Merge tag 'nvme-5.14-2021-07-22' of git://git.infradead.org/nvme into block-5.14
[linux-2.6-block.git] / drivers / nvme / target / io-cmd-bdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13         const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14         /* Number of logical blocks per physical block. */
15         const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16         /* Logical blocks per physical block, 0's based. */
17         const __le16 lpp0b = to0based(lpp);
18
19         /*
20          * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21          * NAWUPF, and NACWU are defined for this namespace and should be
22          * used by the host for this namespace instead of the AWUN, AWUPF,
23          * and ACWU fields in the Identify Controller data structure. If
24          * any of these fields are zero that means that the corresponding
25          * field from the identify controller data structure should be used.
26          */
27         id->nsfeat |= 1 << 1;
28         id->nawun = lpp0b;
29         id->nawupf = lpp0b;
30         id->nacwu = lpp0b;
31
32         /*
33          * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34          * NOWS are defined for this namespace and should be used by
35          * the host for I/O optimization.
36          */
37         id->nsfeat |= 1 << 4;
38         /* NPWG = Namespace Preferred Write Granularity. 0's based */
39         id->npwg = lpp0b;
40         /* NPWA = Namespace Preferred Write Alignment. 0's based */
41         id->npwa = id->npwg;
42         /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43         id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44         /* NPDG = Namespace Preferred Deallocate Alignment */
45         id->npda = id->npdg;
46         /* NOWS = Namespace Optimal Write Size */
47         id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49
50 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
51 {
52         if (ns->bdev) {
53                 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
54                 ns->bdev = NULL;
55         }
56 }
57
58 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
59 {
60         struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
61
62         if (bi) {
63                 ns->metadata_size = bi->tuple_size;
64                 if (bi->profile == &t10_pi_type1_crc)
65                         ns->pi_type = NVME_NS_DPS_PI_TYPE1;
66                 else if (bi->profile == &t10_pi_type3_crc)
67                         ns->pi_type = NVME_NS_DPS_PI_TYPE3;
68                 else
69                         /* Unsupported metadata type */
70                         ns->metadata_size = 0;
71         }
72 }
73
74 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
75 {
76         int ret;
77
78         ns->bdev = blkdev_get_by_path(ns->device_path,
79                         FMODE_READ | FMODE_WRITE, NULL);
80         if (IS_ERR(ns->bdev)) {
81                 ret = PTR_ERR(ns->bdev);
82                 if (ret != -ENOTBLK) {
83                         pr_err("failed to open block device %s: (%ld)\n",
84                                         ns->device_path, PTR_ERR(ns->bdev));
85                 }
86                 ns->bdev = NULL;
87                 return ret;
88         }
89         ns->size = i_size_read(ns->bdev->bd_inode);
90         ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
91
92         ns->pi_type = 0;
93         ns->metadata_size = 0;
94         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
95                 nvmet_bdev_ns_enable_integrity(ns);
96
97         if (bdev_is_zoned(ns->bdev)) {
98                 if (!nvmet_bdev_zns_enable(ns)) {
99                         nvmet_bdev_ns_disable(ns);
100                         return -EINVAL;
101                 }
102                 ns->csi = NVME_CSI_ZNS;
103         }
104
105         return 0;
106 }
107
108 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
109 {
110         ns->size = i_size_read(ns->bdev->bd_inode);
111 }
112
113 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
114 {
115         u16 status = NVME_SC_SUCCESS;
116
117         if (likely(blk_sts == BLK_STS_OK))
118                 return status;
119         /*
120          * Right now there exists M : 1 mapping between block layer error
121          * to the NVMe status code (see nvme_error_status()). For consistency,
122          * when we reverse map we use most appropriate NVMe Status code from
123          * the group of the NVMe staus codes used in the nvme_error_status().
124          */
125         switch (blk_sts) {
126         case BLK_STS_NOSPC:
127                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
128                 req->error_loc = offsetof(struct nvme_rw_command, length);
129                 break;
130         case BLK_STS_TARGET:
131                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
132                 req->error_loc = offsetof(struct nvme_rw_command, slba);
133                 break;
134         case BLK_STS_NOTSUPP:
135                 req->error_loc = offsetof(struct nvme_common_command, opcode);
136                 switch (req->cmd->common.opcode) {
137                 case nvme_cmd_dsm:
138                 case nvme_cmd_write_zeroes:
139                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
140                         break;
141                 default:
142                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
143                 }
144                 break;
145         case BLK_STS_MEDIUM:
146                 status = NVME_SC_ACCESS_DENIED;
147                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
148                 break;
149         case BLK_STS_IOERR:
150         default:
151                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
152                 req->error_loc = offsetof(struct nvme_common_command, opcode);
153         }
154
155         switch (req->cmd->common.opcode) {
156         case nvme_cmd_read:
157         case nvme_cmd_write:
158                 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
159                 break;
160         case nvme_cmd_write_zeroes:
161                 req->error_slba =
162                         le64_to_cpu(req->cmd->write_zeroes.slba);
163                 break;
164         default:
165                 req->error_slba = 0;
166         }
167         return status;
168 }
169
170 static void nvmet_bio_done(struct bio *bio)
171 {
172         struct nvmet_req *req = bio->bi_private;
173
174         nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
175         nvmet_req_bio_put(req, bio);
176 }
177
178 #ifdef CONFIG_BLK_DEV_INTEGRITY
179 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
180                                 struct sg_mapping_iter *miter)
181 {
182         struct blk_integrity *bi;
183         struct bio_integrity_payload *bip;
184         int rc;
185         size_t resid, len;
186
187         bi = bdev_get_integrity(req->ns->bdev);
188         if (unlikely(!bi)) {
189                 pr_err("Unable to locate bio_integrity\n");
190                 return -ENODEV;
191         }
192
193         bip = bio_integrity_alloc(bio, GFP_NOIO,
194                                         bio_max_segs(req->metadata_sg_cnt));
195         if (IS_ERR(bip)) {
196                 pr_err("Unable to allocate bio_integrity_payload\n");
197                 return PTR_ERR(bip);
198         }
199
200         bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
201         /* virtual start sector must be in integrity interval units */
202         bip_set_seed(bip, bio->bi_iter.bi_sector >>
203                      (bi->interval_exp - SECTOR_SHIFT));
204
205         resid = bip->bip_iter.bi_size;
206         while (resid > 0 && sg_miter_next(miter)) {
207                 len = min_t(size_t, miter->length, resid);
208                 rc = bio_integrity_add_page(bio, miter->page, len,
209                                             offset_in_page(miter->addr));
210                 if (unlikely(rc != len)) {
211                         pr_err("bio_integrity_add_page() failed; %d\n", rc);
212                         sg_miter_stop(miter);
213                         return -ENOMEM;
214                 }
215
216                 resid -= len;
217                 if (len < miter->length)
218                         miter->consumed -= miter->length - len;
219         }
220         sg_miter_stop(miter);
221
222         return 0;
223 }
224 #else
225 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
226                                 struct sg_mapping_iter *miter)
227 {
228         return -EINVAL;
229 }
230 #endif /* CONFIG_BLK_DEV_INTEGRITY */
231
232 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
233 {
234         unsigned int sg_cnt = req->sg_cnt;
235         struct bio *bio;
236         struct scatterlist *sg;
237         struct blk_plug plug;
238         sector_t sector;
239         int op, i, rc;
240         struct sg_mapping_iter prot_miter;
241         unsigned int iter_flags;
242         unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
243
244         if (!nvmet_check_transfer_len(req, total_len))
245                 return;
246
247         if (!req->sg_cnt) {
248                 nvmet_req_complete(req, 0);
249                 return;
250         }
251
252         if (req->cmd->rw.opcode == nvme_cmd_write) {
253                 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
254                 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
255                         op |= REQ_FUA;
256                 iter_flags = SG_MITER_TO_SG;
257         } else {
258                 op = REQ_OP_READ;
259                 iter_flags = SG_MITER_FROM_SG;
260         }
261
262         if (is_pci_p2pdma_page(sg_page(req->sg)))
263                 op |= REQ_NOMERGE;
264
265         sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
266
267         if (nvmet_use_inline_bvec(req)) {
268                 bio = &req->b.inline_bio;
269                 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
270         } else {
271                 bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
272         }
273         bio_set_dev(bio, req->ns->bdev);
274         bio->bi_iter.bi_sector = sector;
275         bio->bi_private = req;
276         bio->bi_end_io = nvmet_bio_done;
277         bio->bi_opf = op;
278
279         blk_start_plug(&plug);
280         if (req->metadata_len)
281                 sg_miter_start(&prot_miter, req->metadata_sg,
282                                req->metadata_sg_cnt, iter_flags);
283
284         for_each_sg(req->sg, sg, req->sg_cnt, i) {
285                 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
286                                 != sg->length) {
287                         struct bio *prev = bio;
288
289                         if (req->metadata_len) {
290                                 rc = nvmet_bdev_alloc_bip(req, bio,
291                                                           &prot_miter);
292                                 if (unlikely(rc)) {
293                                         bio_io_error(bio);
294                                         return;
295                                 }
296                         }
297
298                         bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
299                         bio_set_dev(bio, req->ns->bdev);
300                         bio->bi_iter.bi_sector = sector;
301                         bio->bi_opf = op;
302
303                         bio_chain(bio, prev);
304                         submit_bio(prev);
305                 }
306
307                 sector += sg->length >> 9;
308                 sg_cnt--;
309         }
310
311         if (req->metadata_len) {
312                 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
313                 if (unlikely(rc)) {
314                         bio_io_error(bio);
315                         return;
316                 }
317         }
318
319         submit_bio(bio);
320         blk_finish_plug(&plug);
321 }
322
323 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
324 {
325         struct bio *bio = &req->b.inline_bio;
326
327         if (!nvmet_check_transfer_len(req, 0))
328                 return;
329
330         bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
331         bio_set_dev(bio, req->ns->bdev);
332         bio->bi_private = req;
333         bio->bi_end_io = nvmet_bio_done;
334         bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
335
336         submit_bio(bio);
337 }
338
339 u16 nvmet_bdev_flush(struct nvmet_req *req)
340 {
341         if (blkdev_issue_flush(req->ns->bdev))
342                 return NVME_SC_INTERNAL | NVME_SC_DNR;
343         return 0;
344 }
345
346 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
347                 struct nvme_dsm_range *range, struct bio **bio)
348 {
349         struct nvmet_ns *ns = req->ns;
350         int ret;
351
352         ret = __blkdev_issue_discard(ns->bdev,
353                         nvmet_lba_to_sect(ns, range->slba),
354                         le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
355                         GFP_KERNEL, 0, bio);
356         if (ret && ret != -EOPNOTSUPP) {
357                 req->error_slba = le64_to_cpu(range->slba);
358                 return errno_to_nvme_status(req, ret);
359         }
360         return NVME_SC_SUCCESS;
361 }
362
363 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
364 {
365         struct nvme_dsm_range range;
366         struct bio *bio = NULL;
367         int i;
368         u16 status;
369
370         for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
371                 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
372                                 sizeof(range));
373                 if (status)
374                         break;
375
376                 status = nvmet_bdev_discard_range(req, &range, &bio);
377                 if (status)
378                         break;
379         }
380
381         if (bio) {
382                 bio->bi_private = req;
383                 bio->bi_end_io = nvmet_bio_done;
384                 if (status)
385                         bio_io_error(bio);
386                 else
387                         submit_bio(bio);
388         } else {
389                 nvmet_req_complete(req, status);
390         }
391 }
392
393 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
394 {
395         if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
396                 return;
397
398         switch (le32_to_cpu(req->cmd->dsm.attributes)) {
399         case NVME_DSMGMT_AD:
400                 nvmet_bdev_execute_discard(req);
401                 return;
402         case NVME_DSMGMT_IDR:
403         case NVME_DSMGMT_IDW:
404         default:
405                 /* Not supported yet */
406                 nvmet_req_complete(req, 0);
407                 return;
408         }
409 }
410
411 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
412 {
413         struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
414         struct bio *bio = NULL;
415         sector_t sector;
416         sector_t nr_sector;
417         int ret;
418
419         if (!nvmet_check_transfer_len(req, 0))
420                 return;
421
422         sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
423         nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
424                 (req->ns->blksize_shift - 9));
425
426         ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
427                         GFP_KERNEL, &bio, 0);
428         if (bio) {
429                 bio->bi_private = req;
430                 bio->bi_end_io = nvmet_bio_done;
431                 submit_bio(bio);
432         } else {
433                 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
434         }
435 }
436
437 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
438 {
439         switch (req->cmd->common.opcode) {
440         case nvme_cmd_read:
441         case nvme_cmd_write:
442                 req->execute = nvmet_bdev_execute_rw;
443                 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
444                         req->metadata_len = nvmet_rw_metadata_len(req);
445                 return 0;
446         case nvme_cmd_flush:
447                 req->execute = nvmet_bdev_execute_flush;
448                 return 0;
449         case nvme_cmd_dsm:
450                 req->execute = nvmet_bdev_execute_dsm;
451                 return 0;
452         case nvme_cmd_write_zeroes:
453                 req->execute = nvmet_bdev_execute_write_zeroes;
454                 return 0;
455         default:
456                 return nvmet_report_invalid_opcode(req);
457         }
458 }