Merge tag 'i2c-for-6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-block.git] / drivers / perf / arm_pmu_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI probing code for ARM performance counters.
4  *
5  * Copyright (C) 2017 ARM Ltd.
6  */
7
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
15
16 #include <asm/cpu.h>
17 #include <asm/cputype.h>
18
19 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
20 static DEFINE_PER_CPU(int, pmu_irqs);
21
22 static int arm_pmu_acpi_register_irq(int cpu)
23 {
24         struct acpi_madt_generic_interrupt *gicc;
25         int gsi, trigger;
26
27         gicc = acpi_cpu_get_madt_gicc(cpu);
28
29         gsi = gicc->performance_interrupt;
30
31         /*
32          * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
33          * have an interrupt. QEMU advertises this by using a GSI of zero,
34          * which is not known to be valid on any hardware despite being
35          * valid per the spec. Take the pragmatic approach and reject a
36          * GSI of zero for now.
37          */
38         if (!gsi)
39                 return 0;
40
41         if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
42                 trigger = ACPI_EDGE_SENSITIVE;
43         else
44                 trigger = ACPI_LEVEL_SENSITIVE;
45
46         /*
47          * Helpfully, the MADT GICC doesn't have a polarity flag for the
48          * "performance interrupt". Luckily, on compliant GICs the polarity is
49          * a fixed value in HW (for both SPIs and PPIs) that we cannot change
50          * from SW.
51          *
52          * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
53          * may not match the real polarity, but that should not matter.
54          *
55          * Other interrupt controllers are not supported with ACPI.
56          */
57         return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
58 }
59
60 static void arm_pmu_acpi_unregister_irq(int cpu)
61 {
62         struct acpi_madt_generic_interrupt *gicc;
63         int gsi;
64
65         gicc = acpi_cpu_get_madt_gicc(cpu);
66
67         gsi = gicc->performance_interrupt;
68         if (gsi)
69                 acpi_unregister_gsi(gsi);
70 }
71
72 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
73 static struct resource spe_resources[] = {
74         {
75                 /* irq */
76                 .flags          = IORESOURCE_IRQ,
77         }
78 };
79
80 static struct platform_device spe_dev = {
81         .name = ARMV8_SPE_PDEV_NAME,
82         .id = -1,
83         .resource = spe_resources,
84         .num_resources = ARRAY_SIZE(spe_resources)
85 };
86
87 /*
88  * For lack of a better place, hook the normal PMU MADT walk
89  * and create a SPE device if we detect a recent MADT with
90  * a homogeneous PPI mapping.
91  */
92 static void arm_spe_acpi_register_device(void)
93 {
94         int cpu, hetid, irq, ret;
95         bool first = true;
96         u16 gsi = 0;
97
98         /*
99          * Sanity check all the GICC tables for the same interrupt number.
100          * For now, we only support homogeneous ACPI/SPE machines.
101          */
102         for_each_possible_cpu(cpu) {
103                 struct acpi_madt_generic_interrupt *gicc;
104
105                 gicc = acpi_cpu_get_madt_gicc(cpu);
106                 if (gicc->header.length < ACPI_MADT_GICC_SPE)
107                         return;
108
109                 if (first) {
110                         gsi = gicc->spe_interrupt;
111                         if (!gsi)
112                                 return;
113                         hetid = find_acpi_cpu_topology_hetero_id(cpu);
114                         first = false;
115                 } else if ((gsi != gicc->spe_interrupt) ||
116                            (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
117                         pr_warn("ACPI: SPE must be homogeneous\n");
118                         return;
119                 }
120         }
121
122         irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
123                                 ACPI_ACTIVE_HIGH);
124         if (irq < 0) {
125                 pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
126                 return;
127         }
128
129         spe_resources[0].start = irq;
130         ret = platform_device_register(&spe_dev);
131         if (ret < 0) {
132                 pr_warn("ACPI: SPE: Unable to register device\n");
133                 acpi_unregister_gsi(gsi);
134         }
135 }
136 #else
137 static inline void arm_spe_acpi_register_device(void)
138 {
139 }
140 #endif /* CONFIG_ARM_SPE_PMU */
141
142 static int arm_pmu_acpi_parse_irqs(void)
143 {
144         int irq, cpu, irq_cpu, err;
145
146         for_each_possible_cpu(cpu) {
147                 irq = arm_pmu_acpi_register_irq(cpu);
148                 if (irq < 0) {
149                         err = irq;
150                         pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
151                                 cpu, err);
152                         goto out_err;
153                 } else if (irq == 0) {
154                         pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
155                 }
156
157                 /*
158                  * Log and request the IRQ so the core arm_pmu code can manage
159                  * it. We'll have to sanity-check IRQs later when we associate
160                  * them with their PMUs.
161                  */
162                 per_cpu(pmu_irqs, cpu) = irq;
163                 err = armpmu_request_irq(irq, cpu);
164                 if (err)
165                         goto out_err;
166         }
167
168         return 0;
169
170 out_err:
171         for_each_possible_cpu(cpu) {
172                 irq = per_cpu(pmu_irqs, cpu);
173                 if (!irq)
174                         continue;
175
176                 arm_pmu_acpi_unregister_irq(cpu);
177
178                 /*
179                  * Blat all copies of the IRQ so that we only unregister the
180                  * corresponding GSI once (e.g. when we have PPIs).
181                  */
182                 for_each_possible_cpu(irq_cpu) {
183                         if (per_cpu(pmu_irqs, irq_cpu) == irq)
184                                 per_cpu(pmu_irqs, irq_cpu) = 0;
185                 }
186         }
187
188         return err;
189 }
190
191 static struct arm_pmu *arm_pmu_acpi_find_pmu(void)
192 {
193         unsigned long cpuid = read_cpuid_id();
194         struct arm_pmu *pmu;
195         int cpu;
196
197         for_each_possible_cpu(cpu) {
198                 pmu = per_cpu(probed_pmus, cpu);
199                 if (!pmu || pmu->acpi_cpuid != cpuid)
200                         continue;
201
202                 return pmu;
203         }
204
205         return NULL;
206 }
207
208 /*
209  * Check whether the new IRQ is compatible with those already associated with
210  * the PMU (e.g. we don't have mismatched PPIs).
211  */
212 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
213 {
214         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
215         int cpu;
216
217         if (!irq)
218                 return true;
219
220         for_each_cpu(cpu, &pmu->supported_cpus) {
221                 int other_irq = per_cpu(hw_events->irq, cpu);
222                 if (!other_irq)
223                         continue;
224
225                 if (irq == other_irq)
226                         continue;
227                 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
228                         continue;
229
230                 pr_warn("mismatched PPIs detected\n");
231                 return false;
232         }
233
234         return true;
235 }
236
237 static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu,
238                                            unsigned int cpu)
239 {
240         int irq = per_cpu(pmu_irqs, cpu);
241
242         per_cpu(probed_pmus, cpu) = pmu;
243
244         if (pmu_irq_matches(pmu, irq)) {
245                 struct pmu_hw_events __percpu *hw_events;
246                 hw_events = pmu->hw_events;
247                 per_cpu(hw_events->irq, cpu) = irq;
248         }
249
250         cpumask_set_cpu(cpu, &pmu->supported_cpus);
251 }
252
253 /*
254  * This must run before the common arm_pmu hotplug logic, so that we can
255  * associate a CPU and its interrupt before the common code tries to manage the
256  * affinity and so on.
257  *
258  * Note that hotplug events are serialized, so we cannot race with another CPU
259  * coming up. The perf core won't open events while a hotplug event is in
260  * progress.
261  */
262 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
263 {
264         struct arm_pmu *pmu;
265
266         /* If we've already probed this CPU, we have nothing to do */
267         if (per_cpu(probed_pmus, cpu))
268                 return 0;
269
270         pmu = arm_pmu_acpi_find_pmu();
271         if (!pmu) {
272                 pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n",
273                                     cpu);
274                 return 0;
275         }
276
277         arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
278         return 0;
279 }
280
281 static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu,
282                                              unsigned long cpuid)
283 {
284         int cpu;
285
286         for_each_online_cpu(cpu) {
287                 unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr;
288
289                 if (cpu_cpuid == cpuid)
290                         arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
291         }
292 }
293
294 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
295 {
296         int pmu_idx = 0;
297         unsigned int cpu;
298         int ret;
299
300         ret = arm_pmu_acpi_parse_irqs();
301         if (ret)
302                 return ret;
303
304         ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING,
305                                         "perf/arm/pmu_acpi:starting",
306                                         arm_pmu_acpi_cpu_starting, NULL);
307         if (ret)
308                 return ret;
309
310         /*
311          * Initialise and register the set of PMUs which we know about right
312          * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
313          * could handle late hotplug, but this may lead to deadlock since we
314          * might try to register a hotplug notifier instance from within a
315          * hotplug notifier.
316          *
317          * There's also the problem of having access to the right init_fn,
318          * without tying this too deeply into the "real" PMU driver.
319          *
320          * For the moment, as with the platform/DT case, we need at least one
321          * of a PMU's CPUs to be online at probe time.
322          */
323         for_each_online_cpu(cpu) {
324                 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
325                 unsigned long cpuid;
326                 char *base_name;
327
328                 /* If we've already probed this CPU, we have nothing to do */
329                 if (pmu)
330                         continue;
331
332                 pmu = armpmu_alloc();
333                 if (!pmu) {
334                         pr_warn("Unable to allocate PMU for CPU%d\n",
335                                 cpu);
336                         return -ENOMEM;
337                 }
338
339                 cpuid = per_cpu(cpu_data, cpu).reg_midr;
340                 pmu->acpi_cpuid = cpuid;
341
342                 arm_pmu_acpi_probe_matching_cpus(pmu, cpuid);
343
344                 ret = init_fn(pmu);
345                 if (ret == -ENODEV) {
346                         /* PMU not handled by this driver, or not present */
347                         continue;
348                 } else if (ret) {
349                         pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
350                         return ret;
351                 }
352
353                 base_name = pmu->name;
354                 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
355                 if (!pmu->name) {
356                         pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
357                         return -ENOMEM;
358                 }
359
360                 ret = armpmu_register(pmu);
361                 if (ret) {
362                         pr_warn("Failed to register PMU for CPU%d\n", cpu);
363                         kfree(pmu->name);
364                         return ret;
365                 }
366         }
367
368         return ret;
369 }
370
371 static int arm_pmu_acpi_init(void)
372 {
373         if (acpi_disabled)
374                 return 0;
375
376         arm_spe_acpi_register_device();
377
378         return 0;
379 }
380 subsys_initcall(arm_pmu_acpi_init)