Merge tag 'libnvdimm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[linux-2.6-block.git] / drivers / nvme / target / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23  * This read/write semaphore is used to synchronize access to configuration
24  * information on a target system that will result in discovery log page
25  * information change for at least one host.
26  * The full list of resources to protected by this semaphore is:
27  *
28  *  - subsystems list
29  *  - per-subsystem allowed hosts list
30  *  - allow_any_host subsystem attribute
31  *  - nvmet_genctr
32  *  - the nvmet_transports array
33  *
34  * When updating any of those lists/structures write lock should be obtained,
35  * while when reading (popolating discovery log page or checking host-subsystem
36  * link) read lock is obtained to allow concurrent reads.
37  */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46         u16 status;
47
48         switch (errno) {
49         case -ENOSPC:
50                 req->error_loc = offsetof(struct nvme_rw_command, length);
51                 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
52                 break;
53         case -EREMOTEIO:
54                 req->error_loc = offsetof(struct nvme_rw_command, slba);
55                 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
56                 break;
57         case -EOPNOTSUPP:
58                 req->error_loc = offsetof(struct nvme_common_command, opcode);
59                 switch (req->cmd->common.opcode) {
60                 case nvme_cmd_dsm:
61                 case nvme_cmd_write_zeroes:
62                         status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
63                         break;
64                 default:
65                         status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
66                 }
67                 break;
68         case -ENODATA:
69                 req->error_loc = offsetof(struct nvme_rw_command, nsid);
70                 status = NVME_SC_ACCESS_DENIED;
71                 break;
72         case -EIO:
73                 /* FALLTHRU */
74         default:
75                 req->error_loc = offsetof(struct nvme_common_command, opcode);
76                 status = NVME_SC_INTERNAL | NVME_SC_DNR;
77         }
78
79         return status;
80 }
81
82 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
83                 const char *subsysnqn);
84
85 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
86                 size_t len)
87 {
88         if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
89                 req->error_loc = offsetof(struct nvme_common_command, dptr);
90                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
91         }
92         return 0;
93 }
94
95 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
96 {
97         if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
98                 req->error_loc = offsetof(struct nvme_common_command, dptr);
99                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
100         }
101         return 0;
102 }
103
104 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
105 {
106         if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
107                 req->error_loc = offsetof(struct nvme_common_command, dptr);
108                 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
109         }
110         return 0;
111 }
112
113 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
114 {
115         struct nvmet_ns *ns;
116
117         if (list_empty(&subsys->namespaces))
118                 return 0;
119
120         ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
121         return ns->nsid;
122 }
123
124 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
125 {
126         return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
127 }
128
129 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
130 {
131         struct nvmet_req *req;
132
133         while (1) {
134                 mutex_lock(&ctrl->lock);
135                 if (!ctrl->nr_async_event_cmds) {
136                         mutex_unlock(&ctrl->lock);
137                         return;
138                 }
139
140                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141                 mutex_unlock(&ctrl->lock);
142                 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
143         }
144 }
145
146 static void nvmet_async_event_work(struct work_struct *work)
147 {
148         struct nvmet_ctrl *ctrl =
149                 container_of(work, struct nvmet_ctrl, async_event_work);
150         struct nvmet_async_event *aen;
151         struct nvmet_req *req;
152
153         while (1) {
154                 mutex_lock(&ctrl->lock);
155                 aen = list_first_entry_or_null(&ctrl->async_events,
156                                 struct nvmet_async_event, entry);
157                 if (!aen || !ctrl->nr_async_event_cmds) {
158                         mutex_unlock(&ctrl->lock);
159                         return;
160                 }
161
162                 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
163                 nvmet_set_result(req, nvmet_async_event_result(aen));
164
165                 list_del(&aen->entry);
166                 kfree(aen);
167
168                 mutex_unlock(&ctrl->lock);
169                 nvmet_req_complete(req, 0);
170         }
171 }
172
173 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
174                 u8 event_info, u8 log_page)
175 {
176         struct nvmet_async_event *aen;
177
178         aen = kmalloc(sizeof(*aen), GFP_KERNEL);
179         if (!aen)
180                 return;
181
182         aen->event_type = event_type;
183         aen->event_info = event_info;
184         aen->log_page = log_page;
185
186         mutex_lock(&ctrl->lock);
187         list_add_tail(&aen->entry, &ctrl->async_events);
188         mutex_unlock(&ctrl->lock);
189
190         schedule_work(&ctrl->async_event_work);
191 }
192
193 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
194 {
195         u32 i;
196
197         mutex_lock(&ctrl->lock);
198         if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
199                 goto out_unlock;
200
201         for (i = 0; i < ctrl->nr_changed_ns; i++) {
202                 if (ctrl->changed_ns_list[i] == nsid)
203                         goto out_unlock;
204         }
205
206         if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
207                 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
208                 ctrl->nr_changed_ns = U32_MAX;
209                 goto out_unlock;
210         }
211
212         ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
213 out_unlock:
214         mutex_unlock(&ctrl->lock);
215 }
216
217 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
218 {
219         struct nvmet_ctrl *ctrl;
220
221         lockdep_assert_held(&subsys->lock);
222
223         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
224                 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
225                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
226                         continue;
227                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
228                                 NVME_AER_NOTICE_NS_CHANGED,
229                                 NVME_LOG_CHANGED_NS);
230         }
231 }
232
233 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
234                 struct nvmet_port *port)
235 {
236         struct nvmet_ctrl *ctrl;
237
238         mutex_lock(&subsys->lock);
239         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
240                 if (port && ctrl->port != port)
241                         continue;
242                 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
243                         continue;
244                 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
245                                 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
246         }
247         mutex_unlock(&subsys->lock);
248 }
249
250 void nvmet_port_send_ana_event(struct nvmet_port *port)
251 {
252         struct nvmet_subsys_link *p;
253
254         down_read(&nvmet_config_sem);
255         list_for_each_entry(p, &port->subsystems, entry)
256                 nvmet_send_ana_event(p->subsys, port);
257         up_read(&nvmet_config_sem);
258 }
259
260 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
261 {
262         int ret = 0;
263
264         down_write(&nvmet_config_sem);
265         if (nvmet_transports[ops->type])
266                 ret = -EINVAL;
267         else
268                 nvmet_transports[ops->type] = ops;
269         up_write(&nvmet_config_sem);
270
271         return ret;
272 }
273 EXPORT_SYMBOL_GPL(nvmet_register_transport);
274
275 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
276 {
277         down_write(&nvmet_config_sem);
278         nvmet_transports[ops->type] = NULL;
279         up_write(&nvmet_config_sem);
280 }
281 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
282
283 int nvmet_enable_port(struct nvmet_port *port)
284 {
285         const struct nvmet_fabrics_ops *ops;
286         int ret;
287
288         lockdep_assert_held(&nvmet_config_sem);
289
290         ops = nvmet_transports[port->disc_addr.trtype];
291         if (!ops) {
292                 up_write(&nvmet_config_sem);
293                 request_module("nvmet-transport-%d", port->disc_addr.trtype);
294                 down_write(&nvmet_config_sem);
295                 ops = nvmet_transports[port->disc_addr.trtype];
296                 if (!ops) {
297                         pr_err("transport type %d not supported\n",
298                                 port->disc_addr.trtype);
299                         return -EINVAL;
300                 }
301         }
302
303         if (!try_module_get(ops->owner))
304                 return -EINVAL;
305
306         ret = ops->add_port(port);
307         if (ret) {
308                 module_put(ops->owner);
309                 return ret;
310         }
311
312         /* If the transport didn't set inline_data_size, then disable it. */
313         if (port->inline_data_size < 0)
314                 port->inline_data_size = 0;
315
316         port->enabled = true;
317         port->tr_ops = ops;
318         return 0;
319 }
320
321 void nvmet_disable_port(struct nvmet_port *port)
322 {
323         const struct nvmet_fabrics_ops *ops;
324
325         lockdep_assert_held(&nvmet_config_sem);
326
327         port->enabled = false;
328         port->tr_ops = NULL;
329
330         ops = nvmet_transports[port->disc_addr.trtype];
331         ops->remove_port(port);
332         module_put(ops->owner);
333 }
334
335 static void nvmet_keep_alive_timer(struct work_struct *work)
336 {
337         struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
338                         struct nvmet_ctrl, ka_work);
339         bool cmd_seen = ctrl->cmd_seen;
340
341         ctrl->cmd_seen = false;
342         if (cmd_seen) {
343                 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
344                         ctrl->cntlid);
345                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
346                 return;
347         }
348
349         pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
350                 ctrl->cntlid, ctrl->kato);
351
352         nvmet_ctrl_fatal_error(ctrl);
353 }
354
355 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
356 {
357         pr_debug("ctrl %d start keep-alive timer for %d secs\n",
358                 ctrl->cntlid, ctrl->kato);
359
360         INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
361         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
362 }
363
364 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
365 {
366         pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
367
368         cancel_delayed_work_sync(&ctrl->ka_work);
369 }
370
371 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
372                 __le32 nsid)
373 {
374         struct nvmet_ns *ns;
375
376         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
377                 if (ns->nsid == le32_to_cpu(nsid))
378                         return ns;
379         }
380
381         return NULL;
382 }
383
384 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
385 {
386         struct nvmet_ns *ns;
387
388         rcu_read_lock();
389         ns = __nvmet_find_namespace(ctrl, nsid);
390         if (ns)
391                 percpu_ref_get(&ns->ref);
392         rcu_read_unlock();
393
394         return ns;
395 }
396
397 static void nvmet_destroy_namespace(struct percpu_ref *ref)
398 {
399         struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
400
401         complete(&ns->disable_done);
402 }
403
404 void nvmet_put_namespace(struct nvmet_ns *ns)
405 {
406         percpu_ref_put(&ns->ref);
407 }
408
409 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
410 {
411         nvmet_bdev_ns_disable(ns);
412         nvmet_file_ns_disable(ns);
413 }
414
415 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
416 {
417         int ret;
418         struct pci_dev *p2p_dev;
419
420         if (!ns->use_p2pmem)
421                 return 0;
422
423         if (!ns->bdev) {
424                 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
425                 return -EINVAL;
426         }
427
428         if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
429                 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
430                        ns->device_path);
431                 return -EINVAL;
432         }
433
434         if (ns->p2p_dev) {
435                 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
436                 if (ret < 0)
437                         return -EINVAL;
438         } else {
439                 /*
440                  * Right now we just check that there is p2pmem available so
441                  * we can report an error to the user right away if there
442                  * is not. We'll find the actual device to use once we
443                  * setup the controller when the port's device is available.
444                  */
445
446                 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
447                 if (!p2p_dev) {
448                         pr_err("no peer-to-peer memory is available for %s\n",
449                                ns->device_path);
450                         return -EINVAL;
451                 }
452
453                 pci_dev_put(p2p_dev);
454         }
455
456         return 0;
457 }
458
459 /*
460  * Note: ctrl->subsys->lock should be held when calling this function
461  */
462 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
463                                     struct nvmet_ns *ns)
464 {
465         struct device *clients[2];
466         struct pci_dev *p2p_dev;
467         int ret;
468
469         if (!ctrl->p2p_client || !ns->use_p2pmem)
470                 return;
471
472         if (ns->p2p_dev) {
473                 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
474                 if (ret < 0)
475                         return;
476
477                 p2p_dev = pci_dev_get(ns->p2p_dev);
478         } else {
479                 clients[0] = ctrl->p2p_client;
480                 clients[1] = nvmet_ns_dev(ns);
481
482                 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
483                 if (!p2p_dev) {
484                         pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
485                                dev_name(ctrl->p2p_client), ns->device_path);
486                         return;
487                 }
488         }
489
490         ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
491         if (ret < 0)
492                 pci_dev_put(p2p_dev);
493
494         pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
495                 ns->nsid);
496 }
497
498 int nvmet_ns_enable(struct nvmet_ns *ns)
499 {
500         struct nvmet_subsys *subsys = ns->subsys;
501         struct nvmet_ctrl *ctrl;
502         int ret;
503
504         mutex_lock(&subsys->lock);
505         ret = 0;
506         if (ns->enabled)
507                 goto out_unlock;
508
509         ret = -EMFILE;
510         if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
511                 goto out_unlock;
512
513         ret = nvmet_bdev_ns_enable(ns);
514         if (ret == -ENOTBLK)
515                 ret = nvmet_file_ns_enable(ns);
516         if (ret)
517                 goto out_unlock;
518
519         ret = nvmet_p2pmem_ns_enable(ns);
520         if (ret)
521                 goto out_dev_disable;
522
523         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
524                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
525
526         ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
527                                 0, GFP_KERNEL);
528         if (ret)
529                 goto out_dev_put;
530
531         if (ns->nsid > subsys->max_nsid)
532                 subsys->max_nsid = ns->nsid;
533
534         /*
535          * The namespaces list needs to be sorted to simplify the implementation
536          * of the Identify Namepace List subcommand.
537          */
538         if (list_empty(&subsys->namespaces)) {
539                 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
540         } else {
541                 struct nvmet_ns *old;
542
543                 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
544                         BUG_ON(ns->nsid == old->nsid);
545                         if (ns->nsid < old->nsid)
546                                 break;
547                 }
548
549                 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
550         }
551         subsys->nr_namespaces++;
552
553         nvmet_ns_changed(subsys, ns->nsid);
554         ns->enabled = true;
555         ret = 0;
556 out_unlock:
557         mutex_unlock(&subsys->lock);
558         return ret;
559 out_dev_put:
560         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
561                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
562 out_dev_disable:
563         nvmet_ns_dev_disable(ns);
564         goto out_unlock;
565 }
566
567 void nvmet_ns_disable(struct nvmet_ns *ns)
568 {
569         struct nvmet_subsys *subsys = ns->subsys;
570         struct nvmet_ctrl *ctrl;
571
572         mutex_lock(&subsys->lock);
573         if (!ns->enabled)
574                 goto out_unlock;
575
576         ns->enabled = false;
577         list_del_rcu(&ns->dev_link);
578         if (ns->nsid == subsys->max_nsid)
579                 subsys->max_nsid = nvmet_max_nsid(subsys);
580
581         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
582                 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
583
584         mutex_unlock(&subsys->lock);
585
586         /*
587          * Now that we removed the namespaces from the lookup list, we
588          * can kill the per_cpu ref and wait for any remaining references
589          * to be dropped, as well as a RCU grace period for anyone only
590          * using the namepace under rcu_read_lock().  Note that we can't
591          * use call_rcu here as we need to ensure the namespaces have
592          * been fully destroyed before unloading the module.
593          */
594         percpu_ref_kill(&ns->ref);
595         synchronize_rcu();
596         wait_for_completion(&ns->disable_done);
597         percpu_ref_exit(&ns->ref);
598
599         mutex_lock(&subsys->lock);
600
601         subsys->nr_namespaces--;
602         nvmet_ns_changed(subsys, ns->nsid);
603         nvmet_ns_dev_disable(ns);
604 out_unlock:
605         mutex_unlock(&subsys->lock);
606 }
607
608 void nvmet_ns_free(struct nvmet_ns *ns)
609 {
610         nvmet_ns_disable(ns);
611
612         down_write(&nvmet_ana_sem);
613         nvmet_ana_group_enabled[ns->anagrpid]--;
614         up_write(&nvmet_ana_sem);
615
616         kfree(ns->device_path);
617         kfree(ns);
618 }
619
620 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
621 {
622         struct nvmet_ns *ns;
623
624         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
625         if (!ns)
626                 return NULL;
627
628         INIT_LIST_HEAD(&ns->dev_link);
629         init_completion(&ns->disable_done);
630
631         ns->nsid = nsid;
632         ns->subsys = subsys;
633
634         down_write(&nvmet_ana_sem);
635         ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
636         nvmet_ana_group_enabled[ns->anagrpid]++;
637         up_write(&nvmet_ana_sem);
638
639         uuid_gen(&ns->uuid);
640         ns->buffered_io = false;
641
642         return ns;
643 }
644
645 static void nvmet_update_sq_head(struct nvmet_req *req)
646 {
647         if (req->sq->size) {
648                 u32 old_sqhd, new_sqhd;
649
650                 do {
651                         old_sqhd = req->sq->sqhd;
652                         new_sqhd = (old_sqhd + 1) % req->sq->size;
653                 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
654                                         old_sqhd);
655         }
656         req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
657 }
658
659 static void nvmet_set_error(struct nvmet_req *req, u16 status)
660 {
661         struct nvmet_ctrl *ctrl = req->sq->ctrl;
662         struct nvme_error_slot *new_error_slot;
663         unsigned long flags;
664
665         req->cqe->status = cpu_to_le16(status << 1);
666
667         if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
668                 return;
669
670         spin_lock_irqsave(&ctrl->error_lock, flags);
671         ctrl->err_counter++;
672         new_error_slot =
673                 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
674
675         new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
676         new_error_slot->sqid = cpu_to_le16(req->sq->qid);
677         new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
678         new_error_slot->status_field = cpu_to_le16(status << 1);
679         new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
680         new_error_slot->lba = cpu_to_le64(req->error_slba);
681         new_error_slot->nsid = req->cmd->common.nsid;
682         spin_unlock_irqrestore(&ctrl->error_lock, flags);
683
684         /* set the more bit for this request */
685         req->cqe->status |= cpu_to_le16(1 << 14);
686 }
687
688 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
689 {
690         if (!req->sq->sqhd_disabled)
691                 nvmet_update_sq_head(req);
692         req->cqe->sq_id = cpu_to_le16(req->sq->qid);
693         req->cqe->command_id = req->cmd->common.command_id;
694
695         if (unlikely(status))
696                 nvmet_set_error(req, status);
697
698         trace_nvmet_req_complete(req);
699
700         if (req->ns)
701                 nvmet_put_namespace(req->ns);
702         req->ops->queue_response(req);
703 }
704
705 void nvmet_req_complete(struct nvmet_req *req, u16 status)
706 {
707         __nvmet_req_complete(req, status);
708         percpu_ref_put(&req->sq->ref);
709 }
710 EXPORT_SYMBOL_GPL(nvmet_req_complete);
711
712 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
713                 u16 qid, u16 size)
714 {
715         cq->qid = qid;
716         cq->size = size;
717
718         ctrl->cqs[qid] = cq;
719 }
720
721 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
722                 u16 qid, u16 size)
723 {
724         sq->sqhd = 0;
725         sq->qid = qid;
726         sq->size = size;
727
728         ctrl->sqs[qid] = sq;
729 }
730
731 static void nvmet_confirm_sq(struct percpu_ref *ref)
732 {
733         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
734
735         complete(&sq->confirm_done);
736 }
737
738 void nvmet_sq_destroy(struct nvmet_sq *sq)
739 {
740         /*
741          * If this is the admin queue, complete all AERs so that our
742          * queue doesn't have outstanding requests on it.
743          */
744         if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
745                 nvmet_async_events_free(sq->ctrl);
746         percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
747         wait_for_completion(&sq->confirm_done);
748         wait_for_completion(&sq->free_done);
749         percpu_ref_exit(&sq->ref);
750
751         if (sq->ctrl) {
752                 nvmet_ctrl_put(sq->ctrl);
753                 sq->ctrl = NULL; /* allows reusing the queue later */
754         }
755 }
756 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
757
758 static void nvmet_sq_free(struct percpu_ref *ref)
759 {
760         struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
761
762         complete(&sq->free_done);
763 }
764
765 int nvmet_sq_init(struct nvmet_sq *sq)
766 {
767         int ret;
768
769         ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
770         if (ret) {
771                 pr_err("percpu_ref init failed!\n");
772                 return ret;
773         }
774         init_completion(&sq->free_done);
775         init_completion(&sq->confirm_done);
776
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(nvmet_sq_init);
780
781 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
782                 struct nvmet_ns *ns)
783 {
784         enum nvme_ana_state state = port->ana_state[ns->anagrpid];
785
786         if (unlikely(state == NVME_ANA_INACCESSIBLE))
787                 return NVME_SC_ANA_INACCESSIBLE;
788         if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
789                 return NVME_SC_ANA_PERSISTENT_LOSS;
790         if (unlikely(state == NVME_ANA_CHANGE))
791                 return NVME_SC_ANA_TRANSITION;
792         return 0;
793 }
794
795 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
796 {
797         if (unlikely(req->ns->readonly)) {
798                 switch (req->cmd->common.opcode) {
799                 case nvme_cmd_read:
800                 case nvme_cmd_flush:
801                         break;
802                 default:
803                         return NVME_SC_NS_WRITE_PROTECTED;
804                 }
805         }
806
807         return 0;
808 }
809
810 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
811 {
812         struct nvme_command *cmd = req->cmd;
813         u16 ret;
814
815         ret = nvmet_check_ctrl_status(req, cmd);
816         if (unlikely(ret))
817                 return ret;
818
819         req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
820         if (unlikely(!req->ns)) {
821                 req->error_loc = offsetof(struct nvme_common_command, nsid);
822                 return NVME_SC_INVALID_NS | NVME_SC_DNR;
823         }
824         ret = nvmet_check_ana_state(req->port, req->ns);
825         if (unlikely(ret)) {
826                 req->error_loc = offsetof(struct nvme_common_command, nsid);
827                 return ret;
828         }
829         ret = nvmet_io_cmd_check_access(req);
830         if (unlikely(ret)) {
831                 req->error_loc = offsetof(struct nvme_common_command, nsid);
832                 return ret;
833         }
834
835         if (req->ns->file)
836                 return nvmet_file_parse_io_cmd(req);
837         else
838                 return nvmet_bdev_parse_io_cmd(req);
839 }
840
841 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
842                 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
843 {
844         u8 flags = req->cmd->common.flags;
845         u16 status;
846
847         req->cq = cq;
848         req->sq = sq;
849         req->ops = ops;
850         req->sg = NULL;
851         req->sg_cnt = 0;
852         req->transfer_len = 0;
853         req->cqe->status = 0;
854         req->cqe->sq_head = 0;
855         req->ns = NULL;
856         req->error_loc = NVMET_NO_ERROR_LOC;
857         req->error_slba = 0;
858
859         trace_nvmet_req_init(req, req->cmd);
860
861         /* no support for fused commands yet */
862         if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
863                 req->error_loc = offsetof(struct nvme_common_command, flags);
864                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
865                 goto fail;
866         }
867
868         /*
869          * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
870          * contains an address of a single contiguous physical buffer that is
871          * byte aligned.
872          */
873         if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
874                 req->error_loc = offsetof(struct nvme_common_command, flags);
875                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
876                 goto fail;
877         }
878
879         if (unlikely(!req->sq->ctrl))
880                 /* will return an error for any Non-connect command: */
881                 status = nvmet_parse_connect_cmd(req);
882         else if (likely(req->sq->qid != 0))
883                 status = nvmet_parse_io_cmd(req);
884         else if (nvme_is_fabrics(req->cmd))
885                 status = nvmet_parse_fabrics_cmd(req);
886         else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
887                 status = nvmet_parse_discovery_cmd(req);
888         else
889                 status = nvmet_parse_admin_cmd(req);
890
891         if (status)
892                 goto fail;
893
894         if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
895                 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
896                 goto fail;
897         }
898
899         if (sq->ctrl)
900                 sq->ctrl->cmd_seen = true;
901
902         return true;
903
904 fail:
905         __nvmet_req_complete(req, status);
906         return false;
907 }
908 EXPORT_SYMBOL_GPL(nvmet_req_init);
909
910 void nvmet_req_uninit(struct nvmet_req *req)
911 {
912         percpu_ref_put(&req->sq->ref);
913         if (req->ns)
914                 nvmet_put_namespace(req->ns);
915 }
916 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
917
918 void nvmet_req_execute(struct nvmet_req *req)
919 {
920         if (unlikely(req->data_len != req->transfer_len)) {
921                 req->error_loc = offsetof(struct nvme_common_command, dptr);
922                 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
923         } else
924                 req->execute(req);
925 }
926 EXPORT_SYMBOL_GPL(nvmet_req_execute);
927
928 int nvmet_req_alloc_sgl(struct nvmet_req *req)
929 {
930         struct pci_dev *p2p_dev = NULL;
931
932         if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
933                 if (req->sq->ctrl && req->ns)
934                         p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
935                                                     req->ns->nsid);
936
937                 req->p2p_dev = NULL;
938                 if (req->sq->qid && p2p_dev) {
939                         req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
940                                                        req->transfer_len);
941                         if (req->sg) {
942                                 req->p2p_dev = p2p_dev;
943                                 return 0;
944                         }
945                 }
946
947                 /*
948                  * If no P2P memory was available we fallback to using
949                  * regular memory
950                  */
951         }
952
953         req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
954         if (!req->sg)
955                 return -ENOMEM;
956
957         return 0;
958 }
959 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
960
961 void nvmet_req_free_sgl(struct nvmet_req *req)
962 {
963         if (req->p2p_dev)
964                 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
965         else
966                 sgl_free(req->sg);
967
968         req->sg = NULL;
969         req->sg_cnt = 0;
970 }
971 EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
972
973 static inline bool nvmet_cc_en(u32 cc)
974 {
975         return (cc >> NVME_CC_EN_SHIFT) & 0x1;
976 }
977
978 static inline u8 nvmet_cc_css(u32 cc)
979 {
980         return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
981 }
982
983 static inline u8 nvmet_cc_mps(u32 cc)
984 {
985         return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
986 }
987
988 static inline u8 nvmet_cc_ams(u32 cc)
989 {
990         return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
991 }
992
993 static inline u8 nvmet_cc_shn(u32 cc)
994 {
995         return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
996 }
997
998 static inline u8 nvmet_cc_iosqes(u32 cc)
999 {
1000         return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1001 }
1002
1003 static inline u8 nvmet_cc_iocqes(u32 cc)
1004 {
1005         return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1006 }
1007
1008 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1009 {
1010         lockdep_assert_held(&ctrl->lock);
1011
1012         if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1013             nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1014             nvmet_cc_mps(ctrl->cc) != 0 ||
1015             nvmet_cc_ams(ctrl->cc) != 0 ||
1016             nvmet_cc_css(ctrl->cc) != 0) {
1017                 ctrl->csts = NVME_CSTS_CFS;
1018                 return;
1019         }
1020
1021         ctrl->csts = NVME_CSTS_RDY;
1022
1023         /*
1024          * Controllers that are not yet enabled should not really enforce the
1025          * keep alive timeout, but we still want to track a timeout and cleanup
1026          * in case a host died before it enabled the controller.  Hence, simply
1027          * reset the keep alive timer when the controller is enabled.
1028          */
1029         mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1030 }
1031
1032 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1033 {
1034         lockdep_assert_held(&ctrl->lock);
1035
1036         /* XXX: tear down queues? */
1037         ctrl->csts &= ~NVME_CSTS_RDY;
1038         ctrl->cc = 0;
1039 }
1040
1041 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1042 {
1043         u32 old;
1044
1045         mutex_lock(&ctrl->lock);
1046         old = ctrl->cc;
1047         ctrl->cc = new;
1048
1049         if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1050                 nvmet_start_ctrl(ctrl);
1051         if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1052                 nvmet_clear_ctrl(ctrl);
1053         if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1054                 nvmet_clear_ctrl(ctrl);
1055                 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1056         }
1057         if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1058                 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1059         mutex_unlock(&ctrl->lock);
1060 }
1061
1062 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1063 {
1064         /* command sets supported: NVMe command set: */
1065         ctrl->cap = (1ULL << 37);
1066         /* CC.EN timeout in 500msec units: */
1067         ctrl->cap |= (15ULL << 24);
1068         /* maximum queue entries supported: */
1069         ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1070 }
1071
1072 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1073                 struct nvmet_req *req, struct nvmet_ctrl **ret)
1074 {
1075         struct nvmet_subsys *subsys;
1076         struct nvmet_ctrl *ctrl;
1077         u16 status = 0;
1078
1079         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1080         if (!subsys) {
1081                 pr_warn("connect request for invalid subsystem %s!\n",
1082                         subsysnqn);
1083                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1084                 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1085         }
1086
1087         mutex_lock(&subsys->lock);
1088         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1089                 if (ctrl->cntlid == cntlid) {
1090                         if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1091                                 pr_warn("hostnqn mismatch.\n");
1092                                 continue;
1093                         }
1094                         if (!kref_get_unless_zero(&ctrl->ref))
1095                                 continue;
1096
1097                         *ret = ctrl;
1098                         goto out;
1099                 }
1100         }
1101
1102         pr_warn("could not find controller %d for subsys %s / host %s\n",
1103                 cntlid, subsysnqn, hostnqn);
1104         req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1105         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1106
1107 out:
1108         mutex_unlock(&subsys->lock);
1109         nvmet_subsys_put(subsys);
1110         return status;
1111 }
1112
1113 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1114 {
1115         if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1116                 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1117                        cmd->common.opcode, req->sq->qid);
1118                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1119         }
1120
1121         if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1122                 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1123                        cmd->common.opcode, req->sq->qid);
1124                 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1125         }
1126         return 0;
1127 }
1128
1129 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1130 {
1131         struct nvmet_host_link *p;
1132
1133         lockdep_assert_held(&nvmet_config_sem);
1134
1135         if (subsys->allow_any_host)
1136                 return true;
1137
1138         if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1139                 return true;
1140
1141         list_for_each_entry(p, &subsys->hosts, entry) {
1142                 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1143                         return true;
1144         }
1145
1146         return false;
1147 }
1148
1149 /*
1150  * Note: ctrl->subsys->lock should be held when calling this function
1151  */
1152 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1153                 struct nvmet_req *req)
1154 {
1155         struct nvmet_ns *ns;
1156
1157         if (!req->p2p_client)
1158                 return;
1159
1160         ctrl->p2p_client = get_device(req->p2p_client);
1161
1162         list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
1163                 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1164 }
1165
1166 /*
1167  * Note: ctrl->subsys->lock should be held when calling this function
1168  */
1169 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1170 {
1171         struct radix_tree_iter iter;
1172         void __rcu **slot;
1173
1174         radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1175                 pci_dev_put(radix_tree_deref_slot(slot));
1176
1177         put_device(ctrl->p2p_client);
1178 }
1179
1180 static void nvmet_fatal_error_handler(struct work_struct *work)
1181 {
1182         struct nvmet_ctrl *ctrl =
1183                         container_of(work, struct nvmet_ctrl, fatal_err_work);
1184
1185         pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1186         ctrl->ops->delete_ctrl(ctrl);
1187 }
1188
1189 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1190                 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1191 {
1192         struct nvmet_subsys *subsys;
1193         struct nvmet_ctrl *ctrl;
1194         int ret;
1195         u16 status;
1196
1197         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1198         subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1199         if (!subsys) {
1200                 pr_warn("connect request for invalid subsystem %s!\n",
1201                         subsysnqn);
1202                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1203                 goto out;
1204         }
1205
1206         status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1207         down_read(&nvmet_config_sem);
1208         if (!nvmet_host_allowed(subsys, hostnqn)) {
1209                 pr_info("connect by host %s for subsystem %s not allowed\n",
1210                         hostnqn, subsysnqn);
1211                 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1212                 up_read(&nvmet_config_sem);
1213                 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1214                 goto out_put_subsystem;
1215         }
1216         up_read(&nvmet_config_sem);
1217
1218         status = NVME_SC_INTERNAL;
1219         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1220         if (!ctrl)
1221                 goto out_put_subsystem;
1222         mutex_init(&ctrl->lock);
1223
1224         nvmet_init_cap(ctrl);
1225
1226         ctrl->port = req->port;
1227
1228         INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1229         INIT_LIST_HEAD(&ctrl->async_events);
1230         INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1231         INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1232
1233         memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1234         memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1235
1236         kref_init(&ctrl->ref);
1237         ctrl->subsys = subsys;
1238         WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1239
1240         ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1241                         sizeof(__le32), GFP_KERNEL);
1242         if (!ctrl->changed_ns_list)
1243                 goto out_free_ctrl;
1244
1245         ctrl->cqs = kcalloc(subsys->max_qid + 1,
1246                         sizeof(struct nvmet_cq *),
1247                         GFP_KERNEL);
1248         if (!ctrl->cqs)
1249                 goto out_free_changed_ns_list;
1250
1251         ctrl->sqs = kcalloc(subsys->max_qid + 1,
1252                         sizeof(struct nvmet_sq *),
1253                         GFP_KERNEL);
1254         if (!ctrl->sqs)
1255                 goto out_free_cqs;
1256
1257         ret = ida_simple_get(&cntlid_ida,
1258                              NVME_CNTLID_MIN, NVME_CNTLID_MAX,
1259                              GFP_KERNEL);
1260         if (ret < 0) {
1261                 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1262                 goto out_free_sqs;
1263         }
1264         ctrl->cntlid = ret;
1265
1266         ctrl->ops = req->ops;
1267
1268         /*
1269          * Discovery controllers may use some arbitrary high value
1270          * in order to cleanup stale discovery sessions
1271          */
1272         if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1273                 kato = NVMET_DISC_KATO_MS;
1274
1275         /* keep-alive timeout in seconds */
1276         ctrl->kato = DIV_ROUND_UP(kato, 1000);
1277
1278         ctrl->err_counter = 0;
1279         spin_lock_init(&ctrl->error_lock);
1280
1281         nvmet_start_keep_alive_timer(ctrl);
1282
1283         mutex_lock(&subsys->lock);
1284         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1285         nvmet_setup_p2p_ns_map(ctrl, req);
1286         mutex_unlock(&subsys->lock);
1287
1288         *ctrlp = ctrl;
1289         return 0;
1290
1291 out_free_sqs:
1292         kfree(ctrl->sqs);
1293 out_free_cqs:
1294         kfree(ctrl->cqs);
1295 out_free_changed_ns_list:
1296         kfree(ctrl->changed_ns_list);
1297 out_free_ctrl:
1298         kfree(ctrl);
1299 out_put_subsystem:
1300         nvmet_subsys_put(subsys);
1301 out:
1302         return status;
1303 }
1304
1305 static void nvmet_ctrl_free(struct kref *ref)
1306 {
1307         struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1308         struct nvmet_subsys *subsys = ctrl->subsys;
1309
1310         mutex_lock(&subsys->lock);
1311         nvmet_release_p2p_ns_map(ctrl);
1312         list_del(&ctrl->subsys_entry);
1313         mutex_unlock(&subsys->lock);
1314
1315         nvmet_stop_keep_alive_timer(ctrl);
1316
1317         flush_work(&ctrl->async_event_work);
1318         cancel_work_sync(&ctrl->fatal_err_work);
1319
1320         ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1321
1322         kfree(ctrl->sqs);
1323         kfree(ctrl->cqs);
1324         kfree(ctrl->changed_ns_list);
1325         kfree(ctrl);
1326
1327         nvmet_subsys_put(subsys);
1328 }
1329
1330 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1331 {
1332         kref_put(&ctrl->ref, nvmet_ctrl_free);
1333 }
1334
1335 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1336 {
1337         mutex_lock(&ctrl->lock);
1338         if (!(ctrl->csts & NVME_CSTS_CFS)) {
1339                 ctrl->csts |= NVME_CSTS_CFS;
1340                 schedule_work(&ctrl->fatal_err_work);
1341         }
1342         mutex_unlock(&ctrl->lock);
1343 }
1344 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1345
1346 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1347                 const char *subsysnqn)
1348 {
1349         struct nvmet_subsys_link *p;
1350
1351         if (!port)
1352                 return NULL;
1353
1354         if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1355                 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1356                         return NULL;
1357                 return nvmet_disc_subsys;
1358         }
1359
1360         down_read(&nvmet_config_sem);
1361         list_for_each_entry(p, &port->subsystems, entry) {
1362                 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1363                                 NVMF_NQN_SIZE)) {
1364                         if (!kref_get_unless_zero(&p->subsys->ref))
1365                                 break;
1366                         up_read(&nvmet_config_sem);
1367                         return p->subsys;
1368                 }
1369         }
1370         up_read(&nvmet_config_sem);
1371         return NULL;
1372 }
1373
1374 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1375                 enum nvme_subsys_type type)
1376 {
1377         struct nvmet_subsys *subsys;
1378
1379         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1380         if (!subsys)
1381                 return ERR_PTR(-ENOMEM);
1382
1383         subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1384         /* generate a random serial number as our controllers are ephemeral: */
1385         get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1386
1387         switch (type) {
1388         case NVME_NQN_NVME:
1389                 subsys->max_qid = NVMET_NR_QUEUES;
1390                 break;
1391         case NVME_NQN_DISC:
1392                 subsys->max_qid = 0;
1393                 break;
1394         default:
1395                 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1396                 kfree(subsys);
1397                 return ERR_PTR(-EINVAL);
1398         }
1399         subsys->type = type;
1400         subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1401                         GFP_KERNEL);
1402         if (!subsys->subsysnqn) {
1403                 kfree(subsys);
1404                 return ERR_PTR(-ENOMEM);
1405         }
1406
1407         kref_init(&subsys->ref);
1408
1409         mutex_init(&subsys->lock);
1410         INIT_LIST_HEAD(&subsys->namespaces);
1411         INIT_LIST_HEAD(&subsys->ctrls);
1412         INIT_LIST_HEAD(&subsys->hosts);
1413
1414         return subsys;
1415 }
1416
1417 static void nvmet_subsys_free(struct kref *ref)
1418 {
1419         struct nvmet_subsys *subsys =
1420                 container_of(ref, struct nvmet_subsys, ref);
1421
1422         WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1423
1424         kfree(subsys->subsysnqn);
1425         kfree(subsys);
1426 }
1427
1428 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1429 {
1430         struct nvmet_ctrl *ctrl;
1431
1432         mutex_lock(&subsys->lock);
1433         list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1434                 ctrl->ops->delete_ctrl(ctrl);
1435         mutex_unlock(&subsys->lock);
1436 }
1437
1438 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1439 {
1440         kref_put(&subsys->ref, nvmet_subsys_free);
1441 }
1442
1443 static int __init nvmet_init(void)
1444 {
1445         int error;
1446
1447         nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1448
1449         buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1450                         WQ_MEM_RECLAIM, 0);
1451         if (!buffered_io_wq) {
1452                 error = -ENOMEM;
1453                 goto out;
1454         }
1455
1456         error = nvmet_init_discovery();
1457         if (error)
1458                 goto out_free_work_queue;
1459
1460         error = nvmet_init_configfs();
1461         if (error)
1462                 goto out_exit_discovery;
1463         return 0;
1464
1465 out_exit_discovery:
1466         nvmet_exit_discovery();
1467 out_free_work_queue:
1468         destroy_workqueue(buffered_io_wq);
1469 out:
1470         return error;
1471 }
1472
1473 static void __exit nvmet_exit(void)
1474 {
1475         nvmet_exit_configfs();
1476         nvmet_exit_discovery();
1477         ida_destroy(&cntlid_ida);
1478         destroy_workqueue(buffered_io_wq);
1479
1480         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1481         BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1482 }
1483
1484 module_init(nvmet_init);
1485 module_exit(nvmet_exit);
1486
1487 MODULE_LICENSE("GPL v2");