use less confusing names for iov_iter direction initializers
[linux-block.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 /* Define a time period (in usecs) that io_work() shall sample an activated
33  * queue before determining it to be idle.  This optional module behavior
34  * can enable NIC solutions that support socket optimized packet processing
35  * using advanced interrupt moderation techniques.
36  */
37 static int idle_poll_period_usecs;
38 module_param(idle_poll_period_usecs, int, 0644);
39 MODULE_PARM_DESC(idle_poll_period_usecs,
40                 "nvmet tcp io_work poll till idle time period in usecs");
41
42 #define NVMET_TCP_RECV_BUDGET           8
43 #define NVMET_TCP_SEND_BUDGET           8
44 #define NVMET_TCP_IO_WORK_BUDGET        64
45
46 enum nvmet_tcp_send_state {
47         NVMET_TCP_SEND_DATA_PDU,
48         NVMET_TCP_SEND_DATA,
49         NVMET_TCP_SEND_R2T,
50         NVMET_TCP_SEND_DDGST,
51         NVMET_TCP_SEND_RESPONSE
52 };
53
54 enum nvmet_tcp_recv_state {
55         NVMET_TCP_RECV_PDU,
56         NVMET_TCP_RECV_DATA,
57         NVMET_TCP_RECV_DDGST,
58         NVMET_TCP_RECV_ERR,
59 };
60
61 enum {
62         NVMET_TCP_F_INIT_FAILED = (1 << 0),
63 };
64
65 struct nvmet_tcp_cmd {
66         struct nvmet_tcp_queue          *queue;
67         struct nvmet_req                req;
68
69         struct nvme_tcp_cmd_pdu         *cmd_pdu;
70         struct nvme_tcp_rsp_pdu         *rsp_pdu;
71         struct nvme_tcp_data_pdu        *data_pdu;
72         struct nvme_tcp_r2t_pdu         *r2t_pdu;
73
74         u32                             rbytes_done;
75         u32                             wbytes_done;
76
77         u32                             pdu_len;
78         u32                             pdu_recv;
79         int                             sg_idx;
80         struct msghdr                   recv_msg;
81         struct bio_vec                  *iov;
82         u32                             flags;
83
84         struct list_head                entry;
85         struct llist_node               lentry;
86
87         /* send state */
88         u32                             offset;
89         struct scatterlist              *cur_sg;
90         enum nvmet_tcp_send_state       state;
91
92         __le32                          exp_ddgst;
93         __le32                          recv_ddgst;
94 };
95
96 enum nvmet_tcp_queue_state {
97         NVMET_TCP_Q_CONNECTING,
98         NVMET_TCP_Q_LIVE,
99         NVMET_TCP_Q_DISCONNECTING,
100 };
101
102 struct nvmet_tcp_queue {
103         struct socket           *sock;
104         struct nvmet_tcp_port   *port;
105         struct work_struct      io_work;
106         struct nvmet_cq         nvme_cq;
107         struct nvmet_sq         nvme_sq;
108
109         /* send state */
110         struct nvmet_tcp_cmd    *cmds;
111         unsigned int            nr_cmds;
112         struct list_head        free_list;
113         struct llist_head       resp_list;
114         struct list_head        resp_send_list;
115         int                     send_list_len;
116         struct nvmet_tcp_cmd    *snd_cmd;
117
118         /* recv state */
119         int                     offset;
120         int                     left;
121         enum nvmet_tcp_recv_state rcv_state;
122         struct nvmet_tcp_cmd    *cmd;
123         union nvme_tcp_pdu      pdu;
124
125         /* digest state */
126         bool                    hdr_digest;
127         bool                    data_digest;
128         struct ahash_request    *snd_hash;
129         struct ahash_request    *rcv_hash;
130
131         unsigned long           poll_end;
132
133         spinlock_t              state_lock;
134         enum nvmet_tcp_queue_state state;
135
136         struct sockaddr_storage sockaddr;
137         struct sockaddr_storage sockaddr_peer;
138         struct work_struct      release_work;
139
140         int                     idx;
141         struct list_head        queue_list;
142
143         struct nvmet_tcp_cmd    connect;
144
145         struct page_frag_cache  pf_cache;
146
147         void (*data_ready)(struct sock *);
148         void (*state_change)(struct sock *);
149         void (*write_space)(struct sock *);
150 };
151
152 struct nvmet_tcp_port {
153         struct socket           *sock;
154         struct work_struct      accept_work;
155         struct nvmet_port       *nport;
156         struct sockaddr_storage addr;
157         void (*data_ready)(struct sock *);
158 };
159
160 static DEFINE_IDA(nvmet_tcp_queue_ida);
161 static LIST_HEAD(nvmet_tcp_queue_list);
162 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
163
164 static struct workqueue_struct *nvmet_tcp_wq;
165 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
166 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
167 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd);
168
169 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
170                 struct nvmet_tcp_cmd *cmd)
171 {
172         if (unlikely(!queue->nr_cmds)) {
173                 /* We didn't allocate cmds yet, send 0xffff */
174                 return USHRT_MAX;
175         }
176
177         return cmd - queue->cmds;
178 }
179
180 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
181 {
182         return nvme_is_write(cmd->req.cmd) &&
183                 cmd->rbytes_done < cmd->req.transfer_len;
184 }
185
186 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
187 {
188         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
189 }
190
191 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
192 {
193         return !nvme_is_write(cmd->req.cmd) &&
194                 cmd->req.transfer_len > 0 &&
195                 !cmd->req.cqe->status;
196 }
197
198 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
199 {
200         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
201                 !cmd->rbytes_done;
202 }
203
204 static inline struct nvmet_tcp_cmd *
205 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
206 {
207         struct nvmet_tcp_cmd *cmd;
208
209         cmd = list_first_entry_or_null(&queue->free_list,
210                                 struct nvmet_tcp_cmd, entry);
211         if (!cmd)
212                 return NULL;
213         list_del_init(&cmd->entry);
214
215         cmd->rbytes_done = cmd->wbytes_done = 0;
216         cmd->pdu_len = 0;
217         cmd->pdu_recv = 0;
218         cmd->iov = NULL;
219         cmd->flags = 0;
220         return cmd;
221 }
222
223 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
224 {
225         if (unlikely(cmd == &cmd->queue->connect))
226                 return;
227
228         list_add_tail(&cmd->entry, &cmd->queue->free_list);
229 }
230
231 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
232 {
233         return queue->sock->sk->sk_incoming_cpu;
234 }
235
236 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
237 {
238         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
239 }
240
241 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
242 {
243         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
244 }
245
246 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
247                 void *pdu, size_t len)
248 {
249         struct scatterlist sg;
250
251         sg_init_one(&sg, pdu, len);
252         ahash_request_set_crypt(hash, &sg, pdu + len, len);
253         crypto_ahash_digest(hash);
254 }
255
256 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
257         void *pdu, size_t len)
258 {
259         struct nvme_tcp_hdr *hdr = pdu;
260         __le32 recv_digest;
261         __le32 exp_digest;
262
263         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
264                 pr_err("queue %d: header digest enabled but no header digest\n",
265                         queue->idx);
266                 return -EPROTO;
267         }
268
269         recv_digest = *(__le32 *)(pdu + hdr->hlen);
270         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
271         exp_digest = *(__le32 *)(pdu + hdr->hlen);
272         if (recv_digest != exp_digest) {
273                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
274                         queue->idx, le32_to_cpu(recv_digest),
275                         le32_to_cpu(exp_digest));
276                 return -EPROTO;
277         }
278
279         return 0;
280 }
281
282 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
283 {
284         struct nvme_tcp_hdr *hdr = pdu;
285         u8 digest_len = nvmet_tcp_hdgst_len(queue);
286         u32 len;
287
288         len = le32_to_cpu(hdr->plen) - hdr->hlen -
289                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
290
291         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
292                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
293                 return -EPROTO;
294         }
295
296         return 0;
297 }
298
299 static void nvmet_tcp_free_cmd_buffers(struct nvmet_tcp_cmd *cmd)
300 {
301         kfree(cmd->iov);
302         sgl_free(cmd->req.sg);
303         cmd->iov = NULL;
304         cmd->req.sg = NULL;
305 }
306
307 static void nvmet_tcp_build_pdu_iovec(struct nvmet_tcp_cmd *cmd)
308 {
309         struct bio_vec *iov = cmd->iov;
310         struct scatterlist *sg;
311         u32 length, offset, sg_offset;
312         int nr_pages;
313
314         length = cmd->pdu_len;
315         nr_pages = DIV_ROUND_UP(length, PAGE_SIZE);
316         offset = cmd->rbytes_done;
317         cmd->sg_idx = offset / PAGE_SIZE;
318         sg_offset = offset % PAGE_SIZE;
319         sg = &cmd->req.sg[cmd->sg_idx];
320
321         while (length) {
322                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
323
324                 iov->bv_page = sg_page(sg);
325                 iov->bv_len = sg->length;
326                 iov->bv_offset = sg->offset + sg_offset;
327
328                 length -= iov_len;
329                 sg = sg_next(sg);
330                 iov++;
331                 sg_offset = 0;
332         }
333
334         iov_iter_bvec(&cmd->recv_msg.msg_iter, ITER_DEST, cmd->iov,
335                       nr_pages, cmd->pdu_len);
336 }
337
338 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
339 {
340         queue->rcv_state = NVMET_TCP_RECV_ERR;
341         if (queue->nvme_sq.ctrl)
342                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
343         else
344                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
345 }
346
347 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
348 {
349         if (status == -EPIPE || status == -ECONNRESET)
350                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
351         else
352                 nvmet_tcp_fatal_error(queue);
353 }
354
355 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
356 {
357         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
358         u32 len = le32_to_cpu(sgl->length);
359
360         if (!len)
361                 return 0;
362
363         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
364                           NVME_SGL_FMT_OFFSET)) {
365                 if (!nvme_is_write(cmd->req.cmd))
366                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
367
368                 if (len > cmd->req.port->inline_data_size)
369                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
370                 cmd->pdu_len = len;
371         }
372         cmd->req.transfer_len += len;
373
374         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
375         if (!cmd->req.sg)
376                 return NVME_SC_INTERNAL;
377         cmd->cur_sg = cmd->req.sg;
378
379         if (nvmet_tcp_has_data_in(cmd)) {
380                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
381                                 sizeof(*cmd->iov), GFP_KERNEL);
382                 if (!cmd->iov)
383                         goto err;
384         }
385
386         return 0;
387 err:
388         nvmet_tcp_free_cmd_buffers(cmd);
389         return NVME_SC_INTERNAL;
390 }
391
392 static void nvmet_tcp_calc_ddgst(struct ahash_request *hash,
393                 struct nvmet_tcp_cmd *cmd)
394 {
395         ahash_request_set_crypt(hash, cmd->req.sg,
396                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
397         crypto_ahash_digest(hash);
398 }
399
400 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
401 {
402         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
403         struct nvmet_tcp_queue *queue = cmd->queue;
404         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
405         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
406
407         cmd->offset = 0;
408         cmd->state = NVMET_TCP_SEND_DATA_PDU;
409
410         pdu->hdr.type = nvme_tcp_c2h_data;
411         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
412                                                 NVME_TCP_F_DATA_SUCCESS : 0);
413         pdu->hdr.hlen = sizeof(*pdu);
414         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
415         pdu->hdr.plen =
416                 cpu_to_le32(pdu->hdr.hlen + hdgst +
417                                 cmd->req.transfer_len + ddgst);
418         pdu->command_id = cmd->req.cqe->command_id;
419         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
420         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
421
422         if (queue->data_digest) {
423                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
424                 nvmet_tcp_calc_ddgst(queue->snd_hash, cmd);
425         }
426
427         if (cmd->queue->hdr_digest) {
428                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
429                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
430         }
431 }
432
433 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
434 {
435         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
436         struct nvmet_tcp_queue *queue = cmd->queue;
437         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
438
439         cmd->offset = 0;
440         cmd->state = NVMET_TCP_SEND_R2T;
441
442         pdu->hdr.type = nvme_tcp_r2t;
443         pdu->hdr.flags = 0;
444         pdu->hdr.hlen = sizeof(*pdu);
445         pdu->hdr.pdo = 0;
446         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
447
448         pdu->command_id = cmd->req.cmd->common.command_id;
449         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
450         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
451         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
452         if (cmd->queue->hdr_digest) {
453                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
454                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
455         }
456 }
457
458 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
459 {
460         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
461         struct nvmet_tcp_queue *queue = cmd->queue;
462         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
463
464         cmd->offset = 0;
465         cmd->state = NVMET_TCP_SEND_RESPONSE;
466
467         pdu->hdr.type = nvme_tcp_rsp;
468         pdu->hdr.flags = 0;
469         pdu->hdr.hlen = sizeof(*pdu);
470         pdu->hdr.pdo = 0;
471         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
472         if (cmd->queue->hdr_digest) {
473                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
474                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
475         }
476 }
477
478 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
479 {
480         struct llist_node *node;
481         struct nvmet_tcp_cmd *cmd;
482
483         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
484                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
485                 list_add(&cmd->entry, &queue->resp_send_list);
486                 queue->send_list_len++;
487         }
488 }
489
490 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
491 {
492         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
493                                 struct nvmet_tcp_cmd, entry);
494         if (!queue->snd_cmd) {
495                 nvmet_tcp_process_resp_list(queue);
496                 queue->snd_cmd =
497                         list_first_entry_or_null(&queue->resp_send_list,
498                                         struct nvmet_tcp_cmd, entry);
499                 if (unlikely(!queue->snd_cmd))
500                         return NULL;
501         }
502
503         list_del_init(&queue->snd_cmd->entry);
504         queue->send_list_len--;
505
506         if (nvmet_tcp_need_data_out(queue->snd_cmd))
507                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
508         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
509                 nvmet_setup_r2t_pdu(queue->snd_cmd);
510         else
511                 nvmet_setup_response_pdu(queue->snd_cmd);
512
513         return queue->snd_cmd;
514 }
515
516 static void nvmet_tcp_queue_response(struct nvmet_req *req)
517 {
518         struct nvmet_tcp_cmd *cmd =
519                 container_of(req, struct nvmet_tcp_cmd, req);
520         struct nvmet_tcp_queue  *queue = cmd->queue;
521         struct nvme_sgl_desc *sgl;
522         u32 len;
523
524         if (unlikely(cmd == queue->cmd)) {
525                 sgl = &cmd->req.cmd->common.dptr.sgl;
526                 len = le32_to_cpu(sgl->length);
527
528                 /*
529                  * Wait for inline data before processing the response.
530                  * Avoid using helpers, this might happen before
531                  * nvmet_req_init is completed.
532                  */
533                 if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
534                     len && len <= cmd->req.port->inline_data_size &&
535                     nvme_is_write(cmd->req.cmd))
536                         return;
537         }
538
539         llist_add(&cmd->lentry, &queue->resp_list);
540         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
541 }
542
543 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
544 {
545         if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
546                 nvmet_tcp_queue_response(&cmd->req);
547         else
548                 cmd->req.execute(&cmd->req);
549 }
550
551 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
552 {
553         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
554         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
555         int ret;
556
557         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
558                         offset_in_page(cmd->data_pdu) + cmd->offset,
559                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
560         if (ret <= 0)
561                 return ret;
562
563         cmd->offset += ret;
564         left -= ret;
565
566         if (left)
567                 return -EAGAIN;
568
569         cmd->state = NVMET_TCP_SEND_DATA;
570         cmd->offset  = 0;
571         return 1;
572 }
573
574 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
575 {
576         struct nvmet_tcp_queue *queue = cmd->queue;
577         int ret;
578
579         while (cmd->cur_sg) {
580                 struct page *page = sg_page(cmd->cur_sg);
581                 u32 left = cmd->cur_sg->length - cmd->offset;
582                 int flags = MSG_DONTWAIT;
583
584                 if ((!last_in_batch && cmd->queue->send_list_len) ||
585                     cmd->wbytes_done + left < cmd->req.transfer_len ||
586                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
587                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
588
589                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
590                                         left, flags);
591                 if (ret <= 0)
592                         return ret;
593
594                 cmd->offset += ret;
595                 cmd->wbytes_done += ret;
596
597                 /* Done with sg?*/
598                 if (cmd->offset == cmd->cur_sg->length) {
599                         cmd->cur_sg = sg_next(cmd->cur_sg);
600                         cmd->offset = 0;
601                 }
602         }
603
604         if (queue->data_digest) {
605                 cmd->state = NVMET_TCP_SEND_DDGST;
606                 cmd->offset = 0;
607         } else {
608                 if (queue->nvme_sq.sqhd_disabled) {
609                         cmd->queue->snd_cmd = NULL;
610                         nvmet_tcp_put_cmd(cmd);
611                 } else {
612                         nvmet_setup_response_pdu(cmd);
613                 }
614         }
615
616         if (queue->nvme_sq.sqhd_disabled)
617                 nvmet_tcp_free_cmd_buffers(cmd);
618
619         return 1;
620
621 }
622
623 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
624                 bool last_in_batch)
625 {
626         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
627         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
628         int flags = MSG_DONTWAIT;
629         int ret;
630
631         if (!last_in_batch && cmd->queue->send_list_len)
632                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
633         else
634                 flags |= MSG_EOR;
635
636         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
637                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
638         if (ret <= 0)
639                 return ret;
640         cmd->offset += ret;
641         left -= ret;
642
643         if (left)
644                 return -EAGAIN;
645
646         nvmet_tcp_free_cmd_buffers(cmd);
647         cmd->queue->snd_cmd = NULL;
648         nvmet_tcp_put_cmd(cmd);
649         return 1;
650 }
651
652 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
653 {
654         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
655         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
656         int flags = MSG_DONTWAIT;
657         int ret;
658
659         if (!last_in_batch && cmd->queue->send_list_len)
660                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
661         else
662                 flags |= MSG_EOR;
663
664         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
665                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
666         if (ret <= 0)
667                 return ret;
668         cmd->offset += ret;
669         left -= ret;
670
671         if (left)
672                 return -EAGAIN;
673
674         cmd->queue->snd_cmd = NULL;
675         return 1;
676 }
677
678 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
679 {
680         struct nvmet_tcp_queue *queue = cmd->queue;
681         int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
682         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
683         struct kvec iov = {
684                 .iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
685                 .iov_len = left
686         };
687         int ret;
688
689         if (!last_in_batch && cmd->queue->send_list_len)
690                 msg.msg_flags |= MSG_MORE;
691         else
692                 msg.msg_flags |= MSG_EOR;
693
694         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
695         if (unlikely(ret <= 0))
696                 return ret;
697
698         cmd->offset += ret;
699         left -= ret;
700
701         if (left)
702                 return -EAGAIN;
703
704         if (queue->nvme_sq.sqhd_disabled) {
705                 cmd->queue->snd_cmd = NULL;
706                 nvmet_tcp_put_cmd(cmd);
707         } else {
708                 nvmet_setup_response_pdu(cmd);
709         }
710         return 1;
711 }
712
713 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
714                 bool last_in_batch)
715 {
716         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
717         int ret = 0;
718
719         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
720                 cmd = nvmet_tcp_fetch_cmd(queue);
721                 if (unlikely(!cmd))
722                         return 0;
723         }
724
725         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
726                 ret = nvmet_try_send_data_pdu(cmd);
727                 if (ret <= 0)
728                         goto done_send;
729         }
730
731         if (cmd->state == NVMET_TCP_SEND_DATA) {
732                 ret = nvmet_try_send_data(cmd, last_in_batch);
733                 if (ret <= 0)
734                         goto done_send;
735         }
736
737         if (cmd->state == NVMET_TCP_SEND_DDGST) {
738                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
739                 if (ret <= 0)
740                         goto done_send;
741         }
742
743         if (cmd->state == NVMET_TCP_SEND_R2T) {
744                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
745                 if (ret <= 0)
746                         goto done_send;
747         }
748
749         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
750                 ret = nvmet_try_send_response(cmd, last_in_batch);
751
752 done_send:
753         if (ret < 0) {
754                 if (ret == -EAGAIN)
755                         return 0;
756                 return ret;
757         }
758
759         return 1;
760 }
761
762 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
763                 int budget, int *sends)
764 {
765         int i, ret = 0;
766
767         for (i = 0; i < budget; i++) {
768                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
769                 if (unlikely(ret < 0)) {
770                         nvmet_tcp_socket_error(queue, ret);
771                         goto done;
772                 } else if (ret == 0) {
773                         break;
774                 }
775                 (*sends)++;
776         }
777 done:
778         return ret;
779 }
780
781 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
782 {
783         queue->offset = 0;
784         queue->left = sizeof(struct nvme_tcp_hdr);
785         queue->cmd = NULL;
786         queue->rcv_state = NVMET_TCP_RECV_PDU;
787 }
788
789 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
790 {
791         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
792
793         ahash_request_free(queue->rcv_hash);
794         ahash_request_free(queue->snd_hash);
795         crypto_free_ahash(tfm);
796 }
797
798 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
799 {
800         struct crypto_ahash *tfm;
801
802         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
803         if (IS_ERR(tfm))
804                 return PTR_ERR(tfm);
805
806         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
807         if (!queue->snd_hash)
808                 goto free_tfm;
809         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
810
811         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
812         if (!queue->rcv_hash)
813                 goto free_snd_hash;
814         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
815
816         return 0;
817 free_snd_hash:
818         ahash_request_free(queue->snd_hash);
819 free_tfm:
820         crypto_free_ahash(tfm);
821         return -ENOMEM;
822 }
823
824
825 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
826 {
827         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
828         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
829         struct msghdr msg = {};
830         struct kvec iov;
831         int ret;
832
833         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
834                 pr_err("bad nvme-tcp pdu length (%d)\n",
835                         le32_to_cpu(icreq->hdr.plen));
836                 nvmet_tcp_fatal_error(queue);
837         }
838
839         if (icreq->pfv != NVME_TCP_PFV_1_0) {
840                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
841                 return -EPROTO;
842         }
843
844         if (icreq->hpda != 0) {
845                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
846                         icreq->hpda);
847                 return -EPROTO;
848         }
849
850         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
851         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
852         if (queue->hdr_digest || queue->data_digest) {
853                 ret = nvmet_tcp_alloc_crypto(queue);
854                 if (ret)
855                         return ret;
856         }
857
858         memset(icresp, 0, sizeof(*icresp));
859         icresp->hdr.type = nvme_tcp_icresp;
860         icresp->hdr.hlen = sizeof(*icresp);
861         icresp->hdr.pdo = 0;
862         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
863         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
864         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
865         icresp->cpda = 0;
866         if (queue->hdr_digest)
867                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
868         if (queue->data_digest)
869                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
870
871         iov.iov_base = icresp;
872         iov.iov_len = sizeof(*icresp);
873         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
874         if (ret < 0)
875                 goto free_crypto;
876
877         queue->state = NVMET_TCP_Q_LIVE;
878         nvmet_prepare_receive_pdu(queue);
879         return 0;
880 free_crypto:
881         if (queue->hdr_digest || queue->data_digest)
882                 nvmet_tcp_free_crypto(queue);
883         return ret;
884 }
885
886 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
887                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
888 {
889         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
890         int ret;
891
892         /*
893          * This command has not been processed yet, hence we are trying to
894          * figure out if there is still pending data left to receive. If
895          * we don't, we can simply prepare for the next pdu and bail out,
896          * otherwise we will need to prepare a buffer and receive the
897          * stale data before continuing forward.
898          */
899         if (!nvme_is_write(cmd->req.cmd) || !data_len ||
900             data_len > cmd->req.port->inline_data_size) {
901                 nvmet_prepare_receive_pdu(queue);
902                 return;
903         }
904
905         ret = nvmet_tcp_map_data(cmd);
906         if (unlikely(ret)) {
907                 pr_err("queue %d: failed to map data\n", queue->idx);
908                 nvmet_tcp_fatal_error(queue);
909                 return;
910         }
911
912         queue->rcv_state = NVMET_TCP_RECV_DATA;
913         nvmet_tcp_build_pdu_iovec(cmd);
914         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
915 }
916
917 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
918 {
919         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
920         struct nvmet_tcp_cmd *cmd;
921
922         if (likely(queue->nr_cmds)) {
923                 if (unlikely(data->ttag >= queue->nr_cmds)) {
924                         pr_err("queue %d: received out of bound ttag %u, nr_cmds %u\n",
925                                 queue->idx, data->ttag, queue->nr_cmds);
926                         nvmet_tcp_fatal_error(queue);
927                         return -EPROTO;
928                 }
929                 cmd = &queue->cmds[data->ttag];
930         } else {
931                 cmd = &queue->connect;
932         }
933
934         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
935                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
936                         data->ttag, le32_to_cpu(data->data_offset),
937                         cmd->rbytes_done);
938                 /* FIXME: use path and transport errors */
939                 nvmet_req_complete(&cmd->req,
940                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
941                 return -EPROTO;
942         }
943
944         cmd->pdu_len = le32_to_cpu(data->data_length);
945         cmd->pdu_recv = 0;
946         nvmet_tcp_build_pdu_iovec(cmd);
947         queue->cmd = cmd;
948         queue->rcv_state = NVMET_TCP_RECV_DATA;
949
950         return 0;
951 }
952
953 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
954 {
955         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
956         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
957         struct nvmet_req *req;
958         int ret;
959
960         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
961                 if (hdr->type != nvme_tcp_icreq) {
962                         pr_err("unexpected pdu type (%d) before icreq\n",
963                                 hdr->type);
964                         nvmet_tcp_fatal_error(queue);
965                         return -EPROTO;
966                 }
967                 return nvmet_tcp_handle_icreq(queue);
968         }
969
970         if (unlikely(hdr->type == nvme_tcp_icreq)) {
971                 pr_err("queue %d: received icreq pdu in state %d\n",
972                         queue->idx, queue->state);
973                 nvmet_tcp_fatal_error(queue);
974                 return -EPROTO;
975         }
976
977         if (hdr->type == nvme_tcp_h2c_data) {
978                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
979                 if (unlikely(ret))
980                         return ret;
981                 return 0;
982         }
983
984         queue->cmd = nvmet_tcp_get_cmd(queue);
985         if (unlikely(!queue->cmd)) {
986                 /* This should never happen */
987                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
988                         queue->idx, queue->nr_cmds, queue->send_list_len,
989                         nvme_cmd->common.opcode);
990                 nvmet_tcp_fatal_error(queue);
991                 return -ENOMEM;
992         }
993
994         req = &queue->cmd->req;
995         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
996
997         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
998                         &queue->nvme_sq, &nvmet_tcp_ops))) {
999                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
1000                         req->cmd, req->cmd->common.command_id,
1001                         req->cmd->common.opcode,
1002                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
1003
1004                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
1005                 return 0;
1006         }
1007
1008         ret = nvmet_tcp_map_data(queue->cmd);
1009         if (unlikely(ret)) {
1010                 pr_err("queue %d: failed to map data\n", queue->idx);
1011                 if (nvmet_tcp_has_inline_data(queue->cmd))
1012                         nvmet_tcp_fatal_error(queue);
1013                 else
1014                         nvmet_req_complete(req, ret);
1015                 ret = -EAGAIN;
1016                 goto out;
1017         }
1018
1019         if (nvmet_tcp_need_data_in(queue->cmd)) {
1020                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
1021                         queue->rcv_state = NVMET_TCP_RECV_DATA;
1022                         nvmet_tcp_build_pdu_iovec(queue->cmd);
1023                         return 0;
1024                 }
1025                 /* send back R2T */
1026                 nvmet_tcp_queue_response(&queue->cmd->req);
1027                 goto out;
1028         }
1029
1030         queue->cmd->req.execute(&queue->cmd->req);
1031 out:
1032         nvmet_prepare_receive_pdu(queue);
1033         return ret;
1034 }
1035
1036 static const u8 nvme_tcp_pdu_sizes[] = {
1037         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
1038         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
1039         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
1040 };
1041
1042 static inline u8 nvmet_tcp_pdu_size(u8 type)
1043 {
1044         size_t idx = type;
1045
1046         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1047                 nvme_tcp_pdu_sizes[idx]) ?
1048                         nvme_tcp_pdu_sizes[idx] : 0;
1049 }
1050
1051 static inline bool nvmet_tcp_pdu_valid(u8 type)
1052 {
1053         switch (type) {
1054         case nvme_tcp_icreq:
1055         case nvme_tcp_cmd:
1056         case nvme_tcp_h2c_data:
1057                 /* fallthru */
1058                 return true;
1059         }
1060
1061         return false;
1062 }
1063
1064 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1065 {
1066         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1067         int len;
1068         struct kvec iov;
1069         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1070
1071 recv:
1072         iov.iov_base = (void *)&queue->pdu + queue->offset;
1073         iov.iov_len = queue->left;
1074         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1075                         iov.iov_len, msg.msg_flags);
1076         if (unlikely(len < 0))
1077                 return len;
1078
1079         queue->offset += len;
1080         queue->left -= len;
1081         if (queue->left)
1082                 return -EAGAIN;
1083
1084         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1085                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1086
1087                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1088                         pr_err("unexpected pdu type %d\n", hdr->type);
1089                         nvmet_tcp_fatal_error(queue);
1090                         return -EIO;
1091                 }
1092
1093                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1094                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1095                         return -EIO;
1096                 }
1097
1098                 queue->left = hdr->hlen - queue->offset + hdgst;
1099                 goto recv;
1100         }
1101
1102         if (queue->hdr_digest &&
1103             nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1104                 nvmet_tcp_fatal_error(queue); /* fatal */
1105                 return -EPROTO;
1106         }
1107
1108         if (queue->data_digest &&
1109             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1110                 nvmet_tcp_fatal_error(queue); /* fatal */
1111                 return -EPROTO;
1112         }
1113
1114         return nvmet_tcp_done_recv_pdu(queue);
1115 }
1116
1117 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1118 {
1119         struct nvmet_tcp_queue *queue = cmd->queue;
1120
1121         nvmet_tcp_calc_ddgst(queue->rcv_hash, cmd);
1122         queue->offset = 0;
1123         queue->left = NVME_TCP_DIGEST_LENGTH;
1124         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1125 }
1126
1127 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1128 {
1129         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1130         int ret;
1131
1132         while (msg_data_left(&cmd->recv_msg)) {
1133                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1134                         cmd->recv_msg.msg_flags);
1135                 if (ret <= 0)
1136                         return ret;
1137
1138                 cmd->pdu_recv += ret;
1139                 cmd->rbytes_done += ret;
1140         }
1141
1142         if (queue->data_digest) {
1143                 nvmet_tcp_prep_recv_ddgst(cmd);
1144                 return 0;
1145         }
1146
1147         if (cmd->rbytes_done == cmd->req.transfer_len)
1148                 nvmet_tcp_execute_request(cmd);
1149
1150         nvmet_prepare_receive_pdu(queue);
1151         return 0;
1152 }
1153
1154 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1155 {
1156         struct nvmet_tcp_cmd *cmd = queue->cmd;
1157         int ret;
1158         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1159         struct kvec iov = {
1160                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1161                 .iov_len = queue->left
1162         };
1163
1164         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1165                         iov.iov_len, msg.msg_flags);
1166         if (unlikely(ret < 0))
1167                 return ret;
1168
1169         queue->offset += ret;
1170         queue->left -= ret;
1171         if (queue->left)
1172                 return -EAGAIN;
1173
1174         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1175                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1176                         queue->idx, cmd->req.cmd->common.command_id,
1177                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1178                         le32_to_cpu(cmd->exp_ddgst));
1179                 nvmet_req_uninit(&cmd->req);
1180                 nvmet_tcp_free_cmd_buffers(cmd);
1181                 nvmet_tcp_fatal_error(queue);
1182                 ret = -EPROTO;
1183                 goto out;
1184         }
1185
1186         if (cmd->rbytes_done == cmd->req.transfer_len)
1187                 nvmet_tcp_execute_request(cmd);
1188
1189         ret = 0;
1190 out:
1191         nvmet_prepare_receive_pdu(queue);
1192         return ret;
1193 }
1194
1195 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1196 {
1197         int result = 0;
1198
1199         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1200                 return 0;
1201
1202         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1203                 result = nvmet_tcp_try_recv_pdu(queue);
1204                 if (result != 0)
1205                         goto done_recv;
1206         }
1207
1208         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1209                 result = nvmet_tcp_try_recv_data(queue);
1210                 if (result != 0)
1211                         goto done_recv;
1212         }
1213
1214         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1215                 result = nvmet_tcp_try_recv_ddgst(queue);
1216                 if (result != 0)
1217                         goto done_recv;
1218         }
1219
1220 done_recv:
1221         if (result < 0) {
1222                 if (result == -EAGAIN)
1223                         return 0;
1224                 return result;
1225         }
1226         return 1;
1227 }
1228
1229 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1230                 int budget, int *recvs)
1231 {
1232         int i, ret = 0;
1233
1234         for (i = 0; i < budget; i++) {
1235                 ret = nvmet_tcp_try_recv_one(queue);
1236                 if (unlikely(ret < 0)) {
1237                         nvmet_tcp_socket_error(queue, ret);
1238                         goto done;
1239                 } else if (ret == 0) {
1240                         break;
1241                 }
1242                 (*recvs)++;
1243         }
1244 done:
1245         return ret;
1246 }
1247
1248 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1249 {
1250         spin_lock(&queue->state_lock);
1251         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1252                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1253                 queue_work(nvmet_wq, &queue->release_work);
1254         }
1255         spin_unlock(&queue->state_lock);
1256 }
1257
1258 static inline void nvmet_tcp_arm_queue_deadline(struct nvmet_tcp_queue *queue)
1259 {
1260         queue->poll_end = jiffies + usecs_to_jiffies(idle_poll_period_usecs);
1261 }
1262
1263 static bool nvmet_tcp_check_queue_deadline(struct nvmet_tcp_queue *queue,
1264                 int ops)
1265 {
1266         if (!idle_poll_period_usecs)
1267                 return false;
1268
1269         if (ops)
1270                 nvmet_tcp_arm_queue_deadline(queue);
1271
1272         return !time_after(jiffies, queue->poll_end);
1273 }
1274
1275 static void nvmet_tcp_io_work(struct work_struct *w)
1276 {
1277         struct nvmet_tcp_queue *queue =
1278                 container_of(w, struct nvmet_tcp_queue, io_work);
1279         bool pending;
1280         int ret, ops = 0;
1281
1282         do {
1283                 pending = false;
1284
1285                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1286                 if (ret > 0)
1287                         pending = true;
1288                 else if (ret < 0)
1289                         return;
1290
1291                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1292                 if (ret > 0)
1293                         pending = true;
1294                 else if (ret < 0)
1295                         return;
1296
1297         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1298
1299         /*
1300          * Requeue the worker if idle deadline period is in progress or any
1301          * ops activity was recorded during the do-while loop above.
1302          */
1303         if (nvmet_tcp_check_queue_deadline(queue, ops) || pending)
1304                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1305 }
1306
1307 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1308                 struct nvmet_tcp_cmd *c)
1309 {
1310         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1311
1312         c->queue = queue;
1313         c->req.port = queue->port->nport;
1314
1315         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1316                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1317         if (!c->cmd_pdu)
1318                 return -ENOMEM;
1319         c->req.cmd = &c->cmd_pdu->cmd;
1320
1321         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1322                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1323         if (!c->rsp_pdu)
1324                 goto out_free_cmd;
1325         c->req.cqe = &c->rsp_pdu->cqe;
1326
1327         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1328                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1329         if (!c->data_pdu)
1330                 goto out_free_rsp;
1331
1332         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1333                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1334         if (!c->r2t_pdu)
1335                 goto out_free_data;
1336
1337         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1338
1339         list_add_tail(&c->entry, &queue->free_list);
1340
1341         return 0;
1342 out_free_data:
1343         page_frag_free(c->data_pdu);
1344 out_free_rsp:
1345         page_frag_free(c->rsp_pdu);
1346 out_free_cmd:
1347         page_frag_free(c->cmd_pdu);
1348         return -ENOMEM;
1349 }
1350
1351 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1352 {
1353         page_frag_free(c->r2t_pdu);
1354         page_frag_free(c->data_pdu);
1355         page_frag_free(c->rsp_pdu);
1356         page_frag_free(c->cmd_pdu);
1357 }
1358
1359 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1360 {
1361         struct nvmet_tcp_cmd *cmds;
1362         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1363
1364         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1365         if (!cmds)
1366                 goto out;
1367
1368         for (i = 0; i < nr_cmds; i++) {
1369                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1370                 if (ret)
1371                         goto out_free;
1372         }
1373
1374         queue->cmds = cmds;
1375
1376         return 0;
1377 out_free:
1378         while (--i >= 0)
1379                 nvmet_tcp_free_cmd(cmds + i);
1380         kfree(cmds);
1381 out:
1382         return ret;
1383 }
1384
1385 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1386 {
1387         struct nvmet_tcp_cmd *cmds = queue->cmds;
1388         int i;
1389
1390         for (i = 0; i < queue->nr_cmds; i++)
1391                 nvmet_tcp_free_cmd(cmds + i);
1392
1393         nvmet_tcp_free_cmd(&queue->connect);
1394         kfree(cmds);
1395 }
1396
1397 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1398 {
1399         struct socket *sock = queue->sock;
1400
1401         write_lock_bh(&sock->sk->sk_callback_lock);
1402         sock->sk->sk_data_ready =  queue->data_ready;
1403         sock->sk->sk_state_change = queue->state_change;
1404         sock->sk->sk_write_space = queue->write_space;
1405         sock->sk->sk_user_data = NULL;
1406         write_unlock_bh(&sock->sk->sk_callback_lock);
1407 }
1408
1409 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1410 {
1411         struct nvmet_tcp_cmd *cmd = queue->cmds;
1412         int i;
1413
1414         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1415                 if (nvmet_tcp_need_data_in(cmd))
1416                         nvmet_req_uninit(&cmd->req);
1417         }
1418
1419         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1420                 /* failed in connect */
1421                 nvmet_req_uninit(&queue->connect.req);
1422         }
1423 }
1424
1425 static void nvmet_tcp_free_cmd_data_in_buffers(struct nvmet_tcp_queue *queue)
1426 {
1427         struct nvmet_tcp_cmd *cmd = queue->cmds;
1428         int i;
1429
1430         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1431                 if (nvmet_tcp_need_data_in(cmd))
1432                         nvmet_tcp_free_cmd_buffers(cmd);
1433         }
1434
1435         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect))
1436                 nvmet_tcp_free_cmd_buffers(&queue->connect);
1437 }
1438
1439 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1440 {
1441         struct page *page;
1442         struct nvmet_tcp_queue *queue =
1443                 container_of(w, struct nvmet_tcp_queue, release_work);
1444
1445         mutex_lock(&nvmet_tcp_queue_mutex);
1446         list_del_init(&queue->queue_list);
1447         mutex_unlock(&nvmet_tcp_queue_mutex);
1448
1449         nvmet_tcp_restore_socket_callbacks(queue);
1450         cancel_work_sync(&queue->io_work);
1451         /* stop accepting incoming data */
1452         queue->rcv_state = NVMET_TCP_RECV_ERR;
1453
1454         nvmet_tcp_uninit_data_in_cmds(queue);
1455         nvmet_sq_destroy(&queue->nvme_sq);
1456         cancel_work_sync(&queue->io_work);
1457         nvmet_tcp_free_cmd_data_in_buffers(queue);
1458         sock_release(queue->sock);
1459         nvmet_tcp_free_cmds(queue);
1460         if (queue->hdr_digest || queue->data_digest)
1461                 nvmet_tcp_free_crypto(queue);
1462         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1463
1464         page = virt_to_head_page(queue->pf_cache.va);
1465         __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1466         kfree(queue);
1467 }
1468
1469 static void nvmet_tcp_data_ready(struct sock *sk)
1470 {
1471         struct nvmet_tcp_queue *queue;
1472
1473         read_lock_bh(&sk->sk_callback_lock);
1474         queue = sk->sk_user_data;
1475         if (likely(queue))
1476                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1477         read_unlock_bh(&sk->sk_callback_lock);
1478 }
1479
1480 static void nvmet_tcp_write_space(struct sock *sk)
1481 {
1482         struct nvmet_tcp_queue *queue;
1483
1484         read_lock_bh(&sk->sk_callback_lock);
1485         queue = sk->sk_user_data;
1486         if (unlikely(!queue))
1487                 goto out;
1488
1489         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1490                 queue->write_space(sk);
1491                 goto out;
1492         }
1493
1494         if (sk_stream_is_writeable(sk)) {
1495                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1496                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1497         }
1498 out:
1499         read_unlock_bh(&sk->sk_callback_lock);
1500 }
1501
1502 static void nvmet_tcp_state_change(struct sock *sk)
1503 {
1504         struct nvmet_tcp_queue *queue;
1505
1506         read_lock_bh(&sk->sk_callback_lock);
1507         queue = sk->sk_user_data;
1508         if (!queue)
1509                 goto done;
1510
1511         switch (sk->sk_state) {
1512         case TCP_FIN_WAIT2:
1513         case TCP_LAST_ACK:
1514                 break;
1515         case TCP_FIN_WAIT1:
1516         case TCP_CLOSE_WAIT:
1517         case TCP_CLOSE:
1518                 /* FALLTHRU */
1519                 nvmet_tcp_schedule_release_queue(queue);
1520                 break;
1521         default:
1522                 pr_warn("queue %d unhandled state %d\n",
1523                         queue->idx, sk->sk_state);
1524         }
1525 done:
1526         read_unlock_bh(&sk->sk_callback_lock);
1527 }
1528
1529 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1530 {
1531         struct socket *sock = queue->sock;
1532         struct inet_sock *inet = inet_sk(sock->sk);
1533         int ret;
1534
1535         ret = kernel_getsockname(sock,
1536                 (struct sockaddr *)&queue->sockaddr);
1537         if (ret < 0)
1538                 return ret;
1539
1540         ret = kernel_getpeername(sock,
1541                 (struct sockaddr *)&queue->sockaddr_peer);
1542         if (ret < 0)
1543                 return ret;
1544
1545         /*
1546          * Cleanup whatever is sitting in the TCP transmit queue on socket
1547          * close. This is done to prevent stale data from being sent should
1548          * the network connection be restored before TCP times out.
1549          */
1550         sock_no_linger(sock->sk);
1551
1552         if (so_priority > 0)
1553                 sock_set_priority(sock->sk, so_priority);
1554
1555         /* Set socket type of service */
1556         if (inet->rcv_tos > 0)
1557                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1558
1559         ret = 0;
1560         write_lock_bh(&sock->sk->sk_callback_lock);
1561         if (sock->sk->sk_state != TCP_ESTABLISHED) {
1562                 /*
1563                  * If the socket is already closing, don't even start
1564                  * consuming it
1565                  */
1566                 ret = -ENOTCONN;
1567         } else {
1568                 sock->sk->sk_user_data = queue;
1569                 queue->data_ready = sock->sk->sk_data_ready;
1570                 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1571                 queue->state_change = sock->sk->sk_state_change;
1572                 sock->sk->sk_state_change = nvmet_tcp_state_change;
1573                 queue->write_space = sock->sk->sk_write_space;
1574                 sock->sk->sk_write_space = nvmet_tcp_write_space;
1575                 if (idle_poll_period_usecs)
1576                         nvmet_tcp_arm_queue_deadline(queue);
1577                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1578         }
1579         write_unlock_bh(&sock->sk->sk_callback_lock);
1580
1581         return ret;
1582 }
1583
1584 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1585                 struct socket *newsock)
1586 {
1587         struct nvmet_tcp_queue *queue;
1588         int ret;
1589
1590         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1591         if (!queue)
1592                 return -ENOMEM;
1593
1594         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1595         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1596         queue->sock = newsock;
1597         queue->port = port;
1598         queue->nr_cmds = 0;
1599         spin_lock_init(&queue->state_lock);
1600         queue->state = NVMET_TCP_Q_CONNECTING;
1601         INIT_LIST_HEAD(&queue->free_list);
1602         init_llist_head(&queue->resp_list);
1603         INIT_LIST_HEAD(&queue->resp_send_list);
1604
1605         queue->idx = ida_alloc(&nvmet_tcp_queue_ida, GFP_KERNEL);
1606         if (queue->idx < 0) {
1607                 ret = queue->idx;
1608                 goto out_free_queue;
1609         }
1610
1611         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1612         if (ret)
1613                 goto out_ida_remove;
1614
1615         ret = nvmet_sq_init(&queue->nvme_sq);
1616         if (ret)
1617                 goto out_free_connect;
1618
1619         nvmet_prepare_receive_pdu(queue);
1620
1621         mutex_lock(&nvmet_tcp_queue_mutex);
1622         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1623         mutex_unlock(&nvmet_tcp_queue_mutex);
1624
1625         ret = nvmet_tcp_set_queue_sock(queue);
1626         if (ret)
1627                 goto out_destroy_sq;
1628
1629         return 0;
1630 out_destroy_sq:
1631         mutex_lock(&nvmet_tcp_queue_mutex);
1632         list_del_init(&queue->queue_list);
1633         mutex_unlock(&nvmet_tcp_queue_mutex);
1634         nvmet_sq_destroy(&queue->nvme_sq);
1635 out_free_connect:
1636         nvmet_tcp_free_cmd(&queue->connect);
1637 out_ida_remove:
1638         ida_free(&nvmet_tcp_queue_ida, queue->idx);
1639 out_free_queue:
1640         kfree(queue);
1641         return ret;
1642 }
1643
1644 static void nvmet_tcp_accept_work(struct work_struct *w)
1645 {
1646         struct nvmet_tcp_port *port =
1647                 container_of(w, struct nvmet_tcp_port, accept_work);
1648         struct socket *newsock;
1649         int ret;
1650
1651         while (true) {
1652                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1653                 if (ret < 0) {
1654                         if (ret != -EAGAIN)
1655                                 pr_warn("failed to accept err=%d\n", ret);
1656                         return;
1657                 }
1658                 ret = nvmet_tcp_alloc_queue(port, newsock);
1659                 if (ret) {
1660                         pr_err("failed to allocate queue\n");
1661                         sock_release(newsock);
1662                 }
1663         }
1664 }
1665
1666 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1667 {
1668         struct nvmet_tcp_port *port;
1669
1670         read_lock_bh(&sk->sk_callback_lock);
1671         port = sk->sk_user_data;
1672         if (!port)
1673                 goto out;
1674
1675         if (sk->sk_state == TCP_LISTEN)
1676                 queue_work(nvmet_wq, &port->accept_work);
1677 out:
1678         read_unlock_bh(&sk->sk_callback_lock);
1679 }
1680
1681 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1682 {
1683         struct nvmet_tcp_port *port;
1684         __kernel_sa_family_t af;
1685         int ret;
1686
1687         port = kzalloc(sizeof(*port), GFP_KERNEL);
1688         if (!port)
1689                 return -ENOMEM;
1690
1691         switch (nport->disc_addr.adrfam) {
1692         case NVMF_ADDR_FAMILY_IP4:
1693                 af = AF_INET;
1694                 break;
1695         case NVMF_ADDR_FAMILY_IP6:
1696                 af = AF_INET6;
1697                 break;
1698         default:
1699                 pr_err("address family %d not supported\n",
1700                                 nport->disc_addr.adrfam);
1701                 ret = -EINVAL;
1702                 goto err_port;
1703         }
1704
1705         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1706                         nport->disc_addr.trsvcid, &port->addr);
1707         if (ret) {
1708                 pr_err("malformed ip/port passed: %s:%s\n",
1709                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1710                 goto err_port;
1711         }
1712
1713         port->nport = nport;
1714         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1715         if (port->nport->inline_data_size < 0)
1716                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1717
1718         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1719                                 IPPROTO_TCP, &port->sock);
1720         if (ret) {
1721                 pr_err("failed to create a socket\n");
1722                 goto err_port;
1723         }
1724
1725         port->sock->sk->sk_user_data = port;
1726         port->data_ready = port->sock->sk->sk_data_ready;
1727         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1728         sock_set_reuseaddr(port->sock->sk);
1729         tcp_sock_set_nodelay(port->sock->sk);
1730         if (so_priority > 0)
1731                 sock_set_priority(port->sock->sk, so_priority);
1732
1733         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1734                         sizeof(port->addr));
1735         if (ret) {
1736                 pr_err("failed to bind port socket %d\n", ret);
1737                 goto err_sock;
1738         }
1739
1740         ret = kernel_listen(port->sock, 128);
1741         if (ret) {
1742                 pr_err("failed to listen %d on port sock\n", ret);
1743                 goto err_sock;
1744         }
1745
1746         nport->priv = port;
1747         pr_info("enabling port %d (%pISpc)\n",
1748                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1749
1750         return 0;
1751
1752 err_sock:
1753         sock_release(port->sock);
1754 err_port:
1755         kfree(port);
1756         return ret;
1757 }
1758
1759 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1760 {
1761         struct nvmet_tcp_queue *queue;
1762
1763         mutex_lock(&nvmet_tcp_queue_mutex);
1764         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1765                 if (queue->port == port)
1766                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1767         mutex_unlock(&nvmet_tcp_queue_mutex);
1768 }
1769
1770 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1771 {
1772         struct nvmet_tcp_port *port = nport->priv;
1773
1774         write_lock_bh(&port->sock->sk->sk_callback_lock);
1775         port->sock->sk->sk_data_ready = port->data_ready;
1776         port->sock->sk->sk_user_data = NULL;
1777         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1778         cancel_work_sync(&port->accept_work);
1779         /*
1780          * Destroy the remaining queues, which are not belong to any
1781          * controller yet.
1782          */
1783         nvmet_tcp_destroy_port_queues(port);
1784
1785         sock_release(port->sock);
1786         kfree(port);
1787 }
1788
1789 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1790 {
1791         struct nvmet_tcp_queue *queue;
1792
1793         mutex_lock(&nvmet_tcp_queue_mutex);
1794         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1795                 if (queue->nvme_sq.ctrl == ctrl)
1796                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1797         mutex_unlock(&nvmet_tcp_queue_mutex);
1798 }
1799
1800 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1801 {
1802         struct nvmet_tcp_queue *queue =
1803                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1804
1805         if (sq->qid == 0) {
1806                 /* Let inflight controller teardown complete */
1807                 flush_workqueue(nvmet_wq);
1808         }
1809
1810         queue->nr_cmds = sq->size * 2;
1811         if (nvmet_tcp_alloc_cmds(queue))
1812                 return NVME_SC_INTERNAL;
1813         return 0;
1814 }
1815
1816 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1817                 struct nvmet_port *nport, char *traddr)
1818 {
1819         struct nvmet_tcp_port *port = nport->priv;
1820
1821         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1822                 struct nvmet_tcp_cmd *cmd =
1823                         container_of(req, struct nvmet_tcp_cmd, req);
1824                 struct nvmet_tcp_queue *queue = cmd->queue;
1825
1826                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1827         } else {
1828                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1829         }
1830 }
1831
1832 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1833         .owner                  = THIS_MODULE,
1834         .type                   = NVMF_TRTYPE_TCP,
1835         .msdbd                  = 1,
1836         .add_port               = nvmet_tcp_add_port,
1837         .remove_port            = nvmet_tcp_remove_port,
1838         .queue_response         = nvmet_tcp_queue_response,
1839         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1840         .install_queue          = nvmet_tcp_install_queue,
1841         .disc_traddr            = nvmet_tcp_disc_port_addr,
1842 };
1843
1844 static int __init nvmet_tcp_init(void)
1845 {
1846         int ret;
1847
1848         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq",
1849                                 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1850         if (!nvmet_tcp_wq)
1851                 return -ENOMEM;
1852
1853         ret = nvmet_register_transport(&nvmet_tcp_ops);
1854         if (ret)
1855                 goto err;
1856
1857         return 0;
1858 err:
1859         destroy_workqueue(nvmet_tcp_wq);
1860         return ret;
1861 }
1862
1863 static void __exit nvmet_tcp_exit(void)
1864 {
1865         struct nvmet_tcp_queue *queue;
1866
1867         nvmet_unregister_transport(&nvmet_tcp_ops);
1868
1869         flush_workqueue(nvmet_wq);
1870         mutex_lock(&nvmet_tcp_queue_mutex);
1871         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1872                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1873         mutex_unlock(&nvmet_tcp_queue_mutex);
1874         flush_workqueue(nvmet_wq);
1875
1876         destroy_workqueue(nvmet_tcp_wq);
1877 }
1878
1879 module_init(nvmet_tcp_init);
1880 module_exit(nvmet_tcp_exit);
1881
1882 MODULE_LICENSE("GPL v2");
1883 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */