ASoC: Merge v6.5-rc2
[linux-2.6-block.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/slab.h>
22
23 struct nvmem_device {
24         struct module           *owner;
25         struct device           dev;
26         int                     stride;
27         int                     word_size;
28         int                     id;
29         struct kref             refcnt;
30         size_t                  size;
31         bool                    read_only;
32         bool                    root_only;
33         int                     flags;
34         enum nvmem_type         type;
35         struct bin_attribute    eeprom;
36         struct device           *base_dev;
37         struct list_head        cells;
38         const struct nvmem_keepout *keepout;
39         unsigned int            nkeepout;
40         nvmem_reg_read_t        reg_read;
41         nvmem_reg_write_t       reg_write;
42         struct gpio_desc        *wp_gpio;
43         struct nvmem_layout     *layout;
44         void *priv;
45 };
46
47 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48
49 #define FLAG_COMPAT             BIT(0)
50 struct nvmem_cell_entry {
51         const char              *name;
52         int                     offset;
53         size_t                  raw_len;
54         int                     bytes;
55         int                     bit_offset;
56         int                     nbits;
57         nvmem_cell_post_process_t read_post_process;
58         void                    *priv;
59         struct device_node      *np;
60         struct nvmem_device     *nvmem;
61         struct list_head        node;
62 };
63
64 struct nvmem_cell {
65         struct nvmem_cell_entry *entry;
66         const char              *id;
67         int                     index;
68 };
69
70 static DEFINE_MUTEX(nvmem_mutex);
71 static DEFINE_IDA(nvmem_ida);
72
73 static DEFINE_MUTEX(nvmem_cell_mutex);
74 static LIST_HEAD(nvmem_cell_tables);
75
76 static DEFINE_MUTEX(nvmem_lookup_mutex);
77 static LIST_HEAD(nvmem_lookup_list);
78
79 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
80
81 static DEFINE_SPINLOCK(nvmem_layout_lock);
82 static LIST_HEAD(nvmem_layouts);
83
84 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
85                             void *val, size_t bytes)
86 {
87         if (nvmem->reg_read)
88                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
89
90         return -EINVAL;
91 }
92
93 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
94                              void *val, size_t bytes)
95 {
96         int ret;
97
98         if (nvmem->reg_write) {
99                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
100                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
101                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
102                 return ret;
103         }
104
105         return -EINVAL;
106 }
107
108 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
109                                       unsigned int offset, void *val,
110                                       size_t bytes, int write)
111 {
112
113         unsigned int end = offset + bytes;
114         unsigned int kend, ksize;
115         const struct nvmem_keepout *keepout = nvmem->keepout;
116         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
117         int rc;
118
119         /*
120          * Skip all keepouts before the range being accessed.
121          * Keepouts are sorted.
122          */
123         while ((keepout < keepoutend) && (keepout->end <= offset))
124                 keepout++;
125
126         while ((offset < end) && (keepout < keepoutend)) {
127                 /* Access the valid portion before the keepout. */
128                 if (offset < keepout->start) {
129                         kend = min(end, keepout->start);
130                         ksize = kend - offset;
131                         if (write)
132                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
133                         else
134                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
135
136                         if (rc)
137                                 return rc;
138
139                         offset += ksize;
140                         val += ksize;
141                 }
142
143                 /*
144                  * Now we're aligned to the start of this keepout zone. Go
145                  * through it.
146                  */
147                 kend = min(end, keepout->end);
148                 ksize = kend - offset;
149                 if (!write)
150                         memset(val, keepout->value, ksize);
151
152                 val += ksize;
153                 offset += ksize;
154                 keepout++;
155         }
156
157         /*
158          * If we ran out of keepouts but there's still stuff to do, send it
159          * down directly
160          */
161         if (offset < end) {
162                 ksize = end - offset;
163                 if (write)
164                         return __nvmem_reg_write(nvmem, offset, val, ksize);
165                 else
166                         return __nvmem_reg_read(nvmem, offset, val, ksize);
167         }
168
169         return 0;
170 }
171
172 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
173                           void *val, size_t bytes)
174 {
175         if (!nvmem->nkeepout)
176                 return __nvmem_reg_read(nvmem, offset, val, bytes);
177
178         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
179 }
180
181 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
182                            void *val, size_t bytes)
183 {
184         if (!nvmem->nkeepout)
185                 return __nvmem_reg_write(nvmem, offset, val, bytes);
186
187         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
188 }
189
190 #ifdef CONFIG_NVMEM_SYSFS
191 static const char * const nvmem_type_str[] = {
192         [NVMEM_TYPE_UNKNOWN] = "Unknown",
193         [NVMEM_TYPE_EEPROM] = "EEPROM",
194         [NVMEM_TYPE_OTP] = "OTP",
195         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
196         [NVMEM_TYPE_FRAM] = "FRAM",
197 };
198
199 #ifdef CONFIG_DEBUG_LOCK_ALLOC
200 static struct lock_class_key eeprom_lock_key;
201 #endif
202
203 static ssize_t type_show(struct device *dev,
204                          struct device_attribute *attr, char *buf)
205 {
206         struct nvmem_device *nvmem = to_nvmem_device(dev);
207
208         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
209 }
210
211 static DEVICE_ATTR_RO(type);
212
213 static struct attribute *nvmem_attrs[] = {
214         &dev_attr_type.attr,
215         NULL,
216 };
217
218 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
219                                    struct bin_attribute *attr, char *buf,
220                                    loff_t pos, size_t count)
221 {
222         struct device *dev;
223         struct nvmem_device *nvmem;
224         int rc;
225
226         if (attr->private)
227                 dev = attr->private;
228         else
229                 dev = kobj_to_dev(kobj);
230         nvmem = to_nvmem_device(dev);
231
232         /* Stop the user from reading */
233         if (pos >= nvmem->size)
234                 return 0;
235
236         if (!IS_ALIGNED(pos, nvmem->stride))
237                 return -EINVAL;
238
239         if (count < nvmem->word_size)
240                 return -EINVAL;
241
242         if (pos + count > nvmem->size)
243                 count = nvmem->size - pos;
244
245         count = round_down(count, nvmem->word_size);
246
247         if (!nvmem->reg_read)
248                 return -EPERM;
249
250         rc = nvmem_reg_read(nvmem, pos, buf, count);
251
252         if (rc)
253                 return rc;
254
255         return count;
256 }
257
258 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
259                                     struct bin_attribute *attr, char *buf,
260                                     loff_t pos, size_t count)
261 {
262         struct device *dev;
263         struct nvmem_device *nvmem;
264         int rc;
265
266         if (attr->private)
267                 dev = attr->private;
268         else
269                 dev = kobj_to_dev(kobj);
270         nvmem = to_nvmem_device(dev);
271
272         /* Stop the user from writing */
273         if (pos >= nvmem->size)
274                 return -EFBIG;
275
276         if (!IS_ALIGNED(pos, nvmem->stride))
277                 return -EINVAL;
278
279         if (count < nvmem->word_size)
280                 return -EINVAL;
281
282         if (pos + count > nvmem->size)
283                 count = nvmem->size - pos;
284
285         count = round_down(count, nvmem->word_size);
286
287         if (!nvmem->reg_write)
288                 return -EPERM;
289
290         rc = nvmem_reg_write(nvmem, pos, buf, count);
291
292         if (rc)
293                 return rc;
294
295         return count;
296 }
297
298 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
299 {
300         umode_t mode = 0400;
301
302         if (!nvmem->root_only)
303                 mode |= 0044;
304
305         if (!nvmem->read_only)
306                 mode |= 0200;
307
308         if (!nvmem->reg_write)
309                 mode &= ~0200;
310
311         if (!nvmem->reg_read)
312                 mode &= ~0444;
313
314         return mode;
315 }
316
317 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
318                                          struct bin_attribute *attr, int i)
319 {
320         struct device *dev = kobj_to_dev(kobj);
321         struct nvmem_device *nvmem = to_nvmem_device(dev);
322
323         attr->size = nvmem->size;
324
325         return nvmem_bin_attr_get_umode(nvmem);
326 }
327
328 /* default read/write permissions */
329 static struct bin_attribute bin_attr_rw_nvmem = {
330         .attr   = {
331                 .name   = "nvmem",
332                 .mode   = 0644,
333         },
334         .read   = bin_attr_nvmem_read,
335         .write  = bin_attr_nvmem_write,
336 };
337
338 static struct bin_attribute *nvmem_bin_attributes[] = {
339         &bin_attr_rw_nvmem,
340         NULL,
341 };
342
343 static const struct attribute_group nvmem_bin_group = {
344         .bin_attrs      = nvmem_bin_attributes,
345         .attrs          = nvmem_attrs,
346         .is_bin_visible = nvmem_bin_attr_is_visible,
347 };
348
349 static const struct attribute_group *nvmem_dev_groups[] = {
350         &nvmem_bin_group,
351         NULL,
352 };
353
354 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
355         .attr   = {
356                 .name   = "eeprom",
357         },
358         .read   = bin_attr_nvmem_read,
359         .write  = bin_attr_nvmem_write,
360 };
361
362 /*
363  * nvmem_setup_compat() - Create an additional binary entry in
364  * drivers sys directory, to be backwards compatible with the older
365  * drivers/misc/eeprom drivers.
366  */
367 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
368                                     const struct nvmem_config *config)
369 {
370         int rval;
371
372         if (!config->compat)
373                 return 0;
374
375         if (!config->base_dev)
376                 return -EINVAL;
377
378         if (config->type == NVMEM_TYPE_FRAM)
379                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
380
381         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
382         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
383         nvmem->eeprom.size = nvmem->size;
384 #ifdef CONFIG_DEBUG_LOCK_ALLOC
385         nvmem->eeprom.attr.key = &eeprom_lock_key;
386 #endif
387         nvmem->eeprom.private = &nvmem->dev;
388         nvmem->base_dev = config->base_dev;
389
390         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
391         if (rval) {
392                 dev_err(&nvmem->dev,
393                         "Failed to create eeprom binary file %d\n", rval);
394                 return rval;
395         }
396
397         nvmem->flags |= FLAG_COMPAT;
398
399         return 0;
400 }
401
402 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
403                               const struct nvmem_config *config)
404 {
405         if (config->compat)
406                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
407 }
408
409 #else /* CONFIG_NVMEM_SYSFS */
410
411 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
412                                     const struct nvmem_config *config)
413 {
414         return -ENOSYS;
415 }
416 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
417                                       const struct nvmem_config *config)
418 {
419 }
420
421 #endif /* CONFIG_NVMEM_SYSFS */
422
423 static void nvmem_release(struct device *dev)
424 {
425         struct nvmem_device *nvmem = to_nvmem_device(dev);
426
427         ida_free(&nvmem_ida, nvmem->id);
428         gpiod_put(nvmem->wp_gpio);
429         kfree(nvmem);
430 }
431
432 static const struct device_type nvmem_provider_type = {
433         .release        = nvmem_release,
434 };
435
436 static struct bus_type nvmem_bus_type = {
437         .name           = "nvmem",
438 };
439
440 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
441 {
442         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
443         mutex_lock(&nvmem_mutex);
444         list_del(&cell->node);
445         mutex_unlock(&nvmem_mutex);
446         of_node_put(cell->np);
447         kfree_const(cell->name);
448         kfree(cell);
449 }
450
451 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
452 {
453         struct nvmem_cell_entry *cell, *p;
454
455         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
456                 nvmem_cell_entry_drop(cell);
457 }
458
459 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
460 {
461         mutex_lock(&nvmem_mutex);
462         list_add_tail(&cell->node, &cell->nvmem->cells);
463         mutex_unlock(&nvmem_mutex);
464         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
465 }
466
467 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
468                                                      const struct nvmem_cell_info *info,
469                                                      struct nvmem_cell_entry *cell)
470 {
471         cell->nvmem = nvmem;
472         cell->offset = info->offset;
473         cell->raw_len = info->raw_len ?: info->bytes;
474         cell->bytes = info->bytes;
475         cell->name = info->name;
476         cell->read_post_process = info->read_post_process;
477         cell->priv = info->priv;
478
479         cell->bit_offset = info->bit_offset;
480         cell->nbits = info->nbits;
481         cell->np = info->np;
482
483         if (cell->nbits)
484                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
485                                            BITS_PER_BYTE);
486
487         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
488                 dev_err(&nvmem->dev,
489                         "cell %s unaligned to nvmem stride %d\n",
490                         cell->name ?: "<unknown>", nvmem->stride);
491                 return -EINVAL;
492         }
493
494         return 0;
495 }
496
497 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
498                                                const struct nvmem_cell_info *info,
499                                                struct nvmem_cell_entry *cell)
500 {
501         int err;
502
503         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
504         if (err)
505                 return err;
506
507         cell->name = kstrdup_const(info->name, GFP_KERNEL);
508         if (!cell->name)
509                 return -ENOMEM;
510
511         return 0;
512 }
513
514 /**
515  * nvmem_add_one_cell() - Add one cell information to an nvmem device
516  *
517  * @nvmem: nvmem device to add cells to.
518  * @info: nvmem cell info to add to the device
519  *
520  * Return: 0 or negative error code on failure.
521  */
522 int nvmem_add_one_cell(struct nvmem_device *nvmem,
523                        const struct nvmem_cell_info *info)
524 {
525         struct nvmem_cell_entry *cell;
526         int rval;
527
528         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
529         if (!cell)
530                 return -ENOMEM;
531
532         rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
533         if (rval) {
534                 kfree(cell);
535                 return rval;
536         }
537
538         nvmem_cell_entry_add(cell);
539
540         return 0;
541 }
542 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
543
544 /**
545  * nvmem_add_cells() - Add cell information to an nvmem device
546  *
547  * @nvmem: nvmem device to add cells to.
548  * @info: nvmem cell info to add to the device
549  * @ncells: number of cells in info
550  *
551  * Return: 0 or negative error code on failure.
552  */
553 static int nvmem_add_cells(struct nvmem_device *nvmem,
554                     const struct nvmem_cell_info *info,
555                     int ncells)
556 {
557         int i, rval;
558
559         for (i = 0; i < ncells; i++) {
560                 rval = nvmem_add_one_cell(nvmem, &info[i]);
561                 if (rval)
562                         return rval;
563         }
564
565         return 0;
566 }
567
568 /**
569  * nvmem_register_notifier() - Register a notifier block for nvmem events.
570  *
571  * @nb: notifier block to be called on nvmem events.
572  *
573  * Return: 0 on success, negative error number on failure.
574  */
575 int nvmem_register_notifier(struct notifier_block *nb)
576 {
577         return blocking_notifier_chain_register(&nvmem_notifier, nb);
578 }
579 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
580
581 /**
582  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
583  *
584  * @nb: notifier block to be unregistered.
585  *
586  * Return: 0 on success, negative error number on failure.
587  */
588 int nvmem_unregister_notifier(struct notifier_block *nb)
589 {
590         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
591 }
592 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
593
594 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
595 {
596         const struct nvmem_cell_info *info;
597         struct nvmem_cell_table *table;
598         struct nvmem_cell_entry *cell;
599         int rval = 0, i;
600
601         mutex_lock(&nvmem_cell_mutex);
602         list_for_each_entry(table, &nvmem_cell_tables, node) {
603                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
604                         for (i = 0; i < table->ncells; i++) {
605                                 info = &table->cells[i];
606
607                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
608                                 if (!cell) {
609                                         rval = -ENOMEM;
610                                         goto out;
611                                 }
612
613                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
614                                 if (rval) {
615                                         kfree(cell);
616                                         goto out;
617                                 }
618
619                                 nvmem_cell_entry_add(cell);
620                         }
621                 }
622         }
623
624 out:
625         mutex_unlock(&nvmem_cell_mutex);
626         return rval;
627 }
628
629 static struct nvmem_cell_entry *
630 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
631 {
632         struct nvmem_cell_entry *iter, *cell = NULL;
633
634         mutex_lock(&nvmem_mutex);
635         list_for_each_entry(iter, &nvmem->cells, node) {
636                 if (strcmp(cell_id, iter->name) == 0) {
637                         cell = iter;
638                         break;
639                 }
640         }
641         mutex_unlock(&nvmem_mutex);
642
643         return cell;
644 }
645
646 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
647 {
648         unsigned int cur = 0;
649         const struct nvmem_keepout *keepout = nvmem->keepout;
650         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
651
652         while (keepout < keepoutend) {
653                 /* Ensure keepouts are sorted and don't overlap. */
654                 if (keepout->start < cur) {
655                         dev_err(&nvmem->dev,
656                                 "Keepout regions aren't sorted or overlap.\n");
657
658                         return -ERANGE;
659                 }
660
661                 if (keepout->end < keepout->start) {
662                         dev_err(&nvmem->dev,
663                                 "Invalid keepout region.\n");
664
665                         return -EINVAL;
666                 }
667
668                 /*
669                  * Validate keepouts (and holes between) don't violate
670                  * word_size constraints.
671                  */
672                 if ((keepout->end - keepout->start < nvmem->word_size) ||
673                     ((keepout->start != cur) &&
674                      (keepout->start - cur < nvmem->word_size))) {
675
676                         dev_err(&nvmem->dev,
677                                 "Keepout regions violate word_size constraints.\n");
678
679                         return -ERANGE;
680                 }
681
682                 /* Validate keepouts don't violate stride (alignment). */
683                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
684                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
685
686                         dev_err(&nvmem->dev,
687                                 "Keepout regions violate stride.\n");
688
689                         return -EINVAL;
690                 }
691
692                 cur = keepout->end;
693                 keepout++;
694         }
695
696         return 0;
697 }
698
699 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
700 {
701         struct nvmem_layout *layout = nvmem->layout;
702         struct device *dev = &nvmem->dev;
703         struct device_node *child;
704         const __be32 *addr;
705         int len, ret;
706
707         for_each_child_of_node(np, child) {
708                 struct nvmem_cell_info info = {0};
709
710                 addr = of_get_property(child, "reg", &len);
711                 if (!addr)
712                         continue;
713                 if (len < 2 * sizeof(u32)) {
714                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
715                         of_node_put(child);
716                         return -EINVAL;
717                 }
718
719                 info.offset = be32_to_cpup(addr++);
720                 info.bytes = be32_to_cpup(addr);
721                 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
722
723                 addr = of_get_property(child, "bits", &len);
724                 if (addr && len == (2 * sizeof(u32))) {
725                         info.bit_offset = be32_to_cpup(addr++);
726                         info.nbits = be32_to_cpup(addr);
727                 }
728
729                 info.np = of_node_get(child);
730
731                 if (layout && layout->fixup_cell_info)
732                         layout->fixup_cell_info(nvmem, layout, &info);
733
734                 ret = nvmem_add_one_cell(nvmem, &info);
735                 kfree(info.name);
736                 if (ret) {
737                         of_node_put(child);
738                         return ret;
739                 }
740         }
741
742         return 0;
743 }
744
745 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
746 {
747         return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
748 }
749
750 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
751 {
752         struct device_node *layout_np;
753         int err = 0;
754
755         layout_np = of_nvmem_layout_get_container(nvmem);
756         if (!layout_np)
757                 return 0;
758
759         if (of_device_is_compatible(layout_np, "fixed-layout"))
760                 err = nvmem_add_cells_from_dt(nvmem, layout_np);
761
762         of_node_put(layout_np);
763
764         return err;
765 }
766
767 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
768 {
769         layout->owner = owner;
770
771         spin_lock(&nvmem_layout_lock);
772         list_add(&layout->node, &nvmem_layouts);
773         spin_unlock(&nvmem_layout_lock);
774
775         return 0;
776 }
777 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
778
779 void nvmem_layout_unregister(struct nvmem_layout *layout)
780 {
781         spin_lock(&nvmem_layout_lock);
782         list_del(&layout->node);
783         spin_unlock(&nvmem_layout_lock);
784 }
785 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
786
787 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
788 {
789         struct device_node *layout_np, *np = nvmem->dev.of_node;
790         struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
791
792         layout_np = of_get_child_by_name(np, "nvmem-layout");
793         if (!layout_np)
794                 return NULL;
795
796         /*
797          * In case the nvmem device was built-in while the layout was built as a
798          * module, we shall manually request the layout driver loading otherwise
799          * we'll never have any match.
800          */
801         of_request_module(layout_np);
802
803         spin_lock(&nvmem_layout_lock);
804
805         list_for_each_entry(l, &nvmem_layouts, node) {
806                 if (of_match_node(l->of_match_table, layout_np)) {
807                         if (try_module_get(l->owner))
808                                 layout = l;
809
810                         break;
811                 }
812         }
813
814         spin_unlock(&nvmem_layout_lock);
815         of_node_put(layout_np);
816
817         return layout;
818 }
819
820 static void nvmem_layout_put(struct nvmem_layout *layout)
821 {
822         if (layout)
823                 module_put(layout->owner);
824 }
825
826 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
827 {
828         struct nvmem_layout *layout = nvmem->layout;
829         int ret;
830
831         if (layout && layout->add_cells) {
832                 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
833                 if (ret)
834                         return ret;
835         }
836
837         return 0;
838 }
839
840 #if IS_ENABLED(CONFIG_OF)
841 /**
842  * of_nvmem_layout_get_container() - Get OF node to layout container.
843  *
844  * @nvmem: nvmem device.
845  *
846  * Return: a node pointer with refcount incremented or NULL if no
847  * container exists. Use of_node_put() on it when done.
848  */
849 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
850 {
851         return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
852 }
853 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
854 #endif
855
856 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
857                                         struct nvmem_layout *layout)
858 {
859         struct device_node __maybe_unused *layout_np;
860         const struct of_device_id *match;
861
862         layout_np = of_nvmem_layout_get_container(nvmem);
863         match = of_match_node(layout->of_match_table, layout_np);
864
865         return match ? match->data : NULL;
866 }
867 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
868
869 /**
870  * nvmem_register() - Register a nvmem device for given nvmem_config.
871  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
872  *
873  * @config: nvmem device configuration with which nvmem device is created.
874  *
875  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
876  * on success.
877  */
878
879 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
880 {
881         struct nvmem_device *nvmem;
882         int rval;
883
884         if (!config->dev)
885                 return ERR_PTR(-EINVAL);
886
887         if (!config->reg_read && !config->reg_write)
888                 return ERR_PTR(-EINVAL);
889
890         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
891         if (!nvmem)
892                 return ERR_PTR(-ENOMEM);
893
894         rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
895         if (rval < 0) {
896                 kfree(nvmem);
897                 return ERR_PTR(rval);
898         }
899
900         nvmem->id = rval;
901
902         nvmem->dev.type = &nvmem_provider_type;
903         nvmem->dev.bus = &nvmem_bus_type;
904         nvmem->dev.parent = config->dev;
905
906         device_initialize(&nvmem->dev);
907
908         if (!config->ignore_wp)
909                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
910                                                     GPIOD_OUT_HIGH);
911         if (IS_ERR(nvmem->wp_gpio)) {
912                 rval = PTR_ERR(nvmem->wp_gpio);
913                 nvmem->wp_gpio = NULL;
914                 goto err_put_device;
915         }
916
917         kref_init(&nvmem->refcnt);
918         INIT_LIST_HEAD(&nvmem->cells);
919
920         nvmem->owner = config->owner;
921         if (!nvmem->owner && config->dev->driver)
922                 nvmem->owner = config->dev->driver->owner;
923         nvmem->stride = config->stride ?: 1;
924         nvmem->word_size = config->word_size ?: 1;
925         nvmem->size = config->size;
926         nvmem->root_only = config->root_only;
927         nvmem->priv = config->priv;
928         nvmem->type = config->type;
929         nvmem->reg_read = config->reg_read;
930         nvmem->reg_write = config->reg_write;
931         nvmem->keepout = config->keepout;
932         nvmem->nkeepout = config->nkeepout;
933         if (config->of_node)
934                 nvmem->dev.of_node = config->of_node;
935         else if (!config->no_of_node)
936                 nvmem->dev.of_node = config->dev->of_node;
937
938         switch (config->id) {
939         case NVMEM_DEVID_NONE:
940                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
941                 break;
942         case NVMEM_DEVID_AUTO:
943                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
944                 break;
945         default:
946                 rval = dev_set_name(&nvmem->dev, "%s%d",
947                              config->name ? : "nvmem",
948                              config->name ? config->id : nvmem->id);
949                 break;
950         }
951
952         if (rval)
953                 goto err_put_device;
954
955         nvmem->read_only = device_property_present(config->dev, "read-only") ||
956                            config->read_only || !nvmem->reg_write;
957
958 #ifdef CONFIG_NVMEM_SYSFS
959         nvmem->dev.groups = nvmem_dev_groups;
960 #endif
961
962         if (nvmem->nkeepout) {
963                 rval = nvmem_validate_keepouts(nvmem);
964                 if (rval)
965                         goto err_put_device;
966         }
967
968         if (config->compat) {
969                 rval = nvmem_sysfs_setup_compat(nvmem, config);
970                 if (rval)
971                         goto err_put_device;
972         }
973
974         /*
975          * If the driver supplied a layout by config->layout, the module
976          * pointer will be NULL and nvmem_layout_put() will be a noop.
977          */
978         nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
979         if (IS_ERR(nvmem->layout)) {
980                 rval = PTR_ERR(nvmem->layout);
981                 nvmem->layout = NULL;
982
983                 if (rval == -EPROBE_DEFER)
984                         goto err_teardown_compat;
985         }
986
987         if (config->cells) {
988                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
989                 if (rval)
990                         goto err_remove_cells;
991         }
992
993         rval = nvmem_add_cells_from_table(nvmem);
994         if (rval)
995                 goto err_remove_cells;
996
997         rval = nvmem_add_cells_from_legacy_of(nvmem);
998         if (rval)
999                 goto err_remove_cells;
1000
1001         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1002
1003         rval = device_add(&nvmem->dev);
1004         if (rval)
1005                 goto err_remove_cells;
1006
1007         rval = nvmem_add_cells_from_fixed_layout(nvmem);
1008         if (rval)
1009                 goto err_remove_cells;
1010
1011         rval = nvmem_add_cells_from_layout(nvmem);
1012         if (rval)
1013                 goto err_remove_cells;
1014
1015         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1016
1017         return nvmem;
1018
1019 err_remove_cells:
1020         nvmem_device_remove_all_cells(nvmem);
1021         nvmem_layout_put(nvmem->layout);
1022 err_teardown_compat:
1023         if (config->compat)
1024                 nvmem_sysfs_remove_compat(nvmem, config);
1025 err_put_device:
1026         put_device(&nvmem->dev);
1027
1028         return ERR_PTR(rval);
1029 }
1030 EXPORT_SYMBOL_GPL(nvmem_register);
1031
1032 static void nvmem_device_release(struct kref *kref)
1033 {
1034         struct nvmem_device *nvmem;
1035
1036         nvmem = container_of(kref, struct nvmem_device, refcnt);
1037
1038         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1039
1040         if (nvmem->flags & FLAG_COMPAT)
1041                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1042
1043         nvmem_device_remove_all_cells(nvmem);
1044         nvmem_layout_put(nvmem->layout);
1045         device_unregister(&nvmem->dev);
1046 }
1047
1048 /**
1049  * nvmem_unregister() - Unregister previously registered nvmem device
1050  *
1051  * @nvmem: Pointer to previously registered nvmem device.
1052  */
1053 void nvmem_unregister(struct nvmem_device *nvmem)
1054 {
1055         if (nvmem)
1056                 kref_put(&nvmem->refcnt, nvmem_device_release);
1057 }
1058 EXPORT_SYMBOL_GPL(nvmem_unregister);
1059
1060 static void devm_nvmem_unregister(void *nvmem)
1061 {
1062         nvmem_unregister(nvmem);
1063 }
1064
1065 /**
1066  * devm_nvmem_register() - Register a managed nvmem device for given
1067  * nvmem_config.
1068  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1069  *
1070  * @dev: Device that uses the nvmem device.
1071  * @config: nvmem device configuration with which nvmem device is created.
1072  *
1073  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1074  * on success.
1075  */
1076 struct nvmem_device *devm_nvmem_register(struct device *dev,
1077                                          const struct nvmem_config *config)
1078 {
1079         struct nvmem_device *nvmem;
1080         int ret;
1081
1082         nvmem = nvmem_register(config);
1083         if (IS_ERR(nvmem))
1084                 return nvmem;
1085
1086         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1087         if (ret)
1088                 return ERR_PTR(ret);
1089
1090         return nvmem;
1091 }
1092 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1093
1094 static struct nvmem_device *__nvmem_device_get(void *data,
1095                         int (*match)(struct device *dev, const void *data))
1096 {
1097         struct nvmem_device *nvmem = NULL;
1098         struct device *dev;
1099
1100         mutex_lock(&nvmem_mutex);
1101         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1102         if (dev)
1103                 nvmem = to_nvmem_device(dev);
1104         mutex_unlock(&nvmem_mutex);
1105         if (!nvmem)
1106                 return ERR_PTR(-EPROBE_DEFER);
1107
1108         if (!try_module_get(nvmem->owner)) {
1109                 dev_err(&nvmem->dev,
1110                         "could not increase module refcount for cell %s\n",
1111                         nvmem_dev_name(nvmem));
1112
1113                 put_device(&nvmem->dev);
1114                 return ERR_PTR(-EINVAL);
1115         }
1116
1117         kref_get(&nvmem->refcnt);
1118
1119         return nvmem;
1120 }
1121
1122 static void __nvmem_device_put(struct nvmem_device *nvmem)
1123 {
1124         put_device(&nvmem->dev);
1125         module_put(nvmem->owner);
1126         kref_put(&nvmem->refcnt, nvmem_device_release);
1127 }
1128
1129 #if IS_ENABLED(CONFIG_OF)
1130 /**
1131  * of_nvmem_device_get() - Get nvmem device from a given id
1132  *
1133  * @np: Device tree node that uses the nvmem device.
1134  * @id: nvmem name from nvmem-names property.
1135  *
1136  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1137  * on success.
1138  */
1139 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1140 {
1141
1142         struct device_node *nvmem_np;
1143         struct nvmem_device *nvmem;
1144         int index = 0;
1145
1146         if (id)
1147                 index = of_property_match_string(np, "nvmem-names", id);
1148
1149         nvmem_np = of_parse_phandle(np, "nvmem", index);
1150         if (!nvmem_np)
1151                 return ERR_PTR(-ENOENT);
1152
1153         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1154         of_node_put(nvmem_np);
1155         return nvmem;
1156 }
1157 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1158 #endif
1159
1160 /**
1161  * nvmem_device_get() - Get nvmem device from a given id
1162  *
1163  * @dev: Device that uses the nvmem device.
1164  * @dev_name: name of the requested nvmem device.
1165  *
1166  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1167  * on success.
1168  */
1169 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1170 {
1171         if (dev->of_node) { /* try dt first */
1172                 struct nvmem_device *nvmem;
1173
1174                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1175
1176                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1177                         return nvmem;
1178
1179         }
1180
1181         return __nvmem_device_get((void *)dev_name, device_match_name);
1182 }
1183 EXPORT_SYMBOL_GPL(nvmem_device_get);
1184
1185 /**
1186  * nvmem_device_find() - Find nvmem device with matching function
1187  *
1188  * @data: Data to pass to match function
1189  * @match: Callback function to check device
1190  *
1191  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1192  * on success.
1193  */
1194 struct nvmem_device *nvmem_device_find(void *data,
1195                         int (*match)(struct device *dev, const void *data))
1196 {
1197         return __nvmem_device_get(data, match);
1198 }
1199 EXPORT_SYMBOL_GPL(nvmem_device_find);
1200
1201 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1202 {
1203         struct nvmem_device **nvmem = res;
1204
1205         if (WARN_ON(!nvmem || !*nvmem))
1206                 return 0;
1207
1208         return *nvmem == data;
1209 }
1210
1211 static void devm_nvmem_device_release(struct device *dev, void *res)
1212 {
1213         nvmem_device_put(*(struct nvmem_device **)res);
1214 }
1215
1216 /**
1217  * devm_nvmem_device_put() - put alredy got nvmem device
1218  *
1219  * @dev: Device that uses the nvmem device.
1220  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1221  * that needs to be released.
1222  */
1223 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1224 {
1225         int ret;
1226
1227         ret = devres_release(dev, devm_nvmem_device_release,
1228                              devm_nvmem_device_match, nvmem);
1229
1230         WARN_ON(ret);
1231 }
1232 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1233
1234 /**
1235  * nvmem_device_put() - put alredy got nvmem device
1236  *
1237  * @nvmem: pointer to nvmem device that needs to be released.
1238  */
1239 void nvmem_device_put(struct nvmem_device *nvmem)
1240 {
1241         __nvmem_device_put(nvmem);
1242 }
1243 EXPORT_SYMBOL_GPL(nvmem_device_put);
1244
1245 /**
1246  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1247  *
1248  * @dev: Device that requests the nvmem device.
1249  * @id: name id for the requested nvmem device.
1250  *
1251  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1252  * on success.  The nvmem_cell will be freed by the automatically once the
1253  * device is freed.
1254  */
1255 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1256 {
1257         struct nvmem_device **ptr, *nvmem;
1258
1259         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1260         if (!ptr)
1261                 return ERR_PTR(-ENOMEM);
1262
1263         nvmem = nvmem_device_get(dev, id);
1264         if (!IS_ERR(nvmem)) {
1265                 *ptr = nvmem;
1266                 devres_add(dev, ptr);
1267         } else {
1268                 devres_free(ptr);
1269         }
1270
1271         return nvmem;
1272 }
1273 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1274
1275 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1276                                             const char *id, int index)
1277 {
1278         struct nvmem_cell *cell;
1279         const char *name = NULL;
1280
1281         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1282         if (!cell)
1283                 return ERR_PTR(-ENOMEM);
1284
1285         if (id) {
1286                 name = kstrdup_const(id, GFP_KERNEL);
1287                 if (!name) {
1288                         kfree(cell);
1289                         return ERR_PTR(-ENOMEM);
1290                 }
1291         }
1292
1293         cell->id = name;
1294         cell->entry = entry;
1295         cell->index = index;
1296
1297         return cell;
1298 }
1299
1300 static struct nvmem_cell *
1301 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1302 {
1303         struct nvmem_cell_entry *cell_entry;
1304         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1305         struct nvmem_cell_lookup *lookup;
1306         struct nvmem_device *nvmem;
1307         const char *dev_id;
1308
1309         if (!dev)
1310                 return ERR_PTR(-EINVAL);
1311
1312         dev_id = dev_name(dev);
1313
1314         mutex_lock(&nvmem_lookup_mutex);
1315
1316         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1317                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1318                     (strcmp(lookup->con_id, con_id) == 0)) {
1319                         /* This is the right entry. */
1320                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1321                                                    device_match_name);
1322                         if (IS_ERR(nvmem)) {
1323                                 /* Provider may not be registered yet. */
1324                                 cell = ERR_CAST(nvmem);
1325                                 break;
1326                         }
1327
1328                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1329                                                                    lookup->cell_name);
1330                         if (!cell_entry) {
1331                                 __nvmem_device_put(nvmem);
1332                                 cell = ERR_PTR(-ENOENT);
1333                         } else {
1334                                 cell = nvmem_create_cell(cell_entry, con_id, 0);
1335                                 if (IS_ERR(cell))
1336                                         __nvmem_device_put(nvmem);
1337                         }
1338                         break;
1339                 }
1340         }
1341
1342         mutex_unlock(&nvmem_lookup_mutex);
1343         return cell;
1344 }
1345
1346 #if IS_ENABLED(CONFIG_OF)
1347 static struct nvmem_cell_entry *
1348 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1349 {
1350         struct nvmem_cell_entry *iter, *cell = NULL;
1351
1352         mutex_lock(&nvmem_mutex);
1353         list_for_each_entry(iter, &nvmem->cells, node) {
1354                 if (np == iter->np) {
1355                         cell = iter;
1356                         break;
1357                 }
1358         }
1359         mutex_unlock(&nvmem_mutex);
1360
1361         return cell;
1362 }
1363
1364 /**
1365  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1366  *
1367  * @np: Device tree node that uses the nvmem cell.
1368  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1369  *      for the cell at index 0 (the lone cell with no accompanying
1370  *      nvmem-cell-names property).
1371  *
1372  * Return: Will be an ERR_PTR() on error or a valid pointer
1373  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1374  * nvmem_cell_put().
1375  */
1376 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1377 {
1378         struct device_node *cell_np, *nvmem_np;
1379         struct nvmem_device *nvmem;
1380         struct nvmem_cell_entry *cell_entry;
1381         struct nvmem_cell *cell;
1382         struct of_phandle_args cell_spec;
1383         int index = 0;
1384         int cell_index = 0;
1385         int ret;
1386
1387         /* if cell name exists, find index to the name */
1388         if (id)
1389                 index = of_property_match_string(np, "nvmem-cell-names", id);
1390
1391         ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1392                                                   "#nvmem-cell-cells",
1393                                                   index, &cell_spec);
1394         if (ret)
1395                 return ERR_PTR(-ENOENT);
1396
1397         if (cell_spec.args_count > 1)
1398                 return ERR_PTR(-EINVAL);
1399
1400         cell_np = cell_spec.np;
1401         if (cell_spec.args_count)
1402                 cell_index = cell_spec.args[0];
1403
1404         nvmem_np = of_get_parent(cell_np);
1405         if (!nvmem_np) {
1406                 of_node_put(cell_np);
1407                 return ERR_PTR(-EINVAL);
1408         }
1409
1410         /* nvmem layouts produce cells within the nvmem-layout container */
1411         if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1412                 nvmem_np = of_get_next_parent(nvmem_np);
1413                 if (!nvmem_np) {
1414                         of_node_put(cell_np);
1415                         return ERR_PTR(-EINVAL);
1416                 }
1417         }
1418
1419         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1420         of_node_put(nvmem_np);
1421         if (IS_ERR(nvmem)) {
1422                 of_node_put(cell_np);
1423                 return ERR_CAST(nvmem);
1424         }
1425
1426         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1427         of_node_put(cell_np);
1428         if (!cell_entry) {
1429                 __nvmem_device_put(nvmem);
1430                 return ERR_PTR(-ENOENT);
1431         }
1432
1433         cell = nvmem_create_cell(cell_entry, id, cell_index);
1434         if (IS_ERR(cell))
1435                 __nvmem_device_put(nvmem);
1436
1437         return cell;
1438 }
1439 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1440 #endif
1441
1442 /**
1443  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1444  *
1445  * @dev: Device that requests the nvmem cell.
1446  * @id: nvmem cell name to get (this corresponds with the name from the
1447  *      nvmem-cell-names property for DT systems and with the con_id from
1448  *      the lookup entry for non-DT systems).
1449  *
1450  * Return: Will be an ERR_PTR() on error or a valid pointer
1451  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1452  * nvmem_cell_put().
1453  */
1454 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1455 {
1456         struct nvmem_cell *cell;
1457
1458         if (dev->of_node) { /* try dt first */
1459                 cell = of_nvmem_cell_get(dev->of_node, id);
1460                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1461                         return cell;
1462         }
1463
1464         /* NULL cell id only allowed for device tree; invalid otherwise */
1465         if (!id)
1466                 return ERR_PTR(-EINVAL);
1467
1468         return nvmem_cell_get_from_lookup(dev, id);
1469 }
1470 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1471
1472 static void devm_nvmem_cell_release(struct device *dev, void *res)
1473 {
1474         nvmem_cell_put(*(struct nvmem_cell **)res);
1475 }
1476
1477 /**
1478  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1479  *
1480  * @dev: Device that requests the nvmem cell.
1481  * @id: nvmem cell name id to get.
1482  *
1483  * Return: Will be an ERR_PTR() on error or a valid pointer
1484  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1485  * automatically once the device is freed.
1486  */
1487 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1488 {
1489         struct nvmem_cell **ptr, *cell;
1490
1491         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1492         if (!ptr)
1493                 return ERR_PTR(-ENOMEM);
1494
1495         cell = nvmem_cell_get(dev, id);
1496         if (!IS_ERR(cell)) {
1497                 *ptr = cell;
1498                 devres_add(dev, ptr);
1499         } else {
1500                 devres_free(ptr);
1501         }
1502
1503         return cell;
1504 }
1505 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1506
1507 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1508 {
1509         struct nvmem_cell **c = res;
1510
1511         if (WARN_ON(!c || !*c))
1512                 return 0;
1513
1514         return *c == data;
1515 }
1516
1517 /**
1518  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1519  * from devm_nvmem_cell_get.
1520  *
1521  * @dev: Device that requests the nvmem cell.
1522  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1523  */
1524 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1525 {
1526         int ret;
1527
1528         ret = devres_release(dev, devm_nvmem_cell_release,
1529                                 devm_nvmem_cell_match, cell);
1530
1531         WARN_ON(ret);
1532 }
1533 EXPORT_SYMBOL(devm_nvmem_cell_put);
1534
1535 /**
1536  * nvmem_cell_put() - Release previously allocated nvmem cell.
1537  *
1538  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1539  */
1540 void nvmem_cell_put(struct nvmem_cell *cell)
1541 {
1542         struct nvmem_device *nvmem = cell->entry->nvmem;
1543
1544         if (cell->id)
1545                 kfree_const(cell->id);
1546
1547         kfree(cell);
1548         __nvmem_device_put(nvmem);
1549 }
1550 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1551
1552 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1553 {
1554         u8 *p, *b;
1555         int i, extra, bit_offset = cell->bit_offset;
1556
1557         p = b = buf;
1558         if (bit_offset) {
1559                 /* First shift */
1560                 *b++ >>= bit_offset;
1561
1562                 /* setup rest of the bytes if any */
1563                 for (i = 1; i < cell->bytes; i++) {
1564                         /* Get bits from next byte and shift them towards msb */
1565                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1566
1567                         p = b;
1568                         *b++ >>= bit_offset;
1569                 }
1570         } else {
1571                 /* point to the msb */
1572                 p += cell->bytes - 1;
1573         }
1574
1575         /* result fits in less bytes */
1576         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1577         while (--extra >= 0)
1578                 *p-- = 0;
1579
1580         /* clear msb bits if any leftover in the last byte */
1581         if (cell->nbits % BITS_PER_BYTE)
1582                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1583 }
1584
1585 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1586                              struct nvmem_cell_entry *cell,
1587                              void *buf, size_t *len, const char *id, int index)
1588 {
1589         int rc;
1590
1591         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1592
1593         if (rc)
1594                 return rc;
1595
1596         /* shift bits in-place */
1597         if (cell->bit_offset || cell->nbits)
1598                 nvmem_shift_read_buffer_in_place(cell, buf);
1599
1600         if (cell->read_post_process) {
1601                 rc = cell->read_post_process(cell->priv, id, index,
1602                                              cell->offset, buf, cell->raw_len);
1603                 if (rc)
1604                         return rc;
1605         }
1606
1607         if (len)
1608                 *len = cell->bytes;
1609
1610         return 0;
1611 }
1612
1613 /**
1614  * nvmem_cell_read() - Read a given nvmem cell
1615  *
1616  * @cell: nvmem cell to be read.
1617  * @len: pointer to length of cell which will be populated on successful read;
1618  *       can be NULL.
1619  *
1620  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1621  * buffer should be freed by the consumer with a kfree().
1622  */
1623 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1624 {
1625         struct nvmem_cell_entry *entry = cell->entry;
1626         struct nvmem_device *nvmem = entry->nvmem;
1627         u8 *buf;
1628         int rc;
1629
1630         if (!nvmem)
1631                 return ERR_PTR(-EINVAL);
1632
1633         buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1634         if (!buf)
1635                 return ERR_PTR(-ENOMEM);
1636
1637         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1638         if (rc) {
1639                 kfree(buf);
1640                 return ERR_PTR(rc);
1641         }
1642
1643         return buf;
1644 }
1645 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1646
1647 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1648                                              u8 *_buf, int len)
1649 {
1650         struct nvmem_device *nvmem = cell->nvmem;
1651         int i, rc, nbits, bit_offset = cell->bit_offset;
1652         u8 v, *p, *buf, *b, pbyte, pbits;
1653
1654         nbits = cell->nbits;
1655         buf = kzalloc(cell->bytes, GFP_KERNEL);
1656         if (!buf)
1657                 return ERR_PTR(-ENOMEM);
1658
1659         memcpy(buf, _buf, len);
1660         p = b = buf;
1661
1662         if (bit_offset) {
1663                 pbyte = *b;
1664                 *b <<= bit_offset;
1665
1666                 /* setup the first byte with lsb bits from nvmem */
1667                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1668                 if (rc)
1669                         goto err;
1670                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1671
1672                 /* setup rest of the byte if any */
1673                 for (i = 1; i < cell->bytes; i++) {
1674                         /* Get last byte bits and shift them towards lsb */
1675                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1676                         pbyte = *b;
1677                         p = b;
1678                         *b <<= bit_offset;
1679                         *b++ |= pbits;
1680                 }
1681         }
1682
1683         /* if it's not end on byte boundary */
1684         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1685                 /* setup the last byte with msb bits from nvmem */
1686                 rc = nvmem_reg_read(nvmem,
1687                                     cell->offset + cell->bytes - 1, &v, 1);
1688                 if (rc)
1689                         goto err;
1690                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1691
1692         }
1693
1694         return buf;
1695 err:
1696         kfree(buf);
1697         return ERR_PTR(rc);
1698 }
1699
1700 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1701 {
1702         struct nvmem_device *nvmem = cell->nvmem;
1703         int rc;
1704
1705         if (!nvmem || nvmem->read_only ||
1706             (cell->bit_offset == 0 && len != cell->bytes))
1707                 return -EINVAL;
1708
1709         /*
1710          * Any cells which have a read_post_process hook are read-only because
1711          * we cannot reverse the operation and it might affect other cells,
1712          * too.
1713          */
1714         if (cell->read_post_process)
1715                 return -EINVAL;
1716
1717         if (cell->bit_offset || cell->nbits) {
1718                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1719                 if (IS_ERR(buf))
1720                         return PTR_ERR(buf);
1721         }
1722
1723         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1724
1725         /* free the tmp buffer */
1726         if (cell->bit_offset || cell->nbits)
1727                 kfree(buf);
1728
1729         if (rc)
1730                 return rc;
1731
1732         return len;
1733 }
1734
1735 /**
1736  * nvmem_cell_write() - Write to a given nvmem cell
1737  *
1738  * @cell: nvmem cell to be written.
1739  * @buf: Buffer to be written.
1740  * @len: length of buffer to be written to nvmem cell.
1741  *
1742  * Return: length of bytes written or negative on failure.
1743  */
1744 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1745 {
1746         return __nvmem_cell_entry_write(cell->entry, buf, len);
1747 }
1748
1749 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1750
1751 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1752                                   void *val, size_t count)
1753 {
1754         struct nvmem_cell *cell;
1755         void *buf;
1756         size_t len;
1757
1758         cell = nvmem_cell_get(dev, cell_id);
1759         if (IS_ERR(cell))
1760                 return PTR_ERR(cell);
1761
1762         buf = nvmem_cell_read(cell, &len);
1763         if (IS_ERR(buf)) {
1764                 nvmem_cell_put(cell);
1765                 return PTR_ERR(buf);
1766         }
1767         if (len != count) {
1768                 kfree(buf);
1769                 nvmem_cell_put(cell);
1770                 return -EINVAL;
1771         }
1772         memcpy(val, buf, count);
1773         kfree(buf);
1774         nvmem_cell_put(cell);
1775
1776         return 0;
1777 }
1778
1779 /**
1780  * nvmem_cell_read_u8() - Read a cell value as a u8
1781  *
1782  * @dev: Device that requests the nvmem cell.
1783  * @cell_id: Name of nvmem cell to read.
1784  * @val: pointer to output value.
1785  *
1786  * Return: 0 on success or negative errno.
1787  */
1788 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1789 {
1790         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1791 }
1792 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1793
1794 /**
1795  * nvmem_cell_read_u16() - Read a cell value as a u16
1796  *
1797  * @dev: Device that requests the nvmem cell.
1798  * @cell_id: Name of nvmem cell to read.
1799  * @val: pointer to output value.
1800  *
1801  * Return: 0 on success or negative errno.
1802  */
1803 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1804 {
1805         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1806 }
1807 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1808
1809 /**
1810  * nvmem_cell_read_u32() - Read a cell value as a u32
1811  *
1812  * @dev: Device that requests the nvmem cell.
1813  * @cell_id: Name of nvmem cell to read.
1814  * @val: pointer to output value.
1815  *
1816  * Return: 0 on success or negative errno.
1817  */
1818 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1819 {
1820         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1821 }
1822 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1823
1824 /**
1825  * nvmem_cell_read_u64() - Read a cell value as a u64
1826  *
1827  * @dev: Device that requests the nvmem cell.
1828  * @cell_id: Name of nvmem cell to read.
1829  * @val: pointer to output value.
1830  *
1831  * Return: 0 on success or negative errno.
1832  */
1833 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1834 {
1835         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1836 }
1837 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1838
1839 static const void *nvmem_cell_read_variable_common(struct device *dev,
1840                                                    const char *cell_id,
1841                                                    size_t max_len, size_t *len)
1842 {
1843         struct nvmem_cell *cell;
1844         int nbits;
1845         void *buf;
1846
1847         cell = nvmem_cell_get(dev, cell_id);
1848         if (IS_ERR(cell))
1849                 return cell;
1850
1851         nbits = cell->entry->nbits;
1852         buf = nvmem_cell_read(cell, len);
1853         nvmem_cell_put(cell);
1854         if (IS_ERR(buf))
1855                 return buf;
1856
1857         /*
1858          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1859          * the length of the real data. Throw away the extra junk.
1860          */
1861         if (nbits)
1862                 *len = DIV_ROUND_UP(nbits, 8);
1863
1864         if (*len > max_len) {
1865                 kfree(buf);
1866                 return ERR_PTR(-ERANGE);
1867         }
1868
1869         return buf;
1870 }
1871
1872 /**
1873  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1874  *
1875  * @dev: Device that requests the nvmem cell.
1876  * @cell_id: Name of nvmem cell to read.
1877  * @val: pointer to output value.
1878  *
1879  * Return: 0 on success or negative errno.
1880  */
1881 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1882                                     u32 *val)
1883 {
1884         size_t len;
1885         const u8 *buf;
1886         int i;
1887
1888         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1889         if (IS_ERR(buf))
1890                 return PTR_ERR(buf);
1891
1892         /* Copy w/ implicit endian conversion */
1893         *val = 0;
1894         for (i = 0; i < len; i++)
1895                 *val |= buf[i] << (8 * i);
1896
1897         kfree(buf);
1898
1899         return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1902
1903 /**
1904  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1905  *
1906  * @dev: Device that requests the nvmem cell.
1907  * @cell_id: Name of nvmem cell to read.
1908  * @val: pointer to output value.
1909  *
1910  * Return: 0 on success or negative errno.
1911  */
1912 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1913                                     u64 *val)
1914 {
1915         size_t len;
1916         const u8 *buf;
1917         int i;
1918
1919         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1920         if (IS_ERR(buf))
1921                 return PTR_ERR(buf);
1922
1923         /* Copy w/ implicit endian conversion */
1924         *val = 0;
1925         for (i = 0; i < len; i++)
1926                 *val |= (uint64_t)buf[i] << (8 * i);
1927
1928         kfree(buf);
1929
1930         return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1933
1934 /**
1935  * nvmem_device_cell_read() - Read a given nvmem device and cell
1936  *
1937  * @nvmem: nvmem device to read from.
1938  * @info: nvmem cell info to be read.
1939  * @buf: buffer pointer which will be populated on successful read.
1940  *
1941  * Return: length of successful bytes read on success and negative
1942  * error code on error.
1943  */
1944 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1945                            struct nvmem_cell_info *info, void *buf)
1946 {
1947         struct nvmem_cell_entry cell;
1948         int rc;
1949         ssize_t len;
1950
1951         if (!nvmem)
1952                 return -EINVAL;
1953
1954         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1955         if (rc)
1956                 return rc;
1957
1958         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1959         if (rc)
1960                 return rc;
1961
1962         return len;
1963 }
1964 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1965
1966 /**
1967  * nvmem_device_cell_write() - Write cell to a given nvmem device
1968  *
1969  * @nvmem: nvmem device to be written to.
1970  * @info: nvmem cell info to be written.
1971  * @buf: buffer to be written to cell.
1972  *
1973  * Return: length of bytes written or negative error code on failure.
1974  */
1975 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1976                             struct nvmem_cell_info *info, void *buf)
1977 {
1978         struct nvmem_cell_entry cell;
1979         int rc;
1980
1981         if (!nvmem)
1982                 return -EINVAL;
1983
1984         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1985         if (rc)
1986                 return rc;
1987
1988         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1989 }
1990 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1991
1992 /**
1993  * nvmem_device_read() - Read from a given nvmem device
1994  *
1995  * @nvmem: nvmem device to read from.
1996  * @offset: offset in nvmem device.
1997  * @bytes: number of bytes to read.
1998  * @buf: buffer pointer which will be populated on successful read.
1999  *
2000  * Return: length of successful bytes read on success and negative
2001  * error code on error.
2002  */
2003 int nvmem_device_read(struct nvmem_device *nvmem,
2004                       unsigned int offset,
2005                       size_t bytes, void *buf)
2006 {
2007         int rc;
2008
2009         if (!nvmem)
2010                 return -EINVAL;
2011
2012         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2013
2014         if (rc)
2015                 return rc;
2016
2017         return bytes;
2018 }
2019 EXPORT_SYMBOL_GPL(nvmem_device_read);
2020
2021 /**
2022  * nvmem_device_write() - Write cell to a given nvmem device
2023  *
2024  * @nvmem: nvmem device to be written to.
2025  * @offset: offset in nvmem device.
2026  * @bytes: number of bytes to write.
2027  * @buf: buffer to be written.
2028  *
2029  * Return: length of bytes written or negative error code on failure.
2030  */
2031 int nvmem_device_write(struct nvmem_device *nvmem,
2032                        unsigned int offset,
2033                        size_t bytes, void *buf)
2034 {
2035         int rc;
2036
2037         if (!nvmem)
2038                 return -EINVAL;
2039
2040         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2041
2042         if (rc)
2043                 return rc;
2044
2045
2046         return bytes;
2047 }
2048 EXPORT_SYMBOL_GPL(nvmem_device_write);
2049
2050 /**
2051  * nvmem_add_cell_table() - register a table of cell info entries
2052  *
2053  * @table: table of cell info entries
2054  */
2055 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2056 {
2057         mutex_lock(&nvmem_cell_mutex);
2058         list_add_tail(&table->node, &nvmem_cell_tables);
2059         mutex_unlock(&nvmem_cell_mutex);
2060 }
2061 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2062
2063 /**
2064  * nvmem_del_cell_table() - remove a previously registered cell info table
2065  *
2066  * @table: table of cell info entries
2067  */
2068 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2069 {
2070         mutex_lock(&nvmem_cell_mutex);
2071         list_del(&table->node);
2072         mutex_unlock(&nvmem_cell_mutex);
2073 }
2074 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2075
2076 /**
2077  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2078  *
2079  * @entries: array of cell lookup entries
2080  * @nentries: number of cell lookup entries in the array
2081  */
2082 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2083 {
2084         int i;
2085
2086         mutex_lock(&nvmem_lookup_mutex);
2087         for (i = 0; i < nentries; i++)
2088                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2089         mutex_unlock(&nvmem_lookup_mutex);
2090 }
2091 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2092
2093 /**
2094  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2095  *                            entries
2096  *
2097  * @entries: array of cell lookup entries
2098  * @nentries: number of cell lookup entries in the array
2099  */
2100 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2101 {
2102         int i;
2103
2104         mutex_lock(&nvmem_lookup_mutex);
2105         for (i = 0; i < nentries; i++)
2106                 list_del(&entries[i].node);
2107         mutex_unlock(&nvmem_lookup_mutex);
2108 }
2109 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2110
2111 /**
2112  * nvmem_dev_name() - Get the name of a given nvmem device.
2113  *
2114  * @nvmem: nvmem device.
2115  *
2116  * Return: name of the nvmem device.
2117  */
2118 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2119 {
2120         return dev_name(&nvmem->dev);
2121 }
2122 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2123
2124 static int __init nvmem_init(void)
2125 {
2126         return bus_register(&nvmem_bus_type);
2127 }
2128
2129 static void __exit nvmem_exit(void)
2130 {
2131         bus_unregister(&nvmem_bus_type);
2132 }
2133
2134 subsys_initcall(nvmem_init);
2135 module_exit(nvmem_exit);
2136
2137 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2138 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2139 MODULE_DESCRIPTION("nvmem Driver Core");