844 }
845
846 /**
847  * ab8500_fg_volt_to_capacity() - Voltage based capacity
848  * @di:         pointer to the ab8500_fg structure
849  * @voltage:    The voltage to convert to a capacity
850  *
851  * Returns battery capacity in per mille based on voltage
852  */
853 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
854 {
855         int i, tbl_size;
856         const struct ab8500_v_to_cap *tbl;
857         int cap = 0;
858
859         tbl = di->bm->bat_type->v_to_cap_tbl;
860         tbl_size = di->bm->bat_type->n_v_cap_tbl_elements;
861
862         for (i = 0; i < tbl_size; ++i) {
863                 if (voltage > tbl[i].voltage)
864                         break;
865         }
866
867         if ((i > 0) && (i < tbl_size)) {
868                 cap = fixp_linear_interpolate(
869                         tbl[i].voltage,
870                         tbl[i].capacity * 10,
871                         tbl[i-1].voltage,
872                         tbl[i-1].capacity * 10,
873                         voltage);
874         } else if (i == 0) {
875                 cap = 1000;
876         } else {
877                 cap = 0;
878         }
879
880         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
881                 __func__, voltage, cap);
882
883         return cap;
884 }
885
886 /**
887  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
888  * @di:         pointer to the ab8500_fg structure
889  *
890  * Returns battery capacity based on battery voltage that is not compensated
891  * for the voltage drop due to the load
892  */
893 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
894 {
895         di->vbat = ab8500_fg_bat_voltage(di);
896         return ab8500_fg_volt_to_capacity(di, di->vbat);
897 }
898
899 /**
900  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
901  * @di:         pointer to the ab8500_fg structure
902  *
903  * Returns battery inner resistance added with the fuel gauge resistor value
904  * to get the total resistance in the whole link from gnd to bat+ node.
905  */
906 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
907 {
908         int i, tbl_size;
909         const struct batres_vs_temp *tbl;
910         int resist = 0;
911
912         tbl = di->bm->bat_type->batres_tbl;
913         tbl_size = di->bm->bat_type->n_batres_tbl_elements;
914
915         for (i = 0; i < tbl_size; ++i) {
916                 if (di->bat_temp / 10 > tbl[i].temp)
917                         break;
918         }
919
920         if ((i > 0) && (i < tbl_size)) {
921                 resist = fixp_linear_interpolate(
922                         tbl[i].temp,
923                         tbl[i].resist,
924                         tbl[i-1].temp,
925                         tbl[i-1].resist,
926                         di->bat_temp / 10);
927         } else if (i == 0) {
928                 resist = tbl[0].resist;
929         } else {
930                 resist = tbl[tbl_size - 1].resist;
931         }
932
933         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
934             " fg resistance %d, total: %d (mOhm)\n",
935                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
936                 (di->bm->fg_res / 10) + resist);
937
938         /* fg_res variable is in 0.1mOhm */
939         resist += di->bm->fg_res / 10;
940
941         return resist;
942 }
943
944 /**
945  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
946  * @di:         pointer to the ab8500_fg structure
947  *
948  * Returns battery capacity based on battery voltage that is load compensated
949  * for the voltage drop
950  */
951 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
952 {
953         int vbat_comp, res;
954         int i = 0;
955         int vbat = 0;
956
957         ab8500_fg_inst_curr_start(di);
958
959         do {
960                 vbat += ab8500_fg_bat_voltage(di);
961                 i++;
962                 usleep_range(5000, 6000);
963         } while (!ab8500_fg_inst_curr_done(di));
964
965         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
966
967         di->vbat = vbat / i;
968         res = ab8500_fg_battery_resistance(di);
969
970         /* Use Ohms law to get the load compensated voltage */
971         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
972
973         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
974                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
975                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
976
977         return ab8500_fg_volt_to_capacity(di, vbat_comp);
978 }
979
980 /**
981  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
982  * @di:         pointer to the ab8500_fg structure
983  * @cap_mah:    capacity in mAh
984  *
985  * Converts capacity in mAh to capacity in permille
986  */
987 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
988 {
989         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
990 }
991
992 /**
993  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
994  * @di:         pointer to the ab8500_fg structure
995  * @cap_pm:     capacity in permille
996  *
997  * Converts capacity in permille to capacity in mAh
998  */
999 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1000 {
1001         return cap_pm * di->bat_cap.max_mah_design / 1000;
1002 }
1003
1004 /**
1005  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1006  * @di:         pointer to the ab8500_fg structure
1007  * @cap_mah:    capacity in mAh
1008  *
1009  * Converts capacity in mAh to capacity in uWh
1010  */
1011 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1012 {
1013         u64 div_res;
1014         u32 div_rem;
1015
1016         /*
1017          * Capacity is in milli ampere hours (10^-3)Ah
1018          * Nominal voltage is in microvolts (10^-6)V
1019          * divide by 1000000 after multiplication to get to mWh
1020          */
1021         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv);
1022         div_rem = do_div(div_res, 1000000);
1023
1024         /* Make sure to round upwards if necessary */
1025         if (div_rem >= 1000000 / 2)
1026                 div_res++;
1027
1028         return (int) div_res;
1029 }
1030
1031 /**
1032  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1033  * @di:         pointer to the ab8500_fg structure
1034  *
1035  * Return the capacity in mAh based on previous calculated capcity and the FG
1036  * accumulator register value. The filter is filled with this capacity
1037  */
1038 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1039 {
1040         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1041                 __func__,
1042                 di->bat_cap.mah,
1043                 di->accu_charge);
1044
1045         /* Capacity should not be less than 0 */
1046         if (di->bat_cap.mah + di->accu_charge > 0)
1047                 di->bat_cap.mah += di->accu_charge;
1048         else
1049                 di->bat_cap.mah = 0;
1050         /*
1051          * We force capacity to 100% once when the algorithm
1052          * reports that it's full.
1053          */
1054         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1055                 di->flags.force_full) {
1056                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1057         }
1058
1059         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1060         di->bat_cap.permille =
1061                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1062
1063         /* We need to update battery voltage and inst current when charging */
1064         di->vbat = ab8500_fg_bat_voltage(di);
1065         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1066
1067         return di->bat_cap.mah;
1068 }
1069
1070 /**
1071  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1072  * @di:         pointer to the ab8500_fg structure
1073  * @comp:       if voltage should be load compensated before capacity calc
1074  *
1075  * Return the capacity in mAh based on the battery voltage. The voltage can
1076  * either be load compensated or not. This value is added to the filter and a
1077  * new mean value is calculated and returned.
1078  */
1079 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1080 {
1081         int permille, mah;
1082
1083         if (comp)
1084                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1085         else
1086                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1087
1088         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1089
1090         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1091         di->bat_cap.permille =
1092                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1093
1094         return di->bat_cap.mah;
1095 }
1096
1097 /**
1098  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1099  * @di:         pointer to the ab8500_fg structure
1100  *
1101  * Return the capacity in mAh based on previous calculated capcity and the FG
1102  * accumulator register value. This value is added to the filter and a
1103  * new mean value is calculated and returned.
1104  */
1105 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1106 {
1107         int permille_volt, permille;
1108
1109         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1110                 __func__,
1111                 di->bat_cap.mah,
1112                 di->accu_charge);
1113
1114         /* Capacity should not be less than 0 */
1115         if (di->bat_cap.mah + di->accu_charge > 0)
1116                 di->bat_cap.mah += di->accu_charge;
1117         else
1118                 di->bat_cap.mah = 0;
1119
1120         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1121                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1122
1123         /*
1124          * Check against voltage based capacity. It can not be lower
1125          * than what the uncompensated voltage says
1126          */
1127         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1128         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1129
1130         if (permille < permille_volt) {
1131                 di->bat_cap.permille = permille_volt;
1132                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1133                         di->bat_cap.permille);
1134
1135                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1136                         __func__,
1137                         permille,
1138                         permille_volt);
1139
1140                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1141         } else {
1142                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1143                 di->bat_cap.permille =
1144                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1145         }
1146
1147         return di->bat_cap.mah;
1148 }
1149
1150 /**
1151  * ab8500_fg_capacity_level() - Get the battery capacity level
1152  * @di:         pointer to the ab8500_fg structure
1153  *
1154  * Get the battery capacity level based on the capacity in percent
1155  */
1156 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1157 {
1158         int ret, percent;
1159
1160         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1161
1162         if (percent <= di->bm->cap_levels->critical ||
1163                 di->flags.low_bat)
1164                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1165         else if (percent <= di->bm->cap_levels->low)
1166                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1167         else if (percent <= di->bm->cap_levels->normal)
1168                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1169         else if (percent <= di->bm->cap_levels->high)
1170                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1171         else
1172                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1173
1174         return ret;
1175 }
1176
1177 /**
1178  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1179  * @di:         pointer to the ab8500_fg structure
1180  *
1181  * Calculates the capacity to be shown to upper layers. Scales the capacity
1182  * to have 100% as a reference from the actual capacity upon removal of charger
1183  * when charging is in maintenance mode.
1184  */
1185 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1186 {
1187         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1188         int capacity = di->bat_cap.prev_percent;
1189
1190         if (!cs->enable)
1191                 return capacity;
1192
1193         /*
1194          * As long as we are in fully charge mode scale the capacity
1195          * to show 100%.
1196          */
1197         if (di->flags.fully_charged) {
1198                 cs->cap_to_scale[0] = 100;
1199                 cs->cap_to_scale[1] =
1200                         max(capacity, di->bm->fg_params->maint_thres);
1201                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1202                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1203         }
1204
1205         /* Calculates the scaled capacity. */
1206         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1207                                         && (cs->cap_to_scale[1] > 0))
1208                 capacity = min(100,
1209                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1210                                                  cs->cap_to_scale[0],
1211                                                  cs->cap_to_scale[1]));
1212
1213         if (di->flags.charging) {
1214                 if (capacity < cs->disable_cap_level) {
1215                         cs->disable_cap_level = capacity;
1216                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1217                                 cs->disable_cap_level);
1218                 } else if (!di->flags.fully_charged) {
1219                         if (di->bat_cap.prev_percent >=
1220                             cs->disable_cap_level) {
1221                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1222                                 cs->enable = false;
1223                                 capacity = di->bat_cap.prev_percent;
1224                         } else {
1225                                 dev_dbg(di->dev,
1226                                         "Waiting in cap to level %d%%\n",
1227                                         cs->disable_cap_level);
1228                                 capacity = cs->disable_cap_level;
1229                         }
1230                 }
1231         }
1232
1233         return capacity;
1234 }
1235
1236 /**
1237  * ab8500_fg_update_cap_scalers() - Capacity scaling
1238  * @di:         pointer to the ab8500_fg structure
1239  *
1240  * To be called when state change from charge<->discharge to update
1241  * the capacity scalers.
1242  */
1243 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1244 {
1245         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1246
1247         if (!cs->enable)
1248                 return;
1249         if (di->flags.charging) {
1250                 di->bat_cap.cap_scale.disable_cap_level =
1251                         di->bat_cap.cap_scale.scaled_cap;
1252                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1253                                 di->bat_cap.cap_scale.disable_cap_level);
1254         } else {
1255                 if (cs->scaled_cap != 100) {
1256                         cs->cap_to_scale[0] = cs->scaled_cap;
1257                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1258                 } else {
1259                         cs->cap_to_scale[0] = 100;
1260                         cs->cap_to_scale[1] =
1261                                 max(di->bat_cap.prev_percent,
1262                                     di->bm->fg_params->maint_thres);
1263                 }
1264
1265                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1266                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1267         }
1268 }
1269
1270 /**
1271  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1272  * @di:         pointer to the ab8500_fg structure
1273  * @init:       capacity is allowed to go up in init mode
1274  *
1275  * Check if capacity or capacity limit has changed and notify the system
1276  * about it using the power_supply framework
1277  */
1278 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1279 {
1280         bool changed = false;
1281         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1282
1283         di->bat_cap.level = ab8500_fg_capacity_level(di);
1284
1285         if (di->bat_cap.level != di->bat_cap.prev_level) {
1286                 /*
1287                  * We do not allow reported capacity level to go up
1288                  * unless we're charging or if we're in init
1289                  */
1290                 if (!(!di->flags.charging && di->bat_cap.level >
1291                         di->bat_cap.prev_level) || init) {
1292                         dev_dbg(di->dev, "level changed from %d to %d\n",
1293                                 di->bat_cap.prev_level,
1294                                 di->bat_cap.level);
1295                         di->bat_cap.prev_level = di->bat_cap.level;
1296                         changed = true;
1297                 } else {
1298                         dev_dbg(di->dev, "level not allowed to go up "
1299                                 "since no charger is connected: %d to %d\n",
1300                                 di->bat_cap.prev_level,
1301                                 di->bat_cap.level);
1302                 }
1303         }
1304
1305         /*
1306          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1307          * shutdown
1308          */
1309         if (di->flags.low_bat) {
1310                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1311                 di->bat_cap.prev_percent = 0;
1312                 di->bat_cap.permille = 0;
1313                 percent = 0;
1314                 di->bat_cap.prev_mah = 0;
1315                 di->bat_cap.mah = 0;
1316                 changed = true;
1317         } else if (di->flags.fully_charged) {
1318                 /*
1319                  * We report 100% if algorithm reported fully charged
1320                  * and show 100% during maintenance charging (scaling).
1321                  */
1322                 if (di->flags.force_full) {
1323                         di->bat_cap.prev_percent = percent;
1324                         di->bat_cap.prev_mah = di->bat_cap.mah;
1325
1326                         changed = true;
1327
1328                         if (!di->bat_cap.cap_scale.enable &&
1329                                                 di->bm->capacity_scaling) {
1330                                 di->bat_cap.cap_scale.enable = true;
1331                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1332                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1333                                                 di->bat_cap.prev_percent;
1334                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1335                         }
1336                 } else if (di->bat_cap.prev_percent != percent) {
1337                         dev_dbg(di->dev,
1338                                 "battery reported full "
1339                                 "but capacity dropping: %d\n",
1340                                 percent);
1341                         di->bat_cap.prev_percent = percent;
1342                         di->bat_cap.prev_mah = di->bat_cap.mah;
1343
1344                         changed = true;
1345                 }
1346         } else if (di->bat_cap.prev_percent != percent) {
1347                 if (percent == 0) {
1348                         /*
1349                          * We will not report 0% unless we've got
1350                          * the LOW_BAT IRQ, no matter what the FG
1351                          * algorithm says.
1352                          */
1353                         di->bat_cap.prev_percent = 1;
1354                         percent = 1;
1355
1356                         changed = true;
1357                 } else if (!(!di->flags.charging &&
1358                         percent > di->bat_cap.prev_percent) || init) {
1359                         /*
1360                          * We do not allow reported capacity to go up
1361                          * unless we're charging or if we're in init
1362                          */
1363                         dev_dbg(di->dev,
1364                                 "capacity changed from %d to %d (%d)\n",
1365                                 di->bat_cap.prev_percent,
1366                                 percent,
1367                                 di->bat_cap.permille);
1368                         di->bat_cap.prev_percent = percent;
1369                         di->bat_cap.prev_mah = di->bat_cap.mah;
1370
1371                         changed = true;
1372                 } else {
1373                         dev_dbg(di->dev, "capacity not allowed to go up since "
1374                                 "no charger is connected: %d to %d (%d)\n",
1375                                 di->bat_cap.prev_percent,
1376                                 percent,
1377                                 di->bat_cap.permille);
1378                 }
1379         }
1380
1381         if (changed) {
1382                 if (di->bm->capacity_scaling) {
1383                         di->bat_cap.cap_scale.scaled_cap =
1384                                 ab8500_fg_calculate_scaled_capacity(di);
1385
1386                         dev_info(di->dev, "capacity=%d (%d)\n",
1387                                 di->bat_cap.prev_percent,
1388                                 di->bat_cap.cap_scale.scaled_cap);
1389                 }
1390                 power_supply_changed(di->fg_psy);
1391                 if (di->flags.fully_charged && di->flags.force_full) {
1392                         dev_dbg(di->dev, "Battery full, notifying.\n");
1393                         di->flags.force_full = false;
1394                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1395                 }
1396                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1397         }
1398 }
1399
1400 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1401         enum ab8500_fg_charge_state new_state)
1402 {
1403         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1404                 di->charge_state,
1405                 charge_state[di->charge_state],
1406                 new_state,
1407                 charge_state[new_state]);
1408
1409         di->charge_state = new_state;
1410 }
1411
1412 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1413         enum ab8500_fg_discharge_state new_state)
1414 {
1415         dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1416                 di->discharge_state,
1417                 discharge_state[di->discharge_state],
1418                 new_state,
1419                 discharge_state[new_state]);
1420
1421         di->discharge_state = new_state;
1422 }
1423
1424 /**
1425  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1426  * @di:         pointer to the ab8500_fg structure
1427  *
1428  * Battery capacity calculation state machine for when we're charging
1429  */
1430 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1431 {
1432         /*
1433          * If we change to discharge mode
1434          * we should start with recovery
1435          */
1436         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1437                 ab8500_fg_discharge_state_to(di,
1438                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1439
1440         switch (di->charge_state) {
1441         case AB8500_FG_CHARGE_INIT:
1442                 di->fg_samples = SEC_TO_SAMPLE(
1443                         di->bm->fg_params->accu_charging);
1444
1445                 ab8500_fg_coulomb_counter(di, true);
1446                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1447
1448                 break;
1449
1450         case AB8500_FG_CHARGE_READOUT:
1451                 /*
1452                  * Read the FG and calculate the new capacity
1453                  */
1454                 mutex_lock(&di->cc_lock);
1455                 if (!di->flags.conv_done && !di->flags.force_full) {
1456                         /* Wasn't the CC IRQ that got us here */
1457                         mutex_unlock(&di->cc_lock);
1458                         dev_dbg(di->dev, "%s CC conv not done\n",
1459                                 __func__);
1460
1461                         break;
1462                 }
1463                 di->flags.conv_done = false;
1464                 mutex_unlock(&di->cc_lock);
1465
1466                 ab8500_fg_calc_cap_charging(di);
1467
1468                 break;
1469
1470         default:
1471                 break;
1472         }
1473
1474         /* Check capacity limits */
1475         ab8500_fg_check_capacity_limits(di, false);
1476 }
1477
1478 static void force_capacity(struct ab8500_fg *di)
1479 {
1480         int cap;
1481
1482         ab8500_fg_clear_cap_samples(di);
1483         cap = di->bat_cap.user_mah;
1484         if (cap > di->bat_cap.max_mah_design) {
1485                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1486                         " %d\n", cap, di->bat_cap.max_mah_design);
1487                 cap = di->bat_cap.max_mah_design;
1488         }
1489         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1490         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1491         di->bat_cap.mah = cap;
1492         ab8500_fg_check_capacity_limits(di, true);
1493 }
1494
1495 static bool check_sysfs_capacity(struct ab8500_fg *di)
1496 {
1497         int cap, lower, upper;
1498         int cap_permille;
1499
1500         cap = di->bat_cap.user_mah;
1501
1502         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1503                 di->bat_cap.user_mah);
1504
1505         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1506         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1507
1508         if (lower < 0)
1509                 lower = 0;
1510         /* 1000 is permille, -> 100 percent */
1511         if (upper > 1000)
1512                 upper = 1000;
1513
1514         dev_dbg(di->dev, "Capacity limits:"
1515                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1516                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1517
1518         /* If within limits, use the saved capacity and exit estimation...*/
1519         if (cap_permille > lower && cap_permille < upper) {
1520                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1521                 force_capacity(di);
1522                 return true;
1523         }
1524         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1525         return false;
1526 }
1527
1528 /**
1529  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1530  * @di:         pointer to the ab8500_fg structure
1531  *
1532  * Battery capacity calculation state machine for when we're discharging
1533  */
1534 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1535 {
1536         int sleep_time;
1537
1538         /* If we change to charge mode we should start with init */
1539         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1540                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1541
1542         switch (di->discharge_state) {
1543         case AB8500_FG_DISCHARGE_INIT:
1544                 /* We use the FG IRQ to work on */
1545                 di->init_cnt = 0;
1546                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1547                 ab8500_fg_coulomb_counter(di, true);
1548                 ab8500_fg_discharge_state_to(di,
1549                         AB8500_FG_DISCHARGE_INITMEASURING);
1550
1551                 fallthrough;
1552         case AB8500_FG_DISCHARGE_INITMEASURING:
1553                 /*
1554                  * Discard a number of samples during startup.
1555                  * After that, use compensated voltage for a few
1556                  * samples to get an initial capacity.
1557                  * Then go to READOUT
1558                  */
1559                 sleep_time = di->bm->fg_params->init_timer;
1560
1561                 /* Discard the first [x] seconds */
1562                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1563                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1564
1565                         ab8500_fg_check_capacity_limits(di, true);
1566                 }
1567
1568                 di->init_cnt += sleep_time;
1569                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1570                         ab8500_fg_discharge_state_to(di,
1571                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1572
1573                 break;
1574
1575         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1576                 di->recovery_cnt = 0;
1577                 di->recovery_needed = true;
1578                 ab8500_fg_discharge_state_to(di,
1579                         AB8500_FG_DISCHARGE_RECOVERY);
1580
1581                 fallthrough;
1582
1583         case AB8500_FG_DISCHARGE_RECOVERY:
1584                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1585
1586                 /*
1587                  * We should check the power consumption
1588                  * If low, go to READOUT (after x min) or
1589                  * RECOVERY_SLEEP if time left.
1590                  * If high, go to READOUT
1591                  */
1592                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1593
1594                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1595                         if (di->recovery_cnt >
1596                                 di->bm->fg_params->recovery_total_time) {
1597                                 di->fg_samples = SEC_TO_SAMPLE(
1598                                         di->bm->fg_params->accu_high_curr);
1599                                 ab8500_fg_coulomb_counter(di, true);
1600                                 ab8500_fg_discharge_state_to(di,
1601                                         AB8500_FG_DISCHARGE_READOUT);
1602                                 di->recovery_needed = false;
1603                         } else {
1604                                 queue_delayed_work(di->fg_wq,
1605                                         &di->fg_periodic_work,
1606                                         sleep_time * HZ);
1607                         }
1608                         di->recovery_cnt += sleep_time;
1609                 } else {
1610                         di->fg_samples = SEC_TO_SAMPLE(
1611                                 di->bm->fg_params->accu_high_curr);
1612                         ab8500_fg_coulomb_counter(di, true);
1613                         ab8500_fg_discharge_state_to(di,
1614                                 AB8500_FG_DISCHARGE_READOUT);
1615                 }
1616                 break;
1617
1618         case AB8500_FG_DISCHARGE_READOUT_INIT:
1619                 di->fg_samples = SEC_TO_SAMPLE(
1620                         di->bm->fg_params->accu_high_curr);
1621                 ab8500_fg_coulomb_counter(di, true);
1622                 ab8500_fg_discharge_state_to(di,
1623                                 AB8500_FG_DISCHARGE_READOUT);
1624                 break;
1625
1626         case AB8500_FG_DISCHARGE_READOUT:
1627                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1628
1629                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1630                         /* Detect mode change */
1631                         if (di->high_curr_mode) {
1632                                 di->high_curr_mode = false;
1633                                 di->high_curr_cnt = 0;
1634                         }
1635
1636                         if (di->recovery_needed) {
1637                                 ab8500_fg_discharge_state_to(di,
1638                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1639
1640                                 queue_delayed_work(di->fg_wq,
1641                                         &di->fg_periodic_work, 0);
1642
1643                                 break;
1644                         }
1645
1646                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1647                 } else {
1648                         mutex_lock(&di->cc_lock);
1649                         if (!di->flags.conv_done) {
1650                                 /* Wasn't the CC IRQ that got us here */
1651                                 mutex_unlock(&di->cc_lock);
1652                                 dev_dbg(di->dev, "%s CC conv not done\n",
1653                                         __func__);
1654
1655                                 break;
1656                         }
1657                         di->flags.conv_done = false;
1658                         mutex_unlock(&di->cc_lock);
1659
1660                         /* Detect mode change */
1661                         if (!di->high_curr_mode) {
1662                                 di->high_curr_mode = true;
1663                                 di->high_curr_cnt = 0;
1664                         }
1665
1666                         di->high_curr_cnt +=
1667                                 di->bm->fg_params->accu_high_curr;
1668                         if (di->high_curr_cnt >
1669                                 di->bm->fg_params->high_curr_time)
1670                                 di->recovery_needed = true;
1671
1672                         ab8500_fg_calc_cap_discharge_fg(di);
1673                 }
1674
1675                 ab8500_fg_check_capacity_limits(di, false);
1676
1677                 break;
1678
1679         case AB8500_FG_DISCHARGE_WAKEUP:
1680                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1681
1682                 di->fg_samples = SEC_TO_SAMPLE(
1683                         di->bm->fg_params->accu_high_curr);
1684                 ab8500_fg_coulomb_counter(di, true);
1685                 ab8500_fg_discharge_state_to(di,
1686                                 AB8500_FG_DISCHARGE_READOUT);
1687
1688                 ab8500_fg_check_capacity_limits(di, false);
1689
1690                 break;
1691
1692         default:
1693                 break;
1694         }
1695 }
1696
1697 /**
1698  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1699  * @di:         pointer to the ab8500_fg structure
1700  *
1701  */
1702 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1703 {
1704         int ret;
1705
1706         switch (di->calib_state) {
1707         case AB8500_FG_CALIB_INIT:
1708                 dev_dbg(di->dev, "Calibration ongoing...\n");
1709
1710                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1711                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1712                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1713                 if (ret < 0)
1714                         goto err;
1715
1716                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1717                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1718                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1719                 if (ret < 0)
1720                         goto err;
1721                 di->calib_state = AB8500_FG_CALIB_WAIT;
1722                 break;
1723         case AB8500_FG_CALIB_END:
1724                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1725                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1726                         CC_MUXOFFSET, CC_MUXOFFSET);
1727                 if (ret < 0)
1728                         goto err;
1729                 di->flags.calibrate = false;
1730                 dev_dbg(di->dev, "Calibration done...\n");
1731                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1732                 break;
1733         case AB8500_FG_CALIB_WAIT:
1734                 dev_dbg(di->dev, "Calibration WFI\n");
1735                 break;
1736         default:
1737                 break;
1738         }
1739         return;
1740 err:
1741         /* Something went wrong, don't calibrate then */
1742         dev_err(di->dev, "failed to calibrate the CC\n");
1743         di->flags.calibrate = false;
1744         di->calib_state = AB8500_FG_CALIB_INIT;
1745         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1746 }
1747
1748 /**
1749  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750  * @di:         pointer to the ab8500_fg structure
1751  *
1752  * Entry point for the battery capacity calculation state machine
1753  */
1754 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1755 {
1756         if (di->flags.calibrate)
1757                 ab8500_fg_algorithm_calibrate(di);
1758         else {
1759                 if (di->flags.charging)
1760                         ab8500_fg_algorithm_charging(di);
1761                 else
1762                         ab8500_fg_algorithm_discharging(di);
1763         }
1764
1765         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766                 "%d %d %d %d %d %d %d\n",
1767                 di->bat_cap.max_mah_design,
1768                 di->bat_cap.max_mah,
1769                 di->bat_cap.mah,
1770                 di->bat_cap.permille,
1771                 di->bat_cap.level,
1772                 di->bat_cap.prev_mah,
1773                 di->bat_cap.prev_percent,
1774                 di->bat_cap.prev_level,
1775                 di->vbat,
1776                 di->inst_curr,
1777                 di->avg_curr,
1778                 di->accu_charge,
1779                 di->flags.charging,
1780                 di->charge_state,
1781                 di->discharge_state,
1782                 di->high_curr_mode,
1783                 di->recovery_needed);
1784 }
1785
1786 /**
1787  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788  * @work:       pointer to the work_struct structure
1789  *
1790  * Work queue function for periodic work
1791  */
1792 static void ab8500_fg_periodic_work(struct work_struct *work)
1793 {
1794         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795                 fg_periodic_work.work);
1796
1797         if (di->init_capacity) {
1798                 /* Get an initial capacity calculation */
1799                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1800                 ab8500_fg_check_capacity_limits(di, true);
1801                 di->init_capacity = false;
1802
1803                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804         } else if (di->flags.user_cap) {
1805                 if (check_sysfs_capacity(di)) {
1806                         ab8500_fg_check_capacity_limits(di, true);
1807                         if (di->flags.charging)
1808                                 ab8500_fg_charge_state_to(di,
1809                                         AB8500_FG_CHARGE_INIT);
1810                         else
1811                                 ab8500_fg_discharge_state_to(di,
1812                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1813                 }
1814                 di->flags.user_cap = false;
1815                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816         } else
1817                 ab8500_fg_algorithm(di);
1818
1819 }
1820
1821 /**
1822  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823  * @work:       pointer to the work_struct structure
1824  *
1825  * Work queue function for checking the OVV_BAT condition
1826  */
1827 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1828 {
1829         int ret;
1830         u8 reg_value;
1831
1832         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833                 fg_check_hw_failure_work.work);
1834
1835         /*
1836          * If we have had a battery over-voltage situation,
1837          * check ovv-bit to see if it should be reset.
1838          */
1839         ret = abx500_get_register_interruptible(di->dev,
1840                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1841                 &reg_value);
1842         if (ret < 0) {
1843                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844                 return;
1845         }
1846         if ((reg_value & BATT_OVV) == BATT_OVV) {
1847                 if (!di->flags.bat_ovv) {
1848                         dev_dbg(di->dev, "Battery OVV\n");
1849                         di->flags.bat_ovv = true;
1850                         power_supply_changed(di->fg_psy);
1851                 }
1852                 /* Not yet recovered from ovv, reschedule this test */
1853                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854                                    HZ);
1855                 } else {
1856                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1857                         di->flags.bat_ovv = false;
1858                         power_supply_changed(di->fg_psy);
1859         }
1860 }
1861
1862 /**
1863  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864  * @work:       pointer to the work_struct structure
1865  *
1866  * Work queue function for checking the LOW_BAT condition
1867  */
1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1869 {
1870         int vbat;
1871
1872         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873                 fg_low_bat_work.work);
1874
1875         vbat = ab8500_fg_bat_voltage(di);
1876
1877         /* Check if LOW_BAT still fulfilled */
1878         if (vbat < di->bm->fg_params->lowbat_threshold) {
1879                 /* Is it time to shut down? */
1880                 if (di->low_bat_cnt < 1) {
1881                         di->flags.low_bat = true;
1882                         dev_warn(di->dev, "Shut down pending...\n");
1883                 } else {
1884                         /*
1885                         * Else we need to re-schedule this check to be able to detect
1886                         * if the voltage increases again during charging or
1887                         * due to decreasing load.
1888                         */
1889                         di->low_bat_cnt--;
1890                         dev_warn(di->dev, "Battery voltage still LOW\n");
1891                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1893                 }
1894         } else {
1895                 di->flags.low_bat_delay = false;
1896                 di->low_bat_cnt = 10;
1897                 dev_warn(di->dev, "Battery voltage OK again\n");
1898         }
1899
1900         /* This is needed to dispatch LOW_BAT */
1901         ab8500_fg_check_capacity_limits(di, false);
1902 }
1903
1904 /**
1905  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906  * to the target voltage.
1907  * @di:       pointer to the ab8500_fg structure
1908  * @target:   target voltage
1909  *
1910  * Returns bit pattern closest to the target voltage
1911  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1912  */
1913
1914 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1915 {
1916         if (target > BATT_OK_MIN +
1917                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918                 return BATT_OK_MAX_NR_INCREMENTS;
1919         if (target < BATT_OK_MIN)
1920                 return 0;
1921         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1922 }
1923
1924 /**
1925  * ab8500_fg_battok_init_hw_register - init battok levels
1926  * @di:       pointer to the ab8500_fg structure
1927  *
1928  */
1929
1930 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1931 {
1932         int selected;
1933         int sel0;
1934         int sel1;
1935         int cbp_sel0;
1936         int cbp_sel1;
1937         int ret;
1938         int new_val;
1939
1940         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1942
1943         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1945
1946         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1947
1948         if (selected != sel0)
1949                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950                         sel0, selected, cbp_sel0);
1951
1952         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1953
1954         if (selected != sel1)
1955                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956                         sel1, selected, cbp_sel1);
1957
1958         new_val = cbp_sel0 | (cbp_sel1 << 4);
1959
1960         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962                 AB8500_BATT_OK_REG, new_val);
1963         return ret;
1964 }
1965
1966 /**
1967  * ab8500_fg_instant_work() - Run the FG state machine instantly
1968  * @work:       pointer to the work_struct structure
1969  *
1970  * Work queue function for instant work
1971  */
1972 static void ab8500_fg_instant_work(struct work_struct *work)
1973 {
1974         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1975
1976         ab8500_fg_algorithm(di);
1977 }
1978
1979 /**
1980  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981  * @irq:       interrupt number
1982  * @_di:       pointer to the ab8500_fg structure
1983  *
1984  * Returns IRQ status(IRQ_HANDLED)
1985  */
1986 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1987 {
1988         struct ab8500_fg *di = _di;
1989         if (!di->nbr_cceoc_irq_cnt) {
1990                 di->nbr_cceoc_irq_cnt++;
1991                 complete(&di->ab8500_fg_started);
1992         } else {
1993                 di->nbr_cceoc_irq_cnt = 0;
1994                 complete(&di->ab8500_fg_complete);
1995         }
1996         return IRQ_HANDLED;
1997 }
1998
1999 /**
2000  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001  * @irq:       interrupt number
2002  * @_di:       pointer to the ab8500_fg structure
2003  *
2004  * Returns IRQ status(IRQ_HANDLED)
2005  */
2006 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2007 {
2008         struct ab8500_fg *di = _di;
2009         di->calib_state = AB8500_FG_CALIB_END;
2010         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011         return IRQ_HANDLED;
2012 }
2013
2014 /**
2015  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016  * @irq:       interrupt number
2017  * @_di:       pointer to the ab8500_fg structure
2018  *
2019  * Returns IRQ status(IRQ_HANDLED)
2020  */
2021 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2022 {
2023         struct ab8500_fg *di = _di;
2024
2025         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2026
2027         return IRQ_HANDLED;
2028 }
2029
2030 /**
2031  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032  * @irq:       interrupt number
2033  * @_di:       pointer to the ab8500_fg structure
2034  *
2035  * Returns IRQ status(IRQ_HANDLED)
2036  */
2037 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2038 {
2039         struct ab8500_fg *di = _di;
2040
2041         dev_dbg(di->dev, "Battery OVV\n");
2042
2043         /* Schedule a new HW failure check */
2044         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2045
2046         return IRQ_HANDLED;
2047 }
2048
2049 /**
2050  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051  * @irq:       interrupt number
2052  * @_di:       pointer to the ab8500_fg structure
2053  *
2054  * Returns IRQ status(IRQ_HANDLED)
2055  */
2056 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2057 {
2058         struct ab8500_fg *di = _di;
2059
2060         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061         if (!di->flags.low_bat_delay) {
2062                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063                 di->flags.low_bat_delay = true;
2064                 /*
2065                  * Start a timer to check LOW_BAT again after some time
2066                  * This is done to avoid shutdown on single voltage dips
2067                  */
2068                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2070         }
2071         return IRQ_HANDLED;
2072 }
2073
2074 /**
2075  * ab8500_fg_get_property() - get the fg properties
2076  * @psy:        pointer to the power_supply structure
2077  * @psp:        pointer to the power_supply_property structure
2078  * @val:        pointer to the power_supply_propval union
2079  *
2080  * This function gets called when an application tries to get the
2081  * fg properties by reading the sysfs files.
2082  * voltage_now:         battery voltage
2083  * current_now:         battery instant current
2084  * current_avg:         battery average current
2085  * charge_full_design:  capacity where battery is considered full
2086  * charge_now:          battery capacity in nAh
2087  * capacity:            capacity in percent
2088  * capacity_level:      capacity level
2089  *
2090  * Returns error code in case of failure else 0 on success
2091  */
2092 static int ab8500_fg_get_property(struct power_supply *psy,
2093         enum power_supply_property psp,
2094         union power_supply_propval *val)
2095 {
2096         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2097
2098         /*
2099          * If battery is identified as unknown and charging of unknown
2100          * batteries is disabled, we always report 100% capacity and
2101          * capacity level UNKNOWN, since we can't calculate
2102          * remaining capacity
2103          */
2104
2105         switch (psp) {
2106         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107                 if (di->flags.bat_ovv)
2108                         val->intval = BATT_OVV_VALUE * 1000;
2109                 else
2110                         val->intval = di->vbat * 1000;
2111                 break;
2112         case POWER_SUPPLY_PROP_CURRENT_NOW:
2113                 val->intval = di->inst_curr * 1000;
2114                 break;
2115         case POWER_SUPPLY_PROP_CURRENT_AVG:
2116                 val->intval = di->avg_curr * 1000;
2117                 break;
2118         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120                                 di->bat_cap.max_mah_design);
2121                 break;
2122         case POWER_SUPPLY_PROP_ENERGY_FULL:
2123                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124                                 di->bat_cap.max_mah);
2125                 break;
2126         case POWER_SUPPLY_PROP_ENERGY_NOW:
2127                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128                                 di->flags.batt_id_received)
2129                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130                                         di->bat_cap.max_mah);
2131                 else
2132                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133                                         di->bat_cap.prev_mah);
2134                 break;
2135         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136                 val->intval = di->bat_cap.max_mah_design;
2137                 break;
2138         case POWER_SUPPLY_PROP_CHARGE_FULL:
2139                 val->intval = di->bat_cap.max_mah;
2140                 break;
2141         case POWER_SUPPLY_PROP_CHARGE_NOW:
2142                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143                                 di->flags.batt_id_received)
2144                         val->intval = di->bat_cap.max_mah;
2145                 else
2146                         val->intval = di->bat_cap.prev_mah;
2147                 break;
2148         case POWER_SUPPLY_PROP_CAPACITY:
2149                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150                                 di->flags.batt_id_received)
2151                         val->intval = 100;
2152                 else
2153                         val->intval = di->bat_cap.prev_percent;
2154                 break;
2155         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157                                 di->flags.batt_id_received)
2158                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159                 else
2160                         val->intval = di->bat_cap.prev_level;
2161                 break;
2162         default:
2163                 return -EINVAL;
2164         }
2165         return 0;
2166 }
2167
2168 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169 {
2170         struct power_supply *psy;
2171         struct power_supply *ext = dev_get_drvdata(dev);
2172         const char **supplicants = (const char **)ext->supplied_to;
2173         struct ab8500_fg *di;
2174         union power_supply_propval ret;
2175         int j;
2176
2177         psy = (struct power_supply *)data;
2178         di = power_supply_get_drvdata(psy);
2179
2180         /*
2181          * For all psy where the name of your driver
2182          * appears in any supplied_to
2183          */
2184         j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2185         if (j < 0)
2186                 return 0;
2187
2188         /* Go through all properties for the psy */
2189         for (j = 0; j < ext->desc->num_properties; j++) {
2190                 enum power_supply_property prop;
2191                 prop = ext->desc->properties[j];
2192
2193                 if (power_supply_get_property(ext, prop, &ret))
2194                         continue;
2195
2196                 switch (prop) {
2197                 case POWER_SUPPLY_PROP_STATUS:
2198                         switch (ext->desc->type) {
2199                         case POWER_SUPPLY_TYPE_BATTERY:
2200                                 switch (ret.intval) {
2201                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2202                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2203                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2204                                         if (!di->flags.charging)
2205                                                 break;
2206                                         di->flags.charging = false;
2207                                         di->flags.fully_charged = false;
2208                                         if (di->bm->capacity_scaling)
2209                                                 ab8500_fg_update_cap_scalers(di);
2210                                         queue_work(di->fg_wq, &di->fg_work);
2211                                         break;
2212                                 case POWER_SUPPLY_STATUS_FULL:
2213                                         if (di->flags.fully_charged)
2214                                                 break;
2215                                         di->flags.fully_charged = true;
2216                                         di->flags.force_full = true;
2217                                         /* Save current capacity as maximum */
2218                                         di->bat_cap.max_mah = di->bat_cap.mah;
2219                                         queue_work(di->fg_wq, &di->fg_work);
2220                                         break;
2221                                 case POWER_SUPPLY_STATUS_CHARGING:
2222                                         if (di->flags.charging &&
2223                                                 !di->flags.fully_charged)
2224                                                 break;
2225                                         di->flags.charging = true;
2226                                         di->flags.fully_charged = false;
2227                                         if (di->bm->capacity_scaling)
2228                                                 ab8500_fg_update_cap_scalers(di);
2229                                         queue_work(di->fg_wq, &di->fg_work);
2230                                         break;
2231                                 }
2232                                 break;
2233                         default:
2234                                 break;
2235                         }
2236                         break;
2237                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2238                         switch (ext->desc->type) {
2239                         case POWER_SUPPLY_TYPE_BATTERY:
2240                                 if (!di->flags.batt_id_received &&
2241                                     (di->bm->bi.technology !=
2242                                      POWER_SUPPLY_TECHNOLOGY_UNKNOWN)) {
2243                                         const struct ab8500_battery_type *b;
2244
2245                                         b = di->bm->bat_type;
2246
2247                                         di->flags.batt_id_received = true;
2248
2249                                         di->bat_cap.max_mah_design =
2250                                                 di->bm->bi.charge_full_design_uah;
2251
2252                                         di->bat_cap.max_mah =
2253                                                 di->bat_cap.max_mah_design;
2254
2255                                         di->vbat_nom_uv =
2256                                                 di->bm->bi.voltage_max_design_uv;
2257                                 }
2258
2259                                 if (ret.intval)
2260                                         di->flags.batt_unknown = false;
2261                                 else
2262                                         di->flags.batt_unknown = true;
2263                                 break;
2264                         default:
2265                                 break;
2266                         }
2267                         break;
2268                 case POWER_SUPPLY_PROP_TEMP:
2269                         switch (ext->desc->type) {
2270                         case POWER_SUPPLY_TYPE_BATTERY:
2271                                 if (di->flags.batt_id_received)
2272                                         di->bat_temp = ret.intval;
2273                                 break;
2274                         default:
2275                                 break;
2276                         }
2277                         break;
2278                 default:
2279                         break;
2280                 }
2281         }
2282         return 0;
2283 }
2284
2285 /**
2286  * ab8500_fg_init_hw_registers() - Set up FG related registers
2287  * @di:         pointer to the ab8500_fg structure
2288  *
2289  * Set up battery OVV, low battery voltage registers
2290  */
2291 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2292 {
2293         int ret;
2294
2295         /* Set VBAT OVV threshold */
2296         ret = abx500_mask_and_set_register_interruptible(di->dev,
2297                 AB8500_CHARGER,
2298                 AB8500_BATT_OVV,
2299                 BATT_OVV_TH_4P75,
2300                 BATT_OVV_TH_4P75);
2301         if (ret) {
2302                 dev_err(di->dev, "failed to set BATT_OVV\n");
2303                 goto out;
2304         }
2305
2306         /* Enable VBAT OVV detection */
2307         ret = abx500_mask_and_set_register_interruptible(di->dev,
2308                 AB8500_CHARGER,
2309                 AB8500_BATT_OVV,
2310                 BATT_OVV_ENA,
2311                 BATT_OVV_ENA);
2312         if (ret) {
2313                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2314                 goto out;
2315         }
2316
2317         /* Low Battery Voltage */
2318         ret = abx500_set_register_interruptible(di->dev,
2319                 AB8500_SYS_CTRL2_BLOCK,
2320                 AB8500_LOW_BAT_REG,
2321                 ab8500_volt_to_regval(
2322                         di->bm->fg_params->lowbat_threshold) << 1 |
2323                 LOW_BAT_ENABLE);
2324         if (ret) {
2325                 dev_err(di->dev, "%s write failed\n", __func__);
2326                 goto out;
2327         }
2328
2329         /* Battery OK threshold */
2330         ret = ab8500_fg_battok_init_hw_register(di);
2331         if (ret) {
2332                 dev_err(di->dev, "BattOk init write failed.\n");
2333                 goto out;
2334         }
2335
2336         if (is_ab8505(di->parent)) {
2337                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2338                         AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2339
2340                 if (ret) {
2341                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2342                         goto out;
2343                 }
2344
2345                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2346                         AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2347
2348                 if (ret) {
2349                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2350                         goto out;
2351                 }
2352
2353                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2354                         AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2355
2356                 if (ret) {
2357                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2358                         goto out;
2359                 }
2360
2361                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2362                         AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2363
2364                 if (ret) {
2365                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2366                         goto out;
2367                 }
2368
2369                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2370                         AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2371
2372                 if (ret) {
2373                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2374                         goto out;
2375                 }
2376         }
2377 out:
2378         return ret;
2379 }
2380
2381 /**
2382  * ab8500_fg_external_power_changed() - callback for power supply changes
2383  * @psy:       pointer to the structure power_supply
2384  *
2385  * This function is the entry point of the pointer external_power_changed
2386  * of the structure power_supply.
2387  * This function gets executed when there is a change in any external power
2388  * supply that this driver needs to be notified of.
2389  */
2390 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2391 {
2392         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2393
2394         class_for_each_device(power_supply_class, NULL,
2395                 di->fg_psy, ab8500_fg_get_ext_psy_data);
2396 }
2397
2398 /**
2399  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2400  * @work:       pointer to the work_struct structure
2401  *
2402  * Used to reset the current battery capacity to be able to
2403  * retrigger a new voltage base capacity calculation. For
2404  * test and verification purpose.
2405  */
2406 static void ab8500_fg_reinit_work(struct work_struct *work)
2407 {
2408         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2409                 fg_reinit_work.work);
2410
2411         if (!di->flags.calibrate) {
2412                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2413                 ab8500_fg_clear_cap_samples(di);
2414                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2415                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2416                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2417                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2418
2419         } else {
2420                 dev_err(di->dev, "Residual offset calibration ongoing "
2421                         "retrying..\n");
2422                 /* Wait one second until next try*/
2423                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2424                         round_jiffies(1));
2425         }
2426 }
2427
2428 /* Exposure to the sysfs interface */
2429
2430 struct ab8500_fg_sysfs_entry {
2431         struct attribute attr;
2432         ssize_t (*show)(struct ab8500_fg *, char *);
2433         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2434 };
2435
2436 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2437 {
2438         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2439 }
2440
2441 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2442                                  size_t count)
2443 {
2444         unsigned long charge_full;
2445         int ret;
2446
2447         ret = kstrtoul(buf, 10, &charge_full);
2448         if (ret)
2449                 return ret;
2450
2451         di->bat_cap.max_mah = (int) charge_full;
2452         return count;
2453 }
2454
2455 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2456 {
2457         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2458 }
2459
2460 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2461                                  size_t count)
2462 {
2463         unsigned long charge_now;
2464         int ret;
2465
2466         ret = kstrtoul(buf, 10, &charge_now);
2467         if (ret)
2468                 return ret;
2469
2470         di->bat_cap.user_mah = (int) charge_now;
2471         di->flags.user_cap = true;
2472         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2473         return count;
2474 }
2475
2476 static struct ab8500_fg_sysfs_entry charge_full_attr =
2477         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2478
2479 static struct ab8500_fg_sysfs_entry charge_now_attr =
2480         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2481
2482 static ssize_t
2483 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2484 {
2485         struct ab8500_fg_sysfs_entry *entry;
2486         struct ab8500_fg *di;
2487
2488         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2489         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2490
2491         if (!entry->show)
2492                 return -EIO;
2493
2494         return entry->show(di, buf);
2495 }
2496 static ssize_t
2497 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2498                 size_t count)
2499 {
2500         struct ab8500_fg_sysfs_entry *entry;
2501         struct ab8500_fg *di;
2502
2503         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2504         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2505
2506         if (!entry->store)
2507                 return -EIO;
2508
2509         return entry->store(di, buf, count);
2510 }
2511
2512 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2513         .show = ab8500_fg_show,
2514         .store = ab8500_fg_store,
2515 };
2516
2517 static struct attribute *ab8500_fg_attrs[] = {
2518         &charge_full_attr.attr,
2519         &charge_now_attr.attr,
2520         NULL,
2521 };
2522
2523 static struct kobj_type ab8500_fg_ktype = {
2524         .sysfs_ops = &ab8500_fg_sysfs_ops,
2525         .default_attrs = ab8500_fg_attrs,
2526 };
2527
2528 /**
2529  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2530  * @di:                pointer to the struct ab8500_chargalg
2531  *
2532  * This function removes the entry in sysfs.
2533  */
2534 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2535 {
2536         kobject_del(&di->fg_kobject);
2537 }
2538
2539 /**
2540  * ab8500_fg_sysfs_init() - init of sysfs entry
2541  * @di:                pointer to the struct ab8500_chargalg
2542  *
2543  * This function adds an entry in sysfs.
2544  * Returns error code in case of failure else 0(on success)
2545  */
2546 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2547 {
2548         int ret = 0;
2549
2550         ret = kobject_init_and_add(&di->fg_kobject,
2551                 &ab8500_fg_ktype,
2552                 NULL, "battery");
2553         if (ret < 0)
2554                 dev_err(di->dev, "failed to create sysfs entry\n");
2555
2556         return ret;
2557 }
2558
2559 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2560                              struct device_attribute *attr,
2561                              char *buf)
2562 {
2563         int ret;
2564         u8 reg_value;
2565         struct power_supply *psy = dev_get_drvdata(dev);
2566         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2567
2568         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2569                 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2570
2571         if (ret < 0) {
2572                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2573                 goto fail;
2574         }
2575
2576         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2577
2578 fail:
2579         return ret;
2580 }
2581
2582 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2583                                   struct device_attribute *attr,
2584                                   const char *buf, size_t count)
2585 {
2586         int ret;
2587         int reg_value;
2588         struct power_supply *psy = dev_get_drvdata(dev);
2589         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2590
2591         if (kstrtoint(buf, 10, &reg_value))
2592                 goto fail;
2593
2594         if (reg_value > 0x7F) {
2595                 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2596                 goto fail;
2597         }
2598
2599         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2600                 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2601
2602         if (ret < 0)
2603                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2604
2605 fail:
2606         return count;
2607 }
2608
2609 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2610                              struct device_attribute *attr,
2611                              char *buf)
2612 {
2613         int ret;
2614         u8 reg_value;
2615         struct power_supply *psy = dev_get_drvdata(dev);
2616         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2617
2618         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2619                 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2620
2621         if (ret < 0) {
2622                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2623                 goto fail;
2624         }
2625
2626         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2627
2628 fail:
2629         return ret;
2630
2631 }
2632
2633 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2634                                   struct device_attribute *attr,
2635                                   const char *buf, size_t count)
2636 {
2637         int ret;
2638         int reg_value;
2639         struct power_supply *psy = dev_get_drvdata(dev);
2640         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2641
2642         if (kstrtoint(buf, 10, &reg_value))
2643                 goto fail;
2644
2645         if (reg_value > 0x7F) {
2646                 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2647                 goto fail;
2648         }
2649
2650         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2651                 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2652
2653         if (ret < 0)
2654                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2655
2656 fail:
2657         return count;
2658 }
2659
2660 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2661                              struct device_attribute *attr,
2662                              char *buf)
2663 {
2664         int ret;
2665         u8 reg_value;
2666         struct power_supply *psy = dev_get_drvdata(dev);
2667         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2668
2669         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2670                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2671
2672         if (ret < 0) {
2673                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2674                 goto fail;
2675         }
2676
2677         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2678
2679 fail:
2680         return ret;
2681 }
2682
2683 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2684                                              struct device_attribute *attr,
2685                                              const char *buf, size_t count)
2686 {
2687         int ret;
2688         int reg_value;
2689         struct power_supply *psy = dev_get_drvdata(dev);
2690         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2691
2692         if (kstrtoint(buf, 10, &reg_value))
2693                 goto fail;
2694
2695         if (reg_value > 0xF) {
2696                 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2697                 goto fail;
2698         }
2699
2700         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2701                                                 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2702
2703         if (ret < 0)
2704                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2705
2706 fail:
2707         return count;
2708
2709 }
2710
2711 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2712                                           struct device_attribute *attr,
2713                                           char *buf)
2714 {
2715         int ret;
2716         u8 reg_value;
2717         struct power_supply *psy = dev_get_drvdata(dev);
2718         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2719
2720         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2721                                                 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2722
2723         if (ret < 0) {
2724                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2725                 goto fail;
2726         }
2727
2728         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2729
2730 fail:
2731         return ret;
2732 }
2733
2734 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2735                                                     struct device_attribute *attr,
2736                                                     char *buf)
2737 {
2738         int ret;
2739         u8 reg_value;
2740         struct power_supply *psy = dev_get_drvdata(dev);
2741         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2742
2743         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2744                                                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2745
2746         if (ret < 0) {
2747                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2748                 goto fail;
2749         }
2750
2751         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2752
2753 fail:
2754         return ret;
2755 }
2756
2757 static ssize_t ab8505_powercut_read(struct device *dev,
2758                                     struct device_attribute *attr,
2759                                     char *buf)
2760 {
2761         int ret;
2762         u8 reg_value;
2763         struct power_supply *psy = dev_get_drvdata(dev);
2764         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2765
2766         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2767                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2768
2769         if (ret < 0)
2770                 goto fail;
2771
2772         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2773
2774 fail:
2775         return ret;
2776 }
2777
2778 static ssize_t ab8505_powercut_write(struct device *dev,
2779                                      struct device_attribute *attr,
2780                                      const char *buf, size_t count)
2781 {
2782         int ret;
2783         int reg_value;
2784         struct power_supply *psy = dev_get_drvdata(dev);
2785         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2786
2787         if (kstrtoint(buf, 10, &reg_value))
2788                 goto fail;
2789
2790         if (reg_value > 0x1) {
2791                 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2792                 goto fail;
2793         }
2794
2795         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2796                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2797
2798         if (ret < 0)
2799                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2800
2801 fail:
2802         return count;
2803 }
2804
2805 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2806                                          struct device_attribute *attr,
2807                                          char *buf)
2808 {
2809
2810         int ret;
2811         u8 reg_value;
2812         struct power_supply *psy = dev_get_drvdata(dev);
2813         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2814
2815         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2816                                                 AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2817
2818         if (ret < 0) {
2819                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2820                 goto fail;
2821         }
2822
2823         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2824
2825 fail:
2826         return ret;
2827 }
2828
2829 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2830                                              struct device_attribute *attr,
2831                                              char *buf)
2832 {
2833         int ret;
2834         u8 reg_value;
2835         struct power_supply *psy = dev_get_drvdata(dev);
2836         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2837
2838         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2839                                                 AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2840
2841         if (ret < 0) {
2842                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2843                 goto fail;
2844         }
2845
2846         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2847
2848 fail:
2849         return ret;
2850 }
2851
2852 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2853                                               struct device_attribute *attr,
2854                                               const char *buf, size_t count)
2855 {
2856         int ret;
2857         int reg_value;
2858         struct power_supply *psy = dev_get_drvdata(dev);
2859         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2860
2861         if (kstrtoint(buf, 10, &reg_value))
2862                 goto fail;
2863
2864         if (reg_value > 0x7) {
2865                 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2866                 goto fail;
2867         }
2868
2869         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2870                                                 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2871
2872         if (ret < 0)
2873                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2874
2875 fail:
2876         return count;
2877 }
2878
2879 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2880                                                   struct device_attribute *attr,
2881                                                   char *buf)
2882 {
2883         int ret;
2884         u8 reg_value;
2885         struct power_supply *psy = dev_get_drvdata(dev);
2886         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2887
2888         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2889                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2890
2891         if (ret < 0) {
2892                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2893                 goto fail;
2894         }
2895
2896         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2897
2898 fail:
2899         return ret;
2900 }
2901
2902 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2903         __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2904                 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2905         __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2906                 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2907         __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2908                 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2909         __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2910         __ATTR(powercut_restart_counter, S_IRUGO,
2911                 ab8505_powercut_restart_counter_read, NULL),
2912         __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2913                 ab8505_powercut_read, ab8505_powercut_write),
2914         __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2915         __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2916                 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2917         __ATTR(powercut_enable_status, S_IRUGO,
2918                 ab8505_powercut_enable_status_read, NULL),
2919 };
2920
2921 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2922 {
2923         unsigned int i;
2924
2925         if (is_ab8505(di->parent)) {
2926                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2927                         if (device_create_file(&di->fg_psy->dev,
2928                                                &ab8505_fg_sysfs_psy_attrs[i]))
2929                                 goto sysfs_psy_create_attrs_failed_ab8505;
2930         }
2931         return 0;
2932 sysfs_psy_create_attrs_failed_ab8505:
2933         dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2934         while (i--)
2935                 device_remove_file(&di->fg_psy->dev,
2936                                    &ab8505_fg_sysfs_psy_attrs[i]);
2937
2938         return -EIO;
2939 }
2940
2941 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2942 {
2943         unsigned int i;
2944
2945         if (is_ab8505(di->parent)) {
2946                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2947                         (void)device_remove_file(&di->fg_psy->dev,
2948                                                  &ab8505_fg_sysfs_psy_attrs[i]);
2949         }
2950 }
2951
2952 /* Exposure to the sysfs interface <<END>> */
2953
2954 static int __maybe_unused ab8500_fg_resume(struct device *dev)
2955 {
2956         struct ab8500_fg *di = dev_get_drvdata(dev);
2957
2958         /*
2959          * Change state if we're not charging. If we're charging we will wake
2960          * up on the FG IRQ
2961          */
2962         if (!di->flags.charging) {
2963                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2964                 queue_work(di->fg_wq, &di->fg_work);
2965         }
2966
2967         return 0;
2968 }
2969
2970 static int __maybe_unused ab8500_fg_suspend(struct device *dev)
2971 {
2972         struct ab8500_fg *di = dev_get_drvdata(dev);
2973
2974         flush_delayed_work(&di->fg_periodic_work);
2975         flush_work(&di->fg_work);
2976         flush_work(&di->fg_acc_cur_work);
2977         flush_delayed_work(&di->fg_reinit_work);
2978         flush_delayed_work(&di->fg_low_bat_work);
2979         flush_delayed_work(&di->fg_check_hw_failure_work);
2980
2981         /*
2982          * If the FG is enabled we will disable it before going to suspend
2983          * only if we're not charging
2984          */
2985         if (di->flags.fg_enabled && !di->flags.charging)
2986                 ab8500_fg_coulomb_counter(di, false);
2987
2988         return 0;
2989 }
2990
2991 /* ab8500 fg driver interrupts and their respective isr */
2992 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2993         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2994         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2995         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2996         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2997         {"CCEOC", ab8500_fg_cc_data_end_handler},
2998 };
2999
3000 static char *supply_interface[] = {
3001         "ab8500_chargalg",
3002         "ab8500_usb",
3003 };
3004
3005 static const struct power_supply_desc ab8500_fg_desc = {
3006         .name                   = "ab8500_fg",
3007         .type                   = POWER_SUPPLY_TYPE_BATTERY,
3008         .properties             = ab8500_fg_props,
3009         .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3010         .get_property           = ab8500_fg_get_property,
3011         .external_power_changed = ab8500_fg_external_power_changed,
3012 };
3013
3014 static int ab8500_fg_bind(struct device *dev, struct device *master,
3015                           void *data)
3016 {
3017         struct ab8500_fg *di = dev_get_drvdata(dev);
3018
3019         /* Create a work queue for running the FG algorithm */
3020         di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3021         if (di->fg_wq == NULL) {
3022                 dev_err(dev, "failed to create work queue\n");
3023                 return -ENOMEM;
3024         }
3025
3026         /* Start the coulomb counter */
3027         ab8500_fg_coulomb_counter(di, true);
3028         /* Run the FG algorithm */
3029         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3030
3031         return 0;
3032 }
3033
3034 static void ab8500_fg_unbind(struct device *dev, struct device *master,
3035                              void *data)
3036 {
3037         struct ab8500_fg *di = dev_get_drvdata(dev);
3038         int ret;
3039
3040         /* Disable coulomb counter */
3041         ret = ab8500_fg_coulomb_counter(di, false);
3042         if (ret)
3043                 dev_err(dev, "failed to disable coulomb counter\n");
3044
3045         destroy_workqueue(di->fg_wq);
3046         flush_scheduled_work();
3047 }
3048
3049 static const struct component_ops ab8500_fg_component_ops = {
3050         .bind = ab8500_fg_bind,
3051         .unbind = ab8500_fg_unbind,
3052 };
3053
3054 static int ab8500_fg_probe(struct platform_device *pdev)
3055 {
3056         struct device *dev = &pdev->dev;
3057         struct power_supply_config psy_cfg = {};
3058         struct ab8500_fg *di;
3059         int i, irq;
3060         int ret = 0;
3061
3062         di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL);
3063         if (!di)
3064                 return -ENOMEM;
3065
3066         di->bm = &ab8500_bm_data;
3067
3068         mutex_init(&di->cc_lock);
3069
3070         /* get parent data */
3071         di->dev = dev;
3072         di->parent = dev_get_drvdata(pdev->dev.parent);
3073
3074         di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v");
3075         if (IS_ERR(di->main_bat_v)) {
3076                 ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v),
3077                                     "failed to get main battery ADC channel\n");
3078                 return ret;
3079         }
3080
3081         psy_cfg.supplied_to = supply_interface;
3082         psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3083         psy_cfg.drv_data = di;
3084
3085         di->bat_cap.max_mah_design = di->bm->bi.charge_full_design_uah;
3086         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3087         di->vbat_nom_uv = di->bm->bi.voltage_max_design_uv;
3088
3089         di->init_capacity = true;
3090
3091         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3092         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3093
3094         /* Init work for running the fg algorithm instantly */
3095         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3096
3097         /* Init work for getting the battery accumulated current */
3098         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3099
3100         /* Init work for reinitialising the fg algorithm */
3101         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3102                 ab8500_fg_reinit_work);
3103
3104         /* Work delayed Queue to run the state machine */
3105         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3106                 ab8500_fg_periodic_work);
3107
3108         /* Work to check low battery condition */
3109         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3110                 ab8500_fg_low_bat_work);
3111
3112         /* Init work for HW failure check */
3113         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3114                 ab8500_fg_check_hw_failure_work);
3115
3116         /* Reset battery low voltage flag */
3117         di->flags.low_bat = false;
3118
3119         /* Initialize low battery counter */
3120         di->low_bat_cnt = 10;
3121
3122         /* Initialize OVV, and other registers */
3123         ret = ab8500_fg_init_hw_registers(di);
3124         if (ret) {
3125                 dev_err(dev, "failed to initialize registers\n");
3126                 return ret;
3127         }
3128
3129         /* Consider battery unknown until we're informed otherwise */
3130         di->flags.batt_unknown = true;
3131         di->flags.batt_id_received = false;
3132
3133         /* Register FG power supply class */
3134         di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg);
3135         if (IS_ERR(di->fg_psy)) {
3136                 dev_err(dev, "failed to register FG psy\n");
3137                 return PTR_ERR(di->fg_psy);
3138         }
3139
3140         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3141
3142         /*
3143          * Initialize completion used to notify completion and start
3144          * of inst current
3145          */
3146         init_completion(&di->ab8500_fg_started);
3147         init_completion(&di->ab8500_fg_complete);
3148
3149         /* Register primary interrupt handlers */
3150         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3151                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3152                 if (irq < 0)
3153                         return irq;
3154
3155                 ret = devm_request_threaded_irq(dev, irq, NULL,
3156                                   ab8500_fg_irq[i].isr,
3157                                   IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3158                                   ab8500_fg_irq[i].name, di);
3159
3160                 if (ret != 0) {
3161                         dev_err(dev, "failed to request %s IRQ %d: %d\n",
3162                                 ab8500_fg_irq[i].name, irq, ret);
3163                         return ret;
3164                 }
3165                 dev_dbg(dev, "Requested %s IRQ %d: %d\n",
3166                         ab8500_fg_irq[i].name, irq, ret);
3167         }
3168
3169         di->irq = platform_get_irq_byname(pdev, "CCEOC");
3170         disable_irq(di->irq);
3171         di->nbr_cceoc_irq_cnt = 0;
3172
3173         platform_set_drvdata(pdev, di);
3174
3175         ret = ab8500_fg_sysfs_init(di);
3176         if (ret) {
3177                 dev_err(dev, "failed to create sysfs entry\n");
3178                 return ret;
3179         }
3180
3181         ret = ab8500_fg_sysfs_psy_create_attrs(di);
3182         if (ret) {
3183                 dev_err(dev, "failed to create FG psy\n");
3184                 ab8500_fg_sysfs_exit(di);
3185                 return ret;
3186         }
3187
3188         /* Calibrate the fg first time */
3189         di->flags.calibrate = true;
3190         di->calib_state = AB8500_FG_CALIB_INIT;
3191
3192         /* Use room temp as default value until we get an update from driver. */
3193         di->bat_temp = 210;
3194
3195         list_add_tail(&di->node, &ab8500_fg_list);
3196
3197         return component_add(dev, &ab8500_fg_component_ops);
3198 }
3199
3200 static int ab8500_fg_remove(struct platform_device *pdev)
3201 {
3202         int ret = 0;
3203         struct ab8500_fg *di = platform_get_drvdata(pdev);
3204
3205         component_del(&pdev->dev, &ab8500_fg_component_ops);
3206         list_del(&di->node);
3207         ab8500_fg_sysfs_exit(di);
3208         ab8500_fg_sysfs_psy_remove_attrs(di);
3209
3210         return ret;
3211 }
3212
3213 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume);
3214
3215 static const struct of_device_id ab8500_fg_match[] = {
3216         { .compatible = "stericsson,ab8500-fg", },
3217         { },
3218 };
3219 MODULE_DEVICE_TABLE(of, ab8500_fg_match);
3220
3221 struct platform_driver ab8500_fg_driver = {
3222         .probe = ab8500_fg_probe,
3223         .remove = ab8500_fg_remove,
3224         .driver = {
3225                 .name = "ab8500-fg",
3226                 .of_match_table = ab8500_fg_match,
3227                 .pm = &ab8500_fg_pm_ops,
3228         },
3229 };
3230 MODULE_LICENSE("GPL v2");
3231 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3232 MODULE_ALIAS("platform:ab8500-fg");
3233 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");