Merge tag 'dlm-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[linux-block.git] / drivers / perf / riscv_pmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This implementation is based on old RISC-V perf and ARM perf event code
8  * which are in turn based on sparc64 and x86 code.
9  */
10
11 #include <linux/cpumask.h>
12 #include <linux/irq.h>
13 #include <linux/irqdesc.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/printk.h>
16 #include <linux/smp.h>
17 #include <linux/sched_clock.h>
18
19 #include <asm/sbi.h>
20
21 static bool riscv_perf_user_access(struct perf_event *event)
22 {
23         return ((event->attr.type == PERF_TYPE_HARDWARE) ||
24                 (event->attr.type == PERF_TYPE_HW_CACHE) ||
25                 (event->attr.type == PERF_TYPE_RAW)) &&
26                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) &&
27                 (event->hw.idx != -1);
28 }
29
30 void arch_perf_update_userpage(struct perf_event *event,
31                                struct perf_event_mmap_page *userpg, u64 now)
32 {
33         struct clock_read_data *rd;
34         unsigned int seq;
35         u64 ns;
36
37         userpg->cap_user_time = 0;
38         userpg->cap_user_time_zero = 0;
39         userpg->cap_user_time_short = 0;
40         userpg->cap_user_rdpmc = riscv_perf_user_access(event);
41
42 #ifdef CONFIG_RISCV_PMU
43         /*
44          * The counters are 64-bit but the priv spec doesn't mandate all the
45          * bits to be implemented: that's why, counter width can vary based on
46          * the cpu vendor.
47          */
48         if (userpg->cap_user_rdpmc)
49                 userpg->pmc_width = to_riscv_pmu(event->pmu)->ctr_get_width(event->hw.idx) + 1;
50 #endif
51
52         do {
53                 rd = sched_clock_read_begin(&seq);
54
55                 userpg->time_mult = rd->mult;
56                 userpg->time_shift = rd->shift;
57                 userpg->time_zero = rd->epoch_ns;
58                 userpg->time_cycles = rd->epoch_cyc;
59                 userpg->time_mask = rd->sched_clock_mask;
60
61                 /*
62                  * Subtract the cycle base, such that software that
63                  * doesn't know about cap_user_time_short still 'works'
64                  * assuming no wraps.
65                  */
66                 ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
67                 userpg->time_zero -= ns;
68
69         } while (sched_clock_read_retry(seq));
70
71         userpg->time_offset = userpg->time_zero - now;
72
73         /*
74          * time_shift is not expected to be greater than 31 due to
75          * the original published conversion algorithm shifting a
76          * 32-bit value (now specifies a 64-bit value) - refer
77          * perf_event_mmap_page documentation in perf_event.h.
78          */
79         if (userpg->time_shift == 32) {
80                 userpg->time_shift = 31;
81                 userpg->time_mult >>= 1;
82         }
83
84         /*
85          * Internal timekeeping for enabled/running/stopped times
86          * is always computed with the sched_clock.
87          */
88         userpg->cap_user_time = 1;
89         userpg->cap_user_time_zero = 1;
90         userpg->cap_user_time_short = 1;
91 }
92
93 static unsigned long csr_read_num(int csr_num)
94 {
95 #define switchcase_csr_read(__csr_num, __val)           {\
96         case __csr_num:                                 \
97                 __val = csr_read(__csr_num);            \
98                 break; }
99 #define switchcase_csr_read_2(__csr_num, __val)         {\
100         switchcase_csr_read(__csr_num + 0, __val)        \
101         switchcase_csr_read(__csr_num + 1, __val)}
102 #define switchcase_csr_read_4(__csr_num, __val)         {\
103         switchcase_csr_read_2(__csr_num + 0, __val)      \
104         switchcase_csr_read_2(__csr_num + 2, __val)}
105 #define switchcase_csr_read_8(__csr_num, __val)         {\
106         switchcase_csr_read_4(__csr_num + 0, __val)      \
107         switchcase_csr_read_4(__csr_num + 4, __val)}
108 #define switchcase_csr_read_16(__csr_num, __val)        {\
109         switchcase_csr_read_8(__csr_num + 0, __val)      \
110         switchcase_csr_read_8(__csr_num + 8, __val)}
111 #define switchcase_csr_read_32(__csr_num, __val)        {\
112         switchcase_csr_read_16(__csr_num + 0, __val)     \
113         switchcase_csr_read_16(__csr_num + 16, __val)}
114
115         unsigned long ret = 0;
116
117         switch (csr_num) {
118         switchcase_csr_read_32(CSR_CYCLE, ret)
119         switchcase_csr_read_32(CSR_CYCLEH, ret)
120         default :
121                 break;
122         }
123
124         return ret;
125 #undef switchcase_csr_read_32
126 #undef switchcase_csr_read_16
127 #undef switchcase_csr_read_8
128 #undef switchcase_csr_read_4
129 #undef switchcase_csr_read_2
130 #undef switchcase_csr_read
131 }
132
133 /*
134  * Read the CSR of a corresponding counter.
135  */
136 unsigned long riscv_pmu_ctr_read_csr(unsigned long csr)
137 {
138         if (csr < CSR_CYCLE || csr > CSR_HPMCOUNTER31H ||
139            (csr > CSR_HPMCOUNTER31 && csr < CSR_CYCLEH)) {
140                 pr_err("Invalid performance counter csr %lx\n", csr);
141                 return -EINVAL;
142         }
143
144         return csr_read_num(csr);
145 }
146
147 u64 riscv_pmu_ctr_get_width_mask(struct perf_event *event)
148 {
149         int cwidth;
150         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
151         struct hw_perf_event *hwc = &event->hw;
152
153         if (hwc->idx == -1)
154                 /* Handle init case where idx is not initialized yet */
155                 cwidth = rvpmu->ctr_get_width(0);
156         else
157                 cwidth = rvpmu->ctr_get_width(hwc->idx);
158
159         return GENMASK_ULL(cwidth, 0);
160 }
161
162 u64 riscv_pmu_event_update(struct perf_event *event)
163 {
164         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
165         struct hw_perf_event *hwc = &event->hw;
166         u64 prev_raw_count, new_raw_count;
167         unsigned long cmask;
168         u64 oldval, delta;
169
170         if (!rvpmu->ctr_read)
171                 return 0;
172
173         cmask = riscv_pmu_ctr_get_width_mask(event);
174
175         do {
176                 prev_raw_count = local64_read(&hwc->prev_count);
177                 new_raw_count = rvpmu->ctr_read(event);
178                 oldval = local64_cmpxchg(&hwc->prev_count, prev_raw_count,
179                                          new_raw_count);
180         } while (oldval != prev_raw_count);
181
182         delta = (new_raw_count - prev_raw_count) & cmask;
183         local64_add(delta, &event->count);
184         local64_sub(delta, &hwc->period_left);
185
186         return delta;
187 }
188
189 void riscv_pmu_stop(struct perf_event *event, int flags)
190 {
191         struct hw_perf_event *hwc = &event->hw;
192         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
193
194         WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
195
196         if (!(hwc->state & PERF_HES_STOPPED)) {
197                 if (rvpmu->ctr_stop) {
198                         rvpmu->ctr_stop(event, 0);
199                         hwc->state |= PERF_HES_STOPPED;
200                 }
201                 riscv_pmu_event_update(event);
202                 hwc->state |= PERF_HES_UPTODATE;
203         }
204 }
205
206 int riscv_pmu_event_set_period(struct perf_event *event)
207 {
208         struct hw_perf_event *hwc = &event->hw;
209         s64 left = local64_read(&hwc->period_left);
210         s64 period = hwc->sample_period;
211         int overflow = 0;
212         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
213
214         if (unlikely(left <= -period)) {
215                 left = period;
216                 local64_set(&hwc->period_left, left);
217                 hwc->last_period = period;
218                 overflow = 1;
219         }
220
221         if (unlikely(left <= 0)) {
222                 left += period;
223                 local64_set(&hwc->period_left, left);
224                 hwc->last_period = period;
225                 overflow = 1;
226         }
227
228         /*
229          * Limit the maximum period to prevent the counter value
230          * from overtaking the one we are about to program. In
231          * effect we are reducing max_period to account for
232          * interrupt latency (and we are being very conservative).
233          */
234         if (left > (max_period >> 1))
235                 left = (max_period >> 1);
236
237         local64_set(&hwc->prev_count, (u64)-left);
238
239         perf_event_update_userpage(event);
240
241         return overflow;
242 }
243
244 void riscv_pmu_start(struct perf_event *event, int flags)
245 {
246         struct hw_perf_event *hwc = &event->hw;
247         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
248         uint64_t max_period = riscv_pmu_ctr_get_width_mask(event);
249         u64 init_val;
250
251         if (flags & PERF_EF_RELOAD)
252                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
253
254         hwc->state = 0;
255         riscv_pmu_event_set_period(event);
256         init_val = local64_read(&hwc->prev_count) & max_period;
257         rvpmu->ctr_start(event, init_val);
258         perf_event_update_userpage(event);
259 }
260
261 static int riscv_pmu_add(struct perf_event *event, int flags)
262 {
263         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
264         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
265         struct hw_perf_event *hwc = &event->hw;
266         int idx;
267
268         idx = rvpmu->ctr_get_idx(event);
269         if (idx < 0)
270                 return idx;
271
272         hwc->idx = idx;
273         cpuc->events[idx] = event;
274         cpuc->n_events++;
275         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
276         if (flags & PERF_EF_START)
277                 riscv_pmu_start(event, PERF_EF_RELOAD);
278
279         /* Propagate our changes to the userspace mapping. */
280         perf_event_update_userpage(event);
281
282         return 0;
283 }
284
285 static void riscv_pmu_del(struct perf_event *event, int flags)
286 {
287         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
288         struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
289         struct hw_perf_event *hwc = &event->hw;
290
291         riscv_pmu_stop(event, PERF_EF_UPDATE);
292         cpuc->events[hwc->idx] = NULL;
293         /* The firmware need to reset the counter mapping */
294         if (rvpmu->ctr_stop)
295                 rvpmu->ctr_stop(event, RISCV_PMU_STOP_FLAG_RESET);
296         cpuc->n_events--;
297         if (rvpmu->ctr_clear_idx)
298                 rvpmu->ctr_clear_idx(event);
299         perf_event_update_userpage(event);
300         hwc->idx = -1;
301 }
302
303 static void riscv_pmu_read(struct perf_event *event)
304 {
305         riscv_pmu_event_update(event);
306 }
307
308 static int riscv_pmu_event_init(struct perf_event *event)
309 {
310         struct hw_perf_event *hwc = &event->hw;
311         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
312         int mapped_event;
313         u64 event_config = 0;
314         uint64_t cmask;
315
316         hwc->flags = 0;
317         mapped_event = rvpmu->event_map(event, &event_config);
318         if (mapped_event < 0) {
319                 pr_debug("event %x:%llx not supported\n", event->attr.type,
320                          event->attr.config);
321                 return mapped_event;
322         }
323
324         /*
325          * idx is set to -1 because the index of a general event should not be
326          * decided until binding to some counter in pmu->add().
327          * config will contain the information about counter CSR
328          * the idx will contain the counter index
329          */
330         hwc->config = event_config;
331         hwc->idx = -1;
332         hwc->event_base = mapped_event;
333
334         if (rvpmu->event_init)
335                 rvpmu->event_init(event);
336
337         if (!is_sampling_event(event)) {
338                 /*
339                  * For non-sampling runs, limit the sample_period to half
340                  * of the counter width. That way, the new counter value
341                  * is far less likely to overtake the previous one unless
342                  * you have some serious IRQ latency issues.
343                  */
344                 cmask = riscv_pmu_ctr_get_width_mask(event);
345                 hwc->sample_period  =  cmask >> 1;
346                 hwc->last_period    = hwc->sample_period;
347                 local64_set(&hwc->period_left, hwc->sample_period);
348         }
349
350         return 0;
351 }
352
353 static int riscv_pmu_event_idx(struct perf_event *event)
354 {
355         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
356
357         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
358                 return 0;
359
360         if (rvpmu->csr_index)
361                 return rvpmu->csr_index(event) + 1;
362
363         return 0;
364 }
365
366 static void riscv_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
367 {
368         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
369
370         if (rvpmu->event_mapped) {
371                 rvpmu->event_mapped(event, mm);
372                 perf_event_update_userpage(event);
373         }
374 }
375
376 static void riscv_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
377 {
378         struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
379
380         if (rvpmu->event_unmapped) {
381                 rvpmu->event_unmapped(event, mm);
382                 perf_event_update_userpage(event);
383         }
384 }
385
386 struct riscv_pmu *riscv_pmu_alloc(void)
387 {
388         struct riscv_pmu *pmu;
389         int cpuid, i;
390         struct cpu_hw_events *cpuc;
391
392         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
393         if (!pmu)
394                 goto out;
395
396         pmu->hw_events = alloc_percpu_gfp(struct cpu_hw_events, GFP_KERNEL);
397         if (!pmu->hw_events) {
398                 pr_info("failed to allocate per-cpu PMU data.\n");
399                 goto out_free_pmu;
400         }
401
402         for_each_possible_cpu(cpuid) {
403                 cpuc = per_cpu_ptr(pmu->hw_events, cpuid);
404                 cpuc->n_events = 0;
405                 for (i = 0; i < RISCV_MAX_COUNTERS; i++)
406                         cpuc->events[i] = NULL;
407         }
408         pmu->pmu = (struct pmu) {
409                 .event_init     = riscv_pmu_event_init,
410                 .event_mapped   = riscv_pmu_event_mapped,
411                 .event_unmapped = riscv_pmu_event_unmapped,
412                 .event_idx      = riscv_pmu_event_idx,
413                 .add            = riscv_pmu_add,
414                 .del            = riscv_pmu_del,
415                 .start          = riscv_pmu_start,
416                 .stop           = riscv_pmu_stop,
417                 .read           = riscv_pmu_read,
418         };
419
420         return pmu;
421
422 out_free_pmu:
423         kfree(pmu);
424 out:
425         return NULL;
426 }