Merge tag 'wireless-drivers-2021-03-03' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT              256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
29         struct nvmefc_ls_rsp            *lsrsp;
30         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
31
32         struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
33
34         struct nvmet_fc_tgtport         *tgtport;
35         struct nvmet_fc_tgt_assoc       *assoc;
36         void                            *hosthandle;
37
38         union nvmefc_ls_requests        *rqstbuf;
39         union nvmefc_ls_responses       *rspbuf;
40         u16                             rqstdatalen;
41         dma_addr_t                      rspdma;
42
43         struct scatterlist              sg[2];
44
45         struct work_struct              work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
49         struct nvmefc_ls_req            ls_req;
50
51         struct nvmet_fc_tgtport         *tgtport;
52         void                            *hosthandle;
53
54         int                             ls_error;
55         struct list_head                lsreq_list; /* tgtport->ls_req_list */
56         bool                            req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *next_sg;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              defer_work;
89
90         struct nvmet_fc_tgtport         *tgtport;
91         struct nvmet_fc_tgt_queue       *queue;
92
93         struct list_head                fcp_list;       /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97         struct nvmet_fc_target_port     fc_target_port;
98
99         struct list_head                tgt_list; /* nvmet_fc_target_list */
100         struct device                   *dev;   /* dev for dma mapping */
101         struct nvmet_fc_target_template *ops;
102
103         struct nvmet_fc_ls_iod          *iod;
104         spinlock_t                      lock;
105         struct list_head                ls_rcv_list;
106         struct list_head                ls_req_list;
107         struct list_head                ls_busylist;
108         struct list_head                assoc_list;
109         struct list_head                host_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_fc_port_entry      *pe;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114 };
115
116 struct nvmet_fc_port_entry {
117         struct nvmet_fc_tgtport         *tgtport;
118         struct nvmet_port               *port;
119         u64                             node_name;
120         u64                             port_name;
121         struct list_head                pe_list;
122 };
123
124 struct nvmet_fc_defer_fcp_req {
125         struct list_head                req_list;
126         struct nvmefc_tgt_fcp_req       *fcp_req;
127 };
128
129 struct nvmet_fc_tgt_queue {
130         bool                            ninetypercent;
131         u16                             qid;
132         u16                             sqsize;
133         u16                             ersp_ratio;
134         __le16                          sqhd;
135         atomic_t                        connected;
136         atomic_t                        sqtail;
137         atomic_t                        zrspcnt;
138         atomic_t                        rsn;
139         spinlock_t                      qlock;
140         struct nvmet_cq                 nvme_cq;
141         struct nvmet_sq                 nvme_sq;
142         struct nvmet_fc_tgt_assoc       *assoc;
143         struct list_head                fod_list;
144         struct list_head                pending_cmd_list;
145         struct list_head                avail_defer_list;
146         struct workqueue_struct         *work_q;
147         struct kref                     ref;
148         struct rcu_head                 rcu;
149         struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
150 } __aligned(sizeof(unsigned long long));
151
152 struct nvmet_fc_hostport {
153         struct nvmet_fc_tgtport         *tgtport;
154         void                            *hosthandle;
155         struct list_head                host_list;
156         struct kref                     ref;
157         u8                              invalid;
158 };
159
160 struct nvmet_fc_tgt_assoc {
161         u64                             association_id;
162         u32                             a_id;
163         atomic_t                        terminating;
164         struct nvmet_fc_tgtport         *tgtport;
165         struct nvmet_fc_hostport        *hostport;
166         struct nvmet_fc_ls_iod          *rcv_disconn;
167         struct list_head                a_list;
168         struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1];
169         struct kref                     ref;
170         struct work_struct              del_work;
171         struct rcu_head                 rcu;
172 };
173
174
175 static inline int
176 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
177 {
178         return (iodptr - iodptr->tgtport->iod);
179 }
180
181 static inline int
182 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
183 {
184         return (fodptr - fodptr->queue->fod);
185 }
186
187
188 /*
189  * Association and Connection IDs:
190  *
191  * Association ID will have random number in upper 6 bytes and zero
192  *   in lower 2 bytes
193  *
194  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
195  *
196  * note: Association ID = Connection ID for queue 0
197  */
198 #define BYTES_FOR_QID                   sizeof(u16)
199 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
200 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
201
202 static inline u64
203 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
204 {
205         return (assoc->association_id | qid);
206 }
207
208 static inline u64
209 nvmet_fc_getassociationid(u64 connectionid)
210 {
211         return connectionid & ~NVMET_FC_QUEUEID_MASK;
212 }
213
214 static inline u16
215 nvmet_fc_getqueueid(u64 connectionid)
216 {
217         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
218 }
219
220 static inline struct nvmet_fc_tgtport *
221 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
222 {
223         return container_of(targetport, struct nvmet_fc_tgtport,
224                                  fc_target_port);
225 }
226
227 static inline struct nvmet_fc_fcp_iod *
228 nvmet_req_to_fod(struct nvmet_req *nvme_req)
229 {
230         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
231 }
232
233
234 /* *************************** Globals **************************** */
235
236
237 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
238
239 static LIST_HEAD(nvmet_fc_target_list);
240 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
241 static LIST_HEAD(nvmet_fc_portentry_list);
242
243
244 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
245 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
246 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
247 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
248 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
249 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
250 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
251 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
253                                         struct nvmet_fc_fcp_iod *fod);
254 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
255 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
256                                 struct nvmet_fc_ls_iod *iod);
257
258
259 /* *********************** FC-NVME DMA Handling **************************** */
260
261 /*
262  * The fcloop device passes in a NULL device pointer. Real LLD's will
263  * pass in a valid device pointer. If NULL is passed to the dma mapping
264  * routines, depending on the platform, it may or may not succeed, and
265  * may crash.
266  *
267  * As such:
268  * Wrapper all the dma routines and check the dev pointer.
269  *
270  * If simple mappings (return just a dma address, we'll noop them,
271  * returning a dma address of 0.
272  *
273  * On more complex mappings (dma_map_sg), a pseudo routine fills
274  * in the scatter list, setting all dma addresses to 0.
275  */
276
277 static inline dma_addr_t
278 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
279                 enum dma_data_direction dir)
280 {
281         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
282 }
283
284 static inline int
285 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
286 {
287         return dev ? dma_mapping_error(dev, dma_addr) : 0;
288 }
289
290 static inline void
291 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
292         enum dma_data_direction dir)
293 {
294         if (dev)
295                 dma_unmap_single(dev, addr, size, dir);
296 }
297
298 static inline void
299 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
300                 enum dma_data_direction dir)
301 {
302         if (dev)
303                 dma_sync_single_for_cpu(dev, addr, size, dir);
304 }
305
306 static inline void
307 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
308                 enum dma_data_direction dir)
309 {
310         if (dev)
311                 dma_sync_single_for_device(dev, addr, size, dir);
312 }
313
314 /* pseudo dma_map_sg call */
315 static int
316 fc_map_sg(struct scatterlist *sg, int nents)
317 {
318         struct scatterlist *s;
319         int i;
320
321         WARN_ON(nents == 0 || sg[0].length == 0);
322
323         for_each_sg(sg, s, nents, i) {
324                 s->dma_address = 0L;
325 #ifdef CONFIG_NEED_SG_DMA_LENGTH
326                 s->dma_length = s->length;
327 #endif
328         }
329         return nents;
330 }
331
332 static inline int
333 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
334                 enum dma_data_direction dir)
335 {
336         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
337 }
338
339 static inline void
340 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
341                 enum dma_data_direction dir)
342 {
343         if (dev)
344                 dma_unmap_sg(dev, sg, nents, dir);
345 }
346
347
348 /* ********************** FC-NVME LS XMT Handling ************************* */
349
350
351 static void
352 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
353 {
354         struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
355         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
356         unsigned long flags;
357
358         spin_lock_irqsave(&tgtport->lock, flags);
359
360         if (!lsop->req_queued) {
361                 spin_unlock_irqrestore(&tgtport->lock, flags);
362                 return;
363         }
364
365         list_del(&lsop->lsreq_list);
366
367         lsop->req_queued = false;
368
369         spin_unlock_irqrestore(&tgtport->lock, flags);
370
371         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
372                                   (lsreq->rqstlen + lsreq->rsplen),
373                                   DMA_BIDIRECTIONAL);
374
375         nvmet_fc_tgtport_put(tgtport);
376 }
377
378 static int
379 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
380                 struct nvmet_fc_ls_req_op *lsop,
381                 void (*done)(struct nvmefc_ls_req *req, int status))
382 {
383         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
384         unsigned long flags;
385         int ret = 0;
386
387         if (!tgtport->ops->ls_req)
388                 return -EOPNOTSUPP;
389
390         if (!nvmet_fc_tgtport_get(tgtport))
391                 return -ESHUTDOWN;
392
393         lsreq->done = done;
394         lsop->req_queued = false;
395         INIT_LIST_HEAD(&lsop->lsreq_list);
396
397         lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
398                                   lsreq->rqstlen + lsreq->rsplen,
399                                   DMA_BIDIRECTIONAL);
400         if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
401                 ret = -EFAULT;
402                 goto out_puttgtport;
403         }
404         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
405
406         spin_lock_irqsave(&tgtport->lock, flags);
407
408         list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
409
410         lsop->req_queued = true;
411
412         spin_unlock_irqrestore(&tgtport->lock, flags);
413
414         ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
415                                    lsreq);
416         if (ret)
417                 goto out_unlink;
418
419         return 0;
420
421 out_unlink:
422         lsop->ls_error = ret;
423         spin_lock_irqsave(&tgtport->lock, flags);
424         lsop->req_queued = false;
425         list_del(&lsop->lsreq_list);
426         spin_unlock_irqrestore(&tgtport->lock, flags);
427         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
428                                   (lsreq->rqstlen + lsreq->rsplen),
429                                   DMA_BIDIRECTIONAL);
430 out_puttgtport:
431         nvmet_fc_tgtport_put(tgtport);
432
433         return ret;
434 }
435
436 static int
437 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
438                 struct nvmet_fc_ls_req_op *lsop,
439                 void (*done)(struct nvmefc_ls_req *req, int status))
440 {
441         /* don't wait for completion */
442
443         return __nvmet_fc_send_ls_req(tgtport, lsop, done);
444 }
445
446 static void
447 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
448 {
449         struct nvmet_fc_ls_req_op *lsop =
450                 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
451
452         __nvmet_fc_finish_ls_req(lsop);
453
454         /* fc-nvme target doesn't care about success or failure of cmd */
455
456         kfree(lsop);
457 }
458
459 /*
460  * This routine sends a FC-NVME LS to disconnect (aka terminate)
461  * the FC-NVME Association.  Terminating the association also
462  * terminates the FC-NVME connections (per queue, both admin and io
463  * queues) that are part of the association. E.g. things are torn
464  * down, and the related FC-NVME Association ID and Connection IDs
465  * become invalid.
466  *
467  * The behavior of the fc-nvme target is such that it's
468  * understanding of the association and connections will implicitly
469  * be torn down. The action is implicit as it may be due to a loss of
470  * connectivity with the fc-nvme host, so the target may never get a
471  * response even if it tried.  As such, the action of this routine
472  * is to asynchronously send the LS, ignore any results of the LS, and
473  * continue on with terminating the association. If the fc-nvme host
474  * is present and receives the LS, it too can tear down.
475  */
476 static void
477 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
478 {
479         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
480         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
481         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
482         struct nvmet_fc_ls_req_op *lsop;
483         struct nvmefc_ls_req *lsreq;
484         int ret;
485
486         /*
487          * If ls_req is NULL or no hosthandle, it's an older lldd and no
488          * message is normal. Otherwise, send unless the hostport has
489          * already been invalidated by the lldd.
490          */
491         if (!tgtport->ops->ls_req || !assoc->hostport ||
492             assoc->hostport->invalid)
493                 return;
494
495         lsop = kzalloc((sizeof(*lsop) +
496                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
497                         tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
498         if (!lsop) {
499                 dev_info(tgtport->dev,
500                         "{%d:%d} send Disconnect Association failed: ENOMEM\n",
501                         tgtport->fc_target_port.port_num, assoc->a_id);
502                 return;
503         }
504
505         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
506         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
507         lsreq = &lsop->ls_req;
508         if (tgtport->ops->lsrqst_priv_sz)
509                 lsreq->private = (void *)&discon_acc[1];
510         else
511                 lsreq->private = NULL;
512
513         lsop->tgtport = tgtport;
514         lsop->hosthandle = assoc->hostport->hosthandle;
515
516         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
517                                 assoc->association_id);
518
519         ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
520                                 nvmet_fc_disconnect_assoc_done);
521         if (ret) {
522                 dev_info(tgtport->dev,
523                         "{%d:%d} XMT Disconnect Association failed: %d\n",
524                         tgtport->fc_target_port.port_num, assoc->a_id, ret);
525                 kfree(lsop);
526         }
527 }
528
529
530 /* *********************** FC-NVME Port Management ************************ */
531
532
533 static int
534 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
535 {
536         struct nvmet_fc_ls_iod *iod;
537         int i;
538
539         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
540                         GFP_KERNEL);
541         if (!iod)
542                 return -ENOMEM;
543
544         tgtport->iod = iod;
545
546         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
547                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
548                 iod->tgtport = tgtport;
549                 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
550
551                 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
552                                        sizeof(union nvmefc_ls_responses),
553                                        GFP_KERNEL);
554                 if (!iod->rqstbuf)
555                         goto out_fail;
556
557                 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
558
559                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
560                                                 sizeof(*iod->rspbuf),
561                                                 DMA_TO_DEVICE);
562                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
563                         goto out_fail;
564         }
565
566         return 0;
567
568 out_fail:
569         kfree(iod->rqstbuf);
570         list_del(&iod->ls_rcv_list);
571         for (iod--, i--; i >= 0; iod--, i--) {
572                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
573                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
574                 kfree(iod->rqstbuf);
575                 list_del(&iod->ls_rcv_list);
576         }
577
578         kfree(iod);
579
580         return -EFAULT;
581 }
582
583 static void
584 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
585 {
586         struct nvmet_fc_ls_iod *iod = tgtport->iod;
587         int i;
588
589         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
590                 fc_dma_unmap_single(tgtport->dev,
591                                 iod->rspdma, sizeof(*iod->rspbuf),
592                                 DMA_TO_DEVICE);
593                 kfree(iod->rqstbuf);
594                 list_del(&iod->ls_rcv_list);
595         }
596         kfree(tgtport->iod);
597 }
598
599 static struct nvmet_fc_ls_iod *
600 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
601 {
602         struct nvmet_fc_ls_iod *iod;
603         unsigned long flags;
604
605         spin_lock_irqsave(&tgtport->lock, flags);
606         iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
607                                         struct nvmet_fc_ls_iod, ls_rcv_list);
608         if (iod)
609                 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
610         spin_unlock_irqrestore(&tgtport->lock, flags);
611         return iod;
612 }
613
614
615 static void
616 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
617                         struct nvmet_fc_ls_iod *iod)
618 {
619         unsigned long flags;
620
621         spin_lock_irqsave(&tgtport->lock, flags);
622         list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
623         spin_unlock_irqrestore(&tgtport->lock, flags);
624 }
625
626 static void
627 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
628                                 struct nvmet_fc_tgt_queue *queue)
629 {
630         struct nvmet_fc_fcp_iod *fod = queue->fod;
631         int i;
632
633         for (i = 0; i < queue->sqsize; fod++, i++) {
634                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
635                 fod->tgtport = tgtport;
636                 fod->queue = queue;
637                 fod->active = false;
638                 fod->abort = false;
639                 fod->aborted = false;
640                 fod->fcpreq = NULL;
641                 list_add_tail(&fod->fcp_list, &queue->fod_list);
642                 spin_lock_init(&fod->flock);
643
644                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
645                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
646                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
647                         list_del(&fod->fcp_list);
648                         for (fod--, i--; i >= 0; fod--, i--) {
649                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
650                                                 sizeof(fod->rspiubuf),
651                                                 DMA_TO_DEVICE);
652                                 fod->rspdma = 0L;
653                                 list_del(&fod->fcp_list);
654                         }
655
656                         return;
657                 }
658         }
659 }
660
661 static void
662 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
663                                 struct nvmet_fc_tgt_queue *queue)
664 {
665         struct nvmet_fc_fcp_iod *fod = queue->fod;
666         int i;
667
668         for (i = 0; i < queue->sqsize; fod++, i++) {
669                 if (fod->rspdma)
670                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
671                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
672         }
673 }
674
675 static struct nvmet_fc_fcp_iod *
676 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
677 {
678         struct nvmet_fc_fcp_iod *fod;
679
680         lockdep_assert_held(&queue->qlock);
681
682         fod = list_first_entry_or_null(&queue->fod_list,
683                                         struct nvmet_fc_fcp_iod, fcp_list);
684         if (fod) {
685                 list_del(&fod->fcp_list);
686                 fod->active = true;
687                 /*
688                  * no queue reference is taken, as it was taken by the
689                  * queue lookup just prior to the allocation. The iod
690                  * will "inherit" that reference.
691                  */
692         }
693         return fod;
694 }
695
696
697 static void
698 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
699                        struct nvmet_fc_tgt_queue *queue,
700                        struct nvmefc_tgt_fcp_req *fcpreq)
701 {
702         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
703
704         /*
705          * put all admin cmds on hw queue id 0. All io commands go to
706          * the respective hw queue based on a modulo basis
707          */
708         fcpreq->hwqid = queue->qid ?
709                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
710
711         nvmet_fc_handle_fcp_rqst(tgtport, fod);
712 }
713
714 static void
715 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
716 {
717         struct nvmet_fc_fcp_iod *fod =
718                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
719
720         /* Submit deferred IO for processing */
721         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
722
723 }
724
725 static void
726 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
727                         struct nvmet_fc_fcp_iod *fod)
728 {
729         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
730         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
731         struct nvmet_fc_defer_fcp_req *deferfcp;
732         unsigned long flags;
733
734         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
735                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
736
737         fcpreq->nvmet_fc_private = NULL;
738
739         fod->active = false;
740         fod->abort = false;
741         fod->aborted = false;
742         fod->writedataactive = false;
743         fod->fcpreq = NULL;
744
745         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
746
747         /* release the queue lookup reference on the completed IO */
748         nvmet_fc_tgt_q_put(queue);
749
750         spin_lock_irqsave(&queue->qlock, flags);
751         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
752                                 struct nvmet_fc_defer_fcp_req, req_list);
753         if (!deferfcp) {
754                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
755                 spin_unlock_irqrestore(&queue->qlock, flags);
756                 return;
757         }
758
759         /* Re-use the fod for the next pending cmd that was deferred */
760         list_del(&deferfcp->req_list);
761
762         fcpreq = deferfcp->fcp_req;
763
764         /* deferfcp can be reused for another IO at a later date */
765         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
766
767         spin_unlock_irqrestore(&queue->qlock, flags);
768
769         /* Save NVME CMD IO in fod */
770         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
771
772         /* Setup new fcpreq to be processed */
773         fcpreq->rspaddr = NULL;
774         fcpreq->rsplen  = 0;
775         fcpreq->nvmet_fc_private = fod;
776         fod->fcpreq = fcpreq;
777         fod->active = true;
778
779         /* inform LLDD IO is now being processed */
780         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
781
782         /*
783          * Leave the queue lookup get reference taken when
784          * fod was originally allocated.
785          */
786
787         queue_work(queue->work_q, &fod->defer_work);
788 }
789
790 static struct nvmet_fc_tgt_queue *
791 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
792                         u16 qid, u16 sqsize)
793 {
794         struct nvmet_fc_tgt_queue *queue;
795         int ret;
796
797         if (qid > NVMET_NR_QUEUES)
798                 return NULL;
799
800         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801         if (!queue)
802                 return NULL;
803
804         if (!nvmet_fc_tgt_a_get(assoc))
805                 goto out_free_queue;
806
807         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808                                 assoc->tgtport->fc_target_port.port_num,
809                                 assoc->a_id, qid);
810         if (!queue->work_q)
811                 goto out_a_put;
812
813         queue->qid = qid;
814         queue->sqsize = sqsize;
815         queue->assoc = assoc;
816         INIT_LIST_HEAD(&queue->fod_list);
817         INIT_LIST_HEAD(&queue->avail_defer_list);
818         INIT_LIST_HEAD(&queue->pending_cmd_list);
819         atomic_set(&queue->connected, 0);
820         atomic_set(&queue->sqtail, 0);
821         atomic_set(&queue->rsn, 1);
822         atomic_set(&queue->zrspcnt, 0);
823         spin_lock_init(&queue->qlock);
824         kref_init(&queue->ref);
825
826         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827
828         ret = nvmet_sq_init(&queue->nvme_sq);
829         if (ret)
830                 goto out_fail_iodlist;
831
832         WARN_ON(assoc->queues[qid]);
833         rcu_assign_pointer(assoc->queues[qid], queue);
834
835         return queue;
836
837 out_fail_iodlist:
838         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
839         destroy_workqueue(queue->work_q);
840 out_a_put:
841         nvmet_fc_tgt_a_put(assoc);
842 out_free_queue:
843         kfree(queue);
844         return NULL;
845 }
846
847
848 static void
849 nvmet_fc_tgt_queue_free(struct kref *ref)
850 {
851         struct nvmet_fc_tgt_queue *queue =
852                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
853
854         rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
855
856         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
857
858         nvmet_fc_tgt_a_put(queue->assoc);
859
860         destroy_workqueue(queue->work_q);
861
862         kfree_rcu(queue, rcu);
863 }
864
865 static void
866 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
867 {
868         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
869 }
870
871 static int
872 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
873 {
874         return kref_get_unless_zero(&queue->ref);
875 }
876
877
878 static void
879 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
880 {
881         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
882         struct nvmet_fc_fcp_iod *fod = queue->fod;
883         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
884         unsigned long flags;
885         int i;
886         bool disconnect;
887
888         disconnect = atomic_xchg(&queue->connected, 0);
889
890         /* if not connected, nothing to do */
891         if (!disconnect)
892                 return;
893
894         spin_lock_irqsave(&queue->qlock, flags);
895         /* abort outstanding io's */
896         for (i = 0; i < queue->sqsize; fod++, i++) {
897                 if (fod->active) {
898                         spin_lock(&fod->flock);
899                         fod->abort = true;
900                         /*
901                          * only call lldd abort routine if waiting for
902                          * writedata. other outstanding ops should finish
903                          * on their own.
904                          */
905                         if (fod->writedataactive) {
906                                 fod->aborted = true;
907                                 spin_unlock(&fod->flock);
908                                 tgtport->ops->fcp_abort(
909                                         &tgtport->fc_target_port, fod->fcpreq);
910                         } else
911                                 spin_unlock(&fod->flock);
912                 }
913         }
914
915         /* Cleanup defer'ed IOs in queue */
916         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
917                                 req_list) {
918                 list_del(&deferfcp->req_list);
919                 kfree(deferfcp);
920         }
921
922         for (;;) {
923                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
924                                 struct nvmet_fc_defer_fcp_req, req_list);
925                 if (!deferfcp)
926                         break;
927
928                 list_del(&deferfcp->req_list);
929                 spin_unlock_irqrestore(&queue->qlock, flags);
930
931                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
932                                 deferfcp->fcp_req);
933
934                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
935                                 deferfcp->fcp_req);
936
937                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
938                                 deferfcp->fcp_req);
939
940                 /* release the queue lookup reference */
941                 nvmet_fc_tgt_q_put(queue);
942
943                 kfree(deferfcp);
944
945                 spin_lock_irqsave(&queue->qlock, flags);
946         }
947         spin_unlock_irqrestore(&queue->qlock, flags);
948
949         flush_workqueue(queue->work_q);
950
951         nvmet_sq_destroy(&queue->nvme_sq);
952
953         nvmet_fc_tgt_q_put(queue);
954 }
955
956 static struct nvmet_fc_tgt_queue *
957 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
958                                 u64 connection_id)
959 {
960         struct nvmet_fc_tgt_assoc *assoc;
961         struct nvmet_fc_tgt_queue *queue;
962         u64 association_id = nvmet_fc_getassociationid(connection_id);
963         u16 qid = nvmet_fc_getqueueid(connection_id);
964
965         if (qid > NVMET_NR_QUEUES)
966                 return NULL;
967
968         rcu_read_lock();
969         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
970                 if (association_id == assoc->association_id) {
971                         queue = rcu_dereference(assoc->queues[qid]);
972                         if (queue &&
973                             (!atomic_read(&queue->connected) ||
974                              !nvmet_fc_tgt_q_get(queue)))
975                                 queue = NULL;
976                         rcu_read_unlock();
977                         return queue;
978                 }
979         }
980         rcu_read_unlock();
981         return NULL;
982 }
983
984 static void
985 nvmet_fc_hostport_free(struct kref *ref)
986 {
987         struct nvmet_fc_hostport *hostport =
988                 container_of(ref, struct nvmet_fc_hostport, ref);
989         struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
990         unsigned long flags;
991
992         spin_lock_irqsave(&tgtport->lock, flags);
993         list_del(&hostport->host_list);
994         spin_unlock_irqrestore(&tgtport->lock, flags);
995         if (tgtport->ops->host_release && hostport->invalid)
996                 tgtport->ops->host_release(hostport->hosthandle);
997         kfree(hostport);
998         nvmet_fc_tgtport_put(tgtport);
999 }
1000
1001 static void
1002 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1003 {
1004         kref_put(&hostport->ref, nvmet_fc_hostport_free);
1005 }
1006
1007 static int
1008 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1009 {
1010         return kref_get_unless_zero(&hostport->ref);
1011 }
1012
1013 static void
1014 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1015 {
1016         /* if LLDD not implemented, leave as NULL */
1017         if (!hostport || !hostport->hosthandle)
1018                 return;
1019
1020         nvmet_fc_hostport_put(hostport);
1021 }
1022
1023 static struct nvmet_fc_hostport *
1024 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1025 {
1026         struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1027         unsigned long flags;
1028
1029         /* if LLDD not implemented, leave as NULL */
1030         if (!hosthandle)
1031                 return NULL;
1032
1033         /* take reference for what will be the newly allocated hostport */
1034         if (!nvmet_fc_tgtport_get(tgtport))
1035                 return ERR_PTR(-EINVAL);
1036
1037         newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1038         if (!newhost) {
1039                 spin_lock_irqsave(&tgtport->lock, flags);
1040                 list_for_each_entry(host, &tgtport->host_list, host_list) {
1041                         if (host->hosthandle == hosthandle && !host->invalid) {
1042                                 if (nvmet_fc_hostport_get(host)) {
1043                                         match = host;
1044                                         break;
1045                                 }
1046                         }
1047                 }
1048                 spin_unlock_irqrestore(&tgtport->lock, flags);
1049                 /* no allocation - release reference */
1050                 nvmet_fc_tgtport_put(tgtport);
1051                 return (match) ? match : ERR_PTR(-ENOMEM);
1052         }
1053
1054         newhost->tgtport = tgtport;
1055         newhost->hosthandle = hosthandle;
1056         INIT_LIST_HEAD(&newhost->host_list);
1057         kref_init(&newhost->ref);
1058
1059         spin_lock_irqsave(&tgtport->lock, flags);
1060         list_for_each_entry(host, &tgtport->host_list, host_list) {
1061                 if (host->hosthandle == hosthandle && !host->invalid) {
1062                         if (nvmet_fc_hostport_get(host)) {
1063                                 match = host;
1064                                 break;
1065                         }
1066                 }
1067         }
1068         if (match) {
1069                 kfree(newhost);
1070                 newhost = NULL;
1071                 /* releasing allocation - release reference */
1072                 nvmet_fc_tgtport_put(tgtport);
1073         } else
1074                 list_add_tail(&newhost->host_list, &tgtport->host_list);
1075         spin_unlock_irqrestore(&tgtport->lock, flags);
1076
1077         return (match) ? match : newhost;
1078 }
1079
1080 static void
1081 nvmet_fc_delete_assoc(struct work_struct *work)
1082 {
1083         struct nvmet_fc_tgt_assoc *assoc =
1084                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1085
1086         nvmet_fc_delete_target_assoc(assoc);
1087         nvmet_fc_tgt_a_put(assoc);
1088 }
1089
1090 static struct nvmet_fc_tgt_assoc *
1091 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1092 {
1093         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1094         unsigned long flags;
1095         u64 ran;
1096         int idx;
1097         bool needrandom = true;
1098
1099         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1100         if (!assoc)
1101                 return NULL;
1102
1103         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1104         if (idx < 0)
1105                 goto out_free_assoc;
1106
1107         if (!nvmet_fc_tgtport_get(tgtport))
1108                 goto out_ida;
1109
1110         assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1111         if (IS_ERR(assoc->hostport))
1112                 goto out_put;
1113
1114         assoc->tgtport = tgtport;
1115         assoc->a_id = idx;
1116         INIT_LIST_HEAD(&assoc->a_list);
1117         kref_init(&assoc->ref);
1118         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1119         atomic_set(&assoc->terminating, 0);
1120
1121         while (needrandom) {
1122                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1123                 ran = ran << BYTES_FOR_QID_SHIFT;
1124
1125                 spin_lock_irqsave(&tgtport->lock, flags);
1126                 needrandom = false;
1127                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1128                         if (ran == tmpassoc->association_id) {
1129                                 needrandom = true;
1130                                 break;
1131                         }
1132                 }
1133                 if (!needrandom) {
1134                         assoc->association_id = ran;
1135                         list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1136                 }
1137                 spin_unlock_irqrestore(&tgtport->lock, flags);
1138         }
1139
1140         return assoc;
1141
1142 out_put:
1143         nvmet_fc_tgtport_put(tgtport);
1144 out_ida:
1145         ida_simple_remove(&tgtport->assoc_cnt, idx);
1146 out_free_assoc:
1147         kfree(assoc);
1148         return NULL;
1149 }
1150
1151 static void
1152 nvmet_fc_target_assoc_free(struct kref *ref)
1153 {
1154         struct nvmet_fc_tgt_assoc *assoc =
1155                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1156         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1157         struct nvmet_fc_ls_iod  *oldls;
1158         unsigned long flags;
1159
1160         /* Send Disconnect now that all i/o has completed */
1161         nvmet_fc_xmt_disconnect_assoc(assoc);
1162
1163         nvmet_fc_free_hostport(assoc->hostport);
1164         spin_lock_irqsave(&tgtport->lock, flags);
1165         list_del_rcu(&assoc->a_list);
1166         oldls = assoc->rcv_disconn;
1167         spin_unlock_irqrestore(&tgtport->lock, flags);
1168         /* if pending Rcv Disconnect Association LS, send rsp now */
1169         if (oldls)
1170                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1171         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1172         dev_info(tgtport->dev,
1173                 "{%d:%d} Association freed\n",
1174                 tgtport->fc_target_port.port_num, assoc->a_id);
1175         kfree_rcu(assoc, rcu);
1176         nvmet_fc_tgtport_put(tgtport);
1177 }
1178
1179 static void
1180 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1181 {
1182         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1183 }
1184
1185 static int
1186 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1187 {
1188         return kref_get_unless_zero(&assoc->ref);
1189 }
1190
1191 static void
1192 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1193 {
1194         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1195         struct nvmet_fc_tgt_queue *queue;
1196         int i, terminating;
1197
1198         terminating = atomic_xchg(&assoc->terminating, 1);
1199
1200         /* if already terminating, do nothing */
1201         if (terminating)
1202                 return;
1203
1204
1205         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1206                 rcu_read_lock();
1207                 queue = rcu_dereference(assoc->queues[i]);
1208                 if (!queue) {
1209                         rcu_read_unlock();
1210                         continue;
1211                 }
1212
1213                 if (!nvmet_fc_tgt_q_get(queue)) {
1214                         rcu_read_unlock();
1215                         continue;
1216                 }
1217                 rcu_read_unlock();
1218                 nvmet_fc_delete_target_queue(queue);
1219                 nvmet_fc_tgt_q_put(queue);
1220         }
1221
1222         dev_info(tgtport->dev,
1223                 "{%d:%d} Association deleted\n",
1224                 tgtport->fc_target_port.port_num, assoc->a_id);
1225
1226         nvmet_fc_tgt_a_put(assoc);
1227 }
1228
1229 static struct nvmet_fc_tgt_assoc *
1230 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1231                                 u64 association_id)
1232 {
1233         struct nvmet_fc_tgt_assoc *assoc;
1234         struct nvmet_fc_tgt_assoc *ret = NULL;
1235
1236         rcu_read_lock();
1237         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1238                 if (association_id == assoc->association_id) {
1239                         ret = assoc;
1240                         if (!nvmet_fc_tgt_a_get(assoc))
1241                                 ret = NULL;
1242                         break;
1243                 }
1244         }
1245         rcu_read_unlock();
1246
1247         return ret;
1248 }
1249
1250 static void
1251 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1252                         struct nvmet_fc_port_entry *pe,
1253                         struct nvmet_port *port)
1254 {
1255         lockdep_assert_held(&nvmet_fc_tgtlock);
1256
1257         pe->tgtport = tgtport;
1258         tgtport->pe = pe;
1259
1260         pe->port = port;
1261         port->priv = pe;
1262
1263         pe->node_name = tgtport->fc_target_port.node_name;
1264         pe->port_name = tgtport->fc_target_port.port_name;
1265         INIT_LIST_HEAD(&pe->pe_list);
1266
1267         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1268 }
1269
1270 static void
1271 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1272 {
1273         unsigned long flags;
1274
1275         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1276         if (pe->tgtport)
1277                 pe->tgtport->pe = NULL;
1278         list_del(&pe->pe_list);
1279         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1280 }
1281
1282 /*
1283  * called when a targetport deregisters. Breaks the relationship
1284  * with the nvmet port, but leaves the port_entry in place so that
1285  * re-registration can resume operation.
1286  */
1287 static void
1288 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1289 {
1290         struct nvmet_fc_port_entry *pe;
1291         unsigned long flags;
1292
1293         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1294         pe = tgtport->pe;
1295         if (pe)
1296                 pe->tgtport = NULL;
1297         tgtport->pe = NULL;
1298         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1299 }
1300
1301 /*
1302  * called when a new targetport is registered. Looks in the
1303  * existing nvmet port_entries to see if the nvmet layer is
1304  * configured for the targetport's wwn's. (the targetport existed,
1305  * nvmet configured, the lldd unregistered the tgtport, and is now
1306  * reregistering the same targetport).  If so, set the nvmet port
1307  * port entry on the targetport.
1308  */
1309 static void
1310 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1311 {
1312         struct nvmet_fc_port_entry *pe;
1313         unsigned long flags;
1314
1315         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1316         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1317                 if (tgtport->fc_target_port.node_name == pe->node_name &&
1318                     tgtport->fc_target_port.port_name == pe->port_name) {
1319                         WARN_ON(pe->tgtport);
1320                         tgtport->pe = pe;
1321                         pe->tgtport = tgtport;
1322                         break;
1323                 }
1324         }
1325         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1326 }
1327
1328 /**
1329  * nvme_fc_register_targetport - transport entry point called by an
1330  *                              LLDD to register the existence of a local
1331  *                              NVME subystem FC port.
1332  * @pinfo:     pointer to information about the port to be registered
1333  * @template:  LLDD entrypoints and operational parameters for the port
1334  * @dev:       physical hardware device node port corresponds to. Will be
1335  *             used for DMA mappings
1336  * @portptr:   pointer to a local port pointer. Upon success, the routine
1337  *             will allocate a nvme_fc_local_port structure and place its
1338  *             address in the local port pointer. Upon failure, local port
1339  *             pointer will be set to NULL.
1340  *
1341  * Returns:
1342  * a completion status. Must be 0 upon success; a negative errno
1343  * (ex: -ENXIO) upon failure.
1344  */
1345 int
1346 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1347                         struct nvmet_fc_target_template *template,
1348                         struct device *dev,
1349                         struct nvmet_fc_target_port **portptr)
1350 {
1351         struct nvmet_fc_tgtport *newrec;
1352         unsigned long flags;
1353         int ret, idx;
1354
1355         if (!template->xmt_ls_rsp || !template->fcp_op ||
1356             !template->fcp_abort ||
1357             !template->fcp_req_release || !template->targetport_delete ||
1358             !template->max_hw_queues || !template->max_sgl_segments ||
1359             !template->max_dif_sgl_segments || !template->dma_boundary) {
1360                 ret = -EINVAL;
1361                 goto out_regtgt_failed;
1362         }
1363
1364         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1365                          GFP_KERNEL);
1366         if (!newrec) {
1367                 ret = -ENOMEM;
1368                 goto out_regtgt_failed;
1369         }
1370
1371         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1372         if (idx < 0) {
1373                 ret = -ENOSPC;
1374                 goto out_fail_kfree;
1375         }
1376
1377         if (!get_device(dev) && dev) {
1378                 ret = -ENODEV;
1379                 goto out_ida_put;
1380         }
1381
1382         newrec->fc_target_port.node_name = pinfo->node_name;
1383         newrec->fc_target_port.port_name = pinfo->port_name;
1384         if (template->target_priv_sz)
1385                 newrec->fc_target_port.private = &newrec[1];
1386         else
1387                 newrec->fc_target_port.private = NULL;
1388         newrec->fc_target_port.port_id = pinfo->port_id;
1389         newrec->fc_target_port.port_num = idx;
1390         INIT_LIST_HEAD(&newrec->tgt_list);
1391         newrec->dev = dev;
1392         newrec->ops = template;
1393         spin_lock_init(&newrec->lock);
1394         INIT_LIST_HEAD(&newrec->ls_rcv_list);
1395         INIT_LIST_HEAD(&newrec->ls_req_list);
1396         INIT_LIST_HEAD(&newrec->ls_busylist);
1397         INIT_LIST_HEAD(&newrec->assoc_list);
1398         INIT_LIST_HEAD(&newrec->host_list);
1399         kref_init(&newrec->ref);
1400         ida_init(&newrec->assoc_cnt);
1401         newrec->max_sg_cnt = template->max_sgl_segments;
1402
1403         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1404         if (ret) {
1405                 ret = -ENOMEM;
1406                 goto out_free_newrec;
1407         }
1408
1409         nvmet_fc_portentry_rebind_tgt(newrec);
1410
1411         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1412         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1413         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1414
1415         *portptr = &newrec->fc_target_port;
1416         return 0;
1417
1418 out_free_newrec:
1419         put_device(dev);
1420 out_ida_put:
1421         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1422 out_fail_kfree:
1423         kfree(newrec);
1424 out_regtgt_failed:
1425         *portptr = NULL;
1426         return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1429
1430
1431 static void
1432 nvmet_fc_free_tgtport(struct kref *ref)
1433 {
1434         struct nvmet_fc_tgtport *tgtport =
1435                 container_of(ref, struct nvmet_fc_tgtport, ref);
1436         struct device *dev = tgtport->dev;
1437         unsigned long flags;
1438
1439         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1440         list_del(&tgtport->tgt_list);
1441         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1442
1443         nvmet_fc_free_ls_iodlist(tgtport);
1444
1445         /* let the LLDD know we've finished tearing it down */
1446         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1447
1448         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1449                         tgtport->fc_target_port.port_num);
1450
1451         ida_destroy(&tgtport->assoc_cnt);
1452
1453         kfree(tgtport);
1454
1455         put_device(dev);
1456 }
1457
1458 static void
1459 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1460 {
1461         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1462 }
1463
1464 static int
1465 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1466 {
1467         return kref_get_unless_zero(&tgtport->ref);
1468 }
1469
1470 static void
1471 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1472 {
1473         struct nvmet_fc_tgt_assoc *assoc;
1474
1475         rcu_read_lock();
1476         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1477                 if (!nvmet_fc_tgt_a_get(assoc))
1478                         continue;
1479                 if (!schedule_work(&assoc->del_work))
1480                         /* already deleting - release local reference */
1481                         nvmet_fc_tgt_a_put(assoc);
1482         }
1483         rcu_read_unlock();
1484 }
1485
1486 /**
1487  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1488  *                       to remove references to a hosthandle for LS's.
1489  *
1490  * The nvmet-fc layer ensures that any references to the hosthandle
1491  * on the targetport are forgotten (set to NULL).  The LLDD will
1492  * typically call this when a login with a remote host port has been
1493  * lost, thus LS's for the remote host port are no longer possible.
1494  *
1495  * If an LS request is outstanding to the targetport/hosthandle (or
1496  * issued concurrently with the call to invalidate the host), the
1497  * LLDD is responsible for terminating/aborting the LS and completing
1498  * the LS request. It is recommended that these terminations/aborts
1499  * occur after calling to invalidate the host handle to avoid additional
1500  * retries by the nvmet-fc transport. The nvmet-fc transport may
1501  * continue to reference host handle while it cleans up outstanding
1502  * NVME associations. The nvmet-fc transport will call the
1503  * ops->host_release() callback to notify the LLDD that all references
1504  * are complete and the related host handle can be recovered.
1505  * Note: if there are no references, the callback may be called before
1506  * the invalidate host call returns.
1507  *
1508  * @target_port: pointer to the (registered) target port that a prior
1509  *              LS was received on and which supplied the transport the
1510  *              hosthandle.
1511  * @hosthandle: the handle (pointer) that represents the host port
1512  *              that no longer has connectivity and that LS's should
1513  *              no longer be directed to.
1514  */
1515 void
1516 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1517                         void *hosthandle)
1518 {
1519         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1520         struct nvmet_fc_tgt_assoc *assoc, *next;
1521         unsigned long flags;
1522         bool noassoc = true;
1523
1524         spin_lock_irqsave(&tgtport->lock, flags);
1525         list_for_each_entry_safe(assoc, next,
1526                                 &tgtport->assoc_list, a_list) {
1527                 if (!assoc->hostport ||
1528                     assoc->hostport->hosthandle != hosthandle)
1529                         continue;
1530                 if (!nvmet_fc_tgt_a_get(assoc))
1531                         continue;
1532                 assoc->hostport->invalid = 1;
1533                 noassoc = false;
1534                 if (!schedule_work(&assoc->del_work))
1535                         /* already deleting - release local reference */
1536                         nvmet_fc_tgt_a_put(assoc);
1537         }
1538         spin_unlock_irqrestore(&tgtport->lock, flags);
1539
1540         /* if there's nothing to wait for - call the callback */
1541         if (noassoc && tgtport->ops->host_release)
1542                 tgtport->ops->host_release(hosthandle);
1543 }
1544 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1545
1546 /*
1547  * nvmet layer has called to terminate an association
1548  */
1549 static void
1550 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1551 {
1552         struct nvmet_fc_tgtport *tgtport, *next;
1553         struct nvmet_fc_tgt_assoc *assoc;
1554         struct nvmet_fc_tgt_queue *queue;
1555         unsigned long flags;
1556         bool found_ctrl = false;
1557
1558         /* this is a bit ugly, but don't want to make locks layered */
1559         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1560         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1561                         tgt_list) {
1562                 if (!nvmet_fc_tgtport_get(tgtport))
1563                         continue;
1564                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1565
1566                 rcu_read_lock();
1567                 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1568                         queue = rcu_dereference(assoc->queues[0]);
1569                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1570                                 if (nvmet_fc_tgt_a_get(assoc))
1571                                         found_ctrl = true;
1572                                 break;
1573                         }
1574                 }
1575                 rcu_read_unlock();
1576
1577                 nvmet_fc_tgtport_put(tgtport);
1578
1579                 if (found_ctrl) {
1580                         if (!schedule_work(&assoc->del_work))
1581                                 /* already deleting - release local reference */
1582                                 nvmet_fc_tgt_a_put(assoc);
1583                         return;
1584                 }
1585
1586                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1587         }
1588         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1589 }
1590
1591 /**
1592  * nvme_fc_unregister_targetport - transport entry point called by an
1593  *                              LLDD to deregister/remove a previously
1594  *                              registered a local NVME subsystem FC port.
1595  * @target_port: pointer to the (registered) target port that is to be
1596  *               deregistered.
1597  *
1598  * Returns:
1599  * a completion status. Must be 0 upon success; a negative errno
1600  * (ex: -ENXIO) upon failure.
1601  */
1602 int
1603 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1604 {
1605         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1606
1607         nvmet_fc_portentry_unbind_tgt(tgtport);
1608
1609         /* terminate any outstanding associations */
1610         __nvmet_fc_free_assocs(tgtport);
1611
1612         /*
1613          * should terminate LS's as well. However, LS's will be generated
1614          * at the tail end of association termination, so they likely don't
1615          * exist yet. And even if they did, it's worthwhile to just let
1616          * them finish and targetport ref counting will clean things up.
1617          */
1618
1619         nvmet_fc_tgtport_put(tgtport);
1620
1621         return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1624
1625
1626 /* ********************** FC-NVME LS RCV Handling ************************* */
1627
1628
1629 static void
1630 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1631                         struct nvmet_fc_ls_iod *iod)
1632 {
1633         struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1634         struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1635         struct nvmet_fc_tgt_queue *queue;
1636         int ret = 0;
1637
1638         memset(acc, 0, sizeof(*acc));
1639
1640         /*
1641          * FC-NVME spec changes. There are initiators sending different
1642          * lengths as padding sizes for Create Association Cmd descriptor
1643          * was incorrect.
1644          * Accept anything of "minimum" length. Assume format per 1.15
1645          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1646          * trailing pad length is.
1647          */
1648         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1649                 ret = VERR_CR_ASSOC_LEN;
1650         else if (be32_to_cpu(rqst->desc_list_len) <
1651                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1652                 ret = VERR_CR_ASSOC_RQST_LEN;
1653         else if (rqst->assoc_cmd.desc_tag !=
1654                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1655                 ret = VERR_CR_ASSOC_CMD;
1656         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1657                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1658                 ret = VERR_CR_ASSOC_CMD_LEN;
1659         else if (!rqst->assoc_cmd.ersp_ratio ||
1660                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1661                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1662                 ret = VERR_ERSP_RATIO;
1663
1664         else {
1665                 /* new association w/ admin queue */
1666                 iod->assoc = nvmet_fc_alloc_target_assoc(
1667                                                 tgtport, iod->hosthandle);
1668                 if (!iod->assoc)
1669                         ret = VERR_ASSOC_ALLOC_FAIL;
1670                 else {
1671                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1672                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1673                         if (!queue)
1674                                 ret = VERR_QUEUE_ALLOC_FAIL;
1675                 }
1676         }
1677
1678         if (ret) {
1679                 dev_err(tgtport->dev,
1680                         "Create Association LS failed: %s\n",
1681                         validation_errors[ret]);
1682                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1683                                 sizeof(*acc), rqst->w0.ls_cmd,
1684                                 FCNVME_RJT_RC_LOGIC,
1685                                 FCNVME_RJT_EXP_NONE, 0);
1686                 return;
1687         }
1688
1689         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1690         atomic_set(&queue->connected, 1);
1691         queue->sqhd = 0;        /* best place to init value */
1692
1693         dev_info(tgtport->dev,
1694                 "{%d:%d} Association created\n",
1695                 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1696
1697         /* format a response */
1698
1699         iod->lsrsp->rsplen = sizeof(*acc);
1700
1701         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1702                         fcnvme_lsdesc_len(
1703                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1704                         FCNVME_LS_CREATE_ASSOCIATION);
1705         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1706         acc->associd.desc_len =
1707                         fcnvme_lsdesc_len(
1708                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1709         acc->associd.association_id =
1710                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1711         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1712         acc->connectid.desc_len =
1713                         fcnvme_lsdesc_len(
1714                                 sizeof(struct fcnvme_lsdesc_conn_id));
1715         acc->connectid.connection_id = acc->associd.association_id;
1716 }
1717
1718 static void
1719 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1720                         struct nvmet_fc_ls_iod *iod)
1721 {
1722         struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1723         struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1724         struct nvmet_fc_tgt_queue *queue;
1725         int ret = 0;
1726
1727         memset(acc, 0, sizeof(*acc));
1728
1729         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1730                 ret = VERR_CR_CONN_LEN;
1731         else if (rqst->desc_list_len !=
1732                         fcnvme_lsdesc_len(
1733                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1734                 ret = VERR_CR_CONN_RQST_LEN;
1735         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1736                 ret = VERR_ASSOC_ID;
1737         else if (rqst->associd.desc_len !=
1738                         fcnvme_lsdesc_len(
1739                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1740                 ret = VERR_ASSOC_ID_LEN;
1741         else if (rqst->connect_cmd.desc_tag !=
1742                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1743                 ret = VERR_CR_CONN_CMD;
1744         else if (rqst->connect_cmd.desc_len !=
1745                         fcnvme_lsdesc_len(
1746                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1747                 ret = VERR_CR_CONN_CMD_LEN;
1748         else if (!rqst->connect_cmd.ersp_ratio ||
1749                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1750                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1751                 ret = VERR_ERSP_RATIO;
1752
1753         else {
1754                 /* new io queue */
1755                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1756                                 be64_to_cpu(rqst->associd.association_id));
1757                 if (!iod->assoc)
1758                         ret = VERR_NO_ASSOC;
1759                 else {
1760                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1761                                         be16_to_cpu(rqst->connect_cmd.qid),
1762                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1763                         if (!queue)
1764                                 ret = VERR_QUEUE_ALLOC_FAIL;
1765
1766                         /* release get taken in nvmet_fc_find_target_assoc */
1767                         nvmet_fc_tgt_a_put(iod->assoc);
1768                 }
1769         }
1770
1771         if (ret) {
1772                 dev_err(tgtport->dev,
1773                         "Create Connection LS failed: %s\n",
1774                         validation_errors[ret]);
1775                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1776                                 sizeof(*acc), rqst->w0.ls_cmd,
1777                                 (ret == VERR_NO_ASSOC) ?
1778                                         FCNVME_RJT_RC_INV_ASSOC :
1779                                         FCNVME_RJT_RC_LOGIC,
1780                                 FCNVME_RJT_EXP_NONE, 0);
1781                 return;
1782         }
1783
1784         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1785         atomic_set(&queue->connected, 1);
1786         queue->sqhd = 0;        /* best place to init value */
1787
1788         /* format a response */
1789
1790         iod->lsrsp->rsplen = sizeof(*acc);
1791
1792         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1793                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1794                         FCNVME_LS_CREATE_CONNECTION);
1795         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1796         acc->connectid.desc_len =
1797                         fcnvme_lsdesc_len(
1798                                 sizeof(struct fcnvme_lsdesc_conn_id));
1799         acc->connectid.connection_id =
1800                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1801                                 be16_to_cpu(rqst->connect_cmd.qid)));
1802 }
1803
1804 /*
1805  * Returns true if the LS response is to be transmit
1806  * Returns false if the LS response is to be delayed
1807  */
1808 static int
1809 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1810                         struct nvmet_fc_ls_iod *iod)
1811 {
1812         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1813                                                 &iod->rqstbuf->rq_dis_assoc;
1814         struct fcnvme_ls_disconnect_assoc_acc *acc =
1815                                                 &iod->rspbuf->rsp_dis_assoc;
1816         struct nvmet_fc_tgt_assoc *assoc = NULL;
1817         struct nvmet_fc_ls_iod *oldls = NULL;
1818         unsigned long flags;
1819         int ret = 0;
1820
1821         memset(acc, 0, sizeof(*acc));
1822
1823         ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1824         if (!ret) {
1825                 /* match an active association - takes an assoc ref if !NULL */
1826                 assoc = nvmet_fc_find_target_assoc(tgtport,
1827                                 be64_to_cpu(rqst->associd.association_id));
1828                 iod->assoc = assoc;
1829                 if (!assoc)
1830                         ret = VERR_NO_ASSOC;
1831         }
1832
1833         if (ret || !assoc) {
1834                 dev_err(tgtport->dev,
1835                         "Disconnect LS failed: %s\n",
1836                         validation_errors[ret]);
1837                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1838                                 sizeof(*acc), rqst->w0.ls_cmd,
1839                                 (ret == VERR_NO_ASSOC) ?
1840                                         FCNVME_RJT_RC_INV_ASSOC :
1841                                         FCNVME_RJT_RC_LOGIC,
1842                                 FCNVME_RJT_EXP_NONE, 0);
1843                 return true;
1844         }
1845
1846         /* format a response */
1847
1848         iod->lsrsp->rsplen = sizeof(*acc);
1849
1850         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1851                         fcnvme_lsdesc_len(
1852                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1853                         FCNVME_LS_DISCONNECT_ASSOC);
1854
1855         /* release get taken in nvmet_fc_find_target_assoc */
1856         nvmet_fc_tgt_a_put(assoc);
1857
1858         /*
1859          * The rules for LS response says the response cannot
1860          * go back until ABTS's have been sent for all outstanding
1861          * I/O and a Disconnect Association LS has been sent.
1862          * So... save off the Disconnect LS to send the response
1863          * later. If there was a prior LS already saved, replace
1864          * it with the newer one and send a can't perform reject
1865          * on the older one.
1866          */
1867         spin_lock_irqsave(&tgtport->lock, flags);
1868         oldls = assoc->rcv_disconn;
1869         assoc->rcv_disconn = iod;
1870         spin_unlock_irqrestore(&tgtport->lock, flags);
1871
1872         nvmet_fc_delete_target_assoc(assoc);
1873
1874         if (oldls) {
1875                 dev_info(tgtport->dev,
1876                         "{%d:%d} Multiple Disconnect Association LS's "
1877                         "received\n",
1878                         tgtport->fc_target_port.port_num, assoc->a_id);
1879                 /* overwrite good response with bogus failure */
1880                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1881                                                 sizeof(*iod->rspbuf),
1882                                                 /* ok to use rqst, LS is same */
1883                                                 rqst->w0.ls_cmd,
1884                                                 FCNVME_RJT_RC_UNAB,
1885                                                 FCNVME_RJT_EXP_NONE, 0);
1886                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1887         }
1888
1889         return false;
1890 }
1891
1892
1893 /* *********************** NVME Ctrl Routines **************************** */
1894
1895
1896 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1897
1898 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1899
1900 static void
1901 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1902 {
1903         struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1904         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1905
1906         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1907                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1908         nvmet_fc_free_ls_iod(tgtport, iod);
1909         nvmet_fc_tgtport_put(tgtport);
1910 }
1911
1912 static void
1913 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1914                                 struct nvmet_fc_ls_iod *iod)
1915 {
1916         int ret;
1917
1918         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1919                                   sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1920
1921         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1922         if (ret)
1923                 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1924 }
1925
1926 /*
1927  * Actual processing routine for received FC-NVME LS Requests from the LLD
1928  */
1929 static void
1930 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1931                         struct nvmet_fc_ls_iod *iod)
1932 {
1933         struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1934         bool sendrsp = true;
1935
1936         iod->lsrsp->nvme_fc_private = iod;
1937         iod->lsrsp->rspbuf = iod->rspbuf;
1938         iod->lsrsp->rspdma = iod->rspdma;
1939         iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1940         /* Be preventative. handlers will later set to valid length */
1941         iod->lsrsp->rsplen = 0;
1942
1943         iod->assoc = NULL;
1944
1945         /*
1946          * handlers:
1947          *   parse request input, execute the request, and format the
1948          *   LS response
1949          */
1950         switch (w0->ls_cmd) {
1951         case FCNVME_LS_CREATE_ASSOCIATION:
1952                 /* Creates Association and initial Admin Queue/Connection */
1953                 nvmet_fc_ls_create_association(tgtport, iod);
1954                 break;
1955         case FCNVME_LS_CREATE_CONNECTION:
1956                 /* Creates an IO Queue/Connection */
1957                 nvmet_fc_ls_create_connection(tgtport, iod);
1958                 break;
1959         case FCNVME_LS_DISCONNECT_ASSOC:
1960                 /* Terminate a Queue/Connection or the Association */
1961                 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1962                 break;
1963         default:
1964                 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1965                                 sizeof(*iod->rspbuf), w0->ls_cmd,
1966                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1967         }
1968
1969         if (sendrsp)
1970                 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1971 }
1972
1973 /*
1974  * Actual processing routine for received FC-NVME LS Requests from the LLD
1975  */
1976 static void
1977 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1978 {
1979         struct nvmet_fc_ls_iod *iod =
1980                 container_of(work, struct nvmet_fc_ls_iod, work);
1981         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1982
1983         nvmet_fc_handle_ls_rqst(tgtport, iod);
1984 }
1985
1986
1987 /**
1988  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1989  *                       upon the reception of a NVME LS request.
1990  *
1991  * The nvmet-fc layer will copy payload to an internal structure for
1992  * processing.  As such, upon completion of the routine, the LLDD may
1993  * immediately free/reuse the LS request buffer passed in the call.
1994  *
1995  * If this routine returns error, the LLDD should abort the exchange.
1996  *
1997  * @target_port: pointer to the (registered) target port the LS was
1998  *              received on.
1999  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2000  *              the exchange corresponding to the LS.
2001  * @lsreqbuf:   pointer to the buffer containing the LS Request
2002  * @lsreqbuf_len: length, in bytes, of the received LS request
2003  */
2004 int
2005 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2006                         void *hosthandle,
2007                         struct nvmefc_ls_rsp *lsrsp,
2008                         void *lsreqbuf, u32 lsreqbuf_len)
2009 {
2010         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2011         struct nvmet_fc_ls_iod *iod;
2012         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2013
2014         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2015                 dev_info(tgtport->dev,
2016                         "RCV %s LS failed: payload too large (%d)\n",
2017                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2018                                 nvmefc_ls_names[w0->ls_cmd] : "",
2019                         lsreqbuf_len);
2020                 return -E2BIG;
2021         }
2022
2023         if (!nvmet_fc_tgtport_get(tgtport)) {
2024                 dev_info(tgtport->dev,
2025                         "RCV %s LS failed: target deleting\n",
2026                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2027                                 nvmefc_ls_names[w0->ls_cmd] : "");
2028                 return -ESHUTDOWN;
2029         }
2030
2031         iod = nvmet_fc_alloc_ls_iod(tgtport);
2032         if (!iod) {
2033                 dev_info(tgtport->dev,
2034                         "RCV %s LS failed: context allocation failed\n",
2035                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2036                                 nvmefc_ls_names[w0->ls_cmd] : "");
2037                 nvmet_fc_tgtport_put(tgtport);
2038                 return -ENOENT;
2039         }
2040
2041         iod->lsrsp = lsrsp;
2042         iod->fcpreq = NULL;
2043         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2044         iod->rqstdatalen = lsreqbuf_len;
2045         iod->hosthandle = hosthandle;
2046
2047         schedule_work(&iod->work);
2048
2049         return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2052
2053
2054 /*
2055  * **********************
2056  * Start of FCP handling
2057  * **********************
2058  */
2059
2060 static int
2061 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2062 {
2063         struct scatterlist *sg;
2064         unsigned int nent;
2065
2066         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2067         if (!sg)
2068                 goto out;
2069
2070         fod->data_sg = sg;
2071         fod->data_sg_cnt = nent;
2072         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2073                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2074                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2075                                 /* note: write from initiator perspective */
2076         fod->next_sg = fod->data_sg;
2077
2078         return 0;
2079
2080 out:
2081         return NVME_SC_INTERNAL;
2082 }
2083
2084 static void
2085 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2086 {
2087         if (!fod->data_sg || !fod->data_sg_cnt)
2088                 return;
2089
2090         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2091                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2092                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2093         sgl_free(fod->data_sg);
2094         fod->data_sg = NULL;
2095         fod->data_sg_cnt = 0;
2096 }
2097
2098
2099 static bool
2100 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2101 {
2102         u32 sqtail, used;
2103
2104         /* egad, this is ugly. And sqtail is just a best guess */
2105         sqtail = atomic_read(&q->sqtail) % q->sqsize;
2106
2107         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2108         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2109 }
2110
2111 /*
2112  * Prep RSP payload.
2113  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2114  */
2115 static void
2116 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2117                                 struct nvmet_fc_fcp_iod *fod)
2118 {
2119         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2120         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2121         struct nvme_completion *cqe = &ersp->cqe;
2122         u32 *cqewd = (u32 *)cqe;
2123         bool send_ersp = false;
2124         u32 rsn, rspcnt, xfr_length;
2125
2126         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2127                 xfr_length = fod->req.transfer_len;
2128         else
2129                 xfr_length = fod->offset;
2130
2131         /*
2132          * check to see if we can send a 0's rsp.
2133          *   Note: to send a 0's response, the NVME-FC host transport will
2134          *   recreate the CQE. The host transport knows: sq id, SQHD (last
2135          *   seen in an ersp), and command_id. Thus it will create a
2136          *   zero-filled CQE with those known fields filled in. Transport
2137          *   must send an ersp for any condition where the cqe won't match
2138          *   this.
2139          *
2140          * Here are the FC-NVME mandated cases where we must send an ersp:
2141          *  every N responses, where N=ersp_ratio
2142          *  force fabric commands to send ersp's (not in FC-NVME but good
2143          *    practice)
2144          *  normal cmds: any time status is non-zero, or status is zero
2145          *     but words 0 or 1 are non-zero.
2146          *  the SQ is 90% or more full
2147          *  the cmd is a fused command
2148          *  transferred data length not equal to cmd iu length
2149          */
2150         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2151         if (!(rspcnt % fod->queue->ersp_ratio) ||
2152             nvme_is_fabrics((struct nvme_command *) sqe) ||
2153             xfr_length != fod->req.transfer_len ||
2154             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2155             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2156             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2157                 send_ersp = true;
2158
2159         /* re-set the fields */
2160         fod->fcpreq->rspaddr = ersp;
2161         fod->fcpreq->rspdma = fod->rspdma;
2162
2163         if (!send_ersp) {
2164                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2165                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2166         } else {
2167                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2168                 rsn = atomic_inc_return(&fod->queue->rsn);
2169                 ersp->rsn = cpu_to_be32(rsn);
2170                 ersp->xfrd_len = cpu_to_be32(xfr_length);
2171                 fod->fcpreq->rsplen = sizeof(*ersp);
2172         }
2173
2174         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2175                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2176 }
2177
2178 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2179
2180 static void
2181 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2182                                 struct nvmet_fc_fcp_iod *fod)
2183 {
2184         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2185
2186         /* data no longer needed */
2187         nvmet_fc_free_tgt_pgs(fod);
2188
2189         /*
2190          * if an ABTS was received or we issued the fcp_abort early
2191          * don't call abort routine again.
2192          */
2193         /* no need to take lock - lock was taken earlier to get here */
2194         if (!fod->aborted)
2195                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2196
2197         nvmet_fc_free_fcp_iod(fod->queue, fod);
2198 }
2199
2200 static void
2201 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2202                                 struct nvmet_fc_fcp_iod *fod)
2203 {
2204         int ret;
2205
2206         fod->fcpreq->op = NVMET_FCOP_RSP;
2207         fod->fcpreq->timeout = 0;
2208
2209         nvmet_fc_prep_fcp_rsp(tgtport, fod);
2210
2211         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2212         if (ret)
2213                 nvmet_fc_abort_op(tgtport, fod);
2214 }
2215
2216 static void
2217 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2218                                 struct nvmet_fc_fcp_iod *fod, u8 op)
2219 {
2220         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2221         struct scatterlist *sg = fod->next_sg;
2222         unsigned long flags;
2223         u32 remaininglen = fod->req.transfer_len - fod->offset;
2224         u32 tlen = 0;
2225         int ret;
2226
2227         fcpreq->op = op;
2228         fcpreq->offset = fod->offset;
2229         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2230
2231         /*
2232          * for next sequence:
2233          *  break at a sg element boundary
2234          *  attempt to keep sequence length capped at
2235          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2236          *    be longer if a single sg element is larger
2237          *    than that amount. This is done to avoid creating
2238          *    a new sg list to use for the tgtport api.
2239          */
2240         fcpreq->sg = sg;
2241         fcpreq->sg_cnt = 0;
2242         while (tlen < remaininglen &&
2243                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2244                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2245                 fcpreq->sg_cnt++;
2246                 tlen += sg_dma_len(sg);
2247                 sg = sg_next(sg);
2248         }
2249         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2250                 fcpreq->sg_cnt++;
2251                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2252                 sg = sg_next(sg);
2253         }
2254         if (tlen < remaininglen)
2255                 fod->next_sg = sg;
2256         else
2257                 fod->next_sg = NULL;
2258
2259         fcpreq->transfer_length = tlen;
2260         fcpreq->transferred_length = 0;
2261         fcpreq->fcp_error = 0;
2262         fcpreq->rsplen = 0;
2263
2264         /*
2265          * If the last READDATA request: check if LLDD supports
2266          * combined xfr with response.
2267          */
2268         if ((op == NVMET_FCOP_READDATA) &&
2269             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2270             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2271                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2272                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2273         }
2274
2275         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2276         if (ret) {
2277                 /*
2278                  * should be ok to set w/o lock as its in the thread of
2279                  * execution (not an async timer routine) and doesn't
2280                  * contend with any clearing action
2281                  */
2282                 fod->abort = true;
2283
2284                 if (op == NVMET_FCOP_WRITEDATA) {
2285                         spin_lock_irqsave(&fod->flock, flags);
2286                         fod->writedataactive = false;
2287                         spin_unlock_irqrestore(&fod->flock, flags);
2288                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2289                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2290                         fcpreq->fcp_error = ret;
2291                         fcpreq->transferred_length = 0;
2292                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2293                 }
2294         }
2295 }
2296
2297 static inline bool
2298 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2299 {
2300         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2301         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2302
2303         /* if in the middle of an io and we need to tear down */
2304         if (abort) {
2305                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2306                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2307                         return true;
2308                 }
2309
2310                 nvmet_fc_abort_op(tgtport, fod);
2311                 return true;
2312         }
2313
2314         return false;
2315 }
2316
2317 /*
2318  * actual done handler for FCP operations when completed by the lldd
2319  */
2320 static void
2321 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2322 {
2323         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2324         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2325         unsigned long flags;
2326         bool abort;
2327
2328         spin_lock_irqsave(&fod->flock, flags);
2329         abort = fod->abort;
2330         fod->writedataactive = false;
2331         spin_unlock_irqrestore(&fod->flock, flags);
2332
2333         switch (fcpreq->op) {
2334
2335         case NVMET_FCOP_WRITEDATA:
2336                 if (__nvmet_fc_fod_op_abort(fod, abort))
2337                         return;
2338                 if (fcpreq->fcp_error ||
2339                     fcpreq->transferred_length != fcpreq->transfer_length) {
2340                         spin_lock_irqsave(&fod->flock, flags);
2341                         fod->abort = true;
2342                         spin_unlock_irqrestore(&fod->flock, flags);
2343
2344                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2345                         return;
2346                 }
2347
2348                 fod->offset += fcpreq->transferred_length;
2349                 if (fod->offset != fod->req.transfer_len) {
2350                         spin_lock_irqsave(&fod->flock, flags);
2351                         fod->writedataactive = true;
2352                         spin_unlock_irqrestore(&fod->flock, flags);
2353
2354                         /* transfer the next chunk */
2355                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2356                                                 NVMET_FCOP_WRITEDATA);
2357                         return;
2358                 }
2359
2360                 /* data transfer complete, resume with nvmet layer */
2361                 fod->req.execute(&fod->req);
2362                 break;
2363
2364         case NVMET_FCOP_READDATA:
2365         case NVMET_FCOP_READDATA_RSP:
2366                 if (__nvmet_fc_fod_op_abort(fod, abort))
2367                         return;
2368                 if (fcpreq->fcp_error ||
2369                     fcpreq->transferred_length != fcpreq->transfer_length) {
2370                         nvmet_fc_abort_op(tgtport, fod);
2371                         return;
2372                 }
2373
2374                 /* success */
2375
2376                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2377                         /* data no longer needed */
2378                         nvmet_fc_free_tgt_pgs(fod);
2379                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2380                         return;
2381                 }
2382
2383                 fod->offset += fcpreq->transferred_length;
2384                 if (fod->offset != fod->req.transfer_len) {
2385                         /* transfer the next chunk */
2386                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2387                                                 NVMET_FCOP_READDATA);
2388                         return;
2389                 }
2390
2391                 /* data transfer complete, send response */
2392
2393                 /* data no longer needed */
2394                 nvmet_fc_free_tgt_pgs(fod);
2395
2396                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2397
2398                 break;
2399
2400         case NVMET_FCOP_RSP:
2401                 if (__nvmet_fc_fod_op_abort(fod, abort))
2402                         return;
2403                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2404                 break;
2405
2406         default:
2407                 break;
2408         }
2409 }
2410
2411 static void
2412 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2413 {
2414         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2415
2416         nvmet_fc_fod_op_done(fod);
2417 }
2418
2419 /*
2420  * actual completion handler after execution by the nvmet layer
2421  */
2422 static void
2423 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2424                         struct nvmet_fc_fcp_iod *fod, int status)
2425 {
2426         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2427         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2428         unsigned long flags;
2429         bool abort;
2430
2431         spin_lock_irqsave(&fod->flock, flags);
2432         abort = fod->abort;
2433         spin_unlock_irqrestore(&fod->flock, flags);
2434
2435         /* if we have a CQE, snoop the last sq_head value */
2436         if (!status)
2437                 fod->queue->sqhd = cqe->sq_head;
2438
2439         if (abort) {
2440                 nvmet_fc_abort_op(tgtport, fod);
2441                 return;
2442         }
2443
2444         /* if an error handling the cmd post initial parsing */
2445         if (status) {
2446                 /* fudge up a failed CQE status for our transport error */
2447                 memset(cqe, 0, sizeof(*cqe));
2448                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2449                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2450                 cqe->command_id = sqe->command_id;
2451                 cqe->status = cpu_to_le16(status);
2452         } else {
2453
2454                 /*
2455                  * try to push the data even if the SQE status is non-zero.
2456                  * There may be a status where data still was intended to
2457                  * be moved
2458                  */
2459                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2460                         /* push the data over before sending rsp */
2461                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2462                                                 NVMET_FCOP_READDATA);
2463                         return;
2464                 }
2465
2466                 /* writes & no data - fall thru */
2467         }
2468
2469         /* data no longer needed */
2470         nvmet_fc_free_tgt_pgs(fod);
2471
2472         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2473 }
2474
2475
2476 static void
2477 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2478 {
2479         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2480         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2481
2482         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2483 }
2484
2485
2486 /*
2487  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2488  */
2489 static void
2490 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2491                         struct nvmet_fc_fcp_iod *fod)
2492 {
2493         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2494         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2495         int ret;
2496
2497         /*
2498          * if there is no nvmet mapping to the targetport there
2499          * shouldn't be requests. just terminate them.
2500          */
2501         if (!tgtport->pe)
2502                 goto transport_error;
2503
2504         /*
2505          * Fused commands are currently not supported in the linux
2506          * implementation.
2507          *
2508          * As such, the implementation of the FC transport does not
2509          * look at the fused commands and order delivery to the upper
2510          * layer until we have both based on csn.
2511          */
2512
2513         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2514
2515         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2516                 fod->io_dir = NVMET_FCP_WRITE;
2517                 if (!nvme_is_write(&cmdiu->sqe))
2518                         goto transport_error;
2519         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2520                 fod->io_dir = NVMET_FCP_READ;
2521                 if (nvme_is_write(&cmdiu->sqe))
2522                         goto transport_error;
2523         } else {
2524                 fod->io_dir = NVMET_FCP_NODATA;
2525                 if (xfrlen)
2526                         goto transport_error;
2527         }
2528
2529         fod->req.cmd = &fod->cmdiubuf.sqe;
2530         fod->req.cqe = &fod->rspiubuf.cqe;
2531         fod->req.port = tgtport->pe->port;
2532
2533         /* clear any response payload */
2534         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2535
2536         fod->data_sg = NULL;
2537         fod->data_sg_cnt = 0;
2538
2539         ret = nvmet_req_init(&fod->req,
2540                                 &fod->queue->nvme_cq,
2541                                 &fod->queue->nvme_sq,
2542                                 &nvmet_fc_tgt_fcp_ops);
2543         if (!ret) {
2544                 /* bad SQE content or invalid ctrl state */
2545                 /* nvmet layer has already called op done to send rsp. */
2546                 return;
2547         }
2548
2549         fod->req.transfer_len = xfrlen;
2550
2551         /* keep a running counter of tail position */
2552         atomic_inc(&fod->queue->sqtail);
2553
2554         if (fod->req.transfer_len) {
2555                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2556                 if (ret) {
2557                         nvmet_req_complete(&fod->req, ret);
2558                         return;
2559                 }
2560         }
2561         fod->req.sg = fod->data_sg;
2562         fod->req.sg_cnt = fod->data_sg_cnt;
2563         fod->offset = 0;
2564
2565         if (fod->io_dir == NVMET_FCP_WRITE) {
2566                 /* pull the data over before invoking nvmet layer */
2567                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2568                 return;
2569         }
2570
2571         /*
2572          * Reads or no data:
2573          *
2574          * can invoke the nvmet_layer now. If read data, cmd completion will
2575          * push the data
2576          */
2577         fod->req.execute(&fod->req);
2578         return;
2579
2580 transport_error:
2581         nvmet_fc_abort_op(tgtport, fod);
2582 }
2583
2584 /**
2585  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2586  *                       upon the reception of a NVME FCP CMD IU.
2587  *
2588  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2589  * layer for processing.
2590  *
2591  * The nvmet_fc layer allocates a local job structure (struct
2592  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2593  * CMD IU buffer to the job structure. As such, on a successful
2594  * completion (returns 0), the LLDD may immediately free/reuse
2595  * the CMD IU buffer passed in the call.
2596  *
2597  * However, in some circumstances, due to the packetized nature of FC
2598  * and the api of the FC LLDD which may issue a hw command to send the
2599  * response, but the LLDD may not get the hw completion for that command
2600  * and upcall the nvmet_fc layer before a new command may be
2601  * asynchronously received - its possible for a command to be received
2602  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2603  * the appearance of more commands received than fits in the sq.
2604  * To alleviate this scenario, a temporary queue is maintained in the
2605  * transport for pending LLDD requests waiting for a queue job structure.
2606  * In these "overrun" cases, a temporary queue element is allocated
2607  * the LLDD request and CMD iu buffer information remembered, and the
2608  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2609  * structure is freed, it is immediately reallocated for anything on the
2610  * pending request list. The LLDDs defer_rcv() callback is called,
2611  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2612  * is then started normally with the transport.
2613  *
2614  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2615  * the completion as successful but must not reuse the CMD IU buffer
2616  * until the LLDD's defer_rcv() callback has been called for the
2617  * corresponding struct nvmefc_tgt_fcp_req pointer.
2618  *
2619  * If there is any other condition in which an error occurs, the
2620  * transport will return a non-zero status indicating the error.
2621  * In all cases other than -EOVERFLOW, the transport has not accepted the
2622  * request and the LLDD should abort the exchange.
2623  *
2624  * @target_port: pointer to the (registered) target port the FCP CMD IU
2625  *              was received on.
2626  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2627  *              the exchange corresponding to the FCP Exchange.
2628  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2629  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2630  */
2631 int
2632 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2633                         struct nvmefc_tgt_fcp_req *fcpreq,
2634                         void *cmdiubuf, u32 cmdiubuf_len)
2635 {
2636         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2637         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2638         struct nvmet_fc_tgt_queue *queue;
2639         struct nvmet_fc_fcp_iod *fod;
2640         struct nvmet_fc_defer_fcp_req *deferfcp;
2641         unsigned long flags;
2642
2643         /* validate iu, so the connection id can be used to find the queue */
2644         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2645                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2646                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2647                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2648                 return -EIO;
2649
2650         queue = nvmet_fc_find_target_queue(tgtport,
2651                                 be64_to_cpu(cmdiu->connection_id));
2652         if (!queue)
2653                 return -ENOTCONN;
2654
2655         /*
2656          * note: reference taken by find_target_queue
2657          * After successful fod allocation, the fod will inherit the
2658          * ownership of that reference and will remove the reference
2659          * when the fod is freed.
2660          */
2661
2662         spin_lock_irqsave(&queue->qlock, flags);
2663
2664         fod = nvmet_fc_alloc_fcp_iod(queue);
2665         if (fod) {
2666                 spin_unlock_irqrestore(&queue->qlock, flags);
2667
2668                 fcpreq->nvmet_fc_private = fod;
2669                 fod->fcpreq = fcpreq;
2670
2671                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2672
2673                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2674
2675                 return 0;
2676         }
2677
2678         if (!tgtport->ops->defer_rcv) {
2679                 spin_unlock_irqrestore(&queue->qlock, flags);
2680                 /* release the queue lookup reference */
2681                 nvmet_fc_tgt_q_put(queue);
2682                 return -ENOENT;
2683         }
2684
2685         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2686                         struct nvmet_fc_defer_fcp_req, req_list);
2687         if (deferfcp) {
2688                 /* Just re-use one that was previously allocated */
2689                 list_del(&deferfcp->req_list);
2690         } else {
2691                 spin_unlock_irqrestore(&queue->qlock, flags);
2692
2693                 /* Now we need to dynamically allocate one */
2694                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2695                 if (!deferfcp) {
2696                         /* release the queue lookup reference */
2697                         nvmet_fc_tgt_q_put(queue);
2698                         return -ENOMEM;
2699                 }
2700                 spin_lock_irqsave(&queue->qlock, flags);
2701         }
2702
2703         /* For now, use rspaddr / rsplen to save payload information */
2704         fcpreq->rspaddr = cmdiubuf;
2705         fcpreq->rsplen  = cmdiubuf_len;
2706         deferfcp->fcp_req = fcpreq;
2707
2708         /* defer processing till a fod becomes available */
2709         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2710
2711         /* NOTE: the queue lookup reference is still valid */
2712
2713         spin_unlock_irqrestore(&queue->qlock, flags);
2714
2715         return -EOVERFLOW;
2716 }
2717 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2718
2719 /**
2720  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2721  *                       upon the reception of an ABTS for a FCP command
2722  *
2723  * Notify the transport that an ABTS has been received for a FCP command
2724  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2725  * LLDD believes the command is still being worked on
2726  * (template_ops->fcp_req_release() has not been called).
2727  *
2728  * The transport will wait for any outstanding work (an op to the LLDD,
2729  * which the lldd should complete with error due to the ABTS; or the
2730  * completion from the nvmet layer of the nvme command), then will
2731  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2732  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2733  * to the ABTS either after return from this function (assuming any
2734  * outstanding op work has been terminated) or upon the callback being
2735  * called.
2736  *
2737  * @target_port: pointer to the (registered) target port the FCP CMD IU
2738  *              was received on.
2739  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2740  *              to the exchange that received the ABTS.
2741  */
2742 void
2743 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2744                         struct nvmefc_tgt_fcp_req *fcpreq)
2745 {
2746         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2747         struct nvmet_fc_tgt_queue *queue;
2748         unsigned long flags;
2749
2750         if (!fod || fod->fcpreq != fcpreq)
2751                 /* job appears to have already completed, ignore abort */
2752                 return;
2753
2754         queue = fod->queue;
2755
2756         spin_lock_irqsave(&queue->qlock, flags);
2757         if (fod->active) {
2758                 /*
2759                  * mark as abort. The abort handler, invoked upon completion
2760                  * of any work, will detect the aborted status and do the
2761                  * callback.
2762                  */
2763                 spin_lock(&fod->flock);
2764                 fod->abort = true;
2765                 fod->aborted = true;
2766                 spin_unlock(&fod->flock);
2767         }
2768         spin_unlock_irqrestore(&queue->qlock, flags);
2769 }
2770 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2771
2772
2773 struct nvmet_fc_traddr {
2774         u64     nn;
2775         u64     pn;
2776 };
2777
2778 static int
2779 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2780 {
2781         u64 token64;
2782
2783         if (match_u64(sstr, &token64))
2784                 return -EINVAL;
2785         *val = token64;
2786
2787         return 0;
2788 }
2789
2790 /*
2791  * This routine validates and extracts the WWN's from the TRADDR string.
2792  * As kernel parsers need the 0x to determine number base, universally
2793  * build string to parse with 0x prefix before parsing name strings.
2794  */
2795 static int
2796 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2797 {
2798         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2799         substring_t wwn = { name, &name[sizeof(name)-1] };
2800         int nnoffset, pnoffset;
2801
2802         /* validate if string is one of the 2 allowed formats */
2803         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2804                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2805                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2806                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2807                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2808                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2809                                                 NVME_FC_TRADDR_OXNNLEN;
2810         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2811                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2812                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2813                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2814                 nnoffset = NVME_FC_TRADDR_NNLEN;
2815                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2816         } else
2817                 goto out_einval;
2818
2819         name[0] = '0';
2820         name[1] = 'x';
2821         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2822
2823         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2824         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2825                 goto out_einval;
2826
2827         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2828         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2829                 goto out_einval;
2830
2831         return 0;
2832
2833 out_einval:
2834         pr_warn("%s: bad traddr string\n", __func__);
2835         return -EINVAL;
2836 }
2837
2838 static int
2839 nvmet_fc_add_port(struct nvmet_port *port)
2840 {
2841         struct nvmet_fc_tgtport *tgtport;
2842         struct nvmet_fc_port_entry *pe;
2843         struct nvmet_fc_traddr traddr = { 0L, 0L };
2844         unsigned long flags;
2845         int ret;
2846
2847         /* validate the address info */
2848         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2849             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2850                 return -EINVAL;
2851
2852         /* map the traddr address info to a target port */
2853
2854         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2855                         sizeof(port->disc_addr.traddr));
2856         if (ret)
2857                 return ret;
2858
2859         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2860         if (!pe)
2861                 return -ENOMEM;
2862
2863         ret = -ENXIO;
2864         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2865         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2866                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2867                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2868                         /* a FC port can only be 1 nvmet port id */
2869                         if (!tgtport->pe) {
2870                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2871                                 ret = 0;
2872                         } else
2873                                 ret = -EALREADY;
2874                         break;
2875                 }
2876         }
2877         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2878
2879         if (ret)
2880                 kfree(pe);
2881
2882         return ret;
2883 }
2884
2885 static void
2886 nvmet_fc_remove_port(struct nvmet_port *port)
2887 {
2888         struct nvmet_fc_port_entry *pe = port->priv;
2889
2890         nvmet_fc_portentry_unbind(pe);
2891
2892         kfree(pe);
2893 }
2894
2895 static void
2896 nvmet_fc_discovery_chg(struct nvmet_port *port)
2897 {
2898         struct nvmet_fc_port_entry *pe = port->priv;
2899         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2900
2901         if (tgtport && tgtport->ops->discovery_event)
2902                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2903 }
2904
2905 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2906         .owner                  = THIS_MODULE,
2907         .type                   = NVMF_TRTYPE_FC,
2908         .msdbd                  = 1,
2909         .add_port               = nvmet_fc_add_port,
2910         .remove_port            = nvmet_fc_remove_port,
2911         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2912         .delete_ctrl            = nvmet_fc_delete_ctrl,
2913         .discovery_chg          = nvmet_fc_discovery_chg,
2914 };
2915
2916 static int __init nvmet_fc_init_module(void)
2917 {
2918         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2919 }
2920
2921 static void __exit nvmet_fc_exit_module(void)
2922 {
2923         /* sanity check - all lports should be removed */
2924         if (!list_empty(&nvmet_fc_target_list))
2925                 pr_warn("%s: targetport list not empty\n", __func__);
2926
2927         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2928
2929         ida_destroy(&nvmet_fc_tgtport_cnt);
2930 }
2931
2932 module_init(nvmet_fc_init_module);
2933 module_exit(nvmet_fc_exit_module);
2934
2935 MODULE_LICENSE("GPL v2");